Silva, Claudia; Vinuesa, Pablo; Eguiarte, Luis E.; Martínez-Romero, Esperanza; Souza, Valeria
2003-01-01
The stability of the genetic structure of rhizobial populations nodulating Phaseolus vulgaris cultivated in a traditionally managed milpa plot in Mexico was studied over three consecutive years. The set of molecular markers analyzed (including partial rrs, glnII, nifH, and nodB sequences), along with host range experiments, placed the isolates examined in Rhizobium etli bv. phaseoli and Rhizobium gallicum bv. gallicum. Cluster analysis of multilocus enzyme electrophoresis and plasmid profile data separated the two species and identified numerically dominant clones within each of them. Population genetic analyses showed that there was high genetic differentiation between the two species and that there was low intrapopulation differentiation of the species over the 3 years. The results of linkage disequilibrium analyses are consistent with an epidemic genetic structure for both species, with frequent genetic exchange taking place within conspecific populations but not between the R. etli and R. gallicum populations. A subsample of isolates was selected and used for 16S ribosomal DNA PCR-restriction fragment length polymorphism analysis, nifH copy number determination, and host range experiments. Plasmid profiles and nifH hybridization patterns also revealed the occurrence of lateral plasmid transfer among distinct multilocus genotypes within species but not between species. Both species were recovered from nodules of the same plants, indicating that mechanisms other than host, spatial, or temporal isolation may account for the genetic barrier between the species. The biogeographic implications of finding an R. gallicum bv. gallicum population nodulating common bean in America are discussed. PMID:12571008
Presence of polycyclic aromatic hydrocarbons (PAHs) in apple in rural terrains from Mexico City.
Salinas, Rutilio Ortiz; González, Gilberto Díaz; Bermudez, Beatriz Schettino; Tolentino, Rey Gutiérrez; Vega Y León, Salvador
2010-08-01
This paper describes PAH concentrations in apple crops that are growing in rural terrains in Mexico City. The concentrations of individual PAHs showed great variability, there being low and high molecular weight compounds in dry (high molecular weight for Tlahuac 7.06 microg/g and Milpa Alta 3.96 microg/g) and wet months (high molecular weight for Tlahuac 11.25 microg/g and Milpa Alta 12.05 microg/g). Some PAHs indicators and cross plot ratios Ant/(Ant + Phe) and Flu/(Flu + Pyr) define fossil fuels and vegetation combustion as the source of contamination over the cuticle of the apples. It is likely that deposition (dry and wet) is the principal source o f contamination over the apple surface. This study reveals the presence of PAHs in apples due to the high air contamination of Mexico City.
The ecological role of ants in two Mexican agroecosystems.
Risch, Stephen J; Carroll, C Ronald
1982-10-01
The development of the ant communities and their foraging dynamics were studied in two annual agroecosystems of the Mexican tropical lowlands: a "forest milpa" of corn, beans, and squash made by cutting and buring 40-year-old forest, and a "field milpa" of corn, beans, and squash made by plowing 1-year-old second growth. The ant community was sampled using tuna fish baits 26, 52, 110 and 353 days after planting. Although immediately after planting the same number of ant species occurred in each milpa type, thereafter the ant faunas diverged. The field milpa became completely dominated by the native fire ant, Solenopsis geminata, while the number of ant species in the forest milpa gradually increased over time, reaching eight species 110 days after planting and 14 species by 353 days. Initially S. geminata dominated the ant fauna in the forest milpa (occurring on 90% of the baits), but by 353 days planting it was found on only 26% of the occupied baits. Ant foraging efficiency, as measured by proportion of tuna baits occupied and the removal rates of dead Drosophila fly baits, was much higher (by a factor of 2 to 3) in the field than the forest milpa. This was caused by the extremely high density of S. geminata colonies in the field milpa. The simple Solenopsis-dominated community of the field milpa may be much more effective in biological control than the more diverse community of the forest milpa. Although S. geminata has potential negative impacts in annual agroecosystems (it stings, eats corn seeds, and guards homopterams), its overall impact appears to be beneficial. As forested areas of the lowland wet tropics are increasingly cut and converted to annual agriculture, the primary ant inhabitant of these highly disturbed environments, S. geminata, will necessarily play a much more significant ecological role in agroecosystems.
Palomares-Pérez, Martín; Rodríguez-Leyva, Esteban; Brailovsky, Harry; Ramírez-Alarcón, Samuel
2010-01-01
In recent years a species of Hesperolabops has become a problem as a pest of nopalitos, Opuntia ficus-indica, in Milpa Alta, in the south of Mexico City, which is the most important production region of this vegetable in the country. A survey of Hesperolabops in Milpa Alta has resulted in the first report of Hesperolabops nigriceps Reuter. This occurrence should be monitored and considered in future studies in order to avoid misidentification of Hesperolabops spp. Kirkaldy native populations there, and to avoid the confusion of the damage that may be caused on O. ficus-indica.
Landaverde-González, Patricia; Quezada-Euán, José Javier G; Theodorou, Panagiotis; Murray, Tomás E; Husemann, Martin; Ayala, Ricardo; Moo-Valle, Humberto; Vandame, Rémy; Paxton, Robert J
2017-12-01
Traditional tropical agriculture often entails a form of slash-and-burn land management that may adversely affect ecosystem services such as pollination, which are required for successful crop yields. The Yucatán Peninsula of Mexico has a >4000 year history of traditional slash-and-burn agriculture, termed 'milpa'. Hot 'Habanero' chilli is a major pollinator-dependent crop that nowadays is often grown in monoculture within the milpa system.We studied 37 local farmers' chilli fields (sites) to evaluate the effects of landscape composition on bee communities. At 11 of these sites, we undertook experimental pollination treatments to quantify the pollination of chilli. We further explored the relationships between landscape composition, bee communities and pollination service provision to chilli.Bee species richness, particularly species of the family Apidae, was positively related to the amount of forest cover. Species diversity decreased with increasing proportion of crop land surrounding each sampling site. Sweat bees of the genus Lasioglossum were the most abundant bee taxon in chilli fields and, in contrast to other bee species, increased in abundance with the proportion of fallow land, gardens and pastures which are an integral part of the milpa system.There was an average pollination shortfall of 21% for chilli across all sites; yet the shortfall was unrelated to the proportion of land covered by crops. Rather, chilli pollination was positively related to the abundance of Lasioglossum bees, probably an important pollinator of chilli, as well indirectly to the proportion of fallow land, gardens and pastures that promote Lasioglossum abundance. Synthesis and applications . Current, low-intensity traditional slash-and-burn ( milpa ) agriculture provides Lasioglossum spp. pollinators for successful chilli production; fallow land, gardens and pasture therefore need to be valued as important habitats for these and related ground-nesting bee species. However, the negative impact of agriculture on total bee species diversity highlights how agricultural intensification is likely to reduce pollination services to crops, including chilli. Indeed, natural forest cover is vital in tropical Yucatán to maintain a rich assemblage of bee species and the provision of pollination services for diverse crops and wild flowers.
NASA Astrophysics Data System (ADS)
Bermeo, A.; Couturier, S.
2017-01-01
Because of its renewed importance in international agendas, food security in sub-tropical countries has been the object of studies at different scales, although the spatial components of food security are still largely undocumented. Among other aspects, food security can be assessed using a food selfsufficiency index. We propose a spatial representation of this assessment in the densely populated rural area of the Huasteca Poblana, Mexico, where there is a known tendency towards the loss of selfsufficiency of basic grains. The main agricultural systems in this area are the traditional milpa (a multicrop practice with maize as the main basic crop) system, coffee plantations and grazing land for bovine livestock. We estimate a potential additional milpa - based maize production by smallholders identifying the presence of extensive coffee and pasture systems in the production data of the agricultural census. The surface of extensive coffee plantations and pasture land were estimated using the detailed coffee agricultural census data, and a decision tree combining unsupervised and supervised spectral classification techniques of medium scale (Landsat) satellite imagery. We find that 30% of the territory would benefit more than 50% increment in food security and 13% could theoretically become maize self-sufficient from the conversion of extensive systems to the traditional multicrop milpa system.
76 FR 25406 - Additional Designations, Foreign Narcotics Kingpin Designation Act
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
...; Calle Comercio No. 50, Colonia Escandon, Delegacion Miguel Hidalgo, Mexico City, Distrito Federal C.P. 11800, Mexico; Calle Milpa No. 87, Colonia El Vigia, Zapopan, Jalisco C.P. 45100, Mexico; Calle...
Green utilities for research and eco-tourist communities, Rio Bravo, Belize, Central America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, O.
1997-12-31
Programme for Belize (PFB), a non-governmental organization which owns and manages the Rio Bravo Conservation and Management Area (RBCMA), a 229,000 acre section of subtropical rainforest in northwestern Belize, is developing a series of research and eco-tourism developments as sustainable development projects. Guided by a comprehensive Sustainable Infrastructure Plan completed by Caribbean Infra-Tech, Inc. (CIT) in 1995, PFB adopted an organizational goal of implementing 100% green renewable energy-based utilities for their two major development sites: La Milpa and Hill Bank stations. To date, PFB has constructed or installed over 20 kW of standalone PV power, sustainable water supply systems, recyclingmore » waste treatment systems, and a model sustainable Dormitory and Bath House facility in the RBCMA. In addition, a Resource Conservation and Management Program (RCMP), which is to guide ongoing visitor orientation, staff training, and sustainable systems operations and maintenance, is now being prepared for immediate implementation. In this paper, the design and technical performance of the solar (PV) electric power plants, PV water pumping, solar water heating and other green utility systems will be assessed.« less
Buentello-Malo, Leonora; Peñaloza-Espinosa, Rosenda I; Salamanca-Gómez, Fabio; Cerda-Flores, Ricardo M
2008-01-01
This study explores the genetic admixture of eight Mexican indigenous populations (Otomi-Ixmiquilpan, Otomi-Actopan, Tzeltales, Nahua-Milpa-Alta, Nahua-Xochimilco, Nahua-Zitlala, Nahua-Ixhuatlancillo, and Nahua-Coyolillo) on the basis of five PCR-based polymorphic DNA loci (LDLR, GYPA, HBGG, D7S8, GC), HLA_DQA1, and the blood groups ABO and Rh (CcDEe). Among the indigenous populations, the highest gene frequencies for O and D were 0.9703 and 1.000 for Zitlala (State of Guerrero) and 0.9955 and 0.9414 for Tzeltales (State of Chiapas), respectively. Maximum likelihood estimates of admixture components yield a trihybrid model with Amerindian (assuming that Nahua-Zitlala is the most representative indigenous population), Spanish, and African ancestry with the admixture proportions: 93.03, 6.03, and 0.94 for Tzeltales, and 28.99, 44.03, and 26.98 for Coyolillo. A contribution of the ancestral populations of Ixhuatlancillo, Actopan, Ixmiquilpan, Milpa-Alta, and Xochimilco were found with the following average of admixture proportions: 75.84, 22.50, and 1.66. The findings herein demonstrate that the genetic admixture of the Mexican indigenous populations who at present speak the same Amer-Indian language can be differentiated and that the majority of them have less ancestral indigenous contribution than those considered as Mestizo populations.
Habitat use by Swainson's Warblers in a managed bottomland forest
Somershoe, S.G.; Hudman, S.P.; Chandler, C.R.
2003-01-01
The Swainson's Warbler (Limnothlypis swainsonii) is a locally distributed and relatively uncommon Neotropical migrant songbird that breeds in the bottomland forests of the southeastern United States and spends the nonbreeding season in the Caribbean Basin. Populations of Swainson's Warblers have declined during recent decades as bottomland forests have come under increasingly intensive management and large areas have been converted to other land uses. We examined the habitat around song perches used by male Swainson's Warblers at Big Hammock Wildlife Management Area, a managed bottomland forest along the Altamaha River in Tattnall County, Georgia. We quantified 20 features of habitat structure in areas occupied by Swainson's Warblers (occupied plots) and two sets of controls: unoccupied plots adjacent to occupied plots (adjacent control plots) and unoccupied plots throughout the management area (general control plots). Occupied plots and adjacent control plots both differed in structure from the general control plots. We detected no significant differences, however, in vegetation structure between occupied plots and adjacent control plots. General control plots tended to have a greater number of trees, greater basal area, and a complete canopy, whereas occupied and adjacent control plots had high densities of small stems, cane, herbaceous ground cover, and leaf litter; this latter pattern is typical of documented Swainson's Warbler breeding habitat. Lack of significant differences in vegetation structure may be due to great variation in habitat structure around song perches, small sample size, or scarcity of Swainson's Warblers. Future research should focus on quantifying habitat characteristics around nest sites, song perches, and feeding areas. Our results suggest that management of bottomland habitats by thinning forests and encouraging regeneration of canebrakes is needed for successful conservation of Swainson's Warblers.
Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems
Kravchenko, Alexandra N.; Snapp, Sieglinde S.; Robertson, G. Philip
2017-01-01
Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based–organic, management practices for a corn–soybean–wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world. PMID:28096409
Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems.
Kravchenko, Alexandra N; Snapp, Sieglinde S; Robertson, G Philip
2017-01-31
Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based-organic, management practices for a corn-soybean-wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world.
NASA Astrophysics Data System (ADS)
Parwi; Pudjiasmanto, B.; Purnomo, D.; Cahyani, VR
2017-11-01
This study investigated the diversity of arbuscular mycorrhiza in rhizosphere of cajeput with different fertilizer management of maize. This research was conducted by observation on cajeput agroforestry system in Ponorogo that have different fertilizer management of maize: conventional management (CM), universal management (UM) and alternative management (AM1, AM2, and AM3). The result showed that the highest infection of arbuscular mycorrhiza was observed in the plot of AM3, while the lowest colonization was observed in the plot of CM. Infection of arbuscular mycorrhiza in roots cajeput from five fertilizer management, ranging from 32.64% - 63.33%. In all fertilizer management, there were eight species of arbuscular mycorrhiza which five species were Glomus genus, one species was Acaulospora genus and two species were Gigaspora genus. Glomus constrictum was the dominant species in all fertilizer management. Acaulospora favoeta was found only in the plot of AM3. Spore density varies between 150-594 / 100g of soil. The highest spore density was observed in the plot of AM3, while the lowest spore density was observed in the plot of AM1. The highest diversity index value of arbuscular mycorrhiza (Species richness and Shannon-Wiener) was observed in the plot of AM3.
John C. Byrne
1993-01-01
Methods for solving some recurring problems of maintaining a permanent plot data base for growth and yield reseuch are described. These methods include documenting data from diverse sampling designs, changing sampling designs, changing field procedures, and coordinating activities in the plots with the land management agency. Managing a permanent plot data base (...
A density management diagram for even-aged ponderosa pine stands
James N. Long; John D. Shaw
2005-01-01
We developed a density management diagram (DMD) for ponderosa pine using Forest Inventory and Analysis (FIA) data. Analysis plots were drawn from all FIA plots in the western United States on which ponderosa pine occurred. A total of 766 plots met the criteria for analysis. Selection criteria were for purity, defined as ponderosa pine basal area 80% of plot basal area...
An ecoinformatics application for forest dynamics plot data management and sharing
Chau-Chin Lin; Abd Rahman Kassim; Kristin Vanderbilt; Donald Henshaw; Eda C. Melendez-Colom; John H. Porter; Kaoru Niiyama; Tsutomu Yagihashi; Sek Aun Tan; Sheng-Shan Lu; Chi-Wen Hsiao; Li-Wan Chang; Meei-Ru Jeng
2011-01-01
Several forest dynamics plot research projects in the East-Asia Pacific region of the International Long-Term Ecological Research network actively collect long-term data, and some of these large plots are members of the Center for Tropical Forest Science network. The wealth of forest plot data presents challenges in information management to researchers. In order to...
[Wildlife damage mitigation in agricultural crops in a Bolivian montane forest].
Perez, Eddy; Pacheco, Luis F
2014-12-01
Wildlife is often blamed for causing damage to human activities, including agricultural practices and the result may be a conflict between human interests and species conservation. A formal assessment of the magnitude of damage is necessary to adequately conduct management practices and an assessment of the efficiency of different management practices is necessary to enable managers to mitigate the conflict with rural people. This study was carried out to evaluate the effectiveness of agricultural management practices and controlled hunting in reducing damage to subsistence annual crops at the Cotapata National Park and Natural Area of Integrated Management. The design included seven fields with modified agricultural practices, four fields subjected to control hunting, and five fields held as controls. We registered cultivar type, density, frequency of visiting species to the field, crops lost to wildlife, species responsible for damage, and crop biomass. Most frequent species in the fields were Dasyprocta punctata and Dasypus novemcinctus. Hunted plots were visited 1.6 times more frequently than agriculturally managed plots. Crop lost to wildlife averaged 7.28% at agriculturally managed plots, 4.59% in plots subjected to hunting, and 27.61% in control plots. Species mainly responsible for damage were Pecari tajacu, D. punctata, and Sapajus apella. We concluded that both management strategies were effective to reduce damage by >50% as compared to unmanaged crop plots.
Effects of soil management techniques on soil water erosion in apricot orchards.
Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi
2016-05-01
Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (<8% soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide treatment should be avoided. Copyright © 2016 Elsevier B.V. All rights reserved.
Theriault, Veronique; Smale, Melinda; Haider, Hamza
2017-04-01
Better understanding of gender differences in the adoption of agricultural intensification strategies is crucial for designing effective policies to close the gender gap while sustainably enhancing farm productivity. We examine gender differences in adoption rates, likelihood and determinants of adopting strategy sets that enhance yields, protect crops, and restore soils in the West African Sahel, based on analysis of cereal production in Burkina Faso. Applying a multivariate probit model to a nationally representative household panel, we exploit the individual plot as unit of analysis and control for plot manager characteristics along with other covariates. Reflecting the socio-cultural context of farming combined with the economic attributes of inputs, we find that female managers of individual cereal fields are less likely than their male counterparts to adopt yield-enhancing and soil-restoring strategies, although no differential is apparent for yield-protecting strategies. More broadly, gender-disaggregated regressions demonstrate that adoption determinants differ by gender. Plot manager characteristics, including age, marital status, and access to credit or extension services do influence adoption decisions. Furthermore, household resources influence the probability of adopting intensification strategy sets differently by gender of the plot manager. Variables expressing the availability of household labor strongly influence the adoption of soil-restoring strategies by female plot managers. By contrast, household resources such as extent of livestock owned, value of non-farm income, and area planted to cotton affect the adoption choices of male plot managers. Rectifying the male bias in extension services along with improving access to credit, income, and equipment to female plot managers could contribute to sustainable agricultural intensification.
Reptile Communities Under Diverse Forest Management in the Ouachita Mountains, Arkansas
Paul A. Shipman; Stanley F. Fox; Ronald E. Thill; Joseph P. Phelps; David M. Leslie
2004-01-01
Abstract - From May 1995 to March 1999, we censused reptiles in the Ouachita Mountains, Arkansas, on approximately 60 plots on each of four forested watersheds five times per year, with new plots each year. We found that the least intensively managed watershed had significantly lower per-plot reptile abundances, species richness, and diversity....
A density management diagram for even-aged Sierra Nevada mixed-conifer stands
James N. Long; John D. Shaw
2012-01-01
We have developed a density management diagram (DMD) for even-aged mixed-conifer stands in the Sierra Nevada Mountains using forest inventory and analysis (FIA) data. Analysis plots were drawn from FIA plots in California, southern Oregon, and western Nevada which included those conifer species associated with the mixed-conifer forest type. A total of 204 plots met the...
James B. McCarter; Sean Healey
2015-01-01
The Forest Carbon Management Framework (ForCaMF) integrates Forest Inventory and Analysis (FIA) plot inventory data, disturbance histories, and carbon response trajectories to develop estimates of disturbance and management effects on carbon pools for the National Forest System. All appropriate FIA inventory plots are simulated using the Forest Vegetation Simulator (...
Liu, Ruohan; Nyoike, Teresia W; Liburd, Oscar E
2016-10-01
Greenhouse and field experiments were conducted to evaluate the effectiveness of site-specific tactics for management of the twospotted spider mite, Tetranychus urticae Koch, a major pest of greenhouse and field-grown strawberries (Fragaria x ananassa Duchesne). Two site-specific (spot) treatments, the miticide bifenazate (Acramite(®)) and the predatory mite Neoseiulus californicus McGregor, were compared with whole-plot treatments of bifenazate or N. californicus to determine whether T. urticae could be effectively managed in field-grown strawberry using only site-specific tactics. Additionally, the cost of site-specific tactics was compared with whole-plot treatments to determine the economic value of using site-specific management tactics for T. urticae in strawberries. In the greenhouse, all treatments equivalently reduced the number of T. urticae below control. In the field during the 2011-2012 season, more T. urticae eggs and motiles were in the whole-plot treatments of both N. californicus and bifenazate in the mid-season and late season, respectively, compared with the spot treatments. With the exception of site-specific N. californicus during the 2011-2012 field season, there were no differences in marketable yields between plots with site-specific treatments and whole-plot management. An economic analysis demonstrated a significant cost savings (75.3 %) with site-specific treatments of N. californicus compared with whole-plot application of N. californicus. Similarly, a 24.7 % reduction in cost was achieved in using site-specific bifenazate compared with whole-plot application of bifenazate. The findings indicate that site-specific treatments with N. californicus and bifenazate are competitive alternatives to whole-field application for T. urticae management in strawberries.
Chappell, M Jahi; Wittman, Hannah; Bacon, Christopher M; Ferguson, Bruce G; Barrios, Luis García; Barrios, Raúl García; Jaffee, Daniel; Lima, Jefferson; Méndez, V Ernesto; Morales, Helda; Soto-Pinto, Lorena; Vandermeer, John; Perfecto, Ivette
2013-01-01
Strong feedback between global biodiversity loss and persistent, extreme rural poverty are major challenges in the face of concurrent food, energy, and environmental crises. This paper examines the role of industrial agricultural intensification and market integration as exogenous socio-ecological drivers of biodiversity loss and poverty traps in Latin America. We then analyze the potential of a food sovereignty framework, based on protecting the viability of a diverse agroecological matrix while supporting rural livelihoods and global food production. We review several successful examples of this approach, including ecological land reform in Brazil, agroforestry, milpa, and the uses of wild varieties in smallholder systems in Mexico and Central America. We highlight emergent research directions that will be necessary to assess the potential of the food sovereignty model to promote both biodiversity conservation and poverty reduction.
Chappell, M Jahi
2013-01-01
Strong feedback between global biodiversity loss and persistent, extreme rural poverty are major challenges in the face of concurrent food, energy, and environmental crises. This paper examines the role of industrial agricultural intensification and market integration as exogenous socio-ecological drivers of biodiversity loss and poverty traps in Latin America. We then analyze the potential of a food sovereignty framework, based on protecting the viability of a diverse agroecological matrix while supporting rural livelihoods and global food production. We review several successful examples of this approach, including ecological land reform in Brazil, agroforestry, milpa, and the uses of wild varieties in smallholder systems in Mexico and Central America. We highlight emergent research directions that will be necessary to assess the potential of the food sovereignty model to promote both biodiversity conservation and poverty reduction. PMID:24555109
Hedman, C.W.; Grace, S.L.; King, S.E.
2000-01-01
Longleaf pine (Pinus palustris) ecosystems are characterized by a diverse community of native groundcover species. Critics of plantation forestry claim that loblolly (Pinus taeda) and slash pine (Pinus elliottii) forests are devoid of native groundcover due to associated management practices. As a result of these practices, some believe that ecosystem functions characteristic of longleaf pine are lost under loblolly and slash pine plantation management. Our objective was to quantify and compare vegetation composition and structure of longleaf, loblolly, and slash pine forests of differing ages, management strategies, and land-use histories. Information from this study will further our understanding and lead to inferences about functional differences among pine cover types. Vegetation and environmental data were collected in 49 overstory plots across Southlands Experiment Forest in Bainbridge, GA. Nested plots, i.e. midstory, understory, and herbaceous, were replicated four times within each overstory plot. Over 400 species were identified. Herbaceous species richness was variable for all three pine cover types. Herbaceous richness for longleaf, slash, and loblolly pine averaged 15, 13, and 12 species per m2, respectively. Longleaf pine plots had significantly more (p < 0.029) herbaceous species and greater herbaceous cover (p < 0.001) than loblolly or slash pine plots. Longleaf and slash pine plots were otherwise similar in species richness and stand structure, both having lower overstory density, midstory density, and midstory cover than loblolly pine plots. Multivariate analyses provided additional perspectives on vegetation patterns. Ordination and classification procedures consistently placed herbaceous plots into two groups which we refer to as longleaf pine benchmark (34 plots) and non-benchmark (15 plots). Benchmark plots typically contained numerous herbaceous species characteristic of relic longleaf pine/wiregrass communities found in the area. Conversely, non-benchmark plots contained fewer species characteristic of relic longleaf pine/wiregrass communities and more ruderal species common to highly disturbed sites. The benchmark group included 12 naturally regenerated longleaf plots and 22 loblolly, slash, and longleaf pine plantation plots encompassing a broad range of silvicultural disturbances. Non-benchmark plots included eight afforested old-field plantation plots and seven cutover plantation plots. Regardless of overstory species, all afforested old fields were low either in native species richness or in abundance. Varying degrees of this groundcover condition were also found in some cutover plantation plots that were classified as non-benchmark. Environmental variables strongly influencing vegetation patterns included agricultural history and fire frequency. Results suggest that land-use history, particularly related to agriculture, has a greater influence on groundcover composition and structure in southern pine forests than more recent forest management activities or pine cover type. Additional research is needed to identify the potential for afforested old fields to recover native herbaceous species. In the interim, high-yield plantation management should initially target old-field sites which already support reduced numbers of groundcover species. Sites which have not been farmed in the past 50-60 years should be considered for longleaf pine restoration and multiple-use objectives, since they have the greatest potential for supporting diverse native vegetation. (C) 2000 Elsevier Science B.V.
Agroforestry management and phytoseiid communities in vineyards in the South of France.
Liguori, Marialivia; Tixier, Marie-Stéphane; Hernandes, Akashi Fabio; Douin, Martial; Kreiter, Serge
2011-10-01
This study deals with the long-term effect of agroforestry management (trees within vine crops) on communities of phytoseiid mites. Several plots were considered: vineyards co-planted with Sorbus domestica or Pinus pinea, monocultures of vines and monocultures of S. domestica or P. pinea. All vine plots included two vine cultivars, Syrah and Grenache. Phytoseiid mites have been surveyed in these plots during several years within the previous 10 years. In 2010, samplings were again carried out in these same plots, from May to September, twice a month. Significantly higher densities of Phytoseiidae were observed on the cultivar Syrah (0.85 phytoseiids per leaf) than on Grenache (0.26 phytoseiids per leaf). Furthermore, significantly higher phytoseiid mite densities were observed in the monocultural grapevine plot than in the two co-planted ones. The main species found was Typhlodromus (Typhlodromus) exhilaratus in all vine plots considered. However, Kampimodromus aberrans was observed in the grapevine plots co-planted with the two trees, but never in the monocultural vine plot. Surprisingly, this phytoseiid species was not found on the co-planted trees, nor in the neighbouring uncultivated vegetation. Several hypotheses are discussed to explain such an unexpected distribution. Furthermore, contrary to what has been observed previously, agroforestry management did not seem to favour phytoseiid mite development, especially on the Grenache cultivar. Again, some hypotheses are developed to explain such observations and density modifications.
Effect of Rice Cultivation Systems on Indigenous Arbuscular Mycorrhizal Fungal Community Structure
Watanarojanaporn, Nantida; Boonkerd, Nantakorn; Tittabutr, Panlada; Longtonglang, Aphakorn; Young, J. Peter W.; Teaumroong, Neung
2013-01-01
Arbuscular mycorrhizal fungi (AMF) in an agricultural ecosystem are necessary for proper management of beneficial symbiosis. Here we explored how the patterns of the AMF community in rice roots were affected by rice cultivation systems (the system of rice intensification [SRI] and the conventional rice cultivation system [CS]), and by compost application during growth stages. Rice plants harvested from SRI-managed plots exhibited considerably higher total biomass, root dry weight, and seed fill than those obtained from conventionally managed plots. Our findings revealed that all AMF sequences observed from CS plots belonged (only) to the genus Glomus, colonizing in rice roots grown under this type of cultivation, while rice roots sown in SRI showed sequences belonging to both Glomus and Acaulospora. The AMF community was compared between the different cultivation types (CS and SRI) and compost applications by principle component analysis. In all rice growth stages, AMF assemblages of CS management were not separated from those of SRI management. The distribution of AMF community composition based on T-RFLP data showed that the AMF community structure was different among four cultivation systems, and there was a gradual increase of Shannon-Weaver indices of diversity (H′) of the AMF community under SRI during growth stages. The results of this research indicated that rice grown in SRI-managed plots had more diverse AMF communities than those grown in CS plots. PMID:23719585
Piñero, Jaime C; Agnello, Arthur M; Tuttle, Arthur; Leskey, Tracy C; Faubert, Heather; Koehler, Glen; Los, Lorraine; Morin, Glenn; Leahy, Kathleen; Cooley, Daniel R; Prokopy, Ronald J
2011-10-01
The plum curculio, Conotrachelus nenuphar (Herbst), is a key pest of pome and stone fruit in eastern and central North America. For effective management of this insect pest in commercial apple (Malus spp.) orchards in the northeastern United States and Canada, one of the greatest challenges has been to determine the need for and timing of insecticide applications that will protect apple fruit from injury by adults. In a 2004-2005 study, we assessed the efficacy and economic viability of a reduced-risk integrated pest management strategy involving an odor-baited trap tree approach to determine need for and timing of insecticide use against plum curculio based on appearance of fresh egg-laying scars. Evaluations took place in commercial apple orchards in seven northeastern U.S. states. More specifically, we compared the trap-tree approach with three calendar-driven whole-block sprays and with heat-unit accumulation models that predict how long insecticide should be applied to orchard trees to prevent injury by plum curculio late in the season. Trap tree plots received a whole-plot insecticide spray by the time of petal fall, and succeeding sprays (if needed) were applied to peripheral-row trees only, depending on a threshold of one fresh plum curculio egg-laying scar out of 25 fruit sampled from a single trap tree. In both years, level of plum curculio injury to fruit sampled from perimeter-row, the most interior-row trees and whole-plot injury in trap tree plots did not differ significantly from that recorded in plots subject to conventional management or in plots managed using the heat-unit accumulation approach. The amount of insecticide used in trap tree plots was reduced at least by 43% compared with plots managed with the conventional approach. Advantages and potential pitfalls of the bio-based trap tree approach to plum curculio monitoring in apple orchards are discussed.
Vegetation management with fire modifies peatland soil thermal regime.
Brown, Lee E; Palmer, Sheila M; Johnston, Kerrylyn; Holden, Joseph
2015-05-01
Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from <2 to 15 + years post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15 + years previously, plots recently burned (<2-4 years) showed higher mean, maximum and range of soil temperatures, and lower minima. Statistical models (generalised least square regression) were developed to predict daily mean and maximum soil temperature in plots burned 15 + years prior to the study. These models were then applied to predict temperatures of plots burned 2, 4 and 7 years previously, with significant deviations from predicted temperatures illustrating the magnitude of burn management effects. Temperatures measured in soil plots burned <2 years previously showed significant statistical disturbances from model predictions, reaching +6.2 °C for daily mean temperatures and +19.6 °C for daily maxima. Soil temperatures in plots burnt 7 years previously were most similar to plots burned 15 + years ago indicating the potential for soil temperatures to recover as vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime change for carbon processing and release, and hydrological processes, in these peatlands. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Long-term tree inventory data from mountain forest plots in France.
Fuhr, Marc; Cordonnier, Thomas; Courbaud, Benoît; Kunstler, Georges; Mermin, Eric; Riond, Catherine; Tardif, Pascal
2017-04-01
We present repeated tree measurement data from 63 permanent plots in mountain forests in France. Plot elevations range from 800 (lower limit of the montane belt) to 1942 m above sea level (subalpine belt). Forests mainly consist of pure or mixed stands dominated by European beech (Fagus sylvatica), Silver fir (Abies alba), and Norway spruce (Picea abies), in association with various broadleaved species at low elevation and with Arolla pine (Pinus cembra) at high elevation. The plot network includes 23 plots in stands that have not been managed for the last 40 years (at least) and 40 plots in plots managed according to an uneven-aged system with single-tree or small-group selection cutting. Plot sizes range from 0.2 to 1.9 ha. Plots were installed from 1994 to 2004 and remeasured two to five times during the 1994-2015 period. During the first census (installation), living trees more than 7.5 cm in dbh were identified, their diameter at breast height (dbh) was measured and their social status (strata) noted. Trees were spatially located, either with x, y, and z coordinates (40 plots) or within 0.25-ha square subplots (23 plots). In addition, in a subset of plots (58 plots), tree heights and tree crown dimensions were measured on a subset of trees and dead standing trees and stumps were included in the census. Remeasurements after installation include live tree diameters (including recruited trees), tree status (living, damaged, dead, stump), and for a subset of trees, height. At the time of establishment of the plots, plot densities range from 181 to 1328 stems/ha and plot basal areas range from 13.6 to 81.3 m 2 /ha. © 2017 by the Ecological Society of America.
Managing data from remeasured plots: An evaluation of existing systems
John C. Byrne; Michael D. Sweet
1992-01-01
Proper management of the valuable data from remeasured (or permanent) forest growth plots with data base management systems (DBMS) can greatly add to their utility. Twelve desired features for such a system (activities that facilitate the storage, accuracy, and use of the data for analysis) are described and used to evaluate the 36 systems found by a survey conducted...
Parra, Fabiola; Blancas, José Juan; Casas, Alejandro
2012-08-14
Use of plant resources and ecosystems practiced by indigenous peoples of Mesoamerica commonly involves domestication of plant populations and landscapes. Our study analyzed interactions of coexisting wild and managed populations of the pitaya Stenocereus pruinosus, a columnar cactus used for its edible fruit occurring in natural forests, silviculturally managed in milpa agroforestry systems, and agriculturally managed in homegardens of the Tehuacán Valley, Mexico. We aimed at analyzing criteria of artificial selection and their consequences on phenotypic diversity and differentiation, as well as documenting management of propagules at landscape level and their possible contribution to gene flow among populations. Semi-structured interviews were conducted to 83 households of the region to document perception of variation, criteria of artificial selection, and patterns of moving propagules among wild and managed populations. Morphological variation of trees from nine wild, silviculturally and agriculturally managed populations was analyzed for 37 characters through univariate and multivariate statistical methods. In addition, indexes of morphological diversity (MD) per population and phenotypic differentiation (PD) among populations were calculated using character states and frequencies. People recognized 15 pitaya varieties based on their pulp color, fruit size, form, flavor, and thorniness. On average, in wild populations we recorded one variety per population, in silviculturally managed populations 1.58 ± 0.77 varieties per parcel, and in agriculturally managed populations 2.19 ± 1.12 varieties per homegarden. Farmers select in favor of sweet flavor (71% of households interviewed) and pulp color (46%) mainly red, orange and yellow. Artificial selection is practiced in homegardens and 65% of people interviewed also do it in agroforestry systems. People obtain fruit and branches from different population types and move propagules from one another. Multivariate analyses showed morphological differentiation of wild and agriculturally managed populations, mainly due to differences in reproductive characters; however, the phenotypic differentiation indexes were relatively low among all populations studied. Morphological diversity of S. pruinosus (average MD = 0.600) is higher than in other columnar cacti species previously analyzed. Artificial selection in favor of high quality fruit promotes morphological variation and divergence because of the continual replacement of plant material propagated and introduction of propagules from other villages and regions. This process is counteracted by high gene flow influenced by natural factors (pollinators and seed dispersers) but also by human management (movement of propagules among populations), all of which determines relatively low phenotypic differentiation among populations. Conservation of genetic resources of S. pruinosus should be based on the traditional forms of germplasm management by local people.
Post-fire land management: Comparative effects of different strategies on hillslope sediment yield
NASA Astrophysics Data System (ADS)
Cole, R.; Bladon, K. D.; Wagenbrenner, J.; Coe, D. B. R.
2017-12-01
High-severity wildfire can increase erosion on burned, forested hillslopes. Salvage logging is a post-fire land management practice to extract economic value from burned landscapes, reduce fuel loads, and improve forest safety. Few studies assess the impact of post-fire salvage logging or alternative land management approaches on erosion in forested landscapes, especially in California. In September 2015, the Valley Fire burned approximately 31,366 ha of forested land and wildland-urban interface in the California's Northern Coast Range, including most of Boggs Mountain Demonstration State Forest. The primary objective of our study is to quantify erosion rates at the plot scale ( 75 m2) for different post-fire land management practices, including mechanical logging and subsoiling (or ripping) after logging. We measured sediment yields using sediment fences in four sets of replicated plots. We also estimated ground cover in each plot using three randomly positioned 1-meter quadrats. We are also measuring rainfall near each plot to understand hydrologic factors that influence erosion. Preliminary results indicate that burned, unlogged reference plots yielded the most sediment over the winter rainy season (3.3 kg m-2). Sediment yields of burned and logged (0.9 kg m-2), and burned, logged, and ripped (0.7 kg m-2), were substantially lower. Burned and unlogged reference plots had the least ground cover (49%), while ground cover was higher and more similar between logged (65%) and logged and ripped (72%) plots. These initial results contrast with previous studies in which the effect of post-fire salvage logging ranged from no measured impact to increased sediment yield related to salvage logging.
Levick, Shaun R; Hessenmöller, Dominik; Schulze, E-Detlef
2016-12-01
Monitoring and managing carbon stocks in forested ecosystems requires accurate and repeatable quantification of the spatial distribution of wood volume at landscape to regional scales. Grid-based forest inventory networks have provided valuable records of forest structure and dynamics at individual plot scales, but in isolation they may not represent the carbon dynamics of heterogeneous landscapes encompassing diverse land-management strategies and site conditions. Airborne LiDAR has greatly enhanced forest structural characterisation and, in conjunction with field-based inventories, it provides avenues for monitoring carbon over broader spatial scales. Here we aim to enhance the integration of airborne LiDAR surveying with field-based inventories by exploring the effect of inventory plot size and number on the relationship between field-estimated and LiDAR-predicted wood volume in deciduous broad-leafed forest in central Germany. Estimation of wood volume from airborne LiDAR was most robust (R 2 = 0.92, RMSE = 50.57 m 3 ha -1 ~14.13 Mg C ha -1 ) when trained and tested with 1 ha experimental plot data (n = 50). Predictions based on a more extensive (n = 1100) plot network with considerably smaller (0.05 ha) plots were inferior (R 2 = 0.68, RMSE = 101.01 ~28.09 Mg C ha -1 ). Differences between the 1 and 0.05 ha volume models from LiDAR were negligible however at the scale of individual land-management units. Sample size permutation tests showed that increasing the number of inventory plots above 350 for the 0.05 ha plots returned no improvement in R 2 and RMSE variability of the LiDAR-predicted wood volume model. Our results from this study confirm the utility of LiDAR for estimating wood volume in deciduous broad-leafed forest, but highlight the challenges associated with field plot size and number in establishing robust relationships between airborne LiDAR and field derived wood volume. We are moving into a forest management era where field-inventory and airborne LiDAR are inextricably linked, and we encourage field inventory campaigns to strive for increased plot size and give greater attention to precise stem geolocation for better integration with remote sensing strategies.
Do Plot Studies Generate “Directionally” Correct Assessments of Field Level Phosphorus Losses?
USDA-ARS?s Scientific Manuscript database
The National P Research Project (NPRP) coordinated a tremendous amount of research at the plot scale to assess the influence of nutrient management on P transport at the fields scale. The objectives of this research were to determine of plot scale rainfall simulations could be used to assess P trans...
Jeffrey S. Ward
2011-01-01
In winter 2003-04, four oak management study areas were established in Connecticut. Each study area had three 0.62-acre treatment plots: B-level thinning, crop tree, and unmanaged. Each plot was located within a 3- to 5-acre area with similar treatment. The mature red oak sawtimber stands had no prior management and were 80 to 112 years old; upper canopy oaks averaged...
Gabrey, S.W.; Afton, A.D.
2001-01-01
Many marshes in the Gulf Coast Chenier Plain, USA, are managed through a combination of fall or winter burning and structural marsh management (i.e., levees and water control structures; hereafter SMM). The goals of winter burning and SMM include improvement of waterfowl and furbearer habitat, maintenance of historic isohaline lines, and creation and maintenance of emergent wetlands. Although management practices are intended to influence the plant community, effects of these practices on primary productivity have not been investigated. Marsh processes, such as vertical accretion and nutrient cycles, which depend on primary productivity may be affected directly or indirectly by winter burning or SMM. We compared Chenier Plain plant community characteristics (species composition and above- and belowground biomass) in experimentally burned and unburned control plots within impounded and unimpounded marshes at 7 months (1996), 19 months (1997), and 31 months (1998) after burning. Burning and SMM did not affect number of plant species or species composition in our experiment. For all three years combined, burned plots had higher live above-ground biomass than did unburned plots. Total above-ground and dead above-ground biomasses were reduced in burned plots for two and three years, respectively, compared to those in unburned control plots. During all three years, belowground biomass was lower in impounded than in unimpounded marshes but did not differ between burn treatments. Our results clearly indicate that current marsh management practices influence marsh primary productivity and may impact other marsh processes, such as vertical accretion, that are dependent on organic matter accumulation and decay.
Stand-yield prediction for managed Ocala sand pine
D.L. Rockwood; B. Yang; K.W. Outcalt
1997-01-01
Sand pine is a very important species in Florida, producing significant quantities of fiber. The purpose of this study was to develop the site index and stand-level growth and yield equations managers need to make informed decisions. Data were collected from 35 seeded plots of Ocala sand pine covering a range of site indexes, ages, and densities in 1982-83. These plots...
Demographic responses of shrews to removal of coarse woody debris in a managed pine forest
Timothy S. McCay; Mark J. Komoroski
2004-01-01
We trapped shrews at six 9.3 ha plots from which logs ≥10 cm diameter (coarse woody debris; CWD) had been manually removed and six control plots in managed loblolly pine (Pinus taeda) forests of the southeastern coastal plain, USA. Trapping was conducted seasonally between antumn 1997 and summer 2001. Capture rates of Cryptotis...
Adams, A.; Gore, J.; Musser, F.; Cook, D.; Catchot, A.; Walker, T.; Awuni, G. A.
2015-01-01
Two experiments were conducted at the Delta Research and Extension Center in Stoneville, MS, during 2011 and 2012 to determine the impact of water management practices on the efficacy of insecticidal seed treatments targeting rice water weevil, Lissorhoptrus oryzophilus Kuschel. Larval densities and yield were compared for plots treated with labeled rates of thiamethoxam, chlorantraniliprole, and clothianidin and an untreated control. In the first experiment, plots were subjected to flood initiated at 6 and 8 wk after planting. Seed treatments significantly reduced larval densities with the 8-wk flood timing, but not the 6-wk flood timing. Overall, the treated plots yielded higher than the control plots. In the second experiment, the impact of multiple flushes on the efficacy of insecticidal seed treatments was evaluated. Plots were subjected to zero, one, or two flushes with water. All seed treatments reduced larval densities compared with the untreated control. Significantly fewer larvae were observed in plots that received one or two flushes compared with plots that did not receive a flush. All seed treatments resulted in higher yields compared to the untreated control in the zero and one flush treatments. When two flushes were applied, yield from the thiamethoxam and clothianidin treated plots was not significantly different from those of the control plots, while the chlorantraniliprole treated plots yielded significantly higher than the control. These data suggest that time from planting to flood did not impact the efficacy of seed treatments, but multiple flushes reduced the efficacy of thiamethoxam and clothianidin. PMID:26470232
Effects of Nitrogen Fertilization and Thinning Treatments on Subsurface Soil Carbon and Nitrogen
NASA Astrophysics Data System (ADS)
Gross, C. D.; James, J. N.; Harrison, R. B.
2016-12-01
Increases in intensively managed forest plantations have caused concern for the long-term productivity and sustainability of these stands, as decreased organic matter retention and shorter rotations can substantially impact soil nutrition both in the short- and long-term. This study aims to provide data for regional responses of soil carbon (C) and nitrogen (N) by depth to fertilization and thinning treatments. Soil was sampled at an intensively managed Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation in northwestern Oregon, USA. Nine 0.2-ha plots were sampled with at least three pits per plot. Management regimes included no treatment (control), fertilization (F+), minimal thinning (mT), repeated thinning (rT), and combination treatments (mTF+ and rTF+). Fertilized plots received a total of 1120 kg N ha-1 as urea over 16 years. Bulk density and chemical analysis samples were taken in the middle of succeeding soil layers at depths of 0.1, 0.2, 0.5, 1.0, and 1.5 m. Forest floor samples were collected from a randomly placed quadrat. Preliminary results show an increase in total soil C and N of 113 and 106%, respectively, on the mTF+ plot compared to a control plot. The subsoil, defined here as below 0.2 m, contained over 50% of both soil C and N on the mTF+ plot and experienced greater C and N increases than the surface soil following treatment. This study demonstrates that forest management practices over a relatively short time span (<30 years) can significantly alter subsoil, which comprises a substantial portion of biologically available C and N in terrestrial ecosystems. Subsoil processes are critical to our understanding of changes in soil quality and our ability to accurately assess changes in soil C and N reservoirs.
Where are the Black Walnut Trees in Michigan? 1995
J. Michael Vasievich; Neal P. Kingsley
1995-01-01
The latest Michigan forest inventory was completed in 1993 by the North Central Forest Experiment Station and the Michigan DNR, Forest Management Division. In total, 18,484 sample points were examined on aerial photographs to identify ground sample plots. Of these, 10,849 forest plots were visited and measured on the ground by field crews. These plot measurements...
Perennial grass and native wildflowers: a synergistic approach to habitat management
USDA-ARS?s Scientific Manuscript database
A total of 19 buffer plots were established on University of Georgia experimental farms and lands near Tifton, GA in 2015. The buffer plots were assigned to a 2 x 2 design of local spatial context and irrigation. For local spatial context, ten plots were located adjacent to woodland (“T”) and ten in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, G.C.; French, M.A.; Monteverde, D.H.
1993-03-01
An automated method has been developed for representing outcrop data on geologic structures on maps. Using a MS-DOS custom database management system in conjunction with the ARC/INFO Geographic Information System (GIS), trends of geologic structures are plotted with user-specific symbols. The length of structural symbols can be frequency-weighted based on collective values from structural domains. The PC-based data manager is the NJGS Field data Management System (FMS) Version 2.0 which includes sort, output, and analysis functions for structural data input in either azimuth or quadrant form. Program options include lineament sorting, data output to other data management and analysis software,more » and a circular histogram (rose diagram) routine for trend frequency analysis. Trends can be displayed with either half-or full-rose diagrams using either 10[degree] sectors or one degree spikes for strike, trend, or dip azimuth readings. Scalar and vector statistics are both included. For the mesostructural analysis, ASCII files containing the station number, structural trend and inclination, and plot-symbol-length value are downloaded from FMS and uploaded into an ARC/INFO macro which sequentially plots the information. Plots can be generated in conjunction with any complimentary GIS coverage for various types of spatial analyses. Mesostructural plots can be used for regional tectonic analyses, for hydrogeologic analysis of fractured bedrock aquifers, or for ground-truthing data from fracture-trace or lineament analyses.« less
John D. Shaw; James N. Long
2007-01-01
We developed a density management diagram (DMD) for longleaf pine (Pinus palustris P. Mill.) using data from Forest Inventory and Analysis plots. Selection criteria were for purity, defined as longleaf pine basal area (BA) that is 90% or more of plot BA, and even-agedness, as defined by a ratio between two calculations of stand density index. The...
Integrated Sampling Strategy (ISS) Guide
Robert E. Keane; Duncan C. Lutes
2006-01-01
What is an Integrated Sampling Strategy? Simply put, it is the strategy that guides how plots are put on the landscape. FIREMONâs Integrated Sampling Strategy assists fire managers as they design their fire monitoring project by answering questions such as: What statistical approach is appropriate for my sample design? How many plots can I afford? How many plots do I...
DOE Office of Scientific and Technical Information (OSTI.GOV)
HURLBUT, S.T.
2000-10-24
SigmaPlot is a vendor software product that will be used to convert the area under an absorbance curve generated by a Fourier transform infrared spectrometer (FTIR) to a relative area. SigmaPlot will be used in conjunction with procedure ZA-565-301, ''Determination of Moisture by Supercritical Fluid Extraction and Infrared Detection.''
Developing user-friendly habitat suitability tools from regional stream fish survey data
Zorn, T.G.; Seelbach, P.; Wiley, M.J.
2011-01-01
We developed user-friendly fish habitat suitability tools (plots) for fishery managers in Michigan; these tools are based on driving habitat variables and fish population estimates for several hundred stream sites throughout the state. We generated contour plots to show patterns in fish biomass for over 60 common species (and for 120 species grouped at the family level) in relation to axes of catchment area and low-flow yield (90% exceedance flow divided by catchment area) and also in relation to axes of mean and weekly range of July temperatures. The plots showed distinct patterns in fish habitat suitability at each level of biological organization studied and were useful for quantitatively comparing river sites. We demonstrate how these plots can be used to support stream management, and we provide examples pertaining to resource assessment, trout stocking, angling regulations, chemical reclamation of marginal trout streams, indicator species, instream flow protection, and habitat restoration. These straightforward and effective tools are electronically available so that managers can easily access and incorporate them into decision protocols and presentations.
Loman, Zachary G.; Riffell, Samuel K.; Wheat, Bradley R.; Miller, Darrin A.; Martin, James A.; Vilella, Francisco
2014-01-01
Intercropping switchgrass (Panicum virgatum L.) between tree rows within young pine (Pinus spp.) plantations is a potential method to generate lignocellulosic biofuel feedstocks within intensively managed forests. Intensively managed pine supports a diverse avian assemblage potentially affected by establishment and maintenance of an annual biomass feedstock via changes in plant communities, dead wood resources, and habitat structure. We sought to understand how establishing switchgrass on an operational scale affects bird communities within intercropped plantations as compared to typical intensively managed loblolly pine (Pinus taeda L.) forest. We conducted breeding bird point counts using distance sampling for three years (2011–2013) following establishment of intercropped switchgrass stands (6 replicates), traditionally-managed pine plantations, and switchgrass-only plots (0.1 km2 minimum) in Kemper Co., MS. We detected 59 breeding bird species from 11,195 detections. Neotropical migrants and forest-edge associated species were less abundant in intercropped plots than controls the first two years after establishment and more abundant in year three. Short distance migrants and residents were scarce in intercropped and control plots initially, and did not differ between these two treatments in any year. Species associated with pine-grass habitat structure were less abundant initially in intercropped plots, but converged with pine controls in subsequent years. Switchgrass monocultures provided minimal resources for birds. If songbird conservation is a management priority, managers should consider potential reductions of some breeding birds for one to two years following intercropping. It is unclear how these relationships may change outside the breeding season and as stands age.
2012-01-01
Background Use of plant resources and ecosystems practiced by indigenous peoples of Mesoamerica commonly involves domestication of plant populations and landscapes. Our study analyzed interactions of coexisting wild and managed populations of the pitaya Stenocereus pruinosus, a columnar cactus used for its edible fruit occurring in natural forests, silviculturally managed in milpa agroforestry systems, and agriculturally managed in homegardens of the Tehuacán Valley, Mexico. We aimed at analyzing criteria of artificial selection and their consequences on phenotypic diversity and differentiation, as well as documenting management of propagules at landscape level and their possible contribution to gene flow among populations. Methods Semi-structured interviews were conducted to 83 households of the region to document perception of variation, criteria of artificial selection, and patterns of moving propagules among wild and managed populations. Morphological variation of trees from nine wild, silviculturally and agriculturally managed populations was analyzed for 37 characters through univariate and multivariate statistical methods. In addition, indexes of morphological diversity (MD) per population and phenotypic differentiation (PD) among populations were calculated using character states and frequencies. Results People recognized 15 pitaya varieties based on their pulp color, fruit size, form, flavor, and thorniness. On average, in wild populations we recorded one variety per population, in silviculturally managed populations 1.58 ± 0.77 varieties per parcel, and in agriculturally managed populations 2.19 ± 1.12 varieties per homegarden. Farmers select in favor of sweet flavor (71% of households interviewed) and pulp color (46%) mainly red, orange and yellow. Artificial selection is practiced in homegardens and 65% of people interviewed also do it in agroforestry systems. People obtain fruit and branches from different population types and move propagules from one another. Multivariate analyses showed morphological differentiation of wild and agriculturally managed populations, mainly due to differences in reproductive characters; however, the phenotypic differentiation indexes were relatively low among all populations studied. Morphological diversity of S. pruinosus (average MD = 0.600) is higher than in other columnar cacti species previously analyzed. Conclusions Artificial selection in favor of high quality fruit promotes morphological variation and divergence because of the continual replacement of plant material propagated and introduction of propagules from other villages and regions. This process is counteracted by high gene flow influenced by natural factors (pollinators and seed dispersers) but also by human management (movement of propagules among populations), all of which determines relatively low phenotypic differentiation among populations. Conservation of genetic resources of S. pruinosus should be based on the traditional forms of germplasm management by local people. PMID:22891978
Soil water management practices (terraces) helped to mitigate the 2015 drought in Ethiopia.
Kosmowski, Frédéric
2018-05-31
While the benefits of soil water management practices relative to soil erosion have been extensively documented, evidence regarding their effect on yields is inconclusive. Following a strong El-Niño, some regions of Ethiopia experienced major droughts during the 2015/16 agricultural season. Using the propensity scores method on a nationally representative survey in Ethiopia, this study investigates the effect of two widely adopted soil water management practices - terraces and contour bunds - on yields and assesses their potential to mitigate the effects of climate change. It is shown that at the national level, terraced plots have slightly lower yields than non-terraced plots. However, data support the hypothesis that terraced plots acted as a buffer against the 2015 Ethiopian drought, while contour bunds did not. This study provides evidence that terraces have the potential to help farmer deal with current climate risks. These results can inform the design of climate change adaptation policies and improve targeting of soil water management practices in Ethiopia.
Responses of small mammals to coarse woody debris in a southeastern pine forest
Susan C. Loeb
1999-01-01
The importance of coarse woody debris (CWD) to small mammals in a managed pine forest in South Carolina was tested experimentally during summer and autumn 1990 and winter and spring 1991-1994. Abundance and demographics of small mammals were compared between plots with abundant CWD created by a tornado (unsalvaged plots) and plots where tornado-created CWD had been...
Diversity of Hymenoptera (Insecta) on different ages of oil palm in Lekir Plantation, Perak
NASA Astrophysics Data System (ADS)
Azhari, Muhammad Luqman Hakim; Hazmi, Izfa Riza
2018-04-01
This study was conducted to determine the diversity of Hymenoptera on the different ages of oil palm namely plot 12, 9 and 5 years old. Sampling was carried out from November 2015 to February 2016 at Ladang Lekir, Perak using Malaise traps and Window trap. A total of 3052 individuals Hymenopteran consisting of 58 morphospecies and 35 subfamilies of 17 families were successfully collected. The most abundant species recorded was the Pimplinae.sp4 with 447 individuals (relative abundance, RA=14.51%). According to the plot, plot 9 years old have the highest reading for all three Peilou Equality Index (E'=0.983), Shannon Diversity Index (H'=3.939) and Simpson Diversity Index (D'=0.9795) with 55 species have been recorded. The t-tests showed that there were no significant difference in term of the diversity index (H') between palm plots 9 years old and 12 years old, while there were significant differences between the two plot (9 years old and 12 years old) with 5 old palm plot. The species accumulation curve showed that only 5 old palm plot nearly asymptotic. This study is expected to help the management to provide basic information for future research and as well, to develop and implement tools, methods, strategies in farm management practices of the oil palm plantations in Malaysia.
Sydenham, Markus A K; Moe, Stein R; Stanescu-Yadav, Diana N; Totland, Ørjan; Eldegard, Katrine
2016-02-01
Anthropogenic landscape elements, such as roadsides, hedgerows, field edges, and power line clearings, can be managed to provide important habitats for wild bees. However, the effects of habitat improvement schemes in power line clearings on components of diversity are poorly studied. We conducted a large-scale experiment to test the effects of different management practices on the species, phylogenetic, and functional diversity of wild bees in power line clearings (n = 19 sites across southeastern Norway) and explored whether any treatment effects were modified by the environmental context. At each site, we conducted the following treatments: (1) Cut: all trees cut and left to decay in the clearing; (2) Cut + Remove: all trees cut and removed from the plot; and (3) Uncut: uncleared. The site-specific environmental context (i.e., elevation and floral diversity) influenced the species, phylogenetic, and functional diversity within bee species assemblages. The largest number of species was found in the Cut + Remove treatment in plots with a high forb species richness, indicating that the outcome of management practices depends on the environmental context. Clearing of treatment plots with many forb species also appeared to alter the phylogenetic composition of bee species assemblages, that is, more closely related species were found in the Cut and the Cut + Remove plots than in the Uncut plots. Synthesis and applications: Our experimental simulation of management practices in power line clearings influenced the species, phylogenetic, and functional diversity of bee species assemblages. Frequent clearing and removal of the woody debris at low elevations with a high forb species richness can increase the value of power line clearings for solitary bees. It is therefore important for managers to consider the environmental context when designing habitat improvement schemes for solitary bees.
Impact of the post fire management in some soil chemical properties. First results.
NASA Astrophysics Data System (ADS)
Francos, Marcos; Pereira, Paulo; Alcañiz, Meritxell; Úbeda, Xavi
2016-04-01
Post-fire management after severe wildfires has impact on soil properties. In Mediterranean environments management of fire affected areas is a common practice. This intervention may change soil chemical properties of the soil such as major cations. The aim of this work is to study the impact of different types of forest management in soil extractable calcium, magnesium, sodium and potassium after a severe wildfire. The study area is located in Ódena (Catalonia, Spain). The wildfire occurred at July 27th of 2015 and burned 1235 ha. After the fire an experimental plot was designed 9 plots with 2x2 meters (4 square meters). The different managements were: a) clear-cuted area and wood removed, b) no treatment); and c) clear-cutted. The results of the first sampling showed significant differences among all treatments in extractable calcium, sodium and potassium. The amount of these extractable elements was high in clear-cutted treatment in comparison to the others. No differences were identified in extractable magnesium. Overall, in the immediate period after the fire, burned area management, changed the studied soil properties. We are currently studying the evolution of this soil properties in these plots with the time
Analysis of vegetation in an Imperata grassland of Barak valley, Assam.
Astapati, Ashim Das; Das, Ashesh Kumar
2012-09-01
Imperata grassland at Dorgakona, Barak valley, North Eastern India was analyzed for species composition and diversity pattern in relation to traditional management practices. 19 families were in the burnt and unburnt plots of the study site with Poaceae as the most dominant one. 29 species occurred in the burnt plot and 28 in the unburnt plot. Most of the species were common in both the plots. The pattern of frequency diagrams indicated that the vegetation was homogeneous. Imperata cylindrica, a rhizomatous grass was the dominant species based on density (318.75 and 304.18 nos. m(-2)), basal cover (158.22 and 148.34 cm2 m(-2)) and Importance value index (IVI) (132.64 and 138.74) for the burnt and unburnt plots respectively. Borreria pusilla was the co-dominant species constituting Imperata-Borreria assemblage of the studied grassland. It was observed that B. pusilla (162.25 nos. m(-2) and 50.37 nos. m(-2), I. cylindrica (318.75 nos. m(-2) and 304.18 nos. m(-2)) and Setaria glauca (24.70 nos. m(-2) and 16.46 nos. m(-2) were benefited from burning as shown by the values sequentially placed for burnt and unburnt plots. Certain grasses like Chrysopogon aciculatus and Sacciolepis indica were restricted to burnt plot while Oxalis corniculata showed its presence to unburnt plot. Grasses dominated the grassland as revealed by their contribution to the mean percentage cover of 72% in burnt plot and 76% in umburnt plot. The dominance-diversity curves in the study site approaches a log normal series distribution suggesting that the resources are shared by the constituent species. Seasonal pattern in diversity index suggested definite influence of climatic seasonality on species diversity; rainy season was conducive for maximum diversity (1.40 and 1.38 in the burnt and unburnt plots, respectively). Dominance increased with concentration of fewer species (0.0021 in burnt plot and 0.0055 in unbumt plot) in summer and behaves inversely to index of diversity. This study showed that the traditional management practices benefits the farmers as it promote grassland regeneration with I. cylindrica as the dominant grass.
NASA Astrophysics Data System (ADS)
Kamiri, Hellen; Kreye, Christine; Becker, Mathias
2013-04-01
Wetland soils play an important role as storage compartments for water, carbon and nutrients. These soils implies various conditions, depending on the water regimes that affect several important microbial and physical-chemical processes which in turn influence the transformation of organic and inorganic components of nitrogen, carbon, soil acidity and other nutrients. Particularly, soil carbon and nitrogen play an important role in determining the productivity of a soil whereas management practices could determine the rate and magnitude of nutrient turnover. A study was carried out in a floodplain wetland planted with rice in North-west Tanzania- East Africa to determine the effects of different management practices and soil water regimes on paddy soil organic carbon and nitrogen. Four management treatments were compared: (i) control (non weeded plots); (ii) weeded plots; (iii) N fertilized plots, and (iv) non-cropped (non weeded plots). Two soil moisture regimes included soil under field capacity (rainfed conditions) and continuous water logging compared side-by-side. Soil were sampled at the start and end of the rice cropping seasons from the two fields differentiated by moisture regimes during the wet season 2012. The soils differed in the total organic carbon and nitrogen between the treatments. Soil management including weeding and fertilization is seen to affect soil carbon and nitrogen regardless of the soil moisture conditions. Particularly, the padddy soils were higher in the total organic carbon under continuous water logged field. These findings are preliminary and a more complete understanding of the relationships between management and soil moisture on the temporal changes of soil properties is required before making informed decisions on future wetland soil carbon and nitrogen dynamics. Keywords: Management, nitrogen, paddy soil, total carbon, Tanzania,
Ronald Raunikar; Joseph Buongiorno; Jeffrey P. Prestemon; Karen Lee Abt
2000-01-01
To estimate the financial performance of a natural mixed species and mixed-age management in the loblolly-pine forest type, we examined 991 FIA plots in the south central states. The plots were of the loblolly pine forest type, mixed-age, and had been regenerated naturally. We gauged the financial performance of each plot from the equivalent annual income (EAI)...
Jeff S. Glitzenstein; Donna R. Streng; Gary L. Achtemeier; Luke P. Naeher; Dale D. Wade
2006-01-01
Fire behavior was measured and modeled from eight 1 ha experimental plots located in the Francis Marion National Forest, South Carolina, during prescribed burns on February 12 and February 20, 2003. Four of the plots had been subjected to mechanical chipping during 2002 to remove woody understory growth and to reduce large downed woody debris from the aftermath of...
Twig Girdler, Oncideres Cingulata (Say), Attacks Terminals of Plantation-managed Pecans
Harvey E. Kennedy; J.D. Solomon; R.M. Krinard
1981-01-01
Sweet pecan, a prized species for use in fine furniture and paneling, is subject to branch and terminal damage by the pecan twig girdler that could cause deformities in the trees. In the young plantation studied, 55 percent of the trees in disked plots and 40 percent in mowed plots were damaged by the twig girdler, but only 19 percent in control plots were damaged....
Acorn Production on the Missouri Ozark Forest Ecosystem Project Study Sites: Pre-treatment Data
Larry D. Vangilder
1997-01-01
In the pre-treatment phase of a study to determine if even- and uneven-aged forest management affects the production of acorns on the Missourt Forest Ecosystem Project (MOFEP) study sites, acorn production was measured on the nine study sites by randomly placing from 2 to 6 plots in each of four ecological land type (ELT) groupings (N=130 plots). A split-plot...
Wang, Neng Wei; Ge, Xiu Li; Li, Sheng Dong
2017-03-18
Conservation tillage and the weed diversity are two hot issues in the modern ecological agriculture. Although it is known that the diversity of weed would increase slightly in the farmland under conservation tillage, the interaction effects between the tillage and the nutrient management on the weed community are not clear. In this study, one wheat-maize rotation field located in Ji'nan, Shandong Province, was selected as the studying site. Different tillage methods (no-tillage, deep subsoiling, rotary tillage, deep tillage) and different nutrient managements (farmers routine, 480 kg N hm -2 per year; high production and efficiency, 360 kg N hm -2 per year; optimal management, 300 kg N hm -2 per year) were carried out for 3 years. The characteristics of the spring weed communities under different managements were investigated and compared. The results showed that there were 15 species in the spring weed communities in the test filed and Digitaria sanguinalis and Echinochloa crusgalli were the dominant species. The plots under no-tillage or deep subsoiling had higher weed densities compared with those under the deep tillage or rotary tillage. In terms of the effect of tillage on the weed community diversity, both species richness index and species evenness index were lowest but the community dominance index was highest in the plots under deep tillage. In terms of the effect of the nutrient management, with the increase of fertilizer application, both species richness and evenness index increased under the different tillage methods. The community dominance increased with the increasing fertilizer application under deep tillage or rotary tillage and vice versa under no-tillage, deep subsoiling. In terms of weed biomass, the plots under no-tillage or deep subsoiling had significantly higher weed biomass than those under the other two tillage methods. The plots under routine nutrient management had higher weed biomass than those under the other two nutrient managements. Among all these treatments, the plots under the combination treatment of no-tillage and routine nutrient management had the highest weed biomass. According to these results, it was implied that no-tillage and fertilization would improve species richness index, species evenness index, and the productivity of spring weed community in the wheat-maize farmland.
Sletvold, Nina; Dahlgren, Johan P; Oien, Dag-Inge; Moen, Asbjørn; Ehrlén, Johan
2013-09-01
Climate change is expected to influence the viability of populations both directly and indirectly, via species interactions. The effects of large-scale climate change are also likely to interact with local habitat conditions. Management actions designed to preserve threatened species therefore need to adapt both to the prevailing climate and local conditions. Yet, few studies have separated the direct and indirect effects of climatic variables on the viability of local populations and discussed the implications for optimal management. We used 30 years of demographic data to estimate the simultaneous effects of management practice and among-year variation in four climatic variables on individual survival, growth and fecundity in one coastal and one inland population of the perennial orchid Dactylorhiza lapponica in Norway. Current management, mowing, is expected to reduce competitive interactions. Statistical models of how climate and management practice influenced vital rates were incorporated into matrix population models to quantify effects on population growth rate. Effects of climate differed between mown and control plots in both populations. In particular, population growth rate increased more strongly with summer temperature in mown plots than in control plots. Population growth rate declined with spring temperature in the inland population, and with precipitation in the coastal population, and the decline was stronger in control plots in both populations. These results illustrate that both direct and indirect effects of climate change are important for population viability and that net effects depend both on local abiotic conditions and on biotic conditions in terms of management practice and intensity of competition. The results also show that effects of management practices influencing competitive interactions can strongly depend on climatic factors. We conclude that interactions between climate and management should be considered to reliably predict future population viability and optimize conservation actions. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ahn, Hyunjun; Jung, Younghun; Om, Ju-Seong; Heo, Jun-Haeng
2014-05-01
It is very important to select the probability distribution in Statistical hydrology. Goodness of fit test is a statistical method that selects an appropriate probability model for a given data. The probability plot correlation coefficient (PPCC) test as one of the goodness of fit tests was originally developed for normal distribution. Since then, this test has been widely applied to other probability models. The PPCC test is known as one of the best goodness of fit test because it shows higher rejection powers among them. In this study, we focus on the PPCC tests for the GEV distribution which is widely used in the world. For the GEV model, several plotting position formulas are suggested. However, the PPCC statistics are derived only for the plotting position formulas (Goel and De, In-na and Nguyen, and Kim et al.) in which the skewness coefficient (or shape parameter) are included. And then the regression equations are derived as a function of the shape parameter and sample size for a given significance level. In addition, the rejection powers of these formulas are compared using Monte-Carlo simulation. Keywords: Goodness-of-fit test, Probability plot correlation coefficient test, Plotting position, Monte-Carlo Simulation ACKNOWLEDGEMENTS This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-12-NH-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.
NASA Astrophysics Data System (ADS)
Grüter, Roman; Costerousse, Benjamin; Mayer, Jochen; Mäder, Paul; Thonar, Cécile; Frossard, Emmanuel; Schulin, Rainer; Tandy, Susan
2017-04-01
Zinc (Zn) deficiency is a widespread problem in human mineral nutrition. It is mainly caused by imbalanced diets with low contents of bioavailable Zn. This is in particular a problem in populations depending on cereals such as wheat (Triticum aestivum L.) as a major source of this essential micronutrient element. Increasing Zn concentrations in wheat grains (biofortification) is therefore an important challenge. At the same time, increased uptake of the toxic heavy metal cadmium (Cd) must be prevented. Agronomic practises influence soil properties such as pH and soil organic carbon and thus also have an indirect effect on phytoavailable soil Zn and Cd concentrations and the uptake of these metals by wheat in addition to direct inputs with fertilizers and other amendments. This study investigated the effects of long-term organic matter management on the phytoavailability of soil Zn and Cd and their uptake by wheat on plots of two Swiss long-term field trials. In one trial (DOK), a farming system comparison trial established in 1978, we compared plots under conventional management with mineral fertilization either in combination or not with farmyard manure application to plots under biodynamic organic management and control plots with no fertilizer application. In the second trial (ZOFE), established in 1949, we compared different fertilizer regimes on conventionally managed plots, including plots with application of mineral fertilizers only, farmyard manure, or compost and control plots with no fertilizer application. Soil physico-chemical and biological properties were determined at the beginning of the growing season. Soil Zn and Cd availabilities were assessed by the Diffusive Gradients in Thin Films (DGT) method and by DTPA extraction before and after wheat cultivation. Additionally, various wheat yield components and element concentrations in shoots and grains were measured at harvest. In the ZOFE trial, soil Zn and Cd concentrations were lowest in the mineral fertilizer and highest in the farmyard manure treatments, where metal export via crop harvests and inputs through farmyard manure dominated soil metal mass balances in the long-term, respectively. DGT-available Zn and Cd correlated negatively with soil pH, total organic carbon and microbial biomass in both trials. They were lowest in the biodynamic and compost treatments and highest in the control treatments. In the ZOFE trial, wheat yields on mineral fertilized plots exceeded the other treatments by more than a factor of two. Cd concentrations in wheat shoots and grains showed a strong positive correlation with DGT-available soil Cd. They were lowest in biodynamic and compost treatments. In contrast, shoot and grain Zn concentrations correlated more closely with total and DTPA-extractable than with DGT-available soil Zn in the ZOFE trial and they poorly correlated with both Zn availability indicators in the DOK trial. Despite these differences, the study reveals that long-term organic matter management has an important influence on the availability of both elements in soil and their uptake by wheat.
NASA Astrophysics Data System (ADS)
Gholizadeh, H.; Gamon, J. A.; Zygielbaum, A. I.; Schweiger, A. K.; Cavender-Bares, J.; Yang, Y.; Knops, J. M. H.
2017-12-01
Grasslands cover as much as 25% of the Earth's surface and account for approximately 20% of overall terrestrial productivity and contribute to global biodiversity. To optimize the status of grasslands and to counteract their degradation, different management practices have been adopted. Fire has been shown to be an important management practice in the maintenance of grasslands. Our main goals were 1) to evaluate the productivity-biodiversity relationship in grasslands under fire treatment, and 2) to evaluate the capability of hyperspectral remote sensing in estimating biodiversity using spectral data (i.e. spectral diversity). We used above-ground biomass (as a surrogate for productivity), species richness (SR; as a surrogate for biodiversity), and airborne hyperspectral data from a natural grassland with fire treatment (20 plots), and a natural grassland without fire treatment (21 plots), all located at the Cedar Creek Ecosystem Science Reserve in Central Minnesota, USA. The productivity-biodiversity relationship for the fire treatment plots showed a hump-shaped model with adjusted R2=0.37, whereas the relationship for the non-burned plots were non-significant. The relationship between SR and spectral diversity (SD) were positive linear for both treatments; however, the relationship for plots with fire treatment was higher (adjusted R2 = 0.34 vs. 0.19). It is assumed that post-fire foliar nutrients increase soil nitrogen and phosphorus which facilitate post-fire growth and induce higher above-ground biomass and chlorophyll content in plants. Overall, the results of this study showed that management practices affect the productivity-biodiversity relationship and illustrated the effect of fire treatment on remote sensing of biodiversity.
Fornwalt, P.J.; Kaufmann, M.R.; Huckaby, L.S.; Stoker, J.M.; Stohlgren, T.J.
2003-01-01
We examined patterns of non-native plant diversity in protected and managed ponderosa pine/Douglas-fir forests of the Colorado Front Range. Cheesman Lake, a protected landscape, and Turkey Creek, a managed landscape, appear to have had similar natural disturbance histories prior to European settlement and fire protection during the last century. However, Turkey Creek has experienced logging, grazing, prescribed burning, and recreation since the late 1800s, while Cheesman Lake has not.Using the modified-Whittaker plot design to sample understory species richness and cover, we collected data for 30 0.1 ha plots in each landscape. Topographic position greatly influenced results, while management history did not. At both Cheesman Lake and Turkey Creek, low/riparian plots had highest native and non-native species richness and cover; upland plots (especially east/west-facing, south-facing and flat, high plots) had the lowest. However, there were no significant differences between Cheesman Lake and Turkey Creek for native species richness, native species cover, non-native species richness, or non-native species cover for any topographic category. In general, non-native species richness and cover were highly positively correlated with native species richness and/or cover (among other variables). In total, 16 non-native species were recorded at Cheesman Lake and Turkey Creek; none of the 16 non-native species were more common at one site than another.These findings suggest that: (1) areas that are high in native species diversity also contain more non-native species; (2) both protected and managed areas can be invaded by non-native plant species, and at similar intensities; and (3) logging, grazing, and other similar disturbances may have less of an impact on non-native species establishment and growth than topographic position (i.e., in lowland and riparian zones versus upland zones).
Fornwalt, P.J.; Kaufmann, M.R.; Huckaby, L.S.; Stoker, J.M.; Stohlgren, T.J.
2003-01-01
We examined patterns of non-native plant diversity in protected and managed ponderosa pine/Douglas-fir forests of the Colorado Front Range. Cheesman Lake, a protected landscape, and Turkey Creek, a managed landscape, appear to have had similar natural disturbance histories prior to European settlement and fire protection during the last century. However, Turkey Creek has experienced logging, grazing, prescribed burning, and recreation since the late 1800s, while Cheesman Lake has not. Using the modified-Whittaker plot design to sample understory species richness and cover, we collected data for 30 0.1 ha plots in each landscape. Topographic position greatly influenced results, while management history did not. At both Cheesman Lake and Turkey Creek, low/riparian plots had highest native and non-native species richness and cover; upland plots (especially east/west-facing, south-facing and flat, high plots) had the lowest. However, there were no significant differences between Cheesman Lake and Turkey Creek for native species richness, native species cover, non-native species richness, or non-native species cover for any topographic category. In general, non-native species richness and cover were highly positively correlated with native species richness and/or cover (among other variables). In total, 16 non-native species were recorded at Cheesman Lake and Turkey Creek; none of the 16 non-native species were more common at one site than another. These findings suggest that: (1) areas that are high in native species diversity also contain more non-native species; (2) both protected and managed areas can be invaded by non-native plant species, and at similar intensities; and (3) logging, grazing, and other similar disturbances may have less of an impact on non-native species establishment and growth than topographic position (i.e., in lowland and riparian zones versus upland zones).
Demonstration of an Integrated Pest Management Program for Wheat in Tajikistan.
Landis, Douglas A; Saidov, Nurali; Jaliov, Anvar; El Bouhssini, Mustapha; Kennelly, Megan; Bahlai, Christie; Landis, Joy N; Maredia, Karim
2016-01-01
Wheat is an important food security crop in central Asia but frequently suffers severe damage and yield losses from insect pests, pathogens, and weeds. With funding from the United States Agency for International Development, a team of scientists from three U.S. land-grant universities in collaboration with the International Center for Agricultural Research in Dry Areas and local institutions implemented an integrated pest management (IPM) demonstration program in three regions of Tajikistan from 2011 to 2014. An IPM package was developed and demonstrated in farmer fields using a combination of crop and pest management techniques including cultural practices, host plant resistance, biological control, and chemical approaches. The results from four years of demonstration/research indicated that the IPM package plots almost universally had lower pest abundance and damage and higher yields and were more profitable than the farmer practice plots. Wheat stripe rust infestation ranged from 30% to over 80% in farmer practice plots, while generally remaining below 10% in the IPM package plots. Overall yield varied among sites and years but was always at least 30% to as much as 69% greater in IPM package plots. More than 1,500 local farmers-40% women-were trained through farmer field schools and field days held at the IPM demonstration sites. In addition, students from local agricultural universities participated in on-site data collection. The IPM information generated by the project was widely disseminated to stakeholders through peer-reviewed scientific publications, bulletins and pamphlets in local languages, and via Tajik national television.
Biomass Development in SRI Field Under Unmaintained Alternate Wetting-Drying Irrigation
NASA Astrophysics Data System (ADS)
Ardiansyah; Chusnul, A.; Krissandi, W.; Asna, M.
2018-05-01
The aim of this research is to observe biomass development of SRI on farmers practice in three plots with different level. This research observes the farmer practice of SRI and Non-SRI during the uncertainty of irrigation water supply and its effects on paddy biomass development during growth stages and final stage of crop. A farmer group that already understand the principle of SRI, applied this method into several plots of their rented paddy field. Researcher interventions were eliminated from their action, so it is purely on farmers decision on managing their SRI plots. Three plots from both SRI and Non-SRI were chosen based on the position of the plot related their access to water. First plots had direct access to water from tertiary irrigation channel (on farm). Second plots were received water from previous upper plots and drainage water into other plots. Third plots were in the bottom position, where they received water from upper plot, and drainage water into farm drainage channel. Result shows there are similar patterns of root, straw, and leaves of biomass during crop growth. On the other hand, during generative phase, grain development shows different pattern and resulting different biomass in harvest time. Second plot, (of SRI) that has water from first plot has the average of biomass grain per plant of 54.4, higher than first plot and third plot, which are 33.8 g and 38.4. Average biomass in second plot is 74.6 g, higher than first and third plot, which are 49.9 g and 52.3 g.
Khalil, Mohamed A; Al-Assiuty, Abdel-Naieem I M; van Straalen, Nico M; Al-Assiuty, Basma A
2016-02-01
We investigated the effects of switching from conventional management to organic management on the abundance and community composition of soil-living oribatid mites in clover fields in an experimental agricultural station at Al-Fayoum, Egypt. The site had two adjacent fields with identical vegetation cover but different management. Fifteen random soil samples were collected monthly from each of three plots per field, from October to March. We characterized the soils with respect to various physicochemical variables as well as fungal community composition, and estimated mite densities through core sampling. Organic fields had a significantly more abundant oribatid community than did conventional fields. Also the abundance of soil fungi was greater in the organically managed field. Organic management promoted common oribatid mite species with a wide ecological amplitude that already had a high abundance where such common species are more responsive to changes in agricultural management. However, some species of mite responded indifferent or negative to the switch from conventional to organic management. Overall, the differences between the two ecological systems were mainly quantitative. Species diversities of both mite and fungal communities did not differ much between the two management systems. Diversity (H0) and equitability (E) of soil oribatid communities were higher in conventional plots than in the organic plots during the first 2 months but indistinguishable thereafter. Our study confirmed that organic management stimulates soilorganic matter build-up, with positive effects on both fungal and oribatid mite abundance and possible long-term effects on soil function.
NASA Astrophysics Data System (ADS)
Vestin, P.; Mölder, M.; Sundqvist, E.; Båth, A.; Lehner, I.; Weslien, P.; Klemedtsson, L.; Lindroth, A.
2015-12-01
In order to assess the effects of different management practices on the exchange of greenhouse gases (GHG), it is desirable to perform repeated and parallel measurements on both experimental and control plots. Here we demonstrate how a system system combining eddy covariance and gradient techniques can be used to perform this assessment in a managed forest ecosystem.The net effects of clear-cutting and stump harvesting on GHG fluxes were studied at the ICOS site Norunda, Sweden. Micrometeorological measurements (i.e., flux-gradient measurements in 3 m tall towers) allowed for quantification of CO2, CH4 and H2O fluxes (from May 2010) as well as N2O and H2O fluxes (from June 2011) at two stump harvested plots and two control plots. There was one wetter and one drier plot of each treatment. Air was continuously sampled at two heights in the towers and gas concentrations were analyzed for CH4, CO2, H2O (LGR DLT-100, Los Gatos Research) and N2O, H2O (QCL Mini Monitor, Aerodyne Research). Friction velocities and sensible heat fluxes were measured by sonic anemometers (Gill Windmaster, Gill Instruments Ltd). Automatic chamber measurements (CO2, CH4, H2O) were carried out in the adjacent forest stand and at the clear-cut during 2010.Average CO2 emissions for the first year ranged between 14.4-20.2 ton CO2 ha-1 yr-1. The clear-cut became waterlogged after harvest and a comparison of flux-gradient data and chamber data (from the adjacent forest stand) indicated a switch from a weak CH4 sink to a significant source at all plots. The CH4 emissions ranged between 0.8-4.5 ton CO2-eq. ha-1 yr-1. N2O emissions ranged between 0.4-2.6 ton CO2-eq. ha-1 yr-1. Enhanced N2O emission on the drier stump harvested plot was the only clear treatment effect on GHG fluxes that was observed. Mean CH4 and N2O emissions for the first year of measurements amounted up to 29% and 20% of the mean annual CO2 emissions, respectively. This highlights the importance of including all GHGs when assessing the climate impacts of different forest management options. Our results show that continuous multi-plot measurements of the main GHGs are possible also at sites where GHG fluxes are low, at a reasonable cost and with reduced plot inter-comparison uncertainties.
NASA Astrophysics Data System (ADS)
Filipović, Vilim; Romić, Davor; Romić, Marija; Matijević, Lana; Mallmann, Fábio J. K.; Robinson, David A.
2016-04-01
Growing vegetables commercially requires intensive management and involves high irrigation demands and input of agrochemicals. Plastic mulch application in combination with drip irrigation is a common agricultural management technique practiced due to variety of benefits to the crop, mostly vegetable biomass production. However, the use of these techniques can result in various impacts on water and nutrient distribution in underlying soil and consequently affect nutrient leaching towards groundwater resources. The aim of this work is to estimate the effect of plastic mulch cover in combination with drip irrigation on water and nitrate dynamics in soil using HYDRUS-2D model. The field site was located in Croatian costal karst area on a Gleysol (WRB). The experiment was designed according to the split-plot design in three repetitions and was divided into plots with plastic mulch cover (MULCH) and control plots with bare soil (CONT). Each of these plots received applications of three levels of nitrogen fertilizer: 70, 140, and 210 kg per ha. All plots were equipped with drip irrigation and cropped with bell pepper (Capsicum annuum L. cv. Bianca F1). Lysimeters were installed at 90 cm depth in all plots and were used for monitoring the water and nitrate outflow. HYDRUS-2D was used for modeling the water and nitrogen outflow in the MULCH and CONT plots, implementing the proper boundary conditions. HYDRUS-2D simulated results showed good fitting to the field site observed data in both cumulative water and nitrate outflow, with high level of agreement. Water flow simulations produced model efficiency of 0.84 for CONT and 0.56 for MULCH plots, while nitrate simulations showed model efficiency ranging from 0.67 to 0.83 and from 0.70 to 0.93, respectively. Additional simulations were performed with the absence of the lysimeter, revealing faster transport of nitrates below drip line in the CONT plots, mostly because of the increased surface area subjected to precipitation/irrigation due the absence of soil cover. Contrary, in the MULCH plots most of the nitrate applied was still left in the upper soil layer at the end of simulations. Numerical modeling revealed a large influence of plastic mulch cover on water and nutrient outflow and distribution in soil. Results suggest that under this management practice the nitrogen amounts applied via fertigation can be lowered and optimized (higher application frequencies) to reduce possible negative influence of the nitrogen based fertilizer such as leaching of nitrates to groundwater. Keywords: Plastic mulch cover; Vegetable cultivation; Water flow; Nitrate dynamics; HYDRUS-2D
The important role of scattered trees on the herbaceous diversity of a grazed Mediterranean dehesa
NASA Astrophysics Data System (ADS)
López-Sánchez, Aida; San Miguel, Alfonso; López-Carrasco, Celia; Huntsinger, Lynn; Roig, Sonia
2016-10-01
Scattered trees are considered keystone structures and play an important role in Mediterranean sylvopastoral systems. Such systems are associated with high biodiversity and provide important natural resources and ecosystem services. In this study, we measured the contribution of scattered trees and different grazing management (cattle, sheep and wildlife only) to the diversity of the grassland sward in a dehesa (open holm oak woodland) located in Central Spain. We analyzed alpha and beta diversity through measurement of species richness, Shannon-Wiener, and Whittaker indices, respectively; and the floristic composition of the herb layer using subplots within two adjacent plots (trees present vs. trees absent) under three different grazing management regimes, including wildlife only, during a year. We found a 20-30% increment in the alpha diversity of wooded plots, compared to those without trees, regardless of grazing management. All beta indices calculated showed more than 60% species turnover. Wooded plots were occupied by different herbaceous species in different heterogeneous microsites (under the canopy, in the ecotone or on open land) created by the trees. Livestock grazing modified species composition (e.g. more nitrophilous species) compared to wildlife only plots. In addition to all their other benefits, trees are important to maintaining grassland diversity in Mediterranean dehesas.
NASA Astrophysics Data System (ADS)
Purschke, Oliver; Dengler, Jürgen; Bruelheide, Helge; Chytrý, Milan; Jansen, Florian; Hennekens, Stephan; Jandt, Ute; Jiménez-Alfaro, Borja; Kattge, Jens; De Patta Pillar, Valério; Sandel, Brody; Winter, Marten
2015-04-01
The trait composition of plant communities is determined by abiotic, biotic and historical factors, but the importance of macro-climatic factors in explaining trait-environment relationships at the local scale remains unclear. Such knowledge is crucial for biogeographical and ecological theory but also relevant to devise management measures to mitigate the negative effects of climate change. To address these questions, an iDiv Working Group has established the first global vegetation-plot database (sPlot). sPlot currently contains ~700,000 plots from over 50 countries and all biomes, and is steadily growing. Approx. 70% of the most frequent species are represented by at least one trait in the global trait database TRY and gap-filled data will become available for the most common traits. We will give an overview about the structure and present content of sPlot in terms of spatial distribution, data properties and trait coverage. We will explain next steps and perspectives, present first cross-biome analyses of community-weighted mean traits and trait variability, and highlight some ecological questions that can be addressed with sPlot.
USDA-ARS?s Scientific Manuscript database
A field research facility with two pairs of replicated agricultural test plots (four total) was established at a location in northwest Ohio during 2005 for the purpose of studying water table management strategies. Initial efforts at this field research facility were devoted to evaluating difference...
REPORT OF THE 1995 WORKSHOP ON GEOSYNTHETIC CLAY LINERS
A workshop was held at the EPA's National Risk Management Research Laboratory in Cincinnati, Ohio, on August 9 and 10, 1995. On August 9, attendees were shown field plots of GCLs that have been constructed at a site in Cincinnati, and given a detailed account of the test plot la...
Evaluation of native bees as pollinators of cucurbit crops under floating row covers.
Minter, Logan M; Bessin, Ricardo T
2014-10-01
Production of cucurbit crops presents growers with numerous challenges. Several severe pests and diseases can be managed through the use of rotation, trap cropping, mechanical barriers, such as row covers, and chemical applications. However, considerations must also be made for pollinating insects, as adequate pollination affects the quantity and quality of fruit. Insecticides may negatively affect pollinators; a concern enhanced in recent years due to losses in managed Apis melifera L. colonies. Row covers can be used in place of chemical control before pollination, but when removed, pests have access to fields along with the pollinators. If pollination services of native bees could be harnessed for use under continuous row covers, both concerns could be balanced for growers. The potential of two bee species which specialize on cucurbit flowers, Peponapis pruinosa Say and Xenoglossa strenua Cresson, were assessed under continuous row covers, employed over acorn squash. Experimental treatments included plots with either naturally or artificially introduced bees under row covers and control plots with row covers either permanently removed at crop flowering, or employed continuously with no added pollinating insects. Pests in plots with permanently removed row covers were managed using standard practices used in certified organic production. Marketable yields from plots inoculated with bees were indistinguishable from those produced under standard practices, indicating this system would provide adequate yields to growers without time and monetary inputs of insecticide applications. Additionally, application of this technique was investigated for muskmelon production and discussed along with considerations for farm management.
Alpizar, D; Fallas, M; Oehlschlager, A C; Gonzalez, L M
2012-03-01
Mass trapping Cosmopolites sordidus (Coleoptera, Curculionidae) using a pheromone-baited pitfall trap and Metamasius hemipterus (Coleoptera, Curculionidae) using a pheromone-sugarcane-baited open gallon trap was conducted in commercial banana. Four traps for each insect per hectare were placed in each of two 5-hectare plots of banana. Two additional 5-hectare plots were designated as controls and treated according to the plantation protocol. Capture rates of C. sordidus and M. hemipterus declined by >75 % over 10-12 months. In the banana growing region studied, corm damage was due primarily to C. sordidus, while only a minor amount of damage was attributable to M. hemipterus. Corm damage reduction in trapping plots was, thus, attributed primarily to C. sordidus trapping. In trapping plots, corm damage decreased by 61-64 % during the experiment. Banana bunch weights increased 23 % relative to control plots after 11-12 months of trapping. Fruit diameter did not vary between bunches harvested from trapping plots vs. control plots. Plant vigor, however, as determined by stem circumference at one meter above ground increased in plots with traps compared to control plots. Trapping for C. sordidus in two plantations of over 200 hectares each, reduced corm damage 62-86 % relative to pre-trapping levels. Insecticide control measures in place when the experiment commenced resulted in about 20-30 % corm damage, while use of pheromone trapping to manage C. sordidus lowered corm damage to 10 % or less. It is estimated that the increase in value of increased yield obtained in this trial (23 %) is about $4,240 USD per year per hectare, while the cost of pheromone trapping is approximately $185 USD per year per hectare. The trapping program becomes revenue neutral if bunch weights increase by an average of 1 % per year of trapping. Approximately 10 % of all plantation area in Costa Rica use the pheromone trapping system described here. The system also is used in Martinique, Guadeloupe, and the Canary Islands.
Demonstration of an Integrated Pest Management Program for Wheat in Tajikistan
Landis, Douglas A.; Saidov, Nurali; Jaliov, Anvar; El Bouhssini, Mustapha; Kennelly, Megan; Bahlai, Christie; Landis, Joy N.; Maredia, Karim
2016-01-01
Wheat is an important food security crop in central Asia but frequently suffers severe damage and yield losses from insect pests, pathogens, and weeds. With funding from the United States Agency for International Development, a team of scientists from three U.S. land-grant universities in collaboration with the International Center for Agricultural Research in Dry Areas and local institutions implemented an integrated pest management (IPM) demonstration program in three regions of Tajikistan from 2011 to 2014. An IPM package was developed and demonstrated in farmer fields using a combination of crop and pest management techniques including cultural practices, host plant resistance, biological control, and chemical approaches. The results from four years of demonstration/research indicated that the IPM package plots almost universally had lower pest abundance and damage and higher yields and were more profitable than the farmer practice plots. Wheat stripe rust infestation ranged from 30% to over 80% in farmer practice plots, while generally remaining below 10% in the IPM package plots. Overall yield varied among sites and years but was always at least 30% to as much as 69% greater in IPM package plots. More than 1,500 local farmers—40% women—were trained through farmer field schools and field days held at the IPM demonstration sites. In addition, students from local agricultural universities participated in on-site data collection. The IPM information generated by the project was widely disseminated to stakeholders through peer-reviewed scientific publications, bulletins and pamphlets in local languages, and via Tajik national television. PMID:28446990
NASA Astrophysics Data System (ADS)
Cao, Y. B.; Hua, Y. X.; Zhao, J. X.; Guo, S. M.
2013-11-01
With China's rapid economic development and comprehensive national strength growing, Border work has become a long-term and important task in China's diplomatic work. How to implement rapid plotting, real-time sharing and mapping surrounding affairs has taken great significance for government policy makers and diplomatic staff. However, at present the already exists Boundary information system are mainly have problems of Geospatial data update is heavily workload, plotting tools are in a state of serious lack of, Geographic events are difficult to share, this phenomenon has seriously hampered the smooth development of the border task. The development and progress of Geographic information system technology especially the development of Web GIS offers the possibility to solve the above problems, this paper adopts four layers of B/S architecture, with the support of Google maps service, uses the free API which is offered by Google maps and its features of openness, ease of use, sharing characteristics, highresolution images to design and implement the surrounding transaction plotting and management system based on the web development technology of ASP.NET, C#, Ajax. The system can provide decision support for government policy makers as well as diplomatic staff's real-time plotting and sharing of surrounding information. The practice has proved that the system has good usability and strong real-time.
NASA Astrophysics Data System (ADS)
Dunfield, Kari; Thompson, Karen; Bent, Elizabeth; Abalos, Diego; Wagner-Riddle, Claudia
2016-04-01
Liquid dairy manure (LDM) application and ploughing events may affect soil microbial community functioning differently between perennial and annual cropping systems due to plant-specific characteristics stimulating changes in microbial community structure. Understanding how these microbial communities change in response to varied management, and how these changes relate to in situ N2O fluxes may allow the creation of predictive models for use in the development of best management practices (BMPs) to decrease nitrogen (N) losses through choice of crop, plough, and LDM practices. Our objectives were to contrast changes in the population sizes and community structures of genes associated with nitrifier (amoA, crenamoA) and denitrifier (nirK, nirS, nosZ) communities in differently managed annual and perennial fields demonstrating variation in N2O flux, and to determine if differences in these microbial communities were linked to the observed variation in N2O fluxes. Soil was sampled in 2012 and in 2014 in a 4-ha spring-applied LDM grass-legume (perennial) plot and two 4-ha corn (annual) treatments under fall or spring LDM application. Soil DNA was extracted and used to target N-cycling genes via qPCR (n=6) and for next-generation sequencing (Illumina Miseq) (n=3). Significantly higher field-scale N2O fluxes were observed in the annual plots compared to the perennial system; however N2O fluxes increased after plough down of the perennial plot. Nonmetric multidimensional scaling (NMS) indicated differences in N-cycling communities between annual and perennial cropping systems, and some communities became similar between annual and perennial plots after ploughing. Shifts in these communities demonstrated relationships with agricultural management, which were associated with differences in N2O flux. Indicator species analysis was used to identify operational taxonomic units (OTUs) most responsible for community shifts related to management. Nitrifying and denitrifying soil bacterial communities are sensitive to agricultural management (annual or perennial crop type, LDM management, and ploughing) and communities will respond to variations in management, affecting field N2O fluxes.
Data and animal management software for large-scale phenotype screening.
Ching, Keith A; Cooke, Michael P; Tarantino, Lisa M; Lapp, Hilmar
2006-04-01
The mouse N-ethyl-N-nitrosourea (ENU) mutagenesis program at the Genomics Institute of the Novartis Research Foundation (GNF) uses MouseTRACS to analyze phenotype screens and manage animal husbandry. MouseTRACS is a Web-based laboratory informatics system that electronically records and organizes mouse colony operations, prints cage cards, tracks inventory, manages requests, and reports Institutional Animal Care and Use Committee (IACUC) protocol usage. For efficient phenotype screening, MouseTRACS identifies mutants, visualizes data, and maps mutations. It displays and integrates phenotype and genotype data using likelihood odds ratio (LOD) plots of genetic linkage between genotype and phenotype. More detailed mapping intervals show individual single nucleotide polymorphism (SNP) markers in the context of phenotype. In addition, dynamically generated pedigree diagrams and inventory reports linked to screening results summarize the inheritance pattern and the degree of penetrance. MouseTRACS displays screening data in tables and uses standard charts such as box plots, histograms, scatter plots, and customized charts looking at clustered mice or cross pedigree comparisons. In summary, MouseTRACS enables the efficient screening, analysis, and management of thousands of animals to find mutant mice and identify novel gene functions. MouseTRACS is available under an open source license at http://www.mousetracs.sourceforge.net.
USDA-ARS?s Scientific Manuscript database
A field research facility with two pairs of replicated agricultural test plots (four total) was established at a location in northwest Ohio during 2005 for the purpose of studying water table management strategies. Initial efforts at this field research facility were devoted to evaluating difference...
Historical growth plots in the Pacific Southwest
Lawrence A. Rabin; William W. Oliver; Robert F. Powers; Martin W. Ritchie; Matt D. Busse; Eric E. Knapp
2009-01-01
In the past, researchers from the Pacific Southwest Research Station (PSW) undertook forest growth studies to evaluate how best to manage timber resources. However, historical and future data collected at PSW growth plots also have the potential to increase our understanding of the ecological processes occurring in our forests and shed light on national issues of...
Zhang, Hui; Zhou, Guo Mo; Bai, Shang Bin; Wang, Yi Xiang; You, Yu Jie; Zhu, Ting Ting; Zhang, Hua Feng
2017-05-18
The typical natural secondary shrub community was chosen in Lin'an of Zhejiang Pro-vince to discover its possibility of restoration to arbor forest with three kinds of forest management models being taken, i.e., no care as control, closed forest management and target tree tending. Over four years growth, compared with control, closed forest management significantly increased average DBH and height by 130% and 50%, respectively, while 260% and 110% for target tree tending. In target tree tending plots, larger trees had been emerging with 4.5-8.5 cm diameter class and 4.5-8.5 m height class and formed a new storey of 4 m compared with control. The species biodiversity indexes at shrub layer were significantly increased in closed management plots, and did not decrease in target tree tending plots. Closed forest management did not change the tree species composition, following its previous succession direction. However, target tree tending increased the importance value of target species with the high potential succession direction of mixed coniferous-broadleaved forest. The results revealed that the secondary shrub community with target tree tending achieved more desired goals on DBH and height growth of dominant trees and species composition improvement compared with closed management. If the secondary shrub community could be managed when the operational conditions existed, target tree tending model should be selected to accelerate the restoration of shrub toward arbor forest.
Frey, Steven K; Topp, Ed; Ball, Bonnie R; Edwards, Mark; Gottschall, Natalie; Sunohara, Mark; Zoski, Erin; Lapen, David R
2013-01-01
This study investigated the potential for controlled tile drainage (CD) to reduce bacteria and nutrient loading to surface water and groundwater from fall-season liquid manure application (LMA) on four macroporous clay loam plots, of which two had CD and two had free-draining (FD) tiles. Rhodamine WT (RWT) was mixed into the manure and monitored in the tile water and groundwater following LMA. Tile water and groundwater quality were influenced by drainage management. Following LMA on the FD plots, RWT, nutrients, and bacteria moved rapidly via tiles to surface water; at the CD plots, tiles did not flow until the first post-LMA rainfall, so the immediate risk of LMA-induced contamination of surface water was abated. During the 36-d monitoring period, flow-weighted average specific conductance, redox potential, and turbidity, as well as total Kjeldahl N (TKN), total P (TP), NH-N, reactive P, and RWT concentrations, were higher in the CD tile effluent; however, because of lower tile discharge from the CD plots, there was no significant ( ≤ 0.05) difference in surface water nutrient and RWT loading between the CD and FD plots when all tiles were flowing. The TKN, TP, and RWT concentrations in groundwater also tended to be higher at the CD plots. Bacteria behaved differently than nutrients and RWT, with no significant difference in total coliform, , fecal coliform, fecal streptococcus, and concentrations between the CD and FD tile effluent; however, for all but , hourly loading was higher from the FD plots. Results indicate that CD has potential for mitigating bacteria movement to surface water. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E.; Ellerbrock, Ruth; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas
2015-01-01
Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season. PMID:25875835
Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E; Ellerbrock, Ruth; Bruelheide, Helge; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas
2015-01-01
Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season.
Using simplified Chaos Theory to manage nursing services.
Haigh, Carol A
2008-04-01
The purpose of this study was to evaluate the part simplified chaos theory could play in the management of nursing services. As nursing care becomes more complex, practitioners need to become familiar with business planning and objective time management. There are many time-limited methods that facilitate this type of planning but few that can help practitioners to forecast the end-point outcome of the service they deliver. A growth model was applied to a specialist service to plot service trajectory. Components of chaos theory can play a role in forecasting service outcomes and consequently the impact upon the management of such services. The ability to (1) track the trajectory of a service and (2) manipulate that trajectory by introducing new variables can allow managers to forward plan for service development and to evaluate the effectiveness of a service by plotting its end-point state.
The Executive Woman: Rhetorical Visions in "Management Review," 1951-1981.
ERIC Educational Resources Information Center
Hanson, Gail
To examine the attitudes of management literature toward female managers, 27 articles published in "Management Review" between 1951 and 1981 were subjected to both content analysis and fantasy theme analysis with attention to dramatistic plot elements. Used to identify and categorize prominent themes, content analysis revealed three…
Caviedes, Julián; Ibarra, José Tomás
2017-01-01
Forest attributes and their abundances define the stand structural complexity available as habitat for faunal biodiversity; however, intensive anthropogenic disturbances have the potential to degrade and simplify forest stands. In this paper we develop an index of stand structural complexity and show how anthropogenic disturbances, namely fire, logging, livestock, and their combined presence, affect stand structural complexity in a southern Global Biodiversity Hotspot. From 2011 to 2013, we measured forest structural attributes as well as the presence of anthropogenic disturbances in 505 plots in the Andean zone of the La Araucanía Region, Chile. In each plot, understory density, coarse woody debris, number of snags, tree diameter at breast height, and litter depth were measured, along with signs of the presence of anthropogenic disturbances. Ninety-five percent of the plots showed signs of anthropogenic disturbance (N = 475), with the combined presence of fire, logging, and livestock being the most common disturbance (N = 222; 44% of plots). The lowest values for the index were measured in plots combining fire, logging, and livestock. Undisturbed plots and plots with the presence of relatively old fires (> 70 years) showed the highest values for the index of stand structural complexity. Our results suggest that secondary forests < 70-year post-fire event, with the presence of habitat legacies (e.g. snags and CWD), can reach a structural complexity as high as undisturbed plots. Temperate forests should be managed to retain structural attributes, including understory density (7.2 ± 2.5 # contacts), volume of CWD (22.4 ± 25.8 m3/ha), snag density (94.4 ± 71.0 stems/ha), stand basal area (61.2 ± 31.4 m2/ha), and litter depth (7.5 ± 2.7 cm). Achieving these values will increase forest structural complexity, likely benefiting a range of faunal species in South American temperate forests.
2017-01-01
Forest attributes and their abundances define the stand structural complexity available as habitat for faunal biodiversity; however, intensive anthropogenic disturbances have the potential to degrade and simplify forest stands. In this paper we develop an index of stand structural complexity and show how anthropogenic disturbances, namely fire, logging, livestock, and their combined presence, affect stand structural complexity in a southern Global Biodiversity Hotspot. From 2011 to 2013, we measured forest structural attributes as well as the presence of anthropogenic disturbances in 505 plots in the Andean zone of the La Araucanía Region, Chile. In each plot, understory density, coarse woody debris, number of snags, tree diameter at breast height, and litter depth were measured, along with signs of the presence of anthropogenic disturbances. Ninety-five percent of the plots showed signs of anthropogenic disturbance (N = 475), with the combined presence of fire, logging, and livestock being the most common disturbance (N = 222; 44% of plots). The lowest values for the index were measured in plots combining fire, logging, and livestock. Undisturbed plots and plots with the presence of relatively old fires (> 70 years) showed the highest values for the index of stand structural complexity. Our results suggest that secondary forests < 70-year post-fire event, with the presence of habitat legacies (e.g. snags and CWD), can reach a structural complexity as high as undisturbed plots. Temperate forests should be managed to retain structural attributes, including understory density (7.2 ± 2.5 # contacts), volume of CWD (22.4 ± 25.8 m3/ha), snag density (94.4 ± 71.0 stems/ha), stand basal area (61.2 ± 31.4 m2/ha), and litter depth (7.5 ± 2.7 cm). Achieving these values will increase forest structural complexity, likely benefiting a range of faunal species in South American temperate forests. PMID:28068349
The Use of Crow-AMSAA Plots to Assess Mishap Trends
NASA Technical Reports Server (NTRS)
Dawson, Jeffrey W.
2011-01-01
Crow-AMSAA (CA) plots are used to model reliability growth. Use of CA plots has expanded into other areas, such as tracking events of interest to management, maintenance problems, and safety mishaps. Safety mishaps can often be successfully modeled using a Poisson probability distribution. CA plots show a Poisson process in log-log space. If the safety mishaps are a stable homogenous Poisson process, a linear fit to the points in a CA plot will have a slope of one. Slopes of greater than one indicate a nonhomogenous Poisson process, with increasing occurrence. Slopes of less than one indicate a nonhomogenous Poisson process, with decreasing occurrence. Changes in slope, known as "cusps," indicate a change in process, which could be an improvement or a degradation. After presenting the CA conceptual framework, examples are given of trending slips, trips and falls, and ergonomic incidents at NASA (from Agency-level data). Crow-AMSAA plotting is a robust tool for trending safety mishaps that can provide insight into safety performance over time.
SnagPRO: snag and tree sampling and analysis methods for wildlife
Lisa J. Bate; Michael J. Wisdom; Edward O. Garton; Shawn C. Clabough
2008-01-01
We describe sampling methods and provide software to accurately and efficiently estimate snag and tree densities at desired scales to meet a variety of research and management objectives. The methods optimize sampling effort by choosing a plot size appropriate for the specified forest conditions and sampling goals. Plot selection and data analyses are supported by...
Amphibian Communities Under Diverse Forest Management In The Ouachita Mountains, Arkansas
Stanley F. Fox; Paul A. Shipman; Ronald E. Thill; Joseph P. Phelps; David M. Leslie
2004-01-01
Abstract - From May 1995 to March 1999, we censused amphibians in the Ouachita Mountains, Arkansas, on 60 plots on each of four forested watersheds five times per year, with new plots each year. We found negligible differences in species richness among watersheds, and community similarities were high, even though most pairwise comparisons were...
Web-Based Search and Plot System for Nuclear Reaction Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otuka, N.; Nakagawa, T.; Fukahori, T.
2005-05-24
A web-based search and plot system for nuclear reaction data has been developed, covering experimental data in EXFOR format and evaluated data in ENDF format. The system is implemented for Linux OS, with Perl and MySQL used for CGI scripts and the database manager, respectively. Two prototypes for experimental and evaluated data are presented.
James D. Haywood
2009-01-01
This research was initiated in a 34-year-old, direct-seeded stand of longleaf pine (Pinus palustris Mill.) to study how pine straw management practices (harvesting, fire, and fertilization) affected the longleaf pine overstory and pine straw yields. A randomized complete block split-plot design was installed with two main plot treatments...
Gabrey, S.W.; Afton, A.D.
2000-01-01
Louisiana Seaside Sparrows (Ammodramus maritimus fisheri) breed and winter exclusively in brackish and saline marshes along the northern Gulf of Mexico. Many Gulf Coast marshes, particularly in the Chenier Plain of southwestern Louisiana and southeastern Texas, are burned intentionally in fall or winter as part of waterfowl management programs. Fire reportedly has negatively affected two Seaside Sparrow subspecies (A. m. nigrescens and A. m. mirabilis) in Florida, but there is no published information regarding effects of fire on A. m. fisheri. We compared abundance of territorial male Louisiana Seaside Sparrows, number of nesting activity indicators, and vegetation structure in paired burned and unburned plots in Chenier Plain marshes in southwestern Louisiana during the 1996 breeding season (April-July) before experimental winter burns (January 1997) and again during two breeding seasons post-burn (1997-1998). We found that abundance of male sparrows decreased in burned plots during the first breeding season post-burn, but was higher than that of unburned plots during the second breeding season post-burn. Indicators of nesting activity showed a similar but non-significant pattern in response to burning. Sparrow abundance and nesting activity seemingly are linked to dead vegetation cover, which was lower in burned plots during the first breeding season post-burn, but did not differ from that in unburned plots during the second breeding season post-burn. We recommend that marsh management plans in the Gulf Coast Chenier Plain integrate waterfowl and Seaside Sparrow management by maintaining a mosaic of burned and unburned marshes and allowing vegetation to recover for at least two growing seasons before reburning a marsh.
Agroforestry management in vineyards: effects on soil microbial communities
NASA Astrophysics Data System (ADS)
Montagne, Virginie; Nowak, Virginie; Guilland, Charles; Gontier, Laure; Dufourcq, Thierry; Guenser, Josépha; Grimaldi, Juliette; Bourgade, Emilie; Ranjard, Lionel
2017-04-01
Some vineyard practices (tillage, chemical weeding or pest management) are generally known to impact the environment with particular negative effects on the diversity and the abundance of soil microorganisms, and cause water and soil pollutions. In an agro-ecological context, innovative cropping systems have been developed to improve ecosystem services. Among them, agroforestry offers strategies of sustainable land management practices. It consists in intercropping trees with annual/perennial/fodder crop on the same plot but it is weakly referenced with grapevine. The present study assesses the effects of intercropped and neighbouring trees on the soil of three agroforestry vineyards, in south-western France regions. More precisely soils of the different plots were sampled and the impact of the distance to the tree or to the neighbouring trees (forest) on soil microbial community has been considered. Indigenous soil microbial communities were characterized by a metagenomic approach that consisted in extracting the molecular microbial biomass, then in calculating the soil fungi/bacteria ratio - obtained by qPCR - and then in characterizing the soil microbial diversity - through Illumina sequencing of 16S and 18S regions. Our results showed a significant difference between the soil of agroforestry vineyards and the soil sampled in the neighbouring forest in terms of microbial abundance and diversity. However, only structure and composition of bacterial community seem to be influenced by the implanted trees in the vine plots. In addition, the comparison of microbial co-occurrence networks between vine and forest plots as well as inside vine plots according to distance to the tree allow revealing a more sensitive impact of agroforestry practices. Altogether, the results we obtained build up the first references for concerning the soil of agroforestry vineyards which will be interpreted in terms of soil quality, functioning and sustainability.
A preliminary study of effects of feral pig density on native Hawaiian montane rainforest vegetation
Scheffler, Pamela Y.; Pratt, Linda; Foote, David; Magnacca, Karl
2012-01-01
This study aimed to examine the effects of different levels of pig density on native Hawaiian forest vegetation. Pig sign was measured across four pig management units in the 'Öla'a Forest from 1998 through 2004 and pig density estimated based upon pig activity. Six paired vegetation monitoring plots were established in the units, each pair straddling a pig fence. Percent cover and species richness of understory vegetation, ground cover, alien species, and preferred pig forage plants were measured in 1997 and 2003 and compared with pig density estimates. Rainfall and hunting effort and success by management personnel were also tracked over the study period. Vegetation monitoring found a higher percentage of native plants in pig-free or low-pig areas compared to those with medium or high pig densities, with no significant change in the percent native plant species between the first and second monitoring periods. Differences between plots were strongly affected by location, with a higher percentage of native plants in western plots, where pig damage has historically been lower. Expansion of this survey with more plots would help improve the statistical power to detect differences in vegetation caused by pigs. Because of the limited vegetation sampling in this study, the results must be viewed as descriptive. We compare the vegetation within 30 x 30 m plots across three thresholds of historical pig density and show how pig densities can change in unanticipated directions within management units. While these results cannot be extrapolated to area-wide effects of pig activity, these data do contribute to a growing body of information on the impacts of feral pigs on Hawaiian plant communities.
NASA Astrophysics Data System (ADS)
Biddoccu, Marcella; Ferraris, Stefano; Opsi, Francesca; Cavallo, Eugenio
2014-05-01
Long-term data have been collected by IMAMOTER-CNR from field-scale vineyard plots within the Tenuta Cannona Vine and Wine Experimental Centre of Regione Piemonte, which is located in a valuable vine production area in north-western Italy. Since 2000, runoff and soil erosion monitoring has been carried out under natural rainfall conditions on three parallel field plots (75 m long and 16,5 m wide, slope gradient about 15%) that are conducted with different inter-rows soil management techniques (conventional tillage, reduced tillage, controlled grass cover). Experimental plots are part of a 16-hectars experimental vineyard, managed in according to conventional farming for wine production. Recurrent surveys have been carried out in the runoff plots to investigate spatial and temporal variability of the soil bulk density, soil moisture and penetration resistance. The primary intent of the program was to evaluate the effects of agricultural management practices and tractor traffic on the hydrologic, soil erosion and soil compaction processes in vineyard. The Cannona Data Base (CDB) represents a data collection which is unique in Italy, showing the response of soil to rainfall in terms of runoff and soil erosion over more than a decade. It includes data for more than 200 runoff events and over 70 soil loss events; moreover, periodic measurements for soil physical characteristics are included for the three plots. The CDB can now be accessed via a website supported by the CNR, that is addressed to water and land management researchers and professionals. The CDB is currently used to calibrate a model for runoff and soil erosion prediction in vineyard environment. The CDB website includes a descriptive and informative section, which contains results of over than 10 years of experimental activity, reports and presentations, addressed to enhance the awareness of citizens and stakeholders about land degradation processes and about impacts of different soil management practices on water and soil conservation. The monitoring activities at the Cannona Experimental Site are currently carried out and implemented in order to improve the understanding of the soil management effects on soil hydrology, erosion and compaction in sloping vineyards. Land use and soil management strongly influence the hydrologic processes in the soil. In Italy vines are widely cultivated on hills and mountain slopes, within areas which are frequently affected by landslides. Such natural events are strictly related to hydrologic behavior of the soil, that drives the runoff formation on slopes and the consequent sediment delivery to water courses. Data from the CDB could be used in a multidisciplinary approach to investigate interactions among land use/ soil management and natural processes at different scales.
Sells, Sallie M; Held, David W; Enloe, Stephen F; Loewenstein, Nancy J; Eckhardt, Lori G
2015-03-01
Cogongrass (Imperata cylindrica Beav.) is an aggressive, invasive weed with a global distribution. In North America, it threatens the integrity of southeastern pine agroecosystems, including longleaf pine (Pinus palustris Mill.). While studies have examined the impacts of cogongrass and various vegetation management strategies on longleaf pine understory plant communities, little is known about how they impact associated insect communities. To understand the effect of cogongrass management strategies on arthropod natural enemies and bark beetles, a split-plot design was used to test fire (whole-plot) and four subplot treatments (control, herbicide, seeding and herbicide plus seeding). Arthropods were sampled using pitfall traps and sweep samples. After 2 years of sampling, total natural enemies were not significantly affected by subplot treatment but were affected by burn treatment. Upon subdividing natural enemies into groups, only spiders were significantly affected by subplot treatment, but predatory beetles and ants were significantly affected by burn treatment. The abundance of root-feeding bark beetles (Hylastes spp.) was not significant by subplot or whole-plot treatments. Multiple applications of herbicide remain the most effective way to manage cogongrass in longleaf pine. In this study, we found limited evidence that cogongrass management with herbicides would negatively impact arthropod natural enemies associated with longleaf pine or locally increase root-feeding bark beetles. © 2014 Society of Chemical Industry.
Managing mountain hardwoods - a ten-year appraisal
George R., Jr. Trimble
1961-01-01
Ten years ago - in 1949 - four 5-acre plots were established on the Fernow Experimental Forest near Parsons, West Virginia, to show the effects upon mountain hardwoods of each of four management treatments.
Deng, Songqiu; Yin, Na; Guan, Qingwei; Katoh, Masato
2014-11-01
Forest management has a significant influence on the preferences of people for forest landscapes. This study sought to evaluate the dynamic effects of thinning intensities on the landscape value of forests over time. Five typical stands in Wuxiangsi National Forest Park in Nanjing, China, were subjected to a thinning experiment designed with four intensities: unthinned, light thinning, moderate thinning, and heavy thinning. People's preferences for landscape photographs taken in plots under various thinning intensities were assessed through scenic beauty estimation (SBE) at 2 and 5 years after thinning. The differences in scenic beauty value between different thinning intensities were then analyzed with a paired samples t test for the two periods. The results indicated that the landscape value of all of the thinned plots significantly exceeded that of the unthinned plots 2 years after thinning (p < 0.01) and that the heavily thinned plots were most appreciated, showing an average improvement of 9.71 % compared with the control plots. Additionally, the heavily thinned plots were judged to be more beautiful than the lightly thinned and moderately thinned plots, whereas there was no significant difference between moderate thinning and light thinning. At 5 years after thinning, however, the moderately thinned plots received the highest preference scores among the four intensities, displaying an average improvement of 11.32 % compared with the unthinned plots. A multiple linear regression (MLR) model indicated that landscape value improved with increases in the average diameter at breast height (DBH) and with the improvement of environmental cleanliness in the stand, whereas the value decreased with an increasing stem density, species diversity, litter coverage, and canopy density. In addition, we found that the performance of a neural network model based on a multilayer perception (MLP) algorithm for predicting scenic beauty was slightly better than that of the MLR model. The findings of our study suggest that moderate to heavy thinning should be recommended to manage forests for the improvement of forest landscape value.
NASA Astrophysics Data System (ADS)
Baryła, A.; Pierzgalski, E.; Karczmarczyk, A.
2009-04-01
oil losses due to water erosion not only decrease of soil fertility but also influence on pollution of water bodies. One of the method for limitation of water erosion process is protected soil management and choose suitable plants which requires knowledge about effect and mechanism of erosion under different environmental conditions. The results of measurements of quantity and quality of soil losses from three experimental plots are given in the article. Plots were located in Experimental Agricultural Station Puczniew in central part of Poland. Surface soil layer on the plots had mechanical composition of medium loam soil. On two plots grass and barley were planted. Third plot was used as fallow and tilled land. Measurements were carried out four times in the period May-October 2007. Physical and chemical composition of washed soil material was analyzed.
40 CFR 264.1035 - Recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... management units in one recordkeeping system if the system identifies each record by each hazardous waste management unit. (b) Owners and operators must record the following information in the facility operating...., identify the hazardous waste management units on a facility plot plan). (ii) Information and data...
Implementing optimal thinning strategies
Kurt H. Riitters; J. Douglas Brodie
1984-01-01
Optimal thinning regimes for achieving several management objectives were derived from two stand-growth simulators by dynamic programming. Residual mean tree volumes were then plotted against stand density management diagrams. The results supported the use of density management diagrams for comparing, checking, and implementing the results of optimization analyses....
Consequences of prescribed fire and grazing on grassland ant communities.
Underwood, Emma C; Christian, Caroline E
2009-04-01
Prescribed fire and livestock grazing are used for the management and restoration of native grasslands the world over; however, the effects of these management techniques on ant communities are unclear. We examined the response of ants to these disturbances in grasslands in northern California. Twenty-four 30 by 30 m plots were established across two sites that received one of four treatments: grazing, fire, grazing and fire, or no treatment. Ants were censused using 240 pitfall traps with one preburn and two postburn samples (14 d and 1 yr after burning). We analyzed ant abundance using broadly defined groups based on feeding habit and/or habitat use and detected no grazing effect but a significant fire effect that differed by group. Immediate postfire sampling showed an increase in cryptic species (particularly Brachymyrmex depilis). One year after the fire, no response was detected for cryptic species, but burned plots had greater abundance of seed harvesters. Analysis of vegetation showed burned plots had significantly greater forb cover, which might have provided greater food resources, and also lower biomass, which might have facilitated foraging. Understanding the effects of these management tools on ant abundance complements our understanding of their effect on vegetation and assists conservation practitioners effectively manage grassland ecosystems both in California and beyond.
Jeremy S. Fried; Larry D. Potts; Sara M. Loreno; Glenn A. Christensen; R. Jamie Barbour
2017-01-01
The Forest Inventory and Analysis (FIA)-based BioSum (Bioregional Inventory Originated Simulation Under Management) is a free policy analysis framework and workflow management software solution. It addresses complex management questions concerning forest health and vulnerability for large, multimillion acre, multiowner landscapes using FIA plot data as the initial...
Growth and yield for managed and unmanaged stands
H. Michael Rauscher
1992-01-01
Yield tables were generated using STEMS (Stand and Tree Evaluation and Modeling System) developed by North Central Forest Experiment Station scientists. The data fed into STEMS came from real 1/4-acre plots. The plots were selected to characterize 40-year-old stands that averaged 58 percent of basal area in red maple, 23 percent in sugar maple, and the remaining 19...
Long-Term Records of Southern Pine Dynamics in Even-Aged Stands
J.C.G. Goelz; J.H. Scarborough; J.A. Floyd; D.J. Leduc
2004-01-01
The timber management research wor k unit of the U.S. Depar tment of Agriculture Forest Service in Pineville, LA (SRS-4111) oversees many long-term studies in stand dynamics; we summarize current studies in table 1. We remeasure > 700 plots established in even-aged stands of southern pines at approximately 5-year intervals; some plots have measurements spanning...
Early thinning experiments established by the Fort Valley Experimental Forest (P-53)
Benjamin P. De Blois; Alex. J. Finkral; Andrew J. Sánchez Meador; Margaret M. Moore
2008-01-01
Between 1925 and 1936, the Fort Valley Experimental Forest (FVEF) scientists initiated a study to examine a series of forest thinning experiments in second growth ponderosa pine stands in Arizona and New Mexico. These early thinning plots furnished much of the early background for the development of methods used in forest management in the Southwest. The plots ranged...
Early thinning experiments established by the Fort Valley Experimental Forest
Benjamin P. De Blois; Alex. J. Finkral; Andrew J. Sanchez Meador; Margaret M. Moore
2008-01-01
Between 1925 and 1936, the Fort Valley Experimental Forest (FVEF) scientists initiated a study to examine a series of forest thinning experiments in second growth ponderosa pine stands in Arizona and New Mexico. These early thinning plots furnished much of the early background for the development of methods used in forest management in the Southwest. The plots ranged...
VTGRAPH - GRAPHIC SOFTWARE TOOL FOR VT TERMINALS
NASA Technical Reports Server (NTRS)
Wang, C.
1994-01-01
VTGRAPH is a graphics software tool for DEC/VT or VT compatible terminals which are widely used by government and industry. It is a FORTRAN or C-language callable library designed to allow the user to deal with many computer environments which use VT terminals for window management and graphic systems. It also provides a PLOT10-like package plus color or shade capability for VT240, VT241, and VT300 terminals. The program is transportable to many different computers which use VT terminals. With this graphics package, the user can easily design more friendly user interface programs and design PLOT10 programs on VT terminals with different computer systems. VTGRAPH was developed using the ReGis Graphics set which provides a full range of graphics capabilities. The basic VTGRAPH capabilities are as follows: window management, PLOT10 compatible drawing, generic program routines for two and three dimensional plotting, and color graphics or shaded graphics capability. The program was developed in VAX FORTRAN in 1988. VTGRAPH requires a ReGis graphics set terminal and a FORTRAN compiler. The program has been run on a DEC MicroVAX 3600 series computer operating under VMS 5.0, and has a virtual memory requirement of 5KB.
NASA Astrophysics Data System (ADS)
Rodrigo Panosso, Alan; Milori, Débora M. B. P.; Marques Júnior, José; Martin-Neto, Ladislau; La Scala, Newton, Jr.
2010-05-01
Soil management causes changes in soil physical, chemical, and biological properties that consequently affect its CO2 emission. In this work we studied soil respiration (FCO2) in areas with sugarcane production in southern Brazil under two different sugarcane management systems: green (G), consisting of mechanized harvesting that produces a large amount of crop residues left on the soil surface, and slash-and-burn (SB), in which the residues are burned before manual harvest, leaving no residues on the soil surface. The study was conducted after the harvest period in two side-by-side grids installed in adjacent areas, having 20 measurement points each. The objective of this work was to determinate whether soil physical and chemical properties within each plot were useful in order to explain the spatial variability of FCO2, supposedly influence by each management system. Most of the soil physical properties studied showed no significant differences between management systems, but on the other hand most of the chemical properties differed significantly when SB and G areas were compared. Total FCO2 was 31% higher in the SB plot (729 g CO2 m-2) when compared to the G plot (557 g CO2 m-2) throughout the 70-day period after harvest studied. This seems to be related to the sensitivity of FCO2 to precipitation events, as respiration in this plot increased significantly with increases in soil moisture. Despite temporal variability showed to be positively related to soil moisture, inside each management system there was a negative correlation (p<0.01) between the spatial changes of FCO2 and soil moisture (MS), R= -0.56 and -0.59 for G and SB respectively. There was no spatial correlation between FCO2 and soil organic matter in each management system, however, the humification index (Hum) of organic matter was negatively linear correlated with FCO2 in SB (R= -0.53, p<0.05) while positively linear correlated in G area (R=0.42, p<0.10). The multiple regression model analysis applied in each management system indicates that 63% of the FCO2 spatial variability in G managed could be explained by the model: FCO2(G)= 4.11978 -0.07672MS + 0.0045Hum +1.5352K -0.04474FWP, where K and FWP are potassium content and free water porosity in G area, respectively. On the other hand, 75% of FCO2 spatial variability in SB managed plot was accounted by the model: FCO2(SB) = 10.66774 -0.08624MS -0.02904Hum -2.42548K. Therefore, soil moisture, humification index of organic matter and potassium level were the main properties able to explain the spatial variability of FCO2 in both sugarcane management systems. This result indicates that changes in sugarcane management systems could result in changes on the soil chemical properties, mostly, especially humification index of organic matter. It seems that in conversion from slash-and-burn to green harvest system, free water porosity turns to be an important aspect in order to explain part of FCO2 spatial variability in green managed system.
Post-harvest field manipulations to conserve waste rice for waterfowl
Stafford, J.D.; Kaminski, R.M.; Reinecke, K.J.; Kurtz, M.E.; Manley, S.W.
2005-01-01
Rice seeds escaping collection by combines during harvest (hereafter, waste rice) provide quality forage for migrating and wintering waterfowl in the Lower Mississippi Alluvial Valley (MAV) and other rice growing regions in the United States. Recent sample surveys across the MAV have revealed abundance of waste rice in fields declined an average of 71% between harvest and late autumn. Thus, we evaluated the ability of common post-harvest, field-management practices to conserve waste rice for waterfowl until early winter via controlled experiments in Mississippi rice test plots in 2001 and 2003 and analyses of data from MAV-wide surveys of waste rice in rice production fields in 2000-2002. Our experiments indicated test plots with burned rice stubble that were not flooded during autumn contained more waste rice than other treatments in 2001 (P?0.10). Waste-rice abundance in test plots did not differ among postharvest treatments in 2003 (P = 0.97). Our analyses of data from the MAV sample surveys did not detect differences in abundance of waste rice among fields burned, rolled, disked, or left in standing stubble post-harvest (P?0.04; Bonferroni corrected critical ( a= 0.017). Because results from test-plot experiments were inconclusive, we based our primary inference regarding best post-harvest treatments on patterns of rice abundance identified from the MAV surveys and previously documented environmental and agronomic benefits of managing harvested rice fields for wintering waterfowl. Therefore, we recommend leaving standing stubble in rice fields after harvest as a preliminary beneficial management practice. We suggest future research evaluate potential of postharvest practices to conserve waste rice for waterfowl and reduce straw in production rice fields managed for wintering waterfowl throughout the MAV.
Assessing manure management strategies through small-plot research and whole-farm modeling
Garcia, A.M.; Veith, T.L.; Kleinman, P.J.A.; Rotz, C.A.; Saporito, L.S.
2008-01-01
Plot-scale experimentation can provide valuable insight into the effects of manure management practices on phosphorus (P) runoff, but whole-farm evaluation is needed for complete assessment of potential trade offs. Artificially-applied rainfall experimentation on small field plots and event-based and long-term simulation modeling were used to compare P loss in runoff related to two dairy manure application methods (surface application with and without incorporation by tillage) on contrasting Pennsylvania soils previously under no-till management. Results of single-event rainfall experiments indicated that average dissolved reactive P losses in runoff from manured plots decreased by up to 90% with manure incorporation while total P losses did not change significantly. Longer-term whole farm simulation modeling indicated that average dissolved reactive P losses would decrease by 8% with manure incorporation while total P losses would increase by 77% due to greater erosion from fields previously under no-till. Differences in the two methods of inference point to the need for caution in extrapolating research findings. Single-event rainfall experiments conducted shortly after manure application simulate incidental transfers of dissolved P in manure to runoff, resulting in greater losses of dissolved reactive P. However, the transfer of dissolved P in applied manure diminishes with time. Over the annual time frame simulated by whole farm modeling, erosion processes become more important to runoff P losses. Results of this study highlight the need to consider the potential for increased erosion and total P losses caused by soil disturbance during incorporation. This study emphasizes the ability of modeling to estimate management practice effectiveness at the larger scales when experimental data is not available.
Intelligence Constraints on Terrorist Network Plots
NASA Astrophysics Data System (ADS)
Woo, Gordon
Since 9/11, the western intelligence and law enforcement services have managed to interdict the great majority of planned attacks against their home countries. Network analysis shows that there are important intelligence constraints on the number and complexity of terrorist plots. If two many terrorists are involved in plots at a given time, a tipping point is reached whereby it becomes progressively easier for the dots to be joined and for the conspirators to be arrested, and for the aggregate evidence to secure convictions. Implications of this analysis are presented for the campaign to win hearts and minds.
Patterns of space and habitat use by northern bobwhites in South Florida, USA
Singh, A.; Hines, T.C.; Hostetler, J.A.; Percival, H.F.; Oli, M.K.
2011-01-01
The manner by which animals use space and select resources can have important management consequences. We studied patterns of habitat selection by northern bobwhites (Colinus virginianus) on Babcock-Webb Wildlife Management Area, Charlotte County, Florida and evaluated factors influencing the sizes of their home ranges. A total of 1,245 radio-tagged bobwhites were monitored for 19,467 radio days during 2002-2007. The mean (?? 1 SE) annual home range size, estimated using the Kernel density method, was 88. 43 (?? 6. 16) ha and did not differ between genders. Winter home ranges of bobwhites (69. 27 ?? 4. 92 ha) were generally larger than summer home ranges (53. 90 ?? 4. 93 ha). Annual and winter home ranges were smaller for bobwhites whose ranges contained food plots compared to those that did not; however, the presence of food plots did not influence summer home ranges. We used distance-based methods to investigate habitat selection by bobwhites at two scales: selection of home ranges within the study site (second-order selection) and selection of habitats within home ranges (third-order selection). Across both scales, bobwhites generally preferred food plots and dry prairie habitat and avoided wet prairies and roads. This pattern was generally consistent between genders and across years. Our data indicate that management practices aimed at increasing and maintaining a matrix of food plots and dry prairie habitat would provide the most favorable environment for bobwhites. ?? 2010 Springer-Verlag.
Wetland biomass crops: Studies in natural and managed stands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, N.J.
1989-01-01
Wetlands dominated by Typha spp. and other emergent macrophytes are some of the most productive natural systems in the temperate zone. The subject of this thesis is the selection and management of potential emergent biomass crops and is presented in the following three chapters: (1) The Productivity of Typha spp. in Managed Stands in Minnesota, (II) The Establishment of Typha spp. on a Northern Minnesota Peatland, and (III) Wetland Species Yield Comparisons. Typha rhizomes were planted in a series of 1.5 m{sup 2} paddies. Variables investigated included planting density, fertilizer application rate and seasonal changes in above and below-ground biomass,more » shoot height and density. Yield increased with increased planting density. Maximum shoot dry weight occurred in August while maximum below ground dry weight was obtained in October. Trial plots were established on a northern Minnesota peatland using both rhizomes and seed. The influence of planting density, substrate preparation and fertilizer application on the seasonal development and productivity of trial plots was investigated. Through extensive literature surveys and sampling natural stands, five species were identified for further screening including: Carex atherodes, Phragmites australis, Scirpus fluviatilis, Sparganium eurycarpum and Spartina pectinata. These species, along with planting stock from five productive Typha stands were planted in 1.5 m{sup 2} paddies to compare productivity and growth characteristics under identical conditions. Trial plots of Phragmites, Scirpus and Sparganium were also established on excavated peatland plots.« less
Predicting patterns of non-native plant invasions in Yosemite National Park, California, USA
Underwood, E.C.; Klinger, R.; Moore, P.E.
2004-01-01
One of the major issues confronting management of parks and reserves is the invasion of non-native plant species. Yosemite National Park is one of the largest and best-known parks in the United States, harbouring significant cultural and ecological resources. Effective management of non-natives would be greatly assisted by information on their potential distribution that can be generated by predictive modelling techniques. Our goal was to identify key environmental factors that were correlated with the percent cover of non-native species and then develop a predictive model using the Genetic Algorithm for Rule-set Production technique. We performed a series of analyses using community-level data on species composition in 236 plots located throughout the park. A total of 41 non-native species were recorded which occurred in 23.7% of the plots. Plots with non-natives occurred most frequently at low- to mid-elevations, in flat areas with other herbaceous species. Based on the community-level results, we selected elevation, slope, and vegetation structure as inputs into the GARP model to predict the environmental niche of non-native species. Verification of results was performed using plot data reserved from the model, which calculated the correct prediction of non-native species occurrence as 76%. The majority of the western, lower-elevation portion of the park was predicted to have relatively low levels of non-native species occurrence, with highest concentrations predicted at the west and south entrances and in the Yosemite Valley. Distribution maps of predicted occurrences will be used by management to: efficiently target monitoring of non-native species, prioritize control efforts according to the likelihood of non-native occurrences, and inform decisions relating to the management of non-native species in postfire environments. Our approach provides a valuable tool for assisting decision makers to better manage non-native species, which can be readily adapted to target non-native species in other locations.
John Waconda
2008-01-01
The large acreages of the woodland forest cover type on tribal lands continues to post challenges to this agency's overall management strategies. The development of management plans, evaluation of growth study plots, and anticipated biomass utilization can help resolve some of the challenges.
Huntington's Disease Research Roster Support with a Microcomputer Database Management System
Gersting, J. M.; Conneally, P. M.; Beidelman, K.
1983-01-01
This paper chronicles the MEGADATS (Medical Genetics Acquisition and DAta Transfer System) database development effort in collecting, storing, retrieving, and plotting human family pedigrees. The newest system, MEGADATS-3M, is detailed. Emphasis is on the microcomputer version of MEGADATS-3M and its use to support the Huntington's Disease research roster project. Examples of data input and pedigree plotting are included.
Andrew Lister; Charles Scott; Susan King; Michael Hoppus; Brett Butler; Douglas Griffith
2005-01-01
The Food Security Act of 1985 prohibits the disclosure of any information collected by the USDA Forest Service's FIA program that would link individual landowners to inventory plot information. To address this, we developed a technique based on a "swapping" procedure in which plots with similar characteristics are exchanged, and on a ...
NASA Astrophysics Data System (ADS)
Han, Dongmei; Zhou, Tiantian
2018-04-01
Agricultural irrigation with trans-basin water diversion can effectively relieve the water paucity in arid and semi-arid regions, however, this may be accompanied by eco-environmental problems (e.g., saline soils, rising groundwater levels, water quality problems). The mechanism of soil water movement under irrigation in the unsaturated zone of arid regions is a key scientific problem that should be solved in order to evaluate agricultural water management and further improve current irrigation practices. This study investigated the impact of drip irrigation on soil water movement in the unsaturated zone of a cotton field in an inland arid region (the Karamay Agricultural Development Area), northwest China. Combining in situ observational physical data with temporal variation in stable isotopic compositions of soil water, we described the soil water flow system and mechanism in severe (Plot 1) and mild (Plot 2) saline-alkali cotton fields. The infiltration depths are 0-150 cm for both plots. Drip irrigation scheduling makes no significant contribution to local groundwater recharge, however, groundwater can move into the unsaturated zone through capillary rise during cotton flowering and boll periods. Plot 2 is less prone to having secondary soil salinization than Plot 1 due to the existence of a middle layer (approximately 100 cm thick), which elongated the distance between the root zone and aquifer. Rise in the water table (approximately 60 cm for Plot 1 and 50 cm for Plot 2) could be caused by lateral groundwater flow instead of vertical infiltration. We estimated the soil water storage changes in the unsaturated zone and proposed a conceptual model for deciphering the movement process of soil water. This study provides a scientific basis for determining the rise of groundwater levels and potential development of saline soils and improving agricultural water management in arid regions.
Managing Southeastern US Forests for Increased Water Yield
NASA Astrophysics Data System (ADS)
Acharya, S.; Kaplan, D. A.; Mclaughlin, D. L.; Cohen, M. J.
2017-12-01
Forested lands influence watershed hydrology by affecting water quantity and quality in surface and groundwater systems, making them potentially effective tools for regional water resource planning. In this study, we quantified water use and water yield by pine forests under varying silvicultural management (e.g., high density plantation, thinning, and prescribed burning). Daily forest water use (evapotranspiration, ET) was estimated using continuously monitored soil-moisture in the root-zone at six sites across Florida (USA), each with six plots ranging in forest leaf-area index (LAI). Plots included stands with different rotational ages (from clear-cut to mature pine plantations) and those restored to more historical conditions. Estimated ET relative to potential ET (PET) was strongly associated with LAI, root-zone soil-moisture status, and site hydroclimate; these factors explained 85% of the variation in the ET:PET ratio. Annual water yield (Yw) calculated from these ET estimates and a simple water balance differed significantly among sites and plots (ranging from -0.12 cm/yr to > 100 cm/yr), demonstrating substantive influence of management regimes. LAI strongly influenced Yw in all sites, and a general linear model with forest attributes (LAI and groundcover), hydroclimate, and site characteristics explained >90% of variation in observed Yw. These results can be used to predict water yield changes under different management and climate scenarios and may be useful in the development of payment for ecosystem services approaches that identify water as an important product of forest best management practices.
Pilliod, David S.; Arkle, Robert S.
2013-01-01
Resource managers and scientists need efficient, reliable methods for quantifying vegetation to conduct basic research, evaluate land management actions, and monitor trends in habitat conditions. We examined three methods for quantifying vegetation in 1-ha plots among different plant communities in the northern Great Basin: photography-based grid-point intercept (GPI), line-point intercept (LPI), and point-quarter (PQ). We also evaluated each method for within-plot subsampling adequacy and effort requirements relative to information gain. We found that, for most functional groups, percent cover measurements collected with the use of LPI, GPI, and PQ methods were strongly correlated. These correlations were even stronger when we used data from the upper canopy only (i.e., top “hit” of pin flags) in LPI to estimate cover. PQ was best at quantifying cover of sparse plants such as shrubs in early successional habitats. As cover of a given functional group decreased within plots, the variance of the cover estimate increased substantially, which required more subsamples per plot (i.e., transect lines, quadrats) to achieve reliable precision. For GPI, we found that that six–nine quadrats per hectare were sufficient to characterize the vegetation in most of the plant communities sampled. All three methods reasonably characterized the vegetation in our plots, and each has advantages depending on characteristics of the vegetation, such as cover or heterogeneity, study goals, precision of measurements required, and efficiency needed.
C.B. LeDoux; J.E. Baumgras
1991-01-01
The impact of selected site and stand attributes on stand management is demonstrated using actual forest model plot data and a complete systems simulation model called MANAGE. The influence of terrain on the type of logging technology required to log a stand and the resulting impact on stand management is also illustrated. The results can be used by managers and...
[Literature review of the dispersal of transgenes from genetically modified maize].
Ricroch, Agnès; Bergé, Jean Baptiste; Messéan, Antoine
2009-10-01
This article aims at reviewing the theoretical and experimental data published in 562 publications referring to genetically modified (GM) maize dispersal. Our choice was limited to this since in the European Union (EU), GM maize is the only GM crop currently grown commercially. The pollen dispersal of transgenic maize is due to two factors: (i) pollen-mediated gene flow; (ii) seed admixture during harvest and post-harvest processes. The pollen dispersal decreases rapidly with the distance from GM plots. Climatic and topographic factors and factors of relative density between GM and non-GM maize plots impact on the pollen dispersal. The combination of both isolation distance and flowering date between source plots and sink plots limits the adventitious presence of transgenes in non-GM plots. All publications we reviewed demonstrate that the EU 0.9% threshold is technically manageable if the measures of isolation distances as well as harvesting and post harvesting processes and fully synchronous flowering are implemented.
NASA Astrophysics Data System (ADS)
Espinosa, Free; Rivera-Ingraham, Georgina; García-Gómez, Jose C.
2011-08-01
Habitat complexity has been recognised to exert a significant influence on the abundance and diversity of benthic invertebrates. This issue is especially important for the management of endangered species. The recruitment of limpet species was monitored monthly for one year on natural and artificial surfaces. Control plots showed the highest mean number of species and individuals settled per plot, followed by rough then smooth plots. Control plots presented the highest mean diversity values followed by rough and smooth plots. Recruits of the endangered limpet Patella ferruginea were mainly observed during the spring, from April to June. Recruitment seemed to be influenced by both the heterogeneity and nature of the substratum. P. ferruginea repopulation programmes involving the translocation of recruits on experimental plates should be conducted using similar materials to the natural substratum, such as granite or limestone, rather than plastic, avoiding surfaces with low levels of heterogeneity, and taking into account that translocation of adults is not feasible due to the high mortality observed.
Bañuelos, G S; Lin, Z-Q
2007-12-01
Phytoremediation is potentially effective for managing excessive selenium (Se) in drainage sediment residing in the San Luis Drain in central California. This 2-year field study examined the feasibility of amending drainage sediment (containing 4.78microgSeg(-1)) with methionine and casein to enhance volatilization without or with vegetation of Sporobolus airoides. Results show that without organic amendments, rates of Se volatilization were less than 25microgm(-2)d(-1) in all plots. After amending the sediment with 71.4mgmethioninekg(-1) soil, Se volatilization rates were 434+/-107microgm(-2)d(-1) in vegetated plots and 289+/-117microgm(-2)d(-1) in irrigated bare plots. With the amendment of 572mgcaseinkg(-1) soil, rates increased to 346+/-103microgm(-2)d(-1) in irrigated bare plots and to 114+/-55microgm(-2)d(-1) in vegetated plots. Both methionine and casein promoted biological remediation of Se via volatilization most effectively during the warmest months.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCay, T.S.; Forschler, B.T.; Komoroski, M.J.
2002-03-10
Sampled shrews at 9.3 ha plots from logs manually removed and control plots in loblolly pine forests of the Southeastern Coastal Plain. Capture rates of Cryptotis parva were lower at plots from which deadwood was removed whereas capture rates of Blarina cavolinensis and Sorex longirostris did not differ between control and removal plots. Cryptotis may have been most sensitive to removal plots due to low population density, hence poor ability to move into areas of low reproduction. (Second Abstract, p. 37)Presentation of evidence that juvenile amphibians including Ambystomatid salamanders may disperse hundreds of meter from their natal wetlands within themore » weeks to months following metamorphosis. Data indicates Ambystoma trigrinum metamorphs can take at least six months to disperse and en route use non-polar lipid reserves garnished as larvae. Report suggests a land management regime that allows for both juvenile amphibian dispersal and also the consumptive use of the surrounding landscape.« less
Pavlovic, N.B.; Leicht-Young, S. A.; Frohnapple, K.J.; Grundel, R.
2009-01-01
Exotic invasive plant species differ in their effects on indigenous vegetation as evidenced by research evaluating community response to their removal. We used a removal approach to quantify the response of a mesic woodland to the removal versus retention of an invasive plant, Hesperis matronalis (dame's rocket) from paired treatment plots over 3 y. Cover of H. matronalis did not differ between control and treatment plots prior to removal, declined in the removal plots and remained significantly lower in cover compared to the control plots. Removal did not significantly affect species richness and species diversity (evenness, Shannon and Simpson) at the plot scale, but did result in increased species richness overall in the removal plots in the last sampling year when compared to control plots. Non-metric multidimensional scaling ordination analysis indicated a significant compositional change in the spring plant composition of plots over the 3 y, reflecting an increase in exotic woody species. Exotic woody plants, especially Rosa multiflora and Euonymus alatus, increased in cover in response to H. matronalis removal. In the 3 y, neither native nor exotic forbs, nor native woody plants responded to the removal of H. matronalis in a statistically significant manner. The increasing cover of woody invasive plants in response to the removal of H. matronalis has important management implications for restoration of degraded communities.
Seymour, Greg; Kassie, Menale; Muricho, Geoffrey; Muriithi, Beatrice Wambui
2018-01-01
This paper documents a positive relationship between maize productivity in western Kenya and women’s empowerment in agriculture, measured using indicators derived from the abbreviated version of the Women’s Empowerment in Agriculture Index. Applying a cross-sectional instrumental-variable regression method to a data set of 707 maize farm households from western Kenya, we find that women’s empowerment in agriculture significantly increases maize productivity. Although all indicators of women’s empowerment significantly increase productivity, there is no significant association between the women’s workload (amount of time spent working) and maize productivity. Furthermore, the results show heterogenous effects with respect to women’s empowerment on maize productivity for farm plots managed jointly by a male and female and plots managed individually by only a male or female. More specifically, the results suggest that female- and male-managed plots experience significant improvements in productivity when the women who tend them are empowered. These findings provide evidence that women’s empowerment contributes not only to reducing the gender gap in agricultural productivity, but also to improving, specifically, productivity from farms managed by women. Thus, rural development interventions in Kenya that aim to increase agricultural productivity—and, by extension, improve food security and reduce poverty—could achieve greater impact by integrating women’s empowerment into existing and future projects. PMID:29852008
Research and Development for Technology Evolution Potential Forecasting System
NASA Astrophysics Data System (ADS)
Gao, Changqing; Cao, Shukun; Wang, Yuzeng; Ai, Changsheng; Ze, Xiangbo
Technology forecasting is a powerful weapon for many enterprises to gain an animate future. Evolutionary potential radar plot is a necessary step of some valuable methods to help the technology managers with right technical strategy. A software system for Technology Evolution Potential Forecasting (TEPF) with automatic radar plot drawing is introduced in this paper. The framework of the system and the date structure describing the concrete evolution pattern are illustrated in details. And the algorithm for radar plot drawing is researched. It is proved that the TEPF system is an effective tool during the technology strategy analyzing process with a referenced case study.
40 CFR 270.24 - Specific part B information requirements for process vents.
Code of Federal Regulations, 2010 CFR
2010-07-01
...., identify the hazardous waste management units on a facility plot plan). (2) Information and data supporting... concentrations) that represent the conditions that exist when the waste management unit is operating at the... when the hazardous waste management unit is or would be operating at the highest load or capacity level...
David W. Patterson
1998-01-01
Uneven-aged management plots were established using three variables (site index, basal area, and maximum diameter). This study looked at the significance of the variables on the lumber volume per acre, lumber value per thousand board feet (Mbf), and stand value per acre as well as the influence on these analysis by market prices (May 1997, May 1998, and October 1998)....
NASA Astrophysics Data System (ADS)
Faulkner, Jerry L.; Clebsch, Edward E. C.; Sanders, William L.
1989-09-01
The purpose of this study was to provide the National Park Service with quantitative information regarding the effect of fire on fuel loads and pest species such as Lonicera japonica, Ligustrum sinense, and Rhus radicans. Three study areas of ten plots each were located in Chickamauga Battlefield Reservation of the Chickamauga and Chattanooga National Military Park. Fuel weights, aboveground biomass of honeysuckle, and counts of privet and poison ivy were collected both before and after prescribed fire. Additionally, one fourth of each of 14 plots was treated with glyphosate (tradename Roundup) to test for the use of fire as a herbicide pretreatment. This was a randomized block design with subsampling. Prescribed burning did significantly (α = 0.05) reduce fuel loads and the biomass of honeysuckle on burned plots. There was a statistically different response in fuel load reduction between fall and winter burns. Poison ivy significantly increased on burned plots, while privet counts did not vary significantly. Applications of glyphosate negatively impacted all three target species. Honeysuckle appeared to be damaged more readily on untreated plots, while no difference in response was noted on privet. Significantly more poison ivy growing points were killed by herbicide applications on burned plots than on unburned plots.
[Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].
Zhou, Jing-wen; Su, Bao-lin; Huang, Ning-bo; Guan, Yu-tang; Zhao, Kun
2016-03-15
To study runoff and non-point source pollution of paddy fields and to provide a scientific basis for agricultural water management of paddy fields, paddy plots in the Jintan City and the Liyang City were chosen for experiments on non-point source pollution, and flood irrigation and intermittent irrigation patterns were adopted in this research. The surface water level and rainfall were observed during the growing season of paddies, and the runoff amount from paddy plots and loads of total nitrogen (TN) and total phosphorus (TP) were calculated by different methods. The results showed that only five rain events of totally 27 rainfalls and one artificially drainage formed non-point source pollution from flood irrigated paddy plot, which resulted in a TN export coefficient of 49.4 kg · hm⁻² and a TP export coefficient of 1.0 kg · hm⁻². No any runoff event occurred from the paddy plot with intermittent irrigation even in the case of maximum rainfall of 95.1 mm. Runoff from paddy fields was affected by water demands of paddies and irrigation or drainage management, which was directly correlated to surface water level, rainfall amount and the lowest ridge height of outlets. Compared with the flood irrigation, intermittent irrigation could significantly reduce non-point source pollution caused by rainfall or artificial drainage.
Perennial Grass and Native Wildflowers: A Synergistic Approach to Habitat Management.
Xavier, Shereen S; Olson, Dawn M; Coffin, Alisa W; Strickland, Timothy C; Schmidt, Jason M
2017-09-22
Marginal agricultural land provides opportunities to diversify landscapes by producing biomass for biofuel, and through floral provisioning that enhances arthropod-mediated ecosystem service delivery. We examined the effects of local spatial context (adjacent to woodland or agriculture) and irrigation (irrigation or no irrigation) on wildflower bloom and visitation by arthropods in a biofeedstocks-wildflower habitat buffer design. Twenty habitat buffer plots were established containing a subplot of Napier grass ( Pennisetum perpureum Schumach) for biofeedstock, three commercial wildflower mix subplots, and a control subplot containing spontaneous weeds. Arthropods and flowers were visually observed in quadrats throughout the season. At the end of the season we measured soil nutrients and harvested Napier biomass. We found irrespective of buffer location or irrigation, pollinators were observed more frequently early in the season and on experimental plots with wildflowers than on weeds in the control plots. Natural enemies showed a tendency for being more common on plots adjacent to a wooded border, and were also more commonly observed early in the season. Herbivore visits were infrequent and not significantly influenced by experimental treatments. Napier grass yields were high and typical of first-year yields reported regionally, and were not affected by location context or irrigation. Our results suggest habitat management designs integrating bioenergy crop and floral resources provide marketable biomass and habitat for beneficial arthropods.
An evaluation of rapid methods for monitoring vegetation characteristics of wetland bird habitat
Tavernia, Brian G.; Lyons, James E.; Loges, Brian W.; Wilson, Andrew; Collazo, Jaime A.; Runge, Michael C.
2016-01-01
Wetland managers benefit from monitoring data of sufficient precision and accuracy to assess wildlife habitat conditions and to evaluate and learn from past management decisions. For large-scale monitoring programs focused on waterbirds (waterfowl, wading birds, secretive marsh birds, and shorebirds), precision and accuracy of habitat measurements must be balanced with fiscal and logistic constraints. We evaluated a set of protocols for rapid, visual estimates of key waterbird habitat characteristics made from the wetland perimeter against estimates from (1) plots sampled within wetlands, and (2) cover maps made from aerial photographs. Estimated percent cover of annuals and perennials using a perimeter-based protocol fell within 10 percent of plot-based estimates, and percent cover estimates for seven vegetation height classes were within 20 % of plot-based estimates. Perimeter-based estimates of total emergent vegetation cover did not differ significantly from cover map estimates. Post-hoc analyses revealed evidence for observer effects in estimates of annual and perennial covers and vegetation height. Median time required to complete perimeter-based methods was less than 7 percent of the time needed for intensive plot-based methods. Our results show that rapid, perimeter-based assessments, which increase sample size and efficiency, provide vegetation estimates comparable to more intensive methods.
Effect of intercropping period management on runoff and erosion in a maize cropping system.
Laloy, Eric; Bielders, C L
2010-01-01
The management of winter cover crops is likely to influence their performance in reducing runoff and erosion during the intercropping period that precedes spring crops but also during the subsequent spring crop. This study investigated the impact of two dates of destruction and burial of a rye (Secale cereale L.) and ryegrass (Lolium multiflorum Lam.) cover crop on runoff and erosion, focusing on a continuous silage maize (Zea mays L.) cropping system. Thirty erosion plots with various intercrop management options were monitored for 3 yr at two sites. During the intercropping period, cover crops reduced runoff and erosion by more than 94% compared with untilled, post-maize harvest plots. Rough tillage after maize harvest proved equally effective as a late sown cover crop. There was no effect of cover crop destruction and burial dates on runoff and erosion during the intercropping period, probably because rough tillage for cover crop burial compensates for the lack of soil cover. During two of the monitored maize seasons, it was observed that plots that had been covered during the previous intercropping period lost 40 to 90% less soil compared with maize plots that had been left bare during the intercropping period. The burial of an aboveground cover crop biomass in excess of 1.5 t ha(-1) was a necessary, yet not always sufficient, condition to induce a residual effect. Because of the possible beneficial residual effect of cover crop burial on erosion reduction, the sowing of a cover crop should be preferred over rough tillage after maize harvest.
Levis, Carolina; de Souza, Priscila Figueira; Schietti, Juliana; Emilio, Thaise; Pinto, José Luiz Purri da Veiga; Clement, Charles R.; Costa, Flavia R. C.
2012-01-01
Background Native Amazonian populations managed forest resources in numerous ways, often creating oligarchic forests dominated by useful trees. The scale and spatial distribution of forest modification beyond pre-Columbian settlements is still unknown, although recent studies propose that human impact away from rivers was minimal. We tested the hypothesis that past human management of the useful tree community decreases with distance from rivers. Methodology/Principal Findings In six sites, we inventoried trees and palms with DBH≥10 cm and collected soil for charcoal analysis; we also mapped archaeological evidence around the sites. To quantify forest manipulation, we measured the relative abundance, richness and basal area of useful trees and palms. We found a strong negative exponential relationship between forest manipulation and distance to large rivers. Plots located from 10 to 20 km from a main river had 20–40% useful arboreal species, plots between 20 and 40 km had 12–23%, plots more than 40 km had less than 15%. Soil charcoal abundance was high in the two sites closest to secondary rivers, suggesting past agricultural practices. The shortest distance between archaeological evidence and plots was found in sites near rivers. Conclusions/Significance These results strongly suggest that past forest manipulation was not limited to the pre-Columbian settlements along major rivers, but extended over interfluvial areas considered to be primary forest today. The sustainable use of Amazonian forests will be most effective if it considers the degree of past landscape domestication, as human-modified landscapes concentrate useful plants for human sustainable use and management today. PMID:23185264
Density and success of bird nests relative to grazing on western Montana grasslands
Fondell, Thomas F.; Ball, I.J.
2004-01-01
Grassland birds are declining at a faster rate than any other group of North American bird species. Livestock grazing is the primary economic use of grasslands in the western United States, but the effects of this use on distribution and productivity of grassland birds are unclear. We examined nest density and success of ground-nesting birds on grazed and ungrazed grasslands in western Montana. In comparison to grazed plots, ungrazed plots had reduced forb cover, increased litter cover, increased litter depth, and increased visual obstruction readings (VOR) of vegetation. Nest density among 10 of 11 common bird species was most strongly correlated with VOR of plots, and greatest nest density for each species occurred where mean VOR of the plot was similar to mean VOR at nests. Additionally, all bird species were relatively consistent in their choice of VOR at nests despite substantial differences in VOR among plots. We suggest that birds selected plots based in part on availability of suitable nest sites and that variation in nest density relative to grazing reflected the effect of grazing on availability of nest sites. Nest success was similar between grazed plots and ungrazed plots for two species but was lower for nests on grazed plots than on ungrazed plots for two other species because of increased rates of predation, trampling, or parasitism by brown-headed cowbirds (Molothrus ater). Other species nested almost exclusively on ungrazed plots (six species) or grazed plots (one species), precluding evaluation of the effects of grazing on nest success. We demonstrate that each species in a diverse suite of ground-nesting birds preferentially used certain habitats for nesting and that grazing altered availability of preferred nesting habitats through changes in vegetation structure and plant species composition. We also show that grazing directly or indirectly predisposed some bird species to increased nesting mortality. Management alternatives that avoid intensive grazing during the breeding season would be expected to benefit many grassland bird species.
NASA Astrophysics Data System (ADS)
Wagenbrenner, J. W.; Robichaud, P. R.; Brown, R. E.
2016-10-01
Following wildfires, forest managers often consider salvage logging burned trees to recover monetary value of timber, reduce fuel loads, or to meet other objectives. Relatively little is known about the cumulative hydrologic effects of wildfire and subsequent timber harvest using logging equipment. We used controlled rill experiments in logged and unlogged (control) forests burned at high severity in northern Montana, eastern Washington, and southern British Columbia to quantify rill overland flow and sediment production rates (fluxes) after ground-based salvage logging. We tested different types of logging equipment-feller-bunchers, tracked and wheeled skidders, and wheeled forwarders-as well as traffic levels and the addition of slash to skid trails as a best management practice. Rill experiments were done at each location in the first year after the fire and repeated in subsequent years. Logging was completed in the first or second post-fire year. We found that ground-based logging using heavy equipment compacted soil, reduced soil water repellency, and reduced vegetation cover. Vegetation recovery rates were slower in most logged areas than the controls. Runoff rates were higher in the skidder and forwarder plots than their respective controls in the Montana and Washington sites in the year that logging occurred, and the difference in runoff between the skidder and control plots at the British Columbia site was nearly significant (p = 0.089). Most of the significant increases in runoff in the logged plots persisted for subsequent years. The type of skidder, the addition of slash, and the amount of forwarder traffic did not significantly affect the runoff rates. Across the three sites, rill sediment fluxes were 5-1900% greater in logged plots than the controls in the year of logging, and the increases were significant for all logging treatments except the low use forwarder trails. There was no difference in the first-year sediment fluxes between the feller-buncher and tracked skidder plots, but the feller-buncher fluxes were lower than the values from the wheeled skidder plots. Manually adding slash after logging did not affect sediment flux rates. There were no significant changes in the control sediment fluxes over time, and none of the logging equipment impacted plots produced greater sediment fluxes than the controls in the second or third year after logging. Our results indicate that salvage logging increases the risk of sedimentation regardless of equipment type and amount of traffic, and that specific best management practices are needed to mitigate the hydrologic impacts of post-fire salvage logging.
Larson, D.L.; Grace, J.B.; Rabie, P.A.; Andersen, P.
2007-01-01
Integrated pest management (IPM) for invasive plant species is being advocated by researchers and implemented by land managers, but few studies have evaluated the success of IPM programs in natural areas. We assessed the relative effects of components of an IPM program for leafy spurge (Euphorbia esula), an invasive plant, at Theodore Roosevelt National Park, North Dakota. Effects of herbicides on leafy spurge abundance and on dynamics of flea beetles (Aphthona spp.) used to control leafy spurge were evaluated over three field seasons following herbicide application. We monitored leafy spurge-infested plots with established flea beetle populations that had received picloram plus 2,4-D in September 1997 or 1998, imazapic in September 1998, versus those with no chemical treatment. Mature stem counts did not differ significantly between treated and untreated plots in 2001, suggesting that leafy spurge stands had recovered from herbicide treatment. Flea beetles were less abundant on plots with a history of herbicide treatment. Structural equation models indicated that in 2000 negative correlations between relative abundances of the two flea beetle species were greater on plots that had received herbicide treatments than on those that had not, but by 2001 no differences were apparent between treated and untreated plots. These results suggest that the most effective component of IPM for leafy spurge at this site is biological control. All herbicide effects we observed were short-lived, but the increased negative correlation between flea beetle relative abundances during 2000 implies that herbicide application may have temporarily disrupted an effective biological control program at this site. ?? 2006 Elsevier Inc. All rights reserved.
Bridging the gap between strategic and management forest inventories
Ronald E. McRoberts
2009-01-01
Strategic forest inventory programs collect information for a large number of variables on a relatively sparse array of field plots. Data from these inventories are used to produce estimates for large areas such as states and provinces, regions, or countries. The purpose of management forest inventories is to guide management decisions for small areas such as stands....
Avoiding treatment bias of REDD+ monitoring by sampling with partial replacement.
Köhl, Michael; Scott, Charles T; Lister, Andrew J; Demon, Inez; Plugge, Daniel
2015-12-01
Implementing REDD+ renders the development of a measurement, reporting and verification (MRV) system necessary to monitor carbon stock changes. MRV systems generally apply a combination of remote sensing techniques and in-situ field assessments. In-situ assessments can be based on 1) permanent plots, which are assessed on all successive occasions, 2) temporary plots, which are assessed only once, and 3) a combination of both. The current study focuses on in-situ assessments and addresses the effect of treatment bias, which is introduced by managing permanent sampling plots differently than the surrounding forests. Temporary plots are not subject to treatment bias, but are associated with large sampling errors and low cost-efficiency. Sampling with partial replacement (SPR) utilizes both permanent and temporary plots. We apply a scenario analysis with different intensities of deforestation and forest degradation to show that SPR combines cost-efficiency with the handling of treatment bias. Without treatment bias permanent plots generally provide lower sampling errors for change estimates than SPR and temporary plots, but do not provide reliable estimates, if treatment bias occurs, SPR allows for change estimates that are comparable to those provided by permanent plots, offers the flexibility to adjust sample sizes in the course of time, and allows to compare data on permanent versus temporary plots for detecting treatment bias. Equivalence of biomass or carbon stock estimates between permanent and temporary plots serves as an indication for the absence of treatment bias while differences suggest that there is evidence for treatment bias. SPR is a flexible tool for estimating emission factors from successive measurements. It does not entirely depend on sample plots that are installed at the first occasion but allows for the adjustment of sample sizes and placement of new plots at any occasion. This ensures that in-situ samples provide representative estimates over time. SPR offers the possibility to increase sampling intensity in areas with high degradation intensities or to establish new plots in areas where permanent plots are lost due to deforestation. SPR is also an ideal approach to mitigate concerns about treatment bias.
Moreaux, Virginie; Lamaud, Eric; Bosc, Alexandre; Bonnefond, Jean-Marc; Medlyn, Belinda E; Loustau, Denis
2011-09-01
The effects of management practices on energy, water and carbon exchanges were investigated in a young pine plantation in south-west France. In 2009-10, carbon dioxide (CO(2)), H(2)O and heat fluxes were monitored using the eddy covariance and sap flow techniques in a control plot (C) with a developed gorse layer, and an adjacent plot that was mechanically weeded and thinned (W). Despite large differences in the total leaf area index and canopy structure, the annual net radiation absorbed was only 4% lower in plot W. We showed that higher albedo in this plot was offset by lower emitted long-wave radiation. Annual evapotranspiration (ET) from plot W was 15% lower, due to lower rainfall interception and transpiration by the tree canopy, partly counterbalanced by the larger evaporation from both soil and regrowing weedy vegetation. The drainage belowground from plot W was larger by 113 mm annually. The seasonal variability of ET was driven by the dynamics of the soil and weed layers, which was more severely affected by drought in plot C. Conversely, the temporal changes in pine transpiration and stem diameter growth were synchronous between sites despite higher soil water content in the weeded plot. At the annual scale, both plots were carbon sinks, but thinning and weeding reduced the carbon uptake by 73%: annual carbon uptake was 243 and 65 g C m(-2) on plots C and W, respectively. Summer drought dramatically impacted the net ecosystem exchange: plot C became a carbon source as the gross primary production (GPP) severely decreased. However, plot W remained a carbon sink during drought, as a result of decreases in both GPP and ecosystem respiration (R(E)). In winter, both plots were carbon sources, plots C and W emitting 67.5 and 32.4 g C m(-2), respectively. Overall, this study highlighted the significant contribution of the gorse layer to mass and energy exchange in young pine plantations.
Nyasani, Johnson O.; Subramanian, Sevgan; Poehling, Hans-Michael; Maniania, Nguya K.; Ekesi, Sunday; Meyhöfer, Rainer
2015-01-01
Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is an important pest of vegetable crops worldwide and has developed resistance to many insecticides. The predatory mites Neoseiulus (=Amblyseius) cucumeris (Oudemans), the entomopathogenic fungus Metarhizium anisopliae (Metsch.), and an insecticide (imidacloprid) were tested for their efficacy to reduce WFT population density and damage to French bean (Phaseolus vulgaris L.) pods under field conditions in two planting periods. Metarhizium anisopliae was applied as a foliar spray weekly at a rate of one litre spray volume per plot while imidacloprid was applied as a soil drench every two weeks at a rate of two litres of a mixture of water and imidacloprid per m2. Neoseiulus cucumeris was released every two weeks on plant foliage at a rate of three mites per plant. Single and combined treatment applications reduced WFT population density by at least three times and WFT damage to French bean pods by at least 1.7 times compared with untreated plots. The benefit-cost ratios in management of WFT were profitable with highest returns realized on imidacloprid treated plots. The results indicate that M. anisopliae, N. cucumeris, and imidacloprid have the potential for use in developing an integrated pest management program against WFT on French beans. PMID:26463079
Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.).
Hosseini, Seyed Z; Firouzi, Saeed; Aminpanah, Hashem; Sadeghnejhad, Hamid R
2016-03-01
Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.). The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1) were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1) also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1).
Rice, Pamela J; Harman-Fetcho, Jennifer A; Sadeghi, Ali M; McConnell, Laura L; Coffman, C Benjamin; Teasdale, John R; Abdul-Baki, Aref; Starr, James L; McCarty, Gregory W; Herbert, Rachel R; Hapeman, Cathleen J
2007-02-21
A common management practice for the production of fresh-market vegetables utilizes polyethylene (plastic) mulch because it increases soil temperature, decreases weed pressure, maintains soil moisture, and minimizes soil contact with the product. However, rain events afford much more erosion and runoff because 50-75% of the field is covered with an impervious surface. A plot study was conducted to compare and to quantify the off-site movement of soil, insecticides, and fungicides associated with runoff from plots planted with Sunbeam tomatoes (Lycopersicon esculentum Mill) using the conventional polyethylene mulch management practice vs an alternative management practice-polyethylene mulch-covered beds with cereal rye (Secale cereale) planted in the furrows between the beds. The use of cereal rye-covered furrows with the conventional polyethylene system decreased runoff volume by more than 40%, soil erosion by more than 80%, and pesticide loads by 48-74%. Results indicate that vegetative furrows are critical to minimizing the negative aspects of this management practice.
Delière, Laurent; Cartolaro, Philippe; Léger, Bertrand; Naud, Olivier
2015-09-01
In France, viticulture accounts for 20% of the phytochemicals sprayed in agriculture, and 80% of grapevine pesticides target powdery and downy mildews. European policies promote pesticide use reduction, and new methods for low-input disease management are needed for viticulture. Here, we present the assessment, in France, of Mildium, a new decision support system for the management of grapevine mildews. A 4 year assessment trial of Mildium has been conducted in a network of 83 plots distributed across the French vineyards. In most vineyards, Mildium has proved to be successful at protecting the crop while reducing by 30-50% the number of treatments required when compared with grower practices. The design of Mildium results from the formalisation of a common management of both powdery and downy mildews and eventually leads to a significant fungicide reduction at the plot scale. It could encourage stakeholders to design customised farm-scale and low-chemical-input decision support methods. © 2014 Society of Chemical Industry.
[Comparative quality measurements part 3: funnel plots].
Kottner, Jan; Lahmann, Nils
2014-02-01
Comparative quality measurements between organisations or institutions are common. Quality measures need to be standardised and risk adjusted. Random error must also be taken adequately into account. Rankings without consideration of the precision lead to flawed interpretations and enhances "gaming". Application of confidence intervals is one possibility to take chance variation into account. Funnel plots are modified control charts based on Statistical Process Control (SPC) theory. The quality measures are plotted against their sample size. Warning and control limits that are 2 or 3 standard deviations from the center line are added. With increasing group size the precision increases and so the control limits are forming a funnel. Data points within the control limits are considered to show common cause variation; data points outside special cause variation without the focus of spurious rankings. Funnel plots offer data based information about how to evaluate institutional performance within quality management contexts.
Effects of irrigation on the seasonal abundance of Empoasca vitis in north-Italian vineyards.
Fornasiero, D; Duso, C; Pozzebon, A; Tomasi, D; Gaiotti, F; Pavan, F
2012-02-01
The effect of irrigation on the abundance of Empoasca vitis (Göthe) populations was investigated in four vineyards located in northeastern Italy. In two experiments, we compared leafhopper population densities in plots irrigated (micro-spray irrigation system) or nonirrigated. In another experiment, we studied the effect of various irrigation systems on E. vitis populations over two successive seasons. In particular, five treatments were compared: control (not irrigated), traditional drip system, three types of subirrigation varying in distance from the row (40, 135, and 95 cm). In this vineyard, stem water potential was monitored with a pressure chamber. E. vitis population densities were affected by irrigation, with higher densities of this pest recorded on irrigated vines. Highest E. vitis densities were detected in drip irrigation plots compared with nonirrigated plots where water stress was highest. Moderate water stress (subirrigation plots) was associated with intermediate leafhopper densities. Implications for integrated pest management are discussed.
Effects of prescribed burning on marsh-elevation change and the risk of wetland loss
McKee, Karen L.; Grace, James B.
2012-01-01
Marsh-elevation change is the net effect of biophysical processes controlling inputs versus losses of soil volume. In many marshes, accumulation of organic matter is an important contributor to soil volume and vertical land building. In this study, we examined how prescribed burning, a common marsh-management practice, may affect elevation dynamics in the McFaddin National Wildlife Refuge, Texas by altering organic-matter accumulation. Experimental plots were established in a brackish marsh dominated by Spartina patens, a grass found throughout the Gulf of Mexico and Atlantic marshes. Experimental plots were subjected to burning and nutrient-addition treatments and monitored for 3.5 years (April 2005 – November 2008). Half of the plots were burned once in 2006; half of the plots were fertilized seasonally with nitrogen, phosphorus, and potassium. Before and after the burns, seasonal measurements were made of soil physicochemistry, vegetation structure, standing and fallen plant biomass, aboveground and belowground production, decomposition, and accretion and elevation change (measured with Surface Elevation Tables (SET)). Movements in different soil strata (surface, root zone, subroot zone) were evaluated to identify which processes were contributing to elevation change. Because several hurricanes occurred during the study period, we also assessed how these storms affected elevation change rates. The main findings of this study were as follows: 1. The main drivers of elevation change were accretion on the marsh surface and subsurface movement below the root zone, but the relative influence of these processes varied temporally. Prior to Hurricanes Gustav and Ike (September 2008), the main driver was subsurface movement; after the hurricane, both accretion and subsurface movement were important. 2. Prior to Hurricanes Gustav and Ike, rates of elevation gain and accretion above a marker horizon were higher in burned plots compared to nonburned plots, whereas nutrient addition had no detectable influence on elevation dynamics. 3. Burning decreased standing and fallen plant litter, reducing fuel load. Hurricanes Gustav and Ike also removed fallen litter from all plots. 4. Aboveground and belowground production rates varied annually but were unaffected by burning and nutrient treatments. 5. Decomposition (of a standard cellulose material) in upper soil layers was increased in burned plots but was unaffected by nutrient treatments. 6. Soil physicochemistry was unaffected by burning or nutrient treatments. 7. The elevation deficit (difference between rate of submergence and vertical land development) prior to hurricanes was less in burned plots (6.2 millimeters per year [mm yr-1]) compared to nonburned plots (7.2 mm yr-1). 8. Storm sediments delivered by Hurricane Ike raised elevations an average of 7.4 centimeters (cm), which countered an elevation deficit that had accrued over 11 years. Our findings provide preliminary insights into elevation dynamics occurring in brackish marshes of the Texas Chenier Plain under prescribed fire management. The results of this study indicate that prescribed burning conducted at 3- to 5-year intervals is not likely to negatively impact the long-term sustainability of S. patens-dominated brackish marshes at McFaddin National Wildlife Refuge and may offset existing elevation deficits by ≈ 1 mm yr-1. The primary drivers of elevation change varied in time and space, leading to a more complex situation in terms of predicting how disturbances may alter elevation trajectories. The potential effect of burning on elevation change in other marshes will depend on several site-specific factors, including geomorphic/ sedimentary setting, tide range, local rate of relative sea level rise, plant species composition, additional management practices (for example, for flood control), and disturbance types and frequency (for example, hurricanes or herbivore grazing). Increasing the scope of inference would require installation of SETs in replicate marshes undergoing different prescribed fire intervals and in different geomorphic settings (with different hurricane frequencies and/or different sedimentary settings). Multiple locations along the Gulf and Atlantic coasts where prescribed fire is used as a management tool could provide the appropriate setting for these installations.
The art and science of weed mapping
Barnett, David T.; Stohlgren, Thomas J.; Jarnevich, Catherine S.; Chong, Geneva W.; Ericson, Jenny A.; Davern, Tracy R.; Simonson, Sara E.
2007-01-01
Land managers need cost-effective and informative tools for non-native plant species management. Many local, state, and federal agencies adopted mapping systems designed to collect comparable data for the early detection and monitoring of non-native species. We compared mapping information to statistically rigorous, plot-based methods to better understand the benefits and compatibility of the two techniques. Mapping non-native species locations provided a species list, associated species distributions, and infested area for subjectively selected survey sites. The value of this information may be compromised by crude estimates of cover and incomplete or biased estimations of species distributions. Incorporating plot-based assessments guided by a stratified-random sample design provided a less biased description of non-native species distributions and increased the comparability of data over time and across regions for the inventory, monitoring, and management of non-native and native plant species.
Conspecific attraction in a grassland bird, the Baird's Sparrow
Ahlering, M.A.; Johnson, D.H.; Faaborg, John
2006-01-01
Territorial songbirds generally use song to defend territories and attract mates, but conspecific song may also serve as a cue to attract other male songbirds to a breeding site. Although known to occur in some colonial and forest-associated species, only recently have investigators examined conspecific attraction in grassland species. We used a playback experiment to examine the possible role of conspecific attraction for males searching for potentially suitable breeding habitat in a grassland specialist, the Baird's Sparrow (Ammodramus bairdii). Experimental playback plots and control plots with similar landscape and vegetation characteristics were established at two sites in North Dakota. Baird's Sparrows colonized three of six experimental plots and none of six control plots. Males on experimental plots established territories adjacent to the playback stations and were sometimes observed counter-singing with the playback of conspecific songs. Vegetation characteristics were similar on all study plots, and did not explain differences in bird density on our treatment plots. Although we found that playback of conspecific songs attracted male Baird's Sparrows to previously unoccupied, potentially suitable habitat, further experiments are needed to examine the importance of conspecific attraction relative to other cues that birds may use, such as vegetation features. The conservation and management implications of conspecific attraction are not completely understood, but the presence of conspecifics should be considered as a potential cue in habitat selection by all species of birds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murl, Jeffrey; Miller, Michele
The Site A/Plot M, Illinois, Decommissioned Reactor Site was inspected on May 17, 2016. The site, located within Cook County forest preserve that is open to the public, was found to be in good condition with one exception. Erosion on top of the grass-covered mound at Plot M continues to be a concern as presented in previous inspections. Ruts form in the soil on top of Plot M as a result of bike traffic using the open field as a pass thru between established bike trails within the forest preserve. Argonne National Laboratory (ANL) who is contracted directly from U.S.more » Department of Energy (DOE) has filled in the ruts with top soil and reseeding remains an ongoing process. Reseeded areas from 2015 are progressing nicely. No cause for a follow-up inspection was identified. In 2015, ANL plugged and abandoned 8 of 25 monitoring wells (BH41, BH51, BH52, BH54, DH9, DH10, DH13, and DH17). The 17 groundwater monitoring wells remaining at the site were inspected to confirm that they were locked and in good condition. Preliminary environmental monitoring results for 2015 are provided in a draft report titled Surveillance of Site A and Plot M, Report for 2015, prepared by ANL. The report also contains results of an independent analysis conducted by the Illinois Emergency Management Agency on some of the samples collected by ANL in 2015. The draft report states that the results of the surveillance program continue to indicate that the impact of radioactivity at Site A/Plot M is very low and does not endanger the health of those living in the area or visiting the site. The ANL monitoring report will be made available to the public on the DOE Office of Legacy Management public website when it is issued as final. A new county forest preserve campsite opened in 2015 at Bull Frog Lake, which is east of Plot M. Hiking trails connect Bull Frog Lake with Site A/Plot M. The site might receive more traffic from forest preserve visitors now that this new campsite is opened.« less
Effect of rainfall simulator and plot scale on overland flow and phosphorus transport.
Sharpley, Andrew; Kleinman, Peter
2003-01-01
Rainfall simulation experiments are widely used to study erosion and contaminant transport in overland flow. We investigated the use of two rainfall simulators designed to rain on 2-m-long (2-m2) and 10.7-m-long (32.6-m2) plots to estimate overland flow and phosphorus (P) transport in comparison with watershed-scale data. Simulated rainfall (75 mm h(-1)) generated more overland flow from 2-m-long (20 L m2) than from 10.7-m-long (10 L m2) plots established in grass, no-till corn (Zea mays L.), and recently tilled fields, because a relatively greater area of the smaller plots became saturated (>75% of area) during rainfall compared with large plots (<75% area). Although average concentrations of dissolved reactive phosphorus (DRP) in overland flow were greater from 2-m-long (0.50 mg L(-1)) than 10.7-m-long (0.35 mg L(-1)) plots, the relationship between DRP and Mehlich-3 soil P (as defined by regression slope) was similar for both plots and for published watershed data (0.0022 for grassed, 0.0036 for no-till, and 0.0112 for tilled sites). Conversely, sediment, particulate phosphorus (PP), and total phosphorus (TP) concentrations and selective transport of soil fines (<2 microm) were significantly lower from 2- than 10.7-m-long plots. However, slopes of the logarithmic regression between P enrichment ratio and sediment discharge were similar (0.281-0.301) for 2- and 10.7-m-long plots, and published watershed data. While concentrations and loads of P change with plot scales, processes governing DRP and PP transport in overland flow are consistent, supporting the limited use of small plots and rainfall simulators to assess the relationship between soil P and overland flow P as a function of soil type and management.
Estimation of leaf area index using WorldView-2 and Aster satellite image: a case study from Turkey.
Günlü, Alkan; Keleş, Sedat; Ercanlı, İlker; Şenyurt, Muammer
2017-10-04
The objective of this study is to estimate the leaf area index (LAI) of a forest ecosystem using two different satellite images, WorldView-2 and Aster. For this purpose, 108 sample plots were taken from pure Crimean pine forest stands of Yenice Forest Management Planning Unit in Ilgaz Forest Management Enterprise, Turkey. Each sample plot was imaged with hemispherical photographs with a fish-eye camera to determine the LAI. These photographs were analyzed with the help of Hemisfer Hemiview software program, and thus, the LAI of each sample plot was estimated. Furthermore, multiple regression analysis method was used to model the statistical relationships between the LAI values and band spectral reflection values and some vegetation indices (Vis) obtained from satellite images. The results show that the high-resolution WorldView-2 satellite image is better than the medium-resolution Aster satellite image in predicting the LAI. It was also seen that the results obtained by using the VIs are better than the bands when the LAI value is predicted with satellite images.
NASA Astrophysics Data System (ADS)
Doren, Robert F.; Whiteaker, Louis D.; Larosa, Anne Marie
1991-01-01
Schinus terebinthifolius, native to South America, has become an aggressive woody weed in southern Florida, displacing native vegetation as well as rapidly invading disturbed sites. Studies to evaluate the effectiveness of fire as a management option for controlling Schinus on abandoned farmland in Everglades National Park, known as the “Hole-in-the-Donut,” began in 1979. Study plots were established to monitor any change(s) in herbaceous cover and in numbers and size of Schinus stems. Except in the control plot (which was not burned), each site was burned as often as fuel conditions permitted (usually once every one or two years), through 1985. Results indicated that both the number and density of Schinus stems increased over the course of the study. While plots that burned showed a reduction in the rate of Schinus invasion, invasion still progressed rapidly with or without the occurrence of fire. The increase in Schinus stem density from 1980 to 1985 was highly significant in all transects except one. Herbaceous cover showed no clear trends relative to burning.
Santosh Subedi; Dr. Michael Kane; Dr. Dehai Zhao; Dr. Bruce Borders; Dr. Dale Greene
2012-01-01
We destructively sampled a total of 192 12-year-old loblolly pine trees from four installations established by the Plantation Management Research Cooperative (PMRC) to analyze the effects of planting density and cultural intensity on tree level biomass allocation in the Piedmont and Upper Coastal Plain of Georgia and Alabama. Each installation had 12 plots, each plot...
Perennial Grass and Native Wildflowers: A Synergistic Approach to Habitat Management
Xavier, Shereen S.; Olson, Dawn M.; Coffin, Alisa W.; Strickland, Timothy C.; Schmidt, Jason M.
2017-01-01
Marginal agricultural land provides opportunities to diversify landscapes by producing biomass for biofuel, and through floral provisioning that enhances arthropod-mediated ecosystem service delivery. We examined the effects of local spatial context (adjacent to woodland or agriculture) and irrigation (irrigation or no irrigation) on wildflower bloom and visitation by arthropods in a biofeedstocks-wildflower habitat buffer design. Twenty habitat buffer plots were established containing a subplot of Napier grass (Pennisetum perpureum Schumach) for biofeedstock, three commercial wildflower mix subplots, and a control subplot containing spontaneous weeds. Arthropods and flowers were visually observed in quadrats throughout the season. At the end of the season we measured soil nutrients and harvested Napier biomass. We found irrespective of buffer location or irrigation, pollinators were observed more frequently early in the season and on experimental plots with wildflowers than on weeds in the control plots. Natural enemies showed a tendency for being more common on plots adjacent to a wooded border, and were also more commonly observed early in the season. Herbivore visits were infrequent and not significantly influenced by experimental treatments. Napier grass yields were high and typical of first-year yields reported regionally, and were not affected by location context or irrigation. Our results suggest habitat management designs integrating bioenergy crop and floral resources provide marketable biomass and habitat for beneficial arthropods. PMID:28937651
NASA Astrophysics Data System (ADS)
Shchepashchenko, D.; Chave, J.; Phillips, O. L.; Davies, S. J.; Lewis, S. L.; Perger, C.; Dresel, C.; Fritz, S.; Scipal, K.
2017-12-01
Forest monitoring is high on the scientific and political agenda. Global measurements of forest height, biomass and how they change with time are urgently needed as essential climate and ecosystem variables. The Forest Observation System - FOS (http://forest-observation-system.net/) is an international cooperation to establish a global in-situ forest biomass database to support earth observation and to encourage investment in relevant field-based observations and science. FOS aims to link the Remote Sensing (RS) community with ecologists who measure forest biomass and estimating biodiversity in the field for a common benefit. The benefit of FOS for the RS community is the partnering of the most established teams and networks that manage permanent forest plots globally; to overcome data sharing issues and introduce a standard biomass data flow from tree level measurement to the plot level aggregation served in the most suitable form for the RS community. Ecologists benefit from the FOS with improved access to global biomass information, data standards, gap identification and potential improved funding opportunities to address the known gaps and deficiencies in the data. FOS closely collaborate with the Center for Tropical Forest Science -CTFS-ForestGEO, the ForestPlots.net (incl. RAINFOR, AfriTRON and T-FORCES), AusCover, Tropical managed Forests Observatory and the IIASA network. FOS is an open initiative with other networks and teams most welcome to join. The online database provides open access for both metadata (e.g. who conducted the measurements, where and which parameters) and actual data for a subset of plots where the authors have granted access. A minimum set of database values include: principal investigator and institution, plot coordinates, number of trees, forest type and tree species composition, wood density, canopy height and above ground biomass of trees. Plot size is 0.25 ha or large. The database will be essential for validating and calibrating satellite observations and various models.
Growth and yield model application in tropical rain forest management
James Atta-Boateng; John W., Jr. Moser
2000-01-01
Analytical tools are needed to evaluate the impact of management policies on the sustainable use of rain forest. Optimal decisions concerning the level of management inputs require accurate predictions of output at all relevant input levels. Using growth data from 40 l-hectare permanent plots obtained from the semi-deciduous forest of Ghana, a system of 77 differential...
Analysis of returns above variable costs for management of Verticillium wilt in cotton
USDA-ARS?s Scientific Manuscript database
A large plot study located in Halfway, TX, was conducted from 2007 to 2013 in an irrigated field infested with Verticillium wilt. Management options (crop rotation, irrigation amount, variety election) and combinations of options that can reduce this disease were compared using returns above variabl...
Data management and analysis of ozone injury to pines
Susan Schilling; Dan Duriscoe
1996-01-01
This section outlines the procedures for data management and analysis developed by the data archiving group located at the USDA Forest Serviceâs Pacific Southwest Research Station, Riverside, California. The field data were gathered annually at approximately 33 FOREST plot locations from 1991 to 1994.
Predicting the Probability of Stand Disturbance
Gregory A. Reams; Joseph M. McCollum
1999-01-01
Forest managers are often interested in identifying and scheduling future stand treatment opportunities. One of the greatest management opportunities is presented following major stand level disturbances that result from natural or anthropogenic forces. Remeasurement data from the Forest Inventory and Analysis (FIA) permanent plot system are used to fit a set of...
Integrated systems of weed management in organic transplated vidalia sweet onion production
USDA-ARS?s Scientific Manuscript database
Field experiments were conducted from 2008 through 2010 near Lyons, GA to develop integrated weed management systems for organic Vidalia® sweet onion production. Treatments were a factorial arrangement of summer solarization, cultivation with a tine weeder, and a clove oil herbicide. Plots were so...
NASA Technical Reports Server (NTRS)
Proctor, B. W.; Reysa, R. P.; Russell, D. J.
1975-01-01
Data collected for the appliances considered for the space station are presented along with plotted and tabulated trade study results for each appliance. The food management, and personal hygiene data are applicable to a six-man mission of 180-days.
Field scale lysimeters to assess nutrient management impacts on runoff
USDA-ARS?s Scientific Manuscript database
Most empirical studies on the impact of field management on runoff water quality rely on edge-of-field monitoring, which is generally unreplicated and prone to high variances, or small plots, which constrain the use of conventional farm equipment and can hinder insight into landscape processes drivi...
Selecting the optimum plot size for a California design-based stream and wetland mapping program.
Lackey, Leila G; Stein, Eric D
2014-04-01
Accurate estimates of the extent and distribution of wetlands and streams are the foundation of wetland monitoring, management, restoration, and regulatory programs. Traditionally, these estimates have relied on comprehensive mapping. However, this approach is prohibitively resource-intensive over large areas, making it both impractical and statistically unreliable. Probabilistic (design-based) approaches to evaluating status and trends provide a more cost-effective alternative because, compared with comprehensive mapping, overall extent is inferred from mapping a statistically representative, randomly selected subset of the target area. In this type of design, the size of sample plots has a significant impact on program costs and on statistical precision and accuracy; however, no consensus exists on the appropriate plot size for remote monitoring of stream and wetland extent. This study utilized simulated sampling to assess the performance of four plot sizes (1, 4, 9, and 16 km(2)) for three geographic regions of California. Simulation results showed smaller plot sizes (1 and 4 km(2)) were most efficient for achieving desired levels of statistical accuracy and precision. However, larger plot sizes were more likely to contain rare and spatially limited wetland subtypes. Balancing these considerations led to selection of 4 km(2) for the California status and trends program.
NASA Astrophysics Data System (ADS)
Cerdà, A.; Azorin-Molina, C.; Iserloh, Th.
2012-04-01
Soil erosion is being scientifically researched for more tan one century, but there is some knowledge lacks that should be researched. Within the factors of the soil erosion wind and rain were studied, but little is know about the impact of the combination of both. Soil erosion by wind was mainly studied on drylands and agriculture land (Sterk and Spaan, 1997; Bielders et al., 2002; Rajot et al., 2003; Zobeck et al., 2003). Soil erosion by water was studied in many ecosystems but it is especially active on agriculture land (Cerdà et al., 2009) and under Mediterranean climatic conditions (Cerdà et al., 2010). The importance of wind on soil erosion is base in the fact that rainstorms occurs with wind, adding a driving component to the falling raindrops. The influence of wind on raindrops is clear, but there is not measurements and there is no information of this influence under field conditions with natural rainfall events.This paper aims to determine the interaction between wind and rain as factors of the soil losses under Mediterranean climatic conditions and different agriculture managements and land uses. Since 2003, the El Teularet-Serra de Enguera Soil Erosion Experimental Station located in Eastern Spain is measuring the soil losses in plots under different land uses and land managements. The station is devoted to study the soil water erosion processes under rain-fed agriculture fields and the rangelands by means of simulated rainfall experiments and plots of different sizes. The soil erosion measure ments are done by means of 13 plots, each of them composed of 5 subplots of 1, 2, 4, 16 and 48 m2 under different land uses and managements. Two plots are covered by two different types of shrubs: Quercus coccifera and Ulex parviflorus, respectively. Three plots reproduce the use of herbicides, one is ploughed, and three plots follow conservation practices (oats and beans with no-tillage, with tillage, and with a vege- tation cover of weeds). Other plots are covered with straw, chipped branches of olive and with a geotextil developed specifically to control erosion on agricultural fields. The Soil Erosion Experimental Station of the El Teularet-Serra de Enguera is located in Eastern Spain. The station is devoted to study the soil water erosion processes under rain-fed agriculture fields and the rangelands. Agriculture is the main source of sedi ments on the mountainous areas of Spain due to the current management. The exper imental station of the El Teularet-Sierra de Enguera is composed also of a meteorological station with tipping-bucket raingauges (0.2 mm), and sensors that measure soil and air moisture and temperature, wind direction and speed and the sun radiation connected to a data-logger that record these data every five minutes. This paper will review the data collected during the period 2004 to 2011 in order to determine if the wind direction and wind speed determined the soil erosion rates. In this way it will be clarified the infliuence of wind on the soil erosion processes.The results will be compared to the measurement collected at the Montesa experimental station devoted to the study of soil erosion on citrus orchards. The experimental setup within the citrus plantation is being supported by the research project CGL2008- 02879/BTE.
Data acquisition system for soil degradation measurements in sloping vineyard
NASA Astrophysics Data System (ADS)
Bidoccu, Marcella; Opsi, Francesca; Cavallo, Eugenio
2013-04-01
The agricultural management techniques and mechanization adopted in sloping areas under temperate and sub-continental climate can affect the physical and hydrological characteristics of the soil with an increase of the soil erosion rates. Vineyards have been reported among the land uses most prone to erosion. Agricultural operations can be conducted to enhance the soil conservation, it is therefore important to know the site-specific characteristics and conditions of adopted practices. A long-term monitoring to evaluate the influence of management systems in hilly vineyard on erosion and runoff and soil properties has been carried out in the north-western Italy since 2000. Three different inter-rows tillage systems were compared: conventional tillage (CT), reduced tillage (RT) and controlled grass cover (GC). To record the rainfall amount and duration, an agro-meteorological station was located near experimental plots. The three plots are hydraulically isolated, thus runoff and sediment have been collected at the bottom by a drain, connected with a tipping bucket device to measure the discharge of runoff. The system was implemented with electromagnetic counters that allow the automatic accounting with data capture by a control unit, powered by a photovoltaic panel and transmitted to a data collection center for remote viewing via web page. A portion of the runoff-sediment mixture was usually sampled and analyzed for soil and nutrients losses. In order to analyze with more detail the erosion process by means of predictive models, a micro-plot system was placed in the experimental site in 2012. Splash cups have been installed in each plot since 2011 to evaluate how the soil management affects the in-field splash erosion process. Rapid measurement of soil moisture content and temperature were performed starting from August 2011 to allow continuous monitoring of parameters that can provide an evaluation of space-time hydrological processes, determining the surface runoff response to a given precipitation events. Electromagnetic sensors were installed in the topsoil and measures were recorded in one-hour intervals by a data collection device. Some physical and hydrological properties were considered to provide information on the degree of soil compaction and its influence on soil status. The parameters analyzed are bulk density by core method and soil compaction by static and dynamic recording penetrometers. Since autumn 2011 the reduced tillage management was replaced with conventional tillage with a grass strip in the bottom of each inter-row (CTS). At the same time the grass cover of the GC plot was renewed after execution of tillage operation. Recurring measurements of the soil water content up to a depth of 60 cm and hydraulic conductivity tests with the Simplified Falling Head Technique (SFH) have been started in 2012, to observe the spatial and temporal variability of hydraulic behavior in the experimental plots.
Sustainable forest management and impacts on forest responses to a changing climate
NASA Astrophysics Data System (ADS)
Stover, D. B.; Parker, G.; Riutta, T.; Capretz, R.; Murthy, I.; Haibao, R.; Bebber, D.
2009-12-01
Impacts from human activities at varying scales and intensities have a profound influence on forest carbon dynamics in addition to interactions with climate. As such, forest carbon stocks and fluxes are among the least well-defined elements of the global carbon cycle, and great uncertainty remains in predicting the effect of climate change on forest dynamics. In some cases, these management-climate interactions are well known, but often represent a fundamental gap in our understanding of ecosystem responses and are likely to be important in improving modeling of climate change, and in valuing forest carbon. To improve understanding of human induced forest management-climate interactions, a network of permanent study plots has been established in five sites around the world - in the US, UK, Brazil, India and China. The sites are near larger global monitoring (Smithsonian CTFS) plots to facilitate comparisons. At each site, a series of 1-ha plots have been placed in forest stands with differing management regimes and histories. Utilizing citizen scientists from HSBC bank, all trees >5 cm dbh are tagged, mapped, identified to species, and diameter is recorded within each plot. A subset of trees have dendrometer bands attached, to record seasonal growth. Dead wood and litterfall samples are taken, and microclimate is recorded with automatic sensors. Serial measurements will allow correlation of forest dynamics with weather. Although the studies are at an early stage current results indicate above-ground biomass estimates are 102-288 Mg ha-1 for intermediate and mature Liriodendron tulipifera-dominated stands in the US, respectively. In India, mature semi-natural evergreen forests biomass estimates are 192-235 Mg ha-1 while plantation and semi-natural core forests in the UK are estimated at 211-292 Mg ha-1. Successional Atlantic forests in Brazil are estimated to contain 192-235 Mg ha-1. In the US, initial results have demonstrated dramatic differences in microclimate (soil and air temperature and penetrance of phosynthetically active radiation) and canopy structure (the vertical distribution of surfaces) between the intact and selectively logged stands. These variables will be used as indicators of the strength and speed of ecosystem recovery to logging. In the UK, plantations had greater biomass than the semi-natural plots, due to differences in age structure; however, trees above 50 cm dbh comprised 3% of total stems but almost 50% of the biomass in the semi-natural plots. Comparisons will be made among the various modes of forest disturbance to determine how these could influence ecosystem responses to climate change. Increasing human and climatic pressures on the world's forests will necessitate further long-term studies and cross-ecosystem comparisons of this nature which lends itself to application of an intensive citizen science program.
Potter, Thomas L; Truman, Clint C; Bosch, David D; Bednarz, Craig
2004-01-01
In the Atlantic Coastal Plain region of southern Georgia (USA), cotton (Gossypium hirsutum L.) acreage increased threefold in the past decade. To more effectively protect water quality in the region, best management practices are needed that reduce pesticide runoff from fields in cotton production. This study compared runoff of two herbicides, fluometuron [N,N-dimethyl-N'-[3-(trifluoromethyl)-phenyl]-urea] and pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitro-benzenamine], from plots in strip-tillage (ST) and conventional-tillage (CT) management near Tifton, GA. Rainfall simulations were conducted one day after preemergence herbicide applications to 0.0006-ha plots and runoff from 0.15-ha plots due to natural rainfall following preemergence pendimethalin and fluometuron and postemergence fluometuron use was monitored. Pendimethalin runoff was greater under CT than ST due to strong pendimethalin soil sorption and higher erosion and runoff under CT. The highest losses, 1.3% of applied in CT and 0.22% of applied in ST, were observed during rainfall simulations conducted 1 DAT. Fluometuron runoff from natural rainfall was substantially lower from ST than from CT plots but the trend was reversed in rainfall simulations. In all studies, fluometuron runoff was also relatively low (<1% of applied), and on plots under natural rainfall, desmethylfluometuron (DMF) represented about 50% of total fluometuron runoff. Fluometuron's relatively low runoff rate appeared linked to its rapid leaching, and high DMF detection rates in runoff support DMF inclusion in fluometuron risk assessments. Results showed that ST has the potential to reduce runoff of both herbicides, but fluometuron leaching may be a ground water quality concern.
Soil carbon fractions under maize-wheat system: effect of tillage and nutrient management.
Sandeep, S; Manjaiah, K M; Pal, Sharmistha; Singh, A K
2016-01-01
Soil organic carbon plays a major role in sustaining agroecosystems and maintaining environmental quality as it acts as a major source and sink of atmospheric carbon. The present study aims to assess the impact of agricultural management practices on soil organic carbon pools in a maize-wheat cropping system of Indo-Gangetic Plains, India. Soil samples from a split plot design with two tillage systems (bed planting and conventional tillage) and six nutrient treatments (T1 = control, T2 = 120 kg urea-N ha(-1), T3 = T2 (25 % N substituted by FYM), T4 = T2 (25 % N substituted by sewage sludge), T5 = T2 + crop residue, T6 = 100 % organic source (50 % FYM + 25 % biofertilizer + 25 % crop residue) were used for determining the organic carbon pools. Results show that there was a significant improvement in Walkley and Black carbon in soil under integrated and organic nutrient management treatments. KMnO4-oxidizable carbon content of soil varied from 0.63 to 1.50 g kg(-1) in soils and was found to be a better indicator for monitoring the impact of agricultural management practices on quality of soil organic carbon than microbial biomass carbon. Tillage and its interaction were found to significantly influence only those soil organic carbon fractions closely associated with aggregate stability viz, labile polysaccharides and glomalin. The highest amount of C4-derived carbon was found to be in plots receiving recommended doses of N as urea (29 %) followed by control plots (25 %). The carbon management index ranged between 82 to 195 and was better in integrated nutrient sources than ones receiving recommended doses of nutrients through mineral fertilizers alone.
NASA Astrophysics Data System (ADS)
mudi, Sanku Datta; Wang, Jim J.; Dodla, Syam Kumar; Arceneaux, Allen; Viator, H. P.
2016-08-01
Ammonia (NH3) emission from soil is a loss of nitrogen (N) nutrient for plant production as well as an issue of air quality, due to the fact that it is an active precursor of airborne particulate matters. Ammonia also acts as a secondary source of nitrous oxide (N2O) emission when present in the soil. In this study, the impacts of different sources of N fertilizers and harvest residue management schemes on NH3 emissions from sugarcane production were evaluated based on an active chamber method. The field experiment plots consisting of two sources of N fertilizer (urea and urea ammonium nitrate (UAN)) and two common residue management practices, namely residue retained (RR) and residue burned (RB), were established on a Commerce silt loam. The NH3 volatilized following N fertilizer application was collected in an impinger containing diluted citric acid and was subsequently analyzed using ion chromatography. The NH3 loss was primarily found within 3-4 weeks after N application. Average seasonal soil NH3 flux was significantly greater in urea plots with NH3-N emission factor (EF) twice or more than in UAN plots (2.4-5.6% vs. 1.2-1.7%). The RR residue management scheme had much higher NH3 volatilization than the RB treatment regardless of N fertilizer sources, corresponding to generally higher soil moisture levels in the former. Ammonia-N emissions in N fertilizer-treated sugarcane fields increased with increasing soil water-filled pore space (WFPS) up to 45-55% observed in the field. Both N fertilizer sources and residue management approaches significantly affected NH3 emissions.
General-Purpose Software For Computer Graphics
NASA Technical Reports Server (NTRS)
Rogers, Joseph E.
1992-01-01
NASA Device Independent Graphics Library (NASADIG) is general-purpose computer-graphics package for computer-based engineering and management applications which gives opportunity to translate data into effective graphical displays for presentation. Features include two- and three-dimensional plotting, spline and polynomial interpolation, control of blanking of areas, multiple log and/or linear axes, control of legends and text, control of thicknesses of curves, and multiple text fonts. Included are subroutines for definition of areas and axes of plots; setup and display of text; blanking of areas; setup of style, interpolation, and plotting of lines; control of patterns and of shading of colors; control of legends, blocks of text, and characters; initialization of devices; and setting of mixed alphabets. Written in FORTRAN 77.
Managing Data From Signal-Propagation Experiments
NASA Technical Reports Server (NTRS)
Kantak, A. V.
1989-01-01
Computer programs generate characteristic plots from amplitudes and phases. Software system enables minicomputer to process data on amplitudes and phases of signals received during experiments in ground-mobile/satellite radio propagation. Takes advantage of file-handling capabilities of UNIX operating system and C programming language. Interacts with user, under whose guidance programs in FORTRAN language generate plots of spectra or other curves of types commonly used to characterize signals. FORTRAN programs used to process file-handling outputs into any of several useful forms.
NASA Astrophysics Data System (ADS)
Vogel, J. G.; Bacon, A. R.; Bracho, R. G.; Gonzalez-Benecke, C. A.; Fox, T. D.; Laviner, M. A.; Kane, M.; Burkhart, H.; Martin, T.; Will, R.; Ross, C. W.; Grunwald, S.; Jokela, E. J.; Meek, C.
2016-12-01
Extending from Virginia to east Texas in the southeastern United States, managed pine plantations are an important component of the region's carbon cycle. An objective of the Pine Integrated Network: Education, Mitigation, and Adaptation project (PINEMAP) is to improve estimates of how ecosystem carbon pools respond to the management strategies used to increase the growth of loblolly pine plantations. Experimental studies (108 total) that have been used to understand plantation productivity and stand dynamics by university-forest industry cooperatives were measured for the carbon stored in the trees, roots, coarse-wood, detritus in soil, forest floor, understory and soils to 1-meter. The age of the studied plantations ranged from 4-26 years at the time of sampling, with 26 years very near the period when these plantations are commonly harvested. Across all study sites, 455 experimental plots were measured. The average C storage across all pools, sites, and treatments was 192 Mg C ha-1, with the average percentage of the total coming from soil (44%), tree biomass (40%), forest floor (8%), root (5%), soil detritus (2%), understory biomass (1%), and coarse-wood (<1%) pools. Plots had as a treatment either fertilization, competition control, and stand density control (thinning), and every possible combination of treatments including `no treatment'. A paired plot analysis was used where two plots at a site were examined for relative differences caused by a single treatment and these differences averaged across the region. Thinning as a stand-alone treatment significantly reduced forest floor mass by 60%, and the forest floor in the thinned plus either competition control or fertilization was 18.9% and 19.2% less, respectively, than unthinned stands combined with the same treatments. Competition control increased C storage in tree biomass by 12% and thinning decreased tree biomass by 32%. Thinning combined with fertilization had lower soil carbon (0-1 m) than unthinned-fertilized plots (22%), although the replication for this combination was relatively low (n=6). Overall these results suggest that maintaining higher tree densities increases ecosystem carbon storage across multiple pools of C in loblolly pine plantations.
Comparison of trailside degradation across a gradient of trail use in the Sonoran Desert.
Rowe, Helen Ivy; Tluczek, Melanie; Broatch, Jennifer; Gruber, Dan; Jones, Steve; Langenfeld, Debbie; McNamara, Peggy; Weinstein, Leona
2018-02-01
As recreational visitation to the Sonoran Desert increases, the concern of scientists, managers and advocates who manage its natural resources deepens. Although many studies have been conducted on trampling of undisturbed vegetation and the effects of trails on adjacent plant and soil communities, little such research has been conducted in the arid southwest. We sampled nine 450-m trail segments with different visitation levels in Scottsdale's McDowell Sonoran Preserve over three years to understand the effects of visitation on soil erosion, trailside soil crusts and plant communities. Soil crust was reduced by 27-34% near medium and high use trails (an estimated peak rate of 13-70 visitors per hour) compared with control plots, but there was less than 1% reduction near low use trails (peak rate of two to four visitors per hour). We did not detect soil erosion in the center 80% of the trampled area of any of the trails. The number of perennial plant species dropped by less than one plant species on average, but perennial plant cover decreased by 7.5% in trailside plots compared with control plots 6 m off-trail. At the current levels of visitation, the primary management focus should be keeping people on the originally constructed trail tread surface to reduce impact to adjacent soil crusts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adair, Karen L; Wratten, Steve; Lear, Gavin
2013-06-01
Agricultural systems rely on healthy soils and their sustainability requires understanding the long-term impacts of agricultural practices on soils, including microbial communities. We examined the impact of 17 years of land management on soil bacterial communities in a New Zealand randomized-block pasture trial. Significant variation in bacterial community structure related to mowing and plant biomass removal, while nitrogen fertilizer had no effect. Changes in soil chemistry and legume abundance described 52% of the observed variation in the bacterial community structure. Legumes (Trifolium species) were absent in unmanaged plots but increased in abundance with management intensity; 11% of the variation in soil bacterial community structure was attributed to this shift in the plant community. Olsen P explained 10% of the observed heterogeneity, which is likely due to persistent biomass removal resulting in P limitation; Olsen P was significantly lower in plots with biomass removed (14 mg kg(-1) ± 1.3SE) compared with plots that were not mown, or where biomass was left after mowing (32 mg kg(-1) ± 1.6SE). Our results suggest that removal of plant biomass and associated phosphorus, as well as shifts in the plant community, have greater long-term impacts on soil bacterial community structure than application of nitrogen fertilizers. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Cudlín, Ondřej; Řehák, Zdeněk; Cudlín, Pavel
2016-10-01
The aim of this study was to compare soil characteristics, plant communities and the rate of selected ecosystem function performance on reclaimed and unreclaimed plots (left for spontaneous succession) of different age on spoil heaps. Twelve spoil heaps (three circle plots of radius 12.5 m) near the town Kladno in north-west direction from Prague, created after deep coal mining, were compared. Five mixed soil samples from organo-mineral horizons in each plot were analysed for total content of carbon, nitrogen and phosphorus. In addition, active soil pH (pHH2O) was determined. Plant diversity was determined by vegetation releves. The biodiversity value of the habitat according to the Habitat Valuation Method was assessed and the rate of evapotranspiration function by the Method of Valuation Functions and Services of Ecosystems in the Czech Republic were determined. The higher organo-mineral layers and higher amount of total nitrogen content were found on the older reclaimed and unreclaimed plots than in younger plots. The number of plant species and the total contents of carbon and nitrogen were significantly higher at the unreclaimed plots compared to reclaimed plots. The biodiversity values and evapotranspiration function rate were also higher on unreclaimed plots. From this perspective, it is possible to recommend using of spontaneous succession, together with routine reclamation methods to restore habitats after coal mining. Despite the relatively high age of vegetation in some of selected plots (90 years), both the reclaimed and unreclaimed plots have not reached the stage of potential vegetation near to natural climax. Slow development of vegetation was probably due to unsuitable substrate of spoil heaps and a lack of plant and tree species of natural forest habitats in this area. However, it is probable that vegetation communities on observed spoil heaps in both type of management (reclaimed and unreclaimed) will achieve the stage of natural climax and they will provide ecosystem functions more effectively in the future.
Trappe, James M; Nicholls, A O; Claridge, Andrew W; Cork, Steven J
2006-11-01
Fruit bodies of hypogeous fungi are an important food source for many small mammals and are consumed by larger mammals as well. A controversial hypothesis that prescribed burning increases fruiting of certain hypogeous fungi based on observations in Tasmania was tested in the Australian Capital Territory to determine if it applied in a quite different habitat. Ten pairs of plots, burnt and nonburnt, were established at each of two sites prescribe-burnt in May 1999. When sampled in early July, after autumn rains had initiated the fungal fruiting season, species richness and numbers of fruit bodies on the burnt plots were extremely low: most plots produced none at all. Both species richness and fruit body numbers were simultaneously high on nonburnt plots. One of the sites was resampled a year after the initial sampling. At that time species richness and fruit body abundance were still significantly less on burnt plots than on nonburnt, but a strong trend towards fungal recovery on the burnt plots was evident. This was particularly so when numbers of fruit bodies of one species, the hypogeous agaric Dermocybe globuliformis, were removed from the analysis. This species strongly dominated the nonburnt plots but was absent from burnt plots in both years. The trend towards recovery of fruit body abundance in the burnt plots one year after the burn was much more pronounced with exclusion of the Dermocybe data. The Tasmanian-based hypothesis was based mostly on the fruiting of two fire-adapted species in the Mesophelliaceae. Neither species occurred on our plots. Accordingly, the results and conclusions of the Tasmanian study cannot be extrapolated to other habitats without extensive additional study. Implications for management of habitat for fungi and the animals that rely on the fungi as a food source are discussed.
Merriman, J.W.; Boal, C.W.; Bashore, T.L.; Zwank, P.J.; Wester, D.B.
2007-01-01
Some diurnal raptors are frequently observed at prairie dog (Cynomys sp.) colonies. As a result, some military installations have conducted prairie dog control activities to reduce the bird-aircraft strike hazard (BASH) potential of low-flying aircraft. To evaluate the validity of this management strategy, we assessed raptor associations with prairie dog colonies at 2 short-grass prairie study areas: southern Lubbock County, Texas, USA, and Melrose Bombing and Gunnery Range in east-central New Mexico, USA. We quantified diurnal raptors (i.e., Falconiformes) at plots occupied (colony plots) and unoccupied (noncolony plots) by black-tailed prairie dogs (Cynomys ludovicianus) at both sites throughout 2002. We compared the number of individual birds of a given species at colony and noncolony plots within each study area by season. Ferruginous hawks (Buteo regalis) and northern harriers (Circus cyaneus) were more abundant at colony plots, whereas Swainson's hawks (B. swainsoni) and American kestrels (Falco sparverius) were more abundant at noncolony plots. Red-tailed hawk (B. jamaicensis) abundance did not differ between the 2 plot types. Our results suggest prairie dog control as a method of reducing BASH potential may be effective at some sites but may be ineffective or even increase the BASH potential at others. Thus, bird-avoidance models assessing the BASH potential should be conducted on a site-specific basis using information on relative and seasonal abundances of individual raptor species and the relative strike risks they pose to aircraft.
Cultural and Climatic History of Cobá, a Lowland Maya City in Quintana Roo, Mexico
NASA Astrophysics Data System (ADS)
Leyden, Barbara W.; Brenner, Mark; Dahlin, Bruce H.
1998-01-01
Lake Cobá, within the archaeological site of Cobá, provides evidence bearing on lowland Maya development. Palynological and geochemical data record multidecadal precipitation cycles from a 8.80-m, >8370-yr lake-sediment sequence terminating on bedrock. Late Classic sedimentation rates are rapid, but an anthropogenically derived colluvium layer is lacking. Initial vegetation was medium semi-deciduous and swamp forest. Forest clearance began 1650 B.C. (Early Preclassic) and maize first occurred at 850 B.C. (Middle Preclassic). Lakeside milpas existed until A.D. 720 (Late Classic) and then were moved from the city center as urbanization intensified and Lake Cobá was diked as a reservoir. Cobá was at most briefly vacated during the Classic Collapse and was abandoned after A.D. 1240, although some habitation persisted. The paleoecological record matches the archaeological history for Cobá, but pervasive disturbance muted the climatic signal, as the Late Classic drought is barely evident. The question whether economic trees were maintained within the city is unresolved. Maize cultivation allowed the Maya to develop a complex society and support a large population, but dependence on maize was ultimately doomed by variable rainfall. Precipitation in extreme years was insufficient to support crops, while native vegetation was not directly affected by drought that devastated Maya agriculture.
Irrigation management with remote sensing. [alfalfa plots in new mexico
NASA Technical Reports Server (NTRS)
Heilman, J.; Moore, D.; Myers, V.
1980-01-01
A ground study conducted utilizing hand held radiometers to collect visible, near infrared and thermal infrared measurements. The data was analyzed and evaluated in terms of the ground measurements, which included percent crop canopy cover. The results used to recommend future action regarding use of satellite data in irrigation management.
Growth response of managed uneven-aged northern conifer stands
Dale S. Solomon; Robert M. Frank
1983-01-01
The growth response of trees in spruce-fir-hemlock stands was recorded from plots that were managed to control stand density, species composition, length of harvest interval, and salvage of mortality. Basal area, volume, and diameter increment are presented by species and size classification for harvesting intervals of 5, 10, and 20 years.
USDA-ARS?s Scientific Manuscript database
Quantification and estimation of crop response to management are important for efficient use of resources. Because the spatial distribution of crop response is related to the distribution of soil properties, crop response to management practices will also have a strong spatial component. Most plot r...
Understory vegetation and site factors : implications for a managed Wisconsin landscape
K.D. Brosofske; J. Chen; Thomas R. Crow
2001-01-01
We investigated relationships between edaphic and environmental factors (soil, forest floor, topography, and canopy) and understory vegetation (composition, richness, and Shannon-Wiener diversity index, H')among 77 plots representing seven major patch types comprising a landscape in northern Wisconsin that has a long history of human management. Sampled patch...
USDA-ARS?s Scientific Manuscript database
A three-year field experiment was conducted to evaluate the role of inversion tillage, cover crops and spring tillage methods for Palmer amaranth between-row (BR) and within-row (WR) management in glufosinate-resistant cotton. Main plots were two inversion tillage systems: fall inversion tillage (IT...
NASA Astrophysics Data System (ADS)
Litt, G.; Briceno, J. C.; Crouch, T. D.; Ogden, F. L.
2012-12-01
Land use change in the Panama Canal Watershed may have far reaching effects on water quality and water quantity. Dry season water quantity is of particular interest for sustaining and expanding canal operations, therefore an increased understanding of tropical hydrological processes and their relationship to land use may improve management practices by the Panama Canal Authority. The long term Agua Salud Project in the Panama Canal Watershed monitors a number of hydrological factors across various tropical land use types. We hypothesize that the plantations and the secondary succession plot more closely resemble the mature forest's runoff characteristics. In this study we investigate the differences in runoff ratios between the following experimental plots: a teak (tectona grandis) plantation, a native-species plantation and a native secondary succession plot. Results are compared to past analyses on mature forest and pasture control plots while utilizing three years of continuously monitored hydrologic data.
Vild, Ondřej; Roleček, Jan; Hédl, Radim; Kopecký, Martin; Utinek, Dušan
2013-12-15
A substantial part of European lowland woodlands was managed as coppices or wood pastures for millennia. However, traditional management forms were almost completely abandoned in Central Europe by the middle of the 20th century. Combined with the effects of nitrogen deposition and herbivore pressure, shifts in management resulted in biodiversity loss affecting particularly light-demanding oligotrophic plant species. Experimental thinning was applied in a former oak coppice-with-standards in an attempt to restore vanishing understorey plant communities. Two levels of thinning intensity and zero management as control were used on 90 plots. Ten years after the treatment, significant changes in species composition and diversity were observed in heavily thinned plots, while moderate thinning had mostly insignificant effects. Light-demanding oligotrophic species significantly increased, indicating positive consequences of restoration. However, heavy thinning also brought about the expansion of native ruderal species. Alien species remained unchanged. We conclude that the restoration of coppice-with-standards can be an efficient tool to support vanishing light-demanding woodland species. Combined with biodiversity benefits, the increasing demand for biofuel may contribute to the renaissance of traditional management forms in forestry.
Cooper, Andrew J P; Lettis, Sally; Chapman, Charlotte L; Evans, Stephen J W; Waller, Patrick C; Shakir, Saad; Payvandi, Nassrin; Murray, Alison B
2008-05-01
Following the adoption of the ICH E2E guideline, risk management plans (RMP) defining the cumulative safety experience and identifying limitations in safety information are now required for marketing authorisation applications (MAA). A collaborative research project was conducted to gain experience with tools for presenting and evaluating data in the safety specification. This paper presents those tools found to be useful and the lessons learned from their use. Archive data from a successful MAA were utilised. Methods were assessed for demonstrating the extent of clinical safety experience, evaluating the sensitivity of the clinical trial data to detect treatment differences and identifying safety signals from adverse event and laboratory data to define the extent of safety knowledge with the drug. The extent of clinical safety experience was demonstrated by plots of patient exposure over time. Adverse event data were presented using dot plots, which display the percentages of patients with the events of interest, the odds ratio, and 95% confidence interval. Power and confidence interval plots were utilised for evaluating the sensitivity of the clinical database to detect treatment differences. Box and whisker plots were used to display laboratory data. This project enabled us to identify new evidence-based methods for presenting and evaluating clinical safety data. These methods represent an advance in the way safety data from clinical trials can be analysed and presented. This project emphasises the importance of early and comprehensive planning of the safety package, including evaluation of the use of epidemiology data.
Community turnover of wood-inhabiting fungi across hierarchical spatial scales.
Abrego, Nerea; García-Baquero, Gonzalo; Halme, Panu; Ovaskainen, Otso; Salcedo, Isabel
2014-01-01
For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual conserved areas should be large enough to ensure local persistence.
Community Turnover of Wood-Inhabiting Fungi across Hierarchical Spatial Scales
Abrego, Nerea; García-Baquero, Gonzalo; Halme, Panu; Ovaskainen, Otso; Salcedo, Isabel
2014-01-01
For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual conserved areas should be large enough to ensure local persistence. PMID:25058128
The influence of organic amendments on soil aggregate stability from semiarid sites
NASA Astrophysics Data System (ADS)
Hueso Gonzalez, Paloma; Francisco Martinez Murillo, Juan; Damian Ruiz Sinoga, Jose
2016-04-01
Restoring the native vegetation is the most effective way to regenerate soil health. Under these conditions, vegetation cover in areas having degraded soils may be better sustained if the soil is amended with an external source of organic matter. The addition of organic materials to soils also increases infiltration rates and reduces erosion rates; these factors contribute to an available water increment and a successful and sustainable land management. The goal of this study was to analyze the effect of various organic amendments on the aggregate stability of soils in afforested plots. An experimental paired-plot layout was established in southern of Spain (homogeneous slope gradient: 7.5%; aspect: N170). Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. The vegetation was planted in a grid pattern with 0.5 m between plants in each plot. During the afforestation process the soil was tilled to 25 cm depth from the surface. Soil from the afforested plots was sampled in: i) 6 months post-afforestation; ii) 12 months post-afforestation; iii) 18 months post-afforestation; and iv) 24 months post-afforestation. The sampling strategy for each plot involved collection of 4 disturbed soil samples taken from the surface (0-10 cm depth). The stability of aggregates was measured by wet-sieving. Regarding to soil aggregate stability, the percentage of stable aggregates has increased slightly in all the treatments in relation to control. Specifically, the differences were recorded in the fraction of macroaggregates (≥ 0.250 mm). The largest increases have been associated with straw mulch, pinus mulch and sludge. Similar results have been registered for the soil organic carbon content. Independent of the soil management, after six months, no significant differences in microaggregates were found regarding to the control plots. These results showed an increase in the stability of the macroaggregates when soil is amended with sludge, pinus mulch and straw much. This fact has been due to an increase in the number cementing agents due to: (i) the application of pinus, straw and sludge had resulted in the release of carbohydrates to the soil; and thus (ii) it has favored the development of a protective vegetation cover, which has increased the number of roots in the soil and the organic contribution to it.
Influence of soil management on water erosion and hydrological responses in semiarid agrosystems
NASA Astrophysics Data System (ADS)
De Alba, Saturnino; Alcazar, María; Ivón Cermeño, F.
2014-05-01
In Europe, in the Mediterranean area, water erosion is very severe, moderately to seriously affecting 50% to 70% of the agricultural land. However, it is remarkable the lack of field data of water erosion rates for agricultural areas of semiarid Mediterranean climate. Moreover, this lack of field data is even more severe regarding the hydrological and erosive responses of soils managed with organic farming compared to those with conventional managements or others under conservation agriculture. This paper describes an experimental field station (La Higueruela Station) for the continuous monitoring of water erosion that was set up in 1992 in Central Spain (Toledo, Castilla-La Mancha). In the study area, the annual precipitation is around 450 mm with a very irregular inter-annual and seasonal distribution, which includes a strong drought in summer. The geology is characterised by non-consolidated Miocene materials, mostly arcosics. The area presents a low relief and gentle slopes, generally less than 15%. At the experimental field, the soil is a Typic Haploxeralf (USDA, 1990). The land-uses are rainfed crops mainly herbaceous crops, vineyard and olive trees. The hydrological response and soil losses by water erosion under natural rainfall conditions are monitored in a total of 28 experimental plots of the USLE type. The plots have a total area of 33.7 m2, (22.5 m long downslope and 3 m wide) and presented a slope gradient of 9%. Detailed descriptions of the experimental field facilities and the automatic station for monitoring runoff and sediment productions, as well as of the meteorological station, are presented. The land uses and treatments applied on the experimental plots are for different soil management systems for cereals crops (barley): 1) Organic farming, 2) Minimum tillage of moderate tillage intensity, 3) No-tillage, and 4) Conventional tillage; five alternatives of fallow: 1) Traditional fallow (white fallow) with conventional tillage, 2) Traditional fallow (white fallow) with minimum tillage, 3) Organic fallow (Green fallow), 4) Delayed fallow, and 5) Chemical fallow with a no-tillage management. Additionally, there is an experimental plot presenting a simulation of abandonment and natural re-vegetation. This paper presents the main results, for a data series of 20 years (1993-2013) with special attention to the organic farming management results, regarding to the following research objectives: 1) Monitoring the hydrological and erosive responses of the different management systems; 2) Study of the role of key factors in soil erodibility affected by the management as soil physics and chemistry, surface cover and roughness, and soil and surface initial conditions (soil water content, surface roughness…); and, 3) Characterizing the seasonal variability of the rainfall erosivity.
Violet LED light enhances the recruitment of a thrip predator in open fields.
Ogino, Takumi; Uehara, Takuya; Muraji, Masahiko; Yamaguchi, Terumi; Ichihashi, Takahisa; Suzuki, Takahiro; Kainoh, Yooichi; Shimoda, Masami
2016-09-08
The predatory bug Orius sauteri is an indigenous natural enemy of thrips and whiteflies in Asian countries. To put these bugs to practical use in pest management, methods to attract and retain the bugs in agricultural fields are needed. We previously showed that violet light (405 nm) attracts O. sauteri selectively. Many thrips and whiteflies are attracted to UV or green light. In this study, we examined the effect of violet-LED illumination on O. sauteri in pesticide-free eggplant (Solanum melongena L.) cultivation. In three cultivation trials, the density of O. sauteri on eggplant leaves was consistently higher in the illuminated plots; at least twice that of the non-illuminated plots. Simultaneously, the density of thrips declined markedly to less than half that of the non-illuminated plots. We identified three positive effects of violet light including an "immediate-effect" on predator attraction, a "persistent-effect" on predator reproduction, and a "secondary-effect" on the food web structure. Our results showed that illumination with violet light provides a powerful tool for integrated pest management. This is the first report on the use of illumination to manipulate the behavior of natural enemies.
Violet LED light enhances the recruitment of a thrip predator in open fields
Ogino, Takumi; Uehara, Takuya; Muraji, Masahiko; Yamaguchi, Terumi; Ichihashi, Takahisa; Suzuki, Takahiro; Kainoh, Yooichi; Shimoda, Masami
2016-01-01
The predatory bug Orius sauteri is an indigenous natural enemy of thrips and whiteflies in Asian countries. To put these bugs to practical use in pest management, methods to attract and retain the bugs in agricultural fields are needed. We previously showed that violet light (405 nm) attracts O. sauteri selectively. Many thrips and whiteflies are attracted to UV or green light. In this study, we examined the effect of violet-LED illumination on O. sauteri in pesticide-free eggplant (Solanum melongena L.) cultivation. In three cultivation trials, the density of O. sauteri on eggplant leaves was consistently higher in the illuminated plots; at least twice that of the non-illuminated plots. Simultaneously, the density of thrips declined markedly to less than half that of the non-illuminated plots. We identified three positive effects of violet light including an “immediate-effect” on predator attraction, a “persistent-effect” on predator reproduction, and a “secondary-effect” on the food web structure. Our results showed that illumination with violet light provides a powerful tool for integrated pest management. This is the first report on the use of illumination to manipulate the behavior of natural enemies. PMID:27604315
Impacts of terracing on soil erosion control and crop yield in two agro-ecological zones of Rwanda
NASA Astrophysics Data System (ADS)
Rutebuka, Jules; Ryken, Nick; Uwimanzi, Aline; Nkundwakazi, Olive; Verdoodt, Ann
2017-04-01
Soil erosion remains a serious limiting factor to the agricultural production in Rwanda. Terracing has been widely adopted in many parts of the country in the past years, but its effectiveness is not yet known. Besides the standard radical (bench) terraces promoted by the government, also progressive terraces (with living hedges) become adopted mainly by the farmers. The aim of this study was to measure short-term (two consecutive rainy seasons 2016A and 2016B) run-off and soil losses for existing radical (RT) and progressive (PT) terraces versus non-protected (NP) fields using erosion plots installed in two agro-ecological zones, i.e. Buberuka highlands (site Tangata) and Eastern plateau (site Murehe) and determine their impacts on soil fertility and crop production. The erosion plot experiment started with a topsoil fertility assessment and during the experiment, maize was grown as farmer's cropping preference in the area. Runoff data were captured after each rainfall event and the collected water samples were dried to determine soil loss. Both erosion control measures reduced soil losses in Tangata, with effectiveness indices ranging from 43 to 100% when compared to the NP plots. RT showed the highest effectiveness, especially in season A. In Murehe, RT minimized runoff and soil losses in both seasons. Yet, the PT were largely inefficient, leading to soil losses exceeding those on the NP plots (ineffectiveness index of -78% and -65% in season A and B, respectively). Though topsoil fertility assessment in the erosion plots showed that the soil quality parameters were significantly higher in RT and NP plots compared to the PT plots on both sites, maize grain yield was not correlated with the physical effectiveness of the erosion control measures. Finally, the effectiveness of soil erosion control measures as well as their positive impacts on soil fertility and production differ not only by terracing type but also by agro-ecological zone and the management or maintenance adopted by farmers. Terracing should be complemented by continuous fertility amendments (organic material inputs), use of improved agronomic and management practices considering agro-ecological zone conditions. In general, radical terracing was found to be the most effective soil erosion control measure on both sites.
NASA Astrophysics Data System (ADS)
Deo, Ram K.
Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.
How clear-cutting affects fire severity and soil properties in a Mediterranean ecosystem.
Francos, Marcos; Pereira, Paulo; Mataix-Solera, Jorge; Arcenegui, Victoria; Alcañiz, Meritxell; Úbeda, Xavier
2018-01-15
Forest management practices in Mediterranean ecosystems are frequently employed to reduce both the risk and severity of wildfires. However, these pre-fire treatments may influence the effects of wildfire events on soil properties. The aim of this study is to examine the short-term effects of a wildfire that broke out in 2015 on the soil properties of three sites: two exposed to management practices in different years - 2005 (site M05B) and 2015 (site M15B) - and one that did not undergo any management (NMB) and to compare their properties with those recorded in a plot (Control) unaffected by the 2015 wildfire. We analyzed aggregate stability (AS), soil organic matter (SOM) content, total nitrogen (TN), carbon/nitrogen ratio (C/N), inorganic carbon (IC), pH, electrical conductivity (EC), extractable calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K), microbial biomass carbon (C mic ) and basal soil respiration (BSR). In the managed plots, a clear-cutting operation was conducted, whereby part of the vegetation was cut and left covering the soil surface. The AS values recorded at the Control site were significantly higher than those recorded at M05B, whereas the TN and SOM values at NMB were significantly higher than those recorded at M05B. IC was significantly higher at M05B than at the other plots. There were no significant differences in C/N ratio between the analyzed sites. Soil pH at M05B was significantly higher than the value recorded at the Control plot. Extractable Ca was significantly higher at NMB than at both M05B and the Control, while extractable Mg was significantly lower at M05B than at NMB. Extractable K was significantly lower at the Control than at the three fire-affected plots. C mic was significantly higher at NMB than at the Control. BSR, BSR/C and BSR/C mic values at the fire-affected sites were significantly lower than those recorded at the Control. No significant differences were identified in C mic /C. Overall, a comparison of the pre-fire treatments showed that NMB was the practice that had the least negative effects on the soil properties studied, followed by M15B, and that fire severity was highest at M05B due to the accumulation of dead plant fuel. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Weed management practices were evaluated in a new field of trailing blackberry established in western Oregon. The field was planted in May 2010 and certified organic in May 2012. Treatments included two cultivars, ‘Marion’ and ‘Black Diamond’, grown in 1) non-weeded plots, where weeds were cut to th...
Modeled forest inventory data suggest climate benefits from fuels management
Jeremy S. Fried; Theresa B. Jain; Jonathan. Sandquist
2013-01-01
As part of a recent synthesis addressing fuel management in dry, mixed-conifer forests we analyzed more than 5,000 Forest Inventory and Analysis (FIA) plots, a probability sample that represents 33 million acres of these forests throughout Washington, Oregon, Idaho, Montana, Utah, and extreme northern California. We relied on the BioSum analysis framework that...
Virginia R. Tolbert; Carl C. Trettin; Dale W. Johnson; John W. Parsons; Allan E. Houston; David A. Mays
2001-01-01
Ensuring sustainability of intensively managed woody crops requires determining soil and water quality effects using a combination of field data and modeling projections. Plot- and catchrnent-scale research, models, and meta-analyses are addressing nutrient availability, site quality, and measures to increase short-rotation woody crop (SRWC) productivity and site...
The role of remote sensing in process‐scaling studies of managed forest ecosystems
Jeffrey G. Masek; Daniel J. Hayes; M. Joseph Hughes; Sean P. Healey; David P. Turner
2015-01-01
Sustaining forest resources requires a better understanding of forest ecosystem processes, and how management decisions and climate change may affect these processes in the future. While plot and inventory data provide our most detailed information on forest carbon, energy, and water cycling, applying this understanding to broader spatial and temporal domains...
Erosion rates from forests and rangelands following fuel management
William J. Elliot; Peter R. Robichaud; I. Sue Miller
2007-01-01
In both forest and rangelands, fuel reduction operations are now common practices. Mechanical thinning followed by prescribed fire is common in forests, while fire is frequently applied to rangelands. Studies at different scales (50 sq m to 389 ha) measure the erosion from fuel management. This presentation compares runoff and erosion from these studies. Plot size has...
Management of beech stands infected by Cryptococcus fagisuga in West Germany
Hermann Bogenschutz
1983-01-01
Beech trees in an experimental plot in the Odenwald (southwest Germany), with different intensities of attack by Cryptococcus fagisuga Lind. since at least 1970, were observed from 1972 until 1982 in order to ascertain the role of scale insects in beech bark disease and to facilitate decisions for the management of infested stands. At the beginning...
USDA-ARS?s Scientific Manuscript database
Grasslands can be diverse assemblages of grasses and forbs but not much is known how perennial grass species management affects native plant diversity except for in a few instances. We studied the use of late spring prescribed burns over a span of eleven years on experimental plots in which the pere...
Predictive Mapping of Forest Attributes on the Fishlake National Forest
Tracey S. Frescino; Gretchen G. Moisen
2005-01-01
Forest land managers increasingly need maps of forest characteristics to aid in planning and management. A set of 30-m resolution maps was prepared for the Fishlake National Forest by modeling FIA plot variables as nonparametric functions of ancillary digital data. The set includes maps of volume, biomass, growth, stand age, size, crown cover, and various aspen...
NASA Technical Reports Server (NTRS)
Proctor, B. W.; Reysa, R. P.; Russell, D. J.
1975-01-01
Technical data collected for the food management and personal hygiene appliances considered for the shuttle orbiter are presented as well as plotted and tabulated trade study results for each appliance. Food storage, food operation, galley cleanup, waste collection/transfer, body cleansing, and personal grooming were analyzed.
Management of sheath blight and narrow brown leaf spot with biocontrol agents in organic rice, 2010
USDA-ARS?s Scientific Manuscript database
The experiment was established in a field of League-type soil (3% sand, 32% silt, and 64% clay) under organic management for many years at the Texas A&M University System's Agrilife Research and Extension Center, Beaumont. Plots consisted of seven 18-ft rows, and spaced 7 inches between rows. There ...
Forest inventory and management-based visual preference models of southern pine stands
Victor A. Rudis; James H. Gramann; Edward J. Ruddell; Joanne M. Westphal
1988-01-01
Statistical models explaining students' ratings of photographs of within stand forest scenes were constructed for 99 forest inventory plots in east Texas pine and oak-pine forest types. Models with parameters that are sensitive to visual preference yet compatible with forest management and timber inventories are presented. The models suggest that the density of...
Expedient Metrics to Describe Plant Community Change Across Gradients of Anthropogenic Influence
NASA Astrophysics Data System (ADS)
Marcelino, José A. P.; Weber, Everett; Silva, Luís; Garcia, Patrícia V.; Soares, António O.
2014-11-01
Human influence associated with land use may cause considerable biodiversity losses, namely in oceanic islands such as the Azores. Our goal was to identify plant indicator species across two gradients of increasing anthropogenic influence and management (arborescent and herbaceous communities) and determine similarity between plant communities of uncategorized vegetation plots to those in reference gradients using metrics derived from R programming. We intend to test and provide an expedient way to determine the conservation value of a given uncategorized vegetation plot based on the number of native, endemic, introduced, and invasive indicator species present. Using the metric IndVal, plant taxa with a significant indicator value for each community type in the two anthropogenic gradients were determined. A new metric, ComVal, was developed to assess the similarity of an uncategorized vegetation plot toward a reference community type, based on (i) the percentage of pre-defined indicator species from reference communities present in the vegetation plots, and (ii) the percentage of indicator species, specific to a given reference community type, present in the vegetation plot. Using a data resampling approach, the communities were randomly used as training or validation sets to classify vegetation plots based on ComVal. The percentage match with reference community types ranged from 77 to 100 % and from 79 to 100 %, for herbaceous and arborescent vegetation plots, respectively. Both IndVal and ComVal are part of a suite of useful tools characterizing plant communities and plant community change along gradients of anthropogenic influence without a priori knowledge of their biology and ecology.
A User’s Manual for the ARL Mathematical Model of the Sea King Mk-50 Helicopter: Part 1. Basic Use
1988-10-01
responsibility of the Director Publishing and Marketing, AGPS. Inquiries should be directed to the Manager, AGPS Press, Australian Government...a Royal Australian Navy (RAN) task requirement. This model, which was developed originally on a DEC System 10 computer using the simulation language...f /nSAIG/CablePlot/SONRJWX /piloyt.o /b1ladn.f /CablePlot/SCNIMo /ptivre. f /bladin.o /ch~mpr. f /Ptine.o /Wv/ch~or.o /READThPE / BMe ’.L1B.0 /cm-pa.f
Graphics Software For VT Terminals
NASA Technical Reports Server (NTRS)
Wang, Caroline
1991-01-01
VTGRAPH graphics software tool for DEC/VT computer terminal or terminals compatible with it, widely used by government and industry. Callable in FORTRAN or C language, library program enabling user to cope with many computer environments in which VT terminals used for window management and graphic systems. Provides PLOT10-like package plus color or shade capability for VT240, VT241, and VT300 terminals. User can easily design more-friendly user-interface programs and design PLOT10 programs on VT terminals with different computer systems. Requires ReGis graphics set terminal and FORTRAN compiler.
Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer
2017-12-31
Aggregate breakdown influences the availability of soil particles for size-selective sediment transport with surface runoff during erosive rainfall events. Organic matter management is known to affect aggregate stability against breakdown, but little is known about how this translates into rainfall-induced aggregate fragmentation and sediment transport under field conditions. In this study, we performed field experiments in which artificial rainfall was applied after pre-wetting on three pairs of arable soil plots (1.5×0.75m) six weeks after incorporating a mixture of grass and wheat straw into the topsoil of one plot in each pair (OI treatment) but not on the other plot (NI treatment). Artificial rainfall was applied for approximately 2h on each pair at an intensity of 49.1mmh -1 . In both treatments, discharge and sediment concentration in the discharge were correlated and followed a similar temporal pattern after the onset of surface runoff: After a sharp increase at the beginning both approached a steady state. But the onset of runoff was more delayed on the OI plots, and the discharge and sediment concentration were in average only roughly half as high on the OI as on the NI plots. With increasing discharge the fraction of coarse sediment increased. This relationship did not differ between the two treatments. Thus, due to the lower discharge, the fraction of fine particles in the exported sediment was larger in the runoff from the OI plots than from the NI plots. The later runoff onset and lower discharge rate was related to a higher initial aggregate stability on the OI plots. Terrestrial laser scanning proved to be a very valuable method to map changes in the micro-topography of the soil surfaces. It revealed a much less profound decrease in surface roughness on the OI than on the NI plots. Copyright © 2017 Elsevier B.V. All rights reserved.
Riparian zones as havens for exotic plant species in the central grasslands
Stohlgren, T.J.; Bull, K.A.; Otsuki, Yuka; Villa, C.A.; Lee, M.
1998-01-01
In the Central Grasslands of the United States, we hypothesized that riparian zones high in soil fertility would contain more exotic plant species than upland areas of low soil fertility. Our alternate hypothesis was that riparian zones high in native plant species richness and cover would monopolize available resources and resist invasion by exotic species. We gathered nested-scale vegetation data from 40 1 m2subplots (nested in four 1000 m2 plots) in both riparian and upland sites at four study areas in Colorado, Wyoming, and South Dakota (a total of 320 1 m2subplots and 32 1000 m2 plots). At the 1 m2 scale, mean foliar cover of native species was significantly greater (P < 0.001) in riparian zones (36.6% ?? 1.7%) compared to upland sites (28.7% ?? 1.5%), but at this small scale there were no consistent patterns of native and exotic species richness among the four management areas. Mean exotic species cover was slightly higher in upland sites compared to riparian sites (9.0% ?? 3.8% versus 8.2% ?? 3.0% cover). However, mean exotic species richness and cover were greater in the riparian zones than upland sites in three of four management areas. At the 1000 m2 scale, mean exotic species richness was also significantly greater (P < 0.05) in riparian zones (7.8 ?? 1.0 species) compared to upland sites (4.8 ?? 1.0 species) despite the heavy invasion of one upland site. For all 32 plots combined, 21% of the variance in exotic species richness was explained by positive relationships with soil % silt (t = 1.7, P = 0.09) and total foliar cover (t = 2.4, P = 0.02). Likewise, 26% of the variance in exotic species cover (log10 cover) was explained by positive relationships with soil % silt (t = 2.3, P = 0.03) and total plant species richness (t = 2.4, P = 0.02). At landscape scales (four 1000 m2 plots per type combined), total foliar cover was significantly and positively correlated with exotic species richness (r = 0.73, P < 0.05) and cover (r = 0.74, P < 0.05). Exotic species cover (log10 cover) was positively correlated with log10% N in the soil (r = 0.61, P = 0.11) at landscape scales. On average, we found that 85% (??5%) of the total number of exotic species in the sampling plots of a given management area could be found in riparian zones, while only 50% (??8%) were found in upland plots. We conclude that: (1 species-rich and productive riparian zones are particularly invasible in grassland ecosystems; and (2) riparian zones may act as havens, corridors, and sources of exotic plant invasions for upland sites and pose a significant challenge to land managers and conservation biologists.
Nitrous oxide emissions from corn-soybean systems in the midwest.
Parkin, Timothy B; Kaspar, Thomas C
2006-01-01
Soil N2O emissions from three corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems in central Iowa were measured from the spring of 2003 through February 2005. The three managements systems evaluated were full-width tillage (fall chisel plow, spring disk), no-till, and no-till with a rye (Secale cereale L. 'Rymin') winter cover crop. Four replicate plots of each treatment were established within each crop of the rotation and both crops were present in each of the two growing seasons. Nitrous oxide fluxes were measured weekly during the periods of April through October, biweekly during March and November, and monthly in December, January, and February. Two polyvinyl chloride rings (30-cm diameter) were installed in each plot (in and between plant rows) and were used to support soil chambers during the gas flux measurements. Flux measurements were performed by placing vented chambers on the rings and collecting gas samples 0, 15, 30, and 45 min following chamber deployment. Nitrous oxide fluxes were computed from the change in N2O concentration with time, after accounting for diffusional constraints. We observed no significant tillage or cover crop effects on N2O flux in either year. In 2003 mean N2O fluxes were 2.7, 2.2, and 2.3 kg N2O-N ha(-1) yr(-1) from the soybean plots under chisel plow, no-till, and no-till + cover crop, respectively. Emissions from the chisel plow, no-till, and no-till + cover crop plots planted to corn averaged 10.2, 7.9, and 7.6 kg N2O-N ha(-1) yr(-1), respectively. In 2004 fluxes from both crops were higher than in 2003, but fluxes did not differ among the management systems. Fluxes from the corn plots were significantly higher than from the soybean plots in both years. Comparison of our results with estimates calculated using the Intergovernmental Panel on Climate Change default emission factor of 0.0125 indicate that the estimated fluxes underestimate measured emissions by a factor of 3 at our sites.
Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Stricker, Craig A.; Agee, Jennifer L.; Kieu, Le H.; Kakouros, Evangelos
2014-01-01
The role of live vegetation in sediment methylmercury (MeHg) production and associated biogeochemistry was examined in three types of agricultural wetlands (domesticated or white rice, wild rice, and fallow fields) and adjacent managed natural wetlands (cattail- and bulrush or tule-dominated) in the Yolo Bypass region of California's Central Valley, USA. During the active growing season for each wetland, a vegetated:de-vegetated paired plot experiment demonstrated that the presence of live plants enhanced microbial rates of mercury methylation by 20 to 669% (median = 280%) compared to de-vegetated plots. Labile carbon exudation by roots appeared to be the primary mechanism by which microbial methylation was enhanced in the presence of vegetation. Pore-water acetate (pw[Ac]) decreased significantly with de-vegetation (63 to 99%) among all wetland types, and within cropped fields, pw[Ac] was correlated with both root density (r = 0.92) and microbial Hg(II) methylation (kmeth. r = 0.65). Sediment biogeochemical responses to de-vegetation were inconsistent between treatments for “reactive Hg” (Hg(II)R), as were reduced sulfur and sulfate reduction rates. Sediment MeHg concentrations in vegetated plots were double those of de-vegetated plots (median = 205%), due in part to enhanced microbial MeHg production in the rhizosphere, and in part to rhizoconcentration via transpiration-driven pore-water transport. Pore-water concentrations of chloride, a conservative tracer, were elevated (median = 22%) in vegetated plots, suggesting that the higher concentrations of other constituents around roots may also be a function of rhizoconcentration rather than microbial activity alone. Elevated pools of amorphous iron (Fe) in vegetated plots indicate that downward redistribution of oxic surface waters through transpiration acts as a stimulant to Fe(III)-reduction through oxidation of Fe(II)pools. These data suggest that vegetation significantly affected rhizosphere biogeochemistry through organic exudation and transpiration-driven concentration of pore-water constituents and oxidation of reduced compounds. While the relative role of vegetation varied among wetland types, macrophyte activity enhanced MeHg production.
Short- term effects of post-fire logging on runoff and soil erosion at two spatial scales
NASA Astrophysics Data System (ADS)
Malvar, Maruxa; Silva, Flavio; Prats, Sergio; Vieira, Diana; Keizer, Jacob
2017-04-01
Logging is the most common management practice after wildfires in forested areas in Portugal. Clearcutting is undertaken to recover burnt timber resources, to control resprouting, notably in the case of eucalypt plantations, and to reduce the risks of possible insect plagues, notably in the case of maritime pine because of the nematode plague. Still, relatively little is known about the combined effect of wildfire and post-fire logging on erosion processes. In the framework of the EU-FP7 project RECARE (www.recare-project.eu), the ESP team of the University of Aveiro set up an experiment to quantify the hydrological and erosion impacts of post-fire logging, at the scale of both 0.25 m2 micro-plots and 16 m2 plots. A eucalypt slope burnt in August 2015 by a moderate intensity fire and logged in September 2015 was selected for this study. The burned trees were harvested with a chainsaw, while the logs were piled with a rubber wheeled forwarder tractor. Following logging, two distinct sub-areas were identified within the logged slope based on soil disturbance: an area where the forwarder wheels had left marked trails ("trail"), and an area where such trails were absent ("control"). Three micro-plots and three plots were installed in the control area, while three micro-plots and six plots were installed in the trail area. Generally, the trail area showed greater soil compaction and larger soil surface roughness than the control area. Between October 2015 and September 2016, mean runoff was 500 mm in the control micro-plots and 50% higher in the trail micro-plots. At the plot scale, however, no differences in runoff generation were observed between the two subareas. Sediment production over the same period, however, was twice as high in the trail area than the control area, at both plot scales. In the control area, mean sediment production was 8 Mg ha-1 yr-1 at the micro-plot scale and 6 Mg ha-1 yr-1at the plot scale; in the trail area, these figures were 21 Mg ha-1 yr-1 and 13 Mg ha-1 yr-1, respectively. Post-fire logging activities and their timing should be evaluated against their potential impacts on runoff and erosion, and should be contemplated for additional erosion mitigation practices.
NASA Astrophysics Data System (ADS)
Schindewolf, Marcus; Schultze, Nico; Amorim, Ricardo S. S.; Schmidt, Jürgen
2015-04-01
The corridor along the Brazilian Highway 163 in the Southern Amazon is affected by radical changes in land use patterns. In order to enable a model based assessment of erosion risks on different land use and soil types a transportable disc type rainfall simulator is applied to identify the most important infiltration and erosion parameters of the EROSION 3D model. Since particle detachment highly depends on experimental plot length, a combined runoff supply is used for the virtually extension of the plot length to more than 20 m. Simulations were conducted on the most common regional land use, soil management and soil types for dry and wet runs. The experiments are characterized by high final infiltration rates (0.3 - 2.5 mm*min^-1), low sediment concentrations (0.2-6.5 g*L^-1) and accordingly low soil loss rates (0.002-50 Kg*m^-2), strongly related to land use, applied management and soil type. Ploughed pastures and clear cuts reveal highest soil losses whereas croplands are less affected. Due to higher aggregate stabilities Ferrasols are less endangered than Acrisols. Derived model parameters are plausible, comparable to existing data bases and reproduce the effects of land use and soil management on soil loss. Thus it is possible to apply the EROSION 3D soil loss model in Southern Amazonia for erosion risk assessment and scenario simulation under changing climate and land use conditions.
Mauro, Francisco; Monleon, Vicente J; Temesgen, Hailemariam; Ford, Kevin R
2017-01-01
Forest inventories require estimates and measures of uncertainty for subpopulations such as management units. These units often times hold a small sample size, so they should be regarded as small areas. When auxiliary information is available, different small area estimation methods have been proposed to obtain reliable estimates for small areas. Unit level empirical best linear unbiased predictors (EBLUP) based on plot or grid unit level models have been studied more thoroughly than area level EBLUPs, where the modelling occurs at the management unit scale. Area level EBLUPs do not require a precise plot positioning and allow the use of variable radius plots, thus reducing fieldwork costs. However, their performance has not been examined thoroughly. We compared unit level and area level EBLUPs, using LiDAR auxiliary information collected for inventorying 98,104 ha coastal coniferous forest. Unit level models were consistently more accurate than area level EBLUPs, and area level EBLUPs were consistently more accurate than field estimates except for large management units that held a large sample. For stand density, volume, basal area, quadratic mean diameter, mean height and Lorey's height, root mean squared errors (rmses) of estimates obtained using area level EBLUPs were, on average, 1.43, 2.83, 2.09, 1.40, 1.32 and 1.64 times larger than those based on unit level estimates, respectively. Similarly, direct field estimates had rmses that were, on average, 1.37, 1.45, 1.17, 1.17, 1.26, and 1.38 times larger than rmses of area level EBLUPs. Therefore, area level models can lead to substantial gains in accuracy compared to direct estimates, and unit level models lead to very important gains in accuracy compared to area level models, potentially justifying the additional costs of obtaining accurate field plot coordinates.
Monleon, Vicente J.; Temesgen, Hailemariam; Ford, Kevin R.
2017-01-01
Forest inventories require estimates and measures of uncertainty for subpopulations such as management units. These units often times hold a small sample size, so they should be regarded as small areas. When auxiliary information is available, different small area estimation methods have been proposed to obtain reliable estimates for small areas. Unit level empirical best linear unbiased predictors (EBLUP) based on plot or grid unit level models have been studied more thoroughly than area level EBLUPs, where the modelling occurs at the management unit scale. Area level EBLUPs do not require a precise plot positioning and allow the use of variable radius plots, thus reducing fieldwork costs. However, their performance has not been examined thoroughly. We compared unit level and area level EBLUPs, using LiDAR auxiliary information collected for inventorying 98,104 ha coastal coniferous forest. Unit level models were consistently more accurate than area level EBLUPs, and area level EBLUPs were consistently more accurate than field estimates except for large management units that held a large sample. For stand density, volume, basal area, quadratic mean diameter, mean height and Lorey’s height, root mean squared errors (rmses) of estimates obtained using area level EBLUPs were, on average, 1.43, 2.83, 2.09, 1.40, 1.32 and 1.64 times larger than those based on unit level estimates, respectively. Similarly, direct field estimates had rmses that were, on average, 1.37, 1.45, 1.17, 1.17, 1.26, and 1.38 times larger than rmses of area level EBLUPs. Therefore, area level models can lead to substantial gains in accuracy compared to direct estimates, and unit level models lead to very important gains in accuracy compared to area level models, potentially justifying the additional costs of obtaining accurate field plot coordinates. PMID:29216290
A Three-Year Field Validation Study to Improve the Integrated Pest Management of Hot Pepper
Kim, Ji-Hoon; Yun, Sung-Chul
2013-01-01
To improve the integrated pest management (IPM) of hot pepper, field study was conducted in Hwasung from 2010 to 2012 and an IPM system was developed to help growers decide when to apply pesticides to control anthracnose, tobacco budworm, Phytophthora blight, bacterial wilt, and bacterial leaf spot. The three field treatments consisted of IPM sprays following the forecast model advisory, a periodic spray at 7-to-10-day intervals, and no spray (control). The number of annual pesticide applications for the IPM treatment ranged from six to eight, whereas the plots subjected to the periodic treatment received pesticide 11 or 12 times annually for three years. Compared to the former strategy, our improved IPM strategy features more intense pest management, with frequent spraying for anthracnose and mixed spraying for tobacco budworm or Phytophthora blight. The incidences for no pesticide control in 2010, 2011, and 2012 were 91, 97.6, and 41.4%, respectively. Conversely, the incidences for the IPM treatment for those years were 7.6, 62.6, and 2%, and the yields from IPM-treated plots were 48.6 kg, 12.1 kg, and 48.8 kg. The incidence and yield in the IPM-treated plots were almost the same as those of the periodic treatment except in 2011, in which no unnecessary sprays were given, meaning that the IPM control was quite successful. From reviewing eight years of field work, sophisticated forecasts that optimize pesticide spray timing reveal that reliance on pesticides can be reduced without compromising yield. Eco-friendly strategies can be implemented in the pest management of hot pepper. PMID:25288956
Downs, C A; Kramarsky-Winter, Esti; Segal, Roee; Fauth, John; Knutson, Sean; Bronstein, Omri; Ciner, Frederic R; Jeger, Rina; Lichtenfeld, Yona; Woodley, Cheryl M; Pennington, Paul; Cadenas, Kelli; Kushmaro, Ariel; Loya, Yossi
2016-02-01
Toxicity persistence to the nontarget amphipod Hyalella curvispina in runoff events following chlorpyrifos applications to soy experimental plots was compared in conventional and no-till management. Two application scenarios were compared: an early-season application with the soil almost bare and a late-season application after the foliage had attained complete soil cover. H. curvispina was exposed to chlorpyrifos using two different test systems: a short-term (48 h) runoff water exposure and a long-term (10 days) soil exposure. Both commonly used crop management practices for soybean production resulted in runoff toxicity following pesticide applications and represent a toxicity risk for adjacent inland waters. Toxicity persistence was longer after the earlier than the late season application, likely because of higher volatilization and photodecomposition losses from the soy canopy than from the soil. For the early-season application, toxicity persisted longer in the no-till plots than in the conventional tillage plots. Suspended matter was higher in the conventional treatment. Chlorpyrifos sorption to suspended matter likely contributed to the shorter persistence. For the late-season application, toxicity persisted longer in the conventional treatment. The causes remain conjectural. The soil organic carbon content was higher in the no-till treatment. Sorption to organic matter might have contributed to the shorter chlorpyrifos toxicity persistence in no-till management. Late applications are more frequent and prevail longer throughout the soy growing season. Overall, the no-till management practice seems preferably because shorter toxicity persistence in runoff represents a lower environmental risk for the adjacent inland waters.
Pavlovic, Noel B.; Leicht-Young, Stacey A.; Grundel, Ralph
2014-01-01
Overabundant white-tailed deer (Odocoileus virginianus) have been a concern for land managers in eastern North America because of their impacts on native forest ecosystems. Managers have sought native plant species to serve as phytoindicators of deer impacts to supplement deer surveys. We analyzed experimental data about red trillium (Trillium recurvatum), large flowered trillium (T. grandiflorum), nodding trillium (T. cernuum), and declined trillium (T. flexipes) growth in paired exclosure (fenced) plots and control (unfenced) plots from 2002 to 2010 at the Indiana Dunes National Lakeshore. The latter two species lacked replication, so statistical analysis was not possible. All red trillium plants were surveyed for height-to-leaf, effects of browsing, and presence of flowers. Data from individuals in 2009 demonstrated a sigmoidal relationship between height-to-leaf and probability of flowering. The relationship on moraine soils was shifted to taller plants compared to those on sand substrates, with respectively 50 percent flowering at 18 and 16 cm and 33 percent flowering at 16 and 14 cm height-to-leaf. On a plot basis, the proportion of plants flowering was influenced by height to leaf, duration of protection, and deviation in rainfall. The proportion of plants flowering increased ninefold in exclosures (28 percent) compared to control plots (3 percent) over the 8 years of protection. The mean height-to-leaf was a function of the interaction between treatment and duration, as well as red trillium density. Changes in height-to-leaf in control plots from year to year were significantly influenced by an interaction between change in deer density and change in snowfall depth. There was a significant negative correlation between change in deer density and snowfall depth. Plants in the exclosures increased in height at a rate of 1.5 cm yr−1 whereas control plants decreased in height by 0.9 cm yr−1. In all, 78 percent of the control plots lacked flowering individuals over the 9 years of study, indicating that red trillium is being negatively affected by deer throughout the East Unit of the park. Of the five deer management zones studied, only one showed pre-impact height-to-leaf and flowering percentages in control plots that then declined after 2005. The results of this study demonstrate that Trillium species growing in the lands of the Indiana Dunes National Lakeshore are being suppressed reproductively by deer browsing. Specifically, we demonstrate, for the first time, the utility of using red trillium (Trillium recurvatum) height-to-leaf and percentage of flowering as indicators of the impacts of deer browsing. Application of the recommended thresholds demonstrates their utility in adopting red trillium as a phytoindicator of deer impact. Responses of plants to protection from deer suggest that deer culling might be necessary for 6 or more years for red trillium populations and rare trillium species to recover.
Management of the potato cyst nematode (Globodera pallida) with bio-fumigants/stimulants.
Martin, T J G; Turner, S J; Fleming, C C
2007-01-01
Field trials evaluated the effect of four plant-based bio-fumigants/stimulants on population levels of G. pallida and the resulting potato yields and quality. Three formulations contained seaweed biostimulants (Algifol, Nutridip and Metastim) and one bio-fumigant containing mustard and chilli pepper extracts (Dazitol). These were compared with the fumigant nematicide Nemathorin and untreated control plots. The effect of G. pallida on growing potato crops was assessed by recording haulm characteristics which indicated that the nematicide treatment gave most protection. Levels of PCN juveniles and migratory nematodes were assessed during the trial. Plots treated with Nemathorin and Dazitol had fewest PCN, whilst the highest number of migratory nematodes occurred in fallow plots. Sixteen weeks after planting the nematicide treatment produced highest yield and tuber numbers. Dazitol treatment produced a lower yield but the largest tubers.
Red-shouldered hawk nesting habitat preference in south Texas
Strobel, Bradley N.; Boal, Clint W.
2010-01-01
We examined nesting habitat preference by red-shouldered hawks Buteo lineatus using conditional logistic regression on characteristics measured at 27 occupied nest sites and 68 unused sites in 2005–2009 in south Texas. We measured vegetation characteristics of individual trees (nest trees and unused trees) and corresponding 0.04-ha plots. We evaluated the importance of tree and plot characteristics to nesting habitat selection by comparing a priori tree-specific and plot-specific models using Akaike's information criterion. Models with only plot variables carried 14% more weight than models with only center tree variables. The model-averaged odds ratios indicated red-shouldered hawks selected to nest in taller trees and in areas with higher average diameter at breast height than randomly available within the forest stand. Relative to randomly selected areas, each 1-m increase in nest tree height and 1-cm increase in the plot average diameter at breast height increased the probability of selection by 85% and 10%, respectively. Our results indicate that red-shouldered hawks select nesting habitat based on vegetation characteristics of individual trees as well as the 0.04-ha area surrounding the tree. Our results indicate forest management practices resulting in tall forest stands with large average diameter at breast height would benefit red-shouldered hawks in south Texas.
Spatial variability in cost and success of revegetation in a Wyoming big sagebrush community.
Boyd, Chad S; Davies, Kirk W
2012-09-01
The ecological integrity of the Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle and A. Young) alliance is being severely interrupted by post-fire invasion of non-native annual grasses. To curtail this invasion, successful post-fire revegetation of perennial grasses is required. Environmental factors impacting post-fire restoration success vary across space within the Wyoming big sagebrush alliance; however, most restorative management practices are applied uniformly. Our objectives were to define probability of revegetation success over space using relevant soil-related environmental factors, use this information to model cost of successful revegetation and compare the importance of vegetation competition and soil factors to revegetation success. We studied a burned Wyoming big sagebrush landscape in southeast Oregon that was reseeded with perennial grasses. We collected soil and vegetation data at plots spaced at 30 m intervals along a 1.5 km transect in the first two years post-burn. Plots were classified as successful (>5 seedlings/m(2)) or unsuccessful based on density of seeded species. Using logistic regression we found that abundance of competing vegetation correctly predicted revegetation success on 51 % of plots, and soil-related variables correctly predicted revegetation performance on 82.4 % of plots. Revegetation estimates varied from $167.06 to $43,033.94/ha across the 1.5 km transect based on probability of success, but were more homogenous at larger scales. Our experimental protocol provides managers with a technique to identify important environmental drivers of restoration success and this process will be of value for spatially allocating logistical and capital expenditures in a variable restoration environment.
Potter, Thomas L; Truman, Clint C; Strickland, Timothy C; Bosch, David D; Webster, Theodore M; Franklin, Dorcas H; Bednarz, Craig W
2006-01-01
Pesticide runoff research relies heavily on rainfall simulation experiments. Most are conducted at a constant intensity, i.e., at a fixed rainfall rate; however, large differences in natural rainfall intensity is common. To assess implications we quantified runoff of two herbicides, fluometuron and pendimethalin, and applied preemergence after planting cotton on Tifton loamy sand. Rainfall at constant and variable intensity patterns representative of late spring thunderstorms in the Atlantic Coastal Plain region of Georgia (USA) were simulated on 6-m2 plots under strip- (ST) and conventional-tillage (CT) management. The variable pattern produced significantly higher runoff rates of both compounds from CT but not ST plots. However, on an event-basis, runoff totals (% applied) were not significantly different, with one exception: fluometuron runoff from CT plots. There was about 25% more fluometuron runoff with the variable versus the constant intensity pattern (P = 0.10). Study results suggest that conduct of simulations using variable intensity storm patterns may provide more representative rainfall simulation-based estimates of pesticide runoff and that the greatest impacts will be observed with CT. The study also found significantly more fluometuron in runoff from ST than CT plots. Further work is needed to determine whether this behavior may be generalized to other active ingredients with similar properties [low K(oc) (organic carbon partition coefficient) approximately 100 mL g(-1); high water solubility approximately 100 mg L(-1)]. If so, it should be considered when making tillage-specific herbicide recommendations to reduce runoff potential.
NASA Astrophysics Data System (ADS)
Batista Lúcio-Correa, João; Cristina-Tonello, Kelly; Taguas, Encarnación V.; Texeira-Dias, Herly C.
2015-04-01
In Brazil, the conservation of water resources and agricultural soil are key environmental and economic aspects to mantain land services and the quality of life people in rural and urban communities. The macaw - Acrocomia aculeata) (Jacq.) Lodd. (Ex Martius) - is a Brazilian native oleaginous palm, whose potential has been highlighted in the scientific community due to its high economic potential and its recent advances in crop farming. This study aims to quantify the runoff in macaw plantation, comparing different techniques of crop management for a period of one year (from September 2012 to August 2013). The data from this study were collected in the Experimental Farm of the Federal University of Viçosa (UFV) located in the municipality of Araponga, MG, Brazil. The seedlings took place in February 2009, in holes, spaced 5X5 in an area of 1.7 ha (680 plants) with a slope of 25%. Rainfall was monitored through three pluviometers with expose area of 162.86 cm² whereas the impact of different management systems on runoff was measured by using 10 plots of 63 m² each: 3 treatments with three repetitions plus the control plot. Each plot presented four macaw plants. The treatment one (T1), was formed by macaw plants without using any soil conservation technique; the treatment two (T2) consisted of macaws with a contour cord with 40 cm wide by 30 cm deep, located between the plantation lines; for the treatment three (T3) beans were planted forming vegetation strips; the control (T0) was represented by a portion without macaws plants, with spontaneous vegetation growing throughout the plot, which was not used any soil conservation technique. T2 presented the lowest values of runoff during the twelve months and at the same time, the greatest requirements of initial rainfall for runoff generation. In contrast, T3 showed the highest volumes of runoff for the study period, with a small reduction with the exception of January and February 2013, when the bean plants were well-established. The use of contour cords as a control method of surface runoff and erosion showed the maximum effectiveness. ACKNOWLEDGMENTS: The authors are very grateful to CNPq for the concession of the post-doctorate scholarship to the last author.
Woldeamanuel, Yohannes W; Girma, Belaineh
2014-05-01
Tuberculous meningitis (TBM) is a preventable and curable common health problem among African adults. Poor nutrition, poverty, household crowding, drug resistant tuberculosis (TB) strains, AIDS, and malfunctioning TB control programs are important risk factors. We conducted a systematic review and meta-analysis of published literature reporting case-fatalities of TBM among adults in African countries from 1970 till date. A PubMed search identified relevant papers. Employed terms include 'adult tuberculous meningitis' AND 'tuberculosis Africa'. PRISMA review guidelines were applied. Adult TBM case-fatalities, odds ratio (OR), relative risk (RR), forest-plot meta-analysis for weighted OR and RR, funnel plots, L'Abbé plots, meta-regressed bubble plots, and inter-study homogeneity were computed. Among 15 studies included, adult TBM occurred in up to 28 % of all meningitis forms with case-fatality of 60 % (inverse-variance weighted 54 %). Fixed-effect meta-analysis revealed weighted OR and RR of adult TBM fatalities to be 4.37 (95 % CI 3.92, 4.88) and 2.53 (95 % CI 2.38, 2.69), respectively. Inter-study homogeneity was reliable, regional representativeness was adequate allowing generalizability, and funnel-plots behaved symmetrically with insignificant inconsistency. All cases were initiated with anti-TB medication, while some had 'breakthrough' TBM. In Africa, adult TBM has a significant public health importance with a very high fatality which has remained stagnant for the past half-century. This reflects ongoing low quality of medical care at facilities where lengthy referrals end up. Community-based studies can reveal higher unaccounted morbidity, accrued disability, and larger mortality. Improving access points for early TB management at community-level, developing health infra-structure for comprehensive case management at facility-level, and poverty reduction can help combat this multi-faceted problem--whose reduction can in return help fight poverty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, Ken
2001-11-15
Re-vegetation Plot Study along the Lower Monumental-McNary Transmission Line ROW. The study area sections are located near structures 38/4 and 39/3. The line is a 500kV Single Circuit Transmission Line having an easement width of 165 feet. The proposed work will be accomplished in the indicated sections of the transmission line corridor as indicated on the attached checklist. A summer of 2001 fire burned the subject area leaving the ROW in a bare ground situation. Before, the fire the site was dominated by annual vegetation (cheatgrass) and noxious weeds (yellowstar thistle). As a study of plant succession after the firemore » for a local Boy Scout group, two 100 X 100 foot areas will be identified for study over the next 2-3 years. The two test plots will be identified and permanently marked. One will receive treatment while the other will not be treated and used as a control plot.« less
Oak savanna restoration: Oak response to fire and thinning through 28 years
Ronald E. Masters; Jack R. Waymire
2012-01-01
We used a small plot study on Pushmataha Wildlife Management Area in southeast Oklahoma to determine the efficacy of fire frequency and thinning as management tools for restoration of oak savanna, oak woodlands, pine-bluestem woodlands, and pine savanna for application on a landscape scale. On selected experimental units, we initially reduced stand density to favor...
William B. Leak
2009-01-01
New England forest managers are faced with numerous environmental issues, such as global warming, nutrient depletion, and species declines that could influence the choice of appropriate silvicultural techniques and objectives. On the Bartlett Experimental Forest, New Hampshire, 70 years of change on more than 400 remeasured cruise plots by elevation classes ranging...
A new type of density-management diagram for slash pine plantations
Curtis L. VanderSchaaf
2006-01-01
Many Density-Management Diagrams (DMD) have been developed for conifer species throughout the world based on stand density index (SDI). The diagrams often plot the logarithm of average tree size (volume, weight, or quadratic mean diameter) over the logarithm of trees per unit area. A new type of DMD is presented for slash pine (Pinus elliottii var elliottii)...
Michael R. Guttery; Andrew W. Ezell
2006-01-01
Greentree reservoirs are a viable option for creating habitat and hunting opportunities for migrating waterfowl. Unfortunately, the prolonged annual flooding often associated with greentree reservoir management can be highly detrimental to many of the desirable tree species in these stands. In the summer of 2004, a total of 327 plot centers were established in a...
USDA-ARS?s Scientific Manuscript database
This work was done in plots that had been subjected to three successive years of an agronomic experiment that evaluated the effects of a wheat cover crop or no cover crop on weed and water management. After the third growing season, pitfall traps were installed and arthropods were collected and iden...
NASA Astrophysics Data System (ADS)
Webb, N.; Herrick, J.; Duniway, M.
2013-12-01
This work explores how soil erosion assessments can be structured in the context of ecological sites and site dynamics to inform systems for managing accelerated soil erosion. We evaluated wind and water erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Our results show that wind and water erosion can be highly variable within and among ecological sites. Plots in shrub-encroached and shrub-dominated states were consistently susceptible to both wind and water erosion. However, grassland plots and plots with a grass-succulent mix had a high indicated susceptibility to wind and water erosion respectively. Vegetation thresholds for controlling erosion are identified that transcend the ecological sites and their respective states. The thresholds define vegetation cover levels at which rapid (exponential) increases in erosion rates begin to occur, suggesting that erosion in the study ecosystem can be effectively controlled when bare ground cover is <20% of a site or total ground cover is >50%. Similarly, our results show that erosion can be controlled when the cover of canopy interspaces >50 cm in length reaches ~50%, the cover of canopy interspaces >100 cm in length reaches ~35% or the cover of canopy interspaces >150 cm in length reaches ~20%. This process-based understanding can be applied, along with knowledge of the differential sensitivity of vegetation states, to improve erosion management systems. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of sites to erosion. Land use impacts that are constrained within the natural variability of sites should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds and natural variability of ecological sites will enable improved identification of where and when accelerated soil erosion occurs and the development of practical management solutions.
Pan Air Geometry Management System (PAGMS): A data-base management system for PAN AIR geometry data
NASA Technical Reports Server (NTRS)
Hall, J. F.
1981-01-01
A data-base management system called PAGMS was developed to facilitate the data transfer in applications computer programs that create, modify, plot or otherwise manipulate PAN AIR type geometry data in preparation for input to the PAN AIR system of computer programs. PAGMS is composed of a series of FORTRAN callable subroutines which can be accessed directly from applications programs. Currently only a NOS version of PAGMS has been developed.
Vcs.js - Visualization Control System for the Web
NASA Astrophysics Data System (ADS)
Chaudhary, A.; Lipsa, D.; Doutriaux, C.; Beezley, J. D.; Williams, D. N.; Fries, S.; Harris, M. B.
2016-12-01
VCS is a general purpose visualization library, optimized for climate data, which is part of the UV-CDAT system. It provides a Python API for drawing 2D plots such as lineplots, scatter plots, Taylor diagrams, data colored by scalar values, vector glyphs, isocontours and map projections. VCS is based on the VTK library. Vcs.js is the corresponding JavaScript API, designed to be as close as possible to the original VCS Python API and to provide similar functionality for the Web. Vcs.js includes additional functionality when compared with VCS. This additional API is used to introspect data files available on the server and variables available in a data file. Vcs.js can display plots in the browser window. It always works with a server that reads a data file, extracts variables from the file and subsets the data. From this point, two alternate paths are possible. First the system can render the data on the server using VCS producing an image which is send to the browser to be displayed. This path works for for all plot types and produces a reference image identical with the images produced by VCS. This path uses the VTK-Web library. As an optimization, usable in certain conditions, a second path is possible. Data is packed, and sent to the browser which uses a JavaScript plotting library, such as plotly, to display the data. Plots that work well in the browser are line-plots, scatter-plots for any data and many other plot types for small data and supported grid types. As web technology matures, more plots could be supported for rendering in the browser. Rendering can be done either on the client or on the server and we expect that the best place to render will change depending on the available web technology, data transfer costs, server management costs and value provided to users. We intend to provide a flexible solution that allows for both client and server side rendering and a meaningful way to choose between the two. We provide a web-based user interface called vCdat which uses Vcs.js as its visualization library. Our paper will discuss the principles guiding our design choices for Vcs.js, present our design in detail and show a sample usage of the library.
Mid-term and scaling effects of forest residue mulching on post-fire runoff and soil erosion.
Prats, Sergio Alegre; Wagenbrenner, Joseph W; Martins, Martinho António Santos; Malvar, Maruxa Cortizo; Keizer, Jan Jacob
2016-12-15
Mulching is an effective post-fire soil erosion mitigation treatment. Experiments with forest residue mulch have demonstrated that it increased ground cover to 70% and reduced runoff and soil loss at small spatial scales and for short post-fire periods. However, no studies have systematically assessed the joint effects of scale, time since burning, and mulching on runoff, soil loss, and organic matter loss. The objective of this study was to evaluate the effects of scale and forest residue mulch using 0.25m 2 micro-plots and 100m 2 slope-scale plots in a burnt eucalypt plantation in central Portugal. We assessed the underlying processes involved in the post-fire hydrologic and erosive responses, particularly the effects of soil moisture and soil water repellency. Runoff amount in the micro-plots was more than ten-fold the runoff in the larger slope-scale plots in the first year and decreased to eight-fold in the third post-fire year. Soil losses in the micro-plots were initially about twice the values in the slope-scale plots and this ratio increased over time. The mulch greatly reduced the cumulative soil loss measured in the untreated slope-scale plots (616gm -2 ) by 91% during the five post-fire years. The implications are that applying forest residue mulch immediately after a wildfire can reduce soil losses at spatial scales of interest to land managers throughout the expected post-fire window of disturbance, and that mulching resulted in a substantial relative gain in soil organic matter. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kothyari, B. P.; Verma, P. K.; Joshi, B. K.; Kothyari, U. C.
2004-06-01
The Bhetagad watershed in Kumaon Hills of Central Himalaya represents for hydro-meteorological conditions of the middle mountains over the Hindu Kush Himalayas. This study was conducted to assess the runoff, soil loss and subsequent nutrient losses from different prominent land uses in the Bhetagad watershed of Central Himalayas. Four experimental natural plots each of 20 m length and 5 m width were delineated on four most common land covers viz, pine forests, tea plantation, rainfed agricultural and degraded lands. Monthly values of runoff, soil loss and nutrient loss, for four successive years (1998-2001), from these land uses were quantified following standard methodologies. The annual runoff in these plots ranged between 51 and 3593 m 3/ha while the annual soil loss varied between 0.06 and 5.47 tonnes/ha during the entire study period. The loss of organic matter was found to be maximum in plot having pine forest followed by plot having tea plantation as the land cover. Annual loss of total N (6.24 kg/ha), total P (3.88 kg/ha) and total K (5.98 kg/ha),per unit loss of soil (tonnes/ha), was maximum from the plot having rainfed agricultural crop as the land cover. The loss of total N ranged between 0.30 and 21.27 kg/ha, total P ranged between 0.14 and 9.42 kg/ha, total K ranged from 0.12 to 11.31 kg/ha whereas organic matter loss varied between 3.65 and 255.16 kg/ha, from different experimental plots. The findings will lead towards devising better conservation/management options for mountain land use systems.
Sylvatic plague vaccine partially protects prairie dogs (Cynomys spp.) in field trials
Rocke, Tonie E.; Tripp, Daniel W.; Russell, Robin E.; Abbott, Rachel C.; Richgels, Katherine; Matchett, Marc R.; Biggins, Dean E.; Griebel, Randall; Schroeder, Greg; Grassel, Shaun M.; Pipkin, David R.; Cordova, Jennifer; Kavalunas, Adam; Maxfield, Brian; Boulerice, Jesse; Miller, Michael W.
2017-01-01
Sylvatic plague, caused by Yersinia pestis, frequently afflicts prairie dogs (Cynomys spp.), causing population declines and local extirpations. We tested the effectiveness of bait-delivered sylvatic plague vaccine (SPV) in prairie dog colonies on 29 paired placebo and treatment plots (1–59 ha in size; average 16.9 ha) in 7 western states from 2013 to 2015. We compared relative abundance (using catch per unit effort (CPUE) as an index) and apparent survival of prairie dogs on 26 of the 29 paired plots, 12 with confirmed or suspected plague (Y. pestis positive carcasses or fleas). Even though plague mortality occurred in prairie dogs on vaccine plots, SPV treatment had an overall positive effect on CPUE in all three years, regardless of plague status. Odds of capturing a unique animal were 1.10 (95% confidence interval [C.I.] 1.02–1.19) times higher per trap day on vaccine-treated plots than placebo plots in 2013, 1.47 (95% C.I. 1.41–1.52) times higher in 2014 and 1.19 (95% C.I. 1.13–1.25) times higher in 2015. On pairs where plague occurred, odds of apparent survival were 1.76 (95% Bayesian credible interval [B.C.I.] 1.28–2.43) times higher on vaccine plots than placebo plots for adults and 2.41 (95% B.C.I. 1.72–3.38) times higher for juveniles. Our results provide evidence that consumption of vaccine-laden baits can protect prairie dogs against plague; however, further evaluation and refinement are needed to optimize SPV use as a management tool.
Application and partial validation of a habitat model for moose in the Lake Superior region
Allen, A.W.; Terrell, J.W.; Mangus, W.L.; Lindquist, E.L.
1991-01-01
A modified version of the dormant-season portion of a Habitat Suitability Index (HSI) model developed for assessing moose (Alces alces) habitat in the Lake Superior Region was incorporated in a Geographic Information System (GIS) for 490 km2 of Minnesota's Superior National Forest. Moose locations (n=235) were plotted during aerial surveys conducted in December 1988 and January 1990-1991. Dormant-season forage and cover quality for 1,000-m, 500-m, and 200-m radii plots around random points and moose locations were compared using U.S. Forest Service stand examination data. Cover quality indices were lower than forage quality indices within all plots. The median value for the average cover quality index was greater (P=0.003) within 200-m plots around cow moose locations than for plots around random points for the most severe winter of the study. The proportion of highest-quality winter cover, such as mixed stands dominated by mid-age class white spruce (Picea glauca) and balsam fir (Abies balsanea), was greater within 500-m and 200-m plots around cow moose than within similar plots around random points during the two most severe winters. These results indicate that suboptimum ratings of winter habitat quality used in the GIS for dormant-season forage >100 m from cover, as suggested in the original HSI model, are reasonable. Integrating the habitat model with forest stand data using a GIS permitted analysis of moose habitat within a relatively large geographic area. Simulation of habitat quality indicated a potential shortage of late-winter cover in the study area. The effects of forest management actions on moose habitat quality can be simulated without collecting additional data.
NASA Astrophysics Data System (ADS)
Vicente-Vicente, Jose Luis; García-Ruiz, Roberto; Calero, Julio; Aranda, Victor
2016-04-01
Spain has 2.5 million hectares of olive groves, 60 % of which are situated in Andalusia (Southern Spain). The most common agricultural management consist of a conventional or reduced tillage combined with herbicides to eliminate weeds. This might lead to some ecological problems (e.g. erosion, soil nutrient and organic carbon losses). The recommended management consist of a plant cover of spontaneous herbaceous plant in the inter row of olive oil orchards which are usually mowed early in spring. In this study, we assessed the influence of: i) two soil managements: non-covered and weed-covered, and ii) soil parent material (carbonated and siliceous), on soil organic carbon (SOC) fractions. In addition, we assessed the existence of a saturation limit for the different SOC fractions by including calcareous and siliceous soils under natural vegetation. Weed-covered soils accumulated more total SOC than soils under the non-covered management and this was independent on the parent material type. Same was true for most of the SOC fractions. However, the relative proportion of the SOC fractions was not affected by the presence of weeds, but it was due to the parent material type; carbonated soils had more unprotected and physically protected SOC, whereas the siliceous soils were relatively enriched in biochemically protected pool. Otherwise, table 1 shows that the chemically protected SOC pool was best fit to a saturation function, especially in the siliceous plots. The other fractions were best fit to a linear function. Therefore, these results suggest that chemically protected pools are the only protected fractions which can be saturated considering the SOC in the natural vegetation soils as the SOC limit. Considering SOC levels in the weed-covered and non-covered managements of all protected fractions and their respective limits of total SOC, saturation deficits in the non-covered and weed-covered plots were 75% and 60% of total SOC, respectively. Table 1. Significance of the linear and saturation models between total SOC and SOC of each isolated fraction for the whole set of plots and for plots of similar mineralogy. Physically protected fraction is comprised of three sub-fractions: iPOM, chemically and biochemically protected within microaggregates. "-" stands for non-analysed fractions. Fraction/Sub-fraction Whole set of plots Siliceous Carbonated Linear Saturation Linear Saturation Linear Saturation Unprotected 0.87 0.76 - - - - Physically protected 0.82 0.86 - - - - iPOM 0.75 0.73 - - - - Chemically protected within microaggregates 0.26 0.49 0.72 0.79 0.63 0.65 Biochemically protected within microaggregates 0.75 0.66 0.87 0.82 0.73 0.66 Chemically protected 0.41 0.62 0.69 0.79 0.78 0.71 Biochemically protected 0.76 0.69 0.89 0.90 0.72 0.62 These results suggest that there is a high potential for SOC sequestration in Andalusian olive grove soils. Nevertheless, it is very important to analyse in detail the influence of the soil mineralogy properties on SOC accumulation. The management clearly affects the total amount of SOC and its fractions, whereas the parent material type mainly affects the proportion of these.
Reproductive phenology of transgenic Brassica napus cultivars: Effect on intraspecific gene flow.
Simard, Marie-Josée; Légère, Anne; Willenborg, Christian J
2009-01-01
Pollen-mediated gene flow in space is well documented and isolation distances are recommended to ensure genetic purity of Brassica napus seed crops. Isolation in time could also contribute to gene flow management but has been little investigated. We assessed the effects of asynchronous and synchronous flowering on intraspecific B. napus gene flow by seeding adjacent plots of transgenic spring canola cultivars, either resistant to glyphosate or glufosinate, over a 0-4 week interval and measuring outcrossing rates and seed-set. Outcrossing rates, evaluated in the center of the first adjacent row, were reduced to the lowest level in plots flowering first when the seeding interval > 2 weeks. Increasing the time gap increased outcrossing rates in plots flowering second up to a seeding interval of two weeks. Flowers that opened during the last week of the flowering period produced fewer seed (< 10% of total seed production) and a smaller fraction of outcrossed seed (-25%). Observed time gap effects were likely caused by extraneous pollen load during the receptivity of productive seed-setting early flowers. Clearly, manipulation of B. napus flowering development through staggered planting dates can contribute to gene flow management. The approach will need to be validated by additional site-years and increased isolation distances.
Roadside vegetation field condition study.
DOT National Transportation Integrated Search
2011-10-24
It was questioned whether the use of herbicides would improve MRP turf scores by controlling undesirable broadleaf weeds. Plots were established in North and South Florida on areas that the Project Manager determined would fail to meet MRP standards ...
The kinship2 R package for pedigree data.
Sinnwell, Jason P; Therneau, Terry M; Schaid, Daniel J
2014-01-01
The kinship2 package is restructured from the previous kinship package. Existing features are now enhanced and new features added for handling pedigree objects. Pedigree plotting features have been updated to display features on complex pedigrees while adhering to pedigree plotting standards. Kinship matrices can now be calculated for the X chromosome. Other methods have been added to subset and trim pedigrees while maintaining the pedigree structure. We make the kinship2 package available for R on the Contributed R Archives Network (CRAN), where data management is built-in and other packages can use the pedigree object.
Banks, M K; Schwab, P; Liu, B; Kulakow, P A; Smith, J S; Kim, R
2003-01-01
A field project located at the US Naval Base at Port Hueneme, California was designed to evaluate changes in contaminant concentrations and toxicity during phytoremediation. Vegetated plots were established in petroleum (diesel and heavy oil) contaminated soil and were evaluated over a two-year period. Plant species were chosen based on initial germination studies and included native California grasses. The toxicity of the impacted soil in vegetated and unvegetated plots was evaluated using Microtox, earthworm, and seed germination assays. The reduction of toxicity was affected more by contaminant aging than the establishment of plants. However, total petroleum hydrocarbon concentrations were lower by the end of the study in the vegetated plots when compared to the unvegetated soil. Although phytoremediation is an effective approach for cleaning-up of petroleum contaminated soil, a long-term management plan is required for significant reductions in contaminant concentrations.
Energy and conservation benefits from managed prairie biomass
Jungers, Jacob M.; Trost, Jared J.; Lehman, Clarence L.; Tilman, David; Booth, Elaine
2011-01-01
Marginally productive land, such as that enrolled in the Conservation Reserve Program (CRP), may provide acreage and economic incentives for cellulosic energy production. Improving the yields from these lands will help establish a biomass producer?s position in the marketplace. The effects of water and nitrogen on biomass yields were investigated in both a plot-scale experiment and a broad-scale survey of CRP lands. The plot-scale experiment demonstrated that irrigation improved mixed-species prairie biomass yields more than nitrogen fertilizer on coarse-textured, marginally productive soils. Experimental plots amended with both irrigation and moderate (but not high) nitrogen produced more biomass than other treatment combinations, but this trend was not statistically significant. The survey of biomass yields on CRP lands across four Midwestern States indicates that yields are better correlated with June rainfall than any other individual month. Applying nutrient-enriched water such as agricultural runoff could benefit prairie yields if applied at appropriate times.
A “clearcut” case? Brown bear selection of coarse woody debris and carpenter ants on clearcuts
Frank, Shane C.; Steyaert, Sam M.J.G.; Swenson, Jon E.; Storch, Ilse; Kindberg, Jonas; Barck, Hanna; Zedrosser, Andreas
2015-01-01
Forest management alters habitat characteristics, resulting in various effects among and within species. It is crucial to understand how habitat alteration through forest management (e.g. clearcutting) affects animal populations, particularly with unknown future conditions (e.g. climate change). In Sweden, brown bears (Ursus arctos) forage on carpenter ants (Camponotus herculeanus) during summer, and may select for this food source within clearcuts. To assess carpenter ant occurrence and brown bear selection of carpenter ants, we sampled 6999 coarse woody debris (CWD) items within 1019 plots, of which 902 were within clearcuts (forests ⩽30 years of age) and 117 plots outside clearcuts (forests >30 years of age). We related various CWD and site characteristics to the presence or absence of carpenter ant galleries (nests) and bear foraging sign at three spatial scales: the CWD, plot, and clearcut scale. We tested whether both absolute and relative counts (the latter controlling for the number of CWD items) of galleries and bear sign in plots were higher inside or outside clearcuts. Absolute counts were higher inside than outside clearcuts for galleries (mean counts; inside: 1.8, outside: 0.8). CWD was also higher inside (mean: 6.8) than outside clearcuts (mean: 4.0). However, even after controlling for more CWD inside clearcuts, relative counts were higher inside than outside clearcuts for both galleries (mean counts; inside: 0.3, outside: 0.2) and bear sign (mean counts; inside: 0.03, outside: 0.01). Variables at the CWD scale best explained gallery and bear sign presence than variables at the plot or clearcut level, but bear selection was influenced by clearcut age. CWD circumference was important for both carpenter ant and bear sign presence. CWD hardness was most important for carpenter ant selection. However, the most important predictor for bear sign was the presence or absence of carpenter ant galleries. Bears had a high foraging “success” rate (⩾88%) in foraging CWD where galleries also occurred, which was assessed by summing CWD items with the concurrence of bear sign and galleries, divided by the sum of all CWD with bear sign. Clearcuts appeared to increase the occurrence of a relatively important summer food item, the carpenter ant, on Swedish managed forests for the brown bear. However, the potential benefit of this increase can only be determined from a better understanding of the seasonal and interannual variation of the availability and use of other important brown bear food items, berries (e.g. Vaccinium myrtillus and Empetrum spp.), as well as other primary needs for bears (e.g. secure habitat and denning habitat), within the landscape mosaic of managed forests. PMID:26190890
John Hogland; Nathaniel Anderson; Joseph St. Peter; Jason Drake; Paul Medley
2018-01-01
Accurate information is important for effective management of natural resources. In the field of forestry, field measurements of forest characteristics such as species composition, basal area, and stand density are used to inform and evaluate management activities. Quantifying these metrics accurately across large landscapes in a meaningful way is extremely important...
Bruce G. Marcot; Janet L. Ohmann; Kim L. Mellen-McLean; Karen L. Waddell
2010-01-01
We used novel methods for combining information from wildlife and vegetation field studies to develop guidelines for managing dead wood for wildlife and biodiversity. The DecAID Decayed Wood Adviser presents data on wildlife use of standing and down dead trees (snags and down wood) and summaries of regional vegetation plot data depicting dead wood conditions, for...
A Graphical User Interface for the Low Cost Combat Direction System
1991-09-16
the same tasks. These shipboard tasks, which include contact management , moving geometry calculations, intelligence compila- tion, area plotting and...Display Defaults Analysis This category covers a wide range of required data input and system configuration issues. To keep the screen display manageable ...parts or dialog boxes. The implementation of an Ada application using STARS is quite straightforward, although knowlede of X Protocol primitives is
SouthPro : a computer program for managing uneven-aged loblolly pine stands
Benedict Schulte; Joseph Buongiorno; Ching-Rong Lin; Kenneth E. Skog
1998-01-01
SouthPro is a Microsoft Excel add-in program that simulates the management, growth, and yield of uneven-aged loblolly pine stands in the Southern United States. The built-in growth model of this program was calibrated from 991 uneven-aged plots in seven states, covering most growing conditions and sites. Stands are described by the number of trees in 13 size classes...
Impact of straw mulch on populations of onion thrips (Thysanoptera: Thripidae) in onion.
Larentzaki, E; Plate, J; Nault, B A; Shelton, A M
2008-08-01
Development of insecticide resistance in onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), populations in onion (Allium spp.) fields and the incidence of the T. tabaci transmitted Iris yellow spot virus have stimulated interest in evaluating alternative management tactics. Effects of straw mulch applied in commercial onion fields in muck areas of western New York were assessed in 2006 and 2007 as a possible onion thrips management strategy. In trials in which no insecticides were applied for thrips control, straw mulch-treated plots supported significantly lower T. tabaci populations compared with control plots. In both years, the action thresholds of one or three larvae per leaf were reached in straw mulch treatments between 7 and 14 d later than in the control. Ground predatory fauna, as evaluated by pitfall trapping, was not increased by straw mulch in 2006; however, populations of the common predatory thrips Aeolothrips fasciatus (L.) (Thysanoptera: Aeolothripidae) were significantly lower in straw mulch plots in both years. Interference of straw mulch in the pupation and emergence of T. tabaci was investigated in the lab and their emergence was reduced by 54% compared with bare soil. In the field the overall yield of onions was not affected by the straw mulch treatment; however, the presence of jumbo grade onions (>77 mm) was increased in 2006, but not in 2007. These results indicate that populations of T. tabaci adults and larvae can be significantly reduced by the use of straw mulch without compromising overall onion yield. The use of this cultural practice in an onion integrated pest management program seems promising.
High-fidelity national carbon mapping for resource management and REDD+
2013-01-01
Background High fidelity carbon mapping has the potential to greatly advance national resource management and to encourage international action toward climate change mitigation. However, carbon inventories based on field plots alone cannot capture the heterogeneity of carbon stocks, and thus remote sensing-assisted approaches are critically important to carbon mapping at regional to global scales. We advanced a high-resolution, national-scale carbon mapping approach applied to the Republic of Panama – one of the first UN REDD + partner countries. Results Integrating measurements of vegetation structure collected by airborne Light Detection and Ranging (LiDAR) with field inventory plots, we report LiDAR-estimated aboveground carbon stock errors of ~10% on any 1-ha land parcel across a wide range of ecological conditions. Critically, this shows that LiDAR provides a highly reliable replacement for inventory plots in areas lacking field data, both in humid tropical forests and among drier tropical vegetation types. We then scale up a systematically aligned LiDAR sampling of Panama using satellite data on topography, rainfall, and vegetation cover to model carbon stocks at 1-ha resolution with estimated average pixel-level uncertainty of 20.5 Mg C ha-1 nationwide. Conclusions The national carbon map revealed strong abiotic and human controls over Panamanian carbon stocks, and the new level of detail with estimated uncertainties for every individual hectare in the country sets Panama at the forefront in high-resolution ecosystem management. With this repeatable approach, carbon resource decision-making can be made on a geospatially explicit basis, enhancing human welfare and environmental protection. PMID:23866822
Suzuki, Yasuko; Roby, Daniel D.; Lyons, Donald E.; Courtot, Karen; Collis, Ken
2015-01-01
Double-crested cormorants (Phalacrocorax auritus) have been identified as the source of significant mortality to juvenile salmonids (Oncorhynchus spp.) in the Columbia River Basin. Management plans for reducing the size of a large colony on East Sand Island (OR, USA) in the Columbia River estuary are currently being developed. We evaluated habitat enhancement and social attraction as nondestructive techniques for managing cormorant nesting colonies during 2004–2007. We tested these techniques on unoccupied plots adjacent to the East Sand Island cormorant colony. Cormorants quickly colonized these plots and successfully raised young. Cormorants also were attracted to nest and raised young on similar plots at 2 islands approximately 25 km from East Sand Island; 1 island had a history of successful cormorant nesting whereas the other was a site where cormorants had previously nested unsuccessfully. On a third island with no history of cormorant nesting or nesting attempts, these techniques were unsuccessful at attracting cormorants to nest. Our results suggest that some important factors influencing attraction of nesting cormorants using these techniques include history of cormorant nesting, disturbance, and presence of breeding cormorants nearby. These techniques may be effective in redistributing nesting cormorants away from areas where fish stocks of conservation concern are susceptible to predation, especially if sites with a recent history of cormorant nesting are available within their foraging or dispersal range. Published 2015. Wiley Periodicals, Inc. This article is a US Government work and, as such, is in the public domain in the United States of America.
Assessment of soil ecosystem in degraded areas of vineyards after organic treatments
NASA Astrophysics Data System (ADS)
Landi, Silvia; D'Errico, Giada; Gagnarli, Elena; Simoni, Sauro; Goggioli, Donatella; Guidi, Silvia; D'Avino, Lorenzo; Lagomarsino, Alessandra; Valboa, Giuseppe; Castaldini, Maurizio; Elio Agnelli, Alessandro; Fantappiè, Maria; Lorenzetti, Romina; Priori, Simone; Costantini, Edoardo A. C.
2017-04-01
In Italian vineyards, it is quite common to have areas characterized by problems in vine health, grape production and quality, often caused by improper land preparation before vine plantation and/or management. Causes for soil malfunctioning can include reduced contribution of the soil fauna to the ecosystem services such as nutrient cycles and organic matter turnover. ReSolVe is a transnational and interdisciplinary project, supported by Core-Organic+ program, aimed at testing the effects of selective agronomic strategies for restoring optimal soil functionality in degraded areas within organic vineyard. For this purpose, the evaluation and biomonitoring of the abundance of soil mesofauna, nematodes and microarthropods, represents an efficient tool to characterize the effects of crop management on soil quality. Assessing enzyme activities involved in the main biogeochemical cycling of C, N, P and S can also provide indication of soil functions and health status. Italian experimental plots are situated in two commercial farms in Tuscany: i) Fontodi, Panzano in Chianti (FI), which has been managed organically for more than 20 years and ii) San Disdagio, Roccastrada (GR), under organic farming since 2014. In each farm, three plots (250 m2 each) in the degraded areas and three relative control plots in the non-degraded areas were selected. The different restoring strategies implemented in each area were: i) compost, produced on farm by manure + pruning residue + grass, ii) faba bean and winter barley green manure, iii) dry mulching after sowing with Trifolium squarrosum L. Each treated and control plot has been studied for soil nematodes, microarthropods, enzymatic activity, and organic matter turnover using tea-bag index, as well as total organic carbon (TOC) and total nitrogen (TN). Soil sampling was carried out to 0-30 cm depth for TOC, TN, enzymes and nematodes and to 10 cm for microarthropods. Tea-bag index was determined following the Keuskamp et al. method (2013), in order to gather data on decomposition rate and litter stabilisation by using commercially available tea bags as standardised test kits. The extraction of nematodes and microarthropods were performed by the Bermann method and the Berlese-Tullgren selector, respectively. The biological soil quality was evaluated by the Maturity Index of nematodes (MI) and Biological Soil Quality index of microarthropods (QBSar). The results from soil sampling before restoring showed significantly lower values of SOC and TN in degraded areas, but no significant differences between degraded and non-degraded areas for enzymes, QBSar, nematode abundance and MI. Fontodi farm, under organic management since many years, showed significantly higher abundance of microarthropods, nematodes and enzymes than San Disdagio farm. The application of restoration techniques in 2016 showed a significant increase of TOC and TN only under compost addition treatment. As regards microarthropod communities, all the treatments showed a sensible increase in abundance and the conservation of high QBSar values. All the treatments increased the fungal feeder activity of nematodes and decreased the number of plant parasitic nematodes taxa. The major pest of grapes, the virus-vector Xiphinema index (Longidoridae), disappeared in the treated plots, whereas it remained in the control plots.
Methodology of project management at implementation of projects of high-rise construction
NASA Astrophysics Data System (ADS)
Papelniuk, Oksana
2018-03-01
High-rise construction is the perspective direction in urban development. An opportunity to arrange on rather small land plot a huge number of the living and commercial space makes high-rise construction very attractive for developers. However investment projects of high-rise buildings' construction are very expensive and complex that sets a task of effective management of such projects for the company builder. The best tool in this area today is the methodology of project management, which becomes a key factor of efficiency.
Using US Forest Inventory (FIA) Data to Test for Growth Enhancement
NASA Astrophysics Data System (ADS)
Masek, J. G.; Collatz, G. J.; Williams, C. A.
2015-12-01
It is recognized that land ecosystems sequester a significant fraction of anthropogenic carbon emissions, and that the magnitude of the "land sink" appears to be increasing through time. This observation has led to the hypothesis that forest ecosystems are experiencing more rapid growth than their historical norm, due to some combination of CO2 fertilization, longer growing seasons, nitrogen deposition, and more intensive management. Direct evidence for growth enhancment has been reported from experimental plots, where long-term (historical) rates of biomass accumulation appear lower than contemporary rates derived from remeasurement of individual trees. However, the approach has not been pursued at a national scale. Since the late 1990's the US Forest Inventory and Analysis (FIA) program has standardized plot locations across the United States, and has systematically remeasured tree and plot attributes on 5-year (east) or 10-year (west) cycles. In principle, these remeasured plots provide a robust dataset for comparing contemporary and historical growth rates. In this talk we review approaches for performing this comparison at both plot and tree scales. We find that recent plot-level biomass accumulation rates from the eastern US do show more rapid growth than would be expected from historical biomass-age curves, with enhancement factors of up 2x. However, the implicit inclusion of "cryptic" or older disturbances in the historical curves hinders a definitive interpretation. Stand-level age-biomass simulations confirm that disturbance events must be included in the remeasured data set in order to provide comparability with historical curves. Remeasured DBH measurements from individual trees may provide a more robust approach for examining the issue.
Amazonian landscapes and the bias in field studies of forest structure and biomass.
Marvin, David C; Asner, Gregory P; Knapp, David E; Anderson, Christopher B; Martin, Roberta E; Sinca, Felipe; Tupayachi, Raul
2014-12-02
Tropical forests convert more atmospheric carbon into biomass each year than any terrestrial ecosystem on Earth, underscoring the importance of accurate tropical forest structure and biomass maps for the understanding and management of the global carbon cycle. Ecologists have long used field inventory plots as the main tool for understanding forest structure and biomass at landscape-to-regional scales, under the implicit assumption that these plots accurately represent their surrounding landscape. However, no study has used continuous, high-spatial-resolution data to test whether field plots meet this assumption in tropical forests. Using airborne LiDAR (light detection and ranging) acquired over three regions in Peru, we assessed how representative a typical set of field plots are relative to their surrounding host landscapes. We uncovered substantial mean biases (9-98%) in forest canopy structure (height, gaps, and layers) and aboveground biomass in both lowland Amazonian and montane Andean landscapes. Moreover, simulations reveal that an impractical number of 1-ha field plots (from 10 to more than 100 per landscape) are needed to develop accurate estimates of aboveground biomass at landscape scales. These biases should temper the use of plots for extrapolations of forest dynamics to larger scales, and they demonstrate the need for a fundamental shift to high-resolution active remote sensing techniques as a primary sampling tool in tropical forest biomass studies. The potential decrease in the bias and uncertainty of remotely sensed estimates of forest structure and biomass is a vital step toward successful tropical forest conservation and climate-change mitigation policy.
Althoff, Donald P.; Gipson, P.S.; Pontius, J.S.; Japuntich, R.D.
2009-01-01
We compared an index of reproductive success based on breeding behavior to actual nest fates of grasshopper sparrows (Ammodramus savannarum) and eastern meadowlarks (Sturnella magna) on 12 plots (4-ha). Concordance of results between the two methods was 58% for grasshopper sparrows and 42% for eastern meadowlarks on a plot-by-plot basis. The indirect method yielded higher estimates of reproductive activity than nest monitoring for the balance of the plots,. There was little evidence that brown-headed cowbird (Molothrus ater) parasitism influenced the estimates of reproductive success using the indirect method. We concluded that nests and about-to-fledge nestlings were missed during searches on some plots. It may be appropriate to use an indirect method to more efficiently survey territories and/or plots for species with hard-to-find nests or when monitoring large areas. Use of a reproductive index may be appropriate and more time-efficient than nest searching and monitoring for comparing management effects such as burning, grazing, haying, military training, and other localized disturbances that are likely to affect reproductive success of grasshopper sparrows and eastern meadowlarks. However, nest monitoring may be necessary for more precise estimates of productivity necessary for long-term monitoring. Nest monitoring results are also likely to allow for direct comparisons to results from other studies because the index method requires intimate knowledge of the species being evaluated - a factor that could lead to reduced precision because the experience level of technicians relying only on behavioral cues from study-to-study is likely to vary considerably.
Kumar, S.; Simonson, S.E.; Stohlgren, T.J.
2009-01-01
We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.
Hattab-Hambli, Nour; Motelica-Heino, Mikael; Mench, Michel
2016-02-01
Copper-contaminated soils were managed with aided phytoextraction in 31 field plots at a former wood preservation site, using a single incorporation of compost (OM) and dolomitic limestone (DL) followed by a crop rotation with tobacco and sunflower. Six amended plots, with increasing total soil Cu, and one unamended plot were selected together with a control uncontaminated plot. The mobility and phytoavailability of Cu, Zn, Cr and As were investigated after 2 and 3 years in soil samples collected in these eight plots. Total Cu, Zn, Cr and As concentrations were determined in the soil pore water (SPW) and available soil Cu and Zn fractions by DGT. The Cu, Zn, Cr and As phytoavailability was characterized by growing dwarf beans on potted soils and determining the biomass of their plant parts and their foliar ionome. Total Cu concentrations in the SPW increased with total soil Cu. Total Cu, Zn, Cr and As concentrations in the SPW decreased in year 3 as compared to year 2, likely due to annual shoot removals by the plants and the lixiviation. Available soil Cu and Zn fractions also declined in year 3. The Cu, Zn, Cr and As phytoavailability, assessed by their concentration and mineral mass in the primary leaves of beans, was reduced in year 3. Copyright © 2015 Elsevier Ltd. All rights reserved.
Piñero, Jaime C; Mau, Ronald F L; Vargas, Roger I
2009-06-01
The efficacy of GF-120 NF Naturalyte Fruit Fly Bait in combination with field sanitation was assessed as a control for female oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in papaya (Carica papaya L.) orchards in Hawaii. Three different bait spray regimes were evaluated: every row (high use of the bait), every fifth row (moderate use), and every 10th row (low use). Orchard plots in which no bait was applied served as controls. For five of the seven biweekly periods that followed the first bait spray, trapping data revealed significantly fewer female B. dorsalis captured in plots subject to high and moderate bait use than in control plots. Differences in incidence of infestation among treatments were detected only by the third (12 wk after first spray) fruit sampling with significantly fewer infested one-fourth to one-half ripe papaya fruit in plots subject to high and moderate bait use than in control plots. Parasitism rates by Fopius arisanus (Sonan) (Hymenoptera: Braconidae) were not negatively affected by bait application. Results indicate that foliar applications of GF-120 NF Naturalyte Fruit Fly Bait either to all rows (every other tree), or to every fifth row (every tree) in combination with good sanitation can effectively reduce infestation by B. dorsalis in papaya orchards in Hawaii.
Crop juxtaposition affects cotton fiber quality in Georgia farmscapes.
Toews, Michael D; Shurley, W Donald
2009-08-01
Phytophagous stink bugs (Hemiptera: Pentatomidae), including green stink bug [Acrosternum hilare (Say)], southern green stink bug [Nezara viridula (L.)], and brown stink bug [Euschistus servus (Say)], have become a serious production issue for southeastern U.S. cotton, Gossypium hirsutum L., growers. To investigate how different agronomic crops may affect stink bug damage and fiber quality in neighboring cotton fields, replicated 1.6-2.0-ha trials were planted with corn (Zea mays L.), peanut (Arachis hypogaea L.), and soybean [Glycine max (L.) Merr.] bordering a centrally located cotton plot (each of the four crops composed of approximately 0.4-0.5 ha per trial). Three trials were conducted in 2007 and three additional trials were conducted in 2008. Stink bug damage in the cotton plot was sampled weekly during weeks 3 through 6 of bloom at distances of 0.5, 5.3, 9.6, and 18.7 m from the adjacent crop. At the end of the year, representative lint samples at distances of 0.5, 9.6, 18.7, and 31.8 m from each adjacent crop were mechanically harvested, ginned, and classed. Results show that boll damage, seedcotton yield, gin turnout, fiber color, and lint value were negatively affected when the cotton was located adjacent to peanut and soybean. Regardless of the adjacent crop, there were no differences among yield and fiber quality parameters comparing seedcotton obtained 18.7 m from the plot edge and samples obtained from the middle of the cotton plot (approximately 31.8 m from an adjacent crop). These data suggest that integrated pest management programs for the stink bug complex in cotton may include farmscape level planning and targeted interventions as opposed to a crop specific management approach.
Using Discursis to enhance the qualitative analysis of hospital pharmacist-patient interactions.
Chevalier, Bernadette A M; Watson, Bernadette M; Barras, Michael A; Cottrell, William N; Angus, Daniel J
2018-01-01
Pharmacist-patient communication during medication counselling has been successfully investigated using Communication Accommodation Theory (CAT). Communication researchers in other healthcare professions have utilised Discursis software as an adjunct to their manual qualitative analysis processes. Discursis provides a visual, chronological representation of communication exchanges and identifies patterns of interactant engagement. The aim of this study was to describe how Discursis software was used to enhance previously conducted qualitative analysis of pharmacist-patient interactions (by visualising pharmacist-patient speech patterns, episodes of engagement, and identifying CAT strategies employed by pharmacists within these episodes). Visual plots from 48 transcribed audio recordings of pharmacist-patient exchanges were generated by Discursis. Representative plots were selected to show moderate-high and low- level speaker engagement. Details of engagement were investigated for pharmacist application of CAT strategies (approximation, interpretability, discourse management, emotional expression, and interpersonal control). Discursis plots allowed for identification of distinct patterns occurring within pharmacist-patient exchanges. Moderate-high pharmacist-patient engagement was characterised by multiple off-diagonal squares while alternating single coloured squares depicted low engagement. Engagement episodes were associated with multiple CAT strategies such as discourse management (open-ended questions). Patterns reflecting pharmacist or patient speaker dominance were dependant on clinical setting. Discursis analysis of pharmacist-patient interactions, a novel application of the technology in health communication, was found to be an effective visualisation tool to pin-point episodes for CAT analysis. Discursis has numerous practical and theoretical applications for future health communication research and training. Researchers can use the software to support qualitative analysis where large data sets can be quickly reviewed to identify key areas for concentrated analysis. Because Discursis plots are easily generated from audio recorded transcripts, they are conducive as teaching tools for both students and practitioners to assess and develop their communication skills.
Determining erosion relevant soil characteristics with a small-scale rainfall simulator
NASA Astrophysics Data System (ADS)
Schindewolf, M.; Schmidt, J.
2009-04-01
The use of soil erosion models is of great importance in soil and water conservation. Routine application of these models on the regional scale is not at least limited by the high parameter demands. Although the EROSION 3D simulation model is operating with a comparable low number of parameters, some of the model input variables could only be determined by rainfall simulation experiments. The existing data base of EROSION 3D was created in the mid 90s based on large-scale rainfall simulation experiments on 22x2m sized experimental plots. Up to now this data base does not cover all soil and field conditions adequately. Therefore a new campaign of experiments would be essential to produce additional information especially with respect to the effects of new soil management practices (e.g. long time conservation tillage, non tillage). The rainfall simulator used in the actual campaign consists of 30 identic modules, which are equipped with oscillating rainfall nozzles. Veejet 80/100 (Spraying Systems Co., Wheaton, IL) are used in order to ensure best possible comparability to natural rainfalls with respect to raindrop size distribution and momentum transfer. Central objectives of the small-scale rainfall simulator are - effectively application - provision of comparable results to large-scale rainfall simulation experiments. A crucial problem in using the small scale simulator is the restriction on rather small volume rates of surface runoff. Under this conditions soil detachment is governed by raindrop impact. Thus impact of surface runoff on particle detachment cannot be reproduced adequately by a small-scale rainfall simulator With this problem in mind this paper presents an enhanced small-scale simulator which allows a virtual multiplication of the plot length by feeding additional sediment loaded water to the plot from upstream. Thus is possible to overcome the plot length limited to 3m while reproducing nearly similar flow conditions as in rainfall experiments on standard plots. The simulator is extensively applied to plots of different soil types, crop types and management systems. The comparison with existing data sets obtained by large-scale rainfall simulations show that results can adequately be reproduced by the applied combination of small-scale rainfall simulator and sediment loaded water influx.
NASA Astrophysics Data System (ADS)
Molina, Antonio Jaime; Llorens, Pilar; Aranda, Xavier; Savé, Robert; Biel, Carmen
2013-04-01
Variability of soil water content is known to increase with the size of spatial domain in which measurements are taken. At field scale, heterogeneity in soil, vegetation, topography, water input volume and management affects, among other factors, hydrologic plot behaviour under different mean soil water contents. The present work studies how the spatial variability of soil water content (SWC) is affected by soil type (texture, percentage of stones and the combination of them) in a timber-orientated plantation of cherry tree (Prunus avium) under Mediterranean climatic conditions. The experimental design is a randomized block one with 3 blocks * 4 treatments, based on two factors: irrigation (6 plots irrigated versus 6 plots not irrigated) and soil management (6 plots tillaged versus 6 plots not tillaged). SWC is continuously measured at 25, 50 and 100 cm depth with FDR sensors, located at two positions in each treatment: under tree influence and 2.5 m apart. This study presents the results of the monitoring during 2012 of the 24 sensors located at the 25 cm depth. In each of the measurement point, texture and percentage of stones were measured. Sandy-loam, sandy-clay-loam and loam textures were found together with a percentage of stones ranging from 20 to 70 %. The results indicated that the relationship between the daily mean SWC and its standard deviation, a common procedure used to study spatial variability, changed with texture, percentage of stones and the estimation of field capacity from the combination of both. Temporal stability analysis of SWC showed a clear pattern related to field capacity, with the measurement points of the sandy-loam texture and the high percentage of stones showing the maximun negative diference with the global mean. The high range in the mean relative difference observed (± 75 %), could indicate that the studied plot may be considered as a good field-laboratory to extrapolate results at higher spatial scales. Furthermore, the pattern in the temporal stability of tree growth was clearly related to that one in SWC. Nevertheless, the treatments that represent the mean conditions in growth were not exactly the same than those in SWC, which could be attributable to other characteristics than soil.
Stand Table Construction from Relascope Plots.
Charles B. Briscoe
1957-01-01
When timber is cruised using relascope, basal area and volume figures are obtained without constructing a stand table, through the use of appropriate conversion factors. Although this saving in time is very desirable for most inventories, certain management purposes require stand tables.
Burgio, G; Marchesini, E; Reggiani, N; Montepaone, G; Schiatti, P; Sommaggio, D
2016-12-01
The effect of cover plants on arthropod functional biodiversity was investigated in a vineyard in Northern Italy, through a 3-year field experiment. The following six ground cover plants were tested: Sweet Alyssum; Phacelia; Buckwheat; Faba Bean; Vetch and Oat; control. Arthropods were sampled using different techniques, including collection of leaves, vacuum sampling and sweeping net. Ground cover plant management significantly affected arthropod fauna, including beneficial groups providing ecosystem services like biological control against pests. Many beneficial groups were attracted by ground cover treatments in comparison with control, showing an aggregative numerical response in the plots managed with some of the selected plant species. Alyssum, Buckwheat and 'Vetch and Oat' mixture showed attractiveness on some Hymenoptera parasitoid families, which represented 72.3% of the insects collected by sweeping net and 45.7 by vacuum sampling. Phytoseiidae mites showed a significant increase on leaves of the vineyard plots managed with ground covers, in comparison with control, although they did not show any difference among the treatments. In general, the tested ground cover treatments did not increase dangerous Homoptera populations in comparison with control, with the exception of Alyssum. The potential of ground cover plant management in Italian vineyards is discussed: the overall lack of potential negative effects of the plants tested, combined with an aggregative numerical response for many beneficials, seems to show a potential for their use in Northern Italy vineyards.
Lindner, Daniel L; Burdsall, Harold H; Stanosz, Glen R
2006-01-01
Effects of forest management on fungal diversity were investigated by sampling fruit bodies of polyporoid and corticioid fungi in forest stands that have different management histories. Fruit bodies were sampled in 15 northern hardwood stands in northern Wisconsin and the upper peninsula of Michigan. Sampling was conducted in five old-growth stands, five uneven-age stands, three even-age unthinned stands and two even-age thinned stands. Plots 100 m x 60 m were established and 3000 m2 within each plot was sampled during the summers of 1996 and 1997. A total of 255 polyporoid and corticioid morphological species were identified, 46 (18%) of which could not be assigned to a described species. Species accumulation curves for sites and management classes differed from straight lines, although variability from year to year suggests that more than 2 y of sampling are needed to characterize annual variation. Mean species richness and diversity index values did not vary significantly by management class, although mean richness on large diameter wood (> or = 15 cm diam) varied with moderate significance. Richness values on small diameter debris varied significantly by year, indicating that a large part of year-to-year variability in total species richness is due to small diameter debris. Ten species had abundance levels that varied by management class. Two of these species. Changes in the diversity and species composition of the wood-inhabiting fungal community could have significant implications for the diversity, health and productivity of forest ecosystems.
Integrated Control and Assessment of Knapweed and Cheatgrass on Department of Defense Installations
2005-01-01
SEFa/Olpidium chytrids at CO spotted knapweed (Centaurea maculosa Lam.) infested site managed by varied combinations of sucrose amendment, seeding and...hyphal lengths, and percent active hyphae, at CO Spotted Knapweed (Centaurea maculosa Lam.) infested site managed by varied combinations of sucrose...exotic and desirable (native non-invasive) plant species in CO plots infested with spotted knapweed (Centaurea maculosa Lam.) after three years of
Changes in a Missouri Ozark oak-hickory forest during 40 years of uneven-aged management
Edward F. Loewenstein; Harold E. Garrett; John P. Dwyer
1995-01-01
Changes in basal area, density and average diameter were examined on a 156,000-acre privately owned oak-hickory forest in the Missouri Ozarks. The forest has been managed since 1954 using the single-tree selection method. Trees greater than five inches dbh were monitored on 486 one-fifth-acre permanent plots at five year intervals from 1962 through 1992. Seven species/...
CalPro: a spreadsheet program for the management of California mixed-conifer stands.
Jingjing Liang; Joseph Buongiorno; Robert A. Monserud
2004-01-01
CalPro is an add-in program developed to work with Microsoft Excel to simulate the growth and management of uneven-aged mixed-conifer stands in California. Its built-in growth model was calibrated from 177 uneven-aged plots on industry and other private lands. Stands are described by the number of trees per acre in each of nineteen 2-inch diameter classes in...
Differential Responses of Herbivores and Herbivory to Management in Temperate European Beech
Gossner, Martin M.; Pašalić, Esther; Lange, Markus; Lange, Patricia; Boch, Steffen; Hessenmöller, Dominik; Müller, Jörg; Socher, Stephanie A.; Fischer, Markus; Schulze, Ernst-Detlef; Weisser, Wolfgang W.
2014-01-01
Forest management not only affects biodiversity but also might alter ecosystem processes mediated by the organisms, i.e. herbivory the removal of plant biomass by plant-eating insects and other arthropod groups. Aiming at revealing general relationships between forest management and herbivory we investigated aboveground arthropod herbivory in 105 plots dominated by European beech in three different regions in Germany in the sun-exposed canopy of mature beech trees and on beech saplings in the understorey. We separately assessed damage by different guilds of herbivores, i.e. chewing, sucking and scraping herbivores, gall-forming insects and mites, and leaf-mining insects. We asked whether herbivory differs among different forest management regimes (unmanaged, uneven-aged managed, even-aged managed) and among age-classes within even-aged forests. We further tested for consistency of relationships between regions, strata and herbivore guilds. On average, almost 80% of beech leaves showed herbivory damage, and about 6% of leaf area was consumed. Chewing damage was most common, whereas leaf sucking and scraping damage were very rare. Damage was generally greater in the canopy than in the understorey, in particular for chewing and scraping damage, and the occurrence of mines. There was little difference in herbivory among differently managed forests and the effects of management on damage differed among regions, strata and damage types. Covariates such as wood volume, tree density and plant diversity weakly influenced herbivory, and effects differed between herbivory types. We conclude that despite of the relatively low number of species attacking beech; arthropod herbivory on beech is generally high. We further conclude that responses of herbivory to forest management are multifaceted and environmental factors such as forest structure variables affecting in particular microclimatic conditions are more likely to explain the variability in herbivory among beech forest plots. PMID:25119984
Does plant diversity affect the water balance of established grassland systems?
NASA Astrophysics Data System (ADS)
Leimer, Sophia; Bischoff, Sebastian; Blaser, Stefan; Boch, Steffen; Busch, Verena; Escher, Peter; Fischer, Markus; Kaupenjohann, Martin; Kerber, Katja; Klaus, Valentin; Michalzik, Beate; Prati, Daniel; Schäfer, Deborah; Schmitt, Barbara; Schöning, Ingo; Schwarz, Martin T.; Siemens, Jan; Thieme, Lisa; Wilcke, Wolfgang
2017-04-01
The water cycle drives nutrient cycles and plant productivity. The impact of land use on the water cycle has been extensively studied and there is experimental evidence that biodiversity modifies the water cycle in grasslands. However, the combined influences of land-use and associated biodiversity on the water cycle in established land-use systems are unclear. Therefore, we investigated how evapotranspiration (ETa), downward water flux (DF), and capillary rise (CR) in topsoil and subsoil are related to land-use and plant diversity in established, commercially managed grassland and compared these results to findings from experiments where plant diversity was manipulated. In three Central European regions ("Biodiversity Exploratories"), we studied 29 grassland plots (50 m x 50 m; 9-11 plots per region) from 2010 to 2015. The land-use types cover pasture, mown pasture, and meadow in at least triplicate per region. On each plot, we measured soil water contents, meteorological data (hourly resolution), cumulative precipitation (biweekly), plant species richness, the number of plants in the functional groups of grasses, herbs, and legumes (annually), and root biomass (once). Potential evapotranspiration (ETp) was calculated from meteorological data per plot. Missing data points of ETp and soil water contents were estimated with Bayesian hierarchical models. ETa, DF, and CR were calculated for two soil layers with a soil water balance model. The model is based on changes in soil water storage between subsequent observation dates and ETp, which was partitioned between soil layers according to root distribution. Water fluxes in annual resolution were statistically analyzed for land-use and biodiversity effects using repeated-measures analysis of variance (ANOVA). Land-use type did not affect water fluxes. Species richness did not influence DF and CR. DF from topsoil was higher on plots with more grass species, which is opposite to the results from a manipulative biodiversity experiment. The number of grasses and herbs influenced CR into topsoil. ETa from topsoil decreased with increasing species richness while ETa from subsoil increased. Opposing effects on ETa in the two soil layers were also observed for the numbers of herb and legume species. In manipulative biodiversity experiments, opposing effects on ETa from different soil layers are explained by higher plant cover and biomass in species-rich mixtures, reducing evaporation by shading of the topsoil, and deeper roots in species-rich mixtures, facilitating water use and increasing transpiration from subsoil. In our study, biomass decreased with increasing species richness because fertilizer application increased biomass production and decreased species richness. Plots with more grasses showed lower ETa from topsoil than plots with less grasses. However, the within-subject effects indicated higher ETa from topsoil in years with more grasses on individual plots than in years with less grasses. The latter finding complies with the results from a manipulative biodiversity experiment, which has homogeneous soil properties and management. The opposite between-subject effect is probably caused by variations in environmental conditions between plots. This indicates that processes controlling the biodiversity-water cycle relationship vary in real-world systems with environmental conditions, which are largely controlled for in manipulative biodiversity experiments.
Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed
2014-11-01
Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of vertical structure will be more accurate in plots having low herbaceous cover and high amounts of dense shrubs. Through the use of statistically derived correction factors or choosing field methods that better correlate with the imagery, vegetation heights from HR DSMs could be a valuable technique for broad-scale rangeland monitoring needs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gillan, Jeffrey K.; Karl, Jason W.; Duniway, Michael; Elaksher, Ahmed
2014-01-01
Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of vertical structure will be more accurate in plots having low herbaceous cover and high amounts of dense shrubs. Through the use of statistically derived correction factors or choosing field methods that better correlate with the imagery, vegetation heights from HR DSMs could be a valuable technique for broad-scale rangeland monitoring needs.
Behavioural Resistance in Insects: Its Potential Use as Bio Indicator of Organic Agriculture
NASA Astrophysics Data System (ADS)
Gómez-Guzmán, J. A.; García-Marín, F. J.; Sáinz-Pérez, M.; González-Ruiz, R.
2017-12-01
Most of the investigations carried out on the resistance of insects to pesticides have been focused on the physiological and biochemical mechanisms. However, the behavioural answers that pesticide induces in the insects have received very little attention. The symptoms from getting pesticides on the cuticular surface of insects, as neurotoxical pre mortem effects, include spasmodic activity, hyperactivity and leak of the surfaces impregnated by the pesticides. These reactions provides a first barrier of defense, named behavioural resistance. Previous experiments carried out on olive groves usually subjected to pesticide application have allowed to visualize a reaction of leak of the natural enemies from treated areas, which is reflected as an increase of its rate of capture in sticky chromatic traps, in relation to the free of pesticides areas, on olive groves, usually subjected to pesticide application. The aim of this investigation is to evaluate the reaction of these insects’ species under different agricultural pest management: i- A conventional olive grove, where pesticides are usually applied; and ii- An organic olive grove, where pest management depends exclusively on the role of the natural enemies. During the spring of 2016, experimental applications have been carried out in two olive groves of the province of Jaén (south of Spain) by means of a commercial pesticide application, in order to evaluate the reactions induced in the main species of olive predators. Six pairs of plots were randomly selected in both conventional and organic olive groves, three of these were pesticide sprayed, whereas a second series of three plots were free of pesticide application. Sticky yellow traps were installed in both treated and control plots just after application of pesticide. The results allow to determine the existence of two different reactions of the predators in both types of olive groves. In the plots of the conventional management, a significant increase of the capture values was observed. However, in the ecological groves, the same insects’ species showed a lack of behavioural resistance. The ecological implications of this study open a new field of research, which provides new criteria to assess the qualification of the organic agriculture.
Effects of management of ecosystem carbon pools and fluxes in grassland ecosystems
NASA Astrophysics Data System (ADS)
Ryals, R.; Silver, W. L.
2010-12-01
Grasslands represent a large land-use footprint and have considerable potential to sequester carbon (C) in soil. Climate policies and C markets may provide incentives for land managers to pursue strategies that optimize soil C storage, yet we lack robust understanding of C sequestration in grasslands. Previous research has shown that management approaches such as organic amendments or vertical subsoiling can lead to larger soil C pools. These management approaches can both directly and indirectly affect soil C pools. We used well-replicated field experiments to explore the effects of these management strategies on ecosystem C pools and fluxes in two bioclimatic regions of California (Sierra Foothills Research and Extension Center (SFREC) and Nicasio Ranch). Our treatments included an untreated control, compost amendments, plowed (vertical subsoil), and compost + plow. The experiment was conducted over two years allowing us to compare dry (360 mm) and average (632 mm) rainfall conditions. Carbon dioxide (CO2) fluxes were measured weekly using a LI-8100 infrared gas analyzer. Methane (CH4) and nitrous oxide (N2O) fluxes were measured monthly using static flux chambers. Aboveground and belowground biomass were measured at the end of the growing season as an index of net primary productivity (NPP) in the annual plant dominated system. Soil moisture and temperature were measured continuously and averaged on hourly and daily timescales. Soil organic C and N concentrations were measured prior to the application of management treatments and at the ends of each growing season. Soils were collected to a 10 cm depth in year one and at four depth increments (0-10, 10-30, 30-50, and 50-100 cm) in year two. Soil C and N concentrations were converted to content using bulk density values for each plot. During both growing seasons, soil respiration rates were higher in the composted plots and lower in the plowed plots relative to controls at both sites. The effects on C loss via soil respiration were stronger in the first year, with compost soils experiencing a 21 ± 1 % greater cumulative loss at SFREC and 16 ± 3 % more at Nicasio. The second year showed a similar trend, but with a lower magnitude loss. Aboveground NPP responded positively to compost additions and negatively to plowing at both sites. At SFREC, we measured 58 % more ANPP in composted relative to control plots in year one (369 vs 230 g C/m2) and 56 % more in year two (327 vs 209 g C/m2). Aboveground NPP on plowed plots was 129 g C/m2 in year one, and 185 g C/m2 in year two. Plowed soils also showed a significant decline in soil C and N concentrations (C= 2.67 ± 0.13%, N = 0.20 ± 0.01%). Compost additions increased soil C and N concentrations (C= 3.92 ± 0.29%, N = 0.32 ± 0.02%) relative to control soils (C= 3.52 ± 0.20%, N = 0.27 ± 0.07%). Throughout the experiment, we did not detect significant treatment differences in CH4 or N2O fluxes, nor did we detect significant differences at any individual sampling point. These results suggest that compost addition can lead to an increase in ecosystem C storage, with a small offset from elevated soil respiration.
Calibrating and testing a gap model for simulating forest management in the Oregon Coast Range
Pabst, R.J.; Goslin, M.N.; Garman, S.L.; Spies, T.A.
2008-01-01
The complex mix of economic and ecological objectives facing today's forest managers necessitates the development of growth models with a capacity for simulating a wide range of forest conditions while producing outputs useful for economic analyses. We calibrated the gap model ZELIG to simulate stand-level forest development in the Oregon Coast Range as part of a landscape-scale assessment of different forest management strategies. Our goal was to incorporate the predictive ability of an empirical model with the flexibility of a forest succession model. We emphasized the development of commercial-aged stands of Douglas-fir, the dominant tree species in the study area and primary source of timber. In addition, we judged that the ecological approach of ZELIG would be robust to the variety of other forest conditions and practices encountered in the Coast Range, including mixed-species stands, small-scale gap formation, innovative silvicultural methods, and reserve areas where forests grow unmanaged for long periods of time. We parameterized the model to distinguish forest development among two ecoregions, three forest types and two site productivity classes using three data sources: chronosequences of forest inventory data, long-term research data, and simulations from an empirical growth-and-yield model. The calibrated model was tested with independent, long-term measurements from 11 Douglas-fir plots (6 unthinned, 5 thinned), 3 spruce-hemlock plots, and 1 red alder plot. ZELIG closely approximated developmental trajectories of basal area and large trees in the Douglas-fir plots. Differences between simulated and observed conifer basal area for these plots ranged from -2.6 to 2.4 m2/ha; differences in the number of trees/ha ???50 cm dbh ranged from -8.8 to 7.3 tph. Achieving these results required the use of a diameter-growth multiplier, suggesting some underlying constraints on tree growth such as the temperature response function. ZELIG also tended to overestimate regeneration of shade-tolerant trees and underestimate total tree density (i.e., higher rates of tree mortality). However, comparisons with the chronosequences of forest inventory data indicated that the simulated data are within the range of variability observed in the Coast Range. Further exploration and improvement of ZELIG is warranted in three key areas: (1) modeling rapid rates of conifer tree growth without the need for a diameter-growth multiplier; (2) understanding and remedying rates of tree mortality that were higher than those observed in the independent data; and (3) improving the tree regeneration module to account for competition with understory vegetation. ?? 2008 Elsevier B.V.
Berry, Kristin H.; Lyren, Lisa M.; Yee, Julie L.; Bailey, Tracy Y.
2014-01-01
We surveyed an area of ∼260 km2 in the western Mojave Desert to evaluate relationships between condition of Agassiz's Desert Tortoise populations (Gopherus agassizii) and habitat on lands that have experienced three different levels of management and protection. We established 240 1-ha plots using random sampling, with 80 plots on each of the three types of managed lands. We conducted surveys in spring 2011 and collected data on live tortoises, shell-skeletal remains, other signs of tortoises, perennial vegetation, predators, and evidence of human use. Throughout the study area and regardless of management area, tortoise abundance was positively associated with one of the more diverse associations of perennial vegetation. The management area with the longest history of protection, a fence, and legal exclusion of livestock and vehicles had significantly more live tortoises and lower death rates than the other two areas. Tortoise presence and abundance in this protected area had no significant positive or negative associations with predators or human-related impacts. In contrast, the management area with a more recent exclusion of livestock, limited vehicular traffic, and with a recent, partial fence had lower tortoise densities and high death rates. Tortoise abundance here was negatively associated with vehicle tracks and positively associated with mammalian predators and debris from firearms. The management area with the least protection—unfenced, with uncontrolled vehicle use, sheep grazing, and high trash counts—also had low tortoise densities and high death rates. Tortoise abundance was negatively associated with sheep grazing and positively associated with trash and mammalian predator scat.cat.
Rice, Pamela J; Horgan, Brian P
2011-11-01
The presence of excess nutrients in surface waters can result in undesirable environmental and economic consequences, including nuisance algal blooms and eutrophication. Fertilizer use in highly managed turf systems has raised questions concerning the contribution of nutrients to surrounding surface waters. Experiments were designed to quantify phosphorus and nitrogen transport with runoff from turf plots maintained as a golf course fairway to identify which cultural practice, solid tine (ST) or hollow tine (HT) core cultivation, maximized phosphorus and nitrogen retention at the site of fertilizer application. Simulated precipitation and collection of resulting runoff were completed 26 ± 13 h following granular fertilizer application (18-3-18: N-P₂O₅-K₂O) and 63 d and 2 d following core cultivation. Runoff volumes were reduced in fairway turf plots aerated with HT relative to ST (63 d: 10%, 2 d: 55% reduction). Analysis of the runoff revealed a reduction in soluble phosphorus, ammonium nitrogen, and nitrate nitrogen losses with runoff from plots managed with HT; a 5 to 27% reduction after 63 d; and a 39 to 77% reduction at 2 d. Golf course runoff-to-surface water scenarios were used to calculate estimated environmental concentrations (EECs) of nitrogen and phosphorus in surface water receiving runoff from turf managed with ST or HT core cultivation. Surface water concentrations of phosphorus remained above the U.S. Environmental Protection Agency's water quality criteria to limit eutrophication, with the exception of concentrations associated with HT core cultivation at 2 d. Regardless of management practice (ST or HT) and time between core cultivation and runoff (63 d or 2 d), all EECs of nitrogen were below levels associated with increased algal growth. Understanding nutrient transport with runoff and identifying strategies that reduce off-site transport will increase their effectiveness at intended sites of application and minimize undesirable effects to surrounding surface water resources. Copyright © 2011 SETAC.
Hess, Steven C.; Leopold, Christina R.; Kendall, Steven J.
2015-01-01
The Hakalau Forest Unit (HFU) of Big Island National Wildlife Refuge Complex (BINWRC) has intensively managed feral cattle (Bos taurus) and pigs (Sus scrofa) and monitored non-native ungulate presence and distribution during surveys of all managed areas since 1988. We: 1) provide results from recent ungulate surveys at HFU to determine current feral pig abundance and distribution; 2) present results of surveys of ungulate presence and distribution at the Kona Forest Unit (KFU); 3) present results of surveys of weed presence and cover at both refuge units; and 4) present baseline results from long-term vegetation monitoring plots at KFU. Overall pig abundance appears to have decreased at HFU, although not significantly, over the period from 2010 to 2014. Management units 2 and 4 contained the majority of pigs at HFU. Pig density outside of adjacent managed areas has declined significantly from 2010 to 2014 for unknown reasons. Ungulate sign occurred in > 50% of plots at KFU during the November 2012 and September 2013 surveys, but ungulate sign occurred in < 28% of plots during three other surveys. The ability to differentiate sign of ungulate species remains problematic at KFU. Changes in weed cover do not yet demonstrate any strong temporal pattern. Spatial patterns are more pronounced; however, some weed species may not be reliably represented due to observers’ abilities to recognize less common weeds. Nonetheless, the distribution and cover of fireweed (Senecio madagascariensis) at KFU may have increased over the study period. Vegetation surveys documented baseline floristic composition and forest structure at KFU. It is not known if this current amount of emerging cover is sufficient for long-term self-sustaining forest canopy regeneration; however, numerous ‘ōhi‘a seedlings were found in the wet forest and mesic ‘ōhi‘a habitats, indicating an ample viable seed source and robust potential for forest regeneration.
Germaine, Stephen S.; Ignizio, Drew; Keinath, Doug; Copeland, Holly
2014-01-01
Species distribution models are an important component of natural-resource conservation planning efforts. Independent, external evaluation of their accuracy is important before they are used in management contexts. We evaluated the classification accuracy of two species distribution models designed to predict the distribution of pygmy rabbit Brachylagus idahoensis habitat in southwestern Wyoming, USA. The Nature Conservancy model was deductive and based on published information and expert opinion, whereas the Wyoming Natural Diversity Database model was statistically derived using historical observation data. We randomly selected 187 evaluation survey points throughout southwestern Wyoming in areas predicted to be habitat and areas predicted to be nonhabitat for each model. The Nature Conservancy model correctly classified 39 of 77 (50.6%) unoccupied evaluation plots and 65 of 88 (73.9%) occupied plots for an overall classification success of 63.3%. The Wyoming Natural Diversity Database model correctly classified 53 of 95 (55.8%) unoccupied plots and 59 of 88 (67.0%) occupied plots for an overall classification success of 61.2%. Based on 95% asymptotic confidence intervals, classification success of the two models did not differ. The models jointly classified 10.8% of the area as habitat and 47.4% of the area as nonhabitat, but were discordant in classifying the remaining 41.9% of the area. To evaluate how anthropogenic development affected model predictive success, we surveyed 120 additional plots among three density levels of gas-field road networks. Classification success declined sharply for both models as road-density level increased beyond 5 km of roads per km-squared area. Both models were more effective at predicting habitat than nonhabitat in relatively undeveloped areas, and neither was effective at accounting for the effects of gas-energy-development road networks. Resource managers who wish to know the amount of pygmy rabbit habitat present in an area or wanting to direct gas-drilling efforts away from pygmy rabbit habitat may want to consider both models in an ensemble manner, where more confidence is placed in mapped areas (i.e., pixels) for which both models agree than for areas where there is model disagreement.
Vallejo, Mariana; Casas, Alejandro; Pérez-Negrón, Edgar; Moreno-Calles, Ana I; Hernández-Ordoñez, Omar; Tellez, Oswaldo; Dávila, Patricia
2015-02-19
Agroforestry systems (AFS) are valuable production systems that allow concealing benefits provision with conservation of biodiversity and ecosystem services. We analysed AFS of the zone of alluvial valleys of the Tehuacán-Cuicatlán Valley (TCV), Mexico, the most intensive agricultural systems within a region recognized for harbouring one of the most ancient agricultural experience of the New World. We hypothesized that the biodiversity conservation capacity of AFS would be directly related to traditional agricultural features and inversely related to management intensity. Agricultural practices, use frequency of machinery and chemical inputs, and proportion of forest and cultivated areas were described in 15 AFS plots in alluvial valleys of the Salado River in three villages of the region. With the information, we constructed a management intensity index and compared among plots and villages. We documented the reasons why people maintain wild plant species and traditional practices. Perennial plant species were sampled in vegetation of AFS (15 plots) and unmanaged forests (12 plots 500 m(2)) in order to compare richness, diversity and other ecological indicators in AFS and forest. In all studied sites, people combine traditional and intensive agricultural practices. Main agroforestry practices are ground terraces and borders surrounding AFS plots where people maintain vegetation. According to people, the reasons for maintaining shrubs and trees in AFS were in order of importance are: Beauty and shade provision (14% of people), fruit provision (7%), protection against strong wind, and favouring water and soil retention. We recorded 66 species of trees and shrubs in the AFS studied, 81% of them being native species that represent 38% of the perennial plant species recorded in forests sampled. Land tenure and institutions vary among sites but not influenced the actions for maintaining the vegetation cover in AFS. Plant diversity decreased with increasing agricultural intensity. Maintenance of vegetation cover did not confront markedly with the intensive agricultural practices. It is possible the expansion and enrichment of vegetation in terraces and borders of AFS. Information available on plant species and local techniques is potentially useful for a regional program of biodiversity conservation considering AFS as keystones.
Impacts of spinosad and λ-cyhalothrin on spider communities in cabbage fields in south Texas.
Liu, T-X; Irungu, R W; Dean, D A; Harris, M K
2013-04-01
Spiders are a principal arthropod group that preys on numerous pests of vegetables and other crops. In this study, we determined the effects of the two most commonly used insecticides, spinosad and λ-cyhalothrin, on diversity of spiders on cabbage in south Texas. In two seasons (fall 2008 and spring 2009), we collected a total of 588 spiders belonging to 53 species in 11 families from spinosad and λ-cyhalothrin-treated cabbages and the untreated control plants. A great majority of spiders were collected from the pitfall traps (554) where only a few (34) were collected from the blower/vacuum sampling. In the insecticide-treated plots, there were significantly fewer spider individuals, species and families than in untreated fields. Spinosad had significantly less effect on spiders in total individuals, number of species and families than λ-cyhalothrin. The effects of the two insecticides were further demonstrated by the Shannon-Weiner index (H') and the hierarchical richness index (HRI). Spider diversity in the spinosad-treated plots were not significantly different from that in the untreated fields but were greater than those in λ-cyhalothrin-treated plots in both seasons when measured by H' values. In contrast, the H' values of spider's diversity in the λ-cyhalothrin-treated plots were significantly lower than spinosad-treated and untreated plots. High values of HRI for spider richness in the spinosad-treated plots suggested that spinosad had less effect on spiders than λ-cyhalothrin. We concluded that spinosad was more compatible with spiders on cabbage compared to λ-cyhalothrin and that this information should be used when developing insecticide resistance management strategies.
NASA Astrophysics Data System (ADS)
Fraterrigo, J.; Ream, K.; Knoepp, J.
2017-12-01
Forest insects and pathogens (FIPs) can cause uncertain changes in forest carbon balance, potentially influencing global atmospheric carbon dioxide (CO2) concentrations. We quantified the effects of hemlock (Tsuga canadensis L. Carr.) mortality on soil carbon fluxes and pools for a decade following either girdling or natural infestation by hemlock woolly adelgid (HWA; Adelges tsugae) to improve mechanistic understanding of soil carbon cycling response to FIPs. Although soil respiration (Rsoil) was similar among reference plots and plots with hemlock mortality, both girdled and HWA-infested plots had greater activities of β-glucosidase, a cellulose-hydrolyzing extracellular enzyme, and decreased O-horizon mass and fine root biomass from 2005 to 2013. During this period, total mineral soil carbon accumulated at a higher rate in disturbed plots than in reference plots in both the surface (0-10 cm) and subsurface (10-30 cm); increases were predominantly in the mineral-associated fraction of the soil organic matter. In contrast, particulate organic matter carbon accrued slowly in surface soils and declined in the subsurface of girdled plots. δ13C values of this fraction demonstrate that particulate organic matter carbon in the surface soil has become more microbially processed over time, suggesting enhanced decomposition of organic matter in this pool. Together, these findings indicate that hemlock mortality and subsequent forest regrowth has led to enhanced soil carbon stabilization in southern Appalachian forests through the translocation of carbon from detritus and particulate soil organic matter pools to the mineral-associated organic matter pool. These findings have implications for ecosystem management and modeling, demonstrating that forests may tolerate moderate disturbance without diminishing soil carbon storage when there is a compensatory growth response by non-host trees.
Indirect effects of domestic and wild herbivores on butterflies in an African savanna
Wilkerson, Marit L; Roche, Leslie M; Young, Truman P
2013-01-01
Indirect interactions driven by livestock and wild herbivores are increasingly recognized as important aspects of community dynamics in savannas and rangelands. Large ungulate herbivores can both directly and indirectly impact the reproductive structures of plants, which in turn can affect the pollinators of those plants. We examined how wild herbivores and cattle each indirectly affect the abundance of a common pollinator butterfly taxon, Colotis spp., at a set of long-term, large herbivore exclosure plots in a semiarid savanna in central Kenya. We also examined effects of herbivore exclusion on the main food plant of Colotis spp., which was also the most common flowering species in our plots: the shrub Cadaba farinosa. The study was conducted in four types of experimental plots: cattle-only, wildlife-only, cattle and wildlife (all large herbivores), and no large herbivores. Across all plots, Colotis spp. abundances were positively correlated with both Cadaba flower numbers (adult food resources) and total Cadaba canopy area (larval food resources). Structural equation modeling (SEM) revealed that floral resources drove the abundance of Colotis butterflies. Excluding browsing wildlife increased the abundances of both Cadaba flowers and Colotis butterflies. However, flower numbers and Colotis spp. abundances were greater in plots with cattle herbivory than in plots that excluded all large herbivores. Our results suggest that wild browsing herbivores can suppress pollinator species whereas well-managed cattle use may benefit important pollinators and the plants that depend on them. This study documents a novel set of ecological interactions that demonstrate how both conservation and livelihood goals can be met in a working landscape with abundant wildlife and livestock. PMID:24198932
US army land condition-trend analysis (LCTA) program
NASA Astrophysics Data System (ADS)
Diersing, Victor E.; Shaw, Robert B.; Tazik, David J.
1992-05-01
The US Army Land Condition-Trend Analysis (LCTA) program is a standardized method of data collection, analysis, and reporting designed to meet multiple goals and objectives. The method utilizes vascular plant inventories, permanent field plot data, and wildlife inventories. Vascular plant inventories are used for environmental documentation, training of personnel, species identification during LCTA implementation, and as a survey for state and federal endangered or threatened species. The permanent field plot data documents the vegetational, edaphic, topographic, and disturbance characteristics of the installation. Inventory plots are allocated in a stratified random fashion across the installation utilizing a geographic information system that integrates satellite imagery and soil survey information. Ground cover, canopy cover, woody plant density, slope length, slope gradient, soil information, and disturbance data are collected at each plot. Plot data are used to: (1) describe plant communities, (2) characterize wildlife and threatened and endangered species habitat, (3) document amount and kind of military and nonmilitary disturbance, (4) determine the impact of military training on vegetation and soil resources, (5) estimate soil erosion potential, (6) classify land as to the kind and amount of use it can support, (7) determine allowable use estimates for tracked vehicle training, (8) document concealment resources, (9) identify lands that require restoration and evaluate the effectiveness of restorative techniques, and (10) evaluate potential acquisition property. Wildlife inventories survey small and midsize mammals, birds, bats, amphibians, and reptiles. Data from these surveys can be used for environmental documentation, to identify state and federal endangered and threatened species, and to evaluate the impact of military activities on wildlife populations. Short- and long-term monitoring of permanent field plots is used to evaluate and adjust land management decisions.
Wells, James E.; Bono, James L.; Woodbury, Bryan L.; Kalchayanand, Norasak; Norman, Keri N.; Suslow, Trevor V.; López-Velasco, Gabriela; Millner, Patricia D.
2014-01-01
The impact of proximity to a beef cattle feedlot on Escherichia coli O157:H7 contamination of leafy greens was examined. In each of 2 years, leafy greens were planted in nine plots located 60, 120, and 180 m from a cattle feedlot (3 plots at each distance). Leafy greens (270) and feedlot manure samples (100) were collected six different times from June to September in each year. Both E. coli O157:H7 and total E. coli bacteria were recovered from leafy greens at all plot distances. E. coli O157:H7 was recovered from 3.5% of leafy green samples per plot at 60 m, which was higher (P < 0.05) than the 1.8% of positive samples per plot at 180 m, indicating a decrease in contamination as distance from the feedlot was increased. Although E. coli O157:H7 was not recovered from air samples at any distance, total E. coli was recovered from air samples at the feedlot edge and all plot distances, indicating that airborne transport of the pathogen can occur. Results suggest that risk for airborne transport of E. coli O157:H7 from cattle production is increased when cattle pen surfaces are very dry and when this situation is combined with cattle management or cattle behaviors that generate airborne dust. Current leafy green field distance guidelines of 120 m (400 feet) may not be adequate to limit the transmission of E. coli O157:H7 to produce crops planted near concentrated animal feeding operations. Additional research is needed to determine safe set-back distances between cattle feedlots and crop production that will reduce fresh produce contamination. PMID:25452286
Patterns of plant invasions: A case example in native species hotspots and rare habitats
Stohlgren, T.J.; Otsuki, Yuka; Villa, C.A.; Lee, M.; Belnap, J.
2001-01-01
Land managers require landscape-scale information on where exotic plant species have successfully established, to better guide research, control, and restoration efforts. We evaluated the vulnerability of various habitats to invasion by exotic plant species in a 100,000 ha area in the southeast corner of Grand Staircase-Escalante National Monument, Utah. For the 97 0.1-ha plots in 11 vegetation types, exotic species richness (log10) was strongly negatively correlated to the cover of cryptobiotic soil crusts (r = −0.47, P < 0.001), and positively correlated to native species richness (r = 0.22, P < 0.03), native species cover (r = 0.23, P < 0.05), and total nitrogen in the soil (r = 0.40, P < 0.001). Exotic species cover was strongly positively correlated to exotic species richness (r = 0.68, P < 0.001). Only 6 of 97 plots did not contain at least one exotic species. Exotic species richness was particularly high in locally rare, mesic vegetation types and nitrogen rich soils. Dry, upland plots (n = 51) had less than half of the exotic species richness and cover compared to plots (n = 45) in washes and lowland depressions that collect water intermittently. Plots dominated by trees had significantly greater native and exotic species richness compared to plots dominated by shrubs. For the 97 plots combined, 33% of the variance in exotic species richness could be explained by a positive relationship with total plant cover, and negative relationships with the cover of cryptobiotic crusts and bare ground. There are several reasons for concern: (1) Exotic plant species are invading hot spots of native plant diversity and rare/unique habitats. (2) The foliar cover of exotic species was greatest in habitats that had been invaded by several exotic species.(3) Continued disturbance of fragile cryptobiotic crusts by livestock, people, and vehicles may facilitate the further invasion of exotic plant species.
Andrew T. Hudak; Benjamin C. Bright; Scott M. Pokswinski; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Carine Klauberg; Carlos A. Silva
2016-01-01
Eglin Air Force Base (AFB) in Florida, in the United States, conserves a large reservoir of native longleaf pine (Pinus palustris Mill.) stands that land managers maintain by using frequent fires. We predicted tree density, basal area, and dominant tree species from 195 forest inventory plots, low-density airborne LiDAR, and Landsat data available across the entirety...
Jingjing Liang; Joseph Buongiorno; Robert A. Monserud
2006-01-01
WestProPlus is an add-in program developed to work with Microsoft Excel to simulate the growth and management of all-aged Douglas-firâwestern hemlock (Pseudotsuga menziesii (Mirb.) FrancoâTsuga heterophylla (Raf.) Sarg.) stands in Oregon and Washington. Its built-in growth model was calibrated from 2,706 permanent plots in the...
Eileen H. Helmer; Thomas S. Ruzycki; Jay Benner; Shannon M. Voggesser; Barbara P. Scobie; Courtenay Park; David W. Fanning; Seepersad Ramnarine
2012-01-01
Tropical forest managers need detailed maps of forest types for REDD+, but spectral similarity among forest types; cloud and scan-line gaps; and scarce vegetation ground plots make producing such maps with satellite imagery difficult. How can managers map tropical forest tree communities with satellite imagery given these challenges? Here we describe a case study of...
João A.N. Filipe; Richard C. Cobb; Maëlle Salmon; David M. Rizzo; Christopher A. Gilligan
2013-01-01
Phytophthora ramorum has continued to spread in forests in the western United States, the United Kingdom, and the Republic of Ireland, and continues to challenge vegetation and ecosystems in temperate regions (Brasier and Webber 2010, Grünwald et al. 2012). Disease management in the wild has been applied with some success in localized outbreaks in...
Kakinuma, Kaoru; Sasaki, Takehiro; Jamsran, Undarmaa; Okuro, Toshiya; Takeuchi, Kazuhiko
2014-10-01
Applying the threshold concept to rangeland management is an important challenge in semi-arid and arid regions. Threshold recognition and prediction is necessary to enable local pastoralists to prevent the occurrence of an undesirable state that would result from unsustainable grazing pressure, but this requires a better understanding of the pastoralists' perception of vegetation threshold changes. We estimated plant species cover in survey plots along grazing gradients in steppe and desert-steppe areas of Mongolia. We also conducted interviews with local pastoralists and asked them to evaluate whether the plots were suitable for grazing. Floristic composition changed nonlinearly along the grazing gradient in both the desert-steppe and steppe areas. Pastoralists observed the floristic composition changes along the grazing gradients, but their evaluations of grazing suitability did not always decrease along the grazing gradients, both of which included areas in a post-threshold state. These results indicated that local pastoralists and scientists may have different perceptions of vegetation states, even though both of groups used plant species and coverage as indicators in their evaluations. Therefore, in future studies of rangeland management, researchers and pastoralists should exchange their knowledge and perceptions to successfully apply the threshold concept to rangeland management.
Pilot climate data system: A state-of-the-art capability in scientific data management
NASA Technical Reports Server (NTRS)
Smith, P. H.; Treinish, L. A.; Novak, L. V.
1983-01-01
The Pilot Climate Data System (PCDS) was developed by the Information Management Branch of NASA's Goddard Space Flight Center to manage a large collection of climate-related data of interest to the research community. The PCDS now provides uniform data catalogs, inventories, access methods, graphical displays and statistical calculations for selected NASA and non-NASA data sets. Data manipulation capabilities were developed to permit researchers to easily combine or compare data. The current capabilities of the PCDS include many tools for the statistical survey of climate data. A climate researcher can examine any data set of interest via flexible utilities to create a variety of two- and three-dimensional displays, including vector plots, scatter diagrams, histograms, contour plots, surface diagrams and pseudo-color images. The graphics and statistics subsystems employ an intermediate data storage format which is data-set independent. Outside of the graphics system there exist other utilities to select, filter, list, compress, and calculate time-averages and variances for any data of interest. The PCDS now fully supports approximately twenty different data sets and is being used on a trial basis by several different in-house research grounds.
Telis, Pamela A.; Henkel, Heather
2009-01-01
The Everglades Depth Estimation Network (EDEN) is an integrated system of real-time water-level monitoring, ground-elevation data, and water-surface elevation modeling to provide scientists and water managers with current on-line water-depth information for the entire freshwater part of the greater Everglades. To assist users in applying the EDEN data to their particular needs, a series of five EDEN tools, or applications (EDENapps), were developed. Using EDEN's tools, scientists can view the EDEN datasets of daily water-level and ground elevations, compute and view daily water depth and hydroperiod surfaces, extract data for user-specified locations, plot transects of water level, and animate water-level transects over time. Also, users can retrieve data from the EDEN datasets for analysis and display in other analysis software programs. As scientists and managers attempt to restore the natural volume, timing, and distribution of sheetflow in the wetlands, such information is invaluable. Information analyzed and presented with these tools is used to advise policy makers, planners, and decision makers of the potential effects of water management and restoration scenarios on the natural resources of the Everglades.
Generic Space Science Visualization in 2D/3D using SDDAS
NASA Astrophysics Data System (ADS)
Mukherjee, J.; Murphy, Z. B.; Gonzalez, C. A.; Muller, M.; Ybarra, S.
2017-12-01
The Southwest Data Display and Analysis System (SDDAS) is a flexible multi-mission / multi-instrument software system intended to support space physics data analysis, and has been in active development for over 20 years. For the Magnetospheric Multi-Scale (MMS), Juno, Cluster, and Mars Express missions, we have modified these generic tools for visualizing data in two and three dimensions. The SDDAS software is open source and makes use of various other open source packages, including VTK and Qwt. The software offers interactive plotting as well as a Python and Lua module to modify the data before plotting. In theory, by writing a Lua or Python module to read the data, any data could be used. Currently, the software can natively read data in IDFS, CEF, CDF, FITS, SEG-Y, ASCII, and XLS formats. We have integrated the software with other Python packages such as SPICE and SpacePy. Included with the visualization software is a database application and other utilities for managing data that can retrieve data from the Cluster Active Archive and Space Physics Data Facility at Goddard, as well as other local archives. Line plots, spectrograms, geographic, volume plots, strip charts, etc. are just some of the types of plots one can generate with SDDAS. Furthermore, due to the design, output is not limited to strictly visualization as SDDAS can also be used to generate stand-alone IDL or Python visualization code.. Lastly, SDDAS has been successfully used as a backend for several web based analysis systems as well.
Yao, Yong-Sheng; Han, Peng; Niu, Chang-Ying; Dong, Yong-Cheng; Gao, Xi-Wu; Cui, Jin-Jie; Desneux, Nicolas
2016-01-01
Top-down force is referred to arthropod pest management delivered by the organisms from higher trophic levels. In the context of prevalent adoption of transgenic Bt crops that produce insecticidal Cry proteins derived from Bacillus thuringiensis (Bt), it still remains elusive whether the top-down forces are affected by the insect-resistant traits that introduced into the Bt crops. We explored how Bt cotton affect the strength of top-down forces via arthropod natural enemies in regulating a non-target pest species, the cotton aphid Aphis gossypii Glover, using a comparative approach (i.e. Bt cotton vs. conventional cotton) under field conditions. To determine top-down forces, we manipulated predation/parasitism exposure of the aphid to their natural enemies using exclusion cages. We found that the aphid population growth was strongly suppressed by the dominant natural enemies including Coccinellids, spiders and Aphidiines parasitoids. Coccinellids, spiders and the assemblage of other arthropod natural enemies (mainly lacewings and Hemipteran bugs) are similarly abundant in both plots, but with the parasitoid mummies less abundant in Bt cotton plots compared to the conventional cotton plots. However, the lower abundance of parasitoids in Bt cotton plots alone did not translate into differential top-down control on A. gossypii populations compared to conventional ones. Overall, the top-down forces were equally strong in both plots. We conclude that transgenic Bt cotton does not disrupt the top-down forces regulating the cotton aphid in central China. PMID:27870914
Weed manipulation for insect pest management in corn
NASA Astrophysics Data System (ADS)
Altieri, M. A.; Whitcomb, W. H.
1980-11-01
Populations of insect pests and associated predaceous arthropods were sampled by direct observation and other relative methods in simple and diversified corn habitats at two sites in north Florida during 1978 and 1979. Through various cultural manipulations, characteristic weed communities were established selectively in alternate rows within corn plots. Fall armyworm ( Spodoptera frugiperda J. E. Smith) incidence was consistently higher in the weed-free habitats than in the corn habitats containing natural weed complexes or selected weed associations. Corn earworm ( Heliothis zea Boddie) damage was similar in all weed-free and weedy treatments, suggesting that this insect is not affected greatly by weed diversity. Only the diversification of corn with a strip of soybean significantly reduced corn earworm damage. In one site, distance between plots was reduced. Because predators moved freely between habitats, it was difficult to identify between-treatment differences in the composition of predator communities. In the other site, increased distances between plots minimized such migrations, resulting in greater population densities and diversity of common foliage insect predators in the weed-manipulated corn systems than in the weed-free plots. Trophic relationships in the weedy habitats were more complex than food webs in monocultures. Predator diversity (measured as mean number of species per area) and predator density was higher in com plots surrounded by mature, complex vegetation than at those surrounded by annual crops. This suggests that diverse adjacent areas to crops provide refuge for predators, thus acting as colonization sources.
Fiscal output data produce versatile graphic-numeric charts
NASA Technical Reports Server (NTRS)
Powell, R. W.; Romo, J. J.
1971-01-01
Refined computerized plotting system produces low-cost graphic-numeric charts that illustrate fiscal data on monthly incremental or cumulative basis, or both. Output is in the form of hard copy or microfilm, or visual-aid transparencies prepared from hard copy for rapid management status presentations.
[Plot analysis in the dark coniferous ecosystem using GPS and GIS techniques].
Guan, Wenbin; Xie, Chunhua; Wu, Jian'an; Yu, Xinxiao; Chen, Gengwei; Li, Tongyang
2002-07-01
It is generally difficult to survey in primary forests located on high-altitude region. However, it is convenient to identify and to recognize plots accompanied by GPS and GIS techniques, which can also display the spatial pattern of arbors precisely. Using the method of rapid-static positioning cooperated with tape-measure, it is concluded that except some points, the positioning was relatively precise, the average value of RMS was 2.84, variance was 2.96, and delta B, delta L, and delta H were 1.2, 1.2, and 4.3 m with their variances being +/- 0.6, +/- 1.1, and +/- 21.1, respectively, which could meet the needs of forestry management sufficiently. Accompanied by some other models, many ecological processes under small and even medium scale, such as the dynamics of gap succession, could also be simulated visually by GIS. Therefore, the techniques of "2S" were patent for forest ecosystem management under the fine scale, especially in the area of high altitude.
NASA Astrophysics Data System (ADS)
Amarnath, N. S.; Pound, M. W.; Wolfire, M. G.
The Dust InfraRed ToolBox (DIRT - a part of the Web Infrared ToolShed, or WITS, located at http://dustem.astro.umd.edu) is a Java applet for modeling astrophysical processes in circumstellar shells around young and evolved stars. DIRT has been used by the astrophysics community for about 4 years. DIRT uses results from a number of numerical models of astrophysical processes, and has an AWT based user interface. DIRT has been refactored to decouple data representation from plotting and curve fitting. This makes it easier to add new kinds of astrophysical models, use the plotter in other applications, migrate the user interface to Swing components, and modify the user interface to add functionality (for example, SIRTF tools). DIRT is now an extension of two generic libraries, one of which manages data representation and caching, and the second of which manages plotting and curve fitting. This project is an example of refactoring with no impact on user interface, so the existing user community was not affected.
Trevisan, D; Vansteelant, J Y; Dorioz, J M
2002-01-01
The aim of this work is to achieve a better understanding of the behavior of fecal coliform populations on the vegetation and in the soil after slurry spreading in environmental conditions, typical of vegetative growth period in mountain hay meadows. Changes in fecal coliform populations on the vegetation and in the soil were monitored in situ for 3 months after slurry spreading on 9 plots. The variations found in populations are related to the agricultural, soil. and climatic characteristics of plots and to the moisture regime of soils. These observations are compared with laboratory experiments on undisturbed soil microcosms. In absence of water flux, survival durations recorded in the laboratory and in the field are of the same order of magnitude. The data enable us to pinpoint the influence of various factors affecting the decline and transfer of fecal bacteria in the plant-soil system and consequently to discuss the risk management of water contamination by agriculture.
Larsen, Matthew C.; Liu, Zhigang Liu; Zou, Xiaoming; Murphy, Sheila F.; Stallard, Robert F.
2012-01-01
Rainfall, slopewash (the erosion of soil particles), surface runoff, and fine-litter transport were measured in tropical wet forest on a hillslope in the Luquillo Experimental Forest, Puerto Rico, from February 1998 until April 2000. Slopewash data were collected using Gerlach troughs at eight plots, each 2 square meters in area. Earthworms were excluded by electroshocking from four randomly selected plots. The other four (control) plots were undisturbed. During the experiment, earthworm population in the electroshocked plots was reduced by 91 percent. At the end of the experiment, the electroshocked plots had 13 percent of earthworms by count and 6 percent by biomass as compared with the control plots. Rainfall during the sampling period (793 days) was 9,143 millimeters. Mean and maximum rainfall by sampling period (mean of 16 days) were 189 and 563 millimeters, respectively. Surface runoff averaged 0.6 millimeters and 1.2 millimeters by sampling period for the control and experimental plots, equal to 0.25 and 0.48 percent of mean rainfall, respectively. Disturbance of the soil environment by removal of earthworms doubled runoff and increased the transport (erosion) of soil and organic material by a factor of 4.4. When earthworms were removed, the erosion of mineral soil (soil mass left after ashing) and the transport of fine litter were increased by a factor of 5.3 and 3.4, respectively. It is assumed that increased runoff is a function of reduced soil porosity, resulting from decreased burrowing and reworking of the soil in the absence of earthworms. The background, or undisturbed, downslope transport of soil, as determined from the control plots, was 51 kilograms per hectare and the "disturbance" rate, determined from the experimental plots, was 261 kilograms per hectare. The background rate for downslope transport of fine litter was 71 kilograms per hectare and the disturbance rate was 246 kilograms per hectare. Data from this study indicate that the reduction in soil macrofauna population, in this case, earthworms, plays a key role in increasing runoff and soil erosion and, therefore, has important implications for forest and water management.
Mahmud, Iqbal; Kousik, Chandrasekar; Hassell, Richard; Chowdhury, Kamal; Boroujerdi, Arezue F
2015-09-16
Powdery mildew (PM) disease causes significant loss in watermelon. Due to the unavailability of a commercial watermelon variety that is resistant to PM, grafting susceptible cultivars on wild resistant rootstocks is being explored as a short-term management strategy to combat this disease. Nuclear magnetic resonance-based metabolic profiles of susceptible and resistant rootstocks of watermelon and their corresponding susceptible scions (Mickey Lee) were compared to screen for potential metabolites related to PM resistance using multivariate principal component analysis. Significant score plot differences between the susceptible and resistant groups were revealed through Mahalanobis distance analysis. Significantly different spectral buckets and their corresponding metabolites (including choline, fumarate, 5-hydroxyindole-3-acetate, and melatonin) have been identified quantitatively using multivariate loading plots and verified by volcano plot analyses. The data suggest that these metabolites were translocated from the powdery mildew resistant rootstocks to their corresponding powdery mildew susceptible scions and can be related to PM disease resistance.
The study on the real estate integrated cadastral information system based on shared plots
NASA Astrophysics Data System (ADS)
Xu, Huan; Liu, Nan; Liu, Renyi; Huang, Jie
2008-10-01
Solving the problem of the land property right on the shared parcel demands the integration of real estate information into cadastral management. Therefore a new cadastral feature named Shared Plot is introduced. After defining the shared plot clearly and describing its characteristics in detail, the impact resulting from the new feature on the traditional cadastral model composed of three cadastral features - parcels, parcel boundary lines and parcel boundary points is focused on and a four feature cadastral model that makes some amendments to the three feature one is put forward. The new model has been applied to the development of a new generation of real estate integrated cadastral information system, which incorporates real estate attribute and spatial information into cadastral database in addition to cadastral information. The system has been used in several cities of Zhejiang Province and got a favorable response. This verifies the feasibility and effectiveness of the model to some extent.
NASADIG - NASA DEVICE INDEPENDENT GRAPHICS LIBRARY (AMDAHL VERSION)
NASA Technical Reports Server (NTRS)
Rogers, J. E.
1994-01-01
The NASA Device Independent Graphics Library, NASADIG, can be used with many computer-based engineering and management applications. The library gives the user the opportunity to translate data into effective graphic displays for presentation. The software offers many features which allow the user flexibility in creating graphics. These include two-dimensional plots, subplot projections in 3D-space, surface contour line plots, and surface contour color-shaded plots. Routines for three-dimensional plotting, wireframe surface plots, surface plots with hidden line removal, and surface contour line plots are provided. Other features include polar and spherical coordinate plotting, world map plotting utilizing either cylindrical equidistant or Lambert equal area projection, plot translation, plot rotation, plot blowup, splines and polynomial interpolation, area blanking control, multiple log/linear axes, legends and text control, curve thickness control, and multiple text fonts (18 regular, 4 bold). NASADIG contains several groups of subroutines. Included are subroutines for plot area and axis definition; text set-up and display; area blanking; line style set-up, interpolation, and plotting; color shading and pattern control; legend, text block, and character control; device initialization; mixed alphabets setting; and other useful functions. The usefulness of many routines is dependent on the prior definition of basic parameters. The program's control structure uses a serial-level construct with each routine restricted for activation at some prescribed level(s) of problem definition. NASADIG provides the following output device drivers: Selanar 100XL, VECTOR Move/Draw ASCII and PostScript files, Tektronix 40xx, 41xx, and 4510 Rasterizer, DEC VT-240 (4014 mode), IBM AT/PC compatible with SmartTerm 240 emulator, HP Lasergrafix Film Recorder, QMS 800/1200, DEC LN03+ Laserprinters, and HP LaserJet (Series III). NASADIG is written in FORTRAN and is available for several platforms. NASADIG 5.7 is available for DEC VAX series computers running VMS 5.0 or later (MSC-21801), Cray X-MP and Y-MP series computers running UNICOS (COS-10049), and Amdahl 5990 mainframe computers running UTS (COS-10050). NASADIG 5.1 is available for UNIX-based operating systems (MSC-22001). The UNIX version has been successfully implemented on Sun4 series computers running SunOS, SGI IRIS computers running IRIX, Hewlett Packard 9000 computers running HP-UX, and Convex computers running Convex OS (MSC-22001). The standard distribution medium for MSC-21801 is a set of two 6250 BPI 9-track magnetic tapes in DEC VAX BACKUP format. It is also available on a set of two TK50 tape cartridges in DEC VAX BACKUP format. The standard distribution medium for COS-10049 and COS-10050 is a 6250 BPI 9-track magnetic tape in UNIX tar format. Other distribution media and formats may be available upon request. The standard distribution medium for MSC-22001 is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. Alternate distribution media and formats are available upon request. With minor modification, the UNIX source code can be ported to other platforms including IBM PC/AT series computers and compatibles. NASADIG is also available bundled with TRASYS, the Thermal Radiation Analysis System (COS-10026, DEC VAX version; COS-10040, CRAY version).
NASADIG - NASA DEVICE INDEPENDENT GRAPHICS LIBRARY (UNIX VERSION)
NASA Technical Reports Server (NTRS)
Rogers, J. E.
1994-01-01
The NASA Device Independent Graphics Library, NASADIG, can be used with many computer-based engineering and management applications. The library gives the user the opportunity to translate data into effective graphic displays for presentation. The software offers many features which allow the user flexibility in creating graphics. These include two-dimensional plots, subplot projections in 3D-space, surface contour line plots, and surface contour color-shaded plots. Routines for three-dimensional plotting, wireframe surface plots, surface plots with hidden line removal, and surface contour line plots are provided. Other features include polar and spherical coordinate plotting, world map plotting utilizing either cylindrical equidistant or Lambert equal area projection, plot translation, plot rotation, plot blowup, splines and polynomial interpolation, area blanking control, multiple log/linear axes, legends and text control, curve thickness control, and multiple text fonts (18 regular, 4 bold). NASADIG contains several groups of subroutines. Included are subroutines for plot area and axis definition; text set-up and display; area blanking; line style set-up, interpolation, and plotting; color shading and pattern control; legend, text block, and character control; device initialization; mixed alphabets setting; and other useful functions. The usefulness of many routines is dependent on the prior definition of basic parameters. The program's control structure uses a serial-level construct with each routine restricted for activation at some prescribed level(s) of problem definition. NASADIG provides the following output device drivers: Selanar 100XL, VECTOR Move/Draw ASCII and PostScript files, Tektronix 40xx, 41xx, and 4510 Rasterizer, DEC VT-240 (4014 mode), IBM AT/PC compatible with SmartTerm 240 emulator, HP Lasergrafix Film Recorder, QMS 800/1200, DEC LN03+ Laserprinters, and HP LaserJet (Series III). NASADIG is written in FORTRAN and is available for several platforms. NASADIG 5.7 is available for DEC VAX series computers running VMS 5.0 or later (MSC-21801), Cray X-MP and Y-MP series computers running UNICOS (COS-10049), and Amdahl 5990 mainframe computers running UTS (COS-10050). NASADIG 5.1 is available for UNIX-based operating systems (MSC-22001). The UNIX version has been successfully implemented on Sun4 series computers running SunOS, SGI IRIS computers running IRIX, Hewlett Packard 9000 computers running HP-UX, and Convex computers running Convex OS (MSC-22001). The standard distribution medium for MSC-21801 is a set of two 6250 BPI 9-track magnetic tapes in DEC VAX BACKUP format. It is also available on a set of two TK50 tape cartridges in DEC VAX BACKUP format. The standard distribution medium for COS-10049 and COS-10050 is a 6250 BPI 9-track magnetic tape in UNIX tar format. Other distribution media and formats may be available upon request. The standard distribution medium for MSC-22001 is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. Alternate distribution media and formats are available upon request. With minor modification, the UNIX source code can be ported to other platforms including IBM PC/AT series computers and compatibles. NASADIG is also available bundled with TRASYS, the Thermal Radiation Analysis System (COS-10026, DEC VAX version; COS-10040, CRAY version).
Carbon dynamics and aggregation in a Vicia faba crop: influence of management practice and cultivar
NASA Astrophysics Data System (ADS)
Sánchez-Navarro, Virginia; Zornoza, Raúl; Faz, Ángel; Fernández, Juan
2016-04-01
In this study, we assessed the influence of a legume crop (Vicia faba) on the soil properties related to the carbon (C) cycle and soil aggregation, taking into account two cultivars (Muchamiel and Palenca) and two different management practices (conventional and organic). The study was randomly designed in blocks with four replications, in plots of 10 m2. Faba bean crop spanned from 24 November 2014 to 2 March 2015. We took a soil sampling (0-30 cm) from each plot at the end of the cycle to measure soil organic C, recalcitrant C, labile C fractions, microbial biomass C (MBC), aggregate stability and the enzyme activities β-glucosidase, β-glucosaminidase, dehydrogenase, cellulose and arylesterase. Results showed that the cultivar and the management practice had no significant effect on any of the analyzed properties. Significant positive correlations were only observed between soil organic C and arylesterase activity, recalcitrant C and labile C fractions, and recalcitrant C with arylesterase and cellulase activities. So, it seems that the selected cultivars and management practices had similar effects on C dynamics and aggregation. Both management practices maintain the same levels of soil organic C, the different organic C pools, and aggregate stability. In addition, soil microorganisms are responding to the recalcitrant fraction of the organic carbon by release of cellulases and arylesterases. Acknowledgements: This research was financed by the FP7 European Project Eurolegume (FP7-KBBE- 613781).
Comparison of point intercept and image analysis for monitoring rangeland transects
USDA-ARS?s Scientific Manuscript database
Amidst increasing workloads and static or declining budgets, both public and private land management agencies face the need to adapt resource-monitoring techniques or risk falling behind on resource monitoring volume and quality with old techniques. Image analysis of nadir plot images, acquired with...
Analysis of genotype by environment interaction in Louisiana sugarcane research plots by GGE biplots
USDA-ARS?s Scientific Manuscript database
Genotype by environment (G x E) interactions complicate genotype selection in breeding programs. In south Louisiana, sugarcane is cultivated under a wide range of environments including soil types and cultural management practices. To evaluate experimental genotypes in different environments, the va...
50 CFR 648.206 - Framework provisions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... management measures are recommended, an analysis of impacts and a recommendation to NMFS on whether to issue... support and analysis for each factor considered: (i) Whether the availability of data on which the... vessels, gear location reporting by fixed gear fishermen, mandatory plotting of gear by mobile fishermen...
Post-Fire Recovery in Coastal Sage Scrub: Seed Rain and Community Trajectory.
Conlisk, Erin; Swab, Rebecca; Martínez-Berdeja, Alejandra; Daugherty, Matthew P
2016-01-01
Disturbance is a primary mechanism structuring ecological communities. However, human activity has the potential to alter the frequency and intensity of natural disturbance regimes, with subsequent effects on ecosystem processes. In Southern California, human development has led to increased fire frequency close to urban areas that can form a positive feedback with invasive plant spread. Understanding how abiotic and biotic factors structure post-fire plant communities is a critical component of post-fire management and restoration. In this study we considered a variety of mechanisms affecting post-fire vegetation recovery in Riversidean sage scrub. Comparing recently burned plots to unburned plots, we found that burning significantly reduced species richness and percent cover of exotic vegetation the first two years following a 100-hectare wildfire. Seed rain was higher in burned plots, with more native forb seeds, while unburned plots had more exotic grass seeds. Moreover, there were significant correlations between seed rain composition and plant cover composition the year prior and the year after. Collectively, this case study suggests that fire can alter community composition, but there was not compelling evidence of a vegetation-type conversion. Instead, the changes in the community composition were temporary and convergence in community composition was apparent within two years post-fire.
Crop residue decomposition in Minnesota biochar amended plots
NASA Astrophysics Data System (ADS)
Weyers, S. L.; Spokas, K. A.
2014-02-01
Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different feedstocks and pyrolysis platforms prior to the start of this study. Litterbags containing wheat straw material were buried below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a non-charred wood pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Though no significant impacts were observed with field-weathered biochars, effective soil management may yet have to account for repeat applications of biochar.
Anderson, Ian C; Bastias, Brigitte A; Genney, David R; Parkin, Pamela I; Cairney, John W G
2007-04-01
Soil basidiomycetes play key roles in forest nutrient and carbon cycling processes, yet the diversity and structure of below ground basidiomycete communities remain poorly understood. Prescribed burning is a commonly used forest management practice and there is evidence that single fire events can have an impact on soil fungal communities but little is known about the effects of repeated prescribed burning. We have used internal transcribed spacer (ITS) terminal restriction fragment length polymorphism (T-RFLP) analysis to investigate the impacts of repeated prescribed burning every two or four years over a period of 30 years on soil basidiomycete communities in an Australian wet sclerophyll forest. Detrended correspondence analysis of ITS T-RFLP profiles separated basidiomycete communities in unburned control plots from those in burned plots, with those burned every two years being the most different from controls. Burning had no effect on basidiomycete species richness, thus these differences appear to be due to changes in community structure. Basidiomycete communities in the unburned control plots were vertically stratified in the upper 20 cm of soil, but no evidence was found for stratification in the burned plots, suggesting that repeated prescribed burning results in more uniform basidiomycete communities. Overall, the results demonstrate that repeated prescribed burning alters soil basidiomycete communities, with the effect being greater with more frequent burning.
Cotton Production Practices Change Soil Properties
NASA Astrophysics Data System (ADS)
Blaise, D.; Singh, J. V.
2012-04-01
Historically, indigenous Asiatic cottons (Gossypium arboreum) were cultivated with minimal inputs in India. The introduction of the Upland cottons (G. hirsutum) and later the hybrid (H-4) triggered a whole set of intensified agronomic management with reliance on high doses of fertilisers and pesticide usage. In 2002, the transgenic Bt cotton hybrids were introduced and released for commercial cultivation. Presently, more than 95% of the nearly 12.2 million hectares of cotton area is under the Bt transgenic hybrids. These hybrids are not only high yielding but have reduced the dependence on pesticide because of an effective control of the lepidopteran pests. Thus, a change in the management practices is evident over the years. In this paper, we discuss the impact of two major agronomic management practices namely, nutrient management and tillage besides organic cotton cultivation in the rainfed cotton growing regions of central India characterized by sub-humid to semi-arid climate and dominated by Vertisols. Long-term studies at Nagpur, Maharashtra indicated the importance of integrated nutrient management (INM) wherein a part of the nutrient needs through fertiliser was substituted with organic manures such as farmyard manure (FYM). With the application of mineral fertilisers alone, soils became deficient in micronutrients. This was not observed with the FYM amended plots. Further, the manure amended plots had a better soil physical properties and the water holding capacity of the soil improved due to improvements in soil organic matter (SOM). Similarly, in a separate experiment, an improvement in SOM was observed in the organically managed fields because of continuous addition of organic residues. Further, it resulted in greater biological activity compared to the conventionally managed fields. Conservation tillage systems such as reduced tillage (RT) are a means to improve soil health and crop productivity. Long-term studies on tillage practices such as conventional tillage {CT}, RT with two inter-row cultivations {RT1} and RT with no inter-row cultivation {RT2} were conducted for 11 years. At the end of the study, an improvement in the soil physical properties such as water stable aggregates and mean weight diameter were observed in the RT system and the plots amended with green manure (GM) cover crop compared to those without. Further, available soil moisture content was greater in the GM mulched plots up to 0.60 m depth compared to the without GM treatment. The RT systems, too, had a higher SOM content than the CT probably due to less soil disturbance and greater retention of crop residues. INM and conservation tillage are strategies to sequester C and reduce emissions. It can also mitigate green house gas emissions because less of fertiliser would be used in the INM treatments. Studies conducted, thus far, have not indicated any adverse effect of Bt cotton cultivation. However, there could be a possibility, of nutrient depletion with the cultivation of Bt transgenic hybrids because of higher biomass and nutrient removal increasing the nutrient demand. Studies on these aspects are needed to understand how long-term cultivation of Bt cotton hybrids will alter the soil properties.
Modeling the impact of agricultural land use and management on US carbon budgets
Drewniak, B. A.; Mishra, U.; Song, J.; ...
2014-09-22
Cultivation of the terrestrial land surface can create either a source or sink of atmospheric CO 2, depending on land management practices. The Community Land Model (CLM) provides a useful tool to explore how land use and management impact the soil carbon pool at regional to global scales. CLM was recently updated to include representation of managed lands growing maize, soybean, and spring wheat. In this study, CLM-Crop is used to investigate the impacts of various management practices, including fertilizer use and differential rates of crop residue removal, on the soil organic carbon (SOC) storage of croplands in the continentalmore » United States over approximately a 170 year period. Results indicate that total US SOC stocks have already lost over 8 Pg C (10%) due to land cultivation practices (e.g., fertilizer application, cultivar choice, and residue removal), compared to a land surface composed of native vegetation (i.e., grasslands). After long periods of cultivation, individual plots growing maize and soybean lost up to 65% of the carbon stored, compared to a grassland site. Crop residue management showed the greatest effect on soil carbon storage, with low and medium residue returns resulting in additional losses of 5% and 3.5%, respectively, in US carbon storage, while plots with high residue returns stored 2% more carbon. Nitrogenous fertilizer can alter the amount of soil carbon stocks significantly. Under current levels of crop residue return, not applying fertilizer resulted in a 5% loss of soil carbon. Our simulations indicate that disturbance through cultivation will always result in a loss of soil carbon, and management practices will have a large influence on the magnitude of SOC loss.« less
Modeling the impact of agricultural land use and management on US carbon budgets
Drewniak, B. A.; Mishra, U.; Song, J.; ...
2015-04-09
Cultivation of the terrestrial land surface can create either a source or sink of atmospheric CO₂, depending on land management practices. The Community Land Model (CLM) provides a useful tool for exploring how land use and management impact the soil carbon pool at regional to global scales. CLM was recently updated to include representation of managed lands growing maize, soybean, and spring wheat. In this study, CLM-Crop is used to investigate the impacts of various management practices, including fertilizer use and differential rates of crop residue removal, on the soil organic carbon (SOC) storage of croplands in the continental Unitedmore » States over approximately a 170-year period. Results indicate that total US SOC stocks have already lost over 8 Pg C (10%) due to land cultivation practices (e.g., fertilizer application, cultivar choice, and residue removal), compared to a land surface composed of native vegetation (i.e., grasslands). After long periods of cultivation, individual subgrids (the equivalent of a field plot) growing maize and soybean lost up to 65% of the carbon stored compared to a grassland site. Crop residue management showed the greatest effect on soil carbon storage, with low and medium residue returns resulting in additional losses of 5 and 3.5%, respectively, in US carbon storage, while plots with high residue returns stored 2% more carbon. Nitrogenous fertilizer can alter the amount of soil carbon stocks significantly. Under current levels of crop residue return, not applying fertilizer resulted in a 5% loss of soil carbon. Our simulations indicate that disturbance through cultivation will always result in a loss of soil carbon, and management practices will have a large influence on the magnitude of SOC loss.« less
Luna-González, Diana V; Sørensen, Marten
2018-04-03
Child undernutrition remains one of the greatest challenges for public health nutrition in rural areas in developing countries. Interventions aiming to increase and conserve agrobiodiversity seem to be promising alternatives to improve child nutrition. However, the existing literature on these interventions is not conclusive about their effectiveness in combating child undernutrition. We tested the hypothesis that 'higher agrobiodiversity is associated with greater dietary diversity and better anthropometric status' in rural Guatemala.Design/Setting/SubjectsIn the summer of 2016, we conducted a cross-sectional study with a sample of 154 children (6-60 months). We conducted dietary recalls and structured interviews, measured children's weight and height, and visited food production systems (Milpas, home gardens, coffee plantations). Crop species richness, nutritional functional diversity, dietary diversity scores and anthropometric status were calculated. Higher food self-sufficiency, nutritional functional diversity and dietary diversity scores were positively correlated with higher crop and animal species richness. Contrarily, remoteness to the local market was negatively correlated with dietary diversity scores. However, higher dietary diversity scores were not correlated with better child anthropometric status. Better child anthropometric status was positively correlated with improved sanitary conditions and maternal education; and negatively correlated with large household size and frequent child morbidity. Agricultural diversification could diversify diets, increase nutrient availability and improve child anthropometry. However, these interventions need to be accompanied by sanitation improvements, family planning, nutritional education and women's empowerment to strengthen their positive effect on diet and nutrition.
A study of the effect of controlled drainage on surface runoff
USDA-ARS?s Scientific Manuscript database
There is uncertainty about the impact of drainage water management (DWM) on surface runoff, and concern that DWM may increase runoff. To examine this concern, water was applied by sprinkler irrigation to 8 plots which were individually equipped with instrumentation to measure both surface and subsur...
Management and prediction of red oak decline in the Missouri Ozarks
James J. Wetteroff; John P. Dwyer
1993-01-01
In 1990, 72, 0.50-acre permanent plots were laid out and tree and regeneration data was collected on four sites which showed evidence of red oak decline in the Missouri Ozarks. In the fall of 1990, three treatments were applied; a control, selection cutting, and clearcutting.
Systematic Experimental Designs For Mixed-species Plantings
Jeffery C. Goelz
2001-01-01
Systematic experimental designs provide splendid demonstration areas for scientists and land managers to observe the effects of a gradient of species composition. Systematic designs are based on large plots where species composition varies gradually. Systematic designs save considerable space and require many fewer seedlings than conventional mixture designs. One basic...
John F. Caratti
2006-01-01
The FIREMON database software allows users to enter data, store, analyze, and summarize plot data, photos, and related documents. The FIREMON database software consists of a Java application and a Microsoft® Access database. The Java application provides the user interface with FIREMON data through data entry forms, data summary reports, and other data management tools...
Current and emerging operational uses of remote sensing in Swedish forestry
Hakan Olsson; Mikael Egberth; Jonas Engberg; Johan E.S. Fransson; Tina Granqvist Pahlen; < i> et al< /i>
2007-01-01
Satellite remote sensing is being used operationally by Swedish authorities in applications involving, for example, change detection of clear felled areas, use of k-Nearest Neighbour estimates of forest parameters, and post-stratification (in combination with National Forest Inventory plots). For forest management planning of estates, aerial...
NASA Astrophysics Data System (ADS)
Fernandes, Tarcísio José Gualberto; Damaso Del Campo, Antonio; Gonzáles-Sanchís, María
2014-05-01
Mediterranean forests need a proactive adaptive silviculture in the face of global change, being their water-use (WU) and water use efficiency (WUE) the key factors to forest managers. Thinning, as a silvicultural practice, has the potential to alter the water potential gradients that exist between soil and canopy. As a result, a change in the amount of water used by trees is produced. The aim of this study is to analyse the effects of the adaptive silviculture on the water-use and water-use efficiency. To that end, both WU and WUE, are measured in an Aleppo pine plantation, where different thinning intensities were applied. The experimental set-up consisted of four plots, three of them corresponding to thinning treatments in 2008 at different intensities High, Middle and Low plus an unthinned plot - control. Additionally, a plot next to the treatment, thinned with High intensity in 1998 was sampled to assess the longer-term effects of thinning. The plots are located at Southwest of Valencia-Spain. WU was measured in four trees per plot on the period April 2009 to May 2011 using HRM sapflow-sensors. WUE was described following the Carbon stable isotope theory by a dendrochronological approach. A stable isotope analysis was performed in the same trees used to measure sapflow. The analysed rings were those correspondent to the 3 previous years to the thinning, and the following after the treatment. The results from this study indicate that stand WU is significantly different (p<0.05) in each tested treatment, being higher in control plot, followed by Low, Medium and Heavy treatments. However, considering only the tree, the average WU was higher in the Heavy treatment. No significantly differences were found between low and control trees. The dendrochronological analyses showed a general variability in ring width during the initial growth (first 15 years). In the following years, the ring widths were very small, probably conditioned by climate conditions. However, immediately after thinning, all trees showed a significant increase when compared with control. The WUE show different patterns in dry and wet years, and between thinned and control plots. The correlation between WU and WUE was higher in the thinned plots than in control plot. Different patterns of the relationship between WUE and WU were found during years 2009 and 2010. A positive slope was found in thinned plots during 2008 (Low, Medium and Heavy), while negative slope was described in Heavy thinning 1998 and Control plots. In conclusion the reactions after thinning equally promote an increase in WU (tree transpiration), growth and WUE. However in the control plot the increase of WU produces a decrease of WUE. This probably responds to the lower rate of growth found in this plot. This study shows clearly the impacts of thinning in forest growth, water use and water use efficiency. Some of the effects of thinning have been pointed out in other studies. However, this study introduce a novel contribution relating WU to WUE in a Mediterranean Aleppo pine plantation.
Winter cover crops as a best management practice for reducing nitrogen leaching
NASA Astrophysics Data System (ADS)
Ritter, W. F.; Scarborough, R. W.; Chirnside, A. E. M.
1998-10-01
The role of rye as a winter cover crop to reduce nitrate leaching was investigated over a three-year period on a loamy sand soil. A cover crop was planted after corn in the early fall and killed in late March or early April the following spring. No-tillage and conventional tillage systems were compared on large plots with irrigated corn. A replicated randomized block design experiment was conducted on small plots to evaluate a rye cover crop under no-tillage and conventional tillage and with commercial fertilizer, poultry manure and composted poultry manure as nitrogen fertilizer sources. Nitrogen uptake by the cover crop along with nitrate concentrations in groundwater and the soil profile (0-150 cm) were measured on the large plots. Soil nitrate concentrations and nitrogen uptake by the cover crop were measured on the small plots. There was no significant difference in nitrate concentrations in the groundwater or soil profile with and without a cover crop in either no-tillage or conventional tillage. Annual amounts of nitrate-N leached to the water-table varied from 136.0 to 190.1 kg/ha in 1989 and from 82.4 to 116.2 kg/ha in 1991. Nitrate leaching rates were somewhat lower with a cover crop in 1989, but not in 1990. There was no statistically significant difference in corn grain yields between the cover crop and non-cover crop treatments. The planting date and adequate rainfall are very important in maximizing nitrogen uptake in the fall with a rye cover crop. On the Delmarva Peninsula, the cover crop should probably be planted by October 1 to maximize nitrogen uptake rates in the fall. On loamy sand soils, rye winter cover crops cannot be counted on as a best management practice for reducing nitrate leaching in the Mid-Atlantic states.
Using Discursis to enhance the qualitative analysis of hospital pharmacist-patient interactions
Barras, Michael A.; Angus, Daniel J.
2018-01-01
Introduction Pharmacist-patient communication during medication counselling has been successfully investigated using Communication Accommodation Theory (CAT). Communication researchers in other healthcare professions have utilised Discursis software as an adjunct to their manual qualitative analysis processes. Discursis provides a visual, chronological representation of communication exchanges and identifies patterns of interactant engagement. Aim The aim of this study was to describe how Discursis software was used to enhance previously conducted qualitative analysis of pharmacist-patient interactions (by visualising pharmacist-patient speech patterns, episodes of engagement, and identifying CAT strategies employed by pharmacists within these episodes). Methods Visual plots from 48 transcribed audio recordings of pharmacist-patient exchanges were generated by Discursis. Representative plots were selected to show moderate-high and low- level speaker engagement. Details of engagement were investigated for pharmacist application of CAT strategies (approximation, interpretability, discourse management, emotional expression, and interpersonal control). Results Discursis plots allowed for identification of distinct patterns occurring within pharmacist-patient exchanges. Moderate-high pharmacist-patient engagement was characterised by multiple off-diagonal squares while alternating single coloured squares depicted low engagement. Engagement episodes were associated with multiple CAT strategies such as discourse management (open-ended questions). Patterns reflecting pharmacist or patient speaker dominance were dependant on clinical setting. Discussion and conclusions Discursis analysis of pharmacist-patient interactions, a novel application of the technology in health communication, was found to be an effective visualisation tool to pin-point episodes for CAT analysis. Discursis has numerous practical and theoretical applications for future health communication research and training. Researchers can use the software to support qualitative analysis where large data sets can be quickly reviewed to identify key areas for concentrated analysis. Because Discursis plots are easily generated from audio recorded transcripts, they are conducive as teaching tools for both students and practitioners to assess and develop their communication skills. PMID:29787568
Bourg, Norman; McShea, William J.; Herrmann, Valentine; Stewart, Chad M.
2017-01-01
Mammalian herbivory and exotic plant species interactions are an important ongoing research topic, due to their presumed impacts on native biodiversity. The extent to which these interactions affect forest understory plant community composition and persistence was the subject of our study. We conducted a 5-year, 2 × 2 factorial experiment in three mid-Atlantic US deciduous forests with high densities of white-tailed deer (Odocoileus virginianus) and exotic understory plants. We predicted: (i) only deer exclusion and exotic plant removal in tandem would increase native plant species metrics; and (ii) deer exclusion alone would decrease exotic plant abundance over time. Treatments combining exotic invasive plant removal and deer exclusion for plots with high initial cover, while not differing from fenced or exotic removal only plots, were the only ones to exhibit positive richness responses by native herbaceous plants compared to control plots. Woody seedling metrics were not affected by any treatments. Deer exclusion caused significant increases in abundance and richness of native woody species >30 cm in height. Abundance changes in two focal members of the native sapling community showed that oaks (Quercus spp.) increased only with combined exotic removal and deer exclusion, while shade-tolerant maples (Acer spp.) showed no changes. We also found significant declines in invasive Japanese stiltgrass (Microstegium vimineum) abundance in deer-excluded plots. Our study demonstrates alien invasive plants and deer impact different components and life-history stages of the forest plant community, and controlling both is needed to enhance understory richness and abundance. Alien plant removal combined with deer exclusion will most benefit native herbaceous species richness under high invasive cover conditions while neither action may impact native woody seedlings. For larger native woody species, only deer exclusion is needed for such increases. Deer exclusion directly facilitated declines in invasive species abundance. Resource managers should consider addressing both factors to achieve their forest management goals.
Mitigation of dimethazone residues in soil and runoff water from agricultural field.
Antonious, George F
2011-01-01
Dimethazone, also known as clomazone [2-[(2-chlorophenyl) methyl]- 4,4-dimethyl-3-isoxaolidinone] is a pre-emergent nonionic herbicide commonly used in agriculture. A field study was conducted on a silty-loam soil of 10 % slope to monitor off-site movement and persistence of dimethazone in soil under three management practices. Eighteen plots of 22 x 3.7 m each were separated using stainless steel metal borders and the soil in six plots was mixed with municipal sewage sludge (MSS) and yard waste (YW) compost (MSS+YW) at 15 t acre⁻¹ on dry weight basis, six plots were mixed with MSS at 15 t acre⁻¹, and six unamended plots (NM) were used for comparison purposes. The objectives of this investigation were to: (i) monitor the dissipation and half-life (T₁/₂) of dimethazone in soil under three management practices; (ii) determine the concentration of dimethazone residues in runoff and infiltration water following natural rainfall events; and (iii) assess the impact of soil amendments on the transport of NO₃, NH₄, and P into surface and subsurface water. Gas chromatography/mass spectrometery (GC/MS) analyses of soil extracts indicated the presence of ion fragments at m/z 125 and 204 that can be used for identification of dimethazone residues. Intitial deposits of dimethazone varied from 1.3 μg g⁻¹ dry native soil to 3.2 and 11.8 μg g⁻¹ dry soil in MSS and MSS+YW amended soil, respectively. Decline of dimethazone residues in the top 15 cm native soil and soil incorporated with amendments revealed half-life (T₁/₂) values of 18.8, 25.1, and 43.0 days in MSS+YW, MSS, and NM treatments, respectively. Addition of MSS+YW mix and MSS alone to native soil increased water infiltration, lowering surface runoff water volume and dimethazone residues in runoff following natural rainfall events.
Leewis, Mary-Cathrine; Reynolds, Charles M.; Leigh, Mary Beth
2014-01-01
Phytoremediation is a potentially inexpensive method of detoxifying contaminated soils using plants and associated soil microorganisms. The remote locations and cold climate of Alaska provide unique challenges associated with phytoremediation such as finding effective plant species that can achieve successful site clean-up despite the extreme environmental conditions and with minimal site management. A long-term assessment of phytoremediation was performed which capitalized on a study established in Fairbanks in 1995. The original study sought to determine how the introduction of plants (Festuca rubra, Lolium multiflorum), nutrients (fertilizer), or their combination would affect degradation of petroleum hydrocarbon (TPH) contaminated soils (crude oil or diesel) over time. Within the year following initial treatments, the plots subjected to both planting and/or fertilization showed greater overall decreases in TPH concentrations in both the diesel and crude oil contaminated soils relative to untreated plots. We re-examined this field site after 15 years with no active site management to assess the long-term effects of phytoremediation on colonization by native and non-native plants, their rhizosphere microbial communities and on petroleum removal from soil. Native and non-native vegetation had extensively colonized the site, with more abundant vegetation found on the diesel contaminated soils than the more nutrient-poor, more coarse, and acidic crude oil contaminated soils. TPH concentrations achieved regulatory clean up levels in all treatment groups, with lower TPH concentrations correlating with higher amounts of woody vegetation (trees & shrubs). In addition, original treatment type has affected vegetation recruitment to each plot with woody vegetation and more native plants in unfertilized plots. Bacterial community structure also varies according to the originally applied treatments. This study suggests that initial treatment with native tree species in combination with grasses could be an effective means for phytoremediating petroleum contaminated soils and promoting ecological recovery in cold regions. PMID:24501438
Implications of land-use change on forest carbon stocks in the eastern United States
NASA Astrophysics Data System (ADS)
Puhlick, Joshua; Woodall, Christopher; Weiskittel, Aaron
2017-02-01
Given the substantial role that forests play in removing CO2 from the atmosphere, there has been a growing need to evaluate the carbon (C) implications of various forest management and land-use decisions. Although assessment of land-use change is central to national-level greenhouse gas monitoring guidelines, it is rarely incorporated into forest stand-level evaluations of C dynamics and trajectories. To better inform the assessment of forest stand C dynamics in the context of potential land-use change, we used a region-wide repeated forest inventory (n = 71 444 plots) across the eastern United States to assess forest land-use conversion and associated changes in forest C stocks. Specifically, the probability of forest area reduction between 2002-2006 and 2007-2012 on these plots was related to key driving factors such as proportion of the landscape in forest land use, distance to roads, and initial forest C. Additional factors influencing the actual reduction in forest area were then used to assess the risk of forest land-use conversion to agriculture, settlement, and water. Plots in forests along the Great Plains had the highest periodic (approximately 5 years) probability of land-use change (0.160 ± 0.075; mean ± SD) with forest conversion to agricultural uses accounting for 70.5% of the observed land-use change. Aboveground forest C stock change for plots with a reduction in forest area was -4.2 ± 17.7 Mg ha-1 (mean ± SD). The finding that poorly stocked stands and/or those with small diameter trees had the highest probability of conversion to non-forest land uses suggests that forest management strategies can maintain the US terrestrial C sink not only in terms of increased net forest growth but also retention of forest area to avoid conversion. This study highlights the importance of considering land-use change in planning and policy decisions that seek to maintain or enhance regional C sinks.
NASA Astrophysics Data System (ADS)
Schiavone, K.; Barbieri, L.; Adair, C.
2015-12-01
Agricultural fields in Vermont's Lake Champlain Basin have problems with the loss of nutrients due to runoff which creates eutrophic conditions in the lakes, ponds and rivers. In efforts to retain nitrogen and other nutrients in the soil farmers have started to inject manure rather than spraying it. Our understanding of the effects this might have on the volatilization of nitrogen into nitrous oxide is limited. Already, agriculture produces 69% of the total nitrous oxide emissions in the US. Understanding that climate change will affect the future of agriculture in Vermont, we set up a soil core incubation test to monitor the emissions of CO₂ and N₂O using a Photoacoustic Gas Sensor (PAS). Four 10 cm soil cores were taken from nine different fertilizer management plots in a No Till corn field; Three Injected plots, three Broadcast plots, and three Plow plots. Frozen soil cores were extracted in early April, and remained frozen before beginning the incubation experiment to most closely emulate three potential spring environmental conditions. The headspace was monitored over one week to get emission rates. This study shows that environmental and fertilizer treatments together do not have a direct correlation to the amount of CO₂ and N₂O emissions from agricultural soil. However, production of CO₂ was 26% more in warmer environmental conditions than in variable(freeze/thaw) environmental conditions. The injected fertilizer produced the most emissions, both CO₂ and N₂O. The total N₂O emissions from Injected soil cores were 2.2x more than from traditional broadcast manure cores. We believe this is likely due to the addition of rich organic matter under anaerobic soil conditions. Although, injected fertilizer is a better application method for reducing nutrient runoff, the global warming potential of N₂O is 298 times that of CO₂. With climate change imminent, assessing the harmful effects and benefits of injected fertilizer is a crucial next step in agricultural management.
Silveira, Juliana M; Barlow, Jos; Louzada, Julio; Moutinho, Paulo
2010-09-21
Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance.
Silveira, Juliana M.; Barlow, Jos; Louzada, Julio; Moutinho, Paulo
2010-01-01
Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance. PMID:20877720
Command Flight Path Display. Phase I and II. Appendix F.
1983-09-01
AD -R145 858 COMMAND FLIGHT PATH DISPLAY PHASE I AND 11 APPENDIX F / (U) SYSTEMS ASSOCIATES INC LONG BEACH CA RESOURCE MANAGEMENT SYSTEMS DIY SEP...34- (Appendix F) .ś. SYSTEMS ASSOCIATES INC* of CALIFORNIA t. Resource Management Systems Division DTICL it~~~ll ELECTE 1 o..-- , ~SEP 2 4 1984...Availability Codos Avail and/or Dist Special "i j L i 7 7 .... Contained in this appendix are the various plots generated dur- ing data reduction. Parameters
Hartway, Cynthia; Mills, L Scott
2012-08-01
Management strategies for the recovery of declining bird populations often must be made without sufficient data to predict the outcome of proposed actions or sufficient time and resources necessary to collect these data. We quantitatively reviewed studies of bird management in Canada and the United States to evaluate the relative efficacy of 4 common management interventions and to determine variables associated with their success. We compared how livestock exclusion, prescribed burning, removal of predators, and removal of cowbirds (Molothrus ater) affect bird nest success and used meta-regression to evaluate the influence of species and study-specific covariates on management outcomes. On average, all 4 management interventions increased nest success. When common species and threatened, endangered, or declining species (as defined by long-term trend data from the North American Breeding Bird Survey) were analyzed together, predator removal was the most effective management option. The difference in mean nest success between treatment and control plots in predator-removal experiments was more than twice that of either livestock exclusion or prescribed burning. However, when we considered management outcomes from only threatened, endangered, or declining species, livestock exclusions resulted in the greatest mean increase in nest success, more than twice that of the 3 other treatments. Our meta-regression results indicated that between-species variation accounted for approximately 86%, 40%, 35%, and 7% of the overall variation in the results of livestock-exclusion, prescribed-burn, predator-removal, and cowbird-removal studies, respectively. However, the covariates we tested explained significant variation only in outcomes among prescribed-burn studies. The difference in nest success between burned and unburned plots displayed a significant, positive trend in association with time since fire and was significantly larger in grasslands than in woodlands. Our results highlight the importance of comparative studies on management effects in developing efficient and effective conservation strategies. ©2012 Society for Conservation Biology.
Blended near-optimal tools for flexible water resources decision making
NASA Astrophysics Data System (ADS)
Rosenberg, David
2015-04-01
State-of-the-art systems analysis techniques focus on efficiently finding optimal solutions. Yet an optimal solution is optimal only for the static modelled issues and managers often seek near-optimal alternatives that address un-modelled or changing objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as performance within a tolerable deviation from the optimal objective function value and identified a few maximally-different alternatives that addressed select un-modelled issues. This paper presents new stratified, Monte Carlo Markov Chain sampling and parallel coordinate plotting tools that generate and communicate the structure and full extent of the near-optimal region to an optimization problem. Plot controls allow users to interactively explore region features of most interest. Controls also streamline the process to elicit un-modelled issues and update the model formulation in response to elicited issues. Use for a single-objective water quality management problem at Echo Reservoir, Utah identifies numerous and flexible practices to reduce the phosphorus load to the reservoir and maintain close-to-optimal performance. Compared to MGA, the new blended tools generate more numerous alternatives faster, more fully show the near-optimal region, help elicit a larger set of un-modelled issues, and offer managers greater flexibility to cope in a changing world.
Pitts-Singer, T. L.
2017-01-01
The blue orchard bee, Osmia lignaria (Say), is a solitary bee that is an excellent pollinator of tree fruit orchards. Due to the annual rising costs of honey bee hive rentals, many orchardists are eager to develop management tools and practices to support O. lignaria as an alternative pollinator. Establishing O. lignaria pollination as a sustainable industry requires careful consideration of both bee and orchard management. Here, we test the effect of artificial nest box distribution on in-orchard propagation of O. lignaria in Utah commercial tart cherry orchards. Two nest box distributions were compared across three paired, 1.2-ha plots. One distribution, traditionally employed by O. lignaria consultants, included a centrally located tote for mass-nesting with smaller, surrounding ‘satellite’ nest boxes at orchard margins. The other distribution was composed of smaller, more equally distributed nest boxes throughout the 1.2-ha plots. Significantly higher propagation of O. lignaria was observed in the latter nest box distribution, although all treatments resulted in bee return exceeding the number of bees initially released. These findings provide support for the use of O. lignaria in tart cherry orchards, and demonstrate how simple changes to bee set-up and management can influence propagation efforts. PMID:28365763
Kalkhan, M.A.; Stafford, E.J.; Woodly, P.J.; Stohlgren, T.J.
2007-01-01
Rocky Mountain National Park (RMNP), Colorado, USA, contains a diversity of plant species. However, many exotic plant species have become established, potentially impacting the structure and function of native plant communities. Our goal was to quantify patterns of exotic plant species in relation to native plant species, soil characteristics, and other abiotic factors that may indicate or predict their establishment and success. Our research approach for field data collection was based on a field plot design called the pixel nested plot. The pixel nested plot provides a link to multi-phase and multi-scale spatial modeling-mapping techniques that can be used to estimate total species richness and patterns of plant diversity at finer landscape scales. Within the eastern region of RMNP, in an area of approximately 35,000 ha, we established a total of 60 pixel nested plots in 9 vegetation types. We used canonical correspondence analysis (CCA) and multiple linear regressions to quantify relationships between soil characteristics and native and exotic plant species richness and cover. We also used linear correlation, spatial autocorrelation and cross correlation statistics to test for the spatial patterns of variables of interest. CCA showed that exotic species were significantly (P < 0.05) associated with photosynthetically active radiation (r = 0.55), soil nitrogen (r = 0.58) and bare ground (r = -0.66). Pearson's correlation statistic showed significant linear relationships between exotic species, organic carbon, soil nitrogen, and bare ground. While spatial autocorrelations indicated that our 60 pixel nested plots were spatially independent, the cross correlation statistics indicated that exotic plant species were spatially associated with bare ground, in general, exotic plant species were most abundant in areas of high native species richness. This indicates that resource managers should focus on the protection of relatively rare native rich sites with little canopy cover, and fertile soils. Using the pixel nested plot approach for data collection can facilitate the ecological monitoring of these vulnerable areas at the landscape scale in a time- and cost-effective manner. ?? 2006 Elsevier B.V. All rights reserved.
Huang, Jianjun; Boerner, Ralph E J
2007-08-01
This study examined tissue nutrient responses of Desmodium nudiflorum to changes in soil total inorganic nitrogen (TIN) and available phosphorus (P) that occurred as the result of the application of alternative forest management strategies, namely (1) prescribed low-intensity fire (B), (2) overstory thinning followed by prescribed fire (T + B), and (3) untreated control C), in two Quercus-dominated forests in the State of Ohio, USA. In the fourth growing season after a first fire, TIN was significantly greater in the control plots (9.8 mg/kg) than in the B (5.5 mg/kg) and T + B (6.4 mg/kg) plots. Similarly, available P was greater in the control sites (101 microg/g) than in the B (45 microg/kg) and T + B (65 microg/kg) sites. Leaf phosphorus ([P]) was higher in the plants from control site (1.86 mg/g) than in either the B (1.77 mg/g) or T + B plants (1.73 mg/g). Leaf nitrogen ([N]) and root [N] showed significant site-treatment interactive effects, while stem [N], stem [P], and root [P] did not differ significantly among treatments. During the first growing season after a second fire, leaf [N], stem [N], litter [P] and available soil [P] were consistently lower in plots of the manipulated treatments than in the unmanaged control plot, whereas the B and T + B plots did not differ significantly from each other. N resorption efficiency was positively correlated with the initial foliar [N] in the manipulated (B and T + B) sites, but there was no such relation in the unmanaged control plots. P resorption efficiency was positively correlated with the initial leaf [P] in both the control and manipulated plots. Leaf nutrient status was strongly influenced by soil nutrient availability shortly after fire, but became more influenced by topographic position in the fourth year after fire. Nutrient resorption efficiency was independent of soil nutrient availability. These findings enrich our understanding of the effects of ecosystem restoration treatments on soil nutrient availability, plant nutrient relations, and plant-soil interactions at different temporal scales.
Performance of One-Class Classifiers for Invasive Species Mapping using Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Skowronek, S.; Asner, G. P.; Feilhauer, H.
2016-12-01
Reliable distribution maps are crucial for the monitoring and management of invasive plant species. Remote sensing can provide such maps for larger areas. However, most remote sensing approaches focus on species in a prominent phenological stage, and a systematic assessment of the performance of different one-class classifiers for mapping species in a more inconspicuous phenological stage is missing so far. In this study, we used hyperspectral remote sensing data to detect the invasive grass Phalaris aquatica and the invasive herb Centaurea solstitialisin a pre-flowering stage in the Jasper Ridge Biological Preserve in California. We collected presence-only data, 66 plots for C. solstitialis and 30 plots for P. aquatica, to calibrate a distribution model and additional presence-absence data (166 / 173 plots) to validate model performance. All plots have a size of 3 m x 3 m. The hyperspectral remote sensing imagery was acquired using the Carnegie Airborne Observatory (CAO) visible to shortwave infrared (VSWIR) imaging spectrometer (400-2500 nm range) in May 2015 with a ground sampling distance (pixel size) of 1 m x 1 m. To find the best approach for mapping these species, we compared the performance of three different state-of-the-art classifiers working with presence-only data: Maxent, biased support vector machines and boosted regression trees. The resulting overall accuracies were 72 - 74% for C. solstitialis, and 83 - 88% for P. aquatica. For both species the overall performance was slightly better for Maxent and BRT than for biased SVM. The detection rates for low cover plots were considerably higher for C. solstitialis than for P. aquatica. For C. solstitalis, they ranged between 71 and 75% for plots with less than 15% cover, highlighting the potential of remote sensing to contribute to an early detection. The models relied on different areas of the spectrum, but still produced the same general pattern, which implies that more than one property of a species or a mixed plot can be used to create a viable model. We conclude that the different one-class classifiers we tested do allow detecting the target species in a more inconspicuous phenological stage, with similar success rates.
NASA Astrophysics Data System (ADS)
E Lucas-Borja, Manuel; Calsamiglia, Aleix; Fortesa, Josep; García-Comendador, Julián; Gago, Jorge; Estrany, Joan
2017-04-01
Bioclimatic characteristics and intense human pressure promote Mediterranean ecosystems to be fire-prone. Afforestation processes resulting from the progressive land abandonment during the last decades led to greater biomass availability increasing the risk of large forest fires. Likewise, the abandonment and lack of maintenance in the terraced lands constitute a risk of land degradation in terms of soil quantity and quality. Despite the effects of fire and the abandonment of terraced lands on soil loss and physico-chemical properties are identified, it is not clearly understood how wildfires and abandonment of terraces affect soil quality and nutrients content. Microbiological soil parameters and soil enzymes activities are biomarkers of the soil microbial communitýs functional ability, which potentially enables them as indicators of change, disturbance or stress within the soil community. The objective of this study was to investigate the effects of terracing (abandoned and non-abandoned) on the soil enzyme activities, microbiological soil parameters and soil nutrients dynamics in three Mediterranean afforested micro-catchments (i.e., < 2 ha) under different forest fire recurrence in the last 20 years; i.e., unburned areas, burned once and burned twice. The combination of the presence of terraces and the recurrence of forest fire, thirty-six plots of 25 m2 were sampled along the these three micro-catchments collecting four replicas at the corners of each plot. The results elucidated how non-terraced and unburned plots presented the highest values of soil respiration rate and extracellular soil enzymes. Differences between experimental plots with different forest fire recurrence or comparing terraced and unburned plots with burned plots were weaker in relation to biochemical and microbiological parameters. Soil nutrient content showed an opposite trend with higher values in terraced plots, although differences were weaker. We conclude that terraced landscapes present poorer soil quality parameters due to land abandonment and the lack of terraced management. In addition, forest fire recurrence exacerbates soil degradation processes due to the direct effects on vegetation and soil properties.
RUNON a hitherto little noticed factor - Field experiments comparing RUNOFF/RUNON processes
NASA Astrophysics Data System (ADS)
Kohl, Bernhard; Achleitner, Stefan; Lumassegger, Simon
2017-04-01
When ponded water moves downslope as overland flow, an important process called runon manifests itself, but is often ignored in rainfall-runoff studies (Nahar et al. 2004) linking infiltration exclusively to rainfall. Runon effects on infiltration have not yet or only scarcely been evaluated (e.g. Zheng et al. 2000). Runoff-runon occurs when spatially variable infiltration capacities result in runoff generated in one location potentially infiltrating further downslope in an area with higher infiltration capacity (Jones et al. 2013). Numerous studies report inverse relationships between unit area volumes of overland flow and plot lengths (Jones et al. 2016). This is an indication that the effects of rainfall and runon often become blurred. We use a coupled hydrological/2D hydrodynamic model to simulate surface runoff and pluvial flooding including the associated infiltration process. In frame of the research project SAFFER-CC (sensitivity assessment of critical condition for local flash floods - evaluating the recurrence under climate change) the influence of land use and soil conservation on pluvial flash flood modeling is assessed. Field experiments are carried out with a portable irrigation spray installation at different locations with a plot size 5m width and 10m length. The test plots were subjected first to a rainfall with constant intensity of 100 mm/h for one hour. Consecutively a super intense, one hour mid accentuated rainfall hydrograph was applied after 30 minutes at the same plots, ranging from 50 mm/h to 200 mm/h for 1hour. Finally, runon was simulated by upstream feeding of the test plots using two different inflow intensities. The irrigation test showed expected differences of runoff coefficients depending on the various agricultural management. However, these runoff coefficients change with the applied process (rainfall or runon). While a decrease was observed on a plot with a closed litter layer, runoff coefficient from runon increases on poor covered plots. At the same time, a similar variety in the characteristics of the infiltration behavior between rainfall and runoff could be observed. This extension of artificial rainfall simulations with concurrent and successive runon tests will enhance our process understanding.
NASA Technical Reports Server (NTRS)
Dalee, Robert C.; Bacskay, Allen S.; Knox, James C.
1990-01-01
An overview of the CASE/A-ECLSS series modeling package is presented. CASE/A is an analytical tool that has supplied engineering productivity accomplishments during ECLSS design activities. A components verification program was performed to assure component modeling validity based on test data from the Phase II comparative test program completed at the Marshall Space Flight Center. An integrated plotting feature has been added to the program which allows the operator to analyze on-screen data trends or get hard copy plots from within the CASE/A operating environment. New command features in the areas of schematic, output, and model management, and component data editing have been incorporated to enhance the engineer's productivity during a modeling program.
Old-growth and mature forests near spotted owl nests in western Oregon
NASA Technical Reports Server (NTRS)
Ripple, William J.; Johnson, David H.; Hershey, K. T.; Meslow, E. Charles
1995-01-01
We investigated how the amount of old-growth and mature forest influences the selection of nest sites by northern spotted owls (Strix occidentalis caurina) in the Central Cascade Mountains of Oregon. We used 7 different plot sizes to compare the proportion of mature and old-growth forest between 30 nest sites and 30 random sites. The proportion of old-growth and mature forest was significantly greater at nests sites than at random sites for all plot sizes (P less than or equal to 0.01). Thus, management of the spotted owl might require setting the percentage of old-growth and mature forest retained from harvesting at least 1 standard deviation above the mean for the 30 nest sites we examined.
Volf, Martin; Redmond, Conor; Albert, Ágnes J; Le Bagousse-Pinguet, Yoann; Biella, Paolo; Götzenberger, Lars; Hrázský, Záboj; Janeček, Štěpán; Klimešová, Jitka; Lepš, Jan; Šebelíková, Lenka; Vlasatá, Tereza; de Bello, Francesco
2016-04-01
The functional structures of communities respond to environmental changes by both species replacement (turnover) and within-species variation (intraspecific trait variability; ITV). Evidence is lacking on the relative importance of these two components, particularly in response to both short- and long-term environmental disturbance. We hypothesized that such short- and long-term perturbations would induce changes in community functional structure primarily via ITV and turnover, respectively. To test this we applied an experimental design across long-term mown and abandoned meadows, with each plot containing a further level of short-term management treatments: mowing, grazing and abandonment. Within each plot, species composition and trait values [height, shoot biomass, and specific leaf area (SLA)] were recorded on up to five individuals per species. Positive covariations between the contribution of species turnover and ITV occurred for height and shoot biomass in response to both short- and long-term management, indicating that species turnover and intraspecific adjustments selected for similar trait values. Positive covariations also occurred for SLA, but only in response to long-term management. The contributions of turnover and ITV changed depending on both the trait and management trajectory. As expected, communities responded to short-term disturbances mostly through changes in intraspecific trait variability, particularly for height and biomass. Interestingly, for SLA they responded to long-term disturbances by both species turnover and intraspecific adjustments. These findings highlight the importance of both ITV and species turnover in adjusting grassland functional trait response to environmental perturbation, and show that the response is trait specific and affected by disturbance regime history.
Use of geographic information management systems (GIMS) for nitrogen management
NASA Astrophysics Data System (ADS)
Diker, Kenan
1998-11-01
Geographic Information Management Systems (GIMS) was investigated in this study to develop an efficient nitrogen management scheme for corn. The study was conducted on two experimental corn sites. The first site consisted of six non-replicated plots where the canopy reflectance of corn at six nitrogen fertilizer levels was investigated. The reflectance measurements were conducted for nadir and 75sp° view angles. Data from these plots were used to develop relationships between reflectance data and soil and plant parameters. The second site had four corn plots fertilized by different methods such as spoon-fed, pre-plant and side-dress, which created nitrogen variability within the field. Soil and plant nitrogen as well as leaf area, biomass, percent cover measurements, and canopy reflectance data were collected at various growth stages from both sites during the 1995 and 1996 growing seasons. Relationships were developed between the Nitrogen Reflectance Index (NRI) developed by Bausch et al. (1994) and soil and plant variables. Spatial dependence of data was determined by geostatistical methods; variability was mapped in ArcView. Results of this study indicated that the NRI is a better estimator of plant nitrogen status than chlorophyll meter measurements. The NRI can successfully be used to estimate the spatial distribution of soil nitrogen estimates through the plant nitrogen status as well as plant parameters and the yield potential. GIS mapping of measured and estimated soil nitrogen agreed except in locations where hot spots were measured. The NRI value of 0.95 seemed to be the critical value for plant nitrogen status especially for the 75sp° view. The nadir view tended to underestimate plant and soil parameters, whereas, the 75sp° view slightly overestimated these parameters. If available, the 75sp° view data should be used before the tasseling stage for reflectance measurements to reduce the soil background effect. However, it is sensitive to windy conditions. After tasseling, the nadir view should be used because the 75sp° view is obstructed by tassels. Total soil nitrogen at the V6 growth stage was underestimated by the NRI for both view angles. Results also indicated that a nitrogen prescription could be estimated at various growth stages.
USDA-ARS?s Scientific Manuscript database
The effects of tillage and crop residue removal on erosion and associated macronutrient fluxes on erodible soils subjected to a high intensity simulated rain event (70 mm/h) were investigated in an experimental watershed in Ohio, USA. A set of plots which constitute two experiments at this site were...
Stand-density study of spruce-hemlock stands in southeastern Alaska.
Donald J. DeMars
2000-01-01
The lack of growth and yield information for young even-aged western hemlock (Tsuga heterophylla(Raf.) Sarg.)-Sitka spruce (Picea sitchensis (Bong.) Carr.) stands in southeastern Alaska served as the impetus for a long-term stand-density study begun in 1974. The study has followed permanent growth plots in managed stands under...
USDA-ARS?s Scientific Manuscript database
The International Cocoa Genebank, Trinidad (ICG,T) is the largest public domain field gene bank collection of cacao and the correct identity of each tree is crucial for germplasm movement, evaluation and phenotypic characterization. Nine microsatellite loci were used to assess the identity of 1480 t...
THE PHYTOAVAILABILITY OF CADMIUM TO LETTUCE IN LONG-TERM BIOSOLIDS-AMENDED SOILS
A field study was conducted to assess the phytoavailability of Cd in long-term biosolids-amended field plots managed at high and low pH. The experiment, established 13-15 yr prior to the present cropping, on a Christiana fine sandy loam soil (a clayey, kaolinitic, mesic Typic Pa...
USDA-ARS?s Scientific Manuscript database
Evidence for the impact of mislabeling and/or pollen contamination on consistency of field performance has been lacking to reinforce the need for strict adherence to quality control protocols in cacao seed garden and germplasm plot management. The present study used SNP fingerprinting at 64 loci to ...
Selecting a sampling method to aid in vegetation management decisions in loblolly pine plantations
David R. Weise; Glenn R. Glover
1993-01-01
Objective methods to evaluate hardwood competition in young loblolly pine (Pinustaeda L.) plantations are not widely used in the southeastern United States. Ability of common sampling rules to accurately estimate hardwood rootstock attributes at low sampling intensities and across varying rootstock spatial distributions is unknown. Fixed area plot...
40 CFR 264.1064 - Recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... facility (e.g., identify the hazardous waste management unit on a facility plot plan). (iii) Type of... schedule as specified in § 264.1033(a)(2). (3) Where an owner or operator chooses to use test data to... device, a performance test plan as specified in § 264.1035(b)(3). (4) Documentation of compliance with...
40 CFR 264.1064 - Recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... facility (e.g., identify the hazardous waste management unit on a facility plot plan). (iii) Type of... schedule as specified in § 264.1033(a)(2). (3) Where an owner or operator chooses to use test data to... device, a performance test plan as specified in § 264.1035(b)(3). (4) Documentation of compliance with...
40 CFR 264.1064 - Recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... facility (e.g., identify the hazardous waste management unit on a facility plot plan). (iii) Type of... schedule as specified in § 264.1033(a)(2). (3) Where an owner or operator chooses to use test data to... device, a performance test plan as specified in § 264.1035(b)(3). (4) Documentation of compliance with...
40 CFR 264.1064 - Recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... facility (e.g., identify the hazardous waste management unit on a facility plot plan). (iii) Type of... schedule as specified in § 264.1033(a)(2). (3) Where an owner or operator chooses to use test data to... device, a performance test plan as specified in § 264.1035(b)(3). (4) Documentation of compliance with...
40 CFR 270.310 - What equipment information must I keep at my facility?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (e.g., identify the hazardous waste management unit on a facility plot plan). (3) Type of equipment... compliance test required by 40 CFR 264.1033(j). (3) A design analysis, specifications, drawings, schematics... acceptable to the Director that present basic control device design information. The design analysis must...
Pesticides used against Cydia pomonella disrupt biological control of secondary pests of apple
USDA-ARS?s Scientific Manuscript database
The effects of codling moth management programs on secondary pests of apple were examined from 2008 to 2011 in five replicated large-plot trials. The orchards were chosen for a history of Eriosoma lanigerum and tetranychid mite outbreaks. Programs covered the first, second, or both generations of C....
Sampling methods for titica vine (Heteropsis spp.) inventory in a tropical forest
Carine Klauberg; Edson Vidal; Carlos Alberto Silva; Michelliny de M. Bentes; Andrew Thomas Hudak
2016-01-01
Titica vine provides useful raw fiber material. Using sampling schemes that reduce sampling error can provide direction for sustainable forest management of this vine. Sampling systematically with rectangular plots (10Ã 25 m) promoted lower error and greater accuracy in the inventory of titica vines in tropical rainforest.
Self-Organization and -Synchronization at the Edge: Situated Action, Identity and Improvisation
2008-06-01
things in the world. Like his mentor Heidegger, he argues against the Cartesian dualism that plots mind as separate and distinct from body. The body...will need to foster is the capacity to span boundaries, to notice connections between the familiar and unfamiliar. Managers will learn to appreciate
Restoring sand shinnery oak prairies with herbicide and grazing in New Mexico
Zavaleta, Jennifer C.; Haukos, David A.; Grisham, Blake A.; Boal, Clint W.; Dixon, Charles
2016-01-01
Sand shinnery oak (Quercus havardii) prairies are increasingly disappearing and increasingly degraded in the Southern High Plains of Texas and New Mexico. Restoring and managing sand shinnery oak prairie can support biodiversity, specific species of conservation concern, and livestock production. We measured vegetation response to four treatment combinations of herbicide (tebuthiuron applied at 0.60 kg/ha) and moderate-intensity grazing (50% removal of annual herbaceous production) over a 10-year period in a sand shinnery oak prairie of eastern New Mexico. We compared the annual vegetation response to the historical climax plant community (HCPC) as outlined by the U.S. Department of Agriculture Ecological Site Description. From 2 to 10 years postapplication, tebuthiuron-treated plots had reduced shrub cover with twice as much forb and grass cover as untreated plots. Tebuthiuron-treated plots, regardless of the presence of grazing, most frequently met HCPC. Tebuthiuron and moderate-intensity grazing increased vegetation heterogeneity and, based on comparison of the HCPC, successfully restored sand shinnery oak prairie to a vegetation composition similar to presettlement.
How to Display Hazards and other Scientific Data Using Google Maps
NASA Astrophysics Data System (ADS)
Venezky, D. Y.; Fee, J. M.
2007-12-01
The U.S. Geological Survey's (USGS) Volcano Hazard Program (VHP) is launching a map-based interface to display hazards information using the Google® Map API (Application Program Interface). Map-based interfaces provide a synoptic view of data, making patterns easier to detect and allowing users to quickly ascertain where hazards are in relation to major population and infrastructure centers. Several map-based interfaces are now simple to run on a web server, providing ideal platforms for sharing information with colleagues, emergency managers, and the public. There are three main steps to making data accessible on a map-based interface; formatting the input data, plotting the data on the map, and customizing the user interface. The presentation, "Creating Geospatial RSS and ATOM feeds for Map-based Interfaces" (Fee and Venezky, this session), reviews key features for map input data. Join us for this presentation on how to plot data in a geographic context and then format the display with images, custom markers, and links to external data. Examples will show how the VHP Volcano Status Map was created and how to plot a field trip with driving directions.
Biotic homogenization can decrease landscape-scale forest multifunctionality.
van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David Anthony; Coppi, Andrea; Bastias, Cristina C; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus
2016-03-29
Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.
Biotic homogenization can decrease landscape-scale forest multifunctionality
van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A.; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coppi, Andrea; Bastias, Cristina C.; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus
2016-01-01
Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality. PMID:26979952
Integrated presentation of ecological risk from multiple stressors
NASA Astrophysics Data System (ADS)
Goussen, Benoit; Price, Oliver R.; Rendal, Cecilie; Ashauer, Roman
2016-10-01
Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic.
Integrated presentation of ecological risk from multiple stressors.
Goussen, Benoit; Price, Oliver R; Rendal, Cecilie; Ashauer, Roman
2016-10-26
Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic.
Atlas of Secular Light Curves of Comets
NASA Astrophysics Data System (ADS)
Ferrin, Ignacio
2007-12-01
We have completed work on the secular light curves of 30 periodic and non-periodic comets. The objectives and approach of this project has been explained in Ferrin (Icarus, 178, 493-516, 2005). Each comet requires 2 plots. The time plot shows the reduced (to Δ = 1 AU) magnitude of the comet as a function of time, thus displaying the brightness history of the object. The log plot is a reflected double log plot. The reflection takes place at R=1 AU, to allow the determination of the absolute magnitude by extrapolation. 22 photometric parameters are measured from the plots, most of them new. The plots have been collected in a document that constitutes "The Atlas". We have defined a photometric age, P-AGE, that attempts to measure the age of a comet based on its activity. P-AGE has been scaled to human ages to help in its interpretation. We find that comets Hale-Bopp and 29P/SW 1, are baby comets (P-AGE < 3 comet years), while 107P, 162P and 169P are methuselah comets (P-AGE > 100 cy). The secular light curve of 9P/Tempel 1 exhibits sublimation due to H2O and due to CO. Comet 67P/Churyumov-Gerasimento to be visited by the Rossetta spacecraft in 2014 exhibits a photometric anomaly. Comet 65P/Gunn exhibits a lag in maximum brightness of LAG = + 254 days after perihelion. We suggest that the pole is pointing to the sun at that time. The secular light curves will be presented and a preliminary interpretation will be advanced. The secular light curves present complexity beyond current understanding. The observations described in this work were carried out at the National Observatory of Venezuela (ONV), managed by the Center for Research in Astronomy (CIDA), for the Ministry of Science and Technology (MinCyT).
Impacts of prescribed fire on Pinus rigida Mill. in upland forests of the Atlantic Coastal Plain.
Carlo, Nicholas J; Renninger, Heidi J; Clark, Kenneth L; Schäfer, Karina V R
2016-08-01
A comparative analysis of the impacts of prescribed fire on three upland forest stands in the Northeastern Atlantic Plain, NJ, USA, was conducted. Effects of prescribed fire on water use and gas exchange of overstory pines were estimated via sap-flux rates and photosynthetic measurements on Pinus rigida Mill. Each study site had two sap-flux plots, one experiencing prescribed fire and one control (unburned) plot for comparison before and after the fire. We found that photosynthetic capacity in terms of Rubisco-limited carboxylation rate and intrinsic water-use efficiency was unaffected, while light compensation point and dark respiration rate were significantly lower in the burned vs control plots post-fire. Furthermore, quantum yield in pines in the pine-dominated stands was less affected than pines in the mixed oak/pine stand, as there was an increase in quantum yield in the oak/pine stand post-fire compared with the control (unburned) plot. We attribute this to an effect of forest type but not fire per se. Average daily sap-flux rates of the pine trees increased compared with control (unburned) plots in pine-dominated stands and decreased in the oak/pine stand compared with control (unburned) plots, potentially due to differences in fuel consumption and pre-fire sap-flux rates. Finally, when reference canopy stomatal conductance was analyzed, pines in the pine-dominated stands were more sensitive to changes in vapor pressure deficit (VPD), while stomatal responses of pines in the oak/pine stand were less affected by VPD. Therefore, prescribed fire affects physiological functioning and water use of pines, but the effects may be modulated by forest stand type and fuel consumption pattern, which suggests that these factors may need to be taken into account for forest management in fire-dominated systems. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Stevens, Jens T; Safford, Hugh D; North, Malcolm P; Fried, Jeremy S; Gray, Andrew N; Brown, Peter M; Dolanc, Christopher R; Dobrowski, Solomon Z; Falk, Donald A; Farris, Calvin A; Franklin, Jerry F; Fulé, Peter Z; Hagmann, R Keala; Knapp, Eric E; Miller, Jay D; Smith, Douglas F; Swetnam, Thomas W; Taylor, Alan H
Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data.
Landscape Variation in Tree Species Richness in Northern Iran Forests
Bourque, Charles P.-A.; Bayat, Mahmoud
2015-01-01
Mapping landscape variation in tree species richness (SR) is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area’s unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i) three topographic variables generated directly from the area’s digital terrain model; (ii) four ecophysiologically-relevant variables derived from process models or from first principles; and (iii) seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content), yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot), than by Fagus orientalis (median difference of one species). This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently general to be applicable to the characterisation of SR in other forested regions of the world, providing plot-scale data are available for model generation. PMID:25849029
Stevens, Jens T.; Safford, Hugh D.; North, Malcolm P.; Fried, Jeremy S.; Gray, Andrew N.; Brown, Peter M.; Dolanc, Christopher R.; Dobrowski, Solomon Z.; Falk, Donald A.; Farris, Calvin A.; Franklin, Jerry F.; Fulé, Peter Z.; Hagmann, R. Keala; Knapp, Eric E.; Miller, Jay D.; Smith, Douglas F.; Swetnam, Thomas W.; Taylor, Alan H.
2016-01-01
Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the “stand age” variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical “mixed-severity” fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data. PMID:27196621
Berry, Elaine D; Wells, James E; Bono, James L; Woodbury, Bryan L; Kalchayanand, Norasak; Norman, Keri N; Suslow, Trevor V; López-Velasco, Gabriela; Millner, Patricia D
2015-02-01
The impact of proximity to a beef cattle feedlot on Escherichia coli O157:H7 contamination of leafy greens was examined. In each of 2 years, leafy greens were planted in nine plots located 60, 120, and 180 m from a cattle feedlot (3 plots at each distance). Leafy greens (270) and feedlot manure samples (100) were collected six different times from June to September in each year. Both E. coli O157:H7 and total E. coli bacteria were recovered from leafy greens at all plot distances. E. coli O157:H7 was recovered from 3.5% of leafy green samples per plot at 60 m, which was higher (P < 0.05) than the 1.8% of positive samples per plot at 180 m, indicating a decrease in contamination as distance from the feedlot was increased. Although E. coli O157:H7 was not recovered from air samples at any distance, total E. coli was recovered from air samples at the feedlot edge and all plot distances, indicating that airborne transport of the pathogen can occur. Results suggest that risk for airborne transport of E. coli O157:H7 from cattle production is increased when cattle pen surfaces are very dry and when this situation is combined with cattle management or cattle behaviors that generate airborne dust. Current leafy green field distance guidelines of 120 m (400 feet) may not be adequate to limit the transmission of E. coli O157:H7 to produce crops planted near concentrated animal feeding operations. Additional research is needed to determine safe set-back distances between cattle feedlots and crop production that will reduce fresh produce contamination. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Landscape variation in tree species richness in northern Iran forests.
Bourque, Charles P-A; Bayat, Mahmoud
2015-01-01
Mapping landscape variation in tree species richness (SR) is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area's unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i) three topographic variables generated directly from the area's digital terrain model; (ii) four ecophysiologically-relevant variables derived from process models or from first principles; and (iii) seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content), yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot), than by Fagus orientalis (median difference of one species). This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently general to be applicable to the characterisation of SR in other forested regions of the world, providing plot-scale data are available for model generation.
Habibiandehkordi, Reza; Quinton, John N; Surridge, Ben W J
2015-04-01
The export of dissolved phosphorus (P) in surface runoff from agricultural land can lead to water quality degradation. Surface application of aluminium (Al)-based water treatment residuals (Al-WTRs) to vegetated buffer strip (VBS) soils can enhance P removal from surface runoff during single runoff events. However, the longer-term effects on P removal in VBSs following application of products such as Al-WTR remain uncertain. We used field experimental plots to examine the long-term effects of applying a freshly generated Al-WTR to VBSs on dissolved P export during multiple runoff events, occurring between 1 day and 42 weeks after the application of Al-WTR. Vegetated buffer strip plots amended with Al-WTR significantly reduced soluble reactive P and total dissolved P concentrations in surface runoff compared to both unamended VBS plots and control plots. However, the effectiveness of Al-WTR decreased over time, by approximately 70% after 42 weeks compared to a day following Al-WTR application. Reduced performance did not appear to be due to drying of Al-WTR in the field. Instead, the development of preferential flow paths as well as burying of Al-WTR with freshly deposited sediments may explain these observations. Better understanding of the processes controlling long-term P removal by Al-WTR is required for effective management of VBSs.
NASA Astrophysics Data System (ADS)
Wolfgramm, Bettina; Hurni, Hans; Liniger, Hanspeter; Ruppen, Sebastian; Milne, Eleanor; Bader, Hans-Peter; Scheidegger, Ruth; Amare, Tadele; Yitaferu, Birru; Nazarmavloev, Farrukh; Conder, Malgorzata; Ebneter, Laura; Qadamov, Aslam; Shokirov, Qobiljon; Hergarten, Christian; Schwilch, Gudrun
2013-04-01
There is a fundamental mutual interest between enhancing soil organic carbon (SOC) in the world's soils and the objectives of the major global environmental conventions (UNFCCC, UNCBD, UNCCD). While there is evidence at the case study level that sustainable land management (SLM) technologies increase SOC stocks and SOC related benefits, there is no quantitative data available on the potential for increasing SOC benefits from different SLM technologies and especially from case studies in the developing countries, and a clear understanding of the trade-offs related to SLM up-scaling is missing. This study aims at assessing the potential increase of SOC under SLM technologies worldwide, evaluating tradeoffs and gains in up-scaling SLM for case studies in Tajikistan, Ethiopia and Switzerland. It makes use of the SLM technologies documented in the online database of the World Overview of Conservation Approaches and Technologies (WOCAT). The study consists of three components: 1) Identifying SOC benefits contributing to the major global environmental issues for SLM technologies worldwide as documented in the WOCAT global database 2) Validation of SOC storage potentials and SOC benefit predictions for SLM technologies from the WOCAT database using results from existing comparative case studies at the plot level, using soil spectral libraries and standardized documentations of ecosystem service from the WOCAT database. 3) Understanding trade-offs and win-win scenarios of up-scaling SLM technologies from the plot to the household and landscape level using material flow analysis. This study builds on the premise that the most promising way to increase benefits from land management is to consider already existing sustainable strategies. Such SLM technologies from all over the world documented are accessible in a standardized way in the WOCAT online database. The study thus evaluates SLM technologies from the WOCAT database by calculating the potential SOC storage increase and related benefits by comparing SOC estimates before-and-after establishment of the SLM technology. These results are validated using comparative case studies of plots with-and-without SLM technologies (existing SLM systems versus surrounding, degrading systems). In view of upscaling SLM technologies, it is crucial to understand tradeoffs and gains supporting or hindering the further spread. Systemic biomass management analysis using material flow analysis allows quantifying organic carbon flows and storages for different land management options at the household, but also at landscape level. The study shows results relevant for science, policy and practice for accounting, monitoring and evaluating SOC related ecosystem services: - A comprehensive methodology for SLM impact assessments allowing quantification of SOC storage and SOC related benefits under different SLM technologies, and - Improved understanding of upscaling options for SLM technologies and tradeoffs as well as win-win opportunities for biomass management, SOC content increase, and ecosystem services improvement at the plot and household level.
Singer, F.J.; Swift, D.M.; Coughenour, M.B.; Varley, J.D.
1998-01-01
Natural regulation of native ungulates was initiated in 1968 in Yellowstone National Park (YNP) based on the premise that ungulates would reach an equilibrium with their plant resources. The natural-regulation management model stated: density dependence will regulate ungulates (i.e., a dynamic equilibrium will result between ungulates and their food supply, within some bounds of vegetation and soil effects); and no retrogression of soil and vegetation will occur from elk (Cervus elaphus) grazing during this process. The historical record indicated that elk were abundant in the system and elk were primarily food limited before settlement by European man (i.e., wolves [Canis lupus] and Native Americans were only an adjunct to the density dependent population regulation of ungulates). Density dependence was demonstrated in elk, but not in bison (Bison bison). No widespread evidence of overgrazing was observed through 1993 in study sites within vegetation communities that comprised about 97% of the winter range. No evidence of increased exotics, increased sediment yield, warming or drying of the soil, changes in soil nutrients, or differences in aboveground standing-crop biomass of plants was found between grazed and ungrazed plots. Ungulate herbivory apparently stimulated aboveground production of grasses, enhanced nitrogen and macronutrients in grasses, increased nutrient cycling, and enhanced measures of fitness in 6 common plants. However, exposed soil surface (bare ground and pebbles combined) was 11-18% greater on grazed than ungrazed plots, apparently due to a 71% decline in dead and standing litter on grazed plots. Percent live-plant basal cover, however, did not differ on grazed versus ungrazed plots, and there was no difference in soil microclimate or sediment yield. Differences in the abundance of 12% of the herbaceous species were found in grazed versus ungrazed sites (16 of 128 species); 10 were declines and 6 were increases. Willow (Salix spp.) and aspen (Populus tremuloides) declines predated the new management policy, but their slow declines also continued after 1968. Three uncommon plant species (aspen, willow, and Wyoming big sagebrush [Artemisia tridentata tridentata]) and 1 herbivore (moose [Alces alces]) declined under natural-regulation management. Two uncommon species of woody browse (aspen, Wyoming big sagebrush) were overutilized by ungulates (consumption of >2/3 current annual growth occurred). We conclude the natural-regulation model for YNP was flawed in its assumptions of a single, steady state for the park, based on conditions presumed to exist in 1870 prior to establishment of the national park. The period selected as a standard (1870) was an unusual period characterized by frequent large fires and floods, common wolves, few elk, and a cooler, wetter climate. We also conclude there is a high level of uncertainty surrounding what elk densities were in pre-Columbian times (element 3 of the management model) and what effects wolves and Native Americans had in regulating the elk population.
NASA Astrophysics Data System (ADS)
Vogel, J. G.; Bacon, A. R.; Bracho, R. G.; Grunwald, S.; Gonzalez-Benecke, C. A.; Jokela, E. J.; Markewitz, D.; Cucinella, J.; Akers, K.; Ross, C. W.; Peter, G. F.; Fox, T. D.; Martin, T.; Kane, M.
2015-12-01
Extending from Virginia to east Texas in the southeastern United States, managed pine forests are an important component of the region's carbon cycle. One objective of the Pine Integrated Network: Education, Mitigation, and Adaptation project (PINEMAP) is to improve estimates of how ecosystem carbon pools respond to the management strategies used to increase the growth of loblolly pine forests. Experimental studies (108 total) that had historically been used to understand forest productivity and stand dynamics by university-forest industry cooperatives have now been measured for the carbon stored in the trees, coarse-wood, forest floor, understory and soils to 1-meter (0-10 cm, 10-20 cm, 20-50 cm, and 50-100 cm). The age of the studied forests ranged from 4-26 years at the time of sampling, with 26 years very near the period when these forests are commonly harvested. The study sites encapsulated a wide regional range in precipitation (1080 mm -1780 mm) and potential evapotranspiration (716 mm - 1200 mm). The most prevalent three soil orders measured were Ultisols (62%), Alfisols (19%), and Spodosols (10%) with Entisols, Inceptisols and 1 Histosol making up the remainder (9%). Across all study sites, 455 experimental plots were measured. The plots had as a treatment either fertilization, competition control, and stand density control (thinning), including every possible combination of treatments and also 'no treatment'. The most common treatment regime, at 36% of the total number of plots, was the combination of competition control, fertilization, and thinning. The distribution of treatments relative to soils and climate prevented a simple analysis of single treatment effects and instead necessitated an examination how the carbon accumulation rate in wood, which is commonly measured and modeled in these forests, corresponded to the response of other C pools (e.g. forest floor and soil).
Shah, Farhan Mahmood; Razaq, Muhammad; Han, Peng; Chen, Julian
2017-01-01
Wheat being staple food of Pakistan is constantly attacked by major wheat aphid species, Schizaphis graminum (R.), Rhopalosiphum padi (L.) and Sitobion avenae (F.). Due to concern on synthetic chemical use in wheat, it is imperative to search for alternative environment- and human- friendly control measures such as botanical pesticides. In the present study, we evaluated the comparative role of neem seed extract (NSE), moringa leaf extract (MLE) and imidacloprid (I) in the management of the aphid as well as the yield losses parameters in late planted wheat fields. Imidacloprid reduced significantly aphids infestation compared to the other treatments, hence resulting in higher yield, particularly when applied with MLE. The percentages of yield increase in I+MLE treated plots over the control were 19.15–81.89% for grains per spike, 5.33–37.62% for thousand grain weight and 27.59–61.12% for yield kg/ha. NSE was the second most effective control measure in suppressing aphid population, but the yield protected by NSE treatment over the control was comparable to that by imidacloprid. Population densities of coccinellids and syrphids in the plots treated with NSE-2 were higher than those treated with imidacloprid in two out of three experiments during 2013–14. Low predator density in imidacloprid-treated plots was attributed to the lower availability of prey aphids. The efficacy of NSE against aphids varied depending on degree of synchronization among the application timing, the activity of aphids, crop variety and environmental conditions. Despite that, we suggested NSE to be a promising alternative botanical insecticide compared to the most commonly recommended imidiacloprid. Further studies should consider the side effects of biopesticides on non-target organisms in order to provide better management practices in the field. PMID:28953894
Zimmerman, Guthrie S.; Sauer, John; Boomer, G. Scott; Devers, Patrick K.; Garrettson, Pamela R.
2017-01-01
The U.S. Fish and Wildlife Service (USFWS) uses data from the North American Breeding Bird Survey (BBS) to assist in monitoring and management of some migratory birds. However, BBS analyses provide indices of population change rather than estimates of population size, precluding their use in developing abundance-based objectives and limiting applicability to harvest management. Wood Ducks (Aix sponsa) are important harvested birds in the Atlantic Flyway (AF) that are difficult to detect during aerial surveys because they prefer forested habitat. We integrated Wood Duck count data from a ground-plot survey in the northeastern U.S. with AF-wide BBS, banding, parts collection, and harvest data to derive estimates of population size for the AF. Overlapping results between the smaller-scale intensive ground-plot survey and the BBS in the northeastern U.S. provided a means for scaling BBS indices to the breeding population size estimates. We applied these scaling factors to BBS results for portions of the AF lacking intensive surveys. Banding data provided estimates of annual survival and harvest rates; the latter, when combined with parts-collection data, provided estimates of recruitment. We used the harvest data to estimate fall population size. Our estimates of breeding population size and variability from the integrated population model (N̄ = 0.99 million, SD = 0.04) were similar to estimates of breeding population size based solely on data from the AF ground-plot surveys and the BBS (N̄ = 1.01 million, SD = 0.04) from 1998 to 2015. Integrating BBS data with other data provided reliable population size estimates for Wood Ducks at a scale useful for harvest and habitat management in the AF, and allowed us to derive estimates of important demographic parameters (e.g., seasonal survival rates, sex ratio) that were not directly informed by data.
Lai, Liming; Kumar, Sandeep; Mbonimpa, Eric G; Hong, Chang Oh; Owens, Vance N; Neupane, Ram P
2016-04-15
Dissolved organic carbon (DOC) through leaching into the soils is another mechanism of net C loss. It plays an important role in impacting the environment and impacted by soil and crop management practices. However, little is known about the impacts of landscape positions and nitrogen (N) fertilizer rates on DOC leaching in switchgrass (Panicum virgatum L.). This experimental design included three N fertilizer rates [0 (low); 56 (medium); 112 (high) kg N ha(-1)] and three landscape positions (shoulder, backslope and footslope). Daily average DOC contents at backslope were significantly lower than that at shoulder and footslope. The DOC contents from the plots that received medium N rate were also significantly lower than the plots that received low N rates. The interactions of landscape and N rates on DOC contents were different in every year from 2009 to 2014, however, no significant consistent trend of DOC contents was observed over time. Annual average DOC contents from the plots managed with low N rate were higher than those with high N rate. These contents at the footslope were higher than that at the shoulder position. Data show that there is a moderate positive relationship between the total average DOC contents and the total average switchgrass biomass yields. Overall, the DOC contents from leachate in the switchgrass land were significantly influenced by landscape positions and N rates. The N fertilization reduced DOC leaching contents in switchgrass field. The switchgrass could retain soil and environment sustainability to some extent. These findings will assist in understanding the mechanism of changes in DOC contents with various parameters in the natural environment and crop management systems. However, use of long-term data might help to better assess the effects of above factors on DOC leaching contents and loss in the switchgrass field in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Takayama, Norimasa; Saito, Haruo; Fujiwara, Akio; Horiuchi, Masahiro
2017-12-01
We investigated the influence of slight thinning (percentage of woods: 16.6%, basal area: 9.3%) on landscape appreciation and the psychological restorative effect of an on-site setting by exposing respondents to an ordinarily managed coniferous woodland. The experiments were conducted in an experimental plot in the same coniferous woodland in May (unthinned) and October 2013 (thinned). The respondents were the same 15 individuals for both experiments. Respondents were individually exposed to the enclosed plot and the forest-view plot within the same tent for 15 min. In both sessions, respondents were required to answer three questionnaires measuring their mood (Profile of Mood States), emotion (Positive and Negative Affect Schedule), and feeling of restoration (Restorative Outcome Scale) to investigate the psychological restorative effect before and after the experiment. They completed two other questionnaires measuring appreciation for the environment (Semantic Differential) and the restorative properties of the environment (Perceived Restorativeness Scale) following the experiments. We first analyzed the difference in landscape appreciation between the unthinned and thinned conditions. We did not find any statistical difference in appreciation for the environment (Semantic Differential) or the restorative properties of the environment (Perceived Restorativeness Scale); rather, we found that weather conditions had a primary influence on landscape appreciation. With respect to the psychological restorative effect, a two-way repeated analysis of valiance (ANOVA) revealed significant main effects for a selection of indices, depending on the presence or absence of thinning. However, multiple comparison analyses revealed that these effects seemed to be due to the difference in the experimental experience rather than the presence or absence of thinning. In conclusion, the effect of the slight thinning of the managed coniferous forest was too weak to be reflected in the respondents' landscape appreciation or to exert a psychological restorative effect. Therefore, planners should consider stronger thinning as it is unlikely to result in serious damage to users' appreciation and may increase their landscape appreciation of coniferous woodland and enhance its psychological restorative effect.
Shah, Farhan Mahmood; Razaq, Muhammad; Ali, Abid; Han, Peng; Chen, Julian
2017-01-01
Wheat being staple food of Pakistan is constantly attacked by major wheat aphid species, Schizaphis graminum (R.), Rhopalosiphum padi (L.) and Sitobion avenae (F.). Due to concern on synthetic chemical use in wheat, it is imperative to search for alternative environment- and human- friendly control measures such as botanical pesticides. In the present study, we evaluated the comparative role of neem seed extract (NSE), moringa leaf extract (MLE) and imidacloprid (I) in the management of the aphid as well as the yield losses parameters in late planted wheat fields. Imidacloprid reduced significantly aphids infestation compared to the other treatments, hence resulting in higher yield, particularly when applied with MLE. The percentages of yield increase in I+MLE treated plots over the control were 19.15-81.89% for grains per spike, 5.33-37.62% for thousand grain weight and 27.59-61.12% for yield kg/ha. NSE was the second most effective control measure in suppressing aphid population, but the yield protected by NSE treatment over the control was comparable to that by imidacloprid. Population densities of coccinellids and syrphids in the plots treated with NSE-2 were higher than those treated with imidacloprid in two out of three experiments during 2013-14. Low predator density in imidacloprid-treated plots was attributed to the lower availability of prey aphids. The efficacy of NSE against aphids varied depending on degree of synchronization among the application timing, the activity of aphids, crop variety and environmental conditions. Despite that, we suggested NSE to be a promising alternative botanical insecticide compared to the most commonly recommended imidiacloprid. Further studies should consider the side effects of biopesticides on non-target organisms in order to provide better management practices in the field.
Remm, Liina; Lõhmus, Piret; Leis, Mare; Lõhmus, Asko
2013-01-01
Artificial drainage (ditching) is widely used to increase timber yield in northern forests. When the drainage systems are maintained, their environmental impacts are likely to accumulate over time and along accompanying management, notably after logging when new forest develops on decayed peat. Our study provides the first comprehensive documentation of long-term ditching impacts on terrestrial and arboreal biodiversity by comparing natural alder swamps and second-generation drained forests that have evolved from such swamps in Estonia. We explored species composition of four potentially drainage-sensitive taxonomic groups (vascular plants, bryophytes, lichens, and snails), abundance of species of conservation concern, and their relationships with stand structure in two-ha plots representing four management types (ranging from old growth to clearcut). We found that drainage affected plot-scale species richness only weakly but it profoundly changed assemblage composition. Bryophytes and lichens were the taxonomic groups that were most sensitive both to drainage and timber-harvesting; in closed stands they responded to changed microhabitat structure, notably impoverished tree diversity and dead-wood supply. As a result, natural old-growth plots were the most species-rich and hosted several specific species of conservation concern. Because the most influential structural changes are slow, drainage impacts may be long hidden. The results also indicated that even very old drained stands do not provide quality habitats for old-growth species of drier forest types. However, drained forests hosted many threatened species that were less site type specific, including early-successional vascular plants and snails on clearcuts and retention cuts, and bryophytes and lichens of successional and old forests. We conclude that three types of specific science-based management tools are needed to mitigate ditching effects on forest biodiversity: (i) silvicultural techniques to maintain stand structural complexity; (ii) context-dependent spatial analysis and planning of drained landscapes; and (iii) lists of focal species to monitor and guide ditching practices. PMID:23646179
Chambers, Ute; Jones, Vincent P
2015-12-01
Orchard design and management practices can alter microclimate and, thus, potentially affect insect development. If sufficiently large, these deviations in microclimate can compromise the accuracy of phenology model predictions used in integrated pest management (IPM) programs. Sunburn causes considerable damage in the Pacific Northwest, United States, apple-producing region. Common prevention strategies include the use of fruit surface protectants, evaporative cooling (EC), or both. This study focused on the effect of EC on ambient temperatures and model predictions for four insects (codling moth, Cydia pomonella L.; Lacanobia fruitworm, Lacanobia subjuncta Grote and Robinson; oblique-banded leafroller, Choristoneura rosaceana Harris; and Pandemis leafroller, Pandemis pyrusana Kearfott). Over-tree EC was applied in July and August when daily maximum temperatures were predicted to be ≥30°C between 1200-1700 hours (15/15 min on/off interval) in 2011 and between 1200-1800 hours (15/10 min on/off interval, or continuous on) in 2012. Control plots were sprayed once with kaolin clay in early July. During interval and continuous cooling, over-tree cooling reduced average afternoon temperatures compared with the kaolin treatment by 2.1-3.2°C. Compared with kaolin-treated controls, codling moth and Lacanobia fruitworm egg hatch in EC plots was predicted to occur up to 2 d and 1 d late, respectively. The presence of fourth-instar oblique-banded leafroller and Pandemis leafroller was predicted to occur up to 2 d and 1 d earlier in EC plots, respectively. These differences in model predictions were negligible, suggesting that no adjustments in pest management timing are needed when using EC in high-density apple orchards. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
García-Orenes, F; Arcenegui, V; Chrenková, K; Mataix-Solera, J; Moltó, J; Jara-Navarro, A B; Torres, M P
2017-05-15
Post-fire management can have an additional impact on the ecosystem; in some cases, even more severe than the fire. Salvage logging (SL) is a common practice in most fire-affected areas. The management of burnt wood can determine microclimatic conditions and seriously affect soil properties. In some cases, the way of doing it, using heavy machinery, and the vulnerability of soils to erosion and degradation can make this management potentially aggressive to soil. Research was done in "Sierra de Mariola Natural Park" (E Spain). A forest fire (>500ha) occurred in July 2012. In February 2013, SL treatment was applied in a part of the affected forest. Plots for monitoring this effect were installed in this area and in a similar nearby area where no treatment was done, used as control (C). Soil samplings were done immediately after treatment and every 6months during two years. Some soil properties were analysed, including organic matter (OM) content, nitrogen (N) available phosphorous (P) basal soil respiration (BSR), microbial biomass carbon (C mic ), bulk density (BD), water repellency (WR), aggregate stability (AS) and field capacity (FC). SL treatment caused an increase in BD, a decrease of AS, FC, OM and N. In the control area, in general the soil properties remained constant across the 2years of monitoring, and the microbial parameters (BSR and C mic ), initially affected by the fire, recovered faster in C than in the SL area. Plant recovery also showed some differences between treatments. No significant differences were observed in the number of plant species recorded (richness) comparing C versus SL plots, but the number of individuals of each species (evenness) was significantly higher in C plots. In conclusion, we can affirm that for the conditions of this study case, SL had a negative effect on the soil-plant system. Copyright © 2017 Elsevier B.V. All rights reserved.
McDougal, Robert R.; Waltermire, Robert G.; Aldridge, Cameron L.; Germaine, Stephen S.; Nielsen, Scott E.; Nielsen, Charlene C.; Hanson, Leanne; Bowen, Zachary H.
2008-01-01
Based on these results, there are identifiable management considerations. Toilet and rest sites need to be carefully located relative to where sensitive vegetation or soils occur. The analyses presented here indicate that limiting motorized vehicle use needs to be a priority over that of adjusting the number of trekkers. Additionally, monitoring of the Trail from Sixth Crossing to Rock Creek Hollow segment needs to consider explicit management targets, such as minimum acceptable levels of bare ground or trail width, and the establishment of permanent monitoring plots to evaluate targets and measure responses to altered management activities.
Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Duenk, Peter; Lapen, David R; Topp, Edward
2014-11-01
The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Impact of Thiamethoxam Seed Treatment on Growth and Yield of Rice, Oryza sativa.
Lanka, S K; Senthil-Nathan, S; Blouin, D J; Stout, M J
2017-04-01
Neonicotinoid seed treatments are widely used in agriculture. In rice, Oryza sativa L., in the southern United States, neonicotinoid seed treatments are used to manage early-season populations of the rice water weevil, Lissorhoptrus oryzophilus Kuschel. In addition to their effects on pests, neonicotinoid seed treatments may benefit crop plants directly by increasing plant growth or altering plant responses to stresses. As part of an effort to assess the overall benefits of thiamethoxam seed treatment in rice, rice emergence, growth, and yield were evaluated. In a growth chamber, rice emergence from the soil was 1-2 d more rapid from treated than untreated seeds. These laboratory results were supported by field experiments that revealed higher stand counts from thiamethoxam-treated plots than from untreated plots. Yields from thiamethoxam treatments were no higher than those from untreated plots under conditions in which weevil larvae were absent, a result inconsistent with the hypothesis that thiamethoxam imparts direct yield benefits. In a series of field experiments conducted to compare the relationship between weevil larval densities and rice yields in plots treated with several rates of thiamethoxam or chlorantraniliprole (another widely used seed treatment insecticide), the relationship between weevil density and yield did not differ markedly among both seed treatments. Overall yields from both seed treatments did not differ significantly, despite more effective control in chlorantraniliprole-treated plots. These results provide strong support for effect of thiamethoxam on early-season growth of rice, but only weak support for its direct effect on rice yields. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rahube, Teddie O.; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Duenk, Peter; Lapen, David R.
2014-01-01
The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice. PMID:25172864
Zeiter, Michaela; Stampfli, Andreas
2012-01-01
Background and Aims Attempts to answer the old question of whether high diversity causes high invasion resistance have resulted in an invasion paradox: while large-scale studies often find a positive relationship between diversity and invasibility, small-scale experimental studies often find a negative relationship. Many of the small-scale studies are conducted in artificial communities of even-aged plants. Species in natural communities, however, do not represent one simultaneous cohort and occur at various levels of spatial aggregation at different scales. This study used natural patterns of diversity to assess the relationship between diversity and invasibility within a uniformly managed, semi-natural community. Methods In species-rich grassland, one seed of each of ten species was added to each of 50 contiguous 16 cm2 quadrats within seven plots (8 × 100 cm). The emergence of these species was recorded in seven control plots, and establishment success was measured in relation to the species diversity of the resident vegetation at two spatial scales, quadrat (64 cm2) within plots (800 cm2) and between plots within the site (approx. 400 m2) over 46 months. Key Results Invader success was positively related to resident species diversity and richness over a range of 28–37 species per plot. This relationship emerged 7 months after seed addition and remained over time despite continuous mortality of invaders. Conclusions Biotic resistance to plant invasion may play only a sub-ordinate role in species-rich, semi-natural grassland. As possible alternative explanations for the positive diversity–invasibility relationship are not clear, it is recommended that future studies elaborate fine-scale environmental heterogeneity in resource supplies or potential resource flows from resident species to seedlings by means of soil biological networks established by arbuscular mycorrhizal fungi. PMID:22956533
Calcium Induces Long-Term Legacy Effects in a Subalpine Ecosystem
Schaffner, Urs; Alewell, Christine; Eschen, René; Matthies, Diethart; Spiegelberger, Thomas; Hegg, Otto
2012-01-01
Human activities have transformed a significant proportion of the world’s land surface, with profound effects on ecosystem processes. Soil applications of macronutrients such as nitrate, phosphorus, potassium or calcium are routinely used in the management of croplands, grasslands and forests to improve plant health or increase productivity. However, while the effects of continuous fertilization and liming on terrestrial ecosystems are well documented, remarkably little is known about the legacy effect of historical fertilization and liming events in terrestrial ecosystems and of the mechanisms involved. Here, we show that more than 70 years after the last application of lime on a subalpine grassland, all major soil and plant calcium pools were still significantly larger in limed than in unlimed plots, and that the resulting shift in the soil calcium/aluminium ratio continues to affect ecosystem services such as primary production. The difference in the calcium content of the vegetation and the topmost 10 cm of the soil in limed vs. unlimed plots amounts to approximately 19.5 g m−2, equivalent to 16.3% of the amount that was added to the plots some 70 years ago. In contrast, plots that were treated with nitrogen-phosphorus-potassium fertilizer in the 1930s did not differ from unfertilized plots in any of the soil and vegetation characteristics measured. Our findings suggest that the long-term legacy effect of historical liming is due to long-term storage of added calcium in stable soil pools, rather than a general increase in nutrient availability. Our results demonstrate that single applications of calcium in its carbonated form can profoundly and persistently alter ecosystem processes and services in mountain ecosystems. PMID:23284779
NASA Astrophysics Data System (ADS)
Hombegowda, H. C.; van Straaten, O.; Köhler, M.; Hölscher, D.
2015-08-01
Tropical agroforestry has an enormous potential to sequester carbon while simultaneously producing agricultural yields and tree products. The amount of soil organic carbon (SOC) sequestered is however influenced by the type of the agroforestry system established, the soil and climatic conditions and management. In this regional scale study, we utilized a chronosequence approach to investigate how SOC stocks changed when the original forests are converted to agriculture, and then subsequently to four different agroforestry systems (AFSs): homegarden, coffee, coconut and mango. In total we established 224 plots in 56 plot clusters across four climate zones in southern India. Each plot cluster consisted of four plots: a natural forest reference plot, an agriculture reference and two of the same AFS types of two ages (30-60 years and > 60 years). The conversion of forest to agriculture resulted in a large loss the original SOC stock (50-61 %) in the top meter of soil depending on the climate zone. The establishment of homegarden and coffee AFSs on agriculture land caused SOC stocks to rebound to near forest levels, while in mango and coconut AFSs the SOC stock increased only slightly above the agriculture stock. The most important variable regulating SOC stocks and its changes was tree basal area, possibly indicative of organic matter inputs. Furthermore, climatic variables such as temperature and precipitation, and soil variables such as clay fraction and soil pH were likewise all important regulators of SOC and SOC stock changes. Lastly, we found a strong correlation between tree species diversity in homegarden and coffee AFSs and SOC stocks, highlighting possibilities to increase carbon stocks by proper tree species assemblies.
Moghadam, M Bakhtiari; Vazan, S; Darvishi, B; Golzardi, F; Farahani, M Esfini
2011-01-01
Living mulch is a suitable solution for weeds ecological management and is considered as an effective method in decreasing of weeds density and dry weight. In order to evaluate of mungbean living mulch effect on density and dry weight of weeds in corn field, an experiment was conducted as a split plot based on randomized complete block design with four blocks in Research Field of Department of Agronomy, Karaj Branch, Islamic Azad University in 2010. Main plots were time of mungbean suppression with 2,4-D herbicide in four levels (4, 6, 8 and 10 leaves stages of corn) and control without weeding and sub plots were densities of mungbean in three levels (50%, 100% and 150% more than optimum density). Density and dry weight of the weeds were measured in all plots with a quadrate (60 x 100 cm) in 10 days after tasseling. Totally, 9 species of weeds were identified in the field, which included 4 broad leave species that were existed in all plots. The results showed that the best time for suppression of mungbean is the 8 leaves stage of corn, which decreased density and dry weight of weeds, 53% and 51% in comparison with control, respectively. Increase of density of mungbean from 50% into 150% more than optimum density, decrease the density and dry weight of weeds, 27.5% and 22%, respectively. It is concluded that the best time and density for suppression mungbean was 8 leaves stage of corn, and 150% more than optimum density, which decreased density and dry weight of the weeds 69% and 63.5% in comparison with control, respectively.
NASA Astrophysics Data System (ADS)
Skiles, M.
2017-12-01
The ability to accurately measure and manage the natural snow water reservoir in mountainous regions has its challenges, namely mapping of snowpack depth and snow water equivalent (SWE). Presented here is a scalable method that differentially maps snow depth using Structure from Motion (SfM); a photogrammetric technique that uses 2d images to create a 3D model/Digital Surface Model (DSM). There are challenges with applying SfM to snow, namely, relatively uniform snow brightness can make it difficult to produce quality images needed for processing, and vegetation can limit the ability to `see' through the canopy to map both the ground and snow beneath. New techniques implemented in the method to adapt to these challenges will be demonstrated. Results include a time series at (1) the plot scale, imaged with an unmanned areal vehicle (DJI Phantom 2 adapted with Sony A5100) over the Utah Department of Transportation Atwater Study Plot in Little Cottonwood Canyon, UT, and at (2) the mountain watershed scale, imaged from the RGB camera aboard the Airborne Snow Observatory (ASO), over the headwaters of the Uncompahgre River in the San Juan Mountains, CO. At the plot scale we present comparisons to measured snow depth, and at the watershed scale we present comparisons to the ASO lidar DSM. This method is of interest due to its low cost relative to lidar, making it an accessible tool for snow research and the management of water resources. With advancing unmanned aerial vehicle technology there are implications for scalability to map snow depth, and SWE, across large basins.
Mao, Fangjie; Zhou, Guomo; Li, Pingheng; Du, Huaqiang; Xu, Xiaojun; Shi, Yongjun; Mo, Lufeng; Zhou, Yufeng; Tu, Guoqing
2017-04-15
The selective cutting method currently used in Moso bamboo forests has resulted in a reduction of stand productivity and carbon sequestration capacity. Given the time and labor expense involved in addressing this problem manually, simulation using an ecosystem model is the most suitable approach. The BIOME-BGC model was improved to suit managed Moso bamboo forests, which was adapted to include age structure, specific ecological processes and management measures of Moso bamboo forest. A field selective cutting experiment was done in nine plots with three cutting intensities (high-intensity, moderate-intensity and low-intensity) during 2010-2013, and biomass of these plots was measured for model validation. Then four selective cutting scenarios were simulated by the improved BIOME-BGC model to optimize the selective cutting timings, intervals, retained ages and intensities. The improved model matched the observed aboveground carbon density and yield of different plots, with a range of relative error from 9.83% to 15.74%. The results of different selective cutting scenarios suggested that the optimal selective cutting measure should be cutting 30% culms of age 6, 80% culms of age 7, and all culms thereafter (above age 8) in winter every other year. The vegetation carbon density and harvested carbon density of this selective cutting method can increase by 74.63% and 21.5%, respectively, compared with the current selective cutting measure. The optimized selective cutting measure developed in this study can significantly promote carbon density, yield, and carbon sink capacity in Moso bamboo forests. Copyright © 2017 Elsevier Ltd. All rights reserved.
Distribution of invasive ants and methods for their control in Hawai'i Volcanoes National Park
Peck, Robert W.; Banko, Paul C.; Snook, Kirsten; Euaparadorn, Melody
2013-01-01
The first invasive ants were detected in Hawai`i Volcanoes National Park (HAVO) more than 80 years ago. Ecological impacts of these ants are largely unknown, but studies in Hawai`i and elsewhere increasingly show that invasive ants can reduce abundance and diversity of native arthropod communities as well as disrupt pollination and food webs. Prior to the present study, knowledge of ant distributions in HAVO has primarily been restricted to road- and trail-side surveys of the Kīlauea and Mauna Loa Strip sections of the park. Due to the risks that ants pose to HAVO resources, understanding their distributions and identifying tools to eradicate or control populations of the most aggressive species is an important objective of park managers. We mapped ant distributions in two of the most intensively managed sections of the park, Mauna Loa Strip and Kahuku. We also tested the efficacy of baits to control the Argentine ant (Linepithema humile) and the big-headed ant (Pheidole megacephala), two of the most aggressive and ecologically destructive species in Hawai`i. Efficacy testing of formicidal bait was designed to provide park managers with options for eradicating small populations or controlling populations that occur at levels beyond which they can be eradicated. Within the Mauna Loa Strip and Kahuku sections of HAVO we conducted systematic surveys of ant distributions at 1625 stations covering nearly 200 km of roads, fences, and transects between August 2008 and April 2010. Overall, 15 ant species were collected in the two areas, with 12 being found on Mauna Loa Strip and 11 at Kahuku. Cardiocondyla kagutsuchi was most widespread at both sites, ranging in elevation from 920 to 2014 m, and was the only species found above 1530 m. Argentine ants and big-headed ants were also found in both areas, but their distributions did not overlap. Surveys of Argentine ants identified areas of infestation covering 560 ha at Mauna Loa Strip and 585 ha at Kahuku. At both sites, upper boundaries of big-headed ants coincided with lower boundaries of Argentine ants. Significantly, Wasmannia auropunctata (little fire ant) was not detected during our surveys. Formicidal baits tested for controlling Argentine ants included XstinguishTM (containing fipronil at 0.01%), Maxforce® (hydramethylnon 1.0%), and Australian Distance® (pyriproxyfen 0.5%). Each bait was distributed evenly over four 2500 m2 replicate plots. Applications were repeated approximately four weeks after the initial treatment. Plots were subdivided into 25 subplots and ants monitored within each subplot using paper cards containing tuna bait at approximately one week intervals for about 14 weeks. All treatments reduced ant numbers, but none eradicated ants on any of the plots. XstinguishTM produced a strong and lasting effect, depressing ant abundance below 1% of control plot levels within the first week and for about eight weeks afterward. Maxforce® was slower to attain maximum effectiveness, reducing ants to 8% of control levels after one week and 3% after six weeks. Australian Distance® was least effective, decreasing ant abundance to 19% of control levels after one week with numbers subsequently rebounding to 40% of controls at four weeks and 72% at 10 weeks. In measurements of the proportion of bait cards at which ants were detected, XstinguishTM clearly out-performed Maxforce®, reaching a minimum detection rate of 3% of bait cards at one week compared to a low of 19% for Maxforce® two weeks following the second treatment. Although ant abundances were dramatically reduced on XstinguishTM plots, it is not currently registered for use in the USA. Our results suggest that ant abundance can be greatly reduced using registered baits, but further research is needed before even small-scale eradication of Argentine ants can be achieved. Formicidal baits tested to control big-headed ants included Amdro® (hydramethylnon 0.75%), XstinguishTM (fipronil 0.01%), Extinguish® Plus (a blend of hydramethylnon 0.365% and S- methoprene 0.25%), and Australian Distance® Plus (hydramethylnon 0.365% and pyriproxyfen 0.25%). Application methods were the same as used for Argentine ants, with baits being applied on two occasions (approximately four weeks apart) on four 2500 m2 replicate plots. All four baits reduced populations to below 2% of control plot levels within one week of treatment. Amdro® was particularly effective as no ants were detected on two of the four Amdro® plots immediately following treatment. Suppression was long-lived in three of the treatments; Amdro®, Australian Distance® Plus, and Extinguish® Plus all maintained ant abundances at levels less than 1% of control plots over 12 weeks of study. In contrast, ant abundances in XstinguishTM plots rose to 7% of control plots after four weeks and 20% after 10 weeks. Our results corroborate other recent studies indicating that small populations of big-headed ants can be controlled in natural areas using products registered in the USA.
NONMEMory: a run management tool for NONMEM.
Wilkins, Justin J
2005-06-01
NONMEM is an extremely powerful tool for nonlinear mixed-effect modelling and simulation of pharmacokinetic and pharmacodynamic data. However, it is a console-based application whose output does not lend itself to rapid interpretation or efficient management. NONMEMory has been created to be a comprehensive project manager for NONMEM, providing detailed summary, comparison and overview of the runs comprising a given project, including the display of output data, simple post-run processing, fast diagnostic plots and run output management, complementary to other available modelling aids. Analysis time ought not to be spent on trivial tasks, and NONMEMory's role is to eliminate these as far as possible by increasing the efficiency of the modelling process. NONMEMory is freely available from http://www.uct.ac.za/depts/pha/nonmemory.php.
USDA-ARS?s Scientific Manuscript database
Treating poultry litter with alum is a best management practice (BMP) for lowering ammonia (NH3) emissions and phosphorus (P) runoff losses. The objective of this study was to evaluate the long-term (20 year) effects of alum-treated and untreated poultry litter applications on P availability, leachi...
USDA-ARS?s Scientific Manuscript database
The concept of reusing salt-laden drainage water in agricultural systems was developed as part of the integrated on-farm drainage management system. The successful adoption of a practical water reuse strategy in Central California requires the selection of salt and boron tolerant crops for use with ...
Interpretation of forest characteristics from computer-generated images.
T.M. Barrett; H.R. Zuuring; T. Christopher
2006-01-01
The need for effective communication in the management and planning of forested landscapes has led to a substantial increase in the use of visual information. Using forest plots from California, Oregon, and Washington, and a survey of 183 natural resource professionals in these states, we examined the use of computer-generated images to convey information about forest...
Luben D. Dimov; Jim L. Chambers; Brian Roy Lockhart
2005-01-01
Sustainable forest management and conservation require understanding of underlying basic structural and competitive relationships. To gain insight into these relationships, we analyzed spatial continuity of tree basal area (BA) and crown projection area (CPA) on twelve 0.64-ha plots in four mixed bottomland hardwood stands in Louisiana, Arkansas, and Mississippi....
D.E. Henderson; P. Botch; J. Cussimanio; D. Ryan; J. Kabrick; D. Dey
2009-01-01
Pin oak (Quercus palustris Muenchh.) and pecan (Carya illinoensis (Wangenh.) K. Koch) trees were planted on reforestation plots at Four Rivers Conservation Area in west-central Missouri. The study was conducted to determine survival and growth rates of the two species under different production methods and environmental variables....
Peter Rice
2000-01-01
Invasive alien weeds established themselves on the Sawmill Creek Research Natural Area, harming elk feeding grounds and threatening the integrity of the native plant community. Management enacted herbicide control over several growing seasons, resulting in greater elk winter forage on study plots. Monitoring the long-term effects of herbicide as a restoration tool...
Hardwood Regeneration on the Loessial Hills After Harvesting For Uneven-Aged Management
J.C.G. Goelz; J.S. Meadows
1995-01-01
In 1991, study plots were harvested to four different residual diameter distributions. Generally, for all specks, the more extreme overstory removals promoted regeneration establishment while the trestment with the least overstory removal tended to provide less regeneration than the uncut controk For oak spscies, most of the seedlings present in 1993 were those...
Stacy L. Clark; Callie Jo Schweitzer
2013-01-01
Prescribed burning is used as a management tool on national forests in the Southeastern United States to maintain oak (Quercus spp.) -dominated forest or woodland habitat. Few studies have examined response to burning at the stand, plot, and tree level. We documented red maple (Acer rubrum) response to dormant-season prescribed...
Mac A. Callaham; Matt R. Whiles; John M. Blair
2002-01-01
In tallgrass prairie, cicadas emerge annually, are abundant and their emergence can be an important flux of energy and nutrients. However, factors influencing the distribution and abundance of these cicadas are virtually unknown. We examined cicada emergence in plots from a long-term (13 y) experimental manipulation involving common tallgrass prairie management...
Integrated permanent plot and aerial monitoring for the spruce budworm decision support system
David A. MacLean
2000-01-01
Spruce budworm (Choristoneura fumiferana Clem.) outbreaks cause severe mortality and growth loss of spruce and fir forest over ranch of eastern North America. The Spruce Budworm Decision Support System (DSS) links prediction and interpretation models to the ARC/1NFO GIS, under an ArcView graphical user interface. It helps forest managers predict...
Interacting disturbances: Wildfire severity affected by stage of forest disease invasion
Margaret Metz; Kerri Frangioso; Ross Meentemeyer; David Rizzo
2010-01-01
Sudden oak death (SOD) is an emerging forest disease causing extensive tree mortality in coastal California forests. Recent California wildfires provided an opportunity to test a major assumption underlying discussions of SOD and land management: SOD mortality will increase fire severity. We examined pre-fire fuels from host species in a forest monitoring plot network...
Preliminary results of spatial modeling of selected forest health variables in Georgia
Brock Stewart; Chris J. Cieszewski
2009-01-01
Variables relating to forest health monitoring, such as mortality, are difficult to predict and model. We present here the results of fitting various spatial regression models to these variables. We interpolate plot-level values compiled from the Forest Inventory and Analysis National Information Management System (FIA-NIMS) data that are related to forest health....
Biomass of first and second rotation loblolly pine plantations in the South Carolina Coastal Plain
Charles A. Gresham
2006-01-01
In the South Carolina Coastal Plain, intensive loblolly pine (Pinus taeda L.) plantation management, without fertilization, was sustainable through two rotations as measured by biomass accumulation. Fixed plot tree inventories and destructive tree sampling of first and second rotation sections of the same plantations were used to produce area based...
In Spain, few studies have been carried out to explore the erosion caused by processes other than interrill and rill erosion, such as gully and ephemeral gully erosion, especially because most of the available studies have evaluated the erosion at plot scale. A study about the en...
Field trial of a tree injector in a weeding in West Virginia
Carter B. Gibbs
1963-01-01
In June 1960 a 5-acre plot of mixed hardwoods under intensive selection management on the Fernow Experimental Forest in West Virginia was weeded to eliminate poor-quality stems that were competing directly with desirable regeneration. Treatment was confined to stems in the 1- to 5-inch diameter (at breast height) classes.
Long-term changes in soil organic carbon and nitrogen under semiarid tillage and cropping practices
USDA-ARS?s Scientific Manuscript database
Understanding long-term changes in soil organic carbon (SOC) and total soil nitrogen (TSN) is important for evaluating C fluxes and optimizing N management. We evaluated long-term SOC and TSN changes under dryland rotations for historical stubble-mulch (HSM) and graded terrace (GT) plots on a clay l...
2009-09-01
investment and breakeven point ( BEP ).Two analysts could look at the same data and generate different outcomes if they use different assumptions or modeling...solution. You can then estimate the cost, by year, of a proactive approach to DMSMS management. One principal output of the BCA is the BEP , which shows...approach.The BEP — the point at which the plot crosses the x-axis, as shown in Figure 4—signifies that the cumula- tive investment in the proactive
From Tabletop RPG to Interactive Storytelling: Definition of a Story Manager for Videogames
NASA Astrophysics Data System (ADS)
Delmas, Guylain; Champagnat, Ronan; Augeraud, Michel
Adding narrative in computer game is complicated because it may restrict player interactivity. Our aim is to design a controller that dynamically built a plot, through the game execution, centred on player's actions. Tabletop Role-playing games manage to deal with this goal. This paper presents a study of role-playing games, their organization, and the models commonly used for narrative generation. It then deduces a proposition of components and data structures for interactive storytelling in videogames. A prototype of a social game has been developed as example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubois, P.F.
1989-05-16
This paper discusses the basis system. Basis is a program development system for scientific programs. It has been developed over the last five years at Lawrence Livermore National Laboratory (LLNL), where it is now used in about twenty major programming efforts. The Basis System includes two major components, a program development system and a run-time package. The run-time package provides the Basis Language interpreter, through which the user does input, output, plotting, and control of the program's subroutines and functions. Variables in the scientific packages are known to this interpreter, so that the user may arbitrarily print, plot, and calculatemore » with, any major program variables. Also provided are facilities for dynamic memory management, terminal logs, error recovery, text-file i/o, and the attachment of non-Basis-developed packages.« less
SpcAudace: Spectroscopic processing and analysis package of Audela software
NASA Astrophysics Data System (ADS)
Mauclaire, Benjamin
2017-11-01
SpcAudace processes long slit spectra with automated pipelines and performs astrophysical analysis of the latter data. These powerful pipelines do all the required steps in one pass: standard preprocessing, masking of bad pixels, geometric corrections, registration, optimized spectrum extraction, wavelength calibration and instrumental response computation and correction. Both high and low resolution long slit spectra are managed for stellar and non-stellar targets. Many types of publication-quality figures can be easily produced: pdf and png plots or annotated time series plots. Astrophysical quantities can be derived from individual or large amount of spectra with advanced functions: from line profile characteristics to equivalent width and periodogram. More than 300 documented functions are available and can be used into TCL scripts for automation. SpcAudace is based on Audela open source software.
Webb, Nicholas P.; Herrick, Jeffrey E.; Duniway, Michael C.
2014-01-01
Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explore how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass-succulent states across the ecological sites at the plot scale (0.25 Ha). We identify vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area can be effectively controlled when bare ground cover is 100 cm in length is less than ~35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the development of practical management solutions.
Leifeld, Jens; Meyer, Stefanie; Budge, Karen; Sebastia, Maria Teresa; Zimmermann, Michael; Fuhrer, Juerg
2015-01-01
Root turnover is an important carbon flux component in grassland ecosystems because it replenishes substantial parts of carbon lost from soil via heterotrophic respiration and leaching. Among the various methods to estimate root turnover, the root’s radiocarbon signature has rarely been applied to grassland soils previously, although the value of this approach is known from studies in forest soils. In this paper, we utilize the root’s radiocarbon signatures, at 25 plots, in mountain grasslands of the montane to alpine zone of Europe. We place the results in context of a global data base on root turnover and discuss driving factors. Root turnover rates were similar to those of a subsample of the global data, comprising a similar temperature range, but measured with different approaches, indicating that the radiocarbon method gives reliable, plausible and comparable results. Root turnover rates (0.06–1.0 y-1) scaled significantly and exponentially with mean annual temperatures. Root turnover rates indicated no trend with soil depth. The temperature sensitivity was significantly higher in mountain grassland, compared to the global data set, suggesting additional factors influencing root turnover. Information on management intensity from the 25 plots reveals that root turnover may be accelerated under intensive and moderate management compared to low intensity or semi-natural conditions. Because management intensity, in the studied ecosystems, co-varied with temperature, estimates on root turnover, based on mean annual temperature alone, may be biased. A greater recognition of management as a driver for root dynamics is warranted when effects of climatic change on belowground carbon dynamics are studied in mountain grasslands. PMID:25734640
Somenahally, Anil C; Hollister, Emily B; Yan, Wengui; Gentry, Terry J; Loeppert, Richard H
2011-10-01
Rice cultivated on arsenic (As) contaminated-soils will accumulate variable grain-As concentrations, as impacted by varietal differences, soil variables, and crop management. A field-scale experiment was conducted to study the impact of intermittent and continuous flooding on As speciation and microbial populations in rice rhizosphere compartments of soils that were either historically amended with As pesticide or unamended with As. Rhizosphere-soil, root-plaque, pore-water and grain As were quantified and speciated, and microbial populations in rhizosphere soil and root-plaque were characterized. Total-As concentrations in rhizosphere and grain were significantly lower in intermittently flooded compared to the continuously flooded plots (86% lower in pore-water, 55% lower in root-plaque and 41% lower in grain samples). iAs(V), iAs(III), and DMAs(V) were the predominant As species detected in rhizosphere-soil and root-plaque, pore-water and grain samples, respectively. Relative proportions of Archaea and iron-reducing bacteria (FeRB) were higher in rhizosphere soil compared to root-plaque. In rhizosphere soil, the relative abundance of FeRB was lower in intermittently flooded compared to continuously flooded plots, but there were no differences between root-plaque samples. This study has demonstrated that reductions in dissolved As concentrations in the rhizosphere and subsequent decreases in grain-As concentration can be attained through water management.
Ngala, Bruno M; Haydock, Patrick P J; Woods, Simon; Back, Matthew A
2015-05-01
The viability of potato cyst nematode (PCN) populations (Globodera pallida) was evaluated in three field experiments using Brassica juncea, Raphanus sativus and Eruca sativa amendments. These species were summer cultivated and autumn incorporated in experiment 1; in experiment 2, overwintered brassicaceous cover crops were spring incorporated. Experiment 3 involved determination of effects of metconazole application on biomass/glucosinolate production by B. juncea and R. sativus and on PCN pre- and post-incorporation. Glucosinolate contents were determined before incorporation. Following cover crop incorporation, field plots were planted with susceptible potatoes to evaluate the biofumigation effects on PCN reproduction. In experiment 1, PCN population post-potato harvest was reduced (P = 0.03) in B. juncea-treated plots, while R. sativus prevented further multiplication, but in experiment 2 there were no significant effects on PCN reproduction. In experiment 3, B. juncea or R. sativus either untreated or treated with metconazole reduced PCN populations. Glucosinolate concentrations varied significantly between different plant regions and cultivation seasons. Metconazole application increased the sinigrin concentration in B. juncea tissues. Glucosinolate concentrations correlated positively with PCN mortality for summer-cultivated brassicaceous plants. The results demonstrated that B. juncea and R. sativus green manures can play an important role in PCN management, particularly if included in an integrated pest management scheme. © 2014 Society of Chemical Industry.
How grazing and soil quality affect native and exotic plant diversity in Rocky Mountain grasslands
Stohlgren, T.J.; Schell, L.D.; Vanden, Heuvel B.
1999-01-01
We used multiscale plots to sample vascular plant diversity and soil characteristics in and adjacent to 26 long-term grazing exclosure sites in Colorado, Wyoming, Montana, and South Dakota, USA. The exclosures were 7-60 yr old (31.2 ?? 2.5 yr, mean ?? 1 SE). Plots were also randomly placed in the broader landscape in open rangeland in the same vegetation type at each site to assess spatial variation in grazed landscapes. Consistent sampling in the nine National Parks, Wildlife Refuges, and other management units yielded data from 78 1000-m2 plots and 780 1-m2 subplots. We hypothesized that native species richness would be lower in the exclosures than in grazed sites, due to competitive exclusion in the absence of grazing. We also hypothesized that grazed sites would have higher native and exotic species richness compared to ungrazed areas, due to disturbance (i.e., the intermediate-disturbance hypothesis) and the conventional wisdom that grazing may accelerate weed invasion. Both hypotheses were soundly rejected. Although native species richness in 1-m2 subplots was significantly higher (P < 0.05) in grazed sites, we found nearly identical native or exotic species richness in 1000-m2 plots in exclosures (31.5 ?? 2.5 native and 3.1 ?? 0.5 exotic species), adjacent grazed plots (32.6 ?? 2.8 native and 3.2 ?? 0.6 exotic species), and randomly selected grazed plots (31.6 ?? 2.9 native and 3.2 ?? 0.6 exotic species). We found no significant differences in species diversity (Hill's diversity indices, N1 and N2), evenness (Hill's ratio of evenness, E5), cover of various life-forms (grasses, forbs, and shrubs), soil texture, or soil percentage of N and C between grazed and ungrazed sites at the 1000-m2 plot scale. The species lists of the long-ungrazed and adjacent grazed plots overlapped just 57.9 ?? 2.8%. This difference in species composition is commonly attributed solely to the difference in grazing regimes. However, the species lists between pairs of grazed plots (adjacent and distant 1000-m2 plots) in the same vegetation type overlapped just 48.6 ?? 3.6%, and the ungrazed plots and distant grazed plots overlapped 49.4 ?? 3.6%. Differences in vegetation and soils between grazed and ungrazed sites were minimal in most cases, but soil characteristics and elevation were strongly correlated with native and exotic plant diversity in the study region. For the 78 1000-m2 plots, 59.4% of the variance in total species richness was explained by percentage of silt (coefficient = 0.647, t = 5.107, P < 0.001), elevation (coefficient = 0.012, t = 5.084, P < 0.001), and total foliar cover (coefficient = 0.110, t = 2.104, P < 0.039). Only 12.8% of the variance in exotic species cover (log10cover) was explained by percentage of clay (coefficient = -0.011, t = -2.878, P < 0.005), native species richness (coefficient = -0.011, t = -2.156, P < 0.034), and log10N (coefficient = 2.827, t = 1.860, P < 0.067). Native species cover and exotic species richness and frequency were also significantly positively correlated with percentage of soil N at the 1000-m2 plot scale. Our research led to five broad generalizations about current levels of grazing in these Rocky Mountain grasslands: (1) grazing probably has little effect on native species richness at landscape scales; (2) grazing probably has little effect on the accelerated spread of most exotic plant species at landscape scales; (3) grazing affects local plant species and life-form composition and cover, but spatial variation is considerable; (4) soil characteristics, climate, and disturbances may have a greater effect on plant species diversity than do current levels of grazing; and (5) few plant species show consistent, directional responses to grazing or cessation of grazing.
Forest Cover Change and Soil Erosion in Toledo's Rio Grande Watershed
NASA Astrophysics Data System (ADS)
Chicas, S.; Omine, K.
2015-04-01
Toledo, the southernmost district, is the hub of Belize's Mayan population, descendants of the ancient Mayan civilization. The Toledo District is primarily inhibited by Kekchi and Mopan Mayans whose subsistence needs are met by the Milpa slash-and-burn agricultural system and the extraction of forest resources. The poverty assessment in the country indicates that Toledo is the district with the highest percentage of household an individual indigence of 37.5 % and 49.7 % respectively. Forest cover change in the area can be attributed to rapid population growth among the Maya, together with increase in immigration from neighboring countries, logging, oil exploration and improvement and construction of roads. The forest cover change analysis show that from 2001 to 2011 there was a decrease of Lowland broad-leaved wet forest of 7.53 km sq, Shrubland of 4.66 km sq, and Wetland of 0.08 km sq. Forest cover change has resulted in soil erosion which is causing the deterioration of soils. The land cover types that are contributing the most to total erosion in the Rio Grande watershed are no-forest, lowland broad-leaved wet forest and submontane broad-leaved wet forest. In this study the Revised Universal Soil Loss Equation (RUSLE) was employed in a GIS platform to quantify and assess forest cover change and soil erosion. Soil erosion vulnerability maps in Toledo's Rio Grande watershed were also created. This study provides scientifically sound information in order to understand and respond effectively to the impacts of soil erosion in the study site.
Soil organic matter and soil biodiversity spots in urban and semi urban soils of southeast Mexico
NASA Astrophysics Data System (ADS)
Huerta, Esperanza
2015-04-01
We have observed how the constant use of compost or vermicompost has created spots of soil restoration in urban and semiurban soils of Chiapas (Huitepec and Teopisca), increasing soil organic matter amount, soil moisture and soil porosity, and enhancing then the presence of soil biodiversity; for example, in a Milpa with vermicompost (polyculture of Zea mays with Curcubita pepo, and Fasolius vulgaris) we have found a high density of an epigeic earthworm (640 ind.m2), Dichogaster bolahui, not present in the same type of soil just some meters of distance, in an Oak forest, where soil macroinvertebrates abundance decreased drastically. In another ecosystem within a Persea Americana culture, we found how above and below ground soil biodiversity is affected by the use of vermicompost, having clearly different microcosmos with and without vermicompost (30-50% more micro and macro invertebrates with vermicompost). So now in Campeche, within those soils that are classified by the mayas as tzequel, soils not use for agriculture, we have implemented home gardens and school gardens by the use of compost of vermicomposts in urban and semiurban soils. In school gardens (mainly primary schools) students have cultivated several plants with alimentary purposes; teachers have observed how the increase of soil biodiversity by the use of compost or vermicompost has enhanced the curiosity of children, even has promoted a more friendly behavior among students, they have learned how to do compost and how to apply it. Urban and semiurban soils can be modified by the use of compost and vermicompost, and soil biodiversity has extremely increased.
An assessment of the effect of human faeces and urine on maize production and water productivity
NASA Astrophysics Data System (ADS)
Guzha, Edward; Nhapi, Innocent; Rockstrom, Johan
The key challenge facing many catchment authorities in Zimbabwe and elsewhere is the challenge of feeding the growing populations within their catchment boundaries. Modern agricultural practices continue to mine valuable crop nutrients through increased food production to satisfy ever-increasing food demand. In recent diagnostic survey of smallholder agricultural sector in the Manyame catchments of Zimbabwe it was revealed that exhausted soils depleted of their natural mineral and organic constituents by many years of cropping with little fertilization or manuring were the major factors contributing to low yields and poor food security in this sector in Zimbabwe. The objective of the study was to assess the effect of using sanitized human excreta on maize production and water productivity. The study involved six volunteer farmers with four 10 m × 10 m trial plots each with the following treatments the control, commercial fertilizer treatment urine only plot, and the feacal matter and urine plot. Harvest determination was carried by weighing the yield from each of the treatment plots and comparisons done. Water productivity was computed by calculating the amount of water used to produce a tone of maize per ha. The study showed that human excreta improves maize crop production and water productivity in rain-fed agriculture. The study recommends that the ecological sanitation concept and the reuse of human excreta both humanure and (ecofert) urine can be considered as alternative excreta management options in catchment areas.
Hao, Jun; Dickhoefer, Uta; Lin, Lijun; Müller, Katrin; Glindemann, Thomas; Schönbach, Philipp; Schiborra, Anne; Wang, Chengjie; Susenbeth, Andreas
2013-02-01
Compared to continuous grazing (CG), rotational grazing (RG) increases herbage production and thereby the resilience of grasslands to intensive grazing. Results on feed intake and animal performance, however, are contradictory. Hence, the objective of the study was to determine the effects of RG and CG on herbage mass, digestibility of ingested organic matter (dOM), organic matter intake (OMI) and live weight gain (LWG) of sheep in the Inner Mongolian steppe, China. During June-September 2005-2008, two 2-ha plots were used for each grazing system. In RG, plots were divided into four 0.5-ha paddocks that were grazed for 10 days each at a moderate stocking rate. Instead, CG sheep grazed the whole plots throughout the entire grazing season. At the beginning of every month, dOM was estimated from faecal crude protein concentration. Faeces excretion was determined using titanium dioxide in six sheep per plot. The animals were weighed every month to determine their LWG. Across the years, herbage mass did not differ between systems (p = 0.820). However, dOM, OMI and LWG were lower in RG than in CG (p ≤ 0.005). Thus, our study showed that RG does not improve herbage growth, feed intake and performance of sheep and suggests that stocking rates rather than management system determine the ecological sustainability of pastoral livestock systems in semi-arid environments.
NASA Astrophysics Data System (ADS)
Kuhwald, Michael; Augustin, Katja; Duttmann, Rainer
2017-04-01
The positive effects of reduced tillage on soil stability and on various soil functions such as infiltrability or saturated hydraulic conductivity are known in general. However, long-term employment of conservation tillage can increase weed pressure, damage by mice and soil compaction. Thus, the application of one-time inversion tillage (occasional or strategic tillage) is customarily used as a method for overcoming these drawbacks. Hitherto, the effects of one-time inversion tillage on soil physical properties have not been investigated. This study focuses on analysing whether the improved soil physical properties derived by long-term reduced tillage remain after one-time inversion tillage by mouldboard plough. The study was carried out in a 5.5 ha field in the southern part of Lower Saxony, Germany. Since 1996, this field has been subdivided into three plots, one managed conventionally by using a mouldboard plough (CT), while in the others a chisel plough (RT1) and a disk harrow (RT2) were employed. In October 2014, the entire field was ploughed by mouldboard plough to a depth of 30 cm. During the following year, four field studies were conducted to analyse the effects of this one-time inversion tillage on volumetric soil water content, bulk density, saturated hydraulic conductivity and infiltration rate. Additionally, penetration resistance measurements taken across the entire field were interpolated by kriging to analyse the spatial distribution of soil characteristics. The surveys of RT1 and RT2 were compared with CT and with analyses conducted before the one-time inversion tillage. This study shows that positive effects of long-term conservation tillage on several soil physical characteristics still remain after one-time mouldboard ploughing. Throughout the entire cropping season, the topsoil tilled under former conservation tillage practices revealed significantly higher (p < 0.05) values of saturated hydraulic conductivities and infiltration rates compared to the plot that experienced continuously conventional tillage. Moreover, field-wide measuring of penetration resistance indicated the removal of the compaction zone developed under conservation tillage in soil depths between 10 and 20 cm. After mouldboard ploughing, penetration resistance in the topsoil was significantly (p < 0.05) reduced in both plots, showing the same order of magnitude as measured in the conventionally managed plot. The results of this study suggest that one-time inversion tillage with a mouldboard plough offers a suitable management option for overcoming some of the main disadvantages associated with long-term conservation tillage, while conserving the improved soil physical properties and functions.
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; Keesstra, Saskia; Jordan, Antonio; Brevik, Erik; Nova, Agata; Prosdocimi, Massimo; Azorín-Molina, César; Yazdanpanah, Najme; Mahmoodabadi, Majid; Pereira, Paulo; Burguet, María
2016-04-01
In order to design sustainable land management there is a need to have accurate information on the impact this land management strategies have on water and sediment dynamics. This is especially important when a proper management is designed to reduce the soil losses due to the complex interaction of mechanisms that interact within the soil erosion process. Soil erosion is an non-linear process, both spatially and temporally, and as a consequence of that only well-monitored and accurate measurements can give insights in the processes and how these processes can be influenced by management to reduce soil losses (Cerdà, 2007; Ligonja and Shrestha, 2015; Nanko et al., 2015; Seutloali and Beckedahl, 2015). This is necessary at different scales: pedon, slope, and watershed because the governing processes differ at different scale (Keesstra, 2007; Jordán and Martínez Zavala, 2008; Borrelli et al., 2015). Soil erosion plots can give information about the temporal and spatial variability of soil losses. We present here a strategy developed by the Soil Erosion and Degradation Research Group from the University of Valencia to assess the soil erosion rates in Eastern Spain. In 2002 the Soil Erosion Experimental Station in El Teularet-Sierra de Enguera was installed, to assess soil losses in rainfed agriculture orchards, and 73 plots of 1, 2, 4, 16 and 48 m2 were installed. In 2005 6 plots of 300 m2 were installed in the nearby Montesa soil erosion station to assess soil losses in citrus orchards. In 2011 16 plots of 2 m2 where installed in Les Alcusses to determine soil losses in olive orchards, and in 2015 8 plots in Celler del Roure vineyard to assess the impact of land management in vineyards and 8 plots in the El Teularet to study the impact of straw mulch on soil erosion rates. All erosion stations are located in several kilometres distance from each other. This research which we developed since 2002 is complementary to previous research where we used rainfall simulation experiments to assess soil properties under different management (Cerdà, 1997; Cerdà, 1998a; Cerdà 1998b; Cerdà, 2001). The results from the soil erosion plots monitoring demonstrate the positive impact of vegetation to reduce soil loss. In addition, we proved that the use of straw, chipped pruned branches and rock fragments as surface cover reduces soil losses (Cerdà et al., 2015, Pereira et al., 2015; Prosdocimi et al., 2016). Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECARE project) and by the Spanish Government with the research Project CGL2013- 47862-C2-1-R. References Borrelli, P., Märker, M., Schütt, B. 2015. Modelling Post-Tree-Harvesting soil erosion and sediment deposition potential in the turano river basin (Italian central apennine. Land Degradation and Development, 26, 356-366. DOI: 10.1002/ldr.2214 Cerdà, A. 1997.The effect of patchy distribution of Stipa tenacissima L. on runoff and erosion. Journal of Arid Environments, 36 (1), pp. 37-51.DOI: 10.1006/jare.1995.0198 Cerdà, A. 1998a. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12 (7), pp. 1031-1042. Cerdà, A. 1998b Soil aggregate stability under different Mediterranean vegetation types. Catena, 32 (2), pp. 73-86. DOI: 10.1016/S0341-8162(98)00041-1 Cerdà, A. 2001. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 52 (1), pp. 59-68. DOI: 10.1046/j.1365-2389.2001.00354.x Cerdà, A. 2007. Soil water erosion on road embankments in eastern Spain. Science of the Total Environment, 378 (1-2), 151-155. DOI: 10.1016/j.scitotenv.2007.01.041 Cerdà, A., González-Pelayo, O., Giménez-Morera, A., Jordán, A., Pereira, P., Novara, A., Brevik, E.C., Prosdocimi, M., Mahmoodabadi, M., Keesstra, S., García Orenes, F., Ritsema, C., 2015. The use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency - high magnitude simulated rainfall events. Soil Res. (In press) Jordán, A., & Martínez-Zavala, L. 2008. Soil loss and runoff rates on unpaved forest roads in southern Spain after simulated rainfall. Forest Ecology and Management, 255(3), 913-919. Keesstra, S.D. 2007. Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia. Earth Surface Processes and Landforms, 32(1): 49-65. DOI: 10.1002/esp.1360 Ligonja, P.J., Shrestha, R.P. 2015. Soil erosion assessment in kondoa eroded area in Tanzania using universal soil loss equation, geographic information systems and socioeconomic approach (2015) Land Degradation and Development, 26 (4), pp. 367-379. DOI: 10.1002/ldr.2215 Nanko, K., Giambelluca, T.W., Sutherland, R.A., Mudd, R.G., Nullet, M.A., Ziegler, A.D. 2015.Erosion potential under miconia calvescens stands on the island of hawai'i. Land Degradation and Development, 26 (3), pp. 218-226. DOI: 10.1002/ldr.2200 Pereira, P., Giménez-Morera, A., Novara, A., Keesstra, S., Jordán, A., Masto, R. E., Brevik, E., Azorin-Molina, C. Cerdà, A. 2015. The impact of road and railway embankments on runoff and soil erosion in eastern Spain. Hydrology and Earth System Sciences Discussions, 12, 12947-12985. Prosdocimi,M., Jordán, A., Tarolli, P., Keesstra, S., Novara, A., Cerdà, A. 2016. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of The Total Environment, 547, 15 ,323-330, doi:10.1016/j.scitotenv.2015.12.076 Seutloali, K.E., Beckedahl, H.R. 2015. Understanding the factors influencing rill erosion on roadcuts in the south eastern region of South Africa. Solid Earth, 6 (2) 633-641. DOI: 10.5194/se-6-633-2015
Post-fire vegetation and fuel development influences fire severity patterns in reburns.
Coppoletta, Michelle; Merriam, Kyle E; Collins, Brandon M
2016-04-01
In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of analyses investigating the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity. We also examined the influence of initial fire severity and time since initial fire on influential predictors of reburn severity. Our results suggest that high- to moderate-severity fire in the initial fires led to an increase in standing snags and shrub vegetation, which in combination with severe fire weather promoted high-severity fire effects in the subsequent reburn. Although fire behavior is largely driven by weather, our study demonstrates that post-fire vegetation composition and structure are also important drivers of reburn severity. In the face of changing climatic regimes and increases in extreme fire weather, these results may provide managers with options to create more fire-resilient ecosystems. In areas where frequent high-severity fire is undesirable, management activities such as thinning, prescribed fire, or managed wildland fire can be used to moderate fire behavior not only prior to initial fires, but also before subsequent reburns.
Women and agricultural productivity: Reframing the Issues.
Doss, Cheryl R
2018-01-01
Should agricultural development programmes target women in order to increase productivity? This article analyzes the challenges in distinguishing women's agricultural productivity from that of men. Most of the literature compares productivity on plots managed by women with those managed by men, ignoring the majority of agricultural households in which men and women are both involved in management and production. The empirical studies which have been carried out provide scant evidence for where the returns to projects may be highest, in terms of who to target. Yet, programmes that do not consider gendered responsibilities, resources and constraints, are unlikely to succeed, either in terms of increasing productivity or benefitting men and women smallholder farmers.
Airborne multispectral detection of regrowth cotton fields
NASA Astrophysics Data System (ADS)
Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.
2015-01-01
Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.
Mini rainfall simulation for assessing soil erodibility
NASA Astrophysics Data System (ADS)
Peters, Piet; Palese, Dina; Baartman, Jantiene
2016-04-01
The mini rainfall simulator is a small portable rainfall simulator to determine erosion and water infiltration characteristics of soils. The advantages of the mini rainfall simulator are that it is suitable for soil conservation surveys and light and easy to handle in the field. Practical experience over the last decade has shown that the used 'standard' shower is a reliable method to assess differences in erodibility due to soil type and/or land use. The mini rainfall simulator was used recently in a study on soil erosion in olive groves (Ferrandina-Italy). The propensity to erosion of a steep rain-fed olive grove (mean slope ~10%) with a sandy loam soil was evaluated by measuring runoff and sediment load under extreme rain events. Two types of soil management were compared: spontaneous grass as a ground cover (GC) and tillage (1 day (T1) and 10 days after tillage (T2)). Results indicate that groundcover reduced surface runoff to approximately one-third and soil-losses to zero compared with T1. The runoff between the two tilled plots was similar, although runoff on T1 plots increased steadily over time whereas runoff on T2 plots remained stable.
Prescribed fire effects on biological control of leafy spurge
Fellows, D.P.; Newton, W.E.
1999-01-01
The flea beetle, Aphthona nigriscutis Foudras, is a potentially useful agent for biological control of leafy spurge (Euphorbia esula L.) in grasslands devoted to wildlife conservation. However, effects of other grassland management practices on the persistence and dynamics of flea beetle populations are not well understood. We conducted small plot tests to evaluate 1) the effect of prerelease burning on establishment of A. nigriscutis colonies, and 2) the ability of established A. nigriscutis colonies to survive prescribed fire. More colonies established on plots that were burned prior to beetle release (83% establishment) than on unburned plots (37% establishment), possibly due to litter reduction and baring of the soil surface. However, most colonies established with the aid of fire did not survive past the first generation unless the habitat was otherwise suitable for the species, and we conclude that the primary benefit of prerelease burning is increased recruitment of A. nigriscutis during the first few generations. Established colonies were not harmed by burns in October and May. Both spring and fall burns resulted in an increase in leafy spurge stem density during the first growing season, but stem density declined to the preburn level by the second growing season.
NASA Astrophysics Data System (ADS)
Eshonkulov, Ravshan; Poyda, Arne; Ingwersen, Joachim; Streck, Thilo
2017-04-01
Assessing the spatial variability of soil physical properties is crucial for agricultural land management. We determined the spatial variability within two agricultural fields in the regions of Kraichgau and Swabian Jura in Southwest Germany. We determined soil physical properties and recorded the temporal development of soil mineral nitrogen (N) and water content as well as that of plant variables (phenology, biomass, leaf area index (LAI), N content, green vegetation fraction (GVF). The work was conducted during the vegetation periods of 2015 and 2016 in winter wheat, and winter rapeseed in Kraichgau and winter barley and silage maize on Swabian Jura. Measurements were taken in three-weekly intervals. On each field, we identified three plots with reduced plant development using high-resolution (RapidEye) satellite images ("cold spots"). Measurements taken on these cold spots were compared to those from five established (long-term) reference plots representing the average field variability. The software EXPERT-N was used to simulate the soil crop system at both cold spots and reference plots. Sensitivity analyses were conducted to identify the most important parameters for the determination of spatial variability in crop growth dynamics.
Integrated presentation of ecological risk from multiple stressors
Goussen, Benoit; Price, Oliver R.; Rendal, Cecilie; Ashauer, Roman
2016-01-01
Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic. PMID:27782171
Analyzing Radio-Frequency Coverage for the ISS
NASA Technical Reports Server (NTRS)
Bolen, Steven M.; Sham, Catherine C.
2007-01-01
The Interactive Coverage Analysis Tool (iCAT) is an interactive desktop computer program serving to (1) support planning of coverage, and management of usage of frequencies, of current and proposed radio communication systems on and near the International Space Station (ISS) and (2) enable definition of requirements for development of future such systems. The iCAT can also be used in design trade studies for other (both outer-space and terrestrial) communication systems. A user can enter the parameters of a communication-system link budget in a table in a worksheet. The nominal (onaxis) link values for the bit-to-noise-energy ratio, received isotropic power (RIP), carrier-to-noise ratio (C/N), power flux density (PFD), and link margin of the system are calculated and displayed in the table. Plots of field gradients for the RIP, C/N, PFD, and link margin are constructed in an ISS coordinate system, at a specified link range, for both the forward and return link parameters, and are displayed in worksheets. The forward and reverse link antenna gain patterns are also constructed and displayed. Line-of-sight (LOS) obstructions can be both incorporated into the gradient plots and displayed on separate plots.
The charcoal trap: Miombo forests and the energy needs of people
2011-01-01
Background This study evaluates the carbon dioxide and other greenhouse gas fluxes to the atmosphere resulting from charcoal production in Zambia. It combines new biomass and flux data from a study, that was conducted in a miombo woodland within the Kataba Forest Reserve in the Western Province of Zambia, with data from other studies. Results The measurements at Kataba compared protected area (3 plots) with a highly disturbed plot outside the forest reserve and showed considerably reduced biomass after logging for charcoal production. The average aboveground biomass content of the reserve (Plots 2-4) was around 150 t ha-1, while the disturbed plot only contained 24 t ha-1. Soil carbon was not reduced significantly in the disturbed plot. Two years of eddy covariance measurements resulted in net ecosystem exchange values of -17 ± 31 g C m-2 y-1, in the first and 90 ± 16 g C m-2 in the second year. Thus, on the basis of these two years of measurement, there is no evidence that the miombo woodland at Kataba represents a present-day carbon sink. At the country level, it is likely that deforestation for charcoal production currently leads to a per capita emission rate of 2 - 3 t CO2 y-1. This is due to poor forest regeneration, although the resilience of miombo woodlands is high. Better post-harvest management could change this situation. Conclusions We argue that protection of miombo woodlands has to account for the energy demands of the population. The production at national scale that we estimated converts into 10,000 - 15,000 GWh y-1 of energy in the charcoal. The term "Charcoal Trap" we introduce, describes the fact that this energy supply has to be substituted when woodlands are protected. One possible solution, a shift in energy supply from charcoal to electricity, would reduce the pressure of forests but requires high investments into grid and power generation. Since Zambia currently cannot generate this money by itself, the country will remain locked in the charcoal trap such as many other of its African neighbours. The question arises whether and how money and technology transfer to increase regenerative electrical power generation should become part of a post-Kyoto process. Furthermore, better inventory data are urgently required to improve knowledge about the current state of the woodland usage and recovery. Net greenhouse gas emissions could be reduced substantially by improving the post-harvest management, charcoal production technology and/or providing alternative energy supply. PMID:21854587
Impact of managed moorland burning on peat nutrient and base cation status
NASA Astrophysics Data System (ADS)
Palmer, Sheila; Gilpin, Martin; Wearing, Catherine; Johnston, Kerrylyn; Holden, Joseph; Brown, Lee
2013-04-01
Controlled 'patch' burning of moorland vegetation has been used for decades in the UK to stimulate growth of heather (Calluna vulgaris) for game bird habitat and livestock grazing. Typically small patches (300-900 m2) are burned in rotations of 8-25 years. However, our understanding of the short-to-medium term environmental impacts of the practice on these sensitive upland areas has so far been limited by a lack of scientific data. In particular the effect of burning on concentrations of base cations and acid-base status of these highly organic soils has implications both for ecosystem nutrient status and for buffering of acidic waters. As part of the EMBER project peat chemistry data were collected in ten upland blanket peat catchments in the UK. Five catchments were subject to a history of prescribed rotational patch burning. The other five catchments acted as controls which were not subject to burning, nor confounded by other detrimental activities such as drainage or forestry. Soil solution chemistry was also monitored at two intensively studied sites (one regularly burned and one control). Fifty-centimetre soil cores, sectioned into 5-cm intervals, were collected from triplicate patches of four burn ages at each burned site, and from twelve locations at similar hillslope positions at each control site. At the two intensively monitored sites, soil solution chemistry was monitored at four depths in each patch. Across all sites, burned plots had significantly smaller cation exchange capacities, lower concentrations of exchangeable base cations and increased concentrations of exchangeable H+ and Al3+ in near-surface soil. C/N ratios were also lower in burned compared to unburned surface soils. There was no consistent trend between burn age and peat chemistry across all burned sites, possibly reflecting local controls on post-burn recovery rates or external influences on burn management decisions. At the intensively monitored site, plots burned less than two years prior to sampling had significantly smaller exchange capacities and lower concentrations of soil base cations in surface soils relative to plots burned 15-25 years previously. In contrast, surface soil solutions in recently burned plots were enriched in base cations relative to older plots and relative to the control site, possibly due to enhanced leaching at bare soil surfaces. The results offer evidence for an impact of burning on peat nutrient and acid-base status, but suggest that soils recover given time with no further burning.
A whole stand growth and yield system for young longleaf pine plantations in Southwest Georgia
John R. Brooks; Steven B. Jack
2006-01-01
A whole stand growth and yield system for planted longleaf pine (Pinus palustris Mill.) was developed from permanent plot data collected annually over an 8 year period. The dataset consists of 12 intensively-managed longleaf pine plantations that are located in Lee, Worth, Mitchell, and Baker counties in southwest Georgia. Stand survival, dominant...
MICROBIAL BIOMASS IN SOILS OF RUSSIA UNDER LONG-TERM MANAGEMENT PRACTICES
Non-tilled and tilled plots on a spodosol (C-org 0.65-1.70%; pH 4.1-4.5) and a mollisol (C-org 3.02-3.13%, pH 4.9-5.3), located in the European region of Russia, were investigated to determine variances in soil microbial biomass and microbial community composition. Continuous, lo...
Dean E. Pearson; Yvette K. Ortega; Ozkan Eren; Jose L. Hierro
2015-01-01
The quantification of invader impacts remains a major hurdle to understanding and managing invasions. Here, we demonstrate a method for quantifying the community-level impact of multiple plant invaders by applying Parker et al.'s (1999) equation (impact = range x local abundance x per capita effect or per unit effect) using data from 620 survey plots from 31...
A stand density management diagram for sawtimber-sized mixed upland central hardwoods
J.A., Jr. Kershaw; B.C. Fischer
1991-01-01
Data from 190 CFI plots located in southern and west-central Indiana are used to develop a stand density diagram for sawtimber-sized mixed upland hardwoods in the Central States. The stand density diagram utilizes the concepts of self-thinning to establish a maximum size-density curve, and the stocking standards of Gingrich (1967) to formulate imtermediate stocking...
Nicholas J. Brazee; Daniel L. Lindner; Shawn Fraver; Anthony W. D' Amato; Amy M. Milo
2012-01-01
To better understand the potential long-term effects of biomass harvesting on biodiversity, the polyporoid fungi community was characterized from 120 plots in four aspen-dominated forests in Minnesota. Four deadwood variables (substratum species, substratum type, decay class and diameter class) were recorded for each polyporoid species occurrence. A total of 2358...
Structure and dynamics of an upland old-growth forest at Redwood National Park, California
Phillip J. van Mantgem; John D. Stuart
2012-01-01
Many current redwood forest management targets are based on old-growth conditions, so it is critical that we understand the variability and range of conditions that constitute these forests. Here we present information on the structure and dynamics from six one-hectare forest monitoring plots in an upland old-growth forest at Redwood National Park, California. We...
Effect of plot and sample size on timing and precision of urban forest assessments
David J. Nowak; Jeffrey T. Walton; Jack C. Stevens; Daniel E. Crane; Robert E. Hoehn
2008-01-01
Accurate field data can be used to assess ecosystem services from trees and to improve urban forest management, yet little is known about the optimization of field data collection in the urban environment. Various field and Geographic Information System (GIS) tests were performed to help understand how time costs and precision of tree population estimates change with...
Estimating erosion risks associated with logging and forest roads in northwestern California
Raymond M. Rice; Jack Lewis
1991-01-01
Abstract - Erosion resulting from logging and road building has long been a concern to forest managers and the general public. An objective methodology was developed to estimate erosion risk on forest roads and in harvest areas on private land in northwestern California. It was based on 260 plots sampled from the area harvested under 415 Timber Harvest Plans...
Diane De Steven; Callie J. Schweitzer; Steven C. Hughes; John A. Stanturf
2015-01-01
To compare methods for bottomland hardwood reforestation on marginal farmlands in the Mississippi Alluvial Valley, four afforestation treatments (natural colonization, sown oak acorns, planted oak seedlings, cottonwoodâoak interplant) were established in 1995 on former soybean cropland. Natural, sown, and planted-oak plots were not managed after establishment....
Carlos Alberto Silva; Carine Klauberg; Andrew T. Hudak; Lee A. Vierling; Veraldo Liesenberg; Samuel P. C. e Carvalho; Luiz C. E. Rodriguez
2016-01-01
Improving management practices in industrial forest plantations may increase production efficiencies, thereby reducing pressures on native tropical forests for meeting global pulp needs. This study aims to predict stem volume (V) in plantations of fast-growing Eucalyptus hybrid clones located in southeast Brazil using field plot and airborne Light Detection...
State-of-the-art technologies of forest inventory and monitoring in Taiwan
Fong-Long Feng
2000-01-01
Ground surveys, remote sensing (RS), global positioning systems (GPS), geographic information systems (GIS), and permanent sampling plots (PSP) were used to inventory and monitor forests in the development of an ecosystem management plan for the island of Taiwan. While the entire island has been surveyed, this study concentrates on the Hui-Sun and Hsin-Hua Experimental...
Robert S. Boyd; John D. Freeman; James H. Miller; M. Boyd Edwards
1995-01-01
Abstract. Maintenance of biodiversity is becoming a goal of forest management. This study determined effects of broadcast pine release herbicide treatments on plant species richness, diversity, and structural proportions seven years after treatment. Three study blocks were established in central Georgia. Plots 0.6-0.8 ha in size were planted to...
Holt-Winters Forecasting: A Study of Practical Applications for Healthcare Managers
2006-05-25
Winters Forecasting 5 List of Tables Table 1. Holt-Winters smoothing parameters and Mean Absolute Percentage Errors: Pseudoephedrine prescriptions Table 2...confidence intervals Holt-Winters Forecasting 6 List of Figures Figure 1. Line Plot of Pseudoephedrine Prescriptions forecast using smoothing parameters...The first represents monthly prescriptions of pseudoephedrine . Pseudoephedrine is a drug commonly prescribed to relieve nasal congestion and other
Fuel load modeling from mensuration attributes in temperate forests in northern Mexico
Maricela Morales-Soto; Marín Pompa-Garcia
2013-01-01
The study of fuels is an important factor in defining the vulnerability of ecosystems to forest fires. The aim of this study was to model a dead fuel load based on forest mensuration attributes from forest management inventories. A scatter plot analysis was performed and, from explanatory trends between the variables considered, correlation analysis was carried out...
Woody debris dynamics in Interior West forests and woodlands
John D. Shaw; James Long; Raffaella Marzano; Matteo Garbarino
2012-01-01
Managers are interested in the dynamics of down woody material because of its role as a fuel component, a feature of wildlife habitat, a carbon pool, and other characteristics. We analyzed nearly 9,000 plots from the Interior West, spanning the range from sparse juniper and mesquite woodland to dense spruce-fir forests, in order to characterize down woody material as...
Ecological impacts and management strategies for western larch in the face of climate-change
Gerald E. Rehfeldt; Barry C. Jaquish
2010-01-01
Approximately 185,000 forest inventory and ecological plots from both USA and Canada were used to predict the contemporary distribution of western larch (Larix occidentalis Nutt.) from climate variables. The random forests algorithm, using an 8-variable model, produced an overall error rate of about 2.9 %, nearly all of which consisted of predicting presence at...
Individual tree growth response to variable-density thinning in coastal Pacific Northwest forests.
Scott D.s Roberts; Constance A. Harrington
2008-01-01
We examined 5-year basal area growth of nearly 2600 trees in stem-mapped plots at five locations differing in site characteristics, species composition, and management history on the Olympic Peninsula in Western Washington, USA. Our objectives were to determine if internal edges, the boundaries within the stand between components of the variable-density thinning,...
J.E. Smith; R. Molina; M.M.P. Huso; M.J. Larsen
2000-01-01
Yellow mycelia and cords of Piloderma fallax (Lib.) Stalp. were more frequently observed in old-growth stands than in younger managed stands of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Piloderma fallax frequency and percent cover data were collected from 900 plots in three replicate stands in...
Ayling, Pete; Hill, Robert; Jassam, Nuthar; Kallner, Anders; Khatami, Zahra
2017-11-01
Background A logical consequence of the introduction of robotics and high-capacity analysers has seen a consolidation to larger units. This requires new structures and quality systems to ensure that laboratories deliver consistent and comparable results. Methods A spreadsheet program was designed to accommodate results from up to 12 different instruments/laboratories and present IQC data, i.e. Levey-Jennings and Youden plots and comprehensive numerical tables of the performance of each item. Input of data was made possible by a 'data loader' by which IQC data from the individual instruments could be transferred to the spreadsheet program on line. Results A set of real data from laboratories is used to populate the data loader and the networking software program. Examples are present from the analysis of variance components, the Levey-Jennings and Youden plots. Conclusions This report presents a software package that allows the simultaneous management and detailed monitoring of the performance of up to 12 different instruments/laboratories in a fully interactive mode. The system allows a quality manager of networked laboratories to have a continuous updated overview of the performance. This software package has been made available at the ACB website.
Resistance Management for Asian Citrus Psyllid, Diaphorina citri Kuwayama, in Florida.
Chen, Xue Dong; Stelinski, Lukasz L
2017-09-20
The Asian citrus psyllid, Diaphorina citri Kuwayma, is one of the most important pests in citrus production. The objective of this study was to evaluate D. citri resistance management with three insecticide rotations and compare them with no rotation and an untreated check. The different insecticides (modes of action) tested were: dimethoate, imidacloprid, diflubenzuron, abamectin 3% + thiamethoxam 13.9%, and fenpropathrin. Eggs, nymph, and adult psyllids were counted weekly. Five insecticide applications were made in 2016. Insecticide susceptibility was determined by direct comparison with a laboratory susceptible population and field populations before and after all treatments were applied. Rankings of eggs, nymphs, and adults counted in treated plots were significantly lower than in the untreated control plots after each application. Initially, the resistance ratio (RR 50 ) for each rotation model, as compared with laboratory susceptible strain and the field population before application, was less than 5.76 and 4.31, respectively. However, after five applications with dimethoate, the RR 50 using the laboratory and pre-treatment field populations was 42.34 and 34.74, respectively. Our results indicate that effectively rotating modes of action can delay and/or prevent development of insecticide resistance in populations of D. citri .
Resistance Management for Asian Citrus Psyllid, Diaphorina citri Kuwayama, in Florida
Chen, Xue Dong; Stelinski, Lukasz L.
2017-01-01
The Asian citrus psyllid, Diaphorina citri Kuwayma, is one of the most important pests in citrus production. The objective of this study was to evaluate D. citri resistance management with three insecticide rotations and compare them with no rotation and an untreated check. The different insecticides (modes of action) tested were: dimethoate, imidacloprid, diflubenzuron, abamectin 3% + thiamethoxam 13.9%, and fenpropathrin. Eggs, nymph, and adult psyllids were counted weekly. Five insecticide applications were made in 2016. Insecticide susceptibility was determined by direct comparison with a laboratory susceptible population and field populations before and after all treatments were applied. Rankings of eggs, nymphs, and adults counted in treated plots were significantly lower than in the untreated control plots after each application. Initially, the resistance ratio (RR50) for each rotation model, as compared with laboratory susceptible strain and the field population before application, was less than 5.76 and 4.31, respectively. However, after five applications with dimethoate, the RR50 using the laboratory and pre-treatment field populations was 42.34 and 34.74, respectively. Our results indicate that effectively rotating modes of action can delay and/or prevent development of insecticide resistance in populations of D. citri. PMID:28930170
Gossner, Martin M; Simons, Nadja K; Achtziger, Roland; Blick, Theo; Dorow, Wolfgang H.O; Dziock, Frank; Köhler, Frank; Rabitsch, Wolfgang; Weisser, Wolfgang W
2015-01-01
Analyses of species traits have increased our understanding of how environmental drivers such as disturbances affect the composition of arthropod communities and related processes. There are, however, few studies on which traits in the arthropod community are affected by environmental changes and which traits affect ecosystem functioning. The assembly of arthropod traits of several taxa is difficult because of the large number of species, limited availability of trait databases and differences in available traits. We sampled arthropod species data from a total of 150 managed grassland plots in three regions of Germany. These plots represent the spectrum from extensively used pastures to mown pastures to intensively managed and fertilized meadows. In this paper, we summarize information on body size, dispersal ability, feeding guild and specialization (within herbivores), feeding mode, feeding tissue (within herbivorous suckers), plant part (within herbivorous chewers), endophagous lifestyle (within herbivores), and vertical stratum use for 1,230 species of Coleoptera, Hemiptera (Heteroptera, Auchenorrhyncha), Orthoptera (Saltatoria: Ensifera, Caelifera), and Araneae, sampled by sweep-netting between 2008 and 2012. We compiled traits from various literature sources and complemented data from reliable internet sources and the authors’ experience. PMID:25977817
NASA Astrophysics Data System (ADS)
Gossner, Martin M.; Simons, Nadja K.; Achtziger, Roland; Blick, Theo; Dorow, Wolfgang H. O.; Dziock, Frank; Köhler, Frank; Rabitsch, Wolfgang; Weisser, Wolfgang W.
2015-03-01
Analyses of species traits have increased our understanding of how environmental drivers such as disturbances affect the composition of arthropod communities and related processes. There are, however, few studies on which traits in the arthropod community are affected by environmental changes and which traits affect ecosystem functioning. The assembly of arthropod traits of several taxa is difficult because of the large number of species, limited availability of trait databases and differences in available traits. We sampled arthropod species data from a total of 150 managed grassland plots in three regions of Germany. These plots represent the spectrum from extensively used pastures to mown pastures to intensively managed and fertilized meadows. In this paper, we summarize information on body size, dispersal ability, feeding guild and specialization (within herbivores), feeding mode, feeding tissue (within herbivorous suckers), plant part (within herbivorous chewers), endophagous lifestyle (within herbivores), and vertical stratum use for 1,230 species of Coleoptera, Hemiptera (Heteroptera, Auchenorrhyncha), Orthoptera (Saltatoria: Ensifera, Caelifera), and Araneae, sampled by sweep-netting between 2008 and 2012. We compiled traits from various literature sources and complemented data from reliable internet sources and the authors’ experience.
Age estimation of burbot using pectoral fin rays, brachiostegal rays, and otoliths
Klein, Zachary B.; Terrazas, Marc M.; Quist, Michael C.
2014-01-01
Throughout much of its native distribution, burbot (Lota lota) is a species of conservation concern. Understanding dynamic rate functions is critical for the effective management of sensitive burbot populations, which necessitates accurate and precise age estimates. Managing sensitive burbot populations requires an accurate and precise non-lethal alternative. In an effort to identify a non-lethal ageing structure, we compared the precision of age estimates obtained from otoliths, pectoral fin rays, dorsal fin rays and branchiostegal rays from 208 burbot collected from the Green River drainage, Wyoming. Additionally, we compared the accuracy of age estimates from pectoral fin rays, dorsal fin rays and branchiostegal rays to those of otoliths. Dorsal fin rays were immediately deemed a poor ageing structure and removed from further analysis. Age-bias plots of consensus ages derived from branchiostegal rays and pectoral fin rays were appreciably different from those obtained from otoliths. Exact agreement between readers and reader confidence was highest for otoliths and lowest for branchiostegal rays. Age-bias plots indicated that age estimates obtained from branchiostegal rays and pectoral fin rays were substantially different from age estimates obtained from otoliths. Our results indicate that otoliths provide the most precise age estimates for burbot.
Livestock grazing supports native plants and songbirds in a California annual grassland.
Gennet, Sasha; Spotswood, Erica; Hammond, Michele; Bartolome, James W
2017-01-01
Over eight years we measured the effects of plant community composition, vegetation structure, and livestock grazing on occurrence of three grassland bird species-Western Meadowlark (Sturnella neglecta), Horned Lark (Eremophila alpestris), and Grasshopper Sparrow (Ammodramus savannarum)-at sites in central California during breeding season. In California's Mediterranean-type climatic region, coastal and inland grassland vegetation is dominated by exotic annual grasses with occasional patches of native bunchgrass and forbs. Livestock grazing, primarily with beef cattle, is the most widely used management tool. Compared with ungrazed plots, grazed plots had higher bare ground, native plant cover, and vertically heterogeneous vegetation. Grazed plots also had less plant litter and shorter vegetation. Higher native plant cover, which is predominantly composed of bunchgrasses in our study area, was associated with livestock grazing and north-facing aspects. Using an information theoretic approach, we found that all three bird species had positive associations with native plant abundance and neutral (Western Meadowlark, Grasshopper Sparrow) or positive (Horned Lark) association with livestock grazing. All species favored flatter areas. Horned Larks and Western Meadowlark occurred more often where there were patches of bare ground. Western Meadowlarks and Grasshopper Sparrows were most common on north-facing slopes, suggesting that these species may be at risk from projected climate change. These findings demonstrate that livestock grazing is compatible with or supports grassland bird conservation in Mediterranean-type grasslands, including areas with high levels of exotic annual grass invasion, in part because grazing supports the persistence of native plants and heterogeneity in vegetation structure. However, conservation of low-lying grasslands with high native species presence, and active management to increase the abundance of native plant species are also likely to be important for sustaining grassland birds long-term.
Christy, Michelle; Savidge, Julie A.; Yackel Adams, Amy A.; Gragg, James E.; Rodda, Gordon H.
2017-01-01
Experimental studies evaluating the effects of food availability on the movement of free-ranging animals generally involve food supplementation rather than suppression. Both approaches can yield similar insights, but we were interested in the potential for using food suppression for the management and control of invasive predators, in particular, the brown treesnake (Boiga irregularis) on Guam. However, understanding a species’ response to food resources is critical before employing such a strategy. We studied the movements of 24 radio-tagged B. irregularis initially caught within four 4-ha unfenced plots in rodent-abundant (control) and rodent-suppressed (treatment) grassland habitats over a 40-day period. Because monitoring duration differed among snakes, we also analyzed short-term (16-day) activity areas. Over the 16 days, snakes associated with rodent-suppressed plots had 86% larger activity areas (ha), 94% greater dispersal distances (m), and 43% greater movement rates (m/h) than snakes associated with control plots. Boiga irregularis moved extensively, but these movements were not always reflected in the size of the snake’s total activity area. Movement rates did not differ between sexes, but snakes in above-average body condition moved greater distances per hour than those in below-average condition irrespective of treatment. Our study indicates that a relatively small prey suppression effort can cause almost immediate and significant changes in B. irregularismovement. On Guam, prey suppression might enhance control efforts by either increasing trap capture success or discouraging snakes from entering areas of conservation or management concern. However, the outcome of using prey suppression as a control tool in areas threatened with the accidental introduction of the brown treesnake is more difficult to predict and might have negative consequences such as elevated dispersal rates.
NASA Astrophysics Data System (ADS)
Torres-Roldan, Rafael L.; Garcia-Casco, Antonio; Garcia-Sanchez, Pedro A.
2000-08-01
CSpace is a program for the graphical and algebraic analysis of composition relations within chemical systems. The program is particularly suited to the needs of petrologists, but could also prove useful for mineralogists, geochemists and other environmental scientists. A few examples of what can be accomplished with CSpace are the mapping of compositions into some desired set of system/phase components, the estimation of reaction/mixing coefficients and assessment of phase-rule compatibility relations within or between complex mineral assemblages. The program also allows dynamic inspection of compositional relations by means of barycentric plots. CSpace provides an integrated workplace for data management, manipulation and plotting. Data management is done through a built-in spreadsheet-like editor, which also acts as a data repository for the graphical and algebraic procedures. Algebraic capabilities are provided by a mapping engine and a matrix analysis tool, both of which are based on singular-value decomposition. The mapping engine uses a general approach to linear mapping, capable of handling determined, underdetermined and overdetermined problems. The matrix analysis tool is implemented as a task "wizard" that guides the user through a number of steps to perform matrix approximation (finding nearest rank-deficient models of an input composition matrix), and inspection of null-reaction space relationships (i.e. of implicit linear relations among the elements of the composition matrix). Graphical capabilities are provided by a graph engine that directly links with the contents of the data editor. The graph engine can generate sophisticated 2-D ternary (triangular) and 3D quaternary (tetrahedral) barycentric plots and includes features such as interactive re-sizing and rotation, on-the-fly coordinate scaling and support for automated drawing of tie lines.
Tuttle, Graham M.; Katz, Gabrielle L.; Friedman, Jonathan M.; Norton, Andrew P.
2016-01-01
Local abiotic and biotic conditions can alter the strength of exotic species impacts. To better understand the effects of exotic species on invaded ecosystems and to prioritize management efforts, it is important that exotic species impacts are put in local environmental context. We studied how differences in plant community composition, photosynthetically active radiation (PAR), and available soil N associated with Russian olive presence are conditioned by local environmental variation within a western U.S. riparian ecosystem. In four sites along the South Fork of the Republican River in Colorado, we established 200 pairs of plots (underneath and apart from Russian olive) to measure the effects of invasion across the ecosystem. We used a series of a priori mixed models to identify environmental variables that altered the effects of Russian olive. For all response variables, models that included the interaction of environmental characteristics, such as presence/absence of an existing cottonwood canopy, with the presence/absence of Russian olive canopy were stronger candidate models than those that just included Russian olive canopy presence as a factor. Compared with reference plots outside of Russian olive canopy, plots underneath Russian olive had higher relative exotic cover (exotic/total cover), lower perennial C4 grass cover, and higher perennial forb cover. These effects were reduced, however, in the presence of a cottonwood canopy. As expected, Russian olive was associated with reduced PAR and increased N, but these effects were reduced under cottonwood canopy. Our results demonstrate that local abiotic and biotic environmental factors condition the effects of Russian olive within a heterogeneous riparian ecosystem and suggest that management efforts should be focused in open areas where Russian olive impacts are strongest.
Tropical forest recovery from logging: a 24 year silvicultural experiment from Central Africa.
Gourlet-Fleury, Sylvie; Mortier, Frédéric; Fayolle, Adeline; Baya, Fidèle; Ouédraogo, Dakis; Bénédet, Fabrice; Picard, Nicolas
2013-01-01
Large areas of African moist forests are being logged in the context of supposedly sustainable management plans. It remains however controversial whether harvesting a few trees per hectare can be maintained in the long term while preserving other forest services as well. We used a unique 24 year silvicultural experiment, encompassing 10 4 ha plots established in the Central African Republic, to assess the effect of disturbance linked to logging (two to nine trees ha⁻¹ greater than or equal to 80 cm DBH) and thinning (11-41 trees ha⁻¹ greater than or equal to 50 cm DBH) on the structure and dynamics of the forest. Before silvicultural treatments, above-ground biomass (AGB) and timber stock (i.e. the volume of commercial trees greater than or equal to 80 cm DBH) in the plots amounted 374.5 ± 58.2 Mg ha⁻¹ and 79.7 ± 45.9 m³ ha⁻¹, respectively. We found that (i) natural control forest was increasing in AGB (2.58 ± 1.73 Mg dry mass ha⁻¹ yr⁻¹) and decreasing in timber stock (-0.33 ± 1.57 m³ ha⁻¹ yr⁻¹); (ii) the AGB recovered very quickly after logging and thinning, at a rate proportional to the disturbance intensity (mean recovery after 24 years: 144%). Compared with controls, the gain almost doubled in the logged plots (4.82 ± 1.22 Mg ha⁻¹ yr⁻¹) and tripled in the logged + thinned plots (8.03 ± 1.41 Mg ha⁻¹ yr⁻¹); (iii) the timber stock recovered slowly (mean recovery after 24 years: 41%), at a rate of 0.75 ± 0.51 m³ ha⁻¹ yr⁻¹ in the logged plots, and 0.81 ± 0.74 m³ ha⁻¹ yr⁻¹ in the logged + thinned plots. Although thinning significantly increased the gain in biomass, it had no effect on the gain in timber stock. However, thinning did foster the growth and survival of small- and medium-sized timber trees and should have a positive effect over the next felling cycle.
Tropical forest recovery from logging: a 24 year silvicultural experiment from Central Africa
Gourlet-Fleury, Sylvie; Mortier, Frédéric; Fayolle, Adeline; Baya, Fidèle; Ouédraogo, Dakis; Bénédet, Fabrice; Picard, Nicolas
2013-01-01
Large areas of African moist forests are being logged in the context of supposedly sustainable management plans. It remains however controversial whether harvesting a few trees per hectare can be maintained in the long term while preserving other forest services as well. We used a unique 24 year silvicultural experiment, encompassing 10 4 ha plots established in the Central African Republic, to assess the effect of disturbance linked to logging (two to nine trees ha−1 greater than or equal to 80 cm DBH) and thinning (11–41 trees ha−1 greater than or equal to 50 cm DBH) on the structure and dynamics of the forest. Before silvicultural treatments, above-ground biomass (AGB) and timber stock (i.e. the volume of commercial trees greater than or equal to 80 cm DBH) in the plots amounted 374.5 ± 58.2 Mg ha−1 and 79.7 ± 45.9 m3 ha−1, respectively. We found that (i) natural control forest was increasing in AGB (2.58 ± 1.73 Mg dry mass ha−1 yr−1) and decreasing in timber stock (−0.33 ± 1.57 m3 ha−1 yr−1); (ii) the AGB recovered very quickly after logging and thinning, at a rate proportional to the disturbance intensity (mean recovery after 24 years: 144%). Compared with controls, the gain almost doubled in the logged plots (4.82 ± 1.22 Mg ha−1 yr−1) and tripled in the logged + thinned plots (8.03 ± 1.41 Mg ha−1 yr−1); (iii) the timber stock recovered slowly (mean recovery after 24 years: 41%), at a rate of 0.75 ± 0.51 m3 ha−1 yr−1 in the logged plots, and 0.81 ± 0.74 m3 ha−1 yr−1 in the logged + thinned plots. Although thinning significantly increased the gain in biomass, it had no effect on the gain in timber stock. However, thinning did foster the growth and survival of small- and medium-sized timber trees and should have a positive effect over the next felling cycle. PMID:23878332
NASA Astrophysics Data System (ADS)
Schaeffer, S. M.; Konkel, J. M.; Jin, V.
2017-12-01
Conservation practices such as no-tillage, cover crops, and reduced mineral fertilizer application are thought to help mitigate atmospheric greenhouse gas (GHG) concentrations through building soil organic matter. However, some studies have shown that both no-till and cover crops can increase GHG emissions, perhaps due to increased microbial activity. It is possible that these results are confounded by perturbations caused when management practices are newly implemented. There is a clear lack of data from long-term sites where experimental plots are well equilibrated to the management systems. Starting in 2016, we measured fluxes of nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) in twelve combinations of tillage (disk, no-till), N fertilizer rate (0, 67 kg N ha-1), and winter cover crops (none, hairy vetch, winter wheat) under continuous cotton production for 35 years. During the cotton growing season, the largest daily fluxes of N2O (36.9±11.9 g N ha-1 d-1) occurred in tilled plots regardless of cover crop or fertilization rate. However, over the entire year, the largest fluxes were observed during winter cover crop growth (63.0±21.4 g N ha-1 d-1). Overall, N2O fluxes were lower in no-till compared to tilled soils, save those under hairy vetch, a nitrogen fixing cover crop. These results, combined with our observation of higher rates of microbial N mineralization and nitrification in no-till and vetch plots, suggest vetch cover crops may stimulate both GHG and inorganic N production. We observed seasonal patterns in CH4 flux with net CH4 production during Spring and early Summer (from 0.2±0.8 to 4.8±3.2 g C ha-1 d-1), switching to net CH4 consumption by late summer (from -6.3±3.4 to 0.8±0.5 g C ha-1 d-1). Cumulative CH4 fluxes suggest that reduced tillage and fertilization may change these agroecosystems from weak sources to weak sinks for CH4. Our results highlight the impact of nitrogen availability on GHG emissions, and the need for improved understanding of the soil microbial and physical processes driving coupled N and C transformations, as well as the interactive effect of conservation management practices.
NASA Astrophysics Data System (ADS)
Mattox, A. M.
2011-12-01
Grasslands in many semi-arid regions of the world have seen an expansion of woody vegetation over the past century and many now exist largely as woodlands or shrublands. This "woody encroachment" results in numerous changes to ecosystem function, including alteration of element and water cycles. As in many parts of the world, these shrublands in south Texas have been subjected to a variety of management practices intended to reduce woody vegetation and increase the dominance of herbaceous vegetation. In addition to the intended change in vegetation structure, this activity has the potential to affect hydrologic fluxes and potentially increase deep drainage through reduced transpiration and rooting depths. However, there is significant uncertainty about the hydrologic response of vegetation to woody vegetation removal. We report here the results of a large manipulative experiment designed to assess the effects of woody vegetation removal on soil moisture movement in the vadose zone in an area that serves as a recharge zone for an unconsolidated sediment aquifer (Carrizo-Wilcox). In this study woody vegetation has been removed using a mechanical method (roller chopping) as well as a mechanical and chemical method (chainsaw removal + stump herbicide). The treated plots are located on three different soil types that represent the range of soils typical in this area. A water balance approach is used to assess soil moisture fluxes and potential deep drainage. In this first year of the study we quantified ecological and edaphic components that have the greatest effect on deep drainage, namely rooting depth, soil texture and antecedent soil water conditions. Exceptionally dry conditions this year have provided a unique opportunity to understand plant soil water interactions in the critical zone given the strong soil moisture limitations observed in the surface soil horizons. Understanding these interactions across different plant communities and soil textures are the initial steps to determining if ground water recharge may be increased through brush management. Rooting depth and volumetric water content were determined in the Chacon clay loam, Webb sandy loam and Antosa-Bobillo loamy sands. Two soil cores were taken to depths of 2 m in each of the 1/4 acre plots in each of the treated and untreated plots for a total of 54 cores. Rooting depths were determined through a combination of hydro-pneumatic root elutriation, comparison of soil water profiles in treated and untreated plots, as well as stem and soil water isotope analysis. Initial data indicates hydraulic redistribution is occurring in the loamy sand as well as the clay loam soils. Neutron probe measurements suggest that vegetation may be facilitating the movement of water into deeper soil horizons in the clay loam soils. In addition to improving our understanding of the relationships between vegetation structure and vadose zone hydrology, our results will be useful for managing water resources under increasing demand, climate change, and varied priorities for entities tasked with managing water resources.
NASA Astrophysics Data System (ADS)
Guzmán, G.; Gómez, J. A.; Giráldez, J. V.
2010-05-01
Water soil erosion is one of the major concerns in agricultural areas in Southern Spain, and the use of cover crops has been recommended as an alternative to tillage to prevent, or mitigate, soil erosion. This change of soil management implies a progressive modification of soil chemical, biological and physical properties which to date, have been documented by a limited number of studies. In this communication we describe a methodology based on the modification of the water retention curves of intact cores, present the results obtained in two olive orchards in Southern Spain, and compare them with several chemical and physical properties measured simultaneously in the orchards. The experimental areas were located in Benacazón and Pedrera, Seville province in Southern Spain, and at each location two experimental plots were established. One of the plots was under traditional tillage management and the other under cover crop soil management. The slope at the plots was 12 and 4% respectively. Soil samples were taken at both plots differentiating between the inter tree areas and the under the olive canopy areas, between two different depths: 0-10 cm and 10-20 cm. These resulted in eight different sampling areas (2x2x2). Samples were taken three year after establishing the experiments. Water retention curves of soils were obtained as the average of replications per and using the Eijkelkamp Sand and Sand/Kaolin suction tables (0-500 hPa) and a Decagon's WP4-T dewpoint potentiometer (0-300•106 hPa). The latest was used to determine the residual water content. Experimental water retention curves were to two different models: van Genuchten (1980) and Kosugi (1994). Once modeling was done, the slope value of the curves at the inflexion point, proposed by Dexter (2004a, b, c) to estimate physical quality of soils, was calculated. This study presents and discusses the advantages and problems of the different approaches for determining the water retention curves, the potential of these curves to evaluate physical modifications of the soils, and compares them with the other soil properties measured at the experiments. References: Dexter, A. R. 2004. a.- Soil physical quality. Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120 (2004) 201-214. Dexter, A. R. 2004. b.- Soil physical quality. Part II. Friability, tillage, tilth and hardsetting. Geoderma 120 (2004) 215-225. Dexter, A. R. 2004. c.- Soil physical quality. Part III: Unsaturated hydraulic conductivity and general conclusions about S-theory. Geoderma 120 (2004) 227-239. Kosugi, K. 1994. Three-parameter lognormal distribution model for soil water retention. Water Resour. Re. 30: 891-901. van Genutchen, M.Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, v.44, p.892-898,1980.
NASA Astrophysics Data System (ADS)
Fremier, A. K.; Estrada Carmona, N.; Harper, E.; DeClerck, F.
2011-12-01
Appropriate application of complex models to estimate system behavior requires understanding the influence of model structure and parameter estimates on model output. To date, most researchers perform local sensitivity analyses, rather than global, because of computational time and quantity of data produced. Local sensitivity analyses are limited in quantifying the higher order interactions among parameters, which could lead to incomplete analysis of model behavior. To address this concern, we performed a GSA on a commonly applied equation for soil loss - the Revised Universal Soil Loss Equation. USLE is an empirical model built on plot-scale data from the USA and the Revised version (RUSLE) includes improved equations for wider conditions, with 25 parameters grouped into six factors to estimate long-term plot and watershed scale soil loss. Despite RUSLE's widespread application, a complete sensitivity analysis has yet to be performed. In this research, we applied a GSA to plot and watershed scale data from the US and Costa Rica to parameterize the RUSLE in an effort to understand the relative importance of model factors and parameters across wide environmental space. We analyzed the GSA results using Random Forest, a statistical approach to evaluate parameter importance accounting for the higher order interactions, and used Classification and Regression Trees to show the dominant trends in complex interactions. In all GSA calculations the management of cover crops (C factor) ranks the highest among factors (compared to rain-runoff erosivity, topography, support practices, and soil erodibility). This is counter to previous sensitivity analyses where the topographic factor was determined to be the most important. The GSA finding is consistent across multiple model runs, including data from the US, Costa Rica, and a synthetic dataset of the widest theoretical space. The three most important parameters were: Mass density of live and dead roots found in the upper inch of soil (C factor), slope angle (L and S factor), and percentage of land area covered by surface cover (C factor). Our findings give further support to the importance of vegetation as a vital ecosystem service provider - soil loss reduction. Concurrent, progress is already been made in Costa Rica, where dam managers are moving forward on a Payment for Ecosystem Services scheme to help keep private lands forested and to improve crop management through targeted investments. Use of complex watershed models, such as RUSLE can help managers quantify the effect of specific land use changes. Moreover, effective land management of vegetation has other important benefits, such as bundled ecosystem services (e.g. pollination, habitat connectivity, etc) and improvements of communities' livelihoods.
NASA Astrophysics Data System (ADS)
Hibbard, K. A.; Law, B.; Thornton, P.
2003-12-01
Disturbance and management regimes in forested ecosystems have been recently highlighted as important factors contributing to quantification of carbon stocks and fluxes. Disturbance events, such as stand-replacing fires and current management regimes that emphasize understory and tree thinning are primary suspects influencing ecosystem processes, including net ecosystem productivity (NEP) in forests of the Pacific Northwest. Several recent analyses have compared simulated to measured component stocks and fluxes of carbon in Ponderosa Pine (Pinus ponderosa var. Laws) at 12 sites ranging from 9 to 300 years in central Oregon (Law et al. 2001, Law et al. 2003) using the BIOME-BGC model. Major emphases on ecosystem model developments include improving allocation logic, integrating ecosystem processes with disturbance such as fire and including nitrogen in biogeochemical cycling. In Law et al. (2001, 2003), field observations prompted BIOME-BGC improvements including dynamic allocation of carbon to fine root mass through the life of a stand. A sequence of simulations was also designed to represent both management and disturbance histories for each site, however, current age structure of each sites wasn't addressed. Age structure, or cohort management has largely been ignored by ecosystem models, however, some studies have sought to incorporate stand age with disturbance and management (e.g. Hibbard et al. 2003). In this analyses, we regressed tree ages against height (R2 = 0.67) to develop a proportional distribution of age structure for each site. To preserve the integrity of the comparison between Law et al. (2003) and this study, we maintained the same timing of harvest, however, based on the distribution of age structures, we manipulated the amount of removal. Harvest by Law et al. (2003) was set at stand-replacement (99%) levels to simulate clear-cutting and reflecting the average top 10% of the age in each plot. For the young sites, we set removal at 73%, 51% and 61% for sites averaging 9,16 and 23 years, respectively. It was assumed that changes in long-term pools (e.g. soil C) were negligible within these timeframes. In Law et al. (2003), the model performed well for old and mature sites, however, model simulations of the younger sites (9-50Y) were weak compared to NEP estimates from observations. Error for the young plots in Law et al. (2003) ranged from 150 - >400% of observed NEP. By accounting for the observed age structure through harvest removal, model error from this study ranged from 20-90% in young plots. This study is one of a few that have sought to account for age structure in simulating ecosystem dynamics and processes.
NASA Astrophysics Data System (ADS)
Alaoui, Abdallah; Schwilch, Gudrun; Barão, Lúcia; Basch, Gottlieb; Sukkel, Wijnand; Lemesle, Julie; Ferreira, Carla; Garcia-Orenes, Fuensanta; Morugan, Alicia; Mataix, Jorge; Kosmas, Costas; Glavan, Matjaž; Tóth, Brigitta; Petrutza Gate, Olga; Lipiec, Jerzy; Reintam, Endla; Xu, Minggang; Di, Jiaying; Fan, Hongzhu; Geissen, Violette
2017-04-01
Agricultural soils are under a wide variety of pressures, including from increasing global demand for food associated with population growth, changing diets, land degradation, and associated productivity reductions potentially exacerbated by climate change. To manage the use of agricultural soils well, decision-makers need science-based, easily applicable, and cost-effective tools for assessing soil quality and soil functions. Since a practical assessment of soil quality requires the integrated consideration of key soil properties and their variations in space and time, providing such tools remains a challenging task. This study aims to assess the impact of innovative agricultural management practices on soil quality in 14 study sites across Europe (10) and China (4), covering the major pedo-climatic zones. The study is part of the European H2020 project iSQAPER, which involves 25 partners across Europe and China and is coordinated by Wageningen University, The Netherlands. iSQAPER is aimed at interactive soil quality assessment in Europe and China for agricultural productivity and environmental resilience. The study began with a thorough literature analysis to inform the selection of indicators for the assessment of soil structure and soil functions. A manual was then developed in order to standardize and facilitate the task of inventorying soil quality and management practices at the case study sites. The manual provides clear and precise instructions on how to assess the 11 selected soil quality indicators based on a visual soil assessment methodology. A newly developed infiltrometer was used to easily assess the soil infiltration capacity in the field and investigate hydrodynamic flow processes. Based on consistent calibration, the infiltrometer enables reliable prediction of key soil hydraulic properties. The main aim of this inventory is to link agricultural management practices to the soil quality status at the case study sites, and to identify innovative practices that have improved soil quality. The inventory and the scoring of soil quality are done together with land users at each study site. The idea is to compare the soil quality on a farm where management practices have changed 3 or more years ago with that on a control farm where practices have not changed, with both farms located in the same pedo-climatic zone and having comparable soil conditions. The case study partners were requested to identify at least 3 newly adopted management practices (or combinations thereof) and 3 related control farms. First results show that among 88 sets of paired plots, 60 pairs (68 %) show a positive impact of innovative agricultural management practices on soil quality. 18 pairs (21 %) do not show any difference in soil quality between soils under innovative practices and soils in the control plots, and the remaining 10 plots (11 %) show an inverse effect. The non-detectable effect of the innovative practices on soil quality are due to type of tillage management, soil type and fertility that mask the effect of management practices on soil and also due to time of the assessment. This assessment will be repeated in the coming years, with the aim of providing sound data on soil quality and its improvement through innovative management practices across Europe and China.
NASA Astrophysics Data System (ADS)
Cassidy, Rachel; Doody, Donnacha; Watson, Catherine
2016-04-01
Despite the implementation of EU regulations controlling the use of fertilisers in agriculture, reserves of phosphorus (P) in soils continue to pose a threat to water quality. Mobilisation and transport of legacy P from soil to surface waters has been highlighted as a probable cause of many water bodies continuing to fail to achieve targets under the Water Framework Directive. However, the rates and quantities lost from farmland, and the timescales for positive change to water quality, following cessation of P inputs, remain poorly understood. Monitoring data from an instrumented grassland research site in Northern Ireland provide some insights. The site is located in a hydrologically 'flashy' landscape characterised by steep gradients and poorly drained soils over impermeable bedrock. Between 2000 and 2005 soil Olsen P concentrations were altered in five 0.2 ha hydrologically isolated grazed grassland plots through chemical fertiliser applications of 0, 10, 20, 40, 80 kg P ha-1yr-1. By 2004 this had resulted in soil Olsen P concentrations of 19, 24, 28, 38 and 67 mg P L-1 across the plots, after which applications ceased. Subsequently, until 2012, changes in soil Olsen P across the plots and losses to overland flow and drainage were monitored, with near-continuous flow measurement and water samples abstracted for chemical analysis. Runoff events were sampled at 20 minute intervals while drainage flows were taken as a weekly composite of 4-hourly samples. Overland flow events were defined by at least 24 hours without flow being recorded at the respective plot outlets. Drainage flow was examined on a weekly basis as it was continuous except during prolonged dry periods. To examine the hydrological drivers of overland flow and drainage losses the dissolved reactive P (DRP) and total P (TP) time series were synchronised with rainfall data and modelled soil moisture deficits. Results demonstrated that from 2005-2012 there was no significant difference among plots in the recorded TP and DRP time series for either overland flow or drainage flow despite the large variation in soil Olsen P. Flow-weighted mean concentrations for overland flow losses declined slightly over the period but remained in excess of the chemical Environmental Quality Standard in all plots (EQS; 0.035 mg/L). In individual events the plot receiving zero P fertiliser inputs since 2000 often lost as much, or more, P than the plot which received 80 kg ha-1 yr-1 up to 2005. Annual loads also reflect this. Drainage losses showed no decline over the period. The hydrological drivers, particularly the antecedent dry period and soil moisture, were observed to have a greater influence on P loss from the plots than soil P status. Given that Olsen P often forms the basis of nutrient management advice this raises questions on the environmental sustainability of current nutrient advice for some soil types under similar geoclimatic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chescheir, George M.; Nettles, Jami E,; Youssef, Mohamed
Growing switchgrass (Panicum virgatum L.) as an intercrop in managed loblolly pine (Pinus taeda L.) plantations has emerged as a potential source of bioenergy feedstock. Utilizing land resources between pine trees to produce an energy crop can potentially reduce the demand for land resources used to produce food; however, converting conventionally managed forest land to this new intercropping system constitutes changes in land use and associated management practices, which may affect the environmental and economic sustainability of the land. The overall objective of this project is to evaluate the environmental effects of large-scale forest bioenergy crop production and utilize thesemore » results to optimize cropping systems in a manner that protects the important ecosystem services provided by forests while contributing to the development of a sustainable and economically-viable biomass industry in the southeastern United States. Specific objectives are to: Quantify the hydrology of different energy crop production systems in watershed scale experiments on different landscapes in the southeast. Quantify the nutrient dynamics of energy crop production systems in watershed scale experiments to determine the impact of these systems on water quality. Evaluate the impacts of energy crop production on soil structure, fertility, and organic matter. Evaluate the response of flora and fauna populations and habitat quality to energy crop production systems. Develop watershed and regional scale models to evaluate the environmental sustainability and productivity of energy crop and woody biomass operations. Quantify the production systems in terms of bioenergy crop yield versus the energy and economic costs of production. Develop and evaluate best management practice guidelines to ensure the environmental sustainability of energy crop production systems. Watershed and plot scale studies formed the core of this research platform. Matched-watershed studies were established in North Carolina, Mississippi and Alabama. A plot scale study was also established in North Carolina to more intensive examination of the effects of biomass production on hydrology, soil properties, productivity wildlife habitat, and biodiversity on replicate 0.8 ha plots. Studies were also conducted on selected sites to define and quantify the environmental effects of biomass production on wildlife habitat, biodiversity, soil properties and productivity, and carbon storage and flux. Treatments on the sub-watersheds and plots included potential operational systems ranging from monoculture switchgrass to interplanted switchgrass to conventional managed forests as a controls. The hydrology, water quality, soil property, and productivity data collected in the watershed and plot scale experiments were used to develop process based watershed scale models. Existing models (DRAINMOD and APEX) were modified to more effectively simulate the intercropped systems. More regional scale models (DRAINMOD-INTERCROP) with GIS interface and SWAT) were used to simulate the impacts of intercropping switchgrass in pine plantations on the hydrology and water quality of larger scale watersheds. Results from the watershed and plot scale studies, and the modeling studies were used to develop Best Management Practice (BMP) guidelines to ensure environmentally sustainable bioenergy production in the forestry setting. While the results of the environmental sustainability research for this project have become publically available, many of the planning decisions and operational trial results were not public. Personnel in management, planning, operations, and logistics were interviewed to capture the important economic and operational lessons from internal operational research on approximately 30 full-scale operational tracts. This project produced a very large database documenting the impact of interplanting switchgrass with pine trees on hydrology, water quality, soil quality, and biodiversity. Some environmental impacts were observed in response to additional operations required for interplanting, but these impacts were small and short lived. Given that existing forestry BMPs provide a flexible system that can be adapted to protect water quality and biodiversity in forestry settings, interplanting switchgrass with pine trees can be considered environmentally sustainable. The project also developed models that can simulate switchgrass growth when it is in competition with pine trees as well as the hydrology and nutrient dynamics that result from this interplanted system. The models predicted switchgrass production, water use, and the quality of the water leaving the system over a range of climatological and geographic conditions. These models can be used to guide decisions toward sustainability. The project also documented the limitations of switchgrass production in the forestry setting and the challenges and increased costs arising from this practice. These challenges led to the conclusion that intercropping switchgrass with pine trees is not economically feasible in the current economic climate. Despite the barriers obstructing use of this system at this point in time, economic and technological changes may occur that will make this a feasible system for bioenergy production in the future. The data, models, BMPs and experiences documented in this report and in publications resulting from this project will be highly valuable to those implementing this system.« less
John Yarie
1983-01-01
The forest vegetation of 3,600,000 hectares in northeast interior Alaska was classified. A total of 365 plots located in a stratified random design were run through the ordination programs SIMORD and TWINSPAN. A total of 40 forest communities were described vegetatively and, to a limited extent, environmentally. The area covered by each community was similar, ranging...
Causal networks clarify productivity-richness interrelations, bivariate plots do not
Grace, James B.; Adler, Peter B.; Harpole, W. Stanley; Borer, Elizabeth T.; Seabloom, Eric W.
2014-01-01
We urge ecologists to consider productivity–richness relationships through the lens of causal networks to advance our understanding beyond bivariate analysis. Further, we emphasize that models based on a causal network conceptualization can also provide more meaningful guidance for conservation management than can a bivariate perspective. Measuring only two variables does not permit the evaluation of complex ideas nor resolve debates about underlying mechanisms.
Tara L. Keyser; Virginia L. McDaniel; Robert N. Klein; Dan G. Drees; Jesse A. Burton; Melissa M. Forder
2018-01-01
In upland forests of the southern US, management is increasingly focussed on the restoration and maintenance of resilient structures and species compositions, with prescribed burning being the primary tool used to achieve these goals and objectives. In this study, we utilised an extensive dataset comprising 91 burn units and 210 plots across 13 National Park Service...
Growth model for uneven-aged loblolly pine stands : simulations and management implications
C.-R. Lin; J. Buongiorno; Jeffrey P. Prestemon; K. E. Skog
1998-01-01
A density-dependent matrix growth model of uneven-aged loblolly pine stands was developed with data from 991 permanent plots in the southern United States. The model predicts the number of pine, soft hardwood, and hard hardwood trees in 13 diameter classes, based on equations for ingrowth, upgrowth, and mortality. Projections of 6 to 10 years agreed with the growth...
Grapevine dynamics after manual tending of juvenile stands on the Hoosier National Forest, Indiana
Robert C. Morrissey; Martin-Michel Gauthier; John A., Jr. Kershaw; Douglass F. Jacobs; Burnell C. Fischer; John R. Siefert
2008-01-01
Large woody vines, most notably grapevines, are a source of great concern for forest and wildlife managers in many parts of the Central Hardwood Forest Region of the United States. We examined grapevine dynamics in stands aged 21 - 35 years. The plots, located in regenerated clearcuts in the Hoosier National Forest (HNF), were evaluated for vine control, site, and tree...
Avifaunal responses to fire in southwestern montane forests along a burn severity gradient
Natasha B. Kotliar; Patricia L. Kennedy; Kimberly Ferree
2007-01-01
The effects of burn severity on avian communities are poorly understood, yet this information is crucial to fire management programs. To quantify avian response patterns along a burn severity gradient, we sampled 49 random plots (2001-2002) at the 17351-ha Cerro Grande Fire (2000) in New Mexico, USA. Additionally, pre-fire avian surveys (1986- 1988, 1990) created a...
Bucking logs to cable yarder capacity can decrease yarding costs and minimize wood wastage
Chris B. LeDoux
1986-01-01
Data from select time and motions studies and a forest model plot, used in a simulation model, show that logging managers planning felling, bucking, and limbing for a cable yarding operation must consider the effect of alternate bucking rules on wood wastage, yarding production rates and cost, the number of choker to fly and total logging costs. Results emphasize then...
Nicholas Krekeler; John M. Kabrick; Daniel C. Dey; Michael Wallendorf
2006-01-01
AbstractâIn greentree reservoirs within the Mingo Basin in southeastern Missouri, we compared the survival and growth of underplanted pin oak (Quercus palustris Muenchh.) acorns, bareroot seedlings, and RPM® container seedlings in plots that were thinned with and without ground flora control. After one growing season, we found that RPM® container...
Donald T. Gordon; Richard D. Cosens
1952-01-01
Records of permanent sample plots and extensive observations by forest management research workers indicate that tree selection methods of cutting in sugar pine-fir types have not favored the establishment of sugar pine reproduction. Since sugar pine is a highly prized lumber producing species in the California region, special measures to preserve or increase its place...
Judith D. Springer; Amy E. M. Waltz; Peter Z. Fule; Margaret M. Moore; W. Wallace Covington
2001-01-01
The decision whether to seed with native species following restoration treatments should be based on existing vegetation, species present in or absent from the soil seed bank, past management history, microclimate conditions and soils. We installed three permanent monitoring plots in two areas (total 18.6 ha) at Mt. Trumbull, AZ. Trees were thinned and the sites burned...
An assessment of coarse woody debris dynamics in an urban forest
Michael K. Crosby; Helen Petre; Justin Sims; Rachel Butler
2016-01-01
Determining the amount of coarse woody debris (CWD) in an urban forest is essential to developing management strategies to maintain ecosystem function while minimizing hazards to local residents. It is also an essential variable used for the assessment and monitoring of carbon dynamics and fire fuel loads in forests. Plots were established and CWD measured in Marshall...