Sample records for management command transportation

  1. 48 CFR 247.573-1 - Ocean transportation incidental to a contract for supplies, services, or construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Business Management Directorate, MSC; or (ii) The Commander, Military Surface Deployment and Distribution... Commander, MSC, through the Contracts and Business Management Directorate, MSC; or (B) The Commander... MANAGEMENT TRANSPORTATION Ocean Transportation by U.S.-Flag Vessels 247.573-1 Ocean transportation incidental...

  2. 75 FR 51416 - Defense Federal Acquisition Regulation Supplement; Transportation (DFARS Case 2003-D028)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ...) The Commander, Military Sealift Command (MSC), through the Contracts and Business Management... Contracts and Business Management Directorate, MSC; or (B) The Commander, through the SDDC global e-mailbox... management. Therefore, DoD has not performed a final regulatory flexibility analysis. No comments were...

  3. Logistics Support for U.S. Perimeter and Portal Monitoring Sites in the Soviet Union

    DTIC Science & Technology

    1990-09-01

    Interaction of Components. .................. 40 The U.S. National Defense Transportation System.......................52 DTS Description...53 Pros and Cons of Air, Motor Transport 54 Military Airlift Command ............ 56 iii Page Cost/Service Tradeoffs ... .......... . 59 Military...Traffic Management Command . . 59 The Soviet National Transportation System . 61 Transportation and the Economy ....... .. 63 Intermodal Comparison

  4. Acquisition management of the Global Transportation Network

    DOT National Transportation Integrated Search

    2001-08-02

    This report discusses the acquisition management of the Global transportation Network by the U.S. Transportation Command. This report is one in a series of audit reports addressing DoD acquisition management of information technology systems. The Glo...

  5. Targets for Marine Corps Purchasing and Supply Management Initiatives: Spend Analysis Findings

    DTIC Science & Technology

    2011-01-01

    TRANSPORTATION INTERNATIONAL AFFAIRS LAW AND BUSINESS NATIONAL SECURITY POPULATION AND AGING PUBLIC SAFETY SCIENCE AND TECHNOLOGY TERRORISM AND...States Transportation Command UNICOR Federal Prison Industries, Inc. USMC United States Marine Corps WHS/SIAD Washington Headquarters Services...Services Admin- istration (GSA), and the United States Transportation Command (TRANSCOM), as well as via Military Interdepartmental Purchase Requests

  6. 77 FR 66956 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ...://www.regulations.gov . Follow the instructions for submitting comments. Mail: Federal Docket Management... Transportation Command, Command Change Management, ATTN: Diana Roach, 508 Scott Drive, Scott Air Force Base, IL... more effective in providing global mobility solutions to support customer requirements in peace and war...

  7. 48 CFR 247.573-2 - Direct purchase of ocean transportation services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... determinations— (A) For voyage and time charters, through the Contracts and Business Management Directorate, MSC... Contracts and Business Management Directorate, MSC; or (B) The Commander, SDDC, through the Principal... REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT TRANSPORTATION Ocean Transportation by U.S.-Flag...

  8. Mature data transport and command management services for the Space Station

    NASA Technical Reports Server (NTRS)

    Carper, R. D.

    1986-01-01

    The duplex space/ground/space data services for the Space Station are described. The need to separate the uplink data service functions from the command functions is discussed. Command management is a process shared by an operation control center and a command management system and consists of four functions: (1) uplink data communications, (2) management of the on-board computer, (3) flight resource allocation and management, and (4) real command management. The new data service capabilities provided by microprocessors, ground and flight nodes, and closed loop and open loop capabilities are studied. The need for and functions of a flight resource allocation management service are examined. The system is designed so only users can access the system; the problems encountered with open loop uplink access are analyzed. The procedures for delivery of operational, verification, computer, and surveillance and monitoring data directly to users are reviewed.

  9. Mobilization Base Requirements Model (MOBREM) Study. Phases I-V.

    DTIC Science & Technology

    1984-08-01

    Department Health Services Command Base Mobilization Plan; DARCOM; Army Communications Command (ACC); Military Transportation Manage- ment Command...Chief of Staff. c. The major commands in CONUS are represented on the next line. FORSCOM, DARCOM, TRADOC, and Health Service Commands are the larger...specialized combat support and combat service support training. Tile general support force (GSF) units are non- deployable ’inits supporting tne CONUS

  10. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    NASA Technical Reports Server (NTRS)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  11. Distance Learning Methodologies. TRANSCOM Regulating and Command & Control Evacuation System (TRAC2ES).

    ERIC Educational Resources Information Center

    Bloomquist, Carroll R.

    The TRANSCOM (Transportation Command) Regulating Command and Control Evacuation System (TRAC2ES), which applies state-of-the-art technology to manage global medical regulating (matching patients to clinical availability) and medical evacuation processes, will be installed at all Department of Defense medical locations globally. A combination of…

  12. U.S. Air Force Application of a U.S. Army Transportation Capability Assessment Methodology.

    DTIC Science & Technology

    1987-09-01

    Management Command Transportation Engineering Agency, Newport News VA, July 1986. 22. Lambert, Douglas M. and James R. Stock. Strategic Physical...Distribution Management. Homewood IL: Richard D. Irwin, Inc., 1982. 23. Mabe , Capt Richard D. and Lt Col Paul A. Reid. Syllabus and Notetaking Package LOG

  13. Handbook of emergency management for state-level transportation agencies.

    DOT National Transportation Integrated Search

    2010-03-01

    The Department of Homeland Security has mandated specific systems and techniques for the management of emergencies in the United States, including the Incident Command System, the National Incident Management System, Emergency Operations Plans, Emerg...

  14. 32 CFR 842.37 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for international shipments. (c) Military Traffic Management Command (MTMC). The Department of Defense management agency for military traffic, land transportation, and common user ocean terminals. Among other... service responsibility for MTMC. (d) Regional Storage Management Office (RSMO). The MTMC office...

  15. Advanced transport operating system software upgrade: Flight management/flight controls software description

    NASA Technical Reports Server (NTRS)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  16. Defense transportation : more reliable information key to managing airlift services more efficiently

    DOT National Transportation Integrated Search

    2000-02-01

    The Department of Defense's (DOD) guidance provides that the Air Mobility Command's airlift costs associated with its peacetime mission (operations and maintenance) are to be funded through a transportation working capital fund. Under the working cap...

  17. Commercial Maritime Information: A Critical Appraisal.

    DTIC Science & Technology

    1981-01-01

    Robert W. Mason, Chief, Information and Analysis Staff vi Liaison Representative (Cont’d) Department of Transportation James L. Duda, Acting Chief...Christensen, Program Manager, Market Analysis , Office of Market Development John M. Pisani, Alternate, Program Manager, Office of Ports and...Intermodal Development Military Traffic Management Command David Goodman, Chief, Management Analysis Division, Comptroller/Directorate John C. Kuypers, LTC

  18. Training and Familiarization with the Battle Command Sustainment Support System

    DTIC Science & Technology

    2010-06-11

    for Task Force Bastone and SDDC” by Mitch Chandran (Translog, Fall 2005) focuses on the initial use of the BCS3 by the Surface Deployment and...the Heartbeat of ITV for Task Force Bastone and SDDC,” Journal of Military Transportation Management (Fall 2005): 13. 49Ibid. 50Ibid. 51Colonel...Mitch. “BCS3 Becomes the Heartbeat of ITV for Task Force Bastone and SDDC.” Journal of Military Transportation Management (Fall 2005). Department

  19. Consequence Management of a Yield-Producing Nuclear Detonation INCONUS: is NORTHCOM Ready

    DTIC Science & Technology

    2009-05-04

    command between Title 10 and Title 32 forces that would respond to a nuclear disaster will be a critical weakness. The CBRNE (Chemical, Biological...management response at the tactical level. The transportation requirements for the CCMRF response to a nuclear disaster will be significant and may affect the

  20. 32 CFR 842.37 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... delivery of goods. (1) Carriers issue commercial bills of lading. (2) Transportation officers issue government bills of lading (GBL). GBLs include the terms and conditions of commercial bills of lading with... for international shipments. (c) Military Traffic Management Command (MTMC). The Department of Defense...

  1. 32 CFR 842.37 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... delivery of goods. (1) Carriers issue commercial bills of lading. (2) Transportation officers issue government bills of lading (GBL). GBLs include the terms and conditions of commercial bills of lading with... for international shipments. (c) Military Traffic Management Command (MTMC). The Department of Defense...

  2. Design and engineering analysis of material procurement mobile operation platform

    NASA Astrophysics Data System (ADS)

    Ding, H.; Li, J.

    2014-03-01

    The material procurement mobile operation platform (MPMOP) consists of six modules, including network operation, truck transportation, remote communication, satellite positioning, power supply and environment regulation. The MPMOP is designed to have six major functions, including online procurement, command control, remote communication, satellite positioning, information management and auxiliary decision. The paper implements an engineering analysis on the MPMOP from three aspects, including transportation transfinite, centroid, and power dissipation.

  3. NASA Goddard Space Flight Center Robotic Processing System Program Automation Systems, volume 2

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1991-01-01

    Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form. Some of the areas covered include: (1) mission requirements; (2) automation management system; (3) Space Transportation System (STS) Hitchhicker Payload; (4) Spacecraft Command Language (SCL) scripts; (5) SCL software components; (6) RoMPS EasyLab Command & Variable summary for rack stations and annealer module; (7) support electronics assembly; (8) SCL uplink packet definition; (9) SC-4 EasyLab System Memory Map; (10) Servo Axis Control Logic Suppliers; and (11) annealing oven control subsystem.

  4. 49 CFR 175.33 - Shipping paper and notification of pilot-in-command.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-command. 175.33 Section 175.33 Transportation Other Regulations Relating to Transportation PIPELINE AND...-in-command. (a) When a hazardous material subject to the provisions of this subchapter is carried in...-in-command with accurate and legible written information as early as practicable before departure of...

  5. 49 CFR 175.33 - Shipping paper and notification of pilot-in-command.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-command. 175.33 Section 175.33 Transportation Other Regulations Relating to Transportation PIPELINE AND...-in-command. (a) When a hazardous material subject to the provisions of this subchapter is carried in...-in-command with accurate and legible written information as early as practicable before departure of...

  6. 49 CFR 175.33 - Shipping paper and notification of pilot-in-command.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-command. 175.33 Section 175.33 Transportation Other Regulations Relating to Transportation PIPELINE AND...-in-command. (a) When a hazardous material subject to the provisions of this subchapter is carried in...-in-command with accurate and legible written information as early as practicable before departure of...

  7. 49 CFR 175.33 - Shipping paper and notification of pilot-in-command.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-command. 175.33 Section 175.33 Transportation Other Regulations Relating to Transportation PIPELINE AND...-in-command. (a) When a hazardous material subject to the provisions of this subchapter is carried in...-in-command with accurate and legible written information as early as practicable before departure of...

  8. 49 CFR 175.33 - Shipping paper and notification of pilot-in-command.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-command. 175.33 Section 175.33 Transportation Other Regulations Relating to Transportation PIPELINE AND...-in-command. (a) When a hazardous material subject to the provisions of this subchapter is carried in...-in-command with accurate and legible written information as early as practicable before departure of...

  9. Lincoln Laboratory Journal. Volume 22, Number 1, 2016

    DTIC Science & Technology

    2016-06-09

    needs cyber ranges and other infrastructure to conduct scal- able, repeatable, scientific, realistic and inexpensive testing, training, and mission...support this mission, infrastructure is being upgraded to make it more efficient and secure. In “Secur- ing the U.S. Transportation Command,” Jeff...using the Electronic Key Management System (EKMS) or over a digital network by using the Key Manage- ment Infrastructure (KMI). The units must then

  10. 32 CFR 643.126 - Transportation licenses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Transportation licenses. 643.126 Section 643.126... ESTATE Additional Authority of Commanders § 643.126 Transportation licenses. Installation commanders are... free competitive proposals of all available companies or individuals. (b) DD Form 694 (Transportation...

  11. 32 CFR 643.126 - Transportation licenses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Transportation licenses. 643.126 Section 643.126... ESTATE Additional Authority of Commanders § 643.126 Transportation licenses. Installation commanders are... free competitive proposals of all available companies or individuals. (b) DD Form 694 (Transportation...

  12. 32 CFR 643.126 - Transportation licenses.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Transportation licenses. 643.126 Section 643.126... ESTATE Additional Authority of Commanders § 643.126 Transportation licenses. Installation commanders are... free competitive proposals of all available companies or individuals. (b) DD Form 694 (Transportation...

  13. 32 CFR 643.126 - Transportation licenses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Transportation licenses. 643.126 Section 643.126... ESTATE Additional Authority of Commanders § 643.126 Transportation licenses. Installation commanders are... free competitive proposals of all available companies or individuals. (b) DD Form 694 (Transportation...

  14. 32 CFR 643.126 - Transportation licenses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Transportation licenses. 643.126 Section 643.126... ESTATE Additional Authority of Commanders § 643.126 Transportation licenses. Installation commanders are... free competitive proposals of all available companies or individuals. (b) DD Form 694 (Transportation...

  15. Expeditionary Warfare Division Meeting (10th) Held in Panama City, Florida on 24-27 October 2005

    DTIC Science & Technology

    2005-10-01

    Seabasing a TRANSCOM Perspective, by Captain Craig Galloway, USN, US Transportation Command, J5A DLA Afloat, by Col Jeff Hill, Chief, Distribution ... Management Division, Defense Logistics Agency Sustaining the Seabase a View…, by Mr. Nicholas Linkowitz, HQMC I&L (Code LPV) Sustaining the Sea Base

  16. Corporate crisis management managing a major crisis in a chemical facility.

    PubMed

    Marwitz, Steve; Maxson, Neil; Koch, Bill; Aukerman, Todd; Cassidy, Jim; Belonger, David

    2008-11-15

    Chemical sites should have well trained and organized emergency response plans to manage an incident within the plant or during transport. The implementation of an incident command system utilizing either internal resources or external response through mutual aid agreements is generally sufficient to address the direct impact of an event on the site. When the site resources become overwhelmed in addressing resulting issues such as press releases, medical advice/support, employees and family support, Agency notifications, etc, Corporate should be ready and able to respond. This paper, taken from an in-depth CCPS workshop led by the author, describes an outline for corporate assistance in the event of a major incident at a site or during transportation.

  17. Establishing a Department of Defense Program Management Body of Knowledge

    DTIC Science & Technology

    1991-09-01

    systems included, "...thousands of jet fighters, bombers and transport aircraft; one hundred new combat and support vessels; and thousands of tanks and...cannon-carrying troop transports and strategic and tactical missiles" (12:9). Such systems were designed to achieve goals and performance levels never...to L. A a 20-week Program Mnageme-.nt .ur., ’ DSMc b-,o : taking command of a mra or pLog-im. A Major De ?-n.5 Acquisition (Category I) Program in the

  18. Operating and Support Costing Guide: Army Weapon Systems

    DTIC Science & Technology

    1974-12-23

    First US Army 1 Commandant, US Army Logistics Management Center (Director Administration and Services) 2 Commander, US Army Management Systems Support...Army Logistics Management Center (Director, Administration and Services) Commander, US Army Management Systems Support Agency (DACS-AME) Commander

  19. Joint Task Force - Port Opening: Can this Emerging Capability Expedite Operational Objectives Throughout the Range of Military Operations?

    DTIC Science & Technology

    2009-10-26

    for Acquisition, Technology, and Logistics, 30 July 2007). 16 Craig Koontz , ―U.S. Transportation Command,‖ PowerPoint, 23 September 2009, Newport, RI...Support Group. To Lt Col Michael W. Pratt, Naval War College. Memorandum, 30 September 2009. Koontz , Craig. ―U.S. Transportation Command...PowerPoint. 23 September 2009. 22 Koontz , Craig. Contractor/Advisor to CDR U.S. Transportation Command. To Lt Col Michael W. Pratt, 28

  20. Software Management System

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A software management system, originally developed for Goddard Space Flight Center (GSFC) by Century Computing, Inc. has evolved from a menu and command oriented system to a state-of-the art user interface development system supporting high resolution graphics workstations. Transportable Applications Environment (TAE) was initially distributed through COSMIC and backed by a TAE support office at GSFC. In 1993, Century Computing assumed the support and distribution functions and began marketing TAE Plus, the system's latest version. The software is easy to use and does not require programming experience.

  1. 14 CFR 91.1031 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...

  2. 14 CFR 91.1031 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...

  3. 14 CFR 91.1031 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...

  4. 14 CFR 91.1031 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...

  5. 14 CFR 91.1031 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...

  6. Rail and Motor Outloading Capability Study. Fort Devens, Massachusetts,

    DTIC Science & Technology

    1980-03-01

    AD-AI 765 MILITARY TRAFFIC MANAGEMENT COMMAND TRANSPORTATION EN-ETC FIO 15/5 RAIL AND MOTOR OUTLOADING CAPABILITY STUDY. FORT DEVENS . MASSAC-ETC(U...REPORT TE 79-4-54 RAIL AND MOTOR OUTLOADING CAPABILITY STUDY FORT DEVENS , MASSACHUSETTS Accession Far DTIC TAB March 1980 _stribution/ Av_alability...INTRODUCTION 6.. . .. . . II. ANALYSIS OF FORT DEVENS ’ RAIL OUTLOADING FACILITIES ... . . .. . .9 A. General .9.. B. Rail Facility Description

  7. 48 CFR 202.101 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Education Activity TRICARE Management Activity Washington Headquarters Services, Acquisition and Procurement... Command Air Force Reserve Command Air Combat Command Air Mobility Command Air Education and Training..., Management Defense Business Transformation Agency Contracting Office Defense Commissary Agency Directorate of...

  8. Aeromedical Transport Operations Using Helicopters during the 2016 Kumamoto Earthquake in Japan.

    PubMed

    Motomura, Tomokazu; Hirabayashi, Atsushi; Matsumoto, Hisashi; Yamauchi, Nobutaka; Nakamura, Mitsunobu; Machida, Hiroshi; Fujizuka, Kenji; Otsuka, Naomi; Satoh, Tomoko; Anan, Hideaki; Kondo, Hisayoshi; Koido, Yuichi

    2018-01-01

    More than 6,000 people died in the Great Hanshin (Kobe) Earthquake in 1995, and it was later reported that there were around 500 preventable trauma deaths. In response, the Japanese government developed the helicopter emergency medical service in 2001, known in Japan as the "Doctor-Heli" (DH), which had 46 DHs and 2 private medical helicopters as of April 2016. DHs transport physicians and nurses to provide pre-hospital medical care at the scene of medical emergencies. Following lessons learned in the Great East Japan Earthquake in 2011, a research group in the Ministry of Health, Labour and Welfare developed a command and control system for the DH fleet as well as the Disaster Relief Aircraft Management System Network (D-NET), which uses a satellite communications network to monitor the location of the fleet and weather in real-time during disasters. During the Kumamoto Earthquake disaster in April 2016, 75 patients were transported by 13 DHs and 1 private medical helicopter in the first 5 days. When medical demand for the DHs exceeded supply, 5 patients, 8 patients, and 1 patient were transported by Self-Defense Force, Fire Department, and Coast Guard helicopters, respectively. Of the 89 patients who were transported, 30 (34%) had trauma, 3 (3%) had pulmonary embolisms caused by sleeping in vehicles, and 17 (19%) were pregnant women or newborns. This was the first time that the command and control system for aeromedical transport and D-NET, established after the Great East Japan Earthquake in 2011, were operated in an actual large-scale disaster. Aeromedical transport by DHs and helicopters belonging to several other organizations was accomplished smoothly because the commanders of the involved organizations could communicate directly with each other in person within the Aviation Coordination Section of the prefectural government office. However, ongoing challenges in the detailed operating methods for aeromedical transport were highlighted and include improving shared knowledge and training across the organizational framework. These are particularly important issues to address given the Nankai Trough and Tokyo inland earthquakes that are predicted for the near future in Japan.

  9. Creating and Sustaining Effective Partnership between Government and Industry

    DTIC Science & Technology

    2011-04-30

    defense industry, fielding, contracting, interoperability, organizational behavior, risk management , cost estimating, and many others. Approaches...Finance from Cameron University and an MBA from Drury University. [scott.fouse@dau.mil] Allen Green—Engineer and Program Manager , SAIC, Inc...Program Executive Officer SHIPS • Commander, Naval Sea Systems Command • Army Contracting Command, U.S. Army Materiel Command • Program Manager , Airborne

  10. Development of the joint munitions planning system - a planning tool for the ammunition community.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummel, J. R.; Winiecki, A. L.; Fowler, R. S.

    2004-10-01

    The United States Army Joint Munitions Command (JMC) is the executive agent for the Single Manager for Conventional Ammunition (SMCA). As such the JMC is responsible for the storage and transportation of all Service's SMCA as well as non-SMCA munitions. Part of the JMC mission requires that complex depot capacity studies, transportation capabilities analyses, peacetime re-allocations/ redistribution plans and time-phased deployment distribution plans be developed. Beginning in 1999 the Joint Munitions Planning System (JMPS) was developed to provide sourcing and movement solutions of ammunition for military planners.

  11. Analysis of Humanitarian Assistance Cargo Transportation

    DTIC Science & Technology

    2012-06-01

    deliver materiel to people in need in their areas of responsibility. This report analyzes the options available to these commands in seeking...Thus, United States combatant commands increasingly rely on humanitarian assistance cargo transportation programs to deliver material to people in need...United States Navy and Marine Corps personnel and people overseas. PH may also arrange for space-available transportation of NGO material to consigned

  12. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  13. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  14. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  15. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  16. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  17. Mathematical Model of HIF-1 alpha Pathway, Oxygen Transport and Hypoxia

    DTIC Science & Technology

    2017-09-01

    interpret experimental data in terms of underlying mechanisms. Such experiments, if quantitative , can also be used to calibrate and further parameterize...Wing Air Force Research Laboratory Wright-Patterson AFB OH 45433-5707 STINFO COPY Work Unit Manager MATTIE.DAV ID.R.123010 1880 Digitally signed by...MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Materiel Command* Air Force Research Laboratory 711th Human Performance Wing Human Effectiveness

  18. Apollo 14 Mission image - View of Astronaut Mitchell and the Modular Equipment Transporter with the Lunar Module in background.

    NASA Image and Video Library

    1971-02-06

    AS14-64-9140 (6 Feb. 1971) --- Astronaut Edgar D. Mitchell, lunar module pilot, participates in the mission's second extravehicular activity (EVA). He is standing near the modularized equipment transporter (MET). While astronauts Alan B. Shepard Jr., commander, and Mitchell descended in the Apollo 14 LM to explore the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  19. Office of Command Security Total Quality Management Plan

    DTIC Science & Technology

    1989-07-01

    outlines the Office of Command Security instruction for TQM implementation. Keywords: TQM (Total Quality Management ), DLA Office of Command Security, Continuous process improvement, Automatic data processing security.

  20. Command History 1970. Volume 3. Sanitized

    DTIC Science & Technology

    1970-01-01

    1970 * ~USMACV Command History in prohibited except with the permission of COMUSMACV or higher * authority. 4. This document will be transported ...were stored at the C~ambodian arm~y comnpound at Lovek, northwest of Phnoom Pernh. The munitions avid other supplies were then transported over Carn...now living along the bank of the Mekong River. This Mekong area may fit the transportation , postal- / communication, and signal communication strategy

  1. Evaluation of the Recruit Company Commander Leadership and Management Education and Training (LMET) Course

    DTIC Science & Technology

    1983-11-01

    FL 32813 -t RECRUIT COMPANY COMMANDER LEADERSHIP & MANAGEMENT EDUCATION AND TRAINING QUESTIONNAIRE SECTION I: Background Infurmation Last four digits...Memorandum 83-8 RECRUIT COMPANY COMMANDER LEADERSHIP & MANAGEMENT EDUCATION AND TRAINING COURSE INTERVIEW GUIDE: After the questionnaire has been

  2. Interface between hospital and fire authorities--a concept for management of incidents in hospitals.

    PubMed

    Gretenkort, Peter; Harke, Henning; Blazejak, Jan; Pache, Bernd; Leledakis, Georgios

    2002-01-01

    Although every hospital needs a security plan for the support of immobile patients who do not possess autonomous escape capabilities, little information exists to assist in the development of practical patient evacuation methods. 1) In hospitals during disasters, incident leadership of the fire authorities can be supported effectively by hospital executives experienced in the management of mass casualties; and 2) As an alternative for canvas carry sheets, rescue drag sheets can be employed for emergency, elevator-independent, patient evacuation. A hospital evacuation exercise was planned and performed to obtain experiences in incident command and to permit calculation of elevator-independent patient transport times. Performance of incident leadership was observed by means of pre-defined checklists. The effectiveness and efficiency of carrying teams with five persons each were compared to those with a rescue drag sheet employed by a single person. Incident command for hospitals during a disaster is enhanced considerably by pre-defined and trained executives who are placed at the immediate disposal of the fire authorities. For elevator-independent patient transport, the rescue drag sheet was superior to conventional carrying measures because of a reduced number of transport personnel required to move each patient. With this method, patient transport times averaged 54 m/min. flat and 18 seconds for one floor descent. Experiences from a hospital during an evacuation exercise provided decision criteria for changes in the disaster preparedness plan. Hospital incident leadership was assigned to executives-in-charge in close co-operation with the fire authorities. All beds were equipped with a rescue drag sheet. Both concepts may help to cope with an emergency evacuation of a hospital.

  3. Measuring and Reporting Leadership and Core Competency Domains

    DTIC Science & Technology

    2015-09-04

    Command Profile CECOM Army Communications-Electronics Command CRRD Commander’s Risk Reduction Dashboard DAPMIS Department of the Army Photo Management ...culture, regional/technical, and leadership/influence.   Examining the numerous military personnel information management systems across DoD, IDA found...7 3. Military Personnel Information Management .............................................................9 A

  4. Primer for the Transportable Applications Executive

    NASA Technical Reports Server (NTRS)

    Carlson, P. A.; Emmanuelli, C. A.; Harris, E. L.; Perkins, D. C.

    1984-01-01

    The Transportable Applications Executive (TAE), an interactive multipurpose executive that provides commonly required functions for scientific analysis systems, is discussed. The concept of an executive is discussed and the various components of TAE are presented. These include on-line help information, the use of menus or commands to access analysis programs, and TAE command procedures.

  5. Senate Hearing on Assured Access to Space

    NASA Image and Video Library

    2014-07-16

    From left; Hon. Alan Estevez, Principle Deputy Under Secretary of Defense for Acquisition, Technology, and Logistics; General William Shelton, Commander of the United States Air Force Space Command; Robert Lightfoot, NASA Associate Administrator; Cristina Chaplain, Director of Acquisition and Sourcing Management at the Government Accountability Office; major General Howard Mitchell (USAF Ret.), Vice President for Program Assessments at The Aerospace Corporation; Daniel Dunbacher, Professor of Practice in the Department of Aeronautics and Aerospace Engineering at Purdue University; and Dr. Yool Kim, Senior Engineer at The Rand Corporation; are seen during a hearing in front of the Senate Subcommittee on Strategic Forces and Senate Committee on Commerce, Science, and Transportation on Wednesday, July 16, 2014, at the Hart Senate Office Building in Washington, DC. The Senate hearing focused on assured access to space.

  6. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    From left, NASA Public Affairs Officer Stephanie Schierholz, NASA Administrator Charles Bolden, Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, Kathy Lueders, program manager of NASA's Commercial Crew Program, and Astronaut Mike Fincke, a former commander of the International Space Station, are seen during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  7. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks, as Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, left, and Astronaut Mike Fincke, a former commander of the International Space Station look on during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  8. COMMAND-AND-CONTROL AND MANAGEMENT DECISION MAKING,

    DTIC Science & Technology

    Reports that the development of command-and-con trol systems in support of decision making and action taking has been accomplished by military...methods applicable to management systems. Concludes that the command-and-control type system for top management decision making is a man-machine system having as its core an on going, dynamic operation. (Author)

  9. The Evolution of Army Leader Development

    DTIC Science & Technology

    2013-03-01

    Human Resources Command, OPMD- MFE -I. 4 U.S. Army General Officer Management Office, Army General Officer Roster (Washington, DC, U.S. Department of the...Human Resources Command, Command Management Branch post board data analysis. 15 Data from the United States Army Human Resources Command, OPMD- MFE -A...May 1, 2008), D-1. 25 19 Data from the United States Army Human Resources Command, OPMD- MFE -A, 01 February, 2013. 20 U.S. Joint Chiefs of

  10. Personnel Evaluation: Noncommissioned Officer Evaluation Reporting System

    DTIC Science & Technology

    2002-05-15

    Maintenance System), paper copies will be maintained in state, command, or local career manage- ment individual files ( CMIF ) such as AGR management...Routine use DA Form 2166-8 will be maintained in the rated NCO’s official military personnel file (OMPF) and career manage- ment individual file ( CMIF ). A...CAR Chief, Army Reserve CDR commander CE commander’s evaluation CG commanding general CMIF career management individual file CNGB Chief, National Guard

  11. A Gap Analysis of Life Cycle Management Commands and Best Purchasing and Supply Management Organizations

    DTIC Science & Technology

    2013-01-01

    of the Army’s Life Cycle Management Commands (LCMCs)—those for Aviation and Missiles (AMCOM), Communications - Electronics (CECOM), and Tank-automotive...took time from their busy schedules to participate in our interviews. We would like to thank Lieutenant Colonel John Coombs for helping us track down...Army Communications -Electronics Life Cycle Management Command CPFR collaborative planning, forecasting, and replenishment DCMA Defense Contract

  12. Command and Control. Radiological Transportation Emergencies Course. Revision Three.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Carlsbad, NM.

    This 12-section course is designed to explain the responsibilities of an incident commander at the scene of a Waste Isolation Pilot Plant (WIPP) transportation incident. It was created for the U.S. Department of Energy WIPP located near Carlsbad, New Mexico, which receives radioactive shipments. The course has two purposes: (1) to provide first…

  13. Military Presence: U.S. Personnel in NATO Europe.

    DTIC Science & Technology

    1989-10-06

    Transportation 42nd Military 18th Engineer 26th Support Command Police Brigade Group Page.s GAO (.)SIA)-94)4 Militao I’ri-eeii in NATO Eurobpe Chapter 2...575 4th Transportation Command 3 585 0 3,585 7th Army Training Command 1 942 4 772 6,714 Other 0 9 551 9,551 Total 199,398 88,408 287,806 %ote Totals...p)ersolinel in Eiurope to siiI)l)01t Air Logistica SupportFor-ce op~erat ions. ’Ihel thr-ee largest commnands-the Air For-ce Commow- nications

  14. Director, Operational Test and Evaluation FY 2015 Annual Report

    DTIC Science & Technology

    2016-01-01

    review. For example, where a wind turbine project was found to have the potential to seriously degrade radar cross section testing at the Naval Air...Assessment Plan U.S. Special Operations Command Tempest Wind 2015 Assessment Plan U.S. Transportation Command Turbo Challenge 2015 Final Assessment...U.S. Air Forces Central Command 2015 May 2015 U.S. Special Operations Command-Pacific Tempest Wind 2014 May 2015 North American Aerospace Defense

  15. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...

  16. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...

  17. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...

  18. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...

  19. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...

  20. RIPS: a UNIX-based reference information program for scientists.

    PubMed

    Klyce, S D; Rózsa, A J

    1983-09-01

    A set of programs is described which implement a personal reference management and information retrieval system on a UNIX-based minicomputer. The system operates in a multiuser configuration with a host of user-friendly utilities that assist entry of reference material, its retrieval, and formatted printing for associated tasks. A search command language was developed without restriction in keyword vocabulary, number of keywords, or level of parenthetical expression nesting. The system is readily transported, and by design is applicable to any academic specialty.

  1. The C3-System User. Volume II. Workshop Notes

    DTIC Science & Technology

    1977-02-01

    system that provides the means for operational direction and technical administrative support involved in the function of command and control of U.S...information systems of the Headquarters of the Military Depart- ments; the command and control systems of the Headquarters of the Service Component Commands...the Service Component Commands - Military Airlift Command - Military Sealift Command - Military Traffic Management Command - 3.2.5 Command and

  2. Information retrieval and display system

    NASA Technical Reports Server (NTRS)

    Groover, J. L.; King, W. L.

    1977-01-01

    Versatile command-driven data management system offers users, through simplified command language, a means of storing and searching data files, sorting data files into specified orders, performing simple or complex computations, effecting file updates, and printing or displaying output data. Commands are simple to use and flexible enough to meet most data management requirements.

  3. A Nonlinear Dynamic Inversion Predictor-Based Model Reference Adaptive Controller for a Generic Transport Model

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).

  4. 78 FR 77572 - Pilot Certification and Qualification Requirements for Air Carrier Operations; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... required without notice and comment a pilot serving as a second in command in part 135 commuter operations to have an airline transport pilot certificate and an aircraft type rating, and a pilot in command in... pilot certificate requirements for a second in command (SIC) in part 121 operations. Specifically, Sec...

  5. Financial Management: Naval Air Systems Command Financial Reporting of Non-Ammunition Operating Material and Supplies for FY 2002

    DTIC Science & Technology

    2002-11-08

    Financial Management November 8, 2002 Office of the Inspector General of the Department of Defense Naval Air Systems Command Financial Reporting of...from... to) - Title and Subtitle Financial Management: Naval Air Systems Command Financial Reporting of Non-Ammunition Operating Material and...This report is the first in a series of planned reports and discusses the financial reporting of non-ammunition operating materials and supplies

  6. From Fog to Friction: The Impact of Network-Enabled Command and Control on Operational Leadership

    DTIC Science & Technology

    2012-05-04

    Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC...decision-making of operational commanders, affecting their ability to manage the operational level of war. An increasing reliance on NEC2 has...picture (COP) provides the operational commander the ability to coordinate and manage a truly joint force. During OIF, ground forces under attack had

  7. NASIS data base management system: IBM 360 TSS implementation. Volume 5: Retrieval command system reference manual

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The retrieval command subsystem reference manual for the NASA Aerospace Safety Information System (NASIS) is presented. The command subsystem may be operated conversationally or in the batch mode. Retrieval commands are categorized into search-oriented and output-oriented commands. The characteristics of ancillary commands and their application are reported.

  8. Financial Management Training for Navy Ashore Commands

    DTIC Science & Technology

    1990-06-01

    ashore command financial management accounting and budgeting personnel. It examines and analyzes the importance of training programs which are neded to...meet the job responsibilities of financial management accounting and budgeting personnel. In addition, the thesis reviews the current working environment

  9. Cost efficient command management

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa; Murphy, C. W.; Kuntz, Jon; Barlett, Tom

    1996-01-01

    The design and implementation of a command management system (CMS) for a NASA control center, is described. The technology innovations implemented in the CMS provide the infrastructure required for operations cost reduction and future development cost reduction through increased operational efficiency and reuse in future missions. The command management design facilitates error-free operations which enables the automation of the routine control center functions and allows for the distribution of scheduling responsibility to the instrument teams. The reusable system was developed using object oriented methodologies.

  10. Defense Headquarters: Geographic Combatant Commands Rely on Subordinate Commands for Mission Management and Execution

    DTIC Science & Technology

    2016-06-30

    These figures do not include personnel performing contract services. The service component commands , subordinate unified commands , and joint task forces...GAO has previously found that the combatant commands do not have oversight or visibility over authorized manpower or assigned personnel at the...Jack Reed Ranking Member Committee on Armed Services United States Senate Defense Headquarters: Geographic Combatant Commands Rely on Subordinate

  11. Soyuz Spacecraft Transported to Launch Pad

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (front view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  12. Soyuz Spacecraft Transported to Launch Pad

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  13. 78 FR 25974 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Human Resources Command, Reclassification Management Branch, 2461 Eisenhower Avenue, Alexandria, VA... Files. System location: Commander, U.S. Army Human Resources Command, ATTN: AHRC-PED-A, 2461 Eisenhower... Human Resources Command, ATTN: AHRC-PED-A, 2461 Eisenhower Avenue, Alexandria, VA 23321-0482 for Army...

  14. Software Development With Application Generators: The Naval Aviation Logistics Command Management Information System Case

    DTIC Science & Technology

    1992-09-01

    Aviation Logistics Command Management Information System (NALCOMIS) prototyping development effort, the critical success factors required to implement prototyping with application generators in other areas of DoD.

  15. Prototyping with Application Generators: Lessons Learned from the Naval Aviation Logistics Command Management Information System Case

    DTIC Science & Technology

    1992-10-01

    Prototyping with Application Generators: Lessons Learned from the Naval Aviation Logistics Command Management Information System Case. This study... management information system to automate manual Naval aviation maintenance tasks-NALCOMIS. With the use of a fourth-generation programming language

  16. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 3: Commands specification

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1990-01-01

    This volume (3 of 4) contains the specification for the command language for the AMPS system. The volume contains a requirements specification for the operating system and commands and a design specification for the operating system and command. The operating system and commands sits on top of the protocol. The commands are an extension of the present set of AMPS commands in that the commands are more compact, allow multiple sub-commands to be bundled into one command, and have provisions for identifying the sender and the intended receiver. The commands make no change to the actual software that implement the commands.

  17. Development of an expert system prototype for determining software functional requirements for command management activities at NASA Goddard

    NASA Technical Reports Server (NTRS)

    Liebowitz, J.

    1985-01-01

    The development of an expert system prototype for determining software functional requirements for NASA Goddard's Command Management System (CMS) is described. The role of the CMS is to transform general requests into specific spacecraft commands with command execution conditions. The CMS is part of the NASA Data System which entails the downlink of science and engineering data from NASA near-earth satellites to the user, and the uplink of command and control data to the spacecraft. Subjects covered include: the problem environment of determining CMS software functional requirements; the expert system approach for handling CMS requirements development; validation and evaluation procedures for the expert system.

  18. 76 FR 69293 - U.S. Army Installation Management Command; Notice of Issuance of Director's Decision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0352; Docket No. 40-09083] U.S. Army Installation Management Command; Notice of Issuance of Director's Decision Notice is hereby given that the Director, Office of Federal and State Materials and Environmental Management Programs (FSME) has issued a Director...

  19. From the Red Ball Express to the Objective Force: A Quest for Logistics Transformation

    DTIC Science & Technology

    2007-03-30

    not support. In order to streamline materiel management to the force, Army Sustainment Command developed their Distribution Management Center...material management mission and the establishment and transfer of efforts to the Distribution Management Center, the Army Sustainment Command...attempt to bridge the capability gap. As the Distribution Management Center stands up at Rock Island Arsenal, they will assume responsibility for each

  20. British Airways' pre-command training program

    NASA Technical Reports Server (NTRS)

    Holdstock, L. F. J.

    1980-01-01

    Classroom, flight simulator, and in-flight sessions of an airline pilot training program are briefly described. Factors discussed include initial command potential assessment, precommand airline management studies course, precommand course, and command course.

  1. A New Approach to Site Demand-Based Level Inventory Optimization

    DTIC Science & Technology

    2016-06-01

    Command (2016) Navy supply chain management. Accessed April 17, 2016, https://www.navsup.navy.mil/navsup/capabilities/nscm Salmeron J, Craparo E (2016...Engineering 53: 122-142. Naval Supply Systems Command (2016a) Navy supply chain management. Accessed April 17, 2016, https://www.navsup.navy.mil...distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Naval Supply Systems Command (NAVSUP) supports Navy, Marine Corps

  2. Total Army Analysis Supporting Maximization of National Resources

    DTIC Science & Technology

    2013-03-01

    Robert M. Mundell Department of Command Leadership and Management 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY...Colonel Robert M. Mundell Department of Command Leadership and Management Project Adviser This manuscript is submitted in partial fulfillment

  3. Air Force KC-X Tanker Aircraft Program: Background and Issues for Congress

    DTIC Science & Technology

    2010-03-12

    obtained by CRS. 16 Gopal Ratnam and Alison Fitzgerald , “Northrop Declines Tanker Bid on...1-50. 19 Statement of General Duncan J. McNabb, USAF, Commander, United States Transportation Command, Before the House Armed Services Air & Land

  4. Enabling information management systems in tactical network environments

    NASA Astrophysics Data System (ADS)

    Carvalho, Marco; Uszok, Andrzej; Suri, Niranjan; Bradshaw, Jeffrey M.; Ceccio, Philip J.; Hanna, James P.; Sinclair, Asher

    2009-05-01

    Net-Centric Information Management (IM) and sharing in tactical environments promises to revolutionize forward command and control capabilities by providing ubiquitous shared situational awareness to the warfighter. This vision can be realized by leveraging the tactical and Mobile Ad hoc Networks (MANET) which provide the underlying communications infrastructure, but, significant technical challenges remain. Enabling information management in these highly dynamic environments will require multiple support services and protocols which are affected by, and highly dependent on, the underlying capabilities and dynamics of the tactical network infrastructure. In this paper we investigate, discuss, and evaluate the effects of realistic tactical and mobile communications network environments on mission-critical information management systems. We motivate our discussion by introducing the Advanced Information Management System (AIMS) which is targeted for deployment in tactical sensor systems. We present some operational requirements for AIMS and highlight how critical IM support services such as discovery, transport, federation, and Quality of Service (QoS) management are necessary to meet these requirements. Our goal is to provide a qualitative analysis of the impact of underlying assumptions of availability and performance of some of the critical services supporting tactical information management. We will also propose and describe a number of technologies and capabilities that have been developed to address these challenges, providing alternative approaches for transport, service discovery, and federation services for tactical networks.

  5. Developing Strategic Leader Competencies in Today’s Junior Officer Corps

    DTIC Science & Technology

    2013-03-01

    AND ADDRESS(ES) Colonel Robert M. Mundell Department of Command, Leadership, and Management 8. PERFORMING ORGANIZATION REPORT NUMBER 9...O’Donnell United States Army Colonel Robert M. Mundell Department of Command, Leadership, and Management Project Adviser

  6. Knowledge Management in Naval Sea Systems Command: A Structure for Performance Driven Knowledge Management Initiative

    DTIC Science & Technology

    2002-09-01

    interested users. The loyalty of the knowledge worker is to his/her knowledge community and not the organization per se [Ref. 40]. Sharing is inherently...Command (NAVSEA). The former commander of NAVSEA, Vice Admiral Pete Nanos (who retired in June 2002), introduced the branding concept in 1999 to...entire organization to embrace the changes. New process initiation actions such as awareness training, storytelling , rewards, new hire

  7. United States Transportation Command 2001 Annual Command Report: Transforming Global Mobility ... and Distribution

    DTIC Science & Technology

    2001-01-01

    Annual Command Report 13 High Speed Sealift Ship increased performance efficiencies in hull designs and innovative power plants. Promising and proven...long self-propelled, floating dock, the BLUE MARLIN was designed to haul offshore oil rigs and large, heavy cargo not unlike a ship . Whereas the COLE...the disabled ship had been returned to Mississippi for repairs. Concern about terrorism, already high , became a more concerted part of USTRANSCOM

  8. Corrosion-Resistant Materials for Water and Wastewater Treatment Plants at Fort Bragg

    DTIC Science & Technology

    2007-06-01

    degradation, and assist in evaluating the Return on Investment for the project. The Project Manager was Dr. Ashok Kumar. The Associate Project Man- ager...Fort Bragg DPW Office), Steve Jackson (Instal- lation Management Agency – South East Region Office), Paul Volkman (Headquarters-Installation... Management Command), David Purcell, (Headquarters, Assistant Chief of Staff for Installation Management ), and Hilton Mills (Army Materiel Command), as

  9. The Management of New Ideas: An Entrepreneur’s Perspective

    DTIC Science & Technology

    2017-06-01

    MARCIMS Marine Civil Information Management System MARCORSYSCOM Marine Corps Systems Command MARFORPAC Marine Forces Pacific Command MCCDC Marine Corp...any personally identifying information . While this work aims to generate theory related to the management of new ideas and their meanings during the...currently deployed civil information management system as the current system in use was antiquated and frustrating to use. While we were enthusiastic

  10. Balancing Petroleum Force Structure/Capabilities between Active and Reserve Components

    DTIC Science & Technology

    2013-03-01

    ORGANIZATION NAME(S) AND ADDRESS(ES) Colonel Robert M. Mundell Department of Command, Leadership, and Management 8. PERFORMING ORGANIZATION REPORT...Colonel Kenneth R. Hook United States Army Colonel Robert M. Mundell Department of Command, Leadership, and Management Project

  11. Urgent Reform Required: Army Expeditionary Contracting. Report of the Commission on Army Acquisition and Program Management in Expeditionary Operations

    DTIC Science & Technology

    2007-10-01

    Division Dave Mabee , Senior Procurement Analyst, Office of the Deputy Assistant Secretary of the Army, Policy and Procurement Jill Stiglich, Lieutenant...U.S. Army, Commanding General, U.S. Army Materiel Command Grazioplene, James , Vice President, KBR Grover, Jeffrey, Lieutenant Colonel, U.S. Army...Management and Chief Acquisition Officer, FEMA Loehrl, James , Director of the Acquisition Center and PARC, U.S. Army Sustainment Command Urgent Reform

  12. Managing the Risk of Command File Errors

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Bryant, Larry W.

    2013-01-01

    Command File Error (CFE), as defined by the Jet Propulsion Laboratory's (JPL) Mission Operations Assurance (MOA) is, regardless of the consequence on the spacecraft, either: an error in a command file sent to the spacecraft, an error in the process for developing and delivering a command file to the spacecraft, or the omission of a command file that should have been sent to the spacecraft. The risk consequence of a CFE can be mission ending and thus a concern to space exploration projects during their mission operations. A CFE during space mission operations is often the symptom of some kind of imbalance or inadequacy within the system that comprises the hardware & software used for command generation and the human experts involved in this endeavour. As we move into an era of enhanced collaboration with other NASA centers and commercial partners, these systems become more and more complex and hence it is all the more important to formally model and analyze CFEs in order to manage the risk of CFEs. Here we will provide a summary of the ongoing efforts at JPL in this area and also explain some more recent developments in the area of developing quantitative models for the purpose of managing CFE's.

  13. Architecture for Control of the K9 Rover

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Bualat, maria; Fair, Michael; Wright, Anne; Washington, Richard

    2006-01-01

    Software featuring a multilevel architecture is used to control the hardware on the K9 Rover, which is a mobile robot used in research on robots for scientific exploration and autonomous operation in general. The software consists of five types of modules: Device Drivers - These modules, at the lowest level of the architecture, directly control motors, cameras, data buses, and other hardware devices. Resource Managers - Each of these modules controls several device drivers. Resource managers can be commanded by either a remote operator or the pilot or conditional-executive modules described below. Behaviors and Data Processors - These modules perform computations for such functions as planning paths, avoiding obstacles, visual tracking, and stereoscopy. These modules can be commanded only by the pilot. Pilot - The pilot receives a possibly complex command from the remote operator or the conditional executive, then decomposes the command into (1) more-specific commands to the resource managers and (2) requests for information from the behaviors and data processors. Conditional Executive - This highest-level module interprets a command plan sent by the remote operator, determines whether resources required for execution of the plan are available, monitors execution, and, if necessary, selects an alternate branch of the plan.

  14. Net-Centric Information and Knowledge Management and Dissemination for Data-to-Decision C2 Applications Using Intelligent Agents and Service-Oriented Architectures

    DTIC Science & Technology

    2011-11-01

    data. s to make time rations. TITA lish and Subs ge messages i y FBCB2 and y gathering an rt tactical deci ontinuous asse s, including ions through...well as one ad from data-t y spans multip and control command (M red, Fused, a eports. (BCW) tric agent-bas y from TITA sts to dismoun...new ong all TITA current state of nit, and proces emination Sup ge transport s echelons a ort mechanis mentation of X le dynamic n alized or a pur

  15. International Space Station (ISS)

    NASA Image and Video Library

    2003-10-16

    The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: "NASA/Bill Ingalls"

  16. International Space Station (ISS)

    NASA Image and Video Library

    2003-10-16

    The Soyuz TMA-3 spacecraft and its booster rocket (front view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: "NASA/Bill Ingalls"

  17. Leadership and Command on the Battlefield. Operation JUST CAUSE and DESERT STORM

    DTIC Science & Technology

    1992-01-01

    Chief of Staff for Information Management Headquarters, United States Army Training and Doctrine Command Fort Monroe, Virginia Special thanks for... Leadeship and Comtmnd on the Bauttled captain. He is the one that allows the commander to

  18. Honeywell optical investigations on FLASH program

    NASA Astrophysics Data System (ADS)

    O'Rourke, Ken; Peterson, Eric; Yount, Larry

    1995-05-01

    The increasing performance and reduction of life cycle cost requirements placed on commercial and military transport aircraft are resulting in more complex, highly integrated aircraft control and management systems. The use of fiber optic data transmission media can make significant contributions in achieving these performance and cost goals. The Honeywell portion of Task 2A on the Fly-by-Light Advanced System Hardware (FLASH) program is evaluating a Primary Flight Control System (PFCS) using pilot and copilot inputs from Active Hand Controllers (AHC) which are optically linked to the primary flight Control Computers (PFCC). Customer involvement is an important element of the Task 2A activity. Establishing customer requirements and perspectives on productization of systems developed under FLASH are key to future product success. The Honeywell elements of the PFCS demonstrator provide a command path that is optically interfaced from crew inputs to commands of distributed, smart actuation subsystems commands. Optical communication architectures are implemented using several protocols including the new AS-1773A 20 Mbps data bus standard. The interconnecting fiber optic cable plant is provided by our Task 1A teammate McDonnell Douglas Aerospace (West). Fiber optic cable plant fabrication uses processed, tools and materials reflecting necessary advances in manufacturing required to make fly-by-light avionics systems marketable.

  19. If You Don’t Know Where You Are Going, You Probably Will End Up Somewhere Else: Computer Network Operations Force Presentation

    DTIC Science & Technology

    2009-06-01

    Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In...control of cross-domain dependencies, and management of Title 10 relationships. This literature review of joint doctrine indicates USSTRATCOM...24 III: How Do Combatant Commands Manage

  20. Militancy in Pakistan: Rebottling the Genie

    DTIC Science & Technology

    2013-03-01

    of Command, Leadership and Management 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S...Martin Department of Command, Leadership and Management Project Adviser This manuscript is submitted in partial fulfillment of the requirements of...dictatorship. “Governance is the exercise of power or authority– political, economic, administrative, or otherwise– to manage a country’s resources and

  1. How the Department of Transportation Supports the DOD

    DTIC Science & Technology

    2016-03-09

    launch rocket system onto a railroad car in Avon Park , Florida, in prepa- ration to transport the system to Fort Stewart, Georgia, for annual...graduate of the Transportation Officer Basic Course, the Combined Logistics Captains Ca- reer Course, and the Command and General Staff Officers

  2. Telescience Resource Kit Software Capabilities and Future Enhancements

    NASA Technical Reports Server (NTRS)

    Schneider, Michelle

    2004-01-01

    The Telescience Resource Kit (TReK) is a suite of PC-based software applications that can be used to monitor and control a payload on board the International Space Station (ISS). This software provides a way for payload users to operate their payloads from their home sites. It can be used by an individual or a team of people. TReK provides both local ground support system services and an interface to utilize remote services provided by the Payload Operations Integration Center (POIC). by the POIC and to perform local data functions such as processing the data, storing it in local files, and forwarding it to other computer systems. TReK can also be used to build, send, and track payload commands. In addition to these features, work is in progress to add a new command management capability. This capability will provide a way to manage a multi- platform command environment that can include geographically distributed computers. This is intended to help those teams that need to manage a shared on-board resource such as a facility class payload. The environment can be configured such that one individual can manage all the command activities associated with that payload. This paper will provide a summary of existing TReK capabilities and a description of the new command management capability. For example, 7'ReK can be used to receive payload data distributed

  3. KSC-2014-3928

    NASA Image and Video Library

    2014-09-16

    CAPE CANAVERAL, Fla. – Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks during the Commercial Crew Transportation Capability CCtCap contract announcement ceremony. Speaking from Kennedy Space Center’s Press Site, Lueders detailed the importance of the development effort for United States space exploration ambitions and the economic potential of creating new markets in space transportation for people. Boeing and SpaceX were awarded contracts to complete the design of the CST-100 and Crew Dragon spacecraft, respectively, and begin manufacturing for flight tests with a goal of achieving certification to take astronauts to the International Space Station by 2017. CCtCap also covers the beginning of operational missions for these new spacecraft and their systems. Former astronaut Bob Cabana, left, director of Kennedy Space Center, and former International Space Station Commander Mike Fincke also took part in the announcement. Photo credit: NASA/Jim Grossmann

  4. 32 CFR 105.9 - Commander and management procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... expedited transfer, the Service member must affirmatively change his or her reporting option to Unrestricted... replacement order. (ii) The issuing commander shall notify the appropriate civilian authorities of any change... command climate of sexual assault prevention predicated on mutual respect and trust, recognizes and...

  5. 32 CFR 105.9 - Commander and management procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... expedited transfer, the Service member must affirmatively change his or her reporting option to Unrestricted... replacement order. (ii) The issuing commander shall notify the appropriate civilian authorities of any change... command climate of sexual assault prevention predicated on mutual respect and trust, recognizes and...

  6. Global War on Terrorism: Executing War without Unity of Command

    DTIC Science & Technology

    2007-03-09

    41 outlined 14 principles of management , which apply to this discussion. He states, “authority and responsibility, unity of command, unity of...Fayol, “General Principles of Management ,” in Classics of Organization Theory, ed. Jay M. Shafritz, J. Steven Ott, and Yong Suk Jang (Belmont,CA

  7. Commanding the Direction of Passive Whole-Body Rotations Facilitates Egocentric Spatial Updating

    ERIC Educational Resources Information Center

    Fery, Yves-Andre; Magnac, Richard; Israel, Isabelle

    2004-01-01

    In conditions of slow passive transport without vision, even tenuous inertial signals from semi-circular canals and the haptic-kinaesthetic system should provide information about changes relative to the environment provided that it is possible to command the direction of the body's movements voluntarily. Without such control, spatial updating…

  8. THE FUTURE OF THE EUROPEAN AIR TRANSPORT COMMAND: AN ANALYSIS OF CAPABILITY ENHANCEMENTS FROM THE ITALIAN AIR FORCE AND AIR MOBILITY COMMAND

    DTIC Science & Technology

    2016-02-15

    25 Bibliography Bowie, Christopher, Fred Frostic, Kevin Lewis, John Lunch, David Ochmanek, and Philip Proppe. The New Calculus : Analyzing...a critical analysis. Carlisle, Pennsylvania: US Army War College, class 2012. Stewart , Rory. The Place in Between. Orlando, FL: Harcourt Books

  9. Passepartout Sherpa - A low-cost, reusable transportation system into the stratosphere for small experiments

    NASA Astrophysics Data System (ADS)

    Taraba, M.; Fauland, H.; Turetschek, T.; Stumptner, W.; Kudielka, V.; Scheer, D.; Sattler, B.; Fritz, A.; Stingl, B.; Fuchs, H.; Gubo, B.; Hettrich, S.; Hirtl, A.; Unger, E.; Soucek, A.; Frischauf, N.; Grömer, G.

    2014-12-01

    The Passepartout sounding balloon transportation system for low-mass (< 1200 g) experiments or hardware for validation to an altitude of 35 km is described. We present the general flight configuration, set-up of the flight control system, environmental and position sensors, power system, buoyancy considerations as well as the ground control infrastructure including recovery operations. In the telemetry and command module the integrated airborne computer is able to control the experiment, transmit telemetry and environmental data and allows for a duplex communication to a control centre for tele-commanding. The experiment module is mounted below the telemetry and command module and can either work as a standalone system or be controlled by the airborne computer. This spacing between experiment- and control unit allows for a high flexibility in the experiment design. After a parachute landing, the on-board satellite based recovery subsystems allow for a rapid tracking and recovery of the telemetry and command module and the experiment. We discuss flight data and lessons learned from two representative flights with research payloads.

  10. Review and Evaluation of Internal Control in the Department of the Navy.

    DTIC Science & Technology

    1984-03-01

    marketing Formulating adver- Controlling placement policies tising programs of advertisements Setting research Deciding on policies research projects Choosing...proper command level. with laws, regulations, treatires, and management policy. The command, base, or unit Written defintions of authorized activities...informa- tion to the members of the operating management ... Management also has a responsibility to maintain its access to the capital market and ... to

  11. Evaluation of a noninvasive command scheme for upper-limb prostheses in a virtual reality reach and grasp task.

    PubMed

    Kaliki, Rahul R; Davoodi, Rahman; Loeb, Gerald E

    2013-03-01

    C5/C6 tetraplegic patients and transhumeral amputees may be able to use voluntary shoulder motion as command signals for a functional electrical stimulation system or transhumeral prosthesis. Stereotyped relationships, termed "postural synergies," among the shoulder, forearm, and wrist joints emerge during goal-oriented reaching and transport movements as performed by able-bodied subjects. Thus, the posture of the shoulder can potentially be used to infer the desired posture of the elbow and forearm joints during reaching and transporting movements. We investigated how well able-bodied subjects could learn to use a noninvasive command scheme based on inferences from these postural synergies to control a simulated transhumeral prosthesis in a virtual reality task. We compared the performance of subjects using the inferential command scheme (ICS) with subjects operating the simulated prosthesis in virtual reality according to complete motion tracking of their actual arm and hand movements. Initially, subjects performed poorly with the ICS but improved rapidly with modest amounts of practice, eventually achieving performance only slightly less than subjects using complete motion tracking. Thus, inferring the desired movement of distal joints from voluntary shoulder movements appears to be an intuitive and noninvasive approach for obtaining command signals for prostheses to restore reaching and grasping functions.

  12. Multi-Modal Transportation System Simulation

    DOT National Transportation Integrated Search

    1971-01-01

    THE PRESENT STATUS OF A LABORATORY BEING DEVELOPED FOR REAL-TIME SIMULATION OF COMMAND AND CONTROL FUNCTIONS IN TRANSPORTATION SYSTEMS IS DISCUSSED. DETAILS ARE GIVEN ON THE SIMULATION MODELS AND ON PROGRAMMING TECHNIQUES USED IN DEFINING AND EVALUAT...

  13. Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome

    NASA Image and Video Library

    2003-10-15

    JSC2003-E-59146 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"

  14. Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome

    NASA Image and Video Library

    2003-10-15

    JSC2003-E-59150 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"

  15. Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome

    NASA Image and Video Library

    2003-10-15

    JSC2003-E-59158 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"

  16. An improved lateral control wheel steering law for the Transport Systems Research Vehicle (TSRV)

    NASA Technical Reports Server (NTRS)

    Ragsdale, W. A.

    1992-01-01

    A lateral control wheel steering law with improved performance was developed for the Transport Systems Research Vehicle (TSRV) simulation and used in the Microwave Landing System research project. The control law converted rotational hand controller inputs into roll rate commands, manipulated ailerons, spoilers, and the rudder to achieve the desired roll rates. The system included automatic turn coordination, track angle hold, and autopilot/autoland modes. The resulting control law produced faster roll rates (15 degrees/sec), quicker response to command reversals, and safer bank angle limits, while using a more concise program code.

  17. DCASR (Defense Contract Administration Services Region) New York, Total Quality Management Plan

    DTIC Science & Technology

    1989-07-01

    service quality measures on-going Commanders Directors 2. Investigate significant changes on-going Commanders in trends in terms of quality Directors 3...customer satisfaction on-going Commanders indicators and significance of the trends in Directors terms of improvements in product and service quality , and

  18. Guidelines for Managing Vegetation on Earth-Covered Magazines Within the U.S. Army Materiel Command

    DTIC Science & Technology

    1994-05-01

    Plant Basil Kirby, Pest Controller, Letterkenny Army Depot Ken Davis, Safety Office, Depot Systt., Command Robert Klein, Army Materiel Command Field...refertilization, herbicides, tion techniques; this should be done by visiting the plant growth regulators, pesticides , mowing or site, talking to the

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasquale, David A.; Hansen, Richard G.

    This paper discusses command and control issues relating to the operation of Incident Command Posts (ICPs) and Emergency Operations Centers (EOCs) in the surrounding area jurisdictions following the detonation of an Improvised Nuclear Device (IND). Although many aspects of command and control will be similar to what is considered to be normal operations using the Incident Command System (ICS) and the National Incident Management System (NIMS), the IND response will require many new procedures and associations in order to design and implement a successful response. The scope of this white paper is to address the following questions: • Would themore » current command and control framework change in the face of an IND incident? • What would the management of operations look like as the event unfolded? • How do neighboring and/or affected jurisdictions coordinate with the state? • If the target area’s command and control infrastructure is destroyed or disabled, how could neighboring jurisdictions assist with command and control of the targeted jurisdiction? • How would public health and medical services fit into the command and control structure? • How can pre-planning and common policies improve coordination and response effectiveness? • Where can public health officials get federal guidance on radiation, contamination and other health and safety issues for IND response planning and operations?« less

  20. Command and Control Rapid Prototyping Continuum (C2RPC): The Framework for Achieving a New C2 Strategy

    DTIC Science & Technology

    2011-06-01

    Sync Matrix Assessing J/ADOCS (Fires) TBMCS (ATO) Executing Monitoring (SA) C2 Strategy Objectives • Provide Expanded Mission Management...Computers, and Intelligence T&E Test and Evaluation PMW150 Program Warfare Office Command and Control TBMCS Theater Battle Management Core System POR

  1. Literature review on medical incident command.

    PubMed

    Rimstad, Rune; Braut, Geir Sverre

    2015-04-01

    It is not known what constitutes the optimal emergency management system, nor is there a consensus on how effectiveness and efficiency in emergency response should be measured or evaluated. Literature on the role and tasks of commanders in the prehospital emergency services in the setting of mass-casualty incidents has not been summarized and published. This comprehensive literature review addresses some of the needs for future research in emergency management through three research questions: (1) What are the basic assumptions underlying incident command systems (ICSs)? (2) What are the tasks of ambulance and medical commanders in the field? And (3) How can field commanders' performances be measured and assessed? A systematic literature search in MEDLINE, PubMed, PsycINFO, Embase, Cochrane Central Register of Controlled Trials, Cochrane Library, ISI Web of Science, Scopus, International Security & Counter Terrorism Reference Center, Current Controlled Trials, and PROSPERO covering January 1, 1990 through March 1, 2014 was conducted. Reference lists of included literature were hand searched. Included papers were analyzed using Framework synthesis. The literature search identified 6,049 unique records, of which, 76 articles and books where included in qualitative synthesis. Most ICSs are described commonly as hierarchical, bureaucratic, and based on military principles. These assumptions are contested strongly, as is the applicability of such systems. Linking of the chains of command in cooperating agencies is a basic difficulty. Incident command systems are flexible in the sense that the organization may be expanded as needed. Commanders may command by direction, by planning, or by influence. Commanders' tasks may be summarized as: conducting scene assessment, developing an action plan, distributing resources, monitoring operations, and making decisions. There is considerable variation between authors in nomenclature and what tasks are included or highlighted. There are no widely acknowledged measurement tools of commanders' performances, though several performance indicators have been suggested. The competence and experience of the commanders, upon which an efficient ICS has to rely, cannot be compensated significantly by plans and procedures, or even by guidance from superior organizational elements such as coordination centers. This study finds that neither a certain system or structure, or a specific set of plans, are better than others, nor can it conclude what system prerequisites are necessary or sufficient for efficient incident management. Commanders need to be sure about their authority, responsibility, and the functional demands posed upon them.

  2. Managing the Civil-Military Relationship: A Study of Lincoln’s Management of the Army of the Potomac Within the Context of Mission Command

    DTIC Science & Technology

    2017-06-09

    to illuminate how mission command concepts can be applied to strategic military and political relationships. Important to this study is that the...Lincoln’s philosophy of leadership and his management of both strategic relationships and operational action as both developed concurrently throughout...relationship management can or should be applied to a strategic level of the federal government. Further, if applicable, how can this leadership

  3. Weapon System Management to Directorate of Logistics Management Systems Requirements (XRB) DCS/Plans and Programs Air Force Logistics Command Wright-Patterson AFB, Ohio 45433.

    DTIC Science & Technology

    1982-05-14

    Attachment 2 contains the reports and lessons learned which resulted from the Level II Weapon System Management activities. Attachment 3 contains the reports...and lessons learned which resulted from the Level III Weapon System Management activities. _____ r. Air Force Logistics Command Attn: Col. McConnell 2...May 14, 1982 Attachment 4 contains the plans and lessons learned which resulted from the RCC Evaluation activities. I am pleased to deliver these

  4. Senate Hearing on Assured Access to Space

    NASA Image and Video Library

    2014-07-16

    General William Sherlton, Commander of the United States Air Force Space Command, answers a question during testimony in front of the Senate Subcommittee on Strategic Forces and Senate Committee on Commerce, Science, and Transportation on Wednesday, July 16, 2014, at the Hart Senate Office Building in Washington, DC. The Senate hearing focused on assured access to space.

  5. Senate Hearing on Assured Access to Space

    NASA Image and Video Library

    2014-07-16

    General William Sherlton, Commander of the United States Air Force Space Command, left; answers a question during testimony in front of the Senate Subcommittee on Strategic Forces and Senate Committee on Commerce, Science, and Transportation on Wednesday, July 16, 2014, at the Hart Senate Office Building in Washington, DC. The Senate hearing focused on assured access to space.

  6. Senate Hearing on Assured Access to Space

    NASA Image and Video Library

    2014-07-16

    General William Shelton, Commander of the United States Air Force Space Command, delivers his opening statement during testimony in front of the Senate Subcommittee on Strategic Forces and Senate Committee on Commerce, Science, and Transportation on Wednesday, July 16, 2014, at the Hart Senate Office Building in Washington, DC. The Senate hearing focused on assured access to space.

  7. Senate Hearing on Assured Access to Space

    NASA Image and Video Library

    2014-07-16

    General William Shelton, Commander of the United States Air Force Space Command, second from right, answers a question during testimony in front of the Senate Subcommittee on Strategic Forces and Senate Committee on Commerce, Science, and Transportation on Wednesday, July 16, 2014, at the Hart Senate Office Building in Washington, DC. The Senate hearing focused on assured access to space.

  8. Lessons learned from the aeromedical disaster relief activities following the great East Japan earthquake.

    PubMed

    Matsumoto, Hisashi; Motomura, Tomokazu; Hara, Yoshiaki; Masuda, Yukiko; Mashiko, Kunihiro; Yokota, Hiroyuki; Koido, Yuichi

    2013-04-01

    Since 2001, a Japanese national project has developed a helicopter emergency medical service (HEMS) system ("doctor-helicopter") and a central Disaster Medical Assistance Team (DMAT) composed of mobile and trained medical teams for rapid deployment during the response phase of a disaster. In Japan, the DMAT Research Group has focused on command and control of doctor-helicopters in future disasters. The objective of this study was to investigate the effectiveness of such planning, as well as the problems encountered in deploying the doctor-helicopter fleet with DMAT members following the March 11, 2011 Great East Japan Earthquake. This study was undertaken to examine the effectiveness of aeromedical disaster relief activities following the Great East Japan Earthquake and to evaluate the assembly and operations of 15 doctor-helicopter teams dispatched for patient evacuation with medical support. Fifteen DMATs from across Japan were deployed from March 11th through March 13th to work out of two doctor-helicopter base hospitals. The dispatch center at each base hospital directed its own doctor-helicopter fleet under the command of DMAT headquarters to transport seriously injured or ill patients out of hospitals located in the disaster area. Disaster Medical Assistance Teams transported 149 patients using the doctor-helicopters during the first five days after the earthquake. The experiences and problems encountered point to the need for DMATs to maintain direct control over 1) communication between DMAT headquarters and dispatch centers; 2) information management concerning patient transportation; and 3) operation of the doctor-helicopter fleet during relief activities. As there is no rule of prioritization for doctor-helicopters to refuel ahead of other rotorcraft, many doctor-helicopters had to wait in line to refuel. The "doctor-helicopter fleet" concept was vital to Japan's disaster medical assistance and rescue activities. The smooth and immediate dispatch of the doctor-helicopter fleet must occur under the direct control of the DMAT, independent from local government authority. Such a command and control system for dispatching the doctor-helicopter fleet is strongly recommended, and collaboration with local government authorities concerning refueling priority should be addressed.

  9. Expedition Three Commander Culbertson and STS-105 Commander Horowitz in the White Room

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, have placed the mission sign at the entrance into Space Shuttle Discovery. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  10. Expedition Three Commander Culbertson and STS-105 Commander Horowitz in the White Room

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, hold the sign for their mission. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  11. 77 FR 5242 - Notice of Extension of Public Scoping Period for the Revised Notice of Intent To Prepare an...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... Engineering Command Northwest, 1101 Tautog Circle, Suite 203, Silverdale, WA 98315-1101, Attn: NWSTF Boardman... mailed to Naval Facilities Engineering Command Northwest, Attention: Mrs. Amy Burt, NWSTF Boardman EIS Project Manager, Naval Facilities Engineering Command Northwest, 1101 Tautog Circle, Suite 203, Silverdale...

  12. Perceptions of U.S. Navy Medical Reservists Recalled for Operation Desert Storm

    DTIC Science & Technology

    1992-10-01

    operational training? .69 your recall assignment in leadership / management training? .69 your recall assignment in general military training? .67 your recall...uniforms, chain of command, etc.) 1 2 3 4 5 21. Leadership / Management Training (LMET, command excellence seminars, etc.) 1 2 3 4 5 22. Based on your recall...through 4" for 4th-highest priority.) Clinical/Professional Skills Training Operational Training _ General Military Training Leadership / Management Training

  13. Cost/Benefit Analysis of the Heat Recovery Incinerator (HRI).

    DTIC Science & Technology

    1985-09-01

    management opportunities such as the use of nearby resource recovery facilities that have been f’manced I mm~ and erected by private operators or civic...Engineering Command policy regarding HRI construc- ftpy tion at Navy activities is to seek alternative waste management opportunities such as the use ...Command policy regarding HRI construc- tion at Navy activities is to seek alternative waste management opportunities such as the use of nearby resource

  14. Command History Calendar Year 1992 (Navy Personnel Research and Development Center)

    DTIC Science & Technology

    1993-07-01

    efficiently. and manage our personnel resources optimally. By combining a deep understanding of operational requirements with first-rate scientific and...the needs of manpower, personnel, and training managers in the Navy, Marine Corps, and Department of Defense (DOD); to the operating forces; and to the...NPRDC Professional Publications Award and the 1990 Commander’s Award for Management Excellence. He is a fellow of the American Association for the

  15. How Does the Supply Requisitioning Process Affect Average Customer Wait Time Onboard U.S. Navy Destroyers?

    DTIC Science & Technology

    2013-06-01

    17  D.  NAVAL TACTICAL COMMAND SUPPORT SYSTEM .........................17  1.  Operational Maintenance Management System–Next Generation...Management .......................................................................................21  4.  Method ...Business Administration MDT Mean Down Time MTBM Mean Time Between Maintenance NAVSUP Naval Supply Systems Command NC Not Carried NIS Not in Stock

  16. 77 FR 43275 - Extension of Public Comment Period for the Draft Environmental Impact Statement for Naval Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... Facilities Engineering Command Southeast, NAS Key West Air Operations EIS Project Manager, P.O. Box 30... Facilities Engineering Command Southeast, NAS Key West Air Operations EIS Project Manager, P.O. Box 30, Building 903, NAS Jacksonville, FL 32212 or electronically via the project Web site ( http://www.keywesteis...

  17. Cash Management Improvement in the Navy Stock Fund.

    DTIC Science & Technology

    1986-03-01

    Command, Aviation Supply Office, Fisca.l Ya 1,985 Material Budget Execution Plan , September 1984. 44 Naval Supply Systems Command, Code 60... Material . .. .. .. ... 57 3. Inventory Augmentation Appropriated Funds. .. .. ... 57 I V. CURRENT NAVY STOCK FUND CASH MANAGEMENT PRACTICES . ..59 A...Control Center, Mechanicsburg, Pennsylvania 13 * Fleet Material Support Office, Mechanicsburg, Pennsylvania Aviation Supply Off Ice, Philadelphia

  18. KSC-06pd2261a

    NASA Image and Video Library

    2006-10-10

    KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., the transporter carrying the STEREO spacecraft is secured to the truck that will transport it to Launch Pad 17-B on Cape Canaveral Air Force Station. At the pad, the spacecraft will be lifted into the mobile service tower. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton

  19. KSC-06pd2262

    NASA Image and Video Library

    2006-10-10

    KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., the transporter carrying the STEREO spacecraft is attached to the truck for transportation to Launch Pad 17-B on Cape Canaveral Air Force Station. At the pad the spacecraft will be lifted into the mobile service tower. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton

  20. STS-112 crew leave the crew transport vehicle after landing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- As the STS-112 crew leaves the crew transport vehicle, they are greeted by mission managers and guests. The crew, from left, are Mission Specialists David Wolf, Fyodor Yurchikhin and Sandra Magnus; Pilot Pamela Melroy; Piers Sellers (talking to Acting Deputy Director JoAnn Morgan) and Commander Jeffrey Ashby (talking to Launch Director Mike Leinbach). Morgan is also Director of External Relations and Business Development. The crew returned to KSC after completing a 4.5-million-mile journey to the International Space Station. Main gear touchdown occurred at 11:43:40 a.m. EDT; nose gear touchdown at 11:43:48 a.m.; and wheel stop at 11:44:35 a.m. Mission elapsed time was 10:19:58:44. Mission STS-112 expanded the size of the Station with the addition of the S1 truss segment. .

  1. Financial Audit: Financial Reporting and Internal Controls at the Air Force Systems Command

    DTIC Science & Technology

    1991-01-01

    As part of GAO’S audits of the Air Force’s financial management and operations for fiscal years 1988 and 1989, GAO evaluated the Air Force Systems Command’s internal accounting controls and financial reporting systems. For fiscal year 1988 and 1989, the Systems Command received about $26.7 billion and $32.4 billion, respectively, in appropriated funds. This report discusses the results of our audits of the Systems Command.

  2. Apollo 14 crewmembers sealed inside a Mobile Quarantine Facility

    NASA Image and Video Library

    1971-02-12

    S71-19508 (12 Feb. 1971) --- Separated by aluminum and glass of their Mobile Quarantine Facility (MQF), the Apollo 14 crew members visit with their families and friends upon arriving at Ellington Air Force Base in the early morning hours of Feb. 12, 1971. Looking through the MQF window are astronauts Alan B. Shepard Jr. (left), commander; Stuart A. Roosa (right), command module pilot; and Edgar D. Mitchell, lunar module pilot. The crew men were brought to Houston aboard a C-141 transport plane from Pago Pago, American Samoa. The USS New Orleans had transported the crew to American Samoa from the recovery site in the South Pacific.

  3. 32 CFR 770.57 - Entry procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Portsmouth, NH 03801, Attention: Security Manager (Code 1700). For groups, foreign citizens, and news media, the request must be forwarded to the Commander, Naval Sea Systems Command, for approval. (b) Each...

  4. 32 CFR Appendix F to Part 651 - Glossary

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Training Area Management. LCED Life Cycle Environmental Documentation. MACOM Major Army Command. MATDEV... Record of Non-Applicability. RSC Regional Support Command. S&T Science and Technology. SA Secretary of...

  5. 49 CFR 175.310 - Transportation of flammable liquid fuel; aircraft only means of transportation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ventilation. (4) Each area or compartment in which the fuel is loaded is suitably ventilated to prevent the... the ground. (6) Before each flight, the pilot-in-command: (i) Prohibits smoking, lighting matches, the...

  6. 32 CFR 861.2 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Department of Defense Commercial Air Transportation Quality and Safety Review Program, charges the Commander... collectively referred to as “air carriers”) providing air transportation and operational support services to... Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT DEPARTMENT OF DEFENSE COMMERCIAL AIR...

  7. Analysis of good practice of public health Emergency Operations Centers.

    PubMed

    Xu, Min; Li, Shi-Xue

    2015-08-01

    To study the public health Emergency Operations Centers (EOCs)in the US, the European Union, the UK and Australia, and summarize the good practice for the improvement of National Health Emergency Response Command Center in Chinese National Health and Family Planning Commission. Literature review was conducted to explore the EOCs of selected countries. The study focused on EOC function, organizational structure, human resources and information management. The selected EOCs had the basic EOC functions of coordinating and commanding as well as the public health related functions such as monitoring the situation, risk assessment, and epidemiological briefings. The organizational structures of the EOCs were standardized, scalable and flexible. Incident Command System was the widely applied organizational structure with a strong preference. The EOCs were managed by a unit of emergency management during routine time and surge staff were engaged upon emergencies. The selected EOCs had clear information management framework including information collection, assessment and dissemination. The performance of National Health Emergency Response Command Center can be improved by learning from the good practice of the selected EOCs, including setting clear functions, standardizing the organizational structure, enhancing the human resource capacity and strengthening information management. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  8. Tactical Mission Command (TMC)

    DTIC Science & Technology

    2016-03-01

    capabilities to Army commanders and their staffs, consisting primarily of a user-customizable Common Operating Picture ( COP ) enabled with real-time... COP viewer and data management capability. It is a collaborative, visualization and planning application that also provides a common map display... COP ): Display the COP consisting of the following:1 Friendly forces determined by the commander including subordinate and supporting units at

  9. 77 FR 37006 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... 210, Peterson Air Force Base, CO 80914-4500. Back-up servers: U.S. Strategic Command (USSTRATCOM... JSME Project Manager, U.S. Strategic Command J663, 901 SAC Boulevard, Suite 3J11, Offutt Air Force Base...; System of Records AGENCY: U.S. Strategic Command (USSTRATCOM), DoD. ACTION: Notice to add a system of...

  10. Macintosh II based space Telemetry and Command (MacTac) system

    NASA Technical Reports Server (NTRS)

    Dominy, Carol T.; Chesney, James R.; Collins, Aaron S.; Kay, W. K.

    1991-01-01

    The general architecture and the principal functions of the Macintosh II based Telemetry and Command system, presently under development, are described, with attention given to custom telemetry cards, input/output interfaces, and the icon driven user interface. The MacTac is a low-cost, transportable, easy to use, compact system designed to meet the requirements specified by the Consultative Committeee for Space Data Systems while remaining flexible enough to support a wide variety of other user specific telemetry processing requirements, such as TDM data. In addition, the MacTac can accept or generate forward data (such as spacecraft commands), calculate and append a Polynomial Check Code, and output these data to NASCOM to provide full Telemetry and Command capability.

  11. Man's role in integrated control and information management systems

    NASA Technical Reports Server (NTRS)

    Nevins, J. L.; Johnson, I. S.

    1972-01-01

    Display control considerations associated with avionics techniques are discussed. General purpose displays and a prototype interactive display/command design featuring a pushplate CRT overlay for command input are considered.

  12. Essentials of disaster management: the role of the orthopaedic surgeon.

    PubMed

    Born, Christopher T; Monchik, Keith O; Hayda, Roman A; Bosse, Michael J; Pollak, Andrew N

    2011-01-01

    Disaster preparedness and management education is essential for allowing orthopaedic surgeons to play a valuable, constructive role in responding to disasters. The National Incident Management System, as part of the National Response Framework, provides coordination between all levels of government and uses the Incident Command System as its unified command structure. An "all-hazards" approach to disasters, whether natural, man-made, intentional, or unintentional, is fundamental to disaster planning. To respond to any disaster, command and control must be established, and emergency management must be integrated with public health and medical care. In the face of increasing acts of terrorism, an understanding of blast injury pathophysiology allows for improved diagnostic and treatment strategies. A practical understanding of potential biologic, chemical, and nuclear agents and their attendant clinical symptoms is also prerequisite. Credentialing and coordination between designated organizations and the federal government are essential to allow civilian orthopaedic surgeons to access systems capable of disaster response.

  13. Agile battle management efficiency for command, control, communications, computers and intelligence (C4I)

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Bélanger, Micheline

    2016-05-01

    Various operations such as civil-military co-operation (CIMIC) affairs require orchestration of communications, assets, and actors. A key component includes technology advancements to enable coordination among people and machines the ability to know where things are, who to coordinate with, and open and consistent lines of communication. In this paper, we explore concepts of battle management (BM) to support high-tempo emergency response scenarios such as a disaster action response team (DART). Three concepts highlighted of agile battle management (ABM) include source orchestration (e.g., sensors and domains), battle management language (BML) development (e.g., software and ontologies), and command and control (C2) coordination (e.g., people and visualization); which require correlation and de-confliction. These concepts of ABM support the physical, information, and cognitive domains for efficient command, control, communications, and information (C3I) to synchronize data and people for efficient and effective operations.

  14. The Joint Military Medical Executive Skills initiative: an impressive response to changing human resource management rules of engagement.

    PubMed

    Kerr, Bernard J

    2007-01-01

    Confronted with a sudden and substantial change in the rules regarding who could command a military medical treatment facility (MTF), the Military Health System (MHS) responded to the challenge with an impressive human resource management solution-the Joint Medical Executive Skills Program. The history, emergence, and continuing role of this initiative exemplifies the MHS's capacity to fulfill the spirit and intent of an arduous Congressional mandate while enhancing professional development and sustaining the career opportunities of medical officers. The MHS response to the Congressional requirement that candidates for MTF command demonstrate professional administrative skills was decisive, creative, and consistent with the basic principles of human resource management. The Joint Medical Executive Skills Program is a management success story that demonstrates how strategic planning, well-defined skills requirements, and structured training can assure a ready supply of qualified commanders for the military's MTFs.

  15. Standardized emergency management system and response to a smallpox emergency.

    PubMed

    Kim-Farley, Robert J; Celentano, John T; Gunter, Carol; Jones, Jessica W; Stone, Rogelio A; Aller, Raymond D; Mascola, Laurene; Grigsby, Sharon F; Fielding, Jonathan E

    2003-01-01

    The smallpox virus is a high-priority, Category-A agent that poses a global, terrorism security risk because it: (1) easily can be disseminated and transmitted from person to person; (2) results in high mortality rates and has the potential for a major public health impact; (3) might cause public panic and social disruption; and (4) requires special action for public health preparedness. In recognition of this risk, the Los Angeles County Department of Health Services (LAC-DHS) developed the Smallpox Preparedness, Response, and Recovery Plan for LAC to prepare for the possibility of an outbreak of smallpox. A unique feature of the LAC-DHS plan is its explicit use of the Standardized Emergency Management System (SEMS) framework for detailing the functions needed to respond to a smallpox emergency. The SEMS includes the Incident Command System (ICS) structure (management, operations, planning/intelligence, logistics, and finance/administration), the mutual-aid system, and the multi/interagency coordination required during a smallpox emergency. Management for incident command includes setting objectives and priorities, information (risk communications), safety, and liaison. Operations includes control and containment of a smallpox outbreak including ring vaccination, mass vaccination, adverse events monitoring and assessment, management of confirmed and suspected smallpox cases, contact tracing, active surveillance teams and enhanced hospital-based surveillance, and decontamination. Planning/intelligence functions include developing the incident action plan, epidemiological investigation and analysis of smallpox cases, and epidemiological assessment of the vaccination coverage status of populations at risk. Logistics functions include receiving, handling, inventorying, and distributing smallpox vaccine and vaccination clinic supplies; personnel; transportation; communications; and health care of personnel. Finally, finance/administration functions include monitoring costs related to the smallpox emergency, procurement, and administrative aspects that are not handled by other functional divisions of incident command systems. The plan was developed and is under frequent review by the LAC-DHS Smallpox Planning Working Group, and is reviewed periodically by the LAC Bioterrorism Advisory Committee, and draws upon the Smallpox Response Plan and Guidelines of the Centers for Disease Control and Prevention (CDC) and recommendations of the Advisory Committee on Immunization Practices (ACIP). The Smallpox Preparedness, Response, and Recovery Plan, with its SEMS framework and ICS structure, now is serving as a model for the development of LAC-DHS plans for responses to other terrorist or natural-outbreak responses.

  16. Lessons Learned from the Development and Implementation of a Knowledge Management Program for the Naval Sea Systems Command

    DTIC Science & Technology

    2017-03-01

    ABSTRACT (maximum 200 words) This study applied knowledge management (KM) theories and principles to develop and implement a KM program for the... principles to develop and implement a KM program for the Naval Sea Systems Command (NAVSEA) that strengthens the workforce’s understanding of the...23 C. EXECUTION AND SUSTAINMENT .............................................. 24 1. Marketing

  17. Comparison of two head-up displays in simulated standard and noise abatement night visual approaches

    NASA Technical Reports Server (NTRS)

    Cronn, F.; Palmer, E. A., III

    1975-01-01

    Situation and command head-up displays were evaluated for both standard and two segment noise abatement night visual approaches in a fixed base simulation of a DC-8 transport aircraft. The situation display provided glide slope and pitch attitude information. The command display provided glide slope information and flight path commands to capture a 3 deg glide slope. Landing approaches were flown in both zero wind and wind shear conditions. For both standard and noise abatement approaches, the situation display provided greater glidepath accuracy in the initial phase of the landing approaches, whereas the command display was more effective in the final approach phase. Glidepath accuracy was greater for the standard approaches than for the noise abatement approaches in all phases of the landing approach. Most of the pilots preferred the command display and the standard approach. Substantial agreement was found between each pilot's judgment of his performance and his actual performance.

  18. Spills of National Significance Response Management System

    DOT National Transportation Integrated Search

    1997-07-15

    This Instruction contains guidance for establishing an Incident Command System : (ICS) Area Command Structure for a Spill of National Significance (SONS). : Reference (a), the National Contingency Plan (NCP), assigns responsibilities for : emergency ...

  19. System-wide power management control via clock distribution network

    DOEpatents

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  20. Costing Complex Products, Operations, and Support

    DTIC Science & Technology

    2011-04-30

    Symposium, 10-12 May 2011, Seaside, CA. U.S. Government or Federal Rights License 14. ABSTRACT Complex products and systems (CoPS), such as large defense...Program Executive Officer SHIPS • Commander, Naval Sea Systems Command • Army Contracting Command, U.S. Army Materiel Command • Program Manager...Airborne, Maritime and Fixed Station Joint Tactical Radio System = ==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb=====- ii

  1. Close up view of the Commander's Seat on the Flight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. It appears the Orbiter is in the roll out / launch pad configuration. A protective cover is over the Rotational Hand Controller to protect it during the commander's ingress. Most notable in this view are the Speed Brake/Thrust Controller in the center right in this view and the Translational Hand Controller in the center top of the view. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  2. SOA approach to battle command: simulation interoperability

    NASA Astrophysics Data System (ADS)

    Mayott, Gregory; Self, Mid; Miller, Gordon J.; McDonnell, Joseph S.

    2010-04-01

    NVESD is developing a Sensor Data and Management Services (SDMS) Service Oriented Architecture (SOA) that provides an innovative approach to achieve seamless application functionality across simulation and battle command systems. In 2010, CERDEC will conduct a SDMS Battle Command demonstration that will highlight the SDMS SOA capability to couple simulation applications to existing Battle Command systems. The demonstration will leverage RDECOM MATREX simulation tools and TRADOC Maneuver Support Battle Laboratory Virtual Base Defense Operations Center facilities. The battle command systems are those specific to the operation of a base defense operations center in support of force protection missions. The SDMS SOA consists of four components that will be discussed. An Asset Management Service (AMS) will automatically discover the existence, state, and interface definition required to interact with a named asset (sensor or a sensor platform, a process such as level-1 fusion, or an interface to a sensor or other network endpoint). A Streaming Video Service (SVS) will automatically discover the existence, state, and interfaces required to interact with a named video stream, and abstract the consumers of the video stream from the originating device. A Task Manager Service (TMS) will be used to automatically discover the existence of a named mission task, and will interpret, translate and transmit a mission command for the blue force unit(s) described in a mission order. JC3IEDM data objects, and software development kit (SDK), will be utilized as the basic data object definition for implemented web services.

  3. Cost Management in a Tactical Environment: A Case Study of the 316th Expeditionary Support Command (ESC) in Iraq, 2007-2008

    DTIC Science & Technology

    2010-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT Cost Management in a Tactical Environment: A Case Study of...SUBTITLE Cost Management in a Tactical Environment: A Case Study of the 316th Expeditionary Support Command (ESC) in Iraq, 2007–2008 6. AUTHOR(S...This project provides a case study of the 316th ESC, which may begin to fill that void. The 316th ESC’s staff forecasted future consumption

  4. The DISAM Journal of International Security Assistance Management. Volume 23, Number 1, Fall 2000

    DTIC Science & Technology

    2000-01-01

    Security Assistance Command Figure 1 The USASAC, including OPM-SANG, is staffed by 621 men and women , of whom 104 are military. These professionals are...by program managers. These program managers are like “front-line entreprenuers ” delivering products and services to their customers. They have been...NATO history was to be commanded by a Polish general in June 1988. The brigade of some 3000 men and women was composed of five national battalions

  5. Improved Ribbon Bridge (IRB) Prototype Transporter-Operational Test

    DTIC Science & Technology

    1992-05-01

    Department of Defense I Commander US Army Aberdeen Proving Ground I Director, Tochnical Information ATTN, STEAP.MT-U (GE Branch) Defense Advanced... Proving Ground . MD 21005-5071 Defense Nuclear Agency ATTN-. TnL IDirector Washingtm, DC 20305 US Ballistics Research Laboratory ATIN: AMXBR-OD-ST (STINFO...Technology Laboratory Aberden Proving GOfouind MD 21005 Waerown. MA 02172.0001 DLstdbutlon-1 Commmder 1 Commander US Army Electrnics Reswtl and

  6. Re-engineering the Multimission Command System at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Alexander, Scott; Biesiadecki, Jeff; Cox, Nagin; Murphy, Susan C.; Reeve, Tim

    1994-01-01

    The Operations Engineering Lab (OEL) at JPL has developed the multimission command system as part of JPL's Advanced Multimission Operations System. The command system provides an advanced multimission environment for secure, concurrent commanding of multiple spacecraft. The command functions include real-time command generation, command translation and radiation, status reporting, some remote control of Deep Space Network antenna functions, and command file management. The mission-independent architecture has allowed easy adaptation to new flight projects and the system currently supports all JPL planetary missions (Voyager, Galileo, Magellan, Ulysses, Mars Pathfinder, and CASSINI). This paper will discuss the design and implementation of the command software, especially trade-offs and lessons learned from practical operational use. The lessons learned have resulted in a re-engineering of the command system, especially in its user interface and new automation capabilities. The redesign has allowed streamlining of command operations with significant improvements in productivity and ease of use. In addition, the new system has provided a command capability that works equally well for real-time operations and within a spacecraft testbed. This paper will also discuss new development work including a multimission command database toolkit, a universal command translator for sequencing and real-time commands, and incorporation of telecommand capabilities for new missions.

  7. HD Diesel Hybrid Truck Powertrain Study

    DTIC Science & Technology

    2012-09-11

    Z39-18 Command Chain ij Army Materiel Command (AMC) - Huntsville, AL :""V-..... Research, Development & Engineering Command (RDECOM) -Aberdeen, MD...WARFIGHTER FOCUSED. Unclassified Li-lon I Ultracap Hybrid Energy Storage Microgrids Radiators Power Controllers for Power Management JP-8 Fuel...hybrid electric vehicle ( Honda Insight) entered this market in 1999 while the first commercial diesel-electric hybrid truck was produced by Navistar in

  8. 2015 Assessment of the Ballistic Missile Defense System (BMDS)

    DTIC Science & Technology

    2016-04-01

    performance and test adequacy of the BMDS, its four autonomous BMDS systems, and its sensor/command and control architecture. The four autonomous BMDS...Patriot. The Command and Control , Battle Management, and Communications (C2BMC) element anchors the sensor/command and control architecture. This...Warfare operations against a cruise missile surrogate. Ground-based Midcourse Defense (GMD). GMD has demonstrated capability against small

  9. Army’s Management of the Operations and Support Phase of the Acquisition Process for Body Armor

    DTIC Science & Technology

    2009-12-08

    and gf" e les result of pass or faiL 11 2. (U) MISSION. No change.ll 3. (U; EXECUTION.I! 3. A. iU) COMMANOER’S INTENT No change.l! 3 B. (UI CONCEPT...Internet Protocol Router Network (SIPRNET). We appreciate the courtesies e >..1ended to the staff. Please direct questions to me at (703) 604-8905 (DSN...Command A.3, B.3 Commander, TACOM Life Cycle Management Command B.2 PEO Soldier A.1, B.1.f A.2, B.1.a- e , C.1 Adjutant General of the U.S. Army

  10. Computers for Command and Control: An Airland Battle Requirement!

    DTIC Science & Technology

    1984-05-01

    systems can enhance communications, improve data management, and support decision making through information display (SEE REVERSE) JAN 173 E~lNOS~SIISLT...organizations to improve communications, enhance data management, and support decision making through graphical display techniques and mathematical...tactical commander’s control of maneuver forces. There are many reasons for the Army’s apparent inability to develop and field these systems. Among the

  11. Signal Corps Retention: The Incentive Plan Won’t Help

    DTIC Science & Technology

    2008-02-19

    leadership styles : 6 The top-down method of management fosters layers of bureaucracy that kill motivation. The old style of management often...officers with a wider knowledge and greater opportunities on becoming a more effective signal officer, regardless of assignment. Although leadership ... styles differ greatly from one unit to the next, senior leaders should strive to create a more positive command climate. Positive command climate

  12. Space Transportation System/Spacelab accommodations

    NASA Technical Reports Server (NTRS)

    De Sanctis, C. E.

    1978-01-01

    A description is provided of the capabilities offered by the Spacelab design for doing research in space. The Spacelab flight vehicle consists of two basic elements including the habitable pressurized compartments and the unpressurized equipment mounting platforms. Spacelab services to payloads are considered, taking into account payload mass, electrical power and energy, heat rejection for Spacelab and payload, aspects of Spacelab data handling, and the extended flight capability. Attention is also given to the Spacelab structure, crew station and habitability, the electrical power distribution subsystem, the command and data management subsystem, the experiment computer operating system, the environmental control subsystem, the experiment vent assembly, the common payload support equipment, the instrument pointing subsystem, and details concerning the utilization of Spacelab.

  13. ISS Expedition E53-54 Soyuz MS-06 Rollout to the Launch Pad

    NASA Image and Video Library

    2017-09-10

    At the Baikonur Cosmodrome in Kazakhstan, the Soyuz MS-06 spacecraft and its Soyuz booster were transported from the Integration Facility to the launch pad on a railcar Sept. 10 for final preparations before launch Sept. 13 to the International Space Station. The Soyuz MS-06 will carry Expedition 53-54 Soyuz Commander Alexander Misurkin of Roscosmos and flight engineers Mark Vande Hei and Joe Acaba of NASA to the orbital complex for a five-and-a-half month mission. Also included are interviews at the launch pad with Joe Montalbano, Deputy ISS Program Manager and Sean Fuller, Director of Human Spaceflight Programs in Russia following the rocket's rollout.

  14. A case study in R and D productivity: Helping the program manager cope with job stress and improve communication effectiveness

    NASA Technical Reports Server (NTRS)

    Bodensteiner, W. D.; Gerloff, E. A.

    1985-01-01

    Certain structural changes in the Naval Material Command which resulted from a comparison of its operations to those of selected large-scale private sector companies are described. Central to the change was a reduction in the number of formal reports from systems commands to headquarters, and the provision of Program Management Assistance Teams (at the request of the program manager) to help resolve project problems. It is believed that these changes improved communication and information-processing, reduced program manager stress, and resulted in improved productivity.

  15. The computational structural mechanics testbed architecture. Volume 4: The global-database manager GAL-DBM

    NASA Technical Reports Server (NTRS)

    Wright, Mary A.; Regelbrugge, Marc E.; Felippa, Carlos A.

    1989-01-01

    This is the fourth of a set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language CLAMP, the command language interpreter CLIP, and the data manager GAL. Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 4 describes the nominal-record data management component of the NICE software. It is intended for all users.

  16. Development of an expert system prototype for determining software functional requirements for command management activities at NASA Goddard

    NASA Technical Reports Server (NTRS)

    Liebowitz, J.

    1986-01-01

    The development of an expert system prototype for software functional requirement determination for NASA Goddard's Command Management System, as part of its process of transforming general requests into specific near-earth satellite commands, is described. The present knowledge base was formulated through interactions with domain experts, and was then linked to the existing Knowledge Engineering Systems (KES) expert system application generator. Steps in the knowledge-base development include problem-oriented attribute hierarchy development, knowledge management approach determination, and knowledge base encoding. The KES Parser and Inspector, in addition to backcasting and analogical mapping, were used to validate the expert system-derived requirements for one of the major functions of a spacecraft, the solar Maximum Mission. Knowledge refinement, evaluation, and implementation procedures of the expert system were then accomplished.

  17. Defense AT&L (Volume 34, Number 5, September-October 2005)

    DTIC Science & Technology

    2005-10-01

    Engineering Command Pacific, Hawaii Installation—Environmental Restoration (tie) • Keesler Air Force Base, Miss. Installation—Environmental Restoration (tie...Ind.) Special—Shirley A. Bowe, Naval Facilities Engineering Command, Atlantic (Norfolk, Va.) Air Force Team—Battle Management/Command, Control and...the situation. 25 The NAVSEA Scientist to Sea Experience Matthew Tropiano Jr. NAVSEA engineers leave the lab for a spell at sea, learning the impact

  18. United States Marine Corps Motor Transport Mechanic-to-Equipment Ratio

    DTIC Science & Technology

    time motor transport equipment remains in maintenance at the organizational command level. This thesis uses a discrete event simulation model of the...applied to a single experiment that allows for assessment of risk of not achieving the objective. Inter-arrival time, processing time, work schedule

  19. Shuttle Payload Ground Command and Control: An Experiment Implementation Combustion Module-2 Software Development, STS-107

    NASA Technical Reports Server (NTRS)

    Carek, David Andrew

    2003-01-01

    This presentation covers the design of a command and control architecture developed by the author for the Combustion Module-2 microgravity experiment, which flew aboard the STS-107 Shuttle mission, The design was implemented to satisfy a hybrid network that utilized TCP/IP for both the onboard segment and ground segment, with an intermediary unreliable transport for the space to ground segment. With the infusion of Internet networking technologies into Space Shuttle, Space Station, and spacecraft avionics systems, comes the need for robust methodologies for ground command and control. Considerations of high bit error links, and unreliable transport over intermittent links must be considered in such systems. Internet protocols applied to these systems, coupled with the appropriate application layer protections, can provide adequate communication architectures for command and control. However, there are inherent limitations and additional complexities added by the use of Internet protocols that must be considered during the design. This presentation will discuss the rationale for the: framework and protocol algorithms developed by the author. A summary of design considerations, implantation issues, and learned lessons will be will be presented. A summary of mission results using this communications architecture will be presented. Additionally, areas of further needed investigation will be identified.

  20. Understanding Alignment of Trust Behaviors and Their Effect on Organizational Trust at the Tank-Automotive and Armaments Command Life Cycle Management Command (TACOM LCMC)

    DTIC Science & Technology

    2013-03-20

    Covey, 2006); and lead to increased perceived effectiveness and job satisfaction ( Shockley - Zalabak , Morreale, & Hackman, 2010). Trust has multiple... Shockley - Zalabak et. al. (2010) further refined the Mishra model by adding identification (defined as the connection between the organization and...effectiveness, job satisfaction ( Shockley - Zalabak , Morreale, & Hackman, 2010), more open communication, information sharing, conflict management

  1. A Comparative Assessment of Knowledge Management Education Across the United States Department of Defense

    DTIC Science & Technology

    2007-03-01

    portal, AKO. The Army is also creating Battle Command Knowledge Cells staffed with Knowledge Management Officers ( KMO ) to facilitate KM within...battle commands. To increase their effectiveness, the Army has a draft Standard Operation Procedures (SOP) document to assist KMOs in establishing and...cultivating KM programs. This draft document includes instruction on implementing a KM program in a unit, worksheets to assist KMOs with knowledge

  2. Joint Operations and the Vicksburg Campaign

    DTIC Science & Technology

    1993-06-04

    the laisse faire attitude the army took with the navy maybe the navy should be a separate and equal command instead of subordinate to the army...of effort with the civilian Secretary of War managing the common direction and objectives for army and navy cooperation was an ideal concept. Although...lamented about. Halleck urged Washington to correct this by making him the overall Western Commander; thus, Halleck could better manage his naval resources

  3. DoD Security Assistance Management Manual

    DTIC Science & Technology

    1988-10-01

    IDSS Administrator for U.S. Army Training Activities: TSASS Database Manager SATFA Attn: ATFA-I 2017 Cunningham Drive, 4th Floor Hampton VA 23666 DSN...Depot, Chambersburg, PA J. School of Engineering and Logistics, Red River Army Depot, Texarkana , "TX K. Lone Star Ammunition Plant, Texarkana , TX L...Electronics Command, Ft. Monmouth, NJ U. Red River Army Depot, Texarkana , TX V. Army Aviation Research and Development Command, St. Louis, MO W

  4. A Lessons Learned Knowledge Warehouse to Support the Army Knowledge Management Command-Centric

    DTIC Science & Technology

    2004-03-01

    Warehouse to Support the Army Knowledge Management Command-Centric increase the quality and availability of information in context ( knowledge ) to the... information , geographical information , knowledge base, Intelligence data (HUMINT, SIGINT, etc.); and • • Human Computer Interaction (HCI): allows...the Data Fusion Process from the HCI point of view? Can the LL Knowledge Base provide any valuable information to achieve better estimates of the

  5. Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability

    NASA Technical Reports Server (NTRS)

    Bailey, Roger M.; Hostetler, Robert W., Jr.; Barnes, Kevin N.; Belcastro, Celeste M.; Belcastro, Christine M.

    2005-01-01

    Experimental testing is an important aspect of validating complex integrated safety critical aircraft technologies. The Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed is being developed at NASA Langley to validate technologies under conditions that cannot be flight validated with full-scale vehicles. The AirSTAR capability comprises a series of flying sub-scale models, associated ground-support equipment, and a base research station at NASA Langley. The subscale model capability utilizes a generic 5.5% scaled transport class vehicle known as the Generic Transport Model (GTM). The AirSTAR Ground Facilities encompass the hardware and software infrastructure necessary to provide comprehensive support services for the GTM testbed. The ground facilities support remote piloting of the GTM aircraft, and include all subsystems required for data/video telemetry, experimental flight control algorithm implementation and evaluation, GTM simulation, data recording/archiving, and audio communications. The ground facilities include a self-contained, motorized vehicle serving as a mobile research command/operations center, capable of deployment to remote sites when conducting GTM flight experiments. The ground facilities also include a laboratory based at NASA LaRC providing near identical capabilities as the mobile command/operations center, as well as the capability to receive data/video/audio from, and send data/audio to the mobile command/operations center during GTM flight experiments.

  6. Short Haul Civil Tiltrotor Study in MIDAS: Auto versus Manual Nacelle Procedures for Commanded Go-Around

    NASA Technical Reports Server (NTRS)

    Atencio, Adolph, Jr.; Banda, Carolyn

    1998-01-01

    Tiltrotor aircraft combine the speed and range of a turboprop performance with the ability to take off and land in a vertical mode like a helicopter. These aircraft will transport passengers from city center to city center and from satellite airports to major hub airports to make connections to long range travel. The Short Haul Civil Tiltrotor (SH(CT)) being studied by NASA is a concept 40 passenger civil tiltrotor (CTR) transport. The Man-machine Integration Design and Analysis System (MIDAS) was used to evaluate human performance in terms of crew procedures and pilot workload for a simulated 40 passenger Civil Tiltrotor Transport on a steep approach to a vertiport. The scenario for the simulation was a normal approach to the vertiport that is interrupted by a commanded go-around at the landing decision point. The simulation contrasted an automated discrete nacelle mode control with a fully manual nacelle control mode for the go-around. The MIDAS simulation showed that the pilot task loading during approach and for the commanded go-around is high and that pilot workload is near capacity throughout. The go-around in manual nacelle mode was most demanding, resulting in additional time requirements to complete necessary tasks.

  7. 78 FR 64265 - Hours of Service of Drivers: U.S. Department of Defense (DOD); Application for Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ...) Military Surface Deployment and Distribution Command (SDDC) an exemption from the minimum 30-minute rest... Surface Deployment and Distribution Command (SDDC) manages the motor carrier industry contracts for the...

  8. Transportation Challenges in the Hampton Roads, VA, Region

    DTIC Science & Technology

    2012-06-01

    ORDERS ( PPO ) ...........................................................11 J. HIGHWAYS FOR NATIONAL DEFENSE (HND) ...................................12 K... PPO Port Planning Orders RND Railroads for National Defense SDDCTEA Surface Deployment and Distribution Command Transportation Engineering...important Continental United States (CONUS) port infrastructure in both peacetime and wartime. Strategic Seaports and Port Planning Orders ( PPOs ) were

  9. A Southern Command Military Campaign against Drug Operations

    DTIC Science & Technology

    1989-05-01

    Peruvian and Bolivian cocaine is refined in Columbia and transported to the US. Although, some of the cocaine is also transported through Brazil and...effects of cocaine are unpredictable. There have been cases of a single use bringing death. In 1986 cocaine poisoning took the life of football star Don

  10. Angling into the Future: Ten Commandments for Recreational Fisheries Science, Management, and Stewardship in a Good Anthropocene

    NASA Astrophysics Data System (ADS)

    Elmer, Laura K.; Kelly, Lisa A.; Rivest, Stephanie; Steell, S. Clay; Twardek, William M.; Danylchuk, Andy J.; Arlinghaus, Robert; Bennett, Joseph R.; Cooke, Steven J.

    2017-08-01

    A new geological epoch, the "Anthropocene", has been defined as the period in which humans have had substantial geological and ecological influence on the planet. A positive future for this epoch can be referred to as the "good Anthropocene" and would involve effective management strategies and changes in human behavior that promote the sustainability and restoration of ecosystems. Recreational fisheries hold significant social, cultural, and economic value and can generate many benefits when managed sustainably and thus be an integral part of a "good Anthropocene". Here, we list ten commandments to facilitate persistence and long-term sustainability of recreational fisheries in the "good Anthropocene". This list includes fostering aquatic stewardship, promoting education, using appropriate capture gear, adopting evidence-based management approaches, promoting the concept of resilience, obtaining and using effort data in management, embracing the ecosystem approach, engaging in multilevel collaboration, enhancing accessibility, and embracing optimism. When used singly, or simultaneously, these ten commandments will contribute to the harmonization of sustainable fish populations and angling practices, to create recreational fisheries' "bright spots".

  11. Canadian Air Force Leadership and Command: Implications for the Human Dimension of Expeditionary Air Force Operations

    DTIC Science & Technology

    2006-11-01

    Project Manager : CSA: Angela Febbraro The scientific or technical validity of this Contract Report is entirely the responsibility of the...ways, for example, in leadership styles and command arrangements. Unfortunately for the Canadian Air Force, very little has been written about how its...culture and professional working environment have influenced the development of unique Canadian air force leadership styles and command

  12. 32 CFR 239.13 - Program Performance Reviews.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... will prepare monthly program performance reviews using the Homeowners Assistance Program Management Information System; HQUSACE Annual Management Command Plan and Management Control Checklist. In addition...

  13. Air Force Intelligence Officer Targeteers: A Discussion on Specialization

    DTIC Science & Technology

    2011-06-10

    significant force management problems for several reasons ( Galway et al. 2005, 48). The first reason was attributed to having no dedicated career field...manager to coordinate joint command and major command (MAJCOM) personnel requirements ( Galway et al. 2005, 51). Lack of a full time career field...intelligence work was required ( Galway et al. 2005, 48). RAND also noted that a tenuous balance existed between acquiring breadth and depth as a company

  14. Method and system for redundancy management of distributed and recoverable digital control system

    NASA Technical Reports Server (NTRS)

    Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)

    2012-01-01

    A method and system for redundancy management is provided for a distributed and recoverable digital control system. The method uses unique redundancy management techniques to achieve recovery and restoration of redundant elements to full operation in an asynchronous environment. The system includes a first computing unit comprising a pair of redundant computational lanes for generating redundant control commands. One or more internal monitors detect data errors in the control commands, and provide a recovery trigger to the first computing unit. A second redundant computing unit provides the same features as the first computing unit. A first actuator control unit is configured to provide blending and monitoring of the control commands from the first and second computing units, and to provide a recovery trigger to each of the first and second computing units. A second actuator control unit provides the same features as the first actuator control unit.

  15. The computational structural mechanics testbed architecture. Volume 5: The Input-Output Manager DMGASP

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1989-01-01

    This is the fifth of a set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the command language interpreter (CLIP), and the data manager (GAL). Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 5 describes the low-level data management component of the NICE software. It is intended only for advanced programmers involved in maintenance of the software.

  16. GNSS-based emergency management system

    NASA Astrophysics Data System (ADS)

    Wu, Yuhang; Chen, Xiuwan; Ma, Lei

    2009-06-01

    Public safety and public service is a particularly challenging task. The questions of how to use the limited resources efficiently, how to improve the Government's emergency rapid response and ability of risk resistance, and how to provide a more efficient emergency service for the public, have increasingly become the focus to strengthen urban management. Emergency Response Management System is a highly efficient and powerful command system dealing with natural and social disasters, by using all aspects of the force being gathered in a short period of time, sudden events can be handled efficiently, and further development of the incident can be controlled. In this paper, based on the analysis of development status of the emergency management system at home and abroad, and the key technologies of the emergency management system based on GNSS, research and development on emergency command system based on GNSS has been done. Meanwhile, test in Sichuan earthquake has also been carried out. Practice in Sichuan province earthquake relief work has proved that the emergency management command system based on GNSS can play the advantage function and exert the maximum potential, and can play the role of "lifeline" in the critical moment.

  17. Army Networks: Opportunities Exist to Better Utilize Results from Network Integration Evaluations

    DTIC Science & Technology

    2013-08-01

    monitor operations; a touch screen-based mission command planning tool; and an antenna mast . The Army will field only one of these systems in capability...Office JTRS Joint Tactical Radio System NIE Network Integration Evaluation OSD Office of the Secretary of Defense SUE System under Evaluation...command systems . A robust transport layer capable of delivering voice, data, imagery, and video to the tactical edge (i.e., the forward battle lines

  18. Lessons from DoD Disaster Relief Efforts in the Asia-Pacific Region

    DTIC Science & Technology

    2013-01-01

    Indonesia, Malaysia , Thailand, and Bangladesh, whose militaries have shown a willingness to engage in HA/DR. • Encourage greater contributions from...Forces Command USG U.S. government USMC U.S. Marine Corps USN U.S. Navy USNS U.S. Naval Ship USTRANSCOM U.S. Transportation Command WFP World Food ...natural disaster types, including earthquakes, fires, tsunamis, floods, volcanoes, landslides, and food shortages. Such involvement is only likely

  19. 78 FR 48927 - Hours of Service of Drivers: U.S. Department of Defense (DOD); Application for Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    .... Department of Defense (DOD) Military Surface Deployment and Distribution Command (SDDC) for an exemption from... effect on July 1, 2013. The Military Surface Deployment and Distribution Command (SDDC) manages the motor...

  20. KSC-2014-3922

    NASA Image and Video Library

    2014-09-16

    KSC-2014-3922 - CAPE CANAVERAL, Fla. – Former astronaut Bob Cabana, center, director of NASA's Kennedy Space Center in Florida, speaks at the start of the announcement ceremony to name the providers of the next generation of crewed American spacecraft. Speaking from Kennedy’s Press Site, Cabana detailed the importance of the development effort by the agency's Commercial Crew Program for United States space exploration ambitions and the economic potential of creating new markets in human space transportation. Boeing and SpaceX were awarded contracts to complete the design of the CST-100 and Crew Dragon spacecraft, respectively, and begin manufacturing for flight tests with a goal of achieving certification to take astronauts to the International Space Station by 2017. The Commercial Crew Transportation Capability CCtCap contract also covers the beginning of operational missions for these new spacecraft and their systems. NASA spokeswoman Stephanie Schierholz, from left, Charles Bolden, NASA administrator, Kathy Lueders, manager of the agency's Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Photo credit: NASA/Jim Grossmann

  1. Utilization of Navy Selected Reserve Personnel in Defense Contract Management Command Reserve Units

    DTIC Science & Technology

    1993-06-17

    and gaining commands reporting sound working relationships tended to agree not only on current utilization, but future utilization as wel]. This...QiISLI 5 ousin9. Ay te iisues Upositive or- ngegativej. concgrriing. Naval Reserve part icipatioContract~ S Managmnt ? This question wag designed as a...working relationship with their gaining command tended to fit into the satisfied category. However, those units which indicated a somewhat strained

  2. 32 CFR 806.5 - Responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... instructions to MAJCOMs. Responsibilities of other Air Force elements follow. (b) SAF/GCA makes final decisions on FOIA administrative appeals. (c) Installation commanders will: Comply with FOIA electronic reading... commanders implement this instruction and appoint a FOIA manager, in writing. Send the name, phone number...

  3. The Limited Duty/Chief Warrant Officer Professional Guidebook

    DTIC Science & Technology

    1985-01-01

    subsurface imaging . They plan and manage the operation of imaging commands and activities, combat camera groups and aerial reconnaissance imaging...picture and video systems used in aerial, surface and subsurface imaging . They supervise the operation of imaging commands and activities, combat camera

  4. Process-oriented Approach to Designing Immersion Assessments

    DTIC Science & Technology

    2014-02-01

    Command (USSOCOM) Command Language Program Manager (CLPM) Advanced Competencies Course in a presentation titled, The Language Needs Assessment Process and...Techniques can be very similar • Physical v. psychological fidelity • Johns (2006) Discrete Context—task, social and physical • 4Ps : Purpose

  5. A preliminary look at an optimal multivariable design for propulsion-only flight control of jet-transport aircraft

    NASA Technical Reports Server (NTRS)

    Azzano, Christopher P.

    1992-01-01

    Control of a large jet transport aircraft without the use of conventional control surfaces was studied. Engine commands were used to attempt to recreate the forces and moments typically provided by the elevator, ailerons, and rudder. Necessary conditions for aircraft controllability were developed pertaining to aircraft configuration such as the number of engines and engine placement. An optimal linear quadratic regulator controller was developed for the Boeing 707-720, in particular, for regulation of its natural dynamic modes. The design used a method of assigning relative weights to the natural modes, i.e., phugoid and dutch roll, for a more intuitive selection of the cost function. A prototype pilot command interface was then integrated into the loop based on pseudorate command of both pitch and roll. Closed loop dynamics were evaluated first with a batch linear simulation and then with a real time high fidelity piloted simulation. The NASA research pilots assisted in evaluation of closed loop handling qualities for typical cruise and landing tasks. Recommendations for improvement on this preliminary study of optimal propulsion only flight control are provided.

  6. Flight test experience and controlled impact of a remotely piloted jet transport aircraft

    NASA Technical Reports Server (NTRS)

    Horton, Timothy W.; Kempel, Robert W.

    1988-01-01

    The Dryden Flight Research Center Facility of NASA Ames Research Center (Ames-Dryden) and the FAA conducted the controlled impact demonstration (CID) program using a large, four-engine, remotely piloted jet transport airplane. Closed-loop primary flight was controlled through the existing onboard PB-20D autopilot which had been modified for the CID program. Uplink commands were sent from a ground-based cockpit and digital computer in conjunction with an up-down telemetry link. These uplink commands were received aboard the airplane and transferred through uplink interface systems to the modified PB-20D autopilot. Both proportional and discrete commands were produced by the ground system. Prior to flight tests, extensive simulation was conducted during the development of ground-based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems; however, piloted flight tests were the primary method and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and systems required to accomplish the remotely piloted mission are discussed.

  7. Mission operations and command assurance: Instilling quality into flight operations

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Witkowski, Mona M.; Bruno, Kristin J.; Potts, Sherrill S.

    1993-01-01

    Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous process improvement to reduce the probability of radiating incorrect commands to a spacecraft. The MO&CA task has evolved from participating as a member of the spacecraft team to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.

  8. Gulf War Air Power Survey. Volume 3. Logistics and Support

    DTIC Science & Technology

    1993-01-01

    miss casualty ground war would have been transported speedily to the most appropri- ate medical facilities. Command and control of airevac missions de ...maintenance of the force, and its transportation necessary for war. The second report, Sup. port, concerns itself with the air base and airbase operations... transportation , supply, maintenance, and the myriad aspects of logistics planning and coordination. Mr. Richard Gunkel was the Logistics, Support, and Space

  9. C2 of C3: Command and Control of Command, Control, Communication Systems.

    DTIC Science & Technology

    1988-04-22

    capabilities the Army has not yet realized the full benefit of the new technology--largely because of deficiencies in the operational management of these newly...managers frequently constructed CEOI’s by drawing available frequencies or letter/number combinations (for unit callsigns) from a Bingo creel--which was...rapidly occurring changes, with subordinate units. At last, units were beginning to see the benefits of operating from a commonly shared data base. Up to

  10. The hospital incident command system: modified model for hospitals in iran.

    PubMed

    Djalali, Ahmadreza; Hosseinijenab, Vahid; Peyravi, Mahmoudreza; Nekoei-Moghadam, Mahmood; Hosseini, Bashir; Schoenthal, Lisa; Koenig, Kristi L

    2015-03-27

    Effectiveness of hospital management of disasters requires a well-defined and rehearsed system. The Hospital Incident Command System (HICS), as a standardized method for command and control, was established in Iranian hospitals, but it has performed fairly during disaster exercises. This paper describes the process for, and modifications to HICS undertaken to optimize disaster management in hospitals in Iran. In 2013, a group of 11 subject matter experts participated in an expert consensus modified Delphi to develop modifications to the 2006 version of HICS. The following changes were recommended by the expert panel and subsequently implemented: 1) A Quality Control Officer was added to the Command group; 2) Security was defined as a new section; 3) Infrastructure and Business Continuity Branches were moved from the Operations Section to the Logistics and the Administration Sections, respectively; and 4) the Planning Section was merged within the Finance/Administration Section. An expert consensus group developed a modified HICS that is more feasible to implement given the managerial organization of hospitals in Iran. This new model may enhance hospital performance in managing disasters. Additional studies are needed to test the feasibility and efficacy of the modified HICS in Iran, both during simulations and actual disasters. This process may be a useful model for other countries desiring to improve disaster incident management systems for their hospitals.

  11. Training on Transport Security of Nuclear/Radioactive Materials for Key Audiences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, Ronald; Liu, Yung; Shuler, J.M.

    Beginning in 2013, the U.S. Department of Energy (DOE) Packaging Certification Program (PCP), Office of Packaging and Transportation, Office of Environmental Management has sponsored a series of three training courses on Security of Nuclear and Other Radioactive Materials during Transport. These courses were developed and hosted by Argonne National Laboratory staff with guest lecturers from both the U.S. and international organizations and agencies including the U.S. Nuclear Regulatory Commission (NRC), Federal Bureau of Investigation (FBI), the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), DOE national laboratories, the International Atomic Energy Agency (IAEA), the World Nuclear Transport Institutemore » (WNTI), and the World Institute for Nuclear Security (WINS). Each of the three courses held to date were one-week in length. The courses delved in detail into the regulatory requirements for transport security, focusing on international and U.S.-domestic requirements and guidance documents. Lectures, in-class discussions and small group exercises, including tabletop (TTX) and field exercises were designed to enhance the learning objectives for the participants. For example, the field exercise used the ARG-US radio frequency identification (RFID) remote surveillance system developed by Argonne for DOE/PCP to track and monitor packages in a mock shipment, following in-class exercises of developing a transport security plan (TSP) for the mock shipment, performing a readiness review and identifying needed corrective actions. Participants were able to follow the mock shipment on the webpage in real time in the ARG-US Command Center at Argonne including “staged” incidents that were designed to illustrate the importance of control, command, communication and coordination in ensuring transport security. Great lessons were learned based on feedback from the participant’s course evaluations with the series of the courses. Since the development of the relevant teaching materials for the course have largely been completed, tailoring the course for targeted audiences becomes a relatively easy task, requiring less effort and providing more flexibility for both the lecturers and future participants. One-day or two-day courses with focus specifically on the U.S. transport security requirements can be delivered, at locations away from Argonne, by one or two principal lecturers to targeted audiences such as regulators, shippers, carriers, state and local law enforcement personnel, and emergency responders. This paper will highlight the lessons learned in hosting previous one-week courses and discuss the development of options for detailed and/or customized courses/workshops for targeted key audiences.« less

  12. Apollo 14 Mission image - View of the ALSEP Station

    NASA Image and Video Library

    1971-02-05

    AS14-67-9361 (5 Feb. 1971) --- A close-up view of two components of the Apollo lunar surface experiments package (ALSEP) which the Apollo 14 astronauts deployed on the moon during their first extravehicular activity (EVA). In the center background is the ALSEP's central station (CS); and in the foreground is the mortar package assembly of the ALSEP's active seismic experiment (ASE). The modularized equipment transporter (MET) can be seen in the right background. While astronauts Alan B. Shepard Jr., commander, and Edgar D. Mitchell, lunar module pilot, descended in the Lunar Module (LM) to explore the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  13. Total energy based flight control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1985-01-01

    An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.

  14. Cutting pollution loads in the Netherlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suurland, J.

    Environmental policy in the Netherlands is based on the view that highly industrialized and affluent nations should take the lead in working toward sustainable development. Under the broad focus of the National Environmental Policy Plan, the Dutch government is using a variety of voluntary and command-and-control schemes to reduce pollution loads in the Netherlands to between 70 and 90 percent of 1985 levels by 2010. Interim targets for 2000 require emissions reductions of between 50 and 70 percent, relative to 1985 levels. Central to achieving those goals is the target group approach,'' which will be used to achieve emissions reductionsmore » and resource efficiency in the subsectors of industry, agriculture, energy conversion, building and construction, traffic and transport, waste management services, and consumerism.« less

  15. Westgate Shootings: An Emergency Department Approach to a Mass-casualty Incident.

    PubMed

    Wachira, Benjamin W; Abdalla, Ramadhani O; Wallis, Lee A

    2014-10-01

    At approximately 12:30 pm on Saturday September 21, 2013, armed assailants attacked the upscale Westgate shopping mall in the Westlands area of Nairobi, Kenya. Using the seven key Major Incident Medical Management and Support (MIMMS) principles, command, safety, communication, assessment, triage, treatment, and transport, the Aga Khan University Hospital, Nairobi (AKUH,N) emergency department (ED) successfully coordinated the reception and care of all the casualties brought to the hospital. This report describes the AKUH,N ED response to the first civilian mass-casualty shooting incident in Kenya, with the hope of informing the development and implementation of mass-casualty emergency preparedness plans by other EDs and hospitals in Kenya, appropriate for the local health care system.

  16. STS-32 crewmembers wave as they leave KSC O&C Bldg for launch pad

    NASA Image and Video Library

    1990-01-09

    STS032-S-056 (20 Jan 1990) --- STS-32 Columbia, Orbiter Vehicle (OV) 102, crewmembers depart the Kennedy Space Center (KSC) Operations and Checkout (O and C) Building enroute to KSC Launch Complex (LC) Pad 39A. Dubious weather at the return-to-launch site (RTLS) caused postponement of yesterday's planned launch. From left to right are Mission Specialist (MS) G. David Low, MS Marsha S. Ivins, MS Bonnie J. Dunbar, Pilot James D. Wetherbee, and Commander Daniel C. Brandenstein. All crewmembers are wearing launch and entry suits (LESs) and Low, Ivins, and Wetherbee wave to spectators as they head to the transportation van. Following the crew are astronaut Michael L. Coats (left) and NASA/JSC manager Donald R. Puddy.

  17. Brigade Intelligence Operations. Implications for the Nonlinear Battlefield

    DTIC Science & Technology

    1990-11-21

    Intellingence School of Advanced Military Studies United States Army Command and General Staff College Fort Leavenworth2 Kansas~~First Term 90-91 / Approved...has few equipment needs. The section has an M577 staff track and a wheeled vehicle for transportion and communications. It acts as the net control... vehicle for operating on the move or for monitoring the brigade command net. There is no intelligence specific equipment assigned to the S2 section

  18. Air Force KC-X Tanker Aircraft Program: Background and Issues for Congress

    DTIC Science & Technology

    2010-07-15

    18 Gopal Ratnam and Alison Fitzgerald , “Northrop Declines Tanker Bid on ‘Financial Burdens’ (Update2),” Bloomberg.com, December 1, 2009...May 2009, p. 1-50. 21 Statement of General Duncan J. McNabb, USAF, Commander, United States Transportation Command, Before the House Armed Services...the Duncan Hunter National Defense Authorization Act for Fiscal Year 2009 (P.L. 110-417; 122 Stat. 4561) not later than 60 days after the date of the

  19. Joint Force Quarterly. Issue 73, 2nd Quarter 2014

    DTIC Science & Technology

    2014-04-01

    hyperloop ,” a partial vacuum tube that carries passengers in General William M. Fraser III, USAF, is Commander of U.S. Transportation Command. Colonel...http://en.wikipedia.org/wiki/Shanghai_ Maglev_Train>; “Falcon 9,” available at <www. spacex.com/falcon9>. 3 See “ Hyperloop ,” available at <http...spacex.com/ hyperloop >. 4 Colin S. Gray, Modern Strategy (Oxford: Oxford University Press, 1999), 40. 5 Gray, Fighting Talk, 78, 80. Mankind does not live

  20. Prepare the Army for War. A Historical Overview of the Army Training and Doctrine Command, 1973 - 1993

    DTIC Science & Technology

    1993-01-01

    liaison officers at the other’s equivalent major schools-armor, aviation, air defense, field artillery, engineer , infantry, signal, ordnance... Engineer Center and Fort Belvoir, the Infantry Center and Fort Benning, the Air Defense Center and Fort Bliss, the Transportation Center and Fort...administered by the commander of the Araor Center and Fort Knox. TRADOC had 16 Army branch schools. Eight schools--the Air Defense, Armor, Engineer , Field

  1. DTS: The NOAO Data Transport System

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, M.; Semple, T.

    2014-05-01

    The NOAO Data Transport System (DTS) provides high-throughput, reliable, data transfer between telescopes, pipelines and archive centers located in the Northern and Southern hemispheres. It is a distributed application using XML-RPC for command and control, and either parallel-TCP or UDT protocols for bulk data transport. The system is data-agnostic, allowing arbitrary files or directories to be moved using the same infrastructure. Data paths are configurable in the system by connecting nodes as the source or destination of data in a queue. Each leg of a data path may be configured independently based on the network environment between the sites. A queueing model is currently implemented to manage the automatic movement of data, a streaming model is planned to support arbitrarily large transfers (e.g. as in a disk recovery scenario) or to provide a 'pass-thru' interface to minize overheads. A web-based monitor allows anyone to get a graphical overview of the DTS system as it runs, operators will be able to control individual nodes in the system. Through careful tuning of the network paths DTS is able to achieve in excess of 80-percent of the nominal wire speed using only commodity networks, making it ideal for long-haul transport of large volumes of data.

  2. 78 FR 32637 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... Engineering Command, Edgewood Chemical Biological Center (ECBC) AGENCY: Office of the Deputy Under Secretary... the Army, Army Research, Development and Engineering Command, Edgewood Chemical Biological Center... Biological Chemical Center, (RDCB-DPC-W), 5183 Blackhawk Road, Building 3330, Room 264, Aberdeen Proving...

  3. 76 FR 3743 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Demonstration Project, Department of the Army, Army Research, Development and Engineering Command, Armament Research, Development and Engineering Center (ARDEC); Notice #0;#0;Federal Register / Vol. 76 , No. 13... the Army, Army Research, Development and Engineering Command, Armament Research, Development and...

  4. Organization and Functions: Field Operating Agencies of The Judge Advocate General

    DTIC Science & Technology

    1989-03-20

    Criminal Investi- gation Command. (6) Army Military Command Contract Law Specialist Training Program, which trains officers in providing legal advice and...opera- tions in the functional areas of contract law . (7) Patents, Copyrights, and Trademarks Division, which— (a) Manages the administration, control

  5. A day in the life of a volunteer incident commander: errors, pressures and mitigating strategies.

    PubMed

    Bearman, Christopher; Bremner, Peter A

    2013-05-01

    To meet an identified gap in the literature this paper investigates the tasks that a volunteer incident commander needs to carry out during an incident, the errors that can be made and the way that errors are managed. In addition, pressure from goal seduction and situation aversion were also examined. Volunteer incident commanders participated in a two-part interview consisting of a critical decision method interview and discussions about a hierarchical task analysis constructed by the authors. A SHERPA analysis was conducted to further identify potential errors. The results identified the key tasks, errors with extreme risk, pressures from strong situations and mitigating strategies for errors and pressures. The errors and pressures provide a basic set of issues that need to be managed by both volunteer incident commanders and fire agencies. The mitigating strategies identified here suggest some ways that this can be done. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Evolutionary Telemetry and Command Processor (TCP) architecture

    NASA Technical Reports Server (NTRS)

    Schneider, John R.

    1992-01-01

    A low cost, modular, high performance, and compact Telemetry and Command Processor (TCP) is being built as the foundation of command and data handling subsystems for the next generation of satellites. The TCP product line will support command and telemetry requirements for small to large spacecraft and from low to high rate data transmission. It is compatible with the latest TDRSS, STDN and SGLS transponders and provides CCSDS protocol communications in addition to standard TDM formats. Its high performance computer provides computing resources for hosted flight software. Layered and modular software provides common services using standardized interfaces to applications thereby enhancing software re-use, transportability, and interoperability. The TCP architecture is based on existing standards, distributed networking, distributed and open system computing, and packet technology. The first TCP application is planned for the 94 SDIO SPAS 3 mission. The architecture enhances rapid tailoring of functions thereby reducing costs and schedules developed for individual spacecraft missions.

  7. Robot Task Commander with Extensible Programming Environment

    NASA Technical Reports Server (NTRS)

    Hart, Stephen W (Inventor); Wightman, Brian J (Inventor); Dinh, Duy Paul (Inventor); Yamokoski, John D. (Inventor); Gooding, Dustin R (Inventor)

    2014-01-01

    A system for developing distributed robot application-level software includes a robot having an associated control module which controls motion of the robot in response to a commanded task, and a robot task commander (RTC) in networked communication with the control module over a network transport layer (NTL). The RTC includes a script engine(s) and a GUI, with a processor and a centralized library of library blocks constructed from an interpretive computer programming code and having input and output connections. The GUI provides access to a Visual Programming Language (VPL) environment and a text editor. In executing a method, the VPL is opened, a task for the robot is built from the code library blocks, and data is assigned to input and output connections identifying input and output data for each block. A task sequence(s) is sent to the control module(s) over the NTL to command execution of the task.

  8. NASIS data base management system - IBM 360/370 OS MVT implementation. 5: Retrieval command system reference manual

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The retrieval command subsystem reference manual for the NASA Aerospace Safety Information System (NASIS) is presented. The output oriented classification of retrieval commands provides the user with the ability to review a set of data items for verification or inspection as a typewriter or CRT terminal and to print a set of data on a remote printer. Predefined and user-definable data formatting are available for both output media.

  9. Supervisory Control Information Management Research (SCIMR) Studies: Determination of Efficiency for a Variety of Input Control Equipment (DEVICE)

    DTIC Science & Technology

    2010-08-01

    Belkin n52te, the Saitek Cyborg Command Unit, the Wacom Bamboo Fun with stylus, the Wacom Bamboo Fun with touch, and the Xbox 360 controller...4 4 Saitek Cyborg Command Unit function mapping ....................................... 4 iv 5 Wacom Bamboo Fun with stylus and touch...versus Belkin n52te by task . 30 B-2 Participants’ preferences for standard mouse versus Saitek Cyborg Command Unit by task

  10. Pacific Armies Management Seminar IV Held at Honolulu, Hawaii, on 3-7 November 1980.

    DTIC Science & Technology

    1980-11-07

    He further described Malaysia’s progressive, politico - economic efforts to preclude resurrection of an insurgent movement. Representatives from the...HAWAII 96858 SEMINAR CHAIRMAN COLONEL NOLAN M. SIGLER DEPUTY CHIEF OF STAFF FOR OPERATIONS AND PLANSUNITED STATES ARMY WESTERN COMMAND TABLE OF...WOL7F, Commander BG Richard G. CARDILLO, Deputy Commander COL Charles C. SPEROW, Deputy Chief of Staff I5 COL Nolan M. SIGLER, Deputy Chief of Staff for

  11. The Art of Selection: Command Selection Failures, and a Better Way to Select Army Senior Leaders

    DTIC Science & Technology

    2013-04-12

    and Effects ( MFE ), Force Sustainment (FS), and Operations Support (OS). Board members review board files in accordance with the instructions given to...Fires, and Effects ( MFE ), Operations Support (OS), and Force Sustainment (FS). The exact composition of a command selection board is governed by a...policy updated annually by the Military Personnel Management Directorate. For example, the MFE lieutenant colonel command board will be made up of one

  12. Intelligent systems and advanced user interfaces for design, operation, and maintenance of command management systems

    NASA Technical Reports Server (NTRS)

    Potter, William J.; Mitchell, Christine M.

    1993-01-01

    Historically, command management systems (CMS) have been large and expensive spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as to develop a more generic CMS system. New technologies, in addition to a core CMS common to a range of spacecraft, may facilitate the training and enhance the efficiency of CMS operations. Current mission operations center (MOC) hardware and software include Unix workstations, the C/C++ programming languages, and an X window interface. This configuration provides the power and flexibility to support sophisticated and intelligent user interfaces that exploit state-of-the-art technologies in human-machine interaction, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of these issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, human-machine systems design and analysis tools (e.g., operator and designer models), and human-computer interaction tools (e.g., graphics, visualization, and animation) may provide significant savings in the design, operation, and maintenance of the CMS for a specific spacecraft as well as continuity for CMS design and development across spacecraft. The first six months of this research saw a broad investigation by Georgia Tech researchers into the function, design, and operation of current and planned command management systems at Goddard Space Flight Center. As the first step, the researchers attempted to understand the current and anticipated horizons of command management systems at Goddard. Preliminary results are given on CMS commonalities and causes of low re-use, and methods are proposed to facilitate increased re-use.

  13. The next generation of command post computing

    NASA Astrophysics Data System (ADS)

    Arnold, Ross D.; Lieb, Aaron J.; Samuel, Jason M.; Burger, Mitchell A.

    2015-05-01

    The future of command post computing demands an innovative new solution to address a variety of challenging operational needs. The Command Post of the Future is the Army's primary command and control decision support system, providing situational awareness and collaborative tools for tactical decision making, planning, and execution management from Corps to Company level. However, as the U.S. Army moves towards a lightweight, fully networked battalion, disconnected operations, thin client architecture and mobile computing become increasingly essential. The Command Post of the Future is not designed to support these challenges in the coming decade. Therefore, research into a hybrid blend of technologies is in progress to address these issues. This research focuses on a new command and control system utilizing the rich collaboration framework afforded by Command Post of the Future coupled with a new user interface consisting of a variety of innovative workspace designs. This new system is called Tactical Applications. This paper details a brief history of command post computing, presents the challenges facing the modern Army, and explores the concepts under consideration for Tactical Applications that meet these challenges in a variety of innovative ways.

  14. Implementation of a medical command and control team in Switzerland.

    PubMed

    Carron, Pierre-Nicolas; Reigner, Philippe; Vallotton, Laurent; Clouet, Jean-Gabriel; Danzeisen, Claude; Zürcher, Mathias; Yersin, Bertrand

    2014-04-01

    In case of a major incident or disaster, the advance medical rescue command needs to manage several essential tasks simultaneously. These include the rapid deployment of ambulance, police, fire and evacuation services, and their coordinated activity, as well as triage and emergency medical care on site. The structure of such a medical rescue command is crucial for the successful outcome of medical evacuation at major incidents. However, little data has been published on the nature and structure of the command itself. This study presents a flexible approach to command structure, with two command heads: one emergency physician and one experienced paramedic. This approach is especially suitable for Switzerland, whose federal system allows for different structures in each canton. This article examines the development of these structures and their efficiency, adaptability and limitations with respect to major incident response in the French-speaking part of the country. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.

  15. Management and Oversight of Services Acquisition Within the United States Air Force

    DTIC Science & Technology

    2008-12-01

    Air Mobility Command AFDW Air Force District of Washington AFSPC Air Force Space Command AT&L Acquisition Technologies and Logistics CPM ...were commonly performed in industry. The types of services included advertising for Navy recruitment, custodial services on Air Force bases, and on

  16. 32 CFR 724.407 - Commander, Naval Reserve Force.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Commander, Naval Reserve Force. 724.407 Section 724.407 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Reserve Force. Manages Naval Reserve resources. Responsible for providing limited support to the...

  17. 32 CFR 537.4 - Claims not collectible.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Deployment and Distribution Command (SDDC), formerly the Military Traffic Management Command (MTMC), for lost or destroyed shipments. (d) Where damage to assigned quarters, or equipment or furnishings therein, is collectible from a member of the uniformed services under 10 U.S.C. 2775. (e) Where the medical...

  18. 32 CFR 537.4 - Claims not collectible.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Deployment and Distribution Command (SDDC), formerly the Military Traffic Management Command (MTMC), for lost or destroyed shipments. (d) Where damage to assigned quarters, or equipment or furnishings therein, is collectible from a member of the uniformed services under 10 U.S.C. 2775. (e) Where the medical...

  19. 75 FR 60091 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... Engineering Command, Armament Research, Development and Engineering Center (ARDEC); Correction AGENCY: Office... employees at the Army Research, Development and Engineering Command, Armament Research, Development and Engineering Center (ARDEC). Within that notice the descriptors for levels IV and V are incorrect under factor...

  20. 32 CFR 724.407 - Commander, Naval Reserve Force.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Commander, Naval Reserve Force. 724.407 Section 724.407 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Reserve Force. Manages Naval Reserve resources. Responsible for providing limited support to the...

  1. Command Flight Path Display. Phase I and II. Appendix F.

    DTIC Science & Technology

    1983-09-01

    AD -R145 858 COMMAND FLIGHT PATH DISPLAY PHASE I AND 11 APPENDIX F / (U) SYSTEMS ASSOCIATES INC LONG BEACH CA RESOURCE MANAGEMENT SYSTEMS DIY SEP...34- (Appendix F) .ś. SYSTEMS ASSOCIATES INC* of CALIFORNIA t. Resource Management Systems Division DTICL it~~~ll ELECTE 1 o..-- , ~SEP 2 4 1984...Availability Codos Avail and/or Dist Special "i j L i 7 7 .... Contained in this appendix are the various plots generated dur- ing data reduction. Parameters

  2. KSC-2014-3921

    NASA Image and Video Library

    2014-09-16

    CAPE CANAVERAL, Fla. – NASA spokeswoman Stephanie Schierholz, from left, listens as Charles Bolden, NASA administrator, speaks with former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida and Kathy Lueders, manager of the agency's Commercial Crew Program, before the announcement of the Commercial Crew Transportation Capability CCtCap contract awards designed to complete the NASA certification for human space transportation systems capable of carrying people into orbit. Astronaut and former International Space Station Commander Mike Fincke also took part in the announcement. Once certification is complete, NASA plans to use these systems to ferry astronauts to the International Space Station and return them safely to Earth. Speaking from Kennedy Space Center’s Press Site, Bolden detailed the importance of the effort by the agency's Commercial Crew Program for United States space exploration ambitions and the economic potential of creating new markets in space transportation for people. Boeing and SpaceX were awarded contracts to complete the design of the CST-100 and Crew Dragon spacecraft, respectively, and begin manufacturing for flight tests with a goal of achieving certification to take astronauts to the International Space Station by 2017. CCtCap also covers the beginning of operational missions for these new spacecraft and their systems. Photo credit: NASA/Jim Grossmann

  3. KSC-2014-3923

    NASA Image and Video Library

    2014-09-16

    CAPE CANAVERAL, Fla. – Charles Bolden, second from left, NASA administrator, announces the Commercial Crew Transportation Capability CCtCap contract awards designed to complete the NASA certification for human space transportation systems capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to ferry astronauts to the International Space Station and return them safely to Earth. Speaking from Kennedy Space Center’s Press Site, Bolden detailed the importance of the effort by the agency's Commercial Crew Program for United States space exploration ambitions and the economic potential of creating new markets in space transportation for people. Boeing and SpaceX were awarded contracts to complete the design of the CST-100 and Crew Dragon spacecraft, respectively, and begin manufacturing for flight tests with a goal of achieving certification to take astronauts to the International Space Station by 2017. CCtCap also covers the beginning of operational missions for these new spacecraft and their systems. NASA spokeswoman Stephanie Schierholz, from left, former astronaut Bob Cabana, director of Kennedy Space Center, Kathy Lueders, manager of the agency's Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Photo credit: NASA/Jim Grossmann

  4. KSC-2014-3926

    NASA Image and Video Library

    2014-09-16

    CAPE CANAVERAL, Fla. – Charles Bolden, NASA administrator, announces the Commercial Crew Transportation Capability CCtCap contract awards designed to complete the NASA certification for human space transportation systems capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to ferry astronauts to the International Space Station and return them safely to Earth. Speaking from Kennedy Space Center’s Press Site, Bolden detailed the importance of the effort by the agency's Commercial Crew Program for United States space exploration ambitions and the economic potential of creating new markets in space transportation for people. Boeing and SpaceX were awarded contracts to complete the design of the CST-100 and Crew Dragon spacecraft, respectively, and begin manufacturing for flight tests with a goal of achieving certification to take astronauts to the International Space Station by 2017. CCtCap also covers the beginning of operational missions for these new spacecraft and their systems. NASA spokeswoman Stephanie Schierholz, former astronaut Bob Cabana, director of Kennedy Space Center, Kathy Lueders, manager of the agency's Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Photo credit: NASA/Jim Grossmann

  5. A Study in Sea-Air Intermodal Port Selection: Strategic Decision Making for United States Southern Command

    DTIC Science & Technology

    2011-06-01

    B. J ., & Bardi , E. J . (2011). Transportation: A Supply Chain Perspective, Seventh Edition, South-Western Cengage Learning, Mason, OH. 4...Strong Intermodal Rail Endorsement. Journal of Commerce. Retrieved March 1, 2011, from ABI/INFORM Research. 3. Coyle, J . J ., Novack, R. A ., Gibson...mode choice decisions: a content analysis. Transportation Research Part E 36. 41-53. 6. DeWitt, W., Clinger, J ., Intermodal Freight Transportation

  6. Taming the Tar Heel Department: D.H. Hill and the Challenges of Operational-Level Command during the American Civil War

    DTIC Science & Technology

    2011-05-19

    Throughout that spring , he Goldsboro, on the Wilmington and Weldon Railroad, the main north-south transportation artery between Virginia and points south... spring of 1862, but Davis did not replace Lee after he took command of the Army of Northern Virginia. Braxton Bragg served as military advisor to...and publications. When called upon in the spring of 1861, Hill brought his cadets to Raleigh to start training recruits for the First North Carolina

  7. Ground level view of Apollo 14 space vehicle leaving VAB for launch pad

    NASA Image and Video Library

    1970-11-09

    S70-54121 (9 Nov. 1970) --- A ground level view at Launch Complex 39, Kennedy Space Center (KSC), showing the Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle leaving the Vehicle Assembly Building (VAB). The Saturn V stack and its mobile launch tower, atop a huge crawler-transporter, were rolled out to Pad A. The Apollo 14 crewmen will be astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.

  8. Prelaunch - Apollo 10 (rollout)

    NASA Image and Video Library

    1969-03-11

    S69-27915 (11 March 1969) --- Aerial view at Launch Complex 39, Kennedy Space Center, showing a close-up of the 363-feet tall Apollo 10 (Spacecraft 106/Lunar Module 4/Saturn 505) space vehicle on its way to Pad B. The Saturn V stack and its mobile launch tower are atop a huge crawler-transporter. The Apollo 10 flight is scheduled as a lunar orbit mission. The Apollo 10 crew will be astronauts Thomas P. Stafford, commander; John W. Young, command module pilot; and Eugene A. Cernan, lunar module pilot.

  9. Utilization of a Multi-Disciplinary Approach to Building Effective Command Centers: Process and Products

    DTIC Science & Technology

    2005-06-01

    cognitive task analysis , organizational information dissemination and interaction, systems engineering, collaboration and communications processes, decision-making processes, and data collection and organization. By blending these diverse disciplines command centers can be designed to support decision-making, cognitive analysis, information technology, and the human factors engineering aspects of Command and Control (C2). This model can then be used as a baseline when dealing with work in areas of business processes, workflow engineering, information management,

  10. Command, Leadership and Control Essence and Application.

    DTIC Science & Technology

    1987-06-03

    conduct this all embracing human activity . The military leader could only tell us the best he did to succeed: the historian and the academician can best...the guinea pigs--experience. The importance of this human activity to the managers of violence requires no over emphasis. The logic of command

  11. 32 CFR Appendix E to Part 247 - DoD Command Newspaper and Magazine Review System

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... commanders in establishing and maintaining cost-effective internal communications essential to mission accomplishment. The system also enables internal information managers to assess the cost and effective use of...-day quality assurance procedures or established critique programs. C. Review criteria. Each newspaper...

  12. Integration of the incident command system (ICS) protocol for effective coordination of multi-agency response to traffic incidents : final report.

    DOT National Transportation Integrated Search

    2017-06-13

    In recent years, there has been an increased focus on Traffic Incident Management (TIM) and : incorporation of the Incident Command System (ICS) to reduce traffic congestion on the nation's : Interstates. In fact, studies show that for every minute a...

  13. 32 CFR 246.6 - Procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Director of the AFIS. The Unified Commands shall forward such requests to the Director of the AFIS, as... matters. The S&S shall keep the Unified Command and the AFIS informed of all actions. (b) Management Review and Evaluation. (1) The Director of the AFIS provides business counsel, assistance, and policy...

  14. 32 CFR 246.6 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Director of the AFIS. The Unified Commands shall forward such requests to the Director of the AFIS, as... matters. The S&S shall keep the Unified Command and the AFIS informed of all actions. (b) Management Review and Evaluation. (1) The Director of the AFIS provides business counsel, assistance, and policy...

  15. 76 FR 78286 - Collection of Information Under Review by Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ..., between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. OIRA posts its decisions on.... Coast Guard, Acting Assistant Commandant for Command, Control, Communications, Computers and Information... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2011-0902] Collection of Information Under...

  16. 78 FR 45545 - Collection of Information under Review by Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    .... OIRA posts its decisions on ICRs online at http://www.reginfo.gov/public/do/PRAMain after the comment... Commandant for Command, Control, Communications, Computers and Information Technology. [FR Doc. 2013-18068... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2013-0045] Collection of Information under...

  17. DIRAC3 - the new generation of the LHCb grid software

    NASA Astrophysics Data System (ADS)

    Tsaregorodtsev, A.; Brook, N.; Casajus Ramo, A.; Charpentier, Ph; Closier, J.; Cowan, G.; Graciani Diaz, R.; Lanciotti, E.; Mathe, Z.; Nandakumar, R.; Paterson, S.; Romanovsky, V.; Santinelli, R.; Sapunov, M.; Smith, A. C.; Seco Miguelez, M.; Zhelezov, A.

    2010-04-01

    DIRAC, the LHCb community Grid solution, was considerably reengineered in order to meet all the requirements for processing the data coming from the LHCb experiment. It is covering all the tasks starting with raw data transportation from the experiment area to the grid storage, data processing up to the final user analysis. The reengineered DIRAC3 version of the system includes a fully grid security compliant framework for building service oriented distributed systems; complete Pilot Job framework for creating efficient workload management systems; several subsystems to manage high level operations like data production and distribution management. The user interfaces of the DIRAC3 system providing rich command line and scripting tools are complemented by a full-featured Web portal providing users with a secure access to all the details of the system status and ongoing activities. We will present an overview of the DIRAC3 architecture, new innovative features and the achieved performance. Extending DIRAC3 to manage computing resources beyond the WLCG grid will be discussed. Experience with using DIRAC3 by other user communities than LHCb and in other application domains than High Energy Physics will be shown to demonstrate the general-purpose nature of the system.

  18. Multi-Agent Diagnosis and Control of an Air Revitalization System for Life Support in Space

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Kowing, Jeffrey; Nieten, Joseph; Graham, Jeffrey s.; Schreckenghost, Debra; Bonasso, Pete; Fleming, Land D.; MacMahon, Matt; Thronesbery, Carroll

    2000-01-01

    An architecture of interoperating agents has been developed to provide control and fault management for advanced life support systems in space. In this adjustable autonomy architecture, software agents coordinate with human agents and provide support in novel fault management situations. This architecture combines the Livingstone model-based mode identification and reconfiguration (MIR) system with the 3T architecture for autonomous flexible command and control. The MIR software agent performs model-based state identification and diagnosis. MIR identifies novel recovery configurations and the set of commands required for the recovery. The AZT procedural executive and the human operator use the diagnoses and recovery recommendations, and provide command sequencing. User interface extensions have been developed to support human monitoring of both AZT and MIR data and activities. This architecture has been demonstrated performing control and fault management for an oxygen production system for air revitalization in space. The software operates in a dynamic simulation testbed.

  19. A Systems Modeling Approach for Risk Management of Command File Errors

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila

    2012-01-01

    The main cause of commanding errors is often (but not always) due to procedures. Either lack of maturity in the processes, incompleteness of requirements or lack of compliance to these procedures. Other causes of commanding errors include lack of understanding of system states, inadequate communication, and making hasty changes in standard procedures in response to an unexpected event. In general, it's important to look at the big picture prior to making corrective actions. In the case of errors traced back to procedures, considering the reliability of the process as a metric during its' design may help to reduce risk. This metric is obtained by using data from Nuclear Industry regarding human reliability. A structured method for the collection of anomaly data will help the operator think systematically about the anomaly and facilitate risk management. Formal models can be used for risk based design and risk management. A generic set of models can be customized for a broad range of missions.

  20. Incident command structure using a daily management system and the Centers for Disease Control and Prevention's Patient Notification Toolkit drives effective response to an infection control breach.

    PubMed

    Schoonover, Heather; Haydon, Kristin

    2018-06-14

    When breaches in infection control occur, it is imperative that organizations respond in a manner that is effective, efficient, and rebuilds trust with patients. Readers will learn how the incident command structure, daily management system, and the Centers for Disease Control and Prevention's Patient Notification Toolkit were used to drive an effective response to an infection control breach-resulting in 92% of affected patients completing the recommended testing for hepatitis B, hepatitis C, and human immunodeficiency virus. © 2018 American Society for Healthcare Risk Management of the American Hospital Association.

  1. Spacelab data management subsystem phase B study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Spacelab data management system is described. The data management subsystem (DMS) integrates the avionics equipment into an operational system by providing the computations, logic, signal flow, and interfaces needed to effectively command, control, monitor, and check out the experiment and subsystem hardware. Also, the DMS collects/retrieves experiment data and other information by recording and by command of the data relay link to ground. The major elements of the DMS are the computer subsystem, data acquisition and distribution subsystem, controls and display subsystem, onboard checkout subsystem, and software. The results of the DMS portion of the Spacelab Phase B Concept Definition Study are analyzed.

  2. An Analysis of the Speed Commands from an Interval Management Algorithm during the ATD-1 Flight Test

    NASA Technical Reports Server (NTRS)

    Watters, Christine; Wilson, Sara R.; Swieringa, Kurt A.

    2017-01-01

    NASA's first Air Traffic Management Technology Demonstration (ATD-1) successfully completed a nineteen-day flight test under a NASA contract with Boeing, with Honeywell and United Airlines as sub-contractors. An Interval Management (IM) avionics prototype was built based on international IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. This paper describes the speed behavior of the IM avionics prototype, focusing on the speed command rate and the number of speed increases.

  3. A comparison of command center activations versus disaster drills at three institutions from 2013 to 2015.

    PubMed

    Ebbeling, Laura G; Goralnick, Eric; Bivens, Matthew J; Femino, Meg; Berube, Claire G; Sears, Bryan; Sanchez, Leon D

    2016-01-01

    Disaster exercises often simulate rare, worst-case scenario events that range from mass casualty incidents to severe weather events. In actuality, situations such as information system downtimes and physical plant failures may affect hospital continuity of operations far more significantly. The objective of this study is to evaluate disaster drills at two academic and one community hospital to compare the frequency of planned drills versus real-world events that led to emergency management command center activation. Emergency management exercise and command center activation data from January 1, 2013 to October 1, 2015 were collected from a database. The activations and drills were categorized according to the nature of the event. Frequency of each type of event was compared to determine if the drills were representative of actual activations. From 2013 to 2015, there were a total of 136 command center activations and 126 drills at the three hospital sites. The most common reasons for command center activations included severe weather (25 percent, n = 34), maintenance failure (19.9 percent, n = 27), and planned mass gathering events (16.9 percent, n = 23). The most frequent drills were process tests (32.5 percent, n = 41), hazardous material-related events (22.2 percent, n = 28), and in-house fires (15.10 percent, n = 19). Further study of the reasons behind why hospitals activate emergency management plans may inform better preparedness drills. There is no clear methodology used among all hospitals to create drills and their descriptions are often vague. There is an opportunity to better design drills to address specific purposes and events.

  4. Data Mining for Understanding and Improving Decision-making Affecting Ground Delay Programs

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Wang, Yao; Sridhar, Banavar

    2013-01-01

    The continuous growth in the demand for air transportation results in an imbalance between airspace capacity and traffic demand. The airspace capacity of a region depends on the ability of the system to maintain safe separation between aircraft in the region. In addition to growing demand, the airspace capacity is severely limited by convective weather. During such conditions, traffic managers at the FAA's Air Traffic Control System Command Center (ATCSCC) and dispatchers at various Airlines' Operations Center (AOC) collaborate to mitigate the demand-capacity imbalance caused by weather. The end result is the implementation of a set of Traffic Flow Management (TFM) initiatives such as ground delay programs, reroute advisories, flow metering, and ground stops. Data Mining is the automated process of analyzing large sets of data and then extracting patterns in the data. Data mining tools are capable of predicting behaviors and future trends, allowing an organization to benefit from past experience in making knowledge-driven decisions.

  5. Open Systems Architecture for Command, Control and Communications

    DTIC Science & Technology

    1991-07-01

    CONTENTS SECTION TITLE PAGE I. EXECUTIVE SUMMARY 5 II. TERMS OF REFERENCE 7 III. PANEL MEMBERSHIP 9 IV. INTRODUCTION 11 V. INDUSTRIAL REVOLUTION 19 VI...INTRODUCTION 18 19 V. INDUSTRIAL REVOLUTION 20 21 Initial manifestations of computer and communications standards emerged in the early seventies, largely...SYSTEMS INDUSTRIAL REVOLUTION Application Presentation Session Transport Internet Data Link Physical Application Presentation Session Transport

  6. A randomised controlled trial of acceptance-based cognitive behavioural therapy for command hallucinations in psychotic disorders.

    PubMed

    Shawyer, Frances; Farhall, John; Mackinnon, Andrew; Trauer, Tom; Sims, Eliza; Ratcliff, Kirk; Larner, Chris; Thomas, Neil; Castle, David; Mullen, Paul; Copolov, David

    2012-02-01

    Command hallucinations represent a special problem for the clinical management of psychosis. While compliance with both non-harmful and harmful commands can be problematic, sometimes in the extreme, active efforts to resist commands may also contribute to their malignancy. Previous research suggests Cognitive Behaviour Therapy (CBT) to be a useful treatment for reducing compliance with harmful command hallucinations. The purpose of this trial was to evaluate whether CBT augmented with acceptance-based strategies from Acceptance and Commitment Therapy could more broadly reduce the negative impact of command hallucinations. Forty-three participants with problematic command hallucinations were randomized to receive 15 sessions of the intervention "TORCH" (Treatment of Resistant Command Hallucinations) or the control, Befriending, then followed up for 6 months. A sub-sample of 17 participants was randomized to a waitlist control before being allocated to TORCH or Befriending. Participants engaged equally well with both treatments. Despite TORCH participants subjectively reporting greater improvement in command hallucinations compared to Befriending participants, the study found no significant group differences in primary and secondary outcome measures based on blinded assessment data. Within-group analyses and comparisons between the combined treatments and waitlist suggested, however, that both treatments were beneficial with a differential pattern of outcomes observed across the two conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. 78 FR 56682 - Notice of Public Meetings for the Draft Environmental Impact Statement/Overseas Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... U.S. Postal Service to Naval Facilities Engineering Command Pacific, Attention: MITT EIS/OEIS... project Web site ( www.MITT-EIS.com ). All comments, oral or written, submitted during the public review... Facilities Engineering Command Pacific, Attention: MITT EIS/OEIS Project Manager, 258 Makalapa Drive, Suite...

  8. An Archeological Overview and Management Plan for the Harry Diamond Laboratories-Woodbridge Research Facility.

    DTIC Science & Technology

    1985-07-01

    Radar (ISR) facility east of Lake Drive; h) a 40 ft. by 50 ft. command and control building at the Vertical Electromagnetic Pulse Simulator ( VEMPS ) west...Construction and fill operations could bury and extant archeological resources. The four command and control buildings (CW, ISR, VEMPS and REPS) will

  9. 76 FR 71581 - Collection of Information Under Review by Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ...., Washington, DC 20503, attention Desk Officer for the Coast Guard. (3) Hand Delivery: To DMF address above... are received in a timely manner, mark the fax, attention Desk Officer for the Coast Guard. The DMF....S. Coast Guard, Assistant Commandant for Command, Control, Communications, Computers and Information...

  10. 77 FR 65897 - Collection of Information Under Review by Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ...., Washington, DC 20503, attention Desk Officer for the Coast Guard. (3) Hand Delivery: To DMF address above... received in a timely manner, mark the fax, attention Desk Officer for the Coast Guard. The DMF maintains... Commandant for Command, Control, Communications, Computers and Information Technology. [FR Doc. 2012-26718...

  11. 75 FR 19414 - Collection of Information Under Review by Office of Management and Budget: OMB Control Number...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... Street, NW., Washington, DC 20503, attention Desk Officer for the Coast Guard. (3) Fax. (a) To DMF, 202... the fax, attention Desk Officer for the Coast Guard. The DMF maintains the public docket for this... Guard, Acting Assistant Commandant for Command, Control, Communications, Computers and Information...

  12. 76 FR 66737 - Collection of Information Under Review by Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ...., Washington, DC 20503, attention Desk Officer for the Coast Guard. (3) Hand Delivery: To DMF address above... received in a timely manner, mark the fax, attention Desk Officer for the Coast Guard. The DMF maintains... Commandant for Command, Control, Communications, Computers and Information Technology. [FR Doc. 2011-27755...

  13. Tank-automotive robotics

    NASA Astrophysics Data System (ADS)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  14. LARCRIM user's guide, version 1.0

    NASA Technical Reports Server (NTRS)

    Davis, John S.; Heaphy, William J.

    1993-01-01

    LARCRIM is a relational database management system (RDBMS) which performs the conventional duties of an RDBMS with the added feature that it can store attributes which consist of arrays or matrices. This makes it particularly valuable for scientific data management. It is accessible as a stand-alone system and through an application program interface. The stand-alone system may be executed in two modes: menu or command. The menu mode prompts the user for the input required to create, update, and/or query the database. The command mode requires the direct input of LARCRIM commands. Although LARCRIM is an update of an old database family, its performance on modern computers is quite satisfactory. LARCRIM is written in FORTRAN 77 and runs under the UNIX operating system. Versions have been released for the following computers: SUN (3 & 4), Convex, IRIS, Hewlett-Packard, CRAY 2 & Y-MP.

  15. Joint Base Langley-Eustis

    Science.gov Websites

    Advanced Environmental Management Training (AEM) Advanced Environmental Management Phase I Training (AEM Phase I) Leadership Environmental Management and Competency Training (LEMAC) Basic Environmental Management Training (BEMA) Environmental Training Information Fort Eustis Chapel Fort Eustis Command Judge

  16. A Handheld Calculator (HHC) Program for Thermal Imaging Target Acquisition Analysis - A User’s Guide.

    DTIC Science & Technology

    1982-01-01

    Quanticou VA 22134 (R. F. DeKinder. Ji.) Fort Leavenworth. KS 602" Commander Dugway Proving Ground I Commander ATTN: STEDP-MT Atmospheric Sciences Lah...Documentation. Atmo.spheric Sciences Lalsuratun Report h.Sl.TR.48172. January 1981. I. . P. Olser. J. T. Wood. C. J. Nash. (C) I isionics E4) Sensor...7f’’ I PtoiecU Manager MIICV I Diicctoi ’Aairen, MI 48~01)0 Atmospheric Sciences Lab ATTN: 1)1LAS-I) I I’oject Manager White Sands Missile Rang

  17. Scalable Unix tools on parallel processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gropp, W.; Lusk, E.

    1994-12-31

    The introduction of parallel processors that run a separate copy of Unix on each process has introduced new problems in managing the user`s environment. This paper discusses some generalizations of common Unix commands for managing files (e.g. 1s) and processes (e.g. ps) that are convenient and scalable. These basic tools, just like their Unix counterparts, are text-based. We also discuss a way to use these with a graphical user interface (GUI). Some notes on the implementation are provided. Prototypes of these commands are publicly available.

  18. Networked sensors for the combat forces

    NASA Astrophysics Data System (ADS)

    Klager, Gene

    2004-11-01

    Real-time and detailed information is critical to the success of ground combat forces. Current manned reconnaissance, surveillance, and target acquisition (RSTA) capabilities are not sufficient to cover battlefield intelligence gaps, provide Beyond-Line-of-Sight (BLOS) targeting, and the ambush avoidance information necessary for combat forces operating in hostile situations, complex terrain, and conducting military operations in urban terrain. This paper describes a current US Army program developing advanced networked unmanned/unattended sensor systems to survey these gaps and provide the Commander with real-time, pertinent information. Networked Sensors for the Combat Forces plans to develop and demonstrate a new generation of low cost distributed unmanned sensor systems organic to the RSTA Element. Networked unmanned sensors will provide remote monitoring of gaps, will increase a unit"s area of coverage, and will provide the commander organic assets to complete his Battlefield Situational Awareness (BSA) picture for direct and indirect fire weapons, early warning, and threat avoidance. Current efforts include developing sensor packages for unmanned ground vehicles, small unmanned aerial vehicles, and unattended ground sensors using advanced sensor technologies. These sensors will be integrated with robust networked communications and Battle Command tools for mission planning, intelligence "reachback", and sensor data management. The network architecture design is based on a model that identifies a three-part modular design: 1) standardized sensor message protocols, 2) Sensor Data Management, and 3) Service Oriented Architecture. This simple model provides maximum flexibility for data exchange, information management and distribution. Products include: Sensor suites optimized for unmanned platforms, stationary and mobile versions of the Sensor Data Management Center, Battle Command planning tools, networked communications, and sensor management software. Details of these products and recent test results will be presented.

  19. Management: The Missing Link to Army Leadership Doctrine

    DTIC Science & Technology

    2003-01-01

    46 B. FUNCTIONS AND PRINCIPLES OF MANAGEMENT ......................... 47 C. EVOLUTION OF COMMAND AND...business. 46 APPENDIX B FUNCTIONS AND PRINCIPLES OF MANAGEMENT Henri Fayol (1841-1925) Henri Fayol, a French engineer and director of mines, was

  20. A Study of Financial Management Training of Coast Guard Junior Officers in Command Afloat and Ashore.

    DTIC Science & Technology

    1980-12-01

    unlimited. 17. DISTRIBUTION STAT9ENT (*f b. IMNmt at"& R . It dM . o w RuPe) II. SUPPLEUNTARY NOTES 19. KEY WOROS ( gmo oMe -to. s* id mdwoees i u...the operat- ing plan of the particular CG District. This supplement pro - vides the commanding officer with detailed information regard- ing financial...in Figure II-i con - firm that the CG must get the most it can from the few dollars available for use. However, how many CG officers in command

  1. View of Apollo 15 space vehicle on way from VAB to Pad A, Launch Complex 39

    NASA Image and Video Library

    1971-05-11

    S71-33781 (11 May 1971) --- High angle view showing the Apollo 15 (Spacecraft 112/Lunar Module 10/Saturn 510) space vehicle on the way from the Vehicle Assembly Building (VAB) to Pad A, Launch Complex 39, Kennedy Space Center (KSC). The Saturn V stack and its mobile launch tower are atop a huge crawler-transporter. Apollo 15 is scheduled as the fourth manned lunar landing mission by the National Aeronautics and Space Administration (NASA). The crew men will be astronauts David R. Scott, commander; Alfred M. Worden, command module pilot; and James B. Irwin, lunar module pilot. While astronauts Scott and Irwin descend in the Lunar Module (LM) to explore the moon, astronaut Worden will remain with the Command and Service Modules (CSM) in lunar orbit.

  2. High angle view of Apollo 14 space vehicle on way to Pad A

    NASA Image and Video Library

    1970-11-09

    S70-54127 (9 Nov. 1970) --- A high-angle view at Launch Complex 39, Kennedy Space Center (KSC), showing the Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle on the way from the Vehicle Assembly Building (VAB) to Pad A. The Saturn V stack and its mobile launch tower sit atop a huge crawler-transporter. The Apollo 14 crewmen will be astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.

  3. High angle view of Apollo 14 space vehicle on way to Pad A

    NASA Image and Video Library

    1970-11-09

    S70-54119 (9 Nov. 1970) --- A high-angle view at Launch Complex 39, Kennedy Space Center (KSC), showing the Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle on the way from the Vehicle Assembly Building (VAB) to Pad A. The Saturn V stack and its mobile launch tower sit atop a huge crawler-transporter. The Apollo 14 crewmen will be astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.

  4. APOLLO XII - LAUNCH DAY ACTIVITIES - LAUNCH COMPLEX 39A - KSC

    NASA Image and Video Library

    1969-11-14

    S69-58880 (14 Nov. 1969) --- Astronaut Alan L. Bean, Apollo 12 lunar module pilot, suits up in the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building during the Apollo 12 prelaunch countdown. Minutes later astronauts Bean; Charles Conrad Jr., commander; and Richard F. Gordon Jr., command module pilot, rode a special transport van over to Pad A, Launch Complex 39, where their spacecraft awaited. The Apollo 12 liftoff occurred at 11:22 a.m. (EST), Nov. 14, 1969. Apollo 12 is the United States' second lunar landing mission.

  5. STS-105 Commander Horowitz tries on gas mask at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001.

  6. Environmental Assessment for the Construction of a Phase I Surface Deployment and Distribution Command Transportation Command Consolidation Facility and a Phase I & II Mobility Air Force Logistics Support Center

    DTIC Science & Technology

    2006-04-01

    Interagency Working Group on Environmental Justice defines adverse as “having deleterious effects on human health or the environment that is significant...Drinking water for Scott AFB is provided by the Illinois-American Water Company and no potable water wells are located on the installation. As a result...Environment Scott Air Force Base, Illinois April 2006 Illinois-American Water Company uses the Mississippi River as its source of drinking water and

  7. Apollo 9 crew leaves Spacecraft Operations Building during countdown

    NASA Image and Video Library

    1969-03-03

    S69-25883 (3 March 1969) --- The Apollo 9 crew leaves the Kennedy Space Center's Manned Spacecraft Operations Building during the Apollo 9 prelaunch countdown. Leading is astronaut James A. McDivitt, commander; followed by astronaut David R. Scott, command module pilot; and Russell L. Schweickart, lunar module pilot. Moments later they entered the special transfer van which transported them to their waiting spacecraft at Pad A, Launch Complex 39. Apollo 9 was launched at 11 a.m. (EST), March 3, 1969, on a 10-day Earth-orbital mission.

  8. 78 FR 60137 - Shipping and Transportation; Technical, Organizational, and Conforming Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... INFORMATION: Table of Contents for Preamble I. Abbreviations II. Regulatory History III. Background and... States Code VCDOA Vice Commandant Decision on Appeal II. Regulatory History We did not publish a notice...

  9. A Human-Centered Approach to Sense and Respond Logistics

    DTIC Science & Technology

    2009-04-10

    United States Transportation Command (USTRANSCOM), a human-centered research initiative consisting of eight distinct research efforts designed to...27  2.5  Experimental Design ...120  6.3.6  Auction design parameters

  10. Microfluidic Pneumatic Logic Circuits and Digital Pneumatic Microprocessors for Integrated Microfluidic Systems

    PubMed Central

    Rhee, Minsoung

    2010-01-01

    We have developed pneumatic logic circuits and microprocessors built with microfluidic channels and valves in polydimethylsiloxane (PDMS). The pneumatic logic circuits perform various combinational and sequential logic calculations with binary pneumatic signals (atmosphere and vacuum), producing cascadable outputs based on Boolean operations. A complex microprocessor is constructed from combinations of various logic circuits and receives pneumatically encoded serial commands at a single input line. The device then decodes the temporal command sequence by spatial parallelization, computes necessary logic calculations between parallelized command bits, stores command information for signal transportation and maintenance, and finally executes the command for the target devices. Thus, such pneumatic microprocessors will function as a universal on-chip control platform to perform complex parallel operations for large-scale integrated microfluidic devices. To demonstrate the working principles, we have built 2-bit, 3-bit, 4-bit, and 8-bit microprecessors to control various target devices for applications such as four color dye mixing, and multiplexed channel fluidic control. By significantly reducing the need for external controllers, the digital pneumatic microprocessor can be used as a universal on-chip platform to autonomously manipulate microfluids in a high throughput manner. PMID:19823730

  11. 77 FR 39489 - Notice of Public Meetings for the Naval Air Station Key West Airfield Operations Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... via the U.S. Postal Service to Naval Facilities Engineering Command Southeast, NAS Key West Air... the project Web site ( http://www.keywesteis.com ). All statements, oral or written, submitted during... Engineering Command Southeast, NAS Key West Air Operations EIS Project Manager, P.O. Box 30, Building 903, NAS...

  12. 77 FR 22582 - Collection of Information Under Review by Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ..., attention Desk Officer for the Coast Guard. (3) Hand Delivery: To DMF address above, between 9 a.m. and 5 p... timely manner, mark the fax, attention Desk Officer for the Coast Guard. The DMF maintains the public... Commandant for Command, Control, Communications, Computers and Information Technology. [FR Doc. 2012-9008...

  13. 75 FR 39552 - Collection of Information Under Review by Office of Management and Budget; OMB Control Number...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-09

    ...) To OIRA, 725 17th Street, NW., Washington, DC 20503, attention Desk Officer for the Coast Guard. (3... timely manner, mark the fax, attention Desk Officer for the Coast Guard. The DMF maintains the public..., U.S. Coast Guard, Acting Assistant Commandant for Command, Control, Communications, Computers and...

  14. 78 FR 42533 - Collection of Information Under Review by Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ..., 725 17th Street NW., Washington, DC 20503, attention Desk Officer for the Coast Guard. (3) Hand.... To ensure your comments are received in a timely manner, mark the fax, attention Desk Officer for the... sold. Dated: July 3, 2013. R. E. Day, Rear Admiral, U. S. Coast Guard, Assistant Commandant for Command...

  15. 75 FR 31459 - Collection of Information Under Review by Office of Management and Budget: OMB Control Number...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ...) To OIRA, 725 17th Street, NW., Washington, DC 20503, attention Desk Officer for the Coast Guard. (3... timely manner, mark the fax, attention Desk Officer for the Coast Guard. The DMF maintains the public..., U.S. Coast Guard, Acting Assistant Commandant for Command, Control, Communications, Computers and...

  16. 77 FR 39248 - Collection of Information Under Review by Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ...., Washington, DC 20590-0001. (b) To OIRA, 725 17th Street NW., Washington, DC 20503, attention Desk Officer for..., attention Desk Officer for the Coast Guard. The DMF maintains the public docket for this Notice. Comments...: June 22, 2012. R.E. Day, Rear Admiral, U.S. Coast Guard, Assistant Commandant for Command, Control...

  17. 76 FR 62427 - Collection of Information Under Review by Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ...., Washington, DC 20590-0001. (b) To OIRA, 725 17th Street, NW., Washington, DC 20503, attention Desk Officer... the fax, attention Desk Officer for the Coast Guard. The DMF maintains the public docket for this...: September 30, 2011. R.E. Day, Rear Admiral, U.S. Coast Guard, Assistant Commandant for Command, Control...

  18. 75 FR 80514 - Collection of Information Under Review by Office of Management and Budget: OMB Control Numbers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ...- 366-9329. (b) To OIRA, 725 17th Street, NW., Washington, DC 20503, attention Desk Officer for the... received in a timely manner, mark the fax, attention Desk Officer for the Coast Guard. The DMF maintains... Commandant for Command, Control, Communications, Computers and Information Technology. [FR Doc. 2010-32060...

  19. 75 FR 62407 - Collection of Information Under Review by Office of Management and Budget: OMB Control Number...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... Street, NW., Washington, DC 20503, attention Desk Officer for the Coast Guard. (3) Fax. (a) To DMF, 202... the fax, attention Desk Officer for the Coast Guard. The DMF maintains the public docket for this... Commandant for Command, Control, Communications, Computers and Information Technology. [FR Doc. 2010-25382...

  20. 77 FR 9949 - Collection of Information Under Review by Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... Street NW., Washington, DC 20503, attention Desk Officer for the Coast Guard. (3) Hand Delivery: To DMF... comments are received in a timely manner, mark the fax, attention Desk Officer for the Coast Guard. The DMF.... R.E. Day, Rear Admiral, U.S. Coast Guard, Assistant Commandant for Command, Control, Communications...

  1. 78 FR 74156 - Collection of Information Under Review by Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ..., attention Desk Officer for the Coast Guard. (3) Hand Delivery: To DMF address above, between 9 a.m. and 5 p... timely manner, mark the fax, attention Desk Officer for the Coast Guard. The DMF maintains the public.... Day, Rear Admiral, U.S. Coast Guard, Assistant Commandant for Command, Control, Communications...

  2. Rover Sequencing and Visualization Program

    NASA Technical Reports Server (NTRS)

    Cooper, Brian; Hartman, Frank; Maxwell, Scott; Yen, Jeng; Wright, John; Balacuit, Carlos

    2005-01-01

    The Rover Sequencing and Visualization Program (RSVP) is the software tool for use in the Mars Exploration Rover (MER) mission for planning rover operations and generating command sequences for accomplishing those operations. RSVP combines three-dimensional (3D) visualization for immersive exploration of the operations area, stereoscopic image display for high-resolution examination of the downlinked imagery, and a sophisticated command-sequence editing tool for analysis and completion of the sequences. RSVP is linked with actual flight-code modules for operations rehearsal to provide feedback on the expected behavior of the rover prior to committing to a particular sequence. Playback tools allow for review of both rehearsed rover behavior and downlinked results of actual rover operations. These can be displayed simultaneously for comparison of rehearsed and actual activities for verification. The primary inputs to RSVP are downlink data products from the Operations Storage Server (OSS) and activity plans generated by the science team. The activity plans are high-level goals for the next day s activities. The downlink data products include imagery, terrain models, and telemetered engineering data on rover activities and state. The Rover Sequence Editor (RoSE) component of RSVP performs activity expansion to command sequences, command creation and editing with setting of command parameters, and viewing and management of rover resources. The HyperDrive component of RSVP performs 2D and 3D visualization of the rover s environment, graphical and animated review of rover-predicted and telemetered state, and creation and editing of command sequences related to mobility and Instrument Deployment Device (IDD) operations. Additionally, RoSE and HyperDrive together evaluate command sequences for potential violations of flight and safety rules. The products of RSVP include command sequences for uplink that are stored in the Distributed Object Manager (DOM) and predicted rover state histories stored in the OSS for comparison and validation of downlinked telemetry. The majority of components comprising RSVP utilize the MER command and activity dictionaries to automatically customize the system for MER activities. Thus, RSVP, being highly data driven, may be tailored to other missions with minimal effort. In addition, RSVP uses a distributed, message-passing architecture to allow multitasking, and collaborative visualization and sequence development by scattered team members.

  3. Update on Rover Sequencing and Visualization Program

    NASA Technical Reports Server (NTRS)

    Cooper, Brian; Hartman, Frank; Maxwell, Scott; Yen, Jeng; Wright, John; Balacuit, Carlos

    2005-01-01

    The Rover Sequencing and Visualization Program (RSVP) has been updated. RSVP was reported in Rover Sequencing and Visualization Program (NPO-30845), NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 38. To recapitulate: The Rover Sequencing and Visualization Program (RSVP) is the software tool to be used in the Mars Exploration Rover (MER) mission for planning rover operations and generating command sequences for accomplishing those operations. RSVP combines three-dimensional (3D) visualization for immersive exploration of the operations area, stereoscopic image display for high-resolution examination of the downlinked imagery, and a sophisticated command-sequence editing tool for analysis and completion of the sequences. RSVP is linked with actual flight code modules for operations rehearsal to provide feedback on the expected behavior of the rover prior to committing to a particular sequence. Playback tools allow for review of both rehearsed rover behavior and downlinked results of actual rover operations. These can be displayed simultaneously for comparison of rehearsed and actual activities for verification. The primary inputs to RSVP are downlink data products from the Operations Storage Server (OSS) and activity plans generated by the science team. The activity plans are high-level goals for the next day s activities. The downlink data products include imagery, terrain models, and telemetered engineering data on rover activities and state. The Rover Sequence Editor (RoSE) component of RSVP performs activity expansion to command sequences, command creation and editing with setting of command parameters, and viewing and management of rover resources. The HyperDrive component of RSVP performs 2D and 3D visualization of the rover s environment, graphical and animated review of rover predicted and telemetered state, and creation and editing of command sequences related to mobility and Instrument Deployment Device (robotic arm) operations. Additionally, RoSE and HyperDrive together evaluate command sequences for potential violations of flight and safety rules. The products of RSVP include command sequences for uplink that are stored in the Distributed Object Manager (DOM) and predicted rover state histories stored in the OSS for comparison and validation of downlinked telemetry. The majority of components comprising RSVP utilize the MER command and activity dictionaries to automatically customize the system for MER activities.

  4. Implementing the Hospital Emergency Incident Command System: an integrated delivery system's experience.

    PubMed

    Zane, Richard D; Prestipino, Ann L

    2004-01-01

    Hospital disaster manuals and response plans often lack formal command structure; instead, they rely on the presence of key individuals who are familiar with hospital operations, or who are in leadership positions during routine, day-to-day operations. Although this structure occasionally may prove to be successful, it is unreliable, as this leadership may be unavailable at the time of the crisis, and may not be sustainable during a prolonged event. The Hospital Emergency Incident Command System (HEICS) provides a command structure that does not rely on specific individuals, is flexible and expandable, and is ubiquitous in the fire service, emergency medical services, military, and police agencies, thus allowing for ease of communication during event management. A descriptive report of the implementation of the HEICS throughout a large healthcare network is reviewed. Implementation of the HEICS provides a consistent command structure for hospitals that enables consistency and commonality with other hospitals and disaster response entities.

  5. XTCE GOVSAT Tool Suite 1.0

    NASA Technical Reports Server (NTRS)

    Rice, J. Kevin

    2013-01-01

    The XTCE GOVSAT software suite contains three tools: validation, search, and reporting. The Extensible Markup Language (XML) Telemetric and Command Exchange (XTCE) GOVSAT Tool Suite is written in Java for manipulating XTCE XML files. XTCE is a Consultative Committee for Space Data Systems (CCSDS) and Object Management Group (OMG) specification for describing the format and information in telemetry and command packet streams. These descriptions are files that are used to configure real-time telemetry and command systems for mission operations. XTCE s purpose is to exchange database information between different systems. XTCE GOVSAT consists of rules for narrowing the use of XTCE for missions. The Validation Tool is used to syntax check GOVSAT XML files. The Search Tool is used to search (i.e. command and telemetry mnemonics) the GOVSAT XML files and view the results. Finally, the Reporting Tool is used to create command and telemetry reports. These reports can be displayed or printed for use by the operations team.

  6. Factor and Organizational Substitutions to Minimize Costs in the Navy

    DTIC Science & Technology

    2013-12-01

    navigation, propulsion, combat, hotel , communications, in-service support and any system corresponding to further tasks such as transport, hospital...propulsion, combat, hotel , communications, in-service support and any system corresponding to further tasks such as transport, hospital services and command...contract, a cadet may be able to increase her branch choice priority. The Officer Career Satisfaction Program (OCSP) is an incentive program with

  7. Hard-real-time resource management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Gat, E.

    2000-01-01

    This paper describes tickets, a computational mechanism for hard-real-time autonomous resource management. Autonomous spacecraftcontrol can be considered abstractly as a computational process whose outputs are spacecraft commands.

  8. Violations of Management Principles within Academe.

    ERIC Educational Resources Information Center

    Sikula, Andrew F.; Sikula, John P.

    1980-01-01

    Principles of effective management commonly violated by educational institutions include: (1) unity of command; (2) division or specialization of labor; (3) delegation of authority; and (4) authority equal to responsibility. (JMF)

  9. Addressing the Hard Factors for Command File Errors by Probabilistic Reasoning

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Bryant, Larry

    2014-01-01

    Command File Errors (CFE) are managed using standard risk management approaches at the Jet Propulsion Laboratory. Over the last few years, more emphasis has been made on the collection, organization, and analysis of these errors for the purpose of reducing the CFE rates. More recently, probabilistic modeling techniques have been used for more in depth analysis of the perceived error rates of the DAWN mission and for managing the soft factors in the upcoming phases of the mission. We broadly classify the factors that can lead to CFE's as soft factors, which relate to the cognition of the operators and hard factors which relate to the Mission System which is composed of the hardware, software and procedures used for the generation, verification & validation and execution of commands. The focus of this paper is to use probabilistic models that represent multiple missions at JPL to determine the root cause and sensitivities of the various components of the mission system and develop recommendations and techniques for addressing them. The customization of these multi-mission models to a sample interplanetary spacecraft is done for this purpose.

  10. Increases in efficiency and enhancements to the Mars Observer non-stored commanding process

    NASA Technical Reports Server (NTRS)

    Brooks, Robert N., Jr.; Torgerson, J. Leigh

    1994-01-01

    The Mars Observer team was, until the untimely loss of the spacecraft on August 21, 1993, performing flight operations with greater efficiency and speed than any previous JPL mission of its size. This level of through-put was made possible by a mission operations system which was composed of skilled personnel using sophisticated sequencing and commanding tools. During cruise flight operations, however, it was realized by the project that this commanding level was not going to be sufficient to support the activities planned for mapping operations. The project had committed to providing the science instrument principle investigators with a much higher level of commanding during mapping. Thus, the project began taking steps to enhance the capabilities of the flight team. One mechanism used by project management was a tool available from total quality management (TQM). This tool is known as a process action team (PAT). The Mars Observer PAT was tasked to increase the capacity of the flight team's nonstored commanding process by fifty percent with no increase in staffing and a minimal increase in risk. The outcome of this effort was, in fact, to increase the capacity by a factor of 2.5 rather than the desired fifty percent and actually reduce risk. The majority of these improvements came from the automation of the existing command process. These results required very few changes to the existing mission operations system. Rather, the PAT was able to take advantage of automation capabilities inherent in the existing system and make changes to the existing flight team procedures.

  11. MATE standardization

    NASA Astrophysics Data System (ADS)

    Farmer, R. E.

    1982-11-01

    The MATE (Modular Automatic Test Equipment) program was developed to combat the proliferation of unique, expensive ATE within the Air Force. MATE incorporates a standard management approach and a standard architecture designed to implement a cradle-to-grave approach to the acquisition of ATE and to significantly reduce the life cycle cost of weapons systems support. These standards are detailed in the MATE Guides. The MATE Guides assist both the Air Force and Industry in implementing the MATE concept, and provide the necessary tools and guidance required for successful acquisition of ATE. The guides also provide the necessary specifications for industry to build MATE-qualifiable equipment. The MATE architecture provides standards for all key interfaces of an ATE system. The MATE approach to the acquisition and management of ATE has been jointly endorsed by the commanders of Air Force Systems Command and Air Force Logistics Command as the way of doing business in the future.

  12. Left seat command or leadership flight, leadership training and research at North Central Airlines

    NASA Technical Reports Server (NTRS)

    Foster, G. C.; Garvey, M. C.

    1980-01-01

    The need for flight leadership training for flight deck crewmembers is addressed. A management grid is also described which provides a quantitative management language against which any number of management behaviors can be measured.

  13. Overview of Management Theory

    DTIC Science & Technology

    1991-02-01

    theory orients command leadership for the enormous task of managing organizations in our environment fraught with volatility, uncertainty...performance and organizational ethics. A THEORY OF MANAGEMENT BACKGROUND BASIC MANAGEMENT BEHAVIORAL Definitions FUNCTIONS ASPECTS History Planning Leadership ...the best way to manage in their theory of managerial leadership . To them, the 9,9 position on their model, "is acknowledged by managers as the

  14. Increasing Intelligence, Surveillance, and Reconnaissance (ISR) Operational Agility through Mission Command

    DTIC Science & Technology

    2016-06-10

    Counterinsurgency COM Collections Operations Management CONOP Concept of Operations CRM Collections Requirements Management DOD Department of...collection requirements management ( CRM ) and collection operations management (COM). CRM is the authoritative development and control of collection...management ( CRM ) and collections operations management (COM) (see figure 6). In general, CRM advocates and prioritizes customer requirements while

  15. Linear Quadratic Tracking Design for a Generic Transport Aircraft with Structural Load Constraints

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Frost, Susan A.; Taylor, Brian R.

    2011-01-01

    When designing control laws for systems with constraints added to the tracking performance, control allocation methods can be utilized. Control allocations methods are used when there are more command inputs than controlled variables. Constraints that require allocators are such task as; surface saturation limits, structural load limits, drag reduction constraints or actuator failures. Most transport aircraft have many actuated surfaces compared to the three controlled variables (such as angle of attack, roll rate & angle of side slip). To distribute the control effort among the redundant set of actuators a fixed mixer approach can be utilized or online control allocation techniques. The benefit of an online allocator is that constraints can be considered in the design whereas the fixed mixer cannot. However, an online control allocator mixer has a disadvantage of not guaranteeing a surface schedule, which can then produce ill defined loads on the aircraft. The load uncertainty and complexity has prevented some controller designs from using advanced allocation techniques. This paper considers actuator redundancy management for a class of over actuated systems with real-time structural load limits using linear quadratic tracking applied to the generic transport model. A roll maneuver example of an artificial load limit constraint is shown and compared to the same no load limitation maneuver.

  16. 32 CFR 651.6 - NEPA analysis staffing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) ENVIRONMENTAL QUALITY... management is not in the proponents' chain of command (for example, installation management of a range for MATDEV testing or installation management of a fielding location), the proponent shall coordinate the...

  17. Commanding and Controlling Satellite Clusters (IEEE Intelligent Systems, November/December 2000)

    DTIC Science & Technology

    2000-01-01

    real - time operating system , a message-passing OS well suited for distributed...ground Flight processors ObjectAgent RTOS SCL RTOS RDMS Space command language Real - time operating system Rational database management system TS-21 RDMS...engineer with Princeton Satellite Systems. She is working with others to develop ObjectAgent software to run on the OSE Real Time Operating System .

  18. Averse to Initiative: Risk Management’s Effect on Mission Command

    DTIC Science & Technology

    2017-05-25

    military decision making process (MDMP). Other changes to structure reveal administrative and safety risk information (i.e. personal operated vehicle... decision making , it requires commanders to have the capacity to make an informed , intuitive decision . Uncertainty...analysis. His situation required him to embrace uncertainty, and exercise an informed intuition to make a risk decision to create opportunity

  19. Development of the Special Operations Combat Management System

    DTIC Science & Technology

    1999-08-01

    Distribution Unlimited Prepared for U. S. Army Soldier and Biological Chemical Command Soldier Systems Center Natick, Massachusetts 01760-5020 19990826 022...Army Soldier and Biological Chemical Command, Soldier Systems Center, ATTN: AMSSB-RSS-D(N) (H. Girolamo), Natick, MA 01760-5020 14. ABSTRACT The...system design, integration and test. American Megatrends Inc. provided the motherboard circuit design, layout and production. Tactical Technologies Inc

  20. Summary of Research 1997, Interdisciplinary Academic Groups.

    DTIC Science & Technology

    1999-01-01

    Os 656-3775 iosmundson @npsinavy.mii Channel, Ralph N. Senior Lecturer NS/Ch 656-2409 nchannell @nps.navv.mil Kemple, William G. Assistant...Research) Lieutenant Commander Steven J. Iatrou, USN (Information Warfare) Professor Carl R. Jones (Systems Management) Associate Professor William G...to assess the effectiveness of the newly developed decision support system. Adaptive Architectures for Command and Control William Kemple and

  1. Fire Play: ICCARUS--Intelligent Command and Control, Acquisition and Review Using Simulation

    ERIC Educational Resources Information Center

    Powell, James; Wright, Theo; Newland, Paul; Creed, Chris; Logan, Brian

    2008-01-01

    Is it possible to educate a fire officer to deal intelligently with the command and control of a major fire event he will never have experienced? The authors of this paper believe there is, and present here just one solution to this training challenge. It involves the development of an intelligent simulation based upon computer managed interactive…

  2. 75 FR 28275 - Collection of Information Under Review by Office of Management and Budget; OMB Control Number...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... Street, NW., Washington, DC 20503, attention Desk Officer for the Coast Guard. (3) Fax. (a) To DMF, 202... the fax, attention Desk Officer for the Coast Guard. The DMF maintains the public docket for this...: May 10, 2010. M.B. Lytle, Captain, U.S. Coast Guard, Acting Assistant Commandant for Command, Control...

  3. Organizational Analysis of Food Service Management

    DTIC Science & Technology

    2011-06-01

    35  d.  Senior Culinary Specialists on “Twilight” Tour ...................35  e.  NAVSUP Controls Quality of Life...Supply Centers COMSUBFOR Commander Submarine Force CS Culinary Specialist CSCS Culinary Specialist Senior Chief CVN Carrier Vessel Nuclear DDG Guided...attention of the Culinary Specialists. The type of assist visit can be tailored to the requirements identified by the requesting command. Normally

  4. Acceptability and perceived utility of drone technology among emergency medical service responders and incident commanders for mass casualty incident management.

    PubMed

    Hart, Alexander; Chai, Peter R; Griswold, Matthew K; Lai, Jeffrey T; Boyer, Edward W; Broach, John

    2017-01-01

    This study seeks to understand the acceptability and perceived utility of unmanned aerial vehicle (UAV) technology to Mass Casualty Incidents (MCI) scene management. Qualitative questionnaires regarding the ease of operation, perceived usefulness, and training time to operate UAVs were administered to Emergency Medical Technicians (n = 15). A Single Urban New England Academic Tertiary Care Medical Center. Front-line emergency medical service (EMS) providers and senior EMS personnel in Incident Commander roles. Data from this pilot study indicate that EMS responders are accepting to deploying and operating UAV technology in a disaster scenario. Additionally, they perceived UAV technology as easy to adopt yet impactful in improving MCI scene management.

  5. InteractInteraction mechanism of emergency response in geological hazard perception and risk management: a case study in Zhouqu county

    NASA Astrophysics Data System (ADS)

    Qi, Yuan; Zhao, Hongtao

    2017-04-01

    China is one of few several natural disaster prone countries, which has complex geological and geographical environment and abnormal climate. On August 8, 2010, a large debris flow disaster happened in Zhouqu Country, Gansu province, resulting in more than 1700 casualties and more than 200 buildings damaged. In order to percept landslide and debris flow, an early warning system was established in the county. Spatial information technologies, such as remote sensing, GIS, and GPS, play core role in the early warning system, due to their functions in observing, analyzing, and locating geological disasters. However, all of these spatial information technologies could play an important role only guided by the emergency response mechanism. This article takes the establishment of Zhouqu Country's Disaster Emergency Response Interaction Mechanism (DERIM) as an example to discuss the risk management of country-level administrative units. The country-level risk management aims to information sharing, resources integration, integrated prevention and unified command. Then, nine subsystems support DERIM, which included disaster prevention and emergency data collection and sharing system, joint duty system, disaster verification and evaluation system, disaster consultation system, emergency warning and information release system, emergency response system, disaster reporting system, plan management system, mass prediction and prevention management system. At last, an emergency command platform in Zhouqu Country built up to realize DERIM. The core mission of the platform consists of daily management of disaster, monitoring and warning, comprehensive analysis, information release, consultation and decision-making, emergency response, etc. Five functional modules, including module of disaster information management, comprehensive monitoring module (geological monitoring, meteorological monitoring, water conservancy and hydrological monitoring), alarm management module, emergency command and disaster dispatching management module are developed on the basis of this platform. Based on the internet technology, an web-based office platform is exploited for the nodes scattered in departments and towns, which includes daily business, monitoring and warning, alarm notification, alarm recording, personnel management and update in disaster region, query and analysis of real-time observation data, etc. The platform experienced 3 years' test of the duty in flood period since 2013, and two typical disaster cases during this period fully illustrates the effectiveness of the DERIM and the emergency command platform.

  6. Application of Incident Command Structure to clinical trial management in the academic setting: principles and lessons learned.

    PubMed

    Reynolds, Penny S; Michael, Mary J; Spiess, Bruce D

    2017-02-09

    Clinical trial success depends on appropriate management, but practical guidance to trial organisation and planning is lacking. The Incident Command System (ICS) is the 'gold standard' management system developed for managing diverse operations in major incident and public health arenas. It enables effective and flexible management through integration of personnel, procedures, resources, and communications within a common hierarchical organisational structure. Conventional ICS organisation consists of five function modules: Command, Planning, Operations, Logistics, and Finance/Administration. Large clinical trials will require a separate Regulatory Administrative arm, and an Information arm, consisting of dedicated data management and information technology staff. We applied ICS principles to organisation and management of the Prehospital Use of Plasma in Traumatic Haemorrhage (PUPTH) trial. This trial was a multidepartmental, multiagency, randomised clinical trial investigating prehospital administration of thawed plasma on mortality and coagulation response in severely injured trauma patients. We describe the ICS system as it would apply to large clinical trials in general, and the benefits, barriers, and lessons learned in utilising ICS principles to reorganise and coordinate the PUPTH trial. Without a formal trial management structure, early stages of the trial were characterised by inertia and organisational confusion. Implementing ICS improved organisation, coordination, and communication between multiple agencies and service groups, and greatly streamlined regulatory compliance administration. However, unfamiliarity of clinicians with ICS culture, conflicting resource allocation priorities, and communication bottlenecks were significant barriers. ICS is a flexible and powerful organisational tool for managing large complex clinical trials. However, for successful implementation the cultural, psychological, and social environment of trial participants must be accounted for, and personnel need to be educated in the basics of ICS. ClinicalTrials.gov, NCT02303964 . Registered on 28 November 2014.

  7. View of Apollo 15 space vehicle leaving VAB to Pad A, Launch Complex 39

    NASA Image and Video Library

    1971-05-11

    S71-33786 (11 May 1971) --- The 363-feet tall Apollo (Spacecraft 112/Lunar Module 10/Saturn 510) space vehicle which leaves the Vehicle Assembly Building (VAB) to Pad A, Launch Complex 39, Kennedy Space Center (KSC). The Saturn V stack and its mobile launch tower are atop a huge crawler-transporter. Apollo 15 is scheduled as the fourth manned lunar landing mission by the National Aeronautics and Space Administration (NASA) and is scheduled to lift off on July 26, 1971. The crew men will be astronauts David R. Scott, commander; Alfred M. Worden, command module pilot; and James B. Irwin, lunar module pilot. While astronaut Scott and Irwin will descend in the Lunar Module (LM) to explore the moon, astronaut Worden will remain with the Command and Service Modules (CSM) in lunar orbit.

  8. The contaminant analysis automation robot implementation for the automated laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younkin, J.R.; Igou, R.E.; Urenda, T.D.

    1995-12-31

    The Contaminant Analysis Automation (CAA) project defines the automated laboratory as a series of standard laboratory modules (SLM) serviced by a robotic standard support module (SSM). These SLMs are designed to allow plug-and-play integration into automated systems that perform standard analysis methods (SAM). While the SLMs are autonomous in the execution of their particular chemical processing task, the SAM concept relies on a high-level task sequence controller (TSC) to coordinate the robotic delivery of materials requisite for SLM operations, initiate an SLM operation with the chemical method dependent operating parameters, and coordinate the robotic removal of materials from the SLMmore » when its commands and events has been established to allow ready them for transport operations as well as performing the Supervisor and Subsystems (GENISAS) software governs events from the SLMs and robot. The Intelligent System Operating Environment (ISOE) enables the inter-process communications used by GENISAS. CAA selected the Hewlett-Packard Optimized Robot for Chemical Analysis (ORCA) and its associated Windows based Methods Development Software (MDS) as the robot SSM. The MDS software is used to teach the robot each SLM position and required material port motions. To allow the TSC to command these SLM motions, a hardware and software implementation was required that allowed message passing between different operating systems. This implementation involved the use of a Virtual Memory Extended (VME) rack with a Force CPU-30 computer running VxWorks; a real-time multitasking operating system, and a Radiuses PC compatible VME computer running MDS. A GENISAS server on The Force computer accepts a transport command from the TSC, a GENISAS supervisor, over Ethernet and notifies software on the RadiSys PC of the pending command through VMEbus shared memory. The command is then delivered to the MDS robot control software using a Windows Dynamic Data Exchange conversation.« less

  9. Determining the Appropriate Size of the Contracting Workforce: Yes We Can!

    DTIC Science & Technology

    2011-04-30

    visiting seminars at American University in Cairo and Instituto de Empresas in Madrid. His Air Force contracting experience includes F-22 Fighter, C...17 Cargo Transport , and serving as director of Joint Contracting Command-North, Kirkuk, Iraq. At the Pentagon, Dr. Reed was responsible for...Department of Transportation –Federal Aviation Administration. The model uses historical program data to derive recommended staffing levels for major

  10. 42 CFR 71.1 - Scope and definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ship, aircraft, train, road vehicle, or other means of transport, including military. Commander means the aircrew member with responsibility for the aircraft's operations and navigation. Communicable... environment. Contamination means the presence of undesirable substances or material which may contain...

  11. 42 CFR 71.1 - Scope and definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ship, aircraft, train, road vehicle, or other means of transport, including military. Commander means the aircrew member with responsibility for the aircraft's operations and navigation. Communicable... environment. Contamination means the presence of undesirable substances or material which may contain...

  12. KSC-06pd2263

    NASA Image and Video Library

    2006-10-10

    KENNEDY SPACE CENTER, FLA. - With a convoy of escorts, the STEREO spacecraft is transported to Launch Pad 17-B on Cape Canaveral Air Force Station. At the pad the spacecraft will be lifted into the mobile service tower. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton

  13. Reliability Analysis and Standardization of Spacecraft Command Generation Processes

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Grenander, Sven; Evensen, Ken

    2011-01-01

    center dot In order to reduce commanding errors that are caused by humans, we create an approach and corresponding artifacts for standardizing the command generation process and conducting risk management during the design and assurance of such processes. center dot The literature review conducted during the standardization process revealed that very few atomic level human activities are associated with even a broad set of missions. center dot Applicable human reliability metrics for performing these atomic level tasks are available. center dot The process for building a "Periodic Table" of Command and Control Functions as well as Probabilistic Risk Assessment (PRA) models is demonstrated. center dot The PRA models are executed using data from human reliability data banks. center dot The Periodic Table is related to the PRA models via Fault Links.

  14. Crew State Monitoring and Line-Oriented Flight Training for Attention Management

    NASA Technical Reports Server (NTRS)

    Stephens, Chad; Harrivel, Angela; Prinzel, Lawrence; Comstock, Ray; Abraham, Nijo; Pope, Alan; Wilkerson, James; Kiggins, Daniel

    2017-01-01

    Loss of control - inflight (LOC-I) has historically represented the largest category of commercial aviation fatal accidents. A review of worldwide transport airplane accidents (2001-2010) indicated that loss of airplane state awareness (ASA) was responsible for the majority of the LOC-I fatality rate. The Commercial Aviation Safety Team (CAST) ASA study identified 12 major themes that were indicated across the ASA accident and incident events. One of the themes was crew distraction or ineffective attention management, which was found to be involved in all 18 events including flight crew channelized attention, startle/surprise, diverted attention, and/or confirmation bias. Safety Enhancement (SE)-211, "Training for Attention Management" was formed to conduct research to develop and assess commercial airline training methods and realistic scenarios that can address these attention-related human performance limitations. This paper describes NASA SE-211 research for new design approaches and validation of line-oriented flight training (LOFT). Recent accident and incident data suggests that Spatial Disorientation (SD) and Loss-of-Energy State Awareness (LESA) for transport category aircraft are becoming an increasingly prevalent safety concern in all domestic and international operations (Commercial Aviation Safety Team, 2014a). SD is defined as an erroneous perception of aircraft attitude that can lead directly to a Loss-of-Control Inflight (LOC-I) event and result in an accident or incident. LESA is typically characterized by a failure to monitor or understand energy state indications (e.g., airspeed, altitude, vertical speed, commanded thrust) and a resultant failure to maintain safe flight.

  15. Test Telemetry And Command System (TTACS)

    NASA Technical Reports Server (NTRS)

    Fogel, Alvin J.

    1994-01-01

    The Jet Propulsion Laboratory has developed a multimission Test Telemetry and Command System (TTACS) which provides a multimission telemetry and command data system in a spacecraft test environment. TTACS reuses, in the spacecraft test environment, components of the same data system used for flight operations; no new software is developed for the spacecraft test environment. Additionally, the TTACS is transportable to any spacecraft test site, including the launch site. The TTACS is currently operational in the Galileo spacecraft testbed; it is also being provided to support the Cassini and Mars Surveyor Program projects. Minimal personnel data system training is required in the transition from pre-launch spacecraft test to post-launch flight operations since test personnel are already familiar with the data system's operation. Additionally, data system components, e.g. data display, can be reused to support spacecraft software development; and the same data system components will again be reused during the spacecraft integration and system test phases. TTACS usage also results in early availability of spacecraft data to data system development and, as a result, early data system development feedback to spacecraft system developers. The TTACS consists of a multimission spacecraft support equipment interface and components of the multimission telemetry and command software adapted for a specific project. The TTACS interfaces to the spacecraft, e.g., Command Data System (CDS), support equipment. The TTACS telemetry interface to the CDS support equipment performs serial (RS-422)-to-ethernet conversion at rates between 1 bps and 1 mbps, telemetry data blocking and header generation, guaranteed data transmission to the telemetry data system, and graphical downlink routing summary and control. The TTACS command interface to the CDS support equipment is nominally a command file transferred in non-real-time via ethernet. The CDS support equipment is responsible for metering the commands to the CDS; additionally for Galileo, TTACS includes a real-time-interface to the CDS support equipment. The TTACS provides the basic functionality of the multimission telemetry and command data system used during flight operations. TTACS telemetry capabilities include frame synchronization, Reed-Solomon decoding, packet extraction and channelization, and data storage/query. Multimission data display capabilities are also available. TTACS command capabilities include command generation verification, and storage.

  16. Tacit Knowledge in Military Leadership: Some Research Products and Their Applications to Leadership Development.

    DTIC Science & Technology

    1998-05-01

    credibility Directing and supervising others Managing organizational change Managing the self Cooperating with others Indirect communication and... managing organizational change was unique to our battalion commanders’ stories. We also found that the composition of tacit knowledge about

  17. Efficiency vs. Effectiveness: Can W. Edwards Deming's Principles of Quality Management Be Applied Successfully to American Education.

    ERIC Educational Resources Information Center

    Petry, John R.

    The field of education has been slow to recognize the Total Quality Management (TQM) concept. This resistance may result from entrenched management styles characterized by hierarchical decision-making structures. TQM emphasizes management based on leadership instead of management by objective, command, and coercion. The TQM concept consists of…

  18. U.S. Army Military Surface Deployment and Distribution Command Needs to Improve its Oversight of Labor Detention Charges at Military Ocean Terminal Sunny Point

    DTIC Science & Technology

    2016-03-16

    whistleblower protection, please see the inside back cover. I N T E G R I T Y  E F F I C I E N C Y  A C C O U N T A B I L I T Y  E X C E L L...USTRANSCOM United States Transportation Command Whistleblower Protection U.S. Department of Defense The Whistleblower Protection Enhancement Act of...2012 requires the Inspector General to designate a Whistleblower Protection Ombudsman to educate agency employees about prohibitions on retaliation

  19. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Astronaut Mike Fincke, a former commander of the International Space Station, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  20. Military Construction: Process and Outcomes

    DTIC Science & Technology

    2016-12-14

    the Army’s Assistant Chief of Staff for Installation Management (ACSIM), the service’s senior officer responsible for setting installations-related...with the governor as its commander in chief and the Adjutant General (TAG) as its senior military officer .11 Each National Guard is a joint organization...encompasses several steps:  determination of need by the local installation commander and engineering office ,  vetting and prioritization of

  1. How Can We Best Achieve Contracting Unity of Effort in the CENTCOM Area of Responsibility?

    DTIC Science & Technology

    2013-12-01

    3  2.  Literature Review ................................................................................3  3.  Interview Design and...2010, JCC-I/A was re- designated as the Central Command Joint Theater Support Contracting Command (C-JTSCC). Although the military has used...provision of integrated contracted support and management of contractor personnel providing that support to the joint force in a designated operational

  2. Army Communicator. Volume 37, Number 2, Summer 2012

    DTIC Science & Technology

    2012-01-01

    solution will have to meet four criteria: FIPS 140-2 validated crypto; approved data-at-rest; Common Access Card enablement; and, enterprise management...Information Grid. Common Access Cards , Federal Information Processing Standard 140-2 certifications, and software compliance are just a few of the...and Evaluation Command BMC – Brigade Modernization Command CAC – Common Access Card FIPS – Federal Information Processing Standard GIG – Global

  3. Vying for control of CHAMPUS funds.

    PubMed

    Kenkel, P J

    1991-04-08

    Advocating a "coordinated care" approach to healthcare for military retirees and their dependents, the Pentagon is hoping for a victory in its battle with civilian managed-care contractors for control of CHAMPUS funds. But coordinated care, which would give military hospital commanders the added responsibility of overseeing healthcare spending outside military facilities, has drawn fire from critics who say commanders lack the expertise to run such a program.

  4. Installation Management Command: How is the Command Supporting the Army Plan?

    DTIC Science & Technology

    2007-03-27

    BRAC), Global Defense Posture Realignment ( GDPR ), and Army Modular Force (AMF). IMCOM will continue to consolidate installations functions to free up...This restationing effort resides in three initiatives: Base Realignment and Closure (BRAC), Global Defense Posture Realignment ( GDPR ), and the Army...training on our installations.”36 The GDPR consolidates forces returning from overseas into selected CONUS installations. AMF has restructured the

  5. DoD Freedom of Information Act Policies Need Improvement

    DTIC Science & Technology

    2016-08-16

    of Defense that supports the warfighter; promotes accountability , integrity, and efficiency; advises the Secretary of Defense and Congress; and...and Budget. On December 31, 2007, Congress passed the “OPEN Government Act of 2007,” which provided for greater agency transparency and accountability ...Finance and Accounting Service U.S. Special Operations Command Defense Contract Management Agency U.S. Southern Command Defense Health Agency U.S

  6. Estimation of Critical Population Support Requirements.

    DTIC Science & Technology

    1984-05-30

    VA 22160 W.U. 4921H 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Federal Emergency Management Agency May 30, 1984 Industrial Protection...ensure the availability of industrial production required to support the population, maintain defense capabilities and perform command and control ...the population, maintain national defense capabilities and perform command and control activi- ties during a national emergency such as a threat of a

  7. Army Contracting Command Workforce Model Analysis

    DTIC Science & Technology

    2010-10-04

    College), and he has taught visiting seminars at American University in Cairo, and Instituto de Empresas in Madrid. Dr. Reed retired after 21 years... Transportation –Federal Aviation Administration and will use historical program data to derive recommended staffing levels for major acquisition

  8. Towards Human-Friendly Efficient Control of Multi-Robot Teams

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Theodoridis, Theodoros; Barrero, David F.; Hu, Huosheng; McDonald-Maiers, Klaus

    2013-01-01

    This paper explores means to increase efficiency in performing tasks with multi-robot teams, in the context of natural Human-Multi-Robot Interfaces (HMRI) for command and control. The motivating scenario is an emergency evacuation by a transport convoy of unmanned ground vehicles (UGVs) that have to traverse, in shortest time, an unknown terrain. In the experiments the operator commands, in minimal time, a group of rovers through a maze. The efficiency of performing such tasks depends on both, the levels of robots' autonomy, and the ability of the operator to command and control the team. The paper extends the classic framework of levels of autonomy (LOA), to levels/hierarchy of autonomy characteristic of Groups (G-LOA), and uses it to determine new strategies for control. An UGVoriented command language (UGVL) is defined, and a mapping is performed from the human-friendly gesture-based HMRI into the UGVL. The UGVL is used to control a team of 3 robots, exploring the efficiency of different G-LOA; specifically, by (a) controlling each robot individually through the maze, (b) controlling a leader and cloning its controls to followers, and (c) controlling the entire group. Not surprisingly, commands at increased G-LOA lead to a faster traverse, yet a number of aspects are worth discussing in this context.

  9. Avoiding Repetitions Reduces ADHD Children's Management Problems in the Classroom

    ERIC Educational Resources Information Center

    Kapalka, George M.

    2005-01-01

    Students with attention-deficit hyperactivity disorder (ADHD) often exhibit non-compliance that presents a significant management problem for classroom teachers. Student behavior management training programs suggest that reducing repetitions of commands improves student compliance. To examine this claim, 86 teachers of ADHD students between the…

  10. Tools virtualization for command and control systems

    NASA Astrophysics Data System (ADS)

    Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław

    2017-10-01

    Information management is an inseparable part of the command process. The result is that the person making decisions at the command post interacts with data providing devices in various ways. Tools virtualization process can introduce a number of significant modifications in the design of solutions for management and command. The general idea involves replacing physical devices user interface with their digital representation (so-called Virtual instruments). A more advanced level of the systems "digitalization" is to use the mixed reality environments. In solutions using Augmented reality (AR) customized HMI is displayed to the operator when he approaches to each device. Identification of device is done by image recognition of photo codes. Visualization is achieved by (optical) see-through head mounted display (HMD). Control can be done for example by means of a handheld touch panel. Using the immersive virtual environment, the command center can be digitally reconstructed. Workstation requires only VR system (HMD) and access to information network. Operator can interact with devices in such a way as it would perform in real world (for example with the virtual hands). Because of their procedures (an analysis of central vision, eye tracking) MR systems offers another useful feature of reducing requirements for system data throughput. Due to the fact that at the moment we focus on the single device. Experiments carried out using Moverio BT-200 and SteamVR systems and the results of experimental application testing clearly indicate the ability to create a fully functional information system with the use of mixed reality technology.

  11. Mobile Munitions Assessment System Field Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. M. Snyder; D. A. Verrill; K. D. Watts

    1999-05-27

    The US has developed, stored, tested, and conducted disposal operations on various forms of chemical munitions for several decades. The remnants of these activities have resulted in the presence of suspect CWM at more than 200 sites in the US, the District of Columbia, and the US Virgin Islands. An advanced Mobile Munitions Assessment System (Phase II MMAS) has been designed, fabricated, assembled, and tested by the Idaho National Engineering and Environmental Laboratory under contract to the US Army's Project Manager for Non-Stockpile Chemical Materiel for use in the assessment and characterization of ''non-stockpile'' chemical warfare materiel (CWM). The Phasemore » II MMAS meets the immediate need to augment response equipment currently used by the US Army with a system that includes state-of-the-art assessment equipment and advanced sensors. The Phase II MMAS will be used for response to known storage and remediation sites. This system is designed to identify the munition type; evaluate the condition of the CWM; evaluate the environmental conditions in the vicinity of the CWM; determine if fuzes, bursters, or safety and arming devices are in place; identify the chemical fill; provide other data (e.g., meteorological data) necessary for assessing the risk associated with handling, transporting, and disposing of CWM; and record the data on a dedicated computer system. The Phase II MMAS is capable of over-the-road travel and air transport to any site for conducting rigorous assessments of suspect CWM. The Phase II MMAS utilizes a specially-designed commercial motor home to provide a means to transport an interactive network of non-intrusive characterization and assessment equipment. The assessment equipment includes radiography systems, a gamma densitometer system, a Portable Isotopic Neutron Spectroscopy (PINS) system, a Secondary Ion Mass Spectroscopy (SIMS) system, air monitoring equipment (i.e., M-90s and a field ion spectroscopy system), and a phase determination equipment Command and control equipment includes a data acquisition and handling system, two meteorological stations, video equipment, and multiple communication systems. The Phase II MMAS motor home also serves an as environmentally controlled on-site command post for the MMAS operators when deployed. The data developed by the MMAS will be used to help determine the appropriate methods and safeguards necessary to transport, store, and dispose of agent-filled munitions in a safe and environmentally acceptable manner.« less

  12. Evaluation of expert systems - An approach and case study. [of determining software functional requirements for command management of satellites

    NASA Technical Reports Server (NTRS)

    Liebowitz, J.

    1985-01-01

    Techniques that were applied in defining an expert system prototype for first-cut evaluations of the software functional requirements of NASA satellite command management activities are described. The prototype was developed using the Knowledge Engineering System. Criteria were selected for evaluating the satellite software before defining the expert system prototype. Application of the prototype system is illustrated in terms of the evaluation procedures used with the COBE satellite to be launched in 1988. The limited number of options which can be considered by the program mandates that biases in the system output must be well understood by the users.

  13. Controls for Reusable Launch Vehicles During Terminal Area Energy Management

    NASA Technical Reports Server (NTRS)

    Driessen, Brian J.

    2005-01-01

    During the terminal energy management phase of flight (last of three phases) for a reusable launch vehicle, it is common for the controller to receive guidance commands specifying desired values for (i) the roll angle roll q(sub roll), (ii) the acceleration a(sub n) in the body negative z direction, -k(sub A)-bar, and (iii) omega(sub 3), the projection of onto the body-fixed axis k(sub A)-bar, is always indicated by guidance to be zero. The objective of the controller is to regulate the actual values of these three quantities, i.e make them close to the commanded values, while maintaining system stability.

  14. Autonomous Satellite Command and Control through the World Wide Web: Phase 3

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian; Twiggs, Robert

    1998-01-01

    NASA's New Millenium Program (NMP) has identified a variety of revolutionary technologies that will support orders of magnitude improvements in the capabilities of spacecraft missions. This program's Autonomy team has focused on science and engineering automation technologies. In doing so, it has established a clear development roadmap specifying the experiments and demonstrations required to mature these technologies. The primary developmental thrusts of this roadmap are in the areas of remote agents, PI/operator interface, planning/scheduling fault management, and smart execution architectures. Phases 1 and 2 of the ASSET Project (previously known as the WebSat project) have focused on establishing World Wide Web-based commanding and telemetry services as an advanced means of interfacing a spacecraft system with the PI and operators. Current automated capabilities include Web-based command submission, limited contact scheduling, command list generation and transfer to the ground station, spacecraft support for demonstrations experiments, data transfer from the ground station back to the ASSET system, data archiving, and Web-based telemetry distribution. Phase 2 was finished in December 1996. During January-December 1997 work was commenced on Phase 3 of the ASSET Project. Phase 3 is the subject of this report. This phase permitted SSDL and its project partners to expand the ASSET system in a variety of ways. These added capabilities included the advancement of ground station capabilities, the adaptation of spacecraft on-board software, and the expansion of capabilities of the ASSET management algorithms. Specific goals of Phase 3 were: (1) Extend Web-based goal-level commanding for both the payload PI and the spacecraft engineer; (2) Support prioritized handling of multiple PIs as well as associated payload experimenters; (3) Expand the number and types of experiments supported by the ASSET system and its associated spacecraft; (4) Implement more advanced resource management, modeling and fault management capabilities that integrate the space and ground segments of the space system hardware; (5) Implement a beacon monitoring test; (6) Implement an experimental blackboard controller for space system management; (7) Further define typical ground station developments required for Internet-based remote control and for full system automation of the PI-to-spacecraft link. Each of those goals is examined in the next section. Significant sections of this report were also published as a conference paper.

  15. Thermal energy management process experiment

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.

    1984-01-01

    The thermal energy management processes experiment (TEMP) will demonstrate that through the use of two-phase flow technology, thermal systems can be significantly enhanced by increasing heat transport capabilities at reduced power consumption while operating within narrow temperature limits. It has been noted that such phenomena as excess fluid puddling, priming, stratification, and surface tension effects all tend to mask the performance of two-phase flow systems in a 1-g field. The flight experiment approach would be to attack the experiment to an appropriate mounting surface with a 15 to 20 meter effective length and provide a heat input and output station in the form of heaters and a radiator. Using environmental data, the size, location, and orientation of the experiment can be optimized. The approach would be to provide a self-contained panel and mount it to the STEP through a frame. A small electronics package would be developed to interface with the STEP avionics for command and data handling. During the flight, heaters on the evaporator will be exercised to determine performance. Flight data will be evaluated against the ground tests to determine any anomalous behavior.

  16. [Mass casualty incidents : preparedness of German soccer arenas].

    PubMed

    Luiz, T; Preisegger, T; Madler, C

    2013-04-01

    Each weekend soccer arenas attract hundreds of thousands of spectators with the German Bundesliga being one of the most attractive sport series worldwide. In 2006 when the FIFA soccer World Cup™ took place in Germany, the precautions in the participating arenas against mass casualty incidents (MCI) reached a level formerly unknown in Germany. However, it is unknown how soccer arenas are prepared to deal with such incidents in everyday life. In 2011 all German major soccer league clubs were questioned about medical precautions in case of MCIs occurring in the stadium. The questionnaire included the following items: stadium capacity, the number of paramedic personnel, emergency physicians and ambulance vehicles, the command and communication structures, the availability of MCI plans, recent MCI drills and the frequency of MCI. Out of 39, 15 (38.4 %) participated, 50 % from the first league and 20.8 % from the second league. The mean stadium capacity was 41,800 spectators (minimum 10,600, maximum 80,700). Depending on the number of spectators and the individual risk score of the match the following resources were available within the stadiums (average, minimum, maximum,): emergency medical technicians 61-67 (15, 120), emergency physicians 2.3-2.5 (1, 5) and transport capacity 5.3-5.8 patients (1, 15). In 14 arenas (93.3 %) the medical personnel were trained in mass casualty care and had prepared MCI operation schedules. All stadiums had mission control centers equipped with a variety of wired and wireless communication tools, although only eight (52.3 %) arenas used a joint command structure and five (33.3 %) arenas reported MCIs (defined as a scenario involving more than 10 patients) within the past 10 years. In 40 % of the participants the last MCI-related exercise was conducted more than 36 months ago. Most of the participating arenas were adequately staffed to manage the first phase of MCIs but in contrast command structures and transport capacities often focused on individual emergencies. Although most of the participants stated that they planned the resources provision according to well established algorithms, the resources actually available at the arenas varied considerably. The frequency of MCIs in soccer arenas was surprisingly high in contrast to the frequency of MCI-related drills.

  17. Knowledge Management: A Model to Enhance Combatant Command Effectiveness

    DTIC Science & Technology

    2011-02-15

    implementing the change that is required to achieve the knowledge management vision.43 The Chief Knowledge Management Officer ( KMO ) is overall responsible for...the processes, people/culture and technology in the organization. The Chief KMO develops policy and leads the organization’s knowledge management...integrates team. Reporting directly to the Chief KMO is the Chief Process Manager, Chief Learning Manager and Chief Technology Officer

  18. A Comparative History of Department of Defense Management Reform from 1947 to 2005

    DTIC Science & Technology

    2006-12-01

    type of management reform agenda to improve the Department of Defense business processes and incorporate recent management ideas from the business ...introduce some type of management reform agenda to improve the Department of Defense business processes and incorporate recent management ideas...Steering Group BMMP Business Management Modernization Plan BRAC Base Realignment and Closure C3I Command, Control, Communications, and Intelligence

  19. Close up view of the Commander's Seat on the Flight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. Toward the right of the view and in front of te seat is the commander's Rotational Hand Controller. The pilot station has an identical controller. These control the acceleration in the roll pitch and yaw directions via the reaction control system and/or the orbiter maneuvering system while outside of Earth's atmosphere or via the orbiter's aerosurfaces wile in Earth's atmosphere when the atmospheric density permits the surfaces to be effective. There are a number of switches on the controller, most notably a trigger switch which is a push-to-talk switch for voice communication and a large button on top of the controller which is a switch to engage the backup flight system. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  20. A Framework for Optimal Control Allocation with Structural Load Constraints

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Taylor, Brian R.; Jutte, Christine V.; Burken, John J.; Trinh, Khanh V.; Bodson, Marc

    2010-01-01

    Conventional aircraft generally employ mixing algorithms or lookup tables to determine control surface deflections needed to achieve moments commanded by the flight control system. Control allocation is the problem of converting desired moments into control effector commands. Next generation aircraft may have many multipurpose, redundant control surfaces, adding considerable complexity to the control allocation problem. These issues can be addressed with optimal control allocation. Most optimal control allocation algorithms have control surface position and rate constraints. However, these constraints are insufficient to ensure that the aircraft's structural load limits will not be exceeded by commanded surface deflections. In this paper, a framework is proposed to enable a flight control system with optimal control allocation to incorporate real-time structural load feedback and structural load constraints. A proof of concept simulation that demonstrates the framework in a simulation of a generic transport aircraft is presented.

  1. Armored Family of Vehicles (AFV) Automation and Communication. Resource Management Plan (ACRMP). Phase 1. Volume 15.

    DTIC Science & Technology

    1987-09-01

    The AFV ACRMP is the Task Force Director’s (08) tool to manage command, control, communication (C3) automation system life cycle developments for the...responsibilities, development management, acquisition strategy, testing , life cycle support, technology assessment and work group relationships. ACRMP

  2. The Application of Operations Research Techniques to the Evaluation of Military Management Information Systems.

    DTIC Science & Technology

    systems such as management information systems . To provide a methodology yielding quantitative results which may assist a commander and his staff in...this analysis, it is proposed that management information systems be evaluated as a whole by a technique defined as the semantic differential. Each

  3. Incident Management: Process into Practice

    ERIC Educational Resources Information Center

    Isaac, Gayle; Moore, Brian

    2011-01-01

    Tornados, shootings, fires--these are emergencies that require fast action by school district personnel, but they are not the only incidents that require risk management. The authors have introduced the National Incident Management System (NIMS) and the Incident Command System (ICS) and assured that these systems can help educators plan for and…

  4. A Management Information System for Bare Base Civil Engineering Commanders

    DTIC Science & Technology

    1988-09-01

    initial beddown stage. The purpose of this research was to determine the feasibility of developing a microcomputer based management information system (MIS...the software best suited to synthesize four of the categories into a prototype field MIS. Keyword: Management information system , Bare bases, Civil engineering, Data bases, Information retrieval.

  5. Navy Occupational Health Information Management System (NOHIMS). Hazardous Materials Control Module. Users’ Manual

    DTIC Science & Technology

    1987-01-16

    Occupational Health Information Management System (NOHIMS) 6 Hazardous Materials Control Module (HMC) User’s Manual 7. Author(s) 8. Performing Organization...Materials Control (HMC) module of the Naval Medical Command’s (NAVMED) Navy Occupational Health Information Management System (NOHIMS). After presenting

  6. Re-Conceptualizing Command and Control

    DTIC Science & Technology

    2002-01-01

    systems. Having discussed the four quadrants of the authority-responsibility surface, we are now in a posi- tion to reintegrate the competency dimension and...feet higher up, who in his turn was monitored by the division commander in the next highest chopper … The point is not to argue that micro-management is...into the following four general class- es: physical, intellectual, emotional and interpersonal. For most militaries, physical competency is a pre

  7. Force of Choice: Optimizing Theater Special Operations Commands to Achieve Synchronized Effects

    DTIC Science & Technology

    2012-12-01

    GCC Geographic Combatant Command GFM Global Force Management GSN Global SOF Network (aka EGSN) IA Interagency IATF Interagency Task Force...and through African partners.75 SOCOM NCR was chosen because it is a primary outgrowth of the SOCOM Interagency Task Force ( IATF ), and the...result, SOCOM established the IATF and Special Operations Support Teams (SOST). While the IATF remained at SOCOM Headquarters at MacDill AFB, the

  8. Assessing the Utility of Work Team Theory in a Unified Command Environment at Catastrophic Incidents

    DTIC Science & Technology

    2005-03-01

    between agencies that potentially affects command post (CP) interactions . All of the foregoing factors contribute to a turbulent management environment...requiring special strategy consideration with and IMT preparation. “Conflict refers to a process of social interaction involving a struggle over...from interactions . These schemas can be grouped as cultural norms perpetuated generationally from seasoned officers to raw recruits, and shared by

  9. An Analysis of the Navy Manpower, Personnel, Training and Education Architecture

    DTIC Science & Technology

    2017-03-01

    the courses offered on the Navy 11 Education and Training Command (NETC) Learning Management System (LMS), better known as “E-Learning,” are... Training ,” offers a trimmed down version of the Defense Manpower Course offered at the Naval Postgraduate School (NPS). None fully satisfy training ...Environments (ROC/POE). • “ Training requirements are generated by customer organizations (COCOM’s, Type Commanders, Enterprises, Agencies, and other

  10. On Preparing for Squadron Command

    DTIC Science & Technology

    1988-04-01

    Gortler, Majur Gordon D. "Management Development---Could the Air Force Be Doing More?" Resear,;h Study, Air Command and Staff College. 1 07:3. 20...ABSTRACT (Continue on reverse If necessary and identify by block number) -This study addresses the broad issue of preparing Air Force officers for...are obsolete. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED - - PREFACE This study addresses the broad Issue of preparing Air Force officers to

  11. Information Management: Telecommunications: Record Communications and the Privacy Communications System

    DTIC Science & Technology

    1990-09-04

    commanders of major Army commands (MACOMs) will— (1) Disseminate a CIC’s specific meaning to all concerned agen- cies, offices, installations, data...be by electrical or non- electrical means and assigning the proper precedence. Where mail or courier is indicated, the writer must ensure that the...selected means are used for delivery. (7) Obtaining needed staff coordination. (8) Handcarrying priority and higher precedence messages during the staff

  12. Distributed Common Ground System-Navy Increment 2 (DCGS-N Inc 2)

    DTIC Science & Technology

    2016-03-01

    15 minutes Enter and be Managed in the Network: Reference SvcV-7, Consolidated Afloat Networks and Enterprise Services ( CANES ) CDD, DCGS-N Inc 2...Red, White , Gray Data and Tracks to Command and Control System. Continuous Stream from SCI Common Intelligence Picture to General Service (GENSER...AIS - Automatic Information System AOC - Air Operations Command CANES - Consolidated Afloat Networks and Enterprise Services CID - Center for

  13. 12th Annual Small Business Conference

    DTIC Science & Technology

    2008-11-13

    Joint Combat support systems. CoL myers graduated from marshall University in huntington, west virginia with a bachelors degree in Communications. he...as director and Principal assistant responsible for Contracting (ParC) for the Us army Contracting Command’s rock island Contracting Center (riCC...sustainment Command (asC) and the Joint munitions & Lethality Life Cycle management Command (Jm&L-LCmC) – rock island . in this position, he advises

  14. Expert Systems and Command, Control, and Communication System Acquisition

    DTIC Science & Technology

    1989-03-01

    Systems and Command, Control, and Communicaton System Acquisition 12 Personal Author(s) James E. Minnema 13a Type of Report 13b Time Covered 14 Date...isolated strategic planning, unstructured problems, the author feels that this category should also include problems involving the integration of...distinct operational or management control, and structured or semi-structured problem efforts. The reason for this is that integration of a number of

  15. Introduction to Command, Control and Communications (C3) Through Comparative Case Analysis

    DTIC Science & Technology

    1990-03-01

    enhancing the process of learning from experience. Case study allows the student to apply concepts , theories, and techniques to an actual incident within...part of the thesis describes selected principles and concepts of 33 related to cormruication management, interoperability, command structure and...The solutions to the cases require applying the principles and concepts presented in the first rart. The four cases are: (1) the Iran hostage rescue

  16. Prototype Development and Redesign: A Case Study

    DTIC Science & Technology

    1990-03-01

    deal with difficult problems of leadership , strategy and management." [Ref. 10:p. 1] Admiral Turner feels that using the case study method "will help...placement officer was a Lieutenant Commander or Commander. Often times they came from leadership positions of executive officer equivalence. They were...ting power. Personnel within the computer organizatin who are used to manual methods and potential users of the system are resisting the change and

  17. Defense Management: More Reliable Cost Estimates and Further Planning Needed to Inform the Marine Corps Realignment Initiatives in the Pacific

    DTIC Science & Technology

    2013-06-01

    8The Unified Command Plan establishes combatant commanders’ missions and geographic responsibilities. Combatant...military power through the combatant commands. 9The III Marine Expeditionary Force is a formation of multiple Marine units forward- deployed in Japan...Decision for Guam and Commonwealth of the Northern Mariana Islands Military Relocation (September 2010). dThe $9 billion and $12.1 billion figures

  18. The Evolution of Centralized Operational Logistics

    DTIC Science & Technology

    2012-05-17

    John Kennedy Ohl, Supplying the Troops, General Somervell and American Logistics in WWII (DeKalb: Northern Illinois University Press, 1994), 60-61. 8...logistics support to the Military Assistance Command Vietnam. Although Admiral John H. Sides, the Commander in Chief, Pacific Fleet, did not want to...Delivering the Goods: The Art of Managing Your Supply Chain (Hoboken: John Wiley and Sons, Inc., 2002), 78. 55 Shrader, United States Army Logistics 1775

  19. US Africa Command: Paradigm Change for the Combatant Command

    DTIC Science & Technology

    2009-01-01

    information operations. 5 The ability to attempt the successfully manage all these elements has been referred to as the DIME Ballet , characterizing...3 U.S. National Security Counsel, National Security Strategy 2006, pp 43. 4Austin Bay, "The DIME Ballet " strategypage. com May 24,2005. http...DIME Ballet " May 24,2005. http://www.strategypage.comlon--point/2005524.aspx. (accessed on February 19, 2009). Eisenhower, Dwight. Presidential

  20. The Influence of Future Command, Control, Communications, and Computers (C4) on Doctrine and the Operational Commander's Decision-Making Process

    NASA Technical Reports Server (NTRS)

    Mayer, Michael G.

    1996-01-01

    Future C4 systems will alter the traditional balance between force and information, having a profound influence on doctrine and the operational commander's decision making process. The Joint Staff's future vision of C4 is conceptualized in 'C4I for the Warrior' which envisions a joint C4I architecture providing timely sensor to shoot information direct to the warfighter. C4 system must manage and filter an overwhelming amount of information; deal with interoperability issues; overcome technological limitations; meet emerging security requirements; and protect against 'Information Warfare.' Severe budget constraints necessitate unified control of C4 systems under singular leadership for the common good of all the services. In addition, acquisition policy and procedures must be revamped to allow new technologies to be fielded quickly; and the commercial marketplace will become the preferred starting point for modernization. Flatter command structures are recommended in this environment where information is available instantaneously. New responsibilities for decision making at lower levels are created. Commanders will have to strike a balance between exerting greater control and allowing subordinates enough flexibility to maintain initiative. Clearly, the commander's intent remains the most important tool in striking this balance.

  1. Benefits, barriers, and limitations on the use of Hospital Incident Command System.

    PubMed

    Shooshtari, Shahin; Tofighi, Shahram; Abbasi, Shirin

    2017-01-01

    Hospital Incident Command System (HICS) has been established with the mission of prevention, response, and recovery in hazards. Regarding the key role of hospitals in medical management of events, the present study is aimed at investigating benefits, barriers, and limitations of applying HICS in hospital. Employing a review study, articles related to the aforementioned subject published from 1995 to 2016 were extracted from accredited websites and databases such as PubMed, Google Scholar, Elsevier, and SID by searching keywords such as HICS, benefits, barriers, and limitations. Then, those articles were summarized and reported. Using of HICS can cause creating preparedness in facing disasters, constructive management in strategies of controlling events, and disasters. Therefore, experiences indicate that there are some limitations in the system such as failure to assess the strength and severity of vulnerabilities of hospital, no observation of standards for disaster management in the design, constructing and equipping hospitals, and the absence of a model for evaluating the system. Accordingly, the conducted studies were investigated for probing the performance HICS. With regard to the role of health in disaster management, it requires advanced international methods in facing disasters. Using accurate models for assessing, the investigation of preparedness of hospitals in precrisis conditions based on components such as command, communications, security, safety, development of action plans, changes in staff's attitudes through effective operational training and exercises and creation of required maneuvers seems necessary.

  2. Sensitivity Analysis of Linear Programming and Quadratic Programming Algorithms for Control Allocation

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Bodson, Marc; Acosta, Diana M.

    2009-01-01

    The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming.

  3. Downloading Deterrence: The Logic and Logistics of Coercive Deployment on U.S. Strategy

    DTIC Science & Technology

    2016-06-01

    Soviet air defense systems.”20 If the Arab-Israeli wars bore the first fruit of technological investment in conventional systems, the first Persian ...Bush deployed the first US troops, warplanes and ships to the Persian Gulf region.31 Termed Operation DESERT SHIELD, the deployment sparked the...Transportation Command (USTC) moved more passengers to the Persian Gulf than the United States transported to Korea during the first three months of the

  4. New luster for space robots and automation

    NASA Technical Reports Server (NTRS)

    Heer, E.

    1978-01-01

    Consideration is given to the potential role of robotics and automation in space transportation systems. Automation development requirements are defined for projects in space exploration, global services, space utilization, and space transport. In each category the potential automation of ground operations, on-board spacecraft operations, and in-space handling is noted. The major developments of space robot technology are noted for the 1967-1978 period. Economic aspects of ground-operation, ground command, and mission operations are noted.

  5. Risk factors of compliance with self-harm command hallucinations in individuals with affective and non-affective psychosis.

    PubMed

    Dugré, Jules R; Guay, Jean-Pierre; Dumais, Alexandre

    2018-05-01

    Clinicians are often left with the difficult task of assessing and managing the risk of violent behaviors in individuals having command hallucinations, which may result in substantial rates of false positive or false negative. Moreover, findings on the association between command hallucinations and suicidal behaviors are limited. In an attempt to better understand compliance to this hallucinatory phenomenon, our objective was to identify the risk factors of compliance with self-harm command hallucinations. Secondary analyses from the MacArthur Study were performed on 82 participants with psychosis reporting such commands. Univariate logistic regression was used to examine the classification value of each characteristic associated with compliance with such commands. Seriousness and frequency of childhood physical abuse, a current comorbid substance use disorder, emotional distress, general symptomatology, history of compliance, and belief about compliance in the future were found to be significant risk factors of compliance with self-harm commands in the week preceding psychiatric inpatient. Multivariate analyses revealed that severity of childhood physical abuse, belief about compliance in the future, and a current comorbid substance use disorder were independent risk factors. The final model showed excellent classification accuracy as suggest by the receiver operating characteristic curve (AUC=0.84, 95% CI: 0.75-0.92, p<0.001). Our results suggest considerable clinical implications in regard to the assessment of risk of compliance to self-harm command hallucinations in individuals with psychosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Total Quality Management Implementation Plan: Defense Depot, Ogden

    DTIC Science & Technology

    1989-07-01

    NUMBERS Total Quality Management Implementation Plan Defense Depot Ogden 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING...PAGES TQM (Total Quality Management ), Continuous Process Improvement, Depot Operations, Process Action Teams 16. PRICE CODE 17. SECURITY...034 A Message From The Commander On Total Quality Management i fully support the DLA aoproacii to Total Quality Management . As stated by General

  7. 32 CFR 245.6 - Abbreviations and acronyms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...—Domestic Event Network DHS—Department of Homeland Security DND—Department of National Defence (Canada) DoD... (NORAD) NORAD—North American Aerospace Defense Command PACAF—Pacific Air Forces SCA—Security Control Authorization SEADS—Southeast Air Defense Sector (NORAD) SUA—Special Use Airspace TSA—Transportation Security...

  8. 32 CFR 245.6 - Abbreviations and acronyms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...—Domestic Event Network DHS—Department of Homeland Security DND—Department of National Defence (Canada) DoD... (NORAD) NORAD—North American Aerospace Defense Command PACAF—Pacific Air Forces SCA—Security Control Authorization SEADS—Southeast Air Defense Sector (NORAD) SUA—Special Use Airspace TSA—Transportation Security...

  9. 32 CFR 245.6 - Abbreviations and acronyms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...—Domestic Event Network DHS—Department of Homeland Security DND—Department of National Defence (Canada) DoD... (NORAD) NORAD—North American Aerospace Defense Command PACAF—Pacific Air Forces SCA—Security Control Authorization SEADS—Southeast Air Defense Sector (NORAD) SUA—Special Use Airspace TSA—Transportation Security...

  10. 32 CFR 245.6 - Abbreviations and acronyms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...—Domestic Event Network DHS—Department of Homeland Security DND—Department of National Defence (Canada) DoD... (NORAD) NORAD—North American Aerospace Defense Command PACAF—Pacific Air Forces SCA—Security Control Authorization SEADS—Southeast Air Defense Sector (NORAD) SUA—Special Use Airspace TSA—Transportation Security...

  11. 33 CFR 151.1021 - Appeals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Transportation of Municipal and Commercial Waste § 151.1021 Appeals. (a) Any person directly affected by an... ruling to the Assistant Commandant for Marine Safety, Security, and Stewardship (CG-5), U.S. Coast Guard...

  12. 14 CFR 91.7 - Civil aircraft airworthiness.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Civil aircraft airworthiness. 91.7 Section 91.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... in condition for safe flight. The pilot in command shall discontinue the flight when unairworthy...

  13. 14 CFR 91.7 - Civil aircraft airworthiness.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Civil aircraft airworthiness. 91.7 Section 91.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... in condition for safe flight. The pilot in command shall discontinue the flight when unairworthy...

  14. 49 CFR 7.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... component of DOT and includes the Under Secretary for Security, the Commandant of the Coast Guard, the Inspector General, and the Director of the Bureau of Transportation Statistics. Concurrence means that the... preserved. The term also includes any such documentary material stored by computer. Responsible DOT official...

  15. 49 CFR 7.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... component of DOT and includes the Under Secretary for Security, the Commandant of the Coast Guard, the Inspector General, and the Director of the Bureau of Transportation Statistics. Concurrence means that the... preserved. The term also includes any such documentary material stored by computer. Responsible DOT official...

  16. 49 CFR 7.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... component of DOT and includes the Under Secretary for Security, the Commandant of the Coast Guard, the Inspector General, and the Director of the Bureau of Transportation Statistics. Concurrence means that the... preserved. The term also includes any such documentary material stored by computer. Responsible DOT official...

  17. 14 CFR 91.103 - Preflight action.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Preflight action. 91.103 Section 91.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC... action. Each pilot in command shall, before beginning a flight, become familiar with all available...

  18. 14 CFR 91.103 - Preflight action.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Preflight action. 91.103 Section 91.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC... action. Each pilot in command shall, before beginning a flight, become familiar with all available...

  19. KSC-01pp1510

    NASA Image and Video Library

    2001-08-20

    KENNEDY SPACE CENTER, Fla. -- The STS-111 crew spend time in the Space Station Processing Facility learning more about the payload they will be transporting: The Mobile Base System (MBS). Standing left to right in the back row are Expedition Five Commander Valeri Kozun, with the Russian Aviation and Space Agency; Mission Specialist Phillippe Perrin, with the French space agency CNES; Pilot Paul Lockhart; trainer Chris Hardcastle; Mission Specialist Franklin Chang-Diaz; and Commander Ken Cockrell. Flanked by trainers in the front row is (center) Peggy Whitson, another of the Expedition Five crew who will ferried to the International Space Station. The MBS will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the Truss to work sites. The Expedition Five crew will be replacing Expedition Four. Launch of Endeavour on mission STS-111 is scheduled for April 18, 2002

  20. Investigation of Optimal Control Allocation for Gust Load Alleviation in Flight Control

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Taylor, Brian R.; Bodson, Marc

    2012-01-01

    Advances in sensors and avionics computation power suggest real-time structural load measurements could be used in flight control systems for improved safety and performance. A conventional transport flight control system determines the moments necessary to meet the pilot's command, while rejecting disturbances and maintaining stability of the aircraft. Control allocation is the problem of converting these desired moments into control effector commands. In this paper, a framework is proposed to incorporate real-time structural load feedback and structural load constraints in the control allocator. Constrained optimal control allocation can be used to achieve desired moments without exceeding specified limits on monitored load points. Minimization of structural loads by the control allocator is used to alleviate gust loads. The framework to incorporate structural loads in the flight control system and an optimal control allocation algorithm will be described and then demonstrated on a nonlinear simulation of a generic transport aircraft with flight dynamics and static structural loads.

  1. Investigation, development and application of optimal output feedback theory. Volume 2: Development of an optimal, limited state feedback outer-loop digital flight control system for 3-D terminal area operation

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.; Halyo, N.

    1984-01-01

    This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.

  2. Interior view of the Flight Deck looking forward, the Commander's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of the Flight Deck looking forward, the Commander's seat and controls are on the left and the pilot's seat and controls are on the right of the view. Note that the flight deck windows have protective covers over them in this view. This images can be digitally stitched with image HAER No. TX-116-A-20 to expand the view to include the overhead control panels of the flight deck. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. Simulation study of two VTOL control/display systems in IMC approach and landing

    NASA Technical Reports Server (NTRS)

    Merrick, V. K.

    1981-01-01

    Both systems had full attitude command; the more complex system (Type 1) also had translational velocity command. The systems were applied to existing models of a VTOL lift-fan transport and the AV-8A Harrier. Simulated landings were made on a model of a DD963 Spruance-class destroyer. It was concluded that acceptable transitions and vertical landings can be performed, using the Type 1 system, in free-air turbulence up to 2.5 m/sec and sea state 6 and, using the Type 2 system, in free-air turbulence up to 1.5 m/sec and sea state 4.

  4. KSC-01pp1336

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, hold the sign for their mission. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  5. KSC-01pp1337

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, have placed the mission sign at the entrance into Space Shuttle Discovery. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  6. Autonomous diagnostics and prognostics of signal and data distribution systems

    NASA Astrophysics Data System (ADS)

    Blemel, Kenneth G.

    2001-07-01

    Wiring is the nervous system of any complex system and is attached to or services nearly every subsystem. Damage to optical wiring systems can cause serious interruptions in communication, command and control systems. Electrical wiring faults and failures due to opens, shorts, and arcing probably result in adverse effects to the systems serviced by the wiring. Abnormalities in a system usually can be detected by monitoring some wiring parameter such as vibration, data activity or power consumption. This paper introduces the mapping of wiring to critical functions during system engineering to automatically define the Failure Modes Effects and Criticality Analysis. This mapping can be used to define the sensory processes needed to perform diagnostics during system engineering. This paper also explains the use of Operational Modes and Criticality Effects Analysis in the development of Sentient Wiring Systems as a means for diagnostic, prognostics and health management of wiring in aerospace and transportation systems.

  7. KSC-06pd2275

    NASA Image and Video Library

    2006-10-11

    KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers unlatch the transportation canister segments that enclose the STEREO spacecraft. The spacecraft is being prepared for launch, scheduled for Oct. 25. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft that will launch in a piggyback mode, separating after reaching the appropriate orbit. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. Photo credit: NASA/Jim Grossmann

  8. KSC-06pd2261

    NASA Image and Video Library

    2006-10-10

    KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., the STEREO spacecraft is being moved out of the high bay. A truck will transport the spacecraft to Launch Pad 17-B on Cape Canaveral Air Force Station where it will be lifted into the mobile service tower. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton

  9. KSC-06pd2281

    NASA Image and Video Library

    2006-10-11

    KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the transportation canister and protective cover have been removed from the STEREO spacecraft in preparation for launch. The scheduled launch date is Oct. 25. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft that will launch in a piggyback mode, separating after reaching the appropriate orbit. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. Photo credit: NASA/Jim Grossmann

  10. KSC-06pd2266

    NASA Image and Video Library

    2006-10-11

    KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B at Cape Canaveral Air Force Station, the STEREO spacecraft is lifted off its transporter alongside the mobile service tower. In the tower, STEREO will be mated with its launch vehicle, a Boeing Delta II rocket. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton

  11. KSC-06pd2282

    NASA Image and Video Library

    2006-10-11

    KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the transportation canister and protective cover have been removed from the STEREO spacecraft in preparation for launch. The scheduled launch date is Oct. 25. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft that will launch in a piggyback mode, separating after reaching the appropriate orbit. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. Photo credit: NASA/Jim Grossmann

  12. KSC-06pd2276

    NASA Image and Video Library

    2006-10-11

    KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers observe the lifting of the upper segment of the transportation canister that encloses the STEREO spacecraft. The spacecraft is being prepared for launch, scheduled for Oct. 25. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft that will launch in a piggyback mode, separating after reaching the appropriate orbit. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. Photo credit: NASA/Jim Grossmann

  13. KSC-06pd2278

    NASA Image and Video Library

    2006-10-11

    KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers begin removing the lower segment of the transportation canister that encloses the STEREO spacecraft. The spacecraft is being prepared for launch, scheduled for Oct. 25. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft that will launch in a piggyback mode, separating after reaching the appropriate orbit. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. Photo credit: NASA/Jim Grossmann

  14. KSC-06pd2277

    NASA Image and Video Library

    2006-10-11

    KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers help guide the upper segement of the transportation canister away from the STEREO spacecraft. STEREO is being prepared for launch, scheduled for Oct. 25. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft that will launch in a piggyback mode, separating after reaching the appropriate orbit. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. Photo credit: NASA/Jim Grossmann

  15. ARC-2009-ACD09-0220-124

    NASA Image and Video Library

    2009-10-09

    LCROSS Impact Night From left to right: Khanh Trinh (Simulator Engineer) in back, John Bresina (Command Sequencing Engineer), Dan Andrews (LCROSS Project Manager), and John Schreiner (Mission Operations Manager), clap after confirmation the LCROSS spacecraft successfully impacted its target crater on the moon.

  16. Battle Management Language Transformations

    DTIC Science & Technology

    2006-10-01

    Simulation (M&S) systems. Battlefield Management Language (BML) is being developed as a common representation of military mission suitable for automated ... processing . Within NATO the task group MSG-048 Coalition BML is defining a BML using the Joint Command, Control and Consultation Information Exchange

  17. Identification of Vehicle Health Assurance Related Trends

    NASA Technical Reports Server (NTRS)

    Phojanamongkolkij, Nipa; Evans, Joni K.; Barr, Lawrence C.; Leone, Karen M.; Reveley, Mary S.

    2014-01-01

    Trend analysis in aviation as related to vehicle health management (VHM) was performed by reviewing the most current statistical and prognostics data available from the National Transportation Safety Board (NTSB) accident, the Federal Aviation Administration (FAA) incident, and the NASA Aviation Safety Reporting System (ASRS) incident datasets. In addition, future directions in aviation technology related to VHM research areas were assessed through the Commercial Aviation Safety Team (CAST) Safety Enhancements Reserved for Future Implementations (SERFIs), the National Transportation Safety Board (NTSB) Most-Wanted List and recent open safety recommendations, the National Research Council (NRC) Decadal Survey of Civil Aeronautics, and the Future Aviation Safety Team (FAST) areas of change. Future research direction in the VHM research areas is evidently strong as seen from recent research solicitations from the Naval Air Systems Command (NAVAIR), and VHM-related technologies actively being developed by aviation industry leaders, including GE, Boeing, Airbus, and UTC Aerospace Systems. Given the highly complex VHM systems, modifications can be made in the future so that the Vehicle Systems Safety Technology Project (VSST) technical challenges address inadequate maintenance crew's trainings and skills, and the certification methods of such systems as recommended by the NTSB, NRC, and FAST areas of change.

  18. KSC-07pd3062

    NASA Image and Video Library

    2007-11-01

    KENNEDY SPACE CENTER, FLA. -- Ready to put spades to work at ground-breaking ceremonies for SpaceX's new Falcon 9 rocket launch facilities at Space Launch Complex 40 at Cape Canaveral are (from left) Thad Altman, Florida State representative; Jeff Kottkamp, Florida State Lt. Governor; Elon Musk, founder and CEO of Space Exploration Technologies; Brig. Gen. Susan J. Helms, commander of the U.S. Air Force 45th Space Wing; Lynda Weatherman, Brevard County Economic Development Commission CEO and president; Steve Koehler, president of Space Florida; Janet Petro, deputy director of NASA Kennedy Space Center; Patricia Grace Smith, FAA associate administrator for Commercial Space Transportation; and Steve Cain, NASA Kennedy Space Center COTS project manager. As part of NASA’s Commercial Orbital Transportation Services, or COTS, competition, SpaceX will launch a Falcon 9 with a cargo-carrying payload on a series of three demonstration missions from Cape Canaveral to the International Space Station, culminating with the delivery of supplies to the $100 billion dollar orbiting laboratory. SpaceX intends to demonstrate its launch, maneuvering, berthing and return abilities by 2009 – a year before NASA has scheduled the conclusion of Space Shuttle operations. Photo credit: NASA/George Shelton

  19. Transforming for Distribution Based Logistics

    DTIC Science & Technology

    2005-05-26

    distribution process, and extracts elements of distribution and distribution management . Finally characteristics of an effective Army distribution...eventually evolve into a Distribution Management Element. Each organization is examined based on their ability to provide centralized command, with an...distribution and distribution management that together form the distribution system. Clearly all of the physical distribution activities including

  20. 32 CFR 806b.32 - Submitting notices for publication in the Federal Register.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... managers must send a proposed notice, through the Major Command Privacy Office, to Air Force Chief... in appendix B to this part. For new systems, system managers must include a statement that a risk assessment was accomplished and is available should the Office of Management and Budget request it. ...

  1. 32 CFR 806b.32 - Submitting notices for publication in the Federal Register.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... managers must send a proposed notice, through the Major Command Privacy Office, to Air Force Chief... in appendix B to this part. For new systems, system managers must include a statement that a risk assessment was accomplished and is available should the Office of Management and Budget request it. ...

  2. Factors affecting fire suppression costs as identified by incident management teams

    Treesearch

    Janie Canton-Thompson; Brooke Thompson; Krista Gebert; David Calkin; Geoff Donovan; Greg Jones

    2006-01-01

    This study uses qualitative sociological methodology to discover information and insights about the role of Incident Management Teams in wildland fire suppression costs. We interviewed 48 command and general staff members of Incident Management Teams throughout the United States. Interviewees were asked about team structure, functioning, and decision making as a...

  3. Flight evaluation of configuration management system concepts during transition to the landing approach for a powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.

    1980-01-01

    Flight experiments were conducted to evaluate two control concepts for configuration management during the transition to landing approach for a powered-lift STOL aircraft. NASA Ames' augmentor wing research aircraft was used in the program. Transitions from nominal level-flight configurations at terminal area pattern speeds were conducted along straight and curved descending flightpaths. Stabilization and command augmentation for attitude and airspeed control were used in conjunction with a three-cue flight director that presented commands for pitch, roll, and throttle controls. A prototype microwave system provided landing guidance. Results of these flight experiments indicate that these configuration management concepts permit the successful performance of transitions and approaches along curved paths by powered-lift STOL aircraft. Flight director guidance was essential to accomplish the task.

  4. Cyber Security for the Spaceport Command and Control System: Vulnerability Management and Compliance Analysis

    NASA Technical Reports Server (NTRS)

    Gunawan, Ryan A.

    2016-01-01

    With the rapid development of the Internet, the number of malicious threats to organizations is continually increasing. In June of 2015, the United States Office of Personnel Management (OPM) had a data breach resulting in the compromise of millions of government employee records. The National Aeronautics and Space Administration (NASA) is not exempt from these attacks. Cyber security is becoming a critical facet to the discussion of moving forward with projects. The Spaceport Command and Control System (SCCS) project at the Kennedy Space Center (KSC) aims to develop the launch control system for the next generation launch vehicle in the coming decades. There are many ways to increase the security of the network it uses, from vulnerability management to ensuring operating system images are compliant with securely configured baselines recommended by the United States Government.

  5. Spacecraft command verification: The AI solution

    NASA Technical Reports Server (NTRS)

    Fesq, Lorraine M.; Stephan, Amy; Smith, Brian K.

    1990-01-01

    Recently, a knowledge-based approach was used to develop a system called the Command Constraint Checker (CCC) for TRW. CCC was created to automate the process of verifying spacecraft command sequences. To check command files by hand for timing and sequencing errors is a time-consuming and error-prone task. Conventional software solutions were rejected when it was estimated that it would require 36 man-months to build an automated tool to check constraints by conventional methods. Using rule-based representation to model the various timing and sequencing constraints of the spacecraft, CCC was developed and tested in only three months. By applying artificial intelligence techniques, CCC designers were able to demonstrate the viability of AI as a tool to transform difficult problems into easily managed tasks. The design considerations used in developing CCC are discussed and the potential impact of this system on future satellite programs is examined.

  6. Spectrum Management Guidelines for National and Service Test and Training Ranges

    DTIC Science & Technology

    2017-07-12

    GPS Global Positioning System ISM Installation Spectrum Manager JTIDS Joint Tactical Information Distribution System KMR Kwajalein Missile Range... information UAV unmanned aerial vehicle US&P United States and Possessions Spectrum Management Guidelines for National and Service Test and Training...frequency deconfliction processes. The AFC will inform the range or center commander and the Installation Spectrum Manager (ISM) at the

  7. Analysis of Army Contracting Command Contract Specialist Vacancy Announcements

    DTIC Science & Technology

    2010-09-01

    program CPCM Certified Professional Contracts Manager CPM Certified Purchasing Manager CPOL Civilian Personnel Online CPSM Certified...experience, a Bachelor’s degree and the applicant is 28 required to pass three CPSM examinations. (2) The Certified Purchasing Manager Program ( CPM ...is currently being phased out and is available only for recertification. The CPM required five years of full time professional supply management

  8. Homeland Biological Warfare Consequence Management: Capabilities and Needs Assessment

    DTIC Science & Technology

    2001-04-01

    AU/ACSC/105/2001-04 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY HOMELAND BIOLOGICAL WARFARE CONSEQUENCE MANAGEMENT: CAPABILITIES AND NEEDS...Dates Covered (from... to) - Title and Subtitle Homeland biological Warfare Consequence Management: Capabilities and Needs Assessment Contract...FEMA, DoJ, DoD, HHS, etc.) make a comprehensive, organized solution to the problem difficult. Focusing on the consequence management functions

  9. Management by Objective in the Air Force Tactical Air Command Telecommunication Environment.

    DTIC Science & Technology

    1978-11-29

    9. 20Dan Voich, Jr. and Daniel A. Wren, Principles of Management , New York: The Ronald Press Company, 1968, p. 21. 21Ibid., pp. 24-25. 2 2Dale D...Results: The Dynamics of Profitable Management, New York, McGraw-Hill Book Company, 1961, 266 pp. Voich, Dan, Jr. and Daniel A. Wren, Principles of Management : Resources

  10. Amplifying human ability through autonomics and machine learning in IMPACT

    NASA Astrophysics Data System (ADS)

    Dzieciuch, Iryna; Reeder, John; Gutzwiller, Robert; Gustafson, Eric; Coronado, Braulio; Martinez, Luis; Croft, Bryan; Lange, Douglas S.

    2017-05-01

    Amplifying human ability for controlling complex environments featuring autonomous units can be aided by learned models of human and system performance. In developing a command and control system that allows a small number of people to control a large number of autonomous teams, we employ an autonomics framework to manage the networks that represent mission plans and the networks that are composed of human controllers and their autonomous assistants. Machine learning allows us to build models of human and system performance useful for monitoring plans and managing human attention and task loads. Machine learning also aids in the development of tactics that human supervisors can successfully monitor through the command and control system.

  11. DOD Inventory of Contracted Services: Actions Needed to Help Ensure Inventory Data Are Complete and Accurate

    DTIC Science & Technology

    2015-11-01

    for Personnel and Readiness NAVSEA Naval Sea Systems Command OFPP Office of Federal Procurement Policy OMB Office of Management and Budget PDC ...Documentation of Contractors ( PDC ) process is delegated to the manpower and programing functions at the commands. The PDC process collects information from...review results. Army’s PDC tool, used to inform the inventory review, tracks by location and functional requirement—such as administrative or

  12. STS-47 Commander Gibson and MS Apt during LINHOF training on JSC's Bldg 1 roof

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Commander Robert L. Gibson (left), lifting plate from LINHOF camera body, and Mission Specialist (MS) Jerome Apt, using spot meter, participate in a photography training session on the rooftop of JSC's Project Management Building Bldg 1. Using such a high vantage point as this nine-floor facility, the crewmembers were able to become familiar with Earth observations equipment.

  13. Annual Report to the President and the Congress

    DTIC Science & Technology

    2004-01-01

    planning process has determined is needed to meet the military tasks as- signed to the Department by the President in his national security strategy...Commands" document, which formally as- signs forces to combatant commanders. The Global Force Management Process subsumes two developmen- tal measures...www.t2net.org), which was signed by Deputy Secretary of Defense Paul Wolfowitz on June 10, 2003, is a road map to developing and fielding dynamic

  14. Information Management Challenges in Achieving Coalition Interoperability

    DTIC Science & Technology

    2001-12-01

    by J. Dyer SESSION I: ARCHITECTURES AND STANDARDS: FUNDAMENTAL ISSUES Chairman: Dr I. WHITE (UK) Planning for Interoperability 1 by W.M. Gentleman...framework – a crucial step toward achieving coalition C4I interoperability. TOPICS TO BE COVERED: 1 ) Maintaining secure interoperability 2) Command...d’une coalition. SUJETS À EXAMINER : 1 ) Le maintien d’une interopérabilité sécurisée 2) Les interfaces des systèmes de commandement : 2a

  15. Naval Postgraduate School Research. Volume 8, Number 3, October 1998

    DTIC Science & Technology

    1998-10-01

    the Bangor Submarine Base: “Understanding Racism ” and “Under- standing Sexism .” These two-day workshops are part of a four workshop series on Managing...organization theory and complex- ity theory and shaping them into design guidelines for mapping command and control processes to the needs of specific missions...Intranet- based decision support for the ACE. The methodol- ogy combines systems development life cycle (SDLC) practices, command and control theory , an

  16. The Employment of Structures and Work Patterns in Organizations Involved in Modern, Complex, Multi-National Operations

    DTIC Science & Technology

    2011-06-01

    This has a particular impact on Command Management, through which the Commander establishes and maintains his headquarters structures, collaborations...tend to be organized in a ‘planning-centric’ fashion. Analysis tends to focus upon the interpretation of environmental phenomena (e.g. events...These will be used in the next stage to organize scenario development. for the future of the conflict region including the impact of the military

  17. The DISAM Journal of International Security Assistance Management. Volume 29, Number 3, July 2007

    DTIC Science & Technology

    2007-07-01

    with Canada and Mexico, with relatively very few permanently assigned forces . You can read about a number of issues addressed by contributing authors...26 Commander Curtis Jenkins, USNR, Lockheed Martin “Taking the Communication High Ground The Case for a Joint Inter-Agency Task Force ...permanently assigned forces . The command is assigned forces whenever necessary to execute missions, as ordered by the president and secretary of

  18. Command and data handling of science signals on Spacelab

    NASA Technical Reports Server (NTRS)

    Mccain, H. G.

    1975-01-01

    The Orbiter Avionics and the Spacelab Command and Data Management System (CDMS) combine to provide a relatively complete command, control, and data handling service to the instrument complement during a Shuttle Sortie Mission. The Spacelab CDMS services the instruments and the Orbiter in turn services the Spacelab. The CDMS computer system includes three computers, two I/O units, a mass memory, and a variable number of remote acquisition units. Attention is given to the CDMS high rate multiplexer, CDMS tape recorders, closed circuit television for the visual monitoring of payload bay and cabin area activities, methods of science data acquisition, questions of transmission and recording, CDMS experiment computer usage, and experiment electronics.

  19. New information technology tools for a medical command system for mass decontamination.

    PubMed

    Fuse, Akira; Okumura, Tetsu; Hagiwara, Jun; Tanabe, Tomohide; Fukuda, Reo; Masuno, Tomohiko; Mimura, Seiji; Yamamoto, Kaname; Yokota, Hiroyuki

    2013-06-01

    In a mass decontamination during a nuclear, biological, or chemical (NBC) response, the capability to command, control, and communicate is crucial for the proper flow of casualties at the scene and their subsequent evacuation to definitive medical facilities. Information Technology (IT) tools can be used to strengthen medical control, command, and communication during such a response. Novel IT tools comprise a vehicle-based, remote video camera and communication network systems. During an on-site verification event, an image from a remote video camera system attached to the personal protective garment of a medical responder working in the warm zone was transmitted to the on-site Medical Commander for aid in decision making. Similarly, a communication network system was used for personnel at the following points: (1) the on-site Medical Headquarters; (2) the decontamination hot zone; (3) an on-site coordination office; and (4) a remote medical headquarters of a local government office. A specially equipped, dedicated vehicle was used for the on-site medical headquarters, and facilitated the coordination with other agencies. The use of these IT tools proved effective in assisting with the medical command and control of medical resources and patient transport decisions during a mass-decontamination exercise, but improvements are required to overcome transmission delays and camera direction settings, as well as network limitations in certain areas.

  20. Memory and Processing Limits in Decision-Making.

    ERIC Educational Resources Information Center

    Klapp, Stuart T.

    According to the classical working memory perspective, tasks such as command and control decision-making should be performed less effectively if extraneous material must be retained in short-term memory. Only marginal support for this prediction was obtained for a simulation involving scheduling trucking and transportation missions, although…

  1. 76 FR 11308 - Notification of Pilot-in-Command; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ...://spreadsheets.google.com/viewform?formkey=dExRVGF5WmtOSzZuZWxBSTdBQ2VCR1E6MQ . Specific information will be... Dangerous Goods by Air (ICAO TI). The Department of Transportation has a history and statutory mandate to...

  2. Systems Models for Transportation Problems : Volume 3. A Computable Command-Control System for a Social System.

    DOT National Transportation Integrated Search

    1976-03-01

    The spectral characteristics of the urban center -- at the level of the family, the functional organized units of society, and the essential compartment balances of the urban center -- are spelled out in greater detail. These compartments are food, m...

  3. The Perfect Storm: The Goldwater-Nichols Act and Its Effect on Navy Acquisition

    DTIC Science & Technology

    2010-01-01

    TECHNOLOGY SUBSTANCE ABUSE TERRORISM AND HOMELAND SECURITY TRANSPORTATION AND INFRASTRUCTURE WORKFORCE AND WORKPLACE The RAND Corporation is a nonprofit...the two stars’ comunications with the Systems Commanders, who were ultimately removed from the acquisition chain because the new PEOs 16 The

  4. ULSGEN (Uplink Summary Generator)

    NASA Technical Reports Server (NTRS)

    Wang, Y.-F.; Schrock, M.; Reeve, T.; Nguyen, K.; Smith, B.

    2014-01-01

    Uplink is an important part of spacecraft operations. Ensuring the accuracy of uplink content is essential to mission success. Before commands are radiated to the spacecraft, the command and sequence must be reviewed and verified by various teams. In most cases, this process requires collecting the command data, reviewing the data during a command conference meeting, and providing physical signatures by designated members of various teams to signify approval of the data. If commands or sequences are disapproved for some reason, the whole process must be restarted. Recording data and decision history is important for traceability reasons. Given that many steps and people are involved in this process, an easily accessible software tool for managing the process is vital to reducing human error which could result in uplinking incorrect data to the spacecraft. An uplink summary generator called ULSGEN was developed to assist this uplink content approval process. ULSGEN generates a web-based summary of uplink file content and provides an online review process. Spacecraft operations personnel view this summary as a final check before actual radiation of the uplink data. .

  5. When the Ties That Bind Break.

    ERIC Educational Resources Information Center

    Sorohan, Erica Gordon

    1994-01-01

    Despite decades of management fads, U.S. businesses have practiced chain-of-command management. Only through changes in leadership can corporate America repair the damage to employee morale that stems as much from the way companies execute layoffs as from the layoffs themselves. (Author/JOW)

  6. Guidelines for Tailoring DOD-STD-2167A for SDS (Strategic Defense System) Software Development

    DTIC Science & Technology

    1988-02-01

    UNCLASSIFIED APPENDIX A LIST OF ACRONYMS ABM Anti-Ballistic Missle AP Advanced Prototypes BM/C3 Battle Management/Command, Control, Communications CDRL...32 5.7.5 Configuration management ................................. 32 5.8 Sytem integration and testing ....... ............................. 34 t

  7. ARC-2009-ACD09-0220-126

    NASA Image and Video Library

    2009-10-09

    LCROSS Impact Night From left to right: Khanh Trinh (Simulator Engineer), and Dan Andrews (LCROSS Project Manager) in background, John Bresina (Command Sequencing Engineer), and John Schreiner (Mission Operations Manager), shake hands after confirmation the LCROSS spacecraft successfully impacted its target crater on the moon.

  8. Multi-UAV Collaborative Sensor Management for UAV Team Survivability

    DTIC Science & Technology

    2006-08-01

    Multi-UAV Collaborative Sensor Management for UAV Team Survivability Craig Stoneking, Phil DiBona , and Adria Hughes Lockheed Martin Advanced...Command, Aviation Applied Technology Directorate. REFERENCES [1] DiBona , P., Belov, N., Pawlowski, A. (2006). “Plan-Driven Fusion: Shaping the

  9. Managing multiple-casualty incidents: a rural medical preparedness training assessment.

    PubMed

    Glow, Steven D; Colucci, Vincent J; Allington, Douglas R; Noonan, Curtis W; Hall, Earl C

    2013-08-01

    The objectives of this study were to develop a novel training model for using mass-casualty incident (MCI) scenarios that trained hospital and prehospital staff together using Microsoft Visio, images from Google Earth and icons representing first responders, equipment resources, local hospital emergency department bed capacity, and trauma victims. The authors also tested participants' knowledge in the areas of communications, incident command systems (ICS), and triage. Participants attended Managing Multiple-Casualty Incidents (MCIs), a one-day training which offered pre- and post-tests, two one-hour functional exercises, and four distinct, one-hour didactic instructional periods. Two MCI functional exercises were conducted. The one-hour trainings focused on communications, National Incident Management Systems/Incident Command Systems (NIMS/ICS) and professional roles and responsibilities in NIMS and triage. The trainings were offered throughout communities in western Montana. First response resource inventories and general manpower statistics for fire, police, Emergency Medical Services (EMS), and emergency department hospital bed capacity were determined prior to MCI scenario construction. A test was given prior to and after the training activities. A total of 175 firefighters, EMS, law enforcement, hospital personnel or other first-responders completed the pre- and post-test. Firefighters produced higher baseline scores than all other disciplines during pre-test analysis. At the end of the training all disciplines demonstrated significantly higher scores on the post-test when compared with their respective baseline averages. Improvements in post-test scores were noted for participants from all disciplines and in all didactic areas: communications, NIMS/ICS, and triage. Mass-casualty incidents offer significant challenges for prehospital and emergency room workers. Fire, Police and EMS personnel must secure the scene, establish communications, define individuals' roles and responsibilities, allocate resources, triage patients, and assign transport priorities. After emergency department notification and in advance of arrival, emergency department personnel must assess available physical resources and availability and type of manpower, all while managing patients already under their care. Mass-casualty incident trainings should strengthen the key, individual elements essential to well-coordinated response such as communications, incident management system and triage. The practice scenarios should be matched to the specific resources of the community. The authors also believe that these trainings should be provided with all disciplines represented to eliminate training "silos," to allow for discussion of overlapping jurisdictional or organizational responsibilities, and to facilitate team building.

  10. Assessment of Army Contracting Command’s Contract Management Processes (TACOM and RDECOM)

    DTIC Science & Technology

    2011-04-01

    Management Processes (TACOM and RDECOM)” was prepared for and funded by the Acquisition Program, Graduate School of Business & Public Policy, Naval...system and the Evolved Expendable Launch Vehicle rocket program. Rendon has taught contract management courses for the UCLA Government Contracts...program; he was also a senior faculty member for the Keller Graduate School of Management, where he taught MBA courses in project management and

  11. Command Center Training Tool (C2T2)

    NASA Technical Reports Server (NTRS)

    Jones, Phillip; Drucker, Nich; Mathews, Reejo; Stanton, Laura; Merkle, Ed

    2012-01-01

    This abstract presents the training approach taken to create a management-centered, experiential learning solution for the Virginia Port Authority's Port Command Center. The resultant tool, called the Command Center Training Tool (C2T2), follows a holistic approach integrated across the training management cycle and within a single environment. The approach allows a single training manager to progress from training design through execution and AAR. The approach starts with modeling the training organization, identifying the organizational elements and their individual and collective performance requirements, including organizational-specific performance scoring ontologies. Next, the developer specifies conditions, the problems, and constructs that compose exercises and drive experiential learning. These conditions are defined by incidents, which denote a single, multi-media datum, and scenarios, which are stories told by incidents. To these layered, modular components, previously developed meta-data is attached, including associated performance requirements. The components are then stored in a searchable library An event developer can create a training event by searching the library based on metadata and then selecting and loading the resultant modular pieces. This loading process brings into the training event all the previously associated task and teamwork material as well as AAR preparation materials. The approach includes tools within an integrated management environment that places these materials at the fingertips of the event facilitator such that, in real time, the facilitator can track training audience performance and resultantly modify the training event. The approach also supports the concentrated knowledge management requirements for rapid preparation of an extensive AAR. This approach supports the integrated training cycle and allows a management-based perspective and advanced tools, through which a complex, thorough training event can be developed.

  12. Robot Sequencing and Visualization Program (RSVP)

    NASA Technical Reports Server (NTRS)

    Cooper, Brian K.; Maxwell,Scott A.; Hartman, Frank R.; Wright, John R.; Yen, Jeng; Toole, Nicholas T.; Gorjian, Zareh; Morrison, Jack C

    2013-01-01

    The Robot Sequencing and Visualization Program (RSVP) is being used in the Mars Science Laboratory (MSL) mission for downlink data visualization and command sequence generation. RSVP reads and writes downlink data products from the operations data server (ODS) and writes uplink data products to the ODS. The primary users of RSVP are members of the Rover Planner team (part of the Integrated Planning and Execution Team (IPE)), who use it to perform traversability/articulation analyses, take activity plan input from the Science and Mission Planning teams, and create a set of rover sequences to be sent to the rover every sol. The primary inputs to RSVP are downlink data products and activity plans in the ODS database. The primary outputs are command sequences to be placed in the ODS for further processing prior to uplink to each rover. RSVP is composed of two main subsystems. The first, called the Robot Sequence Editor (RoSE), understands the MSL activity and command dictionaries and takes care of converting incoming activity level inputs into command sequences. The Rover Planners use the RoSE component of RSVP to put together command sequences and to view and manage command level resources like time, power, temperature, etc. (via a transparent realtime connection to SEQGEN). The second component of RSVP is called HyperDrive, a set of high-fidelity computer graphics displays of the Martian surface in 3D and in stereo. The Rover Planners can explore the environment around the rover, create commands related to motion of all kinds, and see the simulated result of those commands via its underlying tight coupling with flight navigation, motor, and arm software. This software is the evolutionary replacement for the Rover Sequencing and Visualization software used to create command sequences (and visualize the Martian surface) for the Mars Exploration Rover mission.

  13. Military Humanitarian/Civic Action: The Reserve Component as An Instrument of United States Strategy in Latin America.

    DTIC Science & Technology

    1998-01-22

    U.S. Army missions have established a tradition that continued in flood control and the maintenance of some of the country’s major river transportation ...Sefton III, Commander of Task Force 1169, during JTX "Abriendo Rutas 󈨛", stated that "training opportunities on an exercise of this type simply...bulk of RC training activity in Latin America. However, support units such as military police, supply, maintenance, transportation , communication

  14. Prospective Vigilance: Assessing Complex Coordinated Attack Preparedness Programs

    DTIC Science & Technology

    2017-12-01

    for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and...significant challenges with incident command, strategic communication, and information management ; limitations in both training and equipment; and... information management ; limitations in both training and equipment; and inadequate response protocols.9 During the Mumbai CCA, fire and emergency

  15. Interservice Availability of Multiservice Used Items.

    DTIC Science & Technology

    1999-05-14

    Assistant Deputy Under Secretary of Defense (Materiel and Distribution Management ) and the Defense Logistics Agency concurred or partially concurred with...Secretary of Defense (Materiel and Distribution Management ) Comments 19 Joint Logistics Commanders Joint Secretariat Comments 22 Defense Logistics Agency...Secretary of Defense (Materiel and Distribution Management ) Comments. The Acting Assistant Deputy Under Secretary partially concurred, stating that disposal

  16. Military Preparedness

    DTIC Science & Technology

    2015-09-01

    United States Army War College Department of Command, Leadership, and Management Carlisle Barracks, Carlisle, PA Military Preparednessa Dr...The question seems a simple one at the national level, but in defense management practice it is actually two questions rolled into one, and the...documents, readiness management processes and systems assess those capabilities and aid in remedial action to correct deficiencies. The second question is

  17. A Decision Analysis Tool for the Source Selection Process

    DTIC Science & Technology

    2006-03-01

    THE SOURCE SELECTION PROCESS THESIS Presented to the Faculty Department of Systems and Engineering Management Graduate School of...Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of...the Requirements for the Degree of Master of Science in Engineering Management John R. Trumm, BS Captain, USAF March 2006

  18. Business Continuity Management Plan

    DTIC Science & Technology

    2014-12-01

    organization ( Shaw , 2004). Navy Supply Systems Command (NAVSUP) does not have a framework that can help develop a business continuity management (BCM...cites two case studies that demonstrate how an organization mitigated issues during catastrophic events that led to disruptions to their business ...www.uschamber.com/sites/default/files/legacy/ issues /defense/files/guideli nesbc.pdf Comprehensive Emergency Management Associates. (2006). Business continuity

  19. Noncombatant Evacuation Operations: Department of State’s Lessons Learned Program

    DTIC Science & Technology

    2016-06-10

    student author and do not necessarily represent the views of the U.S. Army Command and General Staff College or any other U.S. governmental agency...68 viii ACRONYMS AAR After Action Review CALL Center for Army Lessons Learned CMS Crisis Management Support CMU Crisis Management ...Knowledge Management Chart .......................................................................25 Figure 5. Organization Chart

  20. NRL Fact Book

    DTIC Science & Technology

    1983-03-01

    Mr. W.S. Kratz BMC M.R. Fishe Mr. R.G. Trott Administrative Officer Security Officer r Operations Officer Facilities Manager and Head, Maintenance and...Division 20 Financial Management Division 22 Management Information Division 24 Civilian Personnel Division 26 THE TECHNICAL SERVICES DIRECTORATE 29 Office...the neighborhood of 3200. The overall management of the Laboratory is under the direction of a Naval Commanding Officer -nd a civilian Director of

  1. Evaluation of medical command and control using performance indicators in a full-scale, major aircraft accident exercise.

    PubMed

    Gryth, Dan; Rådestad, Monica; Nilsson, Heléne; Nerf, Ola; Svensson, Leif; Castrén, Maaret; Rüter, Anders

    2010-01-01

    Large, functional, disaster exercises are expensive to plan and execute, and often are difficult to evaluate objectively. Command and control in disaster medicine organizations can benefit from objective results from disaster exercises to identify areas that must be improved. The objective of this pilot study was to examine if it is possible to use performance indicators for documentation and evaluation of medical command and control in a full-scale major incident exercise at two levels: (1) local level (scene of the incident and hospital); and (2) strategic level of command and control. Staff procedure skills also were evaluated. Trained observers were placed in each of the three command and control locations. These observers recorded and scored the performance of command and control using templates of performance indicators. The observers scored the level of performance by awarding 2, 1, or 0 points according to the template and evaluated content and timing of decisions. Results from 11 performance indicators were recorded at each template and scores greater than 11 were considered as acceptable. Prehospital command and control had the lowest score. This also was expressed by problems at the scene of the incident. The scores in management and staff skills were at the strategic level 15 and 17, respectively; and at the hospital level, 17 and 21, respectively. It is possible to use performance indicators in a full-scale, major incident exercise for evaluation of medical command and control. The results could be used to compare similar exercises and evaluate real incidents in the future.

  2. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Reporting potentially hazardous... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... knowledge of which he considers essential to the safety of other flights, the pilot in command shall notify...

  3. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Reporting potentially hazardous... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... knowledge of which he considers essential to the safety of other flights, the pilot in command shall notify...

  4. 14 CFR 125.321 - Reporting potentially hazardous meteorological conditions and irregularities of ground and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Reporting potentially hazardous... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... or navigation aid in flight, the knowledge of which the pilot in command considers essential to the...

  5. 14 CFR 125.321 - Reporting potentially hazardous meteorological conditions and irregularities of ground and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Reporting potentially hazardous... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... or navigation aid in flight, the knowledge of which the pilot in command considers essential to the...

  6. 14 CFR 125.379 - Landing weather minimums: IFR.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...

  7. 14 CFR 125.379 - Landing weather minimums: IFR.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...

  8. 14 CFR 125.379 - Landing weather minimums: IFR.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...

  9. 14 CFR 125.379 - Landing weather minimums: IFR.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...

  10. 14 CFR 125.379 - Landing weather minimums: IFR.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...

  11. 78 FR 17085 - Amendment of Multiple Restricted Areas; Eglin AFB, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 73 [Docket No. FAA-2013... date: 0901 UTC, May 2, 2013. FOR FURTHER INFORMATION CONTACT: Paul Gallant, Airspace Policy and ATC... [Amended] By removing the words ``Using agency. U.S. Air Force, Commander, Air Armament Center, Eglin AFB...

  12. 32 CFR 621.4 - Issues, loans, and donations for scouting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to commodity command or military deparment property loaned to (Boy Scouts of America). Upon... of America and the Girl Scouts of America. (b) Guidance. (1) Issues are made under the provisions of... Equipment and Providing of Transportation and Other Services to the Boy Scouts of America for World and...

  13. 32 CFR 621.4 - Issues, loans, and donations for scouting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to commodity command or military deparment property loaned to (Boy Scouts of America). Upon... of America and the Girl Scouts of America. (b) Guidance. (1) Issues are made under the provisions of... Equipment and Providing of Transportation and Other Services to the Boy Scouts of America for World and...

  14. 32 CFR 621.4 - Issues, loans, and donations for scouting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to commodity command or military department property loaned to (Boy Scouts of America). Upon... of America and the Girl Scouts of America. (b) Guidance. (1) Issues are made under the provisions of... Equipment and Providing of Transportation and Other Services to the Boy Scouts of America for World and...

  15. 32 CFR 621.4 - Issues, loans, and donations for scouting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to commodity command or military deparment property loaned to (Boy Scouts of America). Upon... of America and the Girl Scouts of America. (b) Guidance. (1) Issues are made under the provisions of... Equipment and Providing of Transportation and Other Services to the Boy Scouts of America for World and...

  16. 32 CFR 621.4 - Issues, loans, and donations for scouting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to commodity command or military department property loaned to (Boy Scouts of America). Upon... of America and the Girl Scouts of America. (b) Guidance. (1) Issues are made under the provisions of... Equipment and Providing of Transportation and Other Services to the Boy Scouts of America for World and...

  17. 14 CFR 121.437 - Pilot qualification: Certificates required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot qualification: Certificates required... Pilot qualification: Certificates required. (a) No pilot may act as pilot in command of an aircraft (or... pilots) unless he holds an airline transport pilot certificate and an appropriate type rating for that...

  18. 14 CFR 121.437 - Pilot qualification: Certificates required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot qualification: Certificates required... Pilot qualification: Certificates required. (a) No pilot may act as pilot in command of an aircraft (or... pilots) unless he holds an airline transport pilot certificate and an appropriate type rating for that...

  19. United States Transportation Command (USTRANSCOM) 2008 Annual Report

    DTIC Science & Technology

    2008-01-01

    enthusiastic about the potential offered by AIT. The DOD currently has the largest active RFID ( aRFID ) system in the world. It provides the ability...to develop the satellite tracking business case for those situations where the aRFID infrastructure is less robust or nonexistent. USTRANSCOM is also

  20. Portraits - STS-1

    NASA Image and Video Library

    1979-05-07

    S79-31775 (29 April 1979) --- These two astronauts are the prime crewmen for the first flight in the Space Transportation System (STS-1) program. Astronauts John W. Young, left, commander, and Robert L. Crippen, pilot, will man the space shuttle orbiter 102 Columbia for the first orbital flight test. Photo credit: NASA

Top