Sample records for management imaging correlation

  1. Imaging pediatric magnet ingestion with surgical-pathological correlation.

    PubMed

    Otjen, Jeffrey P; Rohrmann, Charles A; Iyer, Ramesh S

    2013-07-01

    Foreign body ingestion is a common problem in the pediatric population and a frequent cause for emergency room visits. Magnets are common household objects that when ingested can bring about severe, possibly fatal gastrointestinal complications. Radiography is an integral component of the management of these children. Pediatric and emergency radiologists alike must be aware of imaging manifestations of magnet ingestion, as their identification drives decision-making for consulting surgeons and gastroenterologists. Radiology can thus substantially augment the clinical history and physical exam, facilitating appropriate management. This manuscript sequentially presents cases of magnet ingestion featuring imaging findings coupled with surgical and pathological correlation. Each case is presented to highlight ways in which the radiologist can make impactful contributions to diagnosis and management. Clinical overview with pitfalls of magnet ingestion imaging and an imaging decision tree will also be presented.

  2. Subsolid pulmonary nodules: imaging evaluation and strategic management.

    PubMed

    Godoy, Myrna C B; Sabloff, Bradley; Naidich, David P

    2012-07-01

    Given the higher rate of malignancy of subsolid pulmonary nodules and the considerably lower growth rate of ground-glass nodules (GGNs), dedicated standardized guidelines for management of these nodules have been proposed, including long-term low-dose computed tomography (CT) follow-up (≥3 years). Physicians must be familiar with the strategic management of subsolid pulmonary nodules, and should be able to identify imaging features that suggest invasive adenocarcinoma requiring a more aggressive management. Low-dose CT screening studies for early detection of lung cancer have increased our knowledge of pulmonary nodules, and in particular our understanding of the strong although imperfect correlation of the subsolid pulmonary nodules, including pure GGNs and part-solid nodules, with the spectrum of preinvasive to invasive lung adenocarcinoma. Serial CT imaging has shown stepwise progression in a subset of these nodules, characterized by increase in size and density of pure GGNs and development of a solid component, the latter usually indicating invasive adenocarcinoma. There is close correlation between the CT features of subsolid nodules (SSNs) and the spectrum of lung adenocarcinoma. Standardized guidelines are suggested for management of SSNs.

  3. Evaluation of an off-the-shelf mobile telemedicine model in emergency department wound assessment and management.

    PubMed

    Van Dillen, Christine; Silvestri, Salvatore; Haney, Marisa; Ralls, George; Zuver, Christian; Freeman, Dave; Diaz, Lissa; Papa, Linda

    2013-02-01

    We examined the agreement between a videoconference-based evaluation and a bedside evaluation in the management of acute traumatic wounds in an emergency department. Adult and paediatric patients with acute wounds of various severities to the face, trunk and/or extremities presenting to the emergency department within 24 hours of injury were enrolled. Research assistants transmitted video images of the wound to an emergency physician using a laptop computer. The physician completed a standard wound assessment form before conducting a bedside evaluation and then completing a second assessment form. The primary outcome measure was wound length and depth. We also assessed management decision-making. A total of 173 wounds were evaluated. The correlation coefficient between video and bedside assessments was 0.96 for wound length. The mean difference between the lengths was 0.02 cm (SD 0.91). Management of the wound would have been the same in 94% of cases. The agreement on wound characteristics and wound management ranged from 84-100%. The highest correlation was 0.92 in suture material used and the lowest correlation was 0.64 in wound type. The ability of video images to distinguish between a minor and non-minor wound, and predicting the need for hospital management, had high degrees of sensitivity and specificity. The study showed that wound characteristics and management decisions appear to correlate well between video and bedside evaluations.

  4. Automated search and retrieval of information from imaged documents using optical correlation techniques

    NASA Astrophysics Data System (ADS)

    Stalcup, Bruce W.; Dennis, Phillip W.; Dydyk, Robert B.

    1999-10-01

    Litton PRC and Litton Data Systems Division are developing a system, the Imaged Document Optical Correlation and Conversion System (IDOCCS), to provide a total solution to the problem of managing and retrieving textual and graphic information from imaged document archives. At the heart of IDOCCS, optical correlation technology provides the search and retrieval of information from imaged documents. IDOCCS can be used to rapidly search for key words or phrases within the imaged document archives. In addition, IDOCCS can automatically compare an input document with the archived database to determine if it is a duplicate, thereby reducing the overall resources required to maintain and access the document database. Embedded graphics on imaged pages can also be exploited; e.g., imaged documents containing an agency's seal or logo can be singled out. In this paper, we present a description of IDOCCS as well as preliminary performance results and theoretical projections.

  5. Longitudinal Imaging of Cancer Cell Metastases in Two Preclinical Models: A Correlation of Noninvasive Imaging to Histopathology

    PubMed Central

    Adiseshaiah, Pavan P.; Patel, Nimit L.; Ileva, Lilia V.; Kalen, Joseph D.; Haines, Diana C.; McNeil, Scott E.

    2014-01-01

    Metastatic spread is the leading cause of death from cancer. Early detection of cancer at primary and metastatic sites by noninvasive imaging modalities would be beneficial for both therapeutic intervention and disease management. Noninvasive imaging modalities such as bioluminescence (optical), positron emission tomography (PET)/X-ray computed tomography (CT), and magnetic resonance imaging (MRI) can provide complementary information and accurately measure tumor growth as confirmed by histopathology. Methods. We validated two metastatic tumor models, MDA-MD-231-Luc and B16-F10-Luc intravenously injected, and 4T1-Luc cells orthotopically implanted into the mammary fat pad. Longitudinal whole body bioluminescence imaging (BLI) evaluated metastasis, and tumor burden of the melanoma cell line (B16-F10-Luc) was correlated with (PET)/CT and MRI. In addition, ex vivo imaging evaluated metastasis in relevant organs and histopathological analysis was used to confirm imaging. Results. BLI revealed successful colonization of cancer cells in both metastatic tumor models over a 4-week period. Furthermore, lung metastasis of B16-F10-Luc cells imaged by PET/CT at week four showed a strong correlation (R 2 = 0.9) with histopathology. The presence and degree of metastasis as determined by imaging correlated (R 2 = 0.7) well with histopathology findings. Conclusions. We validated two metastatic tumor models by longitudinal noninvasive imaging with good histopathology correlation. PMID:24724022

  6. Multimodality imaging of ovarian cystic lesions: Review with an imaging based algorithmic approach

    PubMed Central

    Wasnik, Ashish P; Menias, Christine O; Platt, Joel F; Lalchandani, Usha R; Bedi, Deepak G; Elsayes, Khaled M

    2013-01-01

    Ovarian cystic masses include a spectrum of benign, borderline and high grade malignant neoplasms. Imaging plays a crucial role in characterization and pretreatment planning of incidentally detected or suspected adnexal masses, as diagnosis of ovarian malignancy at an early stage is correlated with a better prognosis. Knowledge of differential diagnosis, imaging features, management trends and an algorithmic approach of such lesions is important for optimal clinical management. This article illustrates a multi-modality approach in the diagnosis of a spectrum of ovarian cystic masses and also proposes an algorithmic approach for the diagnosis of these lesions. PMID:23671748

  7. [From the x-ray department to the institute for imaging diagnosis].

    PubMed

    Voegeli, E; Steck, W

    1985-02-01

    The increasing sophistication of diagnostic radiology has led to rising emphasis on modality-related training and practice in radiological subspecialties. To accomplish both optimal patient management and a rational, cost-effective analysis of imaging procedures, a comprehensive approach to modern radiology is needed rather than a technology-related attitude. The imaging department, where the various imaging data are synthesized and correlation by a general practitioner of radiology, as opposed to the subspecialty radiologist, is the most suitable solution. The principles of management and the layout of such a center are described by the authors.

  8. Nonoperative management of blunt renal trauma: Is routine early follow-up imaging necessary?

    PubMed Central

    Malcolm, John B; Derweesh, Ithaar H; Mehrazin, Reza; DiBlasio, Christopher J; Vance, David D; Joshi, Salil; Wake, Robert W; Gold, Robert

    2008-01-01

    Background There is no consensus on the role of routine follow-up imaging during nonoperative management of blunt renal trauma. We reviewed our experience with nonoperative management of blunt renal injuries in order to evaluate the utility of routine early follow-up imaging. Methods We reviewed all cases of blunt renal injury admitted for nonoperative management at our institution between 1/2002 and 1/2006. Data were compiled from chart review, and clinical outcomes were correlated with CT imaging results. Results 207 patients were identified (210 renal units). American Association for the Surgery of Trauma (AAST) grades I, II, III, IV, and V were assigned to 35 (16%), 66 (31%), 81 (39%), 26 (13%), and 2 (1%) renal units, respectively. 177 (84%) renal units underwent routine follow-up imaging 24–48 hours after admission. In three cases of grade IV renal injury, a ureteral stent was placed after serial imaging demonstrated persistent extravasation. In no other cases did follow-up imaging independently alter clinical management. There were no urologic complications among cases for which follow-up imaging was not obtained. Conclusion Routine follow-up imaging is unnecessary for blunt renal injuries of grades I-III. Grade IV renovascular injuries can be followed clinically without routine early follow-up imaging, but urine extravasation necessitates serial imaging to guide management decisions. The volume of grade V renal injuries in this study is not sufficient to support or contest the need for routine follow-up imaging. PMID:18768088

  9. Diagnosis of long head of biceps tendinopathy in rotator cuff tear patients: correlation of imaging and arthroscopy data.

    PubMed

    Rol, Morgane; Favard, Luc; Berhouet, Julien

    2018-06-01

    The goal of this prospective study was to assess the reliability of pre-operative cross-sectional imaging for the diagnosis of long head of biceps (LHB) tendinopathy in patients with a rotator cuff tear. Cross-sectional imaging with MRI or CT arthrography data from 25 patients operated upon because of a rotator cuff tear between 1 October 2015 and 1 April 2016 was analysed by one experienced orthopaedic surgeon, one experienced radiologist and one orthopaedic resident. The analysis consisted of determining whether the LHB was present, the extrinsic tendon abnormalities (dislocation, tendon coverage) and intrinsic abnormalities (fraying, inflammation, degeneration). These findings were then compared to intra-operative arthroscopy findings, which were used as the benchmark. The interobserver correlation between the three different examiners for the cross-sectional imaging analysis as well as the correlation between the imaging and arthroscopy data were determined. The correlation between the imaging and arthroscopy data was the highest (80%) for the determination of LHB dislocation from the bicipital groove. The other diagnostic elements (subluxation, coverage and tendon degeneration) were difficult to discern with preoperative imaging, and correlated poorly with the arthroscopy findings (45% to 65%). The interobserver correlation was moderate to strong for the diagnosis of extrinsic tendon abnormalities. It was low to moderate for intrinsic abnormalities. Except for LHB dislocation, pre-operative imaging is not sufficient to make a reliable diagnosis of LHB tendinopathy. Arthroscopy remains the gold standard for the management of LHB tendinopathy, as diagnosed intra-operatively.

  10. Prenatal diagnosis of holoprosencephaly.

    PubMed

    Kousa, Youssef A; du Plessis, Adré J; Vezina, Gilbert

    2018-05-17

    Holoprosencephaly is a spectrum of congenital defects of forebrain development characterized by incomplete separation of the cerebral hemispheres. In vivo diagnosis can be established with prenatal brain imaging and disease severity correlates with extent of abnormally developed brain tissue. Advances in magnetic resonance imaging (MRI) over the past 25 years and their application to the fetus have enabled diagnosis of holoprosencephaly in utero. Here, we report on the prenatal diagnosis of holoprosencephaly using MRI as part of a diagnostic and management evaluation at a tertiary and quaternary referral center. Using an advanced MRI protocol and a 1.5-Tesla magnet, we show radiographic data diagnostic for the holoprosencephaly spectrum, including alobar, semilobar, lobar, middle interhemispheric, and septopreoptic variant. Accurate prenatal evaluation is important because the severity of imaging findings correlates with postnatal morbidity and mortality in holoprosencephaly. Therefore, this work has implications for the evaluation, diagnosis, management, and genetic counseling that families can receive during a pregnancy. © 2018 Wiley Periodicals, Inc.

  11. The use of computer-assisted image analysis in the evaluation of the effect of management systems on changes in the color, chemical composition and texture of m. longissimus dorsi in pigs.

    PubMed

    Zapotoczny, Piotr; Kozera, Wojciech; Karpiesiuk, Krzysztof; Pawłowski, Rodian

    2014-08-01

    The effect of management systems on selected physical properties and chemical composition of m. longissimus dorsi was studied in pigs. Muscle texture parameters were determined by computer-assisted image analysis, and the color of muscle samples was evaluated using a spectrophotometer. Highly significant correlations were observed between chemical composition and selected texture variables in the analyzed images. Chemical composition was not correlated with color or spectral distribution. Subject to the applied classification methods and groups of variables included in the classification model, the experimental groups were identified correctly in 35-95%. No significant differences in the chemical composition of m. longissimus dorsi were observed between experimental groups. Significant differences were noted in color lightness (L*) and redness (a*). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. High-Performance Computational Analysis of Glioblastoma Pathology Images with Database Support Identifies Molecular and Survival Correlates.

    PubMed

    Kong, Jun; Wang, Fusheng; Teodoro, George; Cooper, Lee; Moreno, Carlos S; Kurc, Tahsin; Pan, Tony; Saltz, Joel; Brat, Daniel

    2013-12-01

    In this paper, we present a novel framework for microscopic image analysis of nuclei, data management, and high performance computation to support translational research involving nuclear morphometry features, molecular data, and clinical outcomes. Our image analysis pipeline consists of nuclei segmentation and feature computation facilitated by high performance computing with coordinated execution in multi-core CPUs and Graphical Processor Units (GPUs). All data derived from image analysis are managed in a spatial relational database supporting highly efficient scientific queries. We applied our image analysis workflow to 159 glioblastomas (GBM) from The Cancer Genome Atlas dataset. With integrative studies, we found statistics of four specific nuclear features were significantly associated with patient survival. Additionally, we correlated nuclear features with molecular data and found interesting results that support pathologic domain knowledge. We found that Proneural subtype GBMs had the smallest mean of nuclear Eccentricity and the largest mean of nuclear Extent, and MinorAxisLength. We also found gene expressions of stem cell marker MYC and cell proliferation maker MKI67 were correlated with nuclear features. To complement and inform pathologists of relevant diagnostic features, we queried the most representative nuclear instances from each patient population based on genetic and transcriptional classes. Our results demonstrate that specific nuclear features carry prognostic significance and associations with transcriptional and genetic classes, highlighting the potential of high throughput pathology image analysis as a complementary approach to human-based review and translational research.

  13. Recreational use in dispersed public lands measured using social media data and on-site counts.

    PubMed

    Fisher, David M; Wood, Spencer A; White, Eric M; Blahna, Dale J; Lange, Sarah; Weinberg, Alex; Tomco, Michael; Lia, Emilia

    2018-09-15

    Outdoor recreation is one of many important benefits provided by public lands. Data on recreational use are critical for informing management of recreation resources, however, managers often lack actionable information on visitor use for large protected areas that lack controlled access points. The purpose of this study is to explore the potential for social media data (e.g., geotagged images shared on Flickr and trip reports shared on a hiking forum) to provide land managers with useful measures of recreational use to dispersed areas, and to provide lessons learned from comparing several more traditional counting methods. First, we measure daily and monthly visitation rates to individual trails within the Mount Baker-Snoqualmie National Forest (MBSNF) in western Washington. At 15 trailheads, we compare counts of hikers from infrared sensors, timelapse cameras, and manual on-site counts, to counts based on the number of shared geotagged images and trip reports from those locations. Second, we measure visitation rates to each National Forest System (NFS) unit across the US and compare annual measurements derived from the number of geotagged images to estimates from the US Forest Service National Visitor Use Monitoring Program. At both the NFS unit and the individual-trail scales, we found strong correlations between traditional measures of recreational use and measures based on user-generated content shared on the internet. For national forests in every region of the country, correlations between official Forest Service statistics and geotagged images ranged between 55% and 95%. For individual trails within the MBSNF, monthly visitor counts from on-site measurements were strongly correlated with counts from geotagged images (79%) and trip reports (91%). The convenient, cost-efficient and timely nature of collecting and analyzing user-generated data could allow land managers to monitor use over different seasons of the year and at sites and scales never previously monitored, contributing to a more comprehensive understanding of recreational use patterns and values. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Dual Tracer PET Imaging (68Ga-DOTATATE and 18F-FDG) Features in Pulmonary Carcinoid: Correlation with Tumor Proliferation Index.

    PubMed

    Bhatkar, Dhiraj; Utpat, Ketaki; Basu, Sandip; Joshi, Jyotsna M

    2017-01-01

    Pulmonary carcinoid tumors are rare group of lung neoplasms representing 1% of all the lung tumors. The typical bronchial carcinoids showed higher and more selective uptake of 68 Ga-DOTATATE than of 18 F-FDG on PET-CT. The Ki-67(MIB-1), a tumor proliferation index is a prognostic marker in neuroendocrine tumors for estimating tumor progression. Atypical carcinoids have higher Ki-67 index and have an increased propensity to metastasize as compared to typical ones. 68 Ga-DOTATATE PET imaging along with Ki-67 can be correlated for better management of patients with neuroendocrine tumors. We describe the dual tracer imaging features in a patient of pulmonary carcinoid with avid 68 Ga-DOTATATE and minimal 18 FDG ( 18 Flurodeoxyglucose) uptake diagnosed on the basis of imaging and bronchoscopic biopsy and its correlation with tumor proliferation index.

  15. Audiovisual biofeedback improves the correlation between internal/external surrogate motion and lung tumor motion.

    PubMed

    Lee, Danny; Greer, Peter B; Paganelli, Chiara; Ludbrook, Joanna Jane; Kim, Taeho; Keall, Paul

    2018-03-01

    Breathing management can reduce breath-to-breath (intrafraction) and day-by-day (interfraction) variability in breathing motion while utilizing the respiratory motion of internal and external surrogates for respiratory guidance. Audiovisual (AV) biofeedback, an interactive personalized breathing motion management system, has been developed to improve reproducibility of intra- and interfraction breathing motion. However, the assumption of the correlation of respiratory motion between surrogates and tumors is not always verified during medical imaging and radiation treatment. Therefore, the aim of the study was to test the hypothesis that the correlation of respiratory motion between surrogates and tumors is the same under free breathing without guidance (FB) and with AV biofeedback guidance for voluntary motion management. For 13 lung cancer patients receiving radiotherapy, 2D coronal and sagittal cine-MR images were acquired across two MRI sessions (pre- and mid-treatment) with two breathing conditions: (a) FB and (b) AV biofeedback, totaling 88 patient measurements. Simultaneously, the external respiratory motion of the abdomen was measured. The internal respiratory motion of the diaphragm and lung tumor was retrospectively measured from 2D coronal and sagittal cine-MR images. The correlation of respiratory motion between surrogates and tumors was calculated using Pearson's correlation coefficient for: (a) abdomen to tumor (abdomen-tumor) and (b) diaphragm to tumor (diaphragm-tumor). The correlations were compared between FB and AV biofeedback using several metrics: abdomen-tumor and diaphragm-tumor correlations with/without ≥5 mm tumor motion range and with/without adjusting for phase shifts between the signals. Compared to FB, AV biofeedback improved abdomen-tumor correlation by 11% (p = 0.12) from 0.53 to 0.59 and diaphragm-tumor correlation by 13% (p = 0.02) from 0.55 to 0.62. Compared to FB, AV biofeedback improved abdomen-tumor correlation by 17% (p = 0.01) and diaphragm-tumor correlation by 15% (p < 0.01) while correcting 0.3 s (p = 0.54) and 0.2 s (p = 0.19) phase shifts, respectively. In addition, AV biofeedback with ≥5 mm tumor motion range, compared to FB improved abdomen-tumor correlation by 14% (p = 0.18) and diaphragm-tumor correlation by 17% (p = 0.01). The highest abdomen-tumor and diaphragm-tumor correlations were found using ≥5 mm tumor motion range and phase shifts, resulting in a 12% improvement in AV biofeedback. Our results demonstrated that AV biofeedback improves the correlation of respiratory motion between surrogates and the tumor. This suggests a need for AV biofeedback for respiratory guidance utilizing respiratory surrogates during image-guided and MRI-guided radiotherapy in thoracic regions. © 2018 American Association of Physicists in Medicine.

  16. Image annotation based on positive-negative instances learning

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Hu, Jiwei; Liu, Quan; Lou, Ping

    2017-07-01

    Automatic image annotation is now a tough task in computer vision, the main sense of this tech is to deal with managing the massive image on the Internet and assisting intelligent retrieval. This paper designs a new image annotation model based on visual bag of words, using the low level features like color and texture information as well as mid-level feature as SIFT, and mixture the pic2pic, label2pic and label2label correlation to measure the correlation degree of labels and images. We aim to prune the specific features for each single label and formalize the annotation task as a learning process base on Positive-Negative Instances Learning. Experiments are performed using the Corel5K Dataset, and provide a quite promising result when comparing with other existing methods.

  17. Evaluation of Parkinson's disease by neuromelanin-sensitive magnetic resonance imaging and 123I-FP-CIT SPECT.

    PubMed

    Kuya, Keita; Ogawa, Toshihide; Shinohara, Yuki; Ishibashi, Mana; Fujii, Shinya; Mukuda, Naoko; Tanabe, Yoshio

    2018-05-01

    Background Both neuromelanin-sensitive magnetic resonance imaging (NmMRI) and 123 I-FP-CIT single photon emission computed tomography (SPECT) (DaTSCAN) assist the diagnosis of Parkinson's disease (PD). However, there have been few studies investigating a correlation between them. Purpose To correlate the utility of NmMRI and DaTSCAN and to evaluate the relationship between both imaging findings and the Unified PD rating scale part III (UPDRS III) score for the diagnosis and management of PD. Material and Methods Seventeen patients with PD who underwent both NmMRI and DaTSCAN were included. We measured the volume of the neuromelanin-positive substantia nigra pars compacta (SNc volume) on NmMRI and measured the specific binding ratio (SBR) on DaTSCAN. The asymmetry index (AI) of the SNc volume and SBR were also calculated. We evaluated the relationship between the UPDRS III score and the SNc volume and SBR, respectively. Results The SNc volume showed a significant correlation with the SBR. The AIs of them also showed a significant correlation. Both the mean of the bilateral SBR and the mean of the bilateral SNc volume showed significant negative correlations with the UPDRS III score. However, the correlation between the SBR and the UPDRS III score was stronger than that between the SNc volume and the UPDRS III score. Conclusion Both NmMRI and DaTSCAN are helpful for PD diagnosis. However, we conclude that DaTSCAN is more suitable for the evaluation of the clinical motor severity and would be more useful for the management of PD patients than NmMRI.

  18. An image based information system - Architecture for correlating satellite and topological data bases

    NASA Technical Reports Server (NTRS)

    Bryant, N. A.; Zobrist, A. L.

    1978-01-01

    The paper describes the development of an image based information system and its use to process a Landsat thematic map showing land use or land cover in conjunction with a census tract polygon file to produce a tabulation of land use acreages per census tract. The system permits the efficient cross-tabulation of two or more geo-coded data sets, thereby setting the stage for the practical implementation of models of diffusion processes or cellular transformation. Characteristics of geographic information systems are considered, and functional requirements, such as data management, geocoding, image data management, and data analysis are discussed. The system is described, and the potentialities of its use are examined.

  19. Damage estimation of sewer pipe using subtitles of CCTV inspection video

    NASA Astrophysics Data System (ADS)

    Park, Kitae; Kim, Byeongcheol; Kim, Taeheon; Seo, Dongwoo

    2017-04-01

    Recent frequent occurrence of urban sinkhole serves as a momentum of the periodic inspection of sewer pipelines. Sewer inspection using a CCTV device needs a lot of time and efforts. Many of previous studies which reduce the laborious tasks are mainly interested in the developments of image processing S/W and exploring H/W. And there has been no attempt to find meaningful information from the existing CCTV images stored by the sewer maintenance manager. This study adopts a cross-correlation based image processing method and extracts sewer inspection device's location data from CCTV images. As a result of the analysis of location-time relation, it show strong correlation between device stand time and the sewer damages. In case of using this method to investigate sewer inspection CCTV images, it will save the investigator's efforts and improve sewer maintenance efficiency and reliability.

  20. Dual-phase CT for the assessment of acute vascular injuries in high-energy blunt trauma: the imaging findings and management implications.

    PubMed

    Iacobellis, Francesca; Ierardi, Anna M; Mazzei, Maria A; Magenta Biasina, Alberto; Carrafiello, Gianpaolo; Nicola, Refky; Scaglione, Mariano

    2016-01-01

    Acute vascular injuries are the second most common cause of fatalities in patients with multiple traumatic injuries; thus, prompt identification and management is essential for patient survival. Over the past few years, multidetector CT (MDCT) using dual-phase scanning protocol has become the imaging modality of choice in high-energy deceleration traumas. The objective of this article was to review the role of dual-phase MDCT in the identification and management of acute vascular injuries, particularly in the chest and abdomen following multiple traumatic injuries. In addition, this article will provide examples of MDCT features of acute vascular injuries with correlative surgical and interventional findings.

  1. Spatiotemporal correlation of optical coherence tomography in-vivo images of rabbit airway for the diagnosis of edema

    NASA Astrophysics Data System (ADS)

    Kang, DongYel; Wang, Alex; Volgger, Veronika; Chen, Zhongping; Wong, Brian J. F.

    2015-07-01

    Detection of an early stage of subglottic edema is vital for airway management and prevention of stenosis, a life-threatening condition in critically ill neonates. As an observer for the task of diagnosing edema in vivo, we investigated spatiotemporal correlation (STC) of full-range optical coherence tomography (OCT) images acquired in the rabbit airway with experimentally simulated edema. Operating the STC observer on OCT images generates STC coefficients as test statistics for the statistical decision task. Resulting from this, the receiver operating characteristic (ROC) curves for the diagnosis of airway edema with full-range OCT in-vivo images were extracted and areas under ROC curves were calculated. These statistically quantified results demonstrated the potential clinical feasibility of the STC method as a means to identify early airway edema.

  2. Advances in MR imaging for cervical spondylotic myelopathy.

    PubMed

    Ellingson, Benjamin M; Salamon, Noriko; Holly, Langston T

    2015-04-01

    To outline the pathogenesis of cervical spondylotic myelopathy (CSM), the correlative abnormalities observed on standard magnetic resonance imaging (MRI), the biological implications and current status of diffusion tensor imaging (DTI), and MR spectroscopy (MRS) as clinical tools, and future directions of MR technology in the management of CSM patients. A systematic review of the pathogenesis and current state-of-the-art in MR imaging technology for CSM was performed. CSM is caused by progressive, degenerative, vertebral column abnormalities that result in spinal cord damage related to both primary mechanical and secondary biological injuries. The T2 signal change on conventional MRI is most commonly associated with neurological deficits, but tends not to be a sensitive predictor of recovery of function. DTI and MRS show altered microstructure and biochemistry that reflect patient-specific pathogenesis. Advanced imaging techniques, including DTI and MRS, show higher sensitivity to microstructural and biochemical changes within the cord, and may aid in management of CSM patients.

  3. Self-presentational persona: simultaneous management of multiple impressions.

    PubMed

    Leary, Mark R; Allen, Ashley Batts

    2011-11-01

    Most research on self-presentation has examined how people convey images of themselves on only 1 or 2 dimensions at a time. In everyday interactions, however, people often manage their impressions on several image-relevant dimensions simultaneously. By examining people's self-presentations to several targets across multiple dimensions, these 2 studies offer new insights into the nature of self-presentation and provide a novel paradigm for studying impression management. Results showed that most people rely on a relatively small number of basic self-presentational personas in which they convey particular profiles of impressions as a set and that these personas reflect both normative influences to project images that are appropriate to a particular target and distinctive influences by which people put an idiosyncratic spin on these normative images. Furthermore, although people's self-presentational profiles correlate moderately with their self-views, they tailor their public images to specific targets. The degree to which participants' self-presentations were normative and distinctive, as well as the extent to which they reflected their own self-views, were moderated by individual differences in agreeableness, self-esteem, authenticity, and Machiavellianism.

  4. Novel methods of imaging and analysis for the thermoregulatory sweat test.

    PubMed

    Carroll, Michael Sean; Reed, David W; Kuntz, Nancy L; Weese-Mayer, Debra Ellyn

    2018-06-07

    The thermoregulatory sweat test (TST) can be central to the identification and management of disorders affecting sudomotor function and small sensory and autonomic nerve fibers, but the cumbersome nature of the standard testing protocol has prevented its widespread adoption. A high resolution, quantitative, clean and simple assay of sweating could significantly improve identification and management of these disorders. Images from 89 clinical TSTs were analyzed retrospectively using two novel techniques. First, using the standard indicator powder, skin surface sweat distributions were determined algorithmically for each patient. Second, a fundamentally novel method using thermal imaging of forced evaporative cooling was evaluated through comparison with the standard technique. Correlation and receiver operating characteristic analyses were used to determine the degree of match between these methods, and the potential limits of thermal imaging were examined through cumulative analysis of all studied patients. Algorithmic encoding of sweating and non-sweating regions produces a more objective analysis for clinical decision making. Additionally, results from the forced cooling method correspond well with those from indicator powder imaging, with a correlation across spatial regions of -0.78 (CI: -0.84 to -0.71). The method works similarly across body regions, and frame-by-frame analysis suggests the ability to identify sweating regions within about 1 second of imaging. While algorithmic encoding can enhance the standard sweat testing protocol, thermal imaging with forced evaporative cooling can dramatically improve the TST by making it less time-consuming and more patient-friendly than the current approach.

  5. The Clinical Impact of Resident-attending Discrepancies in On-call Radiology Reporting: A Retrospective Assessment.

    PubMed

    McWilliams, Sebastian R; Smith, Christopher; Oweis, Yaseen; Mawad, Kareem; Raptis, Constantine; Mellnick, Vincent

    2018-06-01

    The purpose of this study is to quantify the clinical impact of resident-attending discrepancies at a tertiary referral academic radiology residency program by assessing rates of intervention, discrepancy confirmation, recall rate, and management change rate; furthermore, a discrepancy categorization system will be assessed. Retrospective review of the records was performed for n = 1482 discrepancies that occurred in the 17-month study period to assess the clinical impact of discrepancies. Discrepancies were grouped according to a previously published classification system. Management changes were recorded and grouped by severity. The recall rate was estimated for discharged patients. Any confirmatory testing was reviewed to evaluate the accuracy of the discrepant report. Categorical variables were compared to the chi-square test. The 1482 discrepancies led to management change in 661 cases (44.6%). The most common management change was follow-up imaging. Procedural interventions including surgery occurred in 50 cases (3.3%). The recall rate was 2.6%. Management changes were more severe with computed tomography examinations, inpatients, and when the discrepancy was in the chest and abdomen subspecialty. Also, management changes correlated with the discrepancy category assigned by the attending at the time of review. Resident-attending discrepancies do cause management changes in 44.6% of discrepancies (0.62% overall); the most frequent change is follow-up imaging. The discrepancy categorization assigned by the attending correlated with the severity of management change. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  6. Penetrating abdominal injuries: management controversies

    PubMed Central

    Butt, Muhammad U; Zacharias, Nikolaos; Velmahos, George C

    2009-01-01

    Penetrating abdominal injuries have been traditionally managed by routine laparotomy. New understanding of trajectories, potential for organ injury, and correlation with advanced radiographic imaging has allowed a shift towards non-operative management of appropriate cases. Although a selective approach has been established for stab wounds, the management of abdominal gunshot wounds remains a matter of controversy. In this chapter we describe the rationale and methodology of selecting patients for non-operative management. We also discuss additional controversial issues, as related to antibiotic prophylaxis, management of asymptomatic thoracoabdominal injuries, and the use of colostomy vs. primary repair for colon injuries. PMID:19374761

  7. Instrumentation, digital image correlation, and modeling to monitor bridge behavior and condition assessment.

    DOT National Transportation Integrated Search

    2015-06-01

    Bridge managers have historically relied on visual inspection reports and field observation, including : photographs, to assess bridge health. The inclusion of instrumentation, including strain gauges, along : with a structural model can enhance brid...

  8. Do the SRS-22 self-image and mental health domain scores reflect the degree of asymmetry of the back in adolescent idiopathic scoliosis?

    PubMed

    Cheshire, James; Gardner, Adrian; Berryman, Fiona; Pynsent, Paul

    2017-01-01

    Patient-reported outcomes are becoming increasingly recognised in the management of patients with adolescent idiopathic scoliosis (AIS). Integrated Shape Imaging System 2 (ISIS2) surface topography is a validated tool to assess AIS. Previous studies have failed to demonstrate strong correlations between AIS and patient-reported outcomes highlighting the need for additional objective surface parameters to define the deformities associated with AIS. The aim of this study was to examine whether the Scoliosis Research Society-22 (SRS-22) outcome questionnaire reflects the degree of measurable external asymmetry of the back in AIS and thus is a measure of patient outcome for external appearance. A total of 102 pre-operative AIS patients were identified retrospectively. Objective parameters were measured using ISIS2 surface topography. The associations between these parameters and the self-image and mental health domains of the SRS-22 questionnaire were investigated using correlation coefficients. All correlations between the parameters of asymmetry and SRS-22 self-image score were of weak strength. Similarly, all correlations between the parameters of asymmetry and SRS-22 mental health score were of weak strength. The SRS-22 mental health and self-image domains correlate poorly with external measures of deformity. This demonstrates that the assessment of mental health and self-image by the SRS-22 has little to do with external torso shape. Whilst the SRS-22 assesses the patient as a whole, it provides little information about objective measures of deformity over which a surgeon has control.

  9. Marketing Management Elements

    NASA Astrophysics Data System (ADS)

    Costoiu, M.; Ioana, A.; Semenescu, A.; Marcu, D.

    2016-11-01

    The article takes as a starting point several complementary definitions of marketing. Also present several key points related to marketing policy: defining the position that the company will occupy on the market with respect to competition, fixing the image with what will approach the market, achieving a balance between turnover rates profit and expenses as a condition for the survival of the company. In below article it is proposed an original concept of marketing management. This concept takes into consideration on the one hand correlations between company position in the market definition and on the other hand the image received by customers. The ultimate goal of this original concept of marketing management is to ensure an effective balance between: the turnover rate of profit and expenses of the company.

  10. Protocol for Biomarker Ratio Imaging Microscopy with Specific Application to Ductal Carcinoma In situ of the Breast

    PubMed Central

    Clark, Andrea J.; Petty, Howard R.

    2016-01-01

    This protocol describes the methods and steps involved in performing biomarker ratio imaging microscopy (BRIM) using formalin fixed paraffin-embedded (FFPE) samples of human breast tissue. The technique is based on the acquisition of two fluorescence images of the same microscopic field using two biomarkers and immunohistochemical tools. The biomarkers are selected such that one biomarker correlates with breast cancer aggressiveness while the second biomarker anti-correlates with aggressiveness. When the former image is divided by the latter image, a computed ratio image is formed that reflects the aggressiveness of tumor cells while increasing contrast and eliminating path-length and other artifacts from the image. For example, the aggressiveness of epithelial cells may be assessed by computing ratio images of N-cadherin and E-cadherin images or CD44 and CD24 images, which specifically reflect the mesenchymal or stem cell nature of the constituent cells, respectively. This methodology is illustrated for tissue samples of ductal carcinoma in situ (DCIS) and invasive breast cancer. This tool should be useful in tissue studies of experimental cancer as well as the management of cancer patients. PMID:27857940

  11. Qualification of imaging biomarkers for oncology drug development.

    PubMed

    Waterton, John C; Pylkkanen, Liisa

    2012-03-01

    Although many imaging biomarkers have been described for cancer research, few are sufficiently robust, reliable and well-characterised to be used as routine tools in clinical cancer research. In particular, biomarkers which show that investigational therapies have reduced tumour cell proliferation, or induced necrotic or apoptotic cell death are not commonly used to support decision-making in drug development, even though such pharmacodynamic effects are common goals of many classes of investigational drugs. Moreover we lack well-qualified biomarkers of propensity to metastasise. The qualification and technical validation of imaging biomarkers poses unique challenges not always encountered when validating biospecimen biomarkers. These include standardisation of acquisition and analysis, imaging-pathology correlation, cross-sectional clinical-biomarker correlations and correlation with outcome. Such work is ideally suited to precompetitive research and public-private partnerships, and this has been recognised within the Innovative Medicines Initiative (IMI), a Joint Undertaking between the European Union and the European Federation of Pharmaceutical Industries and Associations, which has initiated projects in the areas of drug safety, drug efficacy, knowledge management and training. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. An architecture for a brain-image database

    NASA Technical Reports Server (NTRS)

    Herskovits, E. H.

    2000-01-01

    The widespread availability of methods for noninvasive assessment of brain structure has enabled researchers to investigate neuroimaging correlates of normal aging, cerebrovascular disease, and other processes; we designate such studies as image-based clinical trials (IBCTs). We propose an architecture for a brain-image database, which integrates image processing and statistical operators, and thus supports the implementation and analysis of IBCTs. The implementation of this architecture is described and results from the analysis of image and clinical data from two IBCTs are presented. We expect that systems such as this will play a central role in the management and analysis of complex research data sets.

  13. Fuzzy geometry, entropy, and image information

    NASA Technical Reports Server (NTRS)

    Pal, Sankar K.

    1991-01-01

    Presented here are various uncertainty measures arising from grayness ambiguity and spatial ambiguity in an image, and their possible applications as image information measures. Definitions are given of an image in the light of fuzzy set theory, and of information measures and tools relevant for processing/analysis e.g., fuzzy geometrical properties, correlation, bound functions and entropy measures. Also given is a formulation of algorithms along with management of uncertainties for segmentation and object extraction, and edge detection. The output obtained here is both fuzzy and nonfuzzy. Ambiguity in evaluation and assessment of membership function are also described.

  14. Multimodal Imaging in Diabetic Macular Edema.

    PubMed

    Acón, Dhariana; Wu, Lihteh

    2018-01-01

    Throughout ophthalmic history it has been shown that progress has gone hand in hand with technological breakthroughs. In the past, fluorescein angiography and fundus photographs were the most commonly used imaging modalities in the management of diabetic macular edema (DME). Today, despite the moderate correlation between macular thickness and functional outcomes, spectral domain optical coherence tomography (SD-OCT) has become the DME workhorse in clinical practice. Several SD-OCT biomarkers have been looked at including presence of epiretinal membrane, vitreomacular adhesion, disorganization of the inner retinal layers, central macular thickness, integrity of the ellipsoid layer, and subretinal fluid, among others. Emerging imaging modalities include fundus autofluorescence, macular pigment optical density, fluorescence lifetime imaging ophthalmoscopy, OCT angiography, and adaptive optics. Technological advances in imaging of the posterior segment of the eye have enabled ophthalmologists to develop hypotheses about pathological mechanisms of disease, monitor disease progression, and assess response to treatment. Spectral domain OCT is the most commonly performed imaging modality in the management of DME. However, reliable biomarkers have yet to be identified. Machine learning may provide treatment algorithms based on multimodal imaging. Copyright 2018 Asia-Pacific Academy of Ophthalmology.

  15. Remote sensing of drought and salinity stressed turfgrass

    NASA Astrophysics Data System (ADS)

    Ikemura, Yoshiaki

    The ability to detect early signs of stress in turfgrass stands using a rapid, inexpensive, and nondestructive method would be a valuable management tool. Studies were conducted to determine if digital image analysis and spectroradiometric readings obtained from drought- and salinity-stressed turfgrasses accurately reflected the varying degrees of stress and correlated strongly with visual ratings, relative water content (RWC) and leaf osmolality, standard methods for measuring stress in plants. Greenhouse drought and salinity experiments were conducted on hybrid bluegrass [Poa arachnifera (Torn.) x pratensis (L.)] cv. Reveille and bermudagrass [Cynodon dactylon (L.)] cv. Princess 77. Increasing drought and salinity stress led to decreased RWC, increased leaf osmolality, and decreased visual ratings for both species. Percent green cover and hue values obtained from digital image analysis, and Normalized Difference Vegetation Index (NDVI), calculated from spectroradiometric readings, were moderately to highly correlated with visual ratings, RWC, and leaf osmolality. Similarly, in a field validation study conducted on hybrid bluegrass, spectral reflectance ratios were moderately to highly correlated with visual ratings. In addition, percent green cover obtained from digital image analysis was strongly correlated with most of the spectral ratios, particularly the ratio of fluorescence peaks (r = -0.88 to -0.99), modified triangular vegetation index (MTVI) (r = 0.82 to 0.98), and NDVI (r = 0.84 to 0.99), suggesting that spectral reflectance and digital image analysis are equally effective at detecting changes in color brought on by stress. The two methods differed in their ability to distinguish between drought salinity stress. Hue values obtained from digital image analysis responded differently to increasing drought stress than to increasing salinity stress. Whereas the onset of drought stress was reflected by increased hue values followed by a decrease in values as drought stress increased, there was no increase in hue values at the onset of salinity stress. Thus, changes in hue could be a key to distinguish drought and salinity stress. Both digital image analysis and spectroradiometry effectively detected drought and salinity stress and may have applications in turfgrass management as rapid and quantitative methods to determine drought and salinity stress in turf.

  16. Imaged Document Optical Correlation and Conversion System (IDOCCS)

    NASA Astrophysics Data System (ADS)

    Stalcup, Bruce W.; Dennis, Phillip W.; Dydyk, Robert B.

    1999-03-01

    Today, the paper document is fast becoming a thing of the past. With the rapid development of fast, inexpensive computing and storage devices, many government and private organizations are archiving their documents in electronic form (e.g., personnel records, medical records, patents, etc.). In addition, many organizations are converting their paper archives to electronic images, which are stored in a computer database. Because of this, there is a need to efficiently organize this data into comprehensive and accessible information resources. The Imaged Document Optical Correlation and Conversion System (IDOCCS) provides a total solution to the problem of managing and retrieving textual and graphic information from imaged document archives. At the heart of IDOCCS, optical correlation technology provides the search and retrieval capability of document images. The IDOCCS can be used to rapidly search for key words or phrases within the imaged document archives and can even determine the types of languages contained within a document. In addition, IDOCCS can automatically compare an input document with the archived database to determine if it is a duplicate, thereby reducing the overall resources required to maintain and access the document database. Embedded graphics on imaged pages can also be exploited, e.g., imaged documents containing an agency's seal or logo, or documents with a particular individual's signature block, can be singled out. With this dual capability, IDOCCS outperforms systems that rely on optical character recognition as a basis for indexing and storing only the textual content of documents for later retrieval.

  17. Detection of occult infection following total joint arthroplasty using sequential technetium-99m HDP bone scintigraphy and indium-111 WBC imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.A.; Christie, M.J.; Sandler, M.P.

    1988-08-01

    Preoperative exclusion or confirmation of periprosthetic infection is essential for correct surgical management of patients with suspected infected joint prostheses. The sensitivity and specificity of (/sup 111/In)WBC imaging in the diagnosis of infected total joint prostheses was examined in 28 patients and compared with sequential (/sup 99m/Tc)HDP/(/sup 111/In)WBC scintigraphy and aspiration arthrography. The sensitivity of preoperative aspiration cultures was 12%, with a specificity of 81% and an accuracy of 58%. The sensitivity of (/sup 111/In)WBC imaging alone was 100%, with a specificity of 50% and an accuracy of 65%. When correlated with the bone scintigraphy and read as sequential (/supmore » 99m/Tc)HDP/(/sup 111/In)WBC imaging, the sensitivity was 88%, specificity 95%, and accuracy 93%. This study demonstrates that (/sup 111/In)WBC imaging is an extremely sensitive imaging modality for the detection of occult infection of joint prostheses. It also demonstrates the necessity of correlating (/sup 111/In)WBC images with (/sup 99m/Tc)HDP skeletal scintigraphy in the detection of occult periprosthetic infection.« less

  18. Imaged document information location and extraction using an optical correlator

    NASA Astrophysics Data System (ADS)

    Stalcup, Bruce W.; Dennis, Phillip W.; Dydyk, Robert B.

    1999-12-01

    Today, the paper document is fast becoming a thing of the past. With the rapid development of fast, inexpensive computing and storage devices, many government and private organizations are archiving their documents in electronic form (e.g., personnel records, medical records, patents, etc.). Many of these organizations are converting their paper archives to electronic images, which are then stored in a computer database. Because of this, there is a need to efficiently organize this data into comprehensive and accessible information resources and provide for rapid access to the information contained within these imaged documents. To meet this need, Litton PRC and Litton Data Systems Division are developing a system, the Imaged Document Optical Correlation and Conversion System (IDOCCS), to provide a total solution to the problem of managing and retrieving textual and graphic information from imaged document archives. At the heart of IDOCCS, optical correlation technology provide a means for the search and retrieval of information from imaged documents. IDOCCS can be used to rapidly search for key words or phrases within the imaged document archives and has the potential to determine the types of languages contained within a document. In addition, IDOCCS can automatically compare an input document with the archived database to determine if it is a duplicate, thereby reducing the overall resources required to maintain and access the document database. Embedded graphics on imaged pages can also be exploited, e.g., imaged documents containing an agency's seal or logo can be singled out. In this paper, we present a description of IDOCCS as well as preliminary performance results and theoretical projections.

  19. Evaluation of cholesteatoma: our experience with DW Propeller imaging.

    PubMed

    Karandikar, Amit; Loke, Siu Cheng; Goh, Julian; Yeo, Seng Beng; Tan, Tiong Yong

    2015-09-01

    Cholesteatoma management includes early detection and surgical exploration. Due to its tendency to recur, it can be potentially locally aggressive. Magnetic resonance imaging (MRI), and in particular diffusion weighted imaging (DWI), plays an important role in management of these lesions. To assess the accuracy of Propeller (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) DW sequence in detecting middle ear and mastoid cholesteatomas in non-operated ears by surgical correlation. A retrospective review of 15 patients was done who underwent Propeller DWI with either clinically confirmed or suspected cholesteatomas. Surgical correlation was done in all cases. All patients had hyperintense foci on Propeller DWI. Surgical correlation performed revealed that 13 patients had cholesteatomas while two patients had mastoid abscesses. The location, extent, and size of cholesteatomas on Propeller DWI matched with the operative findings. Of the 13 patients with cholesteatomas, three patients had multiple foci of hyperintensity on Propeller DWI, which corroborated with the surgical finding of multiple cholesteatomas. The average apparent diffusion coefficient value of cholesteatoma was 0.868 × 10(-3) mm(2)/s, found to be higher than that of abscess, which was 0.425 × 10(-3) mm(2)/s. Propeller DWI was accurate in assessing the location, extent, and size of cholesteatomas as corroborated with surgical findings. Propeller DWI is useful in detecting number of cholesteatoma foci, a vital finding as it may impact the choice of surgery. © The Foundation Acta Radiologica 2014.

  20. Proposal for future diagnosis and management of vascular tumors by using automatic software for image processing and statistic prediction.

    PubMed

    Popescu, M D; Draghici, L; Secheli, I; Secheli, M; Codrescu, M; Draghici, I

    2015-01-01

    Infantile Hemangiomas (IH) are the most frequent tumors of vascular origin, and the differential diagnosis from vascular malformations is difficult to establish. Specific types of IH due to the location, dimensions and fast evolution, can determine important functional and esthetic sequels. To avoid these unfortunate consequences it is necessary to establish the exact appropriate moment to begin the treatment and decide which the most adequate therapeutic procedure is. Based on clinical data collected by a serial clinical observations correlated with imaging data, and processed by a computer-aided diagnosis system (CAD), the study intended to develop a treatment algorithm to accurately predict the best final results, from the esthetical and functional point of view, for a certain type of lesion. The preliminary database was composed of 75 patients divided into 4 groups according to the treatment management they received: medical therapy, sclerotherapy, surgical excision and no treatment. The serial clinical observation was performed each month and all the data was processed by using CAD. The project goal was to create a software that incorporated advanced methods to accurately measure the specific IH lesions, integrated medical information, statistical methods and computational methods to correlate this information with that obtained from the processing of images. Based on these correlations, a prediction mechanism of the evolution of hemangioma, which helped determine the best method of therapeutic intervention to minimize further complications, was established.

  1. Use of Digital Volume Correlation to Measure Deformation of Shale Using Natural Markers

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.; Quintana, E.; Ingraham, M. D.; Jacques, C. L.

    2016-12-01

    We apply digital volume correlation (DVC) to interpreting deformation as influenced by shale heterogeneity. An extension of digital image correlation, DVC uses 3D images (CT Scans) of a sample before, during and after loading to determine deformation in terms of a 3D strain map. The technology tracks the deformation of high and low density regions within the sample to determine full field 3D strains within the sample. High pyrite shales (Woodford and Marcellus in this study) are being used as the high density pyrite serves as an excellent point to track in the volume correlation. Preliminary results indicate that this technology is promising for measuring true volume strains, strain localization, and strain portioning by microlithofacies within specimens during testing. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Ultra-wide-field imaging in diabetic retinopathy.

    PubMed

    Ghasemi Falavarjani, Khalil; Tsui, Irena; Sadda, Srinivas R

    2017-10-01

    Since 1991, 7-field images captured with 30-50 degree cameras in the Early Treatment Diabetic Retinopathy Study were the gold standard for fundus imaging to study diabetic retinopathy. Ultra-wide-field images cover significantly more area (up to 82%) of the fundus and with ocular steering can in many cases image 100% of the fundus ("panretinal"). Recent advances in image analysis of ultra-wide-field imaging allow for precise measurements of the peripheral retinal lesions. There is a growing consensus in the literature that ultra-wide-field imaging improves detection of peripheral lesions in diabetic retinopathy and leads to more accurate classification of the disease. There is discordance among studies, however, on the correlation between peripheral diabetic lesions and diabetic macular edema and optimal management strategies to treat diabetic retinopathy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Magnetic resonance imaging for the ophthalmologist: A primer

    PubMed Central

    Simha, Arathi; Irodi, Aparna; David, Sarada

    2012-01-01

    Magnetic resonance imaging (MRI) and computerized tomography (CT) have added a new dimension in the diagnosis and management of ocular and orbital diseases. Although CT is more widely used, MRI is the modality of choice in select conditions and can be complimentary to CT in certain situations. The diagnostic yield is best when the ophthalmologist and radiologist work together. Ophthalmologists should be able to interpret these complex imaging modalities as better clinical correlation is then possible. In this article, we attempt to describe the basic principles of MRI and its interpretation, avoiding confusing technical terms. PMID:22824600

  4. Real-time high-velocity resolution color Doppler OCT

    NASA Astrophysics Data System (ADS)

    Westphal, Volker; Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    2001-05-01

    Color Doppler optical coherence tomography (CDOCT), also called Optical Doppler Tomography) is a noninvasive optical imaging technique, which allows for micron-scale physiological flow mapping simultaneous with morphological OCT imaging. Current systems for real-time endoscopic optical coherence tomography (EOCT) would be enhanced by the capability to visualize sub-surface blood flow for applications in early cancer diagnosis and the management of bleeding ulcers. Unfortunately, previous implementations of CDOCT have either been sufficiently computationally expensive (employing Fourier or Hilbert transform techniques) to rule out real-time imaging of flow, or have been restricted to imaging of excessively high flow velocities when used in real time. We have developed a novel Doppler OCT signal-processing strategy capable of imaging physiological flow rates in real time. This strategy employs cross-correlation processing of sequential A-scans in an EOCT image, as opposed to autocorrelation processing as described previously. To measure Doppler shifts in the kHz range using this technique, it was necessary to stabilize the EOCT interferometer center frequency, eliminate parasitic phase noise, and to construct a digital cross correlation unit able to correlate signals of megahertz bandwidth by a fixed lag of up to a few ms. The performance of the color Doppler OCT system was demonstrated in a flow phantom, demonstrating a minimum detectable flow velocity of ~0.8 mm/s at a data acquisition rate of 8 images/second (with 480 A-scans/image) using a handheld probe. Dynamic flow as well as using it freehanded was shown. Flow was also detectable in a phantom in combination with a clinical usable endoscopic probe.

  5. Aggressive spinal haemangiomas: imaging correlates to clinical presentation with analysis of treatment algorithm and clinical outcomes

    PubMed Central

    Cloran, Francis J; Pukenas, Bryan A; Loevner, Laurie A; Aquino, Christopher; Schuster, James

    2015-01-01

    Objective: Aggressive spinal haemangiomas (those with significant osseous expansion/extraosseous extension) represent approximately 1% of spinal haemangiomas and are usually symptomatic. In this study, we correlate imaging findings with presenting symptomatology, review treatment strategies and their outcomes and propose a treatment algorithm. Methods: 16 patients with aggressive haemangiomas were retrospectively identified from 1995 to 2013. Imaging was assessed for size, location, CT/MR characteristics, osseous expansion and extraosseous extension. Presenting symptoms, management and outcomes were reviewed. Results: Median patient age was 52 years. Median size was 4.5 cm. Lumbar spine was the commonest location (n = 8), followed by thoracic spine (n = 7) and sacrum (n = 2); one case involved the lumbosacral junction. 12 haemangiomas had osseous expansion; 13 had extraosseous extension [epidural (n = 11), pre-vertebral/paravertebral (n = 10) and foraminal (n = 6)]. On CT, 11 had accentuated trabeculae and 5 showed lysis. On MRI, eight were T1 hyperintense, six were T1 hypointense and all were T2 hyperintense. 11 symptomatic patients underwent treatment: chemical ablation (n = 6), angioembolization (n = 3, 2 had subsequent surgery), radiotherapy (n = 2, 1 primary and 1 adjuvant) and surgery (n = 4). Median follow-up was 20 months. Four of six patients managed only by percutaneous methods had symptom resolution. Three of four patients requiring surgery had symptom resolution. Conclusion: Aggressive haemangiomas cause significant morbidity. Treatment is multidisciplinary, with surgery reserved for large lesions and those with focal neurological signs. Minimally invasive procedures may be successful in smaller lesions. Advances in knowledge: Aggressive haemangiomas are rare, but knowledge of their imaging features and treatment strategies enhances the radiologist's role in their management. PMID:26313498

  6. Quantitative analysis of tympanic membrane perforation: a simple and reliable method.

    PubMed

    Ibekwe, T S; Adeosun, A A; Nwaorgu, O G

    2009-01-01

    Accurate assessment of the features of tympanic membrane perforation, especially size, site, duration and aetiology, is important, as it enables optimum management. To describe a simple, cheap and effective method of quantitatively analysing tympanic membrane perforations. The system described comprises a video-otoscope (capable of generating still and video images of the tympanic membrane), adapted via a universal serial bus box to a computer screen, with images analysed using the Image J geometrical analysis software package. The reproducibility of results and their correlation with conventional otoscopic methods of estimation were tested statistically with the paired t-test and correlational tests, using the Statistical Package for the Social Sciences version 11 software. The following equation was generated: P/T x 100 per cent = percentage perforation, where P is the area (in pixels2) of the tympanic membrane perforation and T is the total area (in pixels2) for the entire tympanic membrane (including the perforation). Illustrations are shown. Comparison of blinded data on tympanic membrane perforation area obtained independently from assessments by two trained otologists, of comparative years of experience, using the video-otoscopy system described, showed similar findings, with strong correlations devoid of inter-observer error (p = 0.000, r = 1). Comparison with conventional otoscopic assessment also indicated significant correlation, comparing results for two trained otologists, but some inter-observer variation was present (p = 0.000, r = 0.896). Correlation between the two methods for each of the otologists was also highly significant (p = 0.000). A computer-adapted video-otoscope, with images analysed by Image J software, represents a cheap, reliable, technology-driven, clinical method of quantitative analysis of tympanic membrane perforations and injuries.

  7. Assessing the use of remotely sensed measurements for characterizing rangeland condition

    NASA Astrophysics Data System (ADS)

    Folker, Geoffrey P.

    There are over 233 million hectares (ha) of nonfederal grazing lands in the United States. Conventional field observation and sampling techniques are insufficient methods to monitor such large areas frequently enough to confidently quantify the biophysical state and assess rangeland condition over large geographic areas. In an attempt to enhance rangeland resource managers' abilities to monitor and assess these factors, remote sensing scientists and land resource managers have worked together to determine whether remotely sensed measurements can improve the ability to measure rangeland response to land management practices. The relationship between spectral reflectance patterns and plant species composition was investigated on six south-central Kansas ranches. Airborne multispectral color infrared images for 2002 through 2004 were collected at multiple times in the growing season over the study area. Concurrent with the image acquisition periods, ground cover estimates of plant species composition and biomass by growth form were collected. Correlation analysis was used to examine relationships among spectral and biophysical field measurements. Results indicate that heavily grazed sites exhibited the highest spectral vegetation index values. This was attributed to increases in low forage quality broadleaf forbs such as annual ragweed (Ambrosia artemisiifolia L.). Although higher vegetation index values have a positive correlation with overall above ground primary productivity, species composition may be the best indicator of healthy rangeland condition. A Weediness Index, which was found to be correlated with range condition, was also strongly linked to spectral reflectance patterns recorded in the airborne imagery.

  8. Imaging-Assisted Large-Format Breast Pathology: Program Rationale and Development in a Nonprofit Health System in the United States

    PubMed Central

    Tucker, F. Lee

    2012-01-01

    Modern breast imaging, including magnetic resonance imaging, provides an increasingly clear depiction of breast cancer extent, often with suboptimal pathologic confirmation. Pathologic findings guide management decisions, and small increments in reported tumor characteristics may rationalize significant changes in therapy and staging. Pathologic techniques to grossly examine resected breast tissue have changed little during this era of improved breast imaging and still rely primarily on the techniques of gross inspection and specimen palpation. Only limited imaging information is typically conveyed to pathologists, typically in the form of wire-localization images from breast-conserving procedures. Conventional techniques of specimen dissection and section submission destroy the three-dimensional integrity of the breast anatomy and tumor distribution. These traditional methods of breast specimen examination impose unnecessary limitations on correlation with imaging studies, measurement of cancer extent, multifocality, and margin distance. Improvements in pathologic diagnosis, reporting, and correlation of breast cancer characteristics can be achieved by integrating breast imagers into the specimen examination process and the use of large-format sections which preserve local anatomy. This paper describes the successful creation of a large-format pathology program to routinely serve all patients in a busy interdisciplinary breast center associated with a community-based nonprofit health system in the United States. PMID:23316372

  9. Forest discrimination with multipolarization imaging radar

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Wickland, D. E.

    1985-01-01

    The use of radar polarization diversity for discriminating forest canopy variables on airborne synthetic-aperture radar (SAR) images is evaluated. SAR images were acquired at L-Band (24.6 cm) simultaneously in four linear polarization states (HH, HV, VH, and VV) in South Carolina on March 1, 1984. In order to relate the polarization signatures to biophysical properties, false-color composite images were compared to maps of forest stands in the timber compartment. In decreasing order, the most useful correlative forest data are stand basal area, forest age, site condition index, and forest management type. It is found that multipolarization images discriminate variation in tree density and difference in the amount of understory, but do not discriminate between evergreen and deciduous forest types.

  10. Plasma cell quantification in bone marrow by computer-assisted image analysis.

    PubMed

    Went, P; Mayer, S; Oberholzer, M; Dirnhofer, S

    2006-09-01

    Minor and major criteria for the diagnosis of multiple meloma according to the definition of the WHO classification include different categories of the bone marrow plasma cell count: a shift from the 10-30% group to the > 30% group equals a shift from a minor to a major criterium, while the < 10% group does not contribute to the diagnosis. Plasma cell fraction in the bone marrow is therefore critical for the classification and optimal clinical management of patients with plasma cell dyscrasias. The aim of this study was (i) to establish a digital image analysis system able to quantify bone marrow plasma cells and (ii) to evaluate two quantification techniques in bone marrow trephines i.e. computer-assisted digital image analysis and conventional light-microscopic evaluation. The results were compared regarding inter-observer variation of the obtained results. Eighty-seven patients, 28 with multiple myeloma, 29 with monoclonal gammopathy of undetermined significance, and 30 with reactive plasmocytosis were included in the study. Plasma cells in H&E- and CD138-stained slides were quantified by two investigators using light-microscopic estimation and computer-assisted digital analysis. The sets of results were correlated with rank correlation coefficients. Patients were categorized according to WHO criteria addressing the plasma cell content of the bone marrow (group 1: 0-10%, group 2: 11-30%, group 3: > 30%), and the results compared by kappa statistics. The degree of agreement in CD138-stained slides was higher for results obtained using the computer-assisted image analysis system compared to light microscopic evaluation (corr.coeff. = 0.782), as was seen in the intra- (corr.coeff. = 0.960) and inter-individual results correlations (corr.coeff. = 0.899). Inter-observer agreement for categorized results (SM/PW: kappa 0.833) was in a high range. Computer-assisted image analysis demonstrated a higher reproducibility of bone marrow plasma cell quantification. This might be of critical importance for diagnosis, clinical management and prognostics when plasma cell numbers are low, which makes exact quantifications difficult.

  11. Full-field OCT for fast diagnostic of head and neck cancer

    NASA Astrophysics Data System (ADS)

    De Leeuw, Frederic; Casiraghi, Odile; Ben Lakhdar, Aïcha; Abbaci, Muriel; Laplace-Builhé, Corinne

    2015-02-01

    Full-Field OCT (FFOCT) produces optical slices of tissue using white light interferometry providing in-depth 2D images, with an isotropic resolution around 1 micrometer. These optical biopsy images are similar to those obtained with established histological procedures, but without tissue preparation and within few minutes. This technology could be useful when diagnosing a lesion or at the time of its surgical management. Here we evaluate the clinical value of FFOCT imaging in the management of patients with Head and Neck cancers by assessing the accuracy of the diagnosis done on FFOCT images from resected specimen. FFOCT images from Head and Neck samples were first compared to the gold standard (HES-conventional histology). An image atlas dedicated to the training of pathologists was built and diagnosis criteria were identified. Then, we performed a morphological correlative study: both healthy and cancerous samples from patients who undergo Head and Neck surgery of oral cavity, pharynx, and larynx were imaged. Images were interpreted in a random way by two pathologists and the FFOCT based diagnostics were compared with HES (gold standard) of the same samples. Here we present preliminary results showing that FFOCT provides a quick assessment of tissue architecture at microscopic level that could guide surgeons for tumor margin delineation during intraoperative procedure.

  12. Ultrasound and MRI predictors of surgical bowel resection in pediatric Crohn disease.

    PubMed

    Rosenbaum, Daniel G; Conrad, Maire A; Biko, David M; Ruchelli, Eduardo D; Kelsen, Judith R; Anupindi, Sudha A

    2017-01-01

    Imaging predictors for surgery in children with Crohn disease are lacking. To identify imaging features of the terminal ileum on short-interval bowel ultrasound (US) and MR enterography (MRE) in children with Crohn disease requiring surgical bowel resection and those managed by medical therapy alone. This retrospective study evaluated patients 18 years and younger with Crohn disease undergoing short-interval bowel US and MRE (within 2 months of one another), as well as subsequent ileocecectomy or endoscopy within 3 months of imaging. Appearance of the terminal ileum on both modalities was compared between surgical patients and those managed with medical therapy, with the following parameters assessed: bowel wall thickness, mural stratification, vascularity, fibrofatty proliferation, abscess, fistula and stricture on bowel US; bowel wall thickness, T2 ratio, enhancement pattern, mesenteric edema, fibrofatty proliferation, abscess, fistula and stricture on MRE. A two-sided t-test was used to compare means, a Mann-Whitney U analysis was used for non-parametric parameter scores, and a chi-square or two-sided Fisher exact test compared categorical variables. Imaging findings in surgical patients were correlated with location-matched histopathological scores of inflammation and fibrosis using a scoring system adapted from the Simple Endoscopic Score for Crohn Disease, and a Spearman rank correlation coefficient was used to compare inflammation and fibrosis on histopathology. Twenty-two surgical patients (mean age: 16.5 years; male/female: 13/9) and 20 nonsurgical patients (mean age: 14.8; M/F: 8/12) were included in the final analysis. On US, the surgical group demonstrated significantly increased mean bowel wall thickness (6.1 mm vs. 4.7 mm for the nonsurgical group; P = 0.01), loss of mural stratification (odds ratio [OR] = 6.3; 95% confidence interval [CI]: 1.4-28.4; P = 0.02) and increased fibrofatty proliferation (P = 0.04). On MRE, the surgical group showed increased mean bowel wall thickness (9.1 mm vs. 7.2 mm for the nonsurgical group; P = 0.02), increased mean T2 ratio (4.6 vs. 3.6 for the nonsurgical group; P = 0.03), different enhancement patterns (P = 0.03), increased mesenteric edema (P = 0.001) and increased stricture formation (OR = 8.2; 95% CI: 1.8-36.4; P = 0.005). Nineteen of 22 ileocecectomy specimens showed severe inflammation and 21/22 showed severe fibrosis, with significant correlation between inflammation and fibrosis scores (ρ = 0.55; P = 0.008); however, correlation with imaging findings was limited by the uniformity of findings on histopathology. Children with terminal ileal Crohn disease requiring surgical bowel resection demonstrate more severe manifestations of imaging features traditionally associated with both active inflammation and chronic fibrosis than those managed medically on US and MRE, findings that are corroborated by histopathology. These features may potentially serve as imaging biomarkers indicating the necessity for surgical intervention.

  13. Neural signatures of strategic types in a two-person bargaining game

    PubMed Central

    Bhatt, Meghana A.; Lohrenz, Terry; Camerer, Colin F.; Montague, P. Read

    2010-01-01

    The management and manipulation of our own social image in the minds of others requires difficult and poorly understood computations. One computation useful in social image management is strategic deception: our ability and willingness to manipulate other people's beliefs about ourselves for gain. We used an interpersonal bargaining game to probe the capacity of players to manage their partner's beliefs about them. This probe parsed the group of subjects into three behavioral types according to their revealed level of strategic deception; these types were also distinguished by neural data measured during the game. The most deceptive subjects emitted behavioral signals that mimicked a more benign behavioral type, and their brains showed differential activation in right dorsolateral prefrontal cortex and left Brodmann area 10 at the time of this deception. In addition, strategic types showed a significant correlation between activation in the right temporoparietal junction and expected payoff that was absent in the other groups. The neurobehavioral types identified by the game raise the possibility of identifying quantitative biomarkers for the capacity to manipulate and maintain a social image in another person's mind. PMID:21041646

  14. An image adaptive, wavelet-based watermarking of digital images

    NASA Astrophysics Data System (ADS)

    Agreste, Santa; Andaloro, Guido; Prestipino, Daniela; Puccio, Luigia

    2007-12-01

    In digital management, multimedia content and data can easily be used in an illegal way--being copied, modified and distributed again. Copyright protection, intellectual and material rights protection for authors, owners, buyers, distributors and the authenticity of content are crucial factors in solving an urgent and real problem. In such scenario digital watermark techniques are emerging as a valid solution. In this paper, we describe an algorithm--called WM2.0--for an invisible watermark: private, strong, wavelet-based and developed for digital images protection and authenticity. Using discrete wavelet transform (DWT) is motivated by good time-frequency features and well-matching with human visual system directives. These two combined elements are important in building an invisible and robust watermark. WM2.0 works on a dual scheme: watermark embedding and watermark detection. The watermark is embedded into high frequency DWT components of a specific sub-image and it is calculated in correlation with the image features and statistic properties. Watermark detection applies a re-synchronization between the original and watermarked image. The correlation between the watermarked DWT coefficients and the watermark signal is calculated according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has shown to be resistant against geometric, filtering and StirMark attacks with a low rate of false alarm.

  15. National Aeronautics and Space Administration (nasa)/american Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1991, Volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1991-01-01

    Presented here is a compilation of the final reports of the research projects done by the faculty members during the summer of 1991. Topics covered include optical correlation; lunar production and application of solar cells and synthesis of diamond film; software quality assurance; photographic image resolution; target detection using fractal geometry; evaluation of fungal metabolic compounds released to the air in a restricted environment; and planning and resource management in an intelligent automated power management system.

  16. Accuracy of Robotic Radiosurgical Liver Treatment Throughout the Respiratory Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, Jeff D.; Wong, Raimond; Swaminath, Anand

    Purpose: To quantify random uncertainties in robotic radiosurgical treatment of liver lesions with real-time respiratory motion management. Methods and Materials: We conducted a retrospective analysis of 27 liver cancer patients treated with robotic radiosurgery over 118 fractions. The robotic radiosurgical system uses orthogonal x-ray images to determine internal target position and correlates this position with an external surrogate to provide robotic corrections of linear accelerator positioning. Verification and update of this internal–external correlation model was achieved using periodic x-ray images collected throughout treatment. To quantify random uncertainties in targeting, we analyzed logged tracking information and isolated x-ray images collected immediately beforemore » beam delivery. For translational correlation errors, we quantified the difference between correlation model–estimated target position and actual position determined by periodic x-ray imaging. To quantify prediction errors, we computed the mean absolute difference between the predicted coordinates and actual modeled position calculated 115 milliseconds later. We estimated overall random uncertainty by quadratically summing correlation, prediction, and end-to-end targeting errors. We also investigated relationships between tracking errors and motion amplitude using linear regression. Results: The 95th percentile absolute correlation errors in each direction were 2.1 mm left–right, 1.8 mm anterior–posterior, 3.3 mm cranio–caudal, and 3.9 mm 3-dimensional radial, whereas 95th percentile absolute radial prediction errors were 0.5 mm. Overall 95th percentile random uncertainty was 4 mm in the radial direction. Prediction errors were strongly correlated with modeled target amplitude (r=0.53-0.66, P<.001), whereas only weak correlations existed for correlation errors. Conclusions: Study results demonstrate that model correlation errors are the primary random source of uncertainty in Cyberknife liver treatment and, unlike prediction errors, are not strongly correlated with target motion amplitude. Aggregate 3-dimensional radial position errors presented here suggest the target will be within 4 mm of the target volume for 95% of the beam delivery.« less

  17. Clinics in diagnostic imaging (160). Levocardia with abdominal situs inversus

    PubMed Central

    Abdullah, Nor Lenny; Quek, Swee Chye; Seto, Kar Yin; Teo, Lynette Li San

    2015-01-01

    Levocardia (left-sided cardiac apex) with abdominal situs inversus is extremely rare. This is also known as isolated levocardia and is almost always associated with severe forms of congenital heart defects with poor prognosis. We report isolated levocardia in a 13-year-old symptomatic male patient. The purpose of this paper is to outline the imaging features of isolated levocardia and to highlight the role of cardiovascular magnetic resonance imaging (CMR) in the diagnosis and management of such cases. Other forms of cardiac malposition, including dextrocardia, mesocardia and criss-cross heart, with chest radiograph and CMR correlation, are also discussed. PMID:25917470

  18. Using Calibrated RGB Imagery from Low-Cost Uavs for Grassland Monitoring: Case Study at the Rengen Grassland Experiment (rge), Germany

    NASA Astrophysics Data System (ADS)

    Lussem, U.; Hollberg, J.; Menne, J.; Schellberg, J.; Bareth, G.

    2017-08-01

    Monitoring the spectral response of intensively managed grassland throughout the growing season allows optimizing fertilizer inputs by monitoring plant growth. For example, site-specific fertilizer application as part of precision agriculture (PA) management requires information within short time. But, this requires field-based measurements with hyper- or multispectral sensors, which may not be feasible on a day to day farming practice. Exploiting the information of RGB images from consumer grade cameras mounted on unmanned aerial vehicles (UAV) can offer cost-efficient as well as near-real time analysis of grasslands with high temporal and spatial resolution. The potential of RGB imagery-based vegetation indices (VI) from consumer grade cameras mounted on UAVs has been explored recently in several. However, for multitemporal analyses it is desirable to calibrate the digital numbers (DN) of RGB-images to physical units. In this study, we explored the comparability of the RGBVI from a consumer grade camera mounted on a low-cost UAV to well established vegetation indices from hyperspectral field measurements for applications in grassland. The study was conducted in 2014 on the Rengen Grassland Experiment (RGE) in Germany. Image DN values were calibrated into reflectance by using the Empirical Line Method (Smith & Milton 1999). Depending on sampling date and VI the correlation between the UAV-based RGBVI and VIs such as the NDVI resulted in varying R2 values from no correlation to up to 0.9. These results indicate, that calibrated RGB-based VIs have the potential to support or substitute hyperspectral field measurements to facilitate management decisions on grasslands.

  19. Clothing choices, weight, and trait self-objectification.

    PubMed

    Tiggemann, Marika; Andrew, Rachel

    2012-06-01

    The present study aimed to assess the link between clothing choice and aspects of body image. Participants were 112 female undergraduate students who completed a questionnaire containing a measure of clothing functions, as well as BMI, self-classified weight, and trait self-objectification. Results indicated that BMI and self-classified weight were positively correlated with the choice of clothes for camouflage. Self-objectification was positively correlated with choice of clothes for fashion, and negatively correlated with choosing clothes for comfort. It was concluded that clothing represents an important but neglected aspect of contemporary women's management of their body's appearance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The use of laser Doppler imaging as an aid in clinical management decision making in the treatment of vesicant burns.

    PubMed

    Brown, R F; Rice, P; Bennett, N J

    1998-12-01

    Vesicants are a group of chemicals recognised, under the terms of the Chemical Weapons Convention, as potential chemical warfare agents whose prime effect on the skin is to cause burns and blistering. Experience of the clinical management of these injuries is not readily available and therefore an accurate assessment of the severity of the lesion and extent of tissue involvement is an important factor when determining the subsequent clinical management strategy for such lesions. This study was performed to assess the use of laser Doppler imaging (LDI) as a noninvasive means of assessing wound microvascular perfusion following challenge with the vesicant agents (sulphur mustard or lewisite) by comparing the images obtained with histopathological analysis of the lesion. Large white pigs were challenged with sulphur mustard (1.91 mg cm(-2)) or lewisite (0.3 mg.cm(-2)) vapour for periods of up to 6 h At intervals of between 1 h and 7 days following vesicant challenge, LDI images were acquired and samples for routine histopathology were taken. The results from this study suggest that LDI was: (i) a simple, reproducible and noninvasive means of assessing changes in tissue perfusion, and hence tissue viability, in developing and healing vesicant burns; (ii) the LDI images correlates well with histopathological assessment of the resulting lesions and the technique was sufficiently sensitive enough to discriminate between skin lesions of different aetiology. These attributes suggest that LDI would be a useful investigative tool that could aid clinical management decision making in the early treatment of vesicant agent-induced skin burns.

  1. MRI histogram analysis enables objective and continuous classification of intervertebral disc degeneration.

    PubMed

    Waldenberg, Christian; Hebelka, Hanna; Brisby, Helena; Lagerstrand, Kerstin Magdalena

    2018-05-01

    Magnetic resonance imaging (MRI) is the best diagnostic imaging method for low back pain. However, the technique is currently not utilized in its full capacity, often failing to depict painful intervertebral discs (IVDs), potentially due to the rough degeneration classification system used clinically today. MR image histograms, which reflect the IVD heterogeneity, may offer sensitive imaging biomarkers for IVD degeneration classification. This study investigates the feasibility of using histogram analysis as means of objective and continuous grading of IVD degeneration. Forty-nine IVDs in ten low back pain patients (six males, 25-69 years) were examined with MRI (T2-weighted images and T2-maps). Each IVD was semi-automatically segmented on three mid-sagittal slices. Histogram features of the IVD were extracted from the defined regions of interest and correlated to Pfirrmann grade. Both T2-weighted images and T2-maps displayed similar histogram features. Histograms of well-hydrated IVDs displayed two separate peaks, representing annulus fibrosus and nucleus pulposus. Degenerated IVDs displayed decreased peak separation, where the separation was shown to correlate strongly with Pfirrmann grade (P < 0.05). In addition, some degenerated IVDs within the same Pfirrmann grade displayed diametrically different histogram appearances. Histogram features correlated well with IVD degeneration, suggesting that IVD histogram analysis is a suitable tool for objective and continuous IVD degeneration classification. As histogram analysis revealed IVD heterogeneity, it may be a clinical tool for characterization of regional IVD degeneration effects. To elucidate the usefulness of histogram analysis in patient management, IVD histogram features between asymptomatic and symptomatic individuals needs to be compared.

  2. Optically-tracked handheld fluorescence imaging platform for monitoring skin response in the management of soft tissue sarcoma

    NASA Astrophysics Data System (ADS)

    Chamma, Emilie; Qiu, Jimmy; Lindvere-Teene, Liis; Blackmore, Kristina M.; Majeed, Safa; Weersink, Robert; Dickie, Colleen I.; Griffin, Anthony M.; Wunder, Jay S.; Ferguson, Peter C.; DaCosta, Ralph S.

    2015-07-01

    Standard clinical management of extremity soft tissue sarcomas includes surgery with radiation therapy. Wound complications (WCs) arising from treatment may occur due to bacterial infection and tissue breakdown. The ability to detect changes in these parameters during treatment may lead to earlier interventions that mitigate WCs. We describe the use of a new system composed of an autofluorescence imaging device and an optical three-dimensional tracking system to detect and coregister the presence of bacteria with radiation doses. The imaging device visualized erythema using white light and detected bacterial autofluorescence using 405-nm excitation light. Its position was tracked relative to the patient using IR reflective spheres and registration to the computed tomography coordinates. Image coregistration software was developed to spatially overlay radiation treatment plans and dose distributions on the white light and autofluorescence images of the surgical site. We describe the technology, its use in the operating room, and standard operating procedures, as well as demonstrate technical feasibility and safety intraoperatively. This new clinical tool may help identify patients at greater risk of developing WCs and investigate correlations between radiation dose, skin response, and changes in bacterial load as biomarkers associated with WCs.

  3. Edge-based correlation image registration for multispectral imaging

    DOEpatents

    Nandy, Prabal [Albuquerque, NM

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  4. Integrated Analysis Platform: An Open-Source Information System for High-Throughput Plant Phenotyping1[C][W][OPEN

    PubMed Central

    Klukas, Christian; Chen, Dijun; Pape, Jean-Michel

    2014-01-01

    High-throughput phenotyping is emerging as an important technology to dissect phenotypic components in plants. Efficient image processing and feature extraction are prerequisites to quantify plant growth and performance based on phenotypic traits. Issues include data management, image analysis, and result visualization of large-scale phenotypic data sets. Here, we present Integrated Analysis Platform (IAP), an open-source framework for high-throughput plant phenotyping. IAP provides user-friendly interfaces, and its core functions are highly adaptable. Our system supports image data transfer from different acquisition environments and large-scale image analysis for different plant species based on real-time imaging data obtained from different spectra. Due to the huge amount of data to manage, we utilized a common data structure for efficient storage and organization of data for both input data and result data. We implemented a block-based method for automated image processing to extract a representative list of plant phenotypic traits. We also provide tools for build-in data plotting and result export. For validation of IAP, we performed an example experiment that contains 33 maize (Zea mays ‘Fernandez’) plants, which were grown for 9 weeks in an automated greenhouse with nondestructive imaging. Subsequently, the image data were subjected to automated analysis with the maize pipeline implemented in our system. We found that the computed digital volume and number of leaves correlate with our manually measured data in high accuracy up to 0.98 and 0.95, respectively. In summary, IAP provides a multiple set of functionalities for import/export, management, and automated analysis of high-throughput plant phenotyping data, and its analysis results are highly reliable. PMID:24760818

  5. Objective diagnosis of arrested labor on transperineal ultrasound.

    PubMed

    Nishimura, Kazuaki; Yoshimura, Kazuaki; Kubo, Tatsuhiko; Hachisuga, Toru

    2016-07-01

    Recent developments in transperineal ultrasound imaging of the pelvis have prompted trials to objectively evaluate labor progression for labor management. We evaluated the accuracy of transperineal ultrasound in diagnosing arrest of labor. Transperineal ultrasound and digital pelvic examinations were performed simultaneously in 63 term laboring patients (singleton fetuses in cephalic presentation). We analyzed a total of 216 ultrasound images (Sonography Volume Computer Aided Display Labor [Sono VCAD Labor®] installed in Voluson E8 ultrasound). We examined the correlation between the three ultrasound parameters head direction (HD), progression distance (PD), and progression angle (PA), and digital pelvic examination findings during labor in a transvaginal delivery group and an arrested labor group. The coefficient of correlations between HD/PD/PA and cervical dilation/fetal station were 0.667/0.657/0.706 and 0.667/0.751/0.803, respectively. The three parameters had strong correlations with digital pelvic examination (P < 0.05). In the 11 cases (17%) of cesarean section due to arrested labor, the position of the fetal head was visually unchanged on sequential ultrasound images. According to receiver operating characteristic curves, the significant cut-offs for HD, PD, and PA for arrested labor were 105° (P = 0.048), 35 mm (P = 0.048), and 120° (P = 0.001), respectively. Transperineal ultrasound imaging is helpful for objective evaluation of labor progression and the diagnosis of arrested labor. © 2016 Japan Society of Obstetrics and Gynecology.

  6. Self-calibrated correlation imaging with k-space variant correlation functions.

    PubMed

    Li, Yu; Edalati, Masoud; Du, Xingfu; Wang, Hui; Cao, Jie J

    2018-03-01

    Correlation imaging is a previously developed high-speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k-space variant correlation functions. Because of Fourier encoding with gradients, outer k-space data contain higher spatial-frequency image components arising primarily from tissue boundaries. As a result of tissue-boundary sparsity in the human anatomy, neighboring k-space data correlation varies from the central to the outer k-space. By estimating k-space variant correlation functions with an iterative self-calibration method, correlation imaging can benefit from neighboring k-space data correlation associated with both coil sensitivity encoding and tissue-boundary sparsity, thereby providing a speed gain over parallel imaging that relies only on coil sensitivity encoding. This new approach is investigated in brain imaging and free-breathing neonatal cardiac imaging. Correlation imaging performs better than existing parallel imaging techniques in simulated brain imaging acceleration experiments. The higher speed enables real-time data acquisition for neonatal cardiac imaging in which physiological motion is fast and non-periodic. With k-space variant correlation functions, correlation imaging gives a higher speed than parallel imaging and offers the potential to image physiological motion in real-time. Magn Reson Med 79:1483-1494, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Correlation of breast image alignment using biomechanical modelling

    NASA Astrophysics Data System (ADS)

    Lee, Angela; Rajagopal, Vijay; Bier, Peter; Nielsen, Poul M. F.; Nash, Martyn P.

    2009-02-01

    Breast cancer is one of the most common causes of cancer death among women around the world. Researchers have found that a combination of imaging modalities (such as x-ray mammography, magnetic resonance, and ultrasound) leads to more effective diagnosis and management of breast cancers because each imaging modality displays different information about the breast tissues. In order to aid clinicians in interpreting the breast images from different modalities, we have developed a computational framework for generating individual-specific, 3D, finite element (FE) models of the breast. Medical images are embedded into this model, which is subsequently used to simulate the large deformations that the breasts undergo during different imaging procedures, thus warping the medical images to the deformed views of the breast in the different modalities. In this way, medical images of the breast taken in different geometric configurations (compression, gravity, etc.) can be aligned according to physically feasible transformations. In order to analyse the accuracy of the biomechanical model predictions, squared normalised cross correlation (NCC2) was used to provide both local and global comparisons of the model-warped images with clinical images of the breast subject to different gravity loaded states. The local comparison results were helpful in indicating the areas for improvement in the biomechanical model. To improve the modelling accuracy, we will need to investigate the incorporation of breast tissue heterogeneity into the model and altering the boundary conditions for the breast model. A biomechanical image registration tool of this kind will help radiologists to provide more reliable diagnosis and localisation of breast cancer.

  8. Mapping swamp timothy (Cripsis schenoides) seed productivity using spectral values and vegetation indices in managed wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahilly, P.J.A.; Li, D.; Guo, Q.

    2010-01-15

    This work examines the potential to predict the seed productivity of a key wetland plant species using spectral reflectance values and spectral vegetation indices. Specifically, the seed productivity of swamp timothy (Cripsis schenoides) was investigated in two wetland ponds, managed for waterfowl habitat, in California's San Joaquin Valley. Spectral reflectance values were obtained and associated spectral vegetation indices (SVI) calculated from two sets of high resolution aerial images (May 11, 2006 and June 9, 2006) and were compared to the collected vegetation data. Vegetation data were collected and analyzed from 156 plots for total aboveground biomass, total aboveground swamp timothymore » biomass, and total swamp timothy seed biomass. The SVI investigated included the Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Transformed Soil Adjusted Vegetation Index (TSAVI), Modified Soil Adjusted Vegetation Index (MSAVI), and Global Environment Monitoring Index (GEMI). We evaluated the correlation of the various SVI with in situ vegetation measurements for linear, quadratic, exponential and power functions. In all cases, the June image provided better predictive capacity relative to May, a result that underscores the importance of timing imagery to coincide with more favorable vegetation maturity. The north pond with the June image using SR and the exponential function (R{sup 2}=0.603) proved to be the best predictor of swamp timothy seed productivity. The June image for the south pond was less predictive, with TSAVI and the exponential function providing the best correlation (R{sup 2}=0.448). This result was attributed to insufficient vegetal cover in the south pond (or a higher percentage of bare soil) due to poor drainage conditions which resulted in a delay in swamp timothy germination. The results of this work suggest that spectral reflectance can be used to estimate seed productivity in managed seasonal wetlands.« less

  9. Water turbidity detection using ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Yarger, H. L.; Mccauley, J. R.; James, G. W.; Magnuson, L. M.; Marzolf, G. R.

    1973-01-01

    ERTS-1 images of two federal reservoirs in Kansas exhibit good correlation with suspended load. The major reservoirs in Kansas, as well as in other Great Plains states, are playing increasingly important roles in flood control, recreation, agriculture, and urban water supply. Satellite imagery may prove useful for acquiring timely low cost water quality data required for optimum management of these fresh water resources.

  10. Relationship between trabecular texture features of CT images and an amount of bone cement volume injection in percutaneous vertebroplasty

    NASA Astrophysics Data System (ADS)

    Tack, Gye Rae; Choi, Hyung Guen; Shin, Kyu-Chul; Lee, Sung J.

    2001-06-01

    Percutaneous vertebroplasty is a surgical procedure that was introduced for the treatment of compression fracture of the vertebrae. This procedure includes puncturing vertebrae and filling with polymethylmethacrylate (PMMA). Recent studies have shown that the procedure could provide structural reinforcement for the osteoporotic vertebrae while being minimally invasive and safe with immediate pain relief. However, treatment failures due to disproportionate PMMA volume injection have been reported as one of complications in vertebroplasty. It is believed that control of PMMA volume is one of the most critical factors that can reduce the incidence of complications. In this study, appropriate amount of PMMA volume was assessed based on the imaging data of a given patient under the following hypotheses: (1) a relationship can be drawn between the volume of PMMA injection and textural features of the trabecular bone in preoperative CT images and (2) the volume of PMMA injection can be estimated based on 3D reconstruction of postoperative CT images. Gray-level run length analysis was used to determine the textural features of the trabecular bone. The width of trabecular (T-texture) and the width of intertrabecular spaces (I-texture) were calculated. The correlation between PMMA volume and textural features of patient's CT images was also examined to evaluate the appropriate PMMA amount. Results indicated that there was a strong correlation between the actual PMMA injection volume and the area of the intertrabecular space and that of trabecular bone calculated from the CT image (correlation coefficient, requals0.96 and requals-0.95, respectively). T- texture (requals-0.93) did correlate better with the actual PMMA volume more than the I-texture (requals0.57). Therefore, it was demonstrated that appropriate PMMA injection volume could be predicted based on the textural analysis for better clinical management of the osteoporotic spine.

  11. Wavelet-space correlation imaging for high-speed MRI without motion monitoring or data segmentation.

    PubMed

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2015-12-01

    This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. © 2014 Wiley Periodicals, Inc.

  12. A flexible and accurate digital volume correlation method applicable to high-resolution volumetric images

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Wang, Bo

    2017-10-01

    Digital volume correlation (DVC) is a powerful technique for quantifying interior deformation within solid opaque materials and biological tissues. In the last two decades, great efforts have been made to improve the accuracy and efficiency of the DVC algorithm. However, there is still a lack of a flexible, robust and accurate version that can be efficiently implemented in personal computers with limited RAM. This paper proposes an advanced DVC method that can realize accurate full-field internal deformation measurement applicable to high-resolution volume images with up to billions of voxels. Specifically, a novel layer-wise reliability-guided displacement tracking strategy combined with dynamic data management is presented to guide the DVC computation from slice to slice. The displacements at specified calculation points in each layer are computed using the advanced 3D inverse-compositional Gauss-Newton algorithm with the complete initial guess of the deformation vector accurately predicted from the computed calculation points. Since only limited slices of interest in the reference and deformed volume images rather than the whole volume images are required, the DVC calculation can thus be efficiently implemented on personal computers. The flexibility, accuracy and efficiency of the presented DVC approach are demonstrated by analyzing computer-simulated and experimentally obtained high-resolution volume images.

  13. Airborne multispectral detection of regrowth cotton fields

    NASA Astrophysics Data System (ADS)

    Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.

    2015-01-01

    Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.

  14. Myofibroblastoma of the male breast: a rare entity with radiologic-pathologic correlation

    PubMed Central

    Comer, John D.; Cui, Xiaoyan; Eisen, Carolyn Sharyn; Abbey, Genevieve; Arleo, Elizabeth Kagan

    2016-01-01

    A 73-year old man with a history of multiple genitourinary malignancies was found to have a left retroareolar soft tissue mass on CT assessment of disease, and dedicated breast imaging was recommended. Diagnostic mammography and ultrasonography confirmed a solid mass, for which biopsy was recommended. Pathologic analysis demonstrated a spindle cell neoplasm with an immunoreactivity pattern consistent with myofibroblastoma. While this entity is benign, nonspecific imaging features necessitate tissue sampling for pathologic diagnosis, and, given pathologic rarity, open communication between the radiologist and pathologist is important to establish the correct diagnosis and to recommend appropriate management. PMID:27936420

  15. Wavelet-space Correlation Imaging for High-speed MRI without Motion Monitoring or Data Segmentation

    PubMed Central

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2014-01-01

    Purpose This study aims to 1) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and 2) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Methods Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called “wavelet-space correlation imaging”, is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Results Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Conclusion Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. PMID:25470230

  16. Multimodality medical image database for temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost

    2003-05-01

    This paper presents the development of a human brain multi-modality database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted and FLAIR MRI and ictal/interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as non-verbal Wechsler memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication matches the neurosurgeons expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.

  17. Multimedia human brain database system for surgical candidacy determination in temporal lobe epilepsy with content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost

    2003-01-01

    This paper presents the development of a human brain multimedia database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted MRI and FLAIR MRI and ictal and interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication pretty much fits with the surgeons" expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.

  18. A conceptual design for an exoplanet imager

    NASA Astrophysics Data System (ADS)

    Hyland, David C.; Winkeller, Jon; Mosher, Robert; Momin, Anif; Iglesias, Gerardo; Donnellan, Quentin; Stanley, Jerry; Myers, Storm; Whittington, William G.; Asazuma, Taro; Slagle, Kami; Newton, Lindsay; Bourgeois, Scott; Tejeda, Donny; Young, Brian; Shaver, Nick; Cooper, Jacob; Underwood, Dennis; Perkins, James; Morea, Nathan; Goodnight, Ryan; Colunga, Aaron; Peltier, Scott; Singleton, Zane; Brashear, John; McPherson, Ronald; Guillory, Winston; Patel, Sunil; Stovall, Rachel; Meyer, Ryall; Eberle, Patrick; Morrison, Cole; Mong, Chun Yu

    2007-09-01

    This paper reports the results of a design study for an exoplanet imaging system. The design team consisted of the students in the "Electromagnetic Sensing for Space-Bourne Imaging" class taught by the principal author in the Spring, 2005 semester. The design challenge was to devise a space system capable of forming 10X10 pixel images of terrestrial-class planets out to 10 parsecs, observing in the 9.0 to 17.0 microns range. It was presumed that this system would operate after the Terrestrial Planet Finder had been deployed and had identified a number of planetary systems for more detailed imaging. The design team evaluated a large number of tradeoffs, starting with the use of a single monolithic telescope, versus a truss-mounted sparse aperture, versus a formation of free-flying telescopes. Having selected the free-flyer option, the team studied a variety of sensing technologies, including amplitude interferometry, intensity correlation imaging (ICI, based on the Brown-Twiss effect and phase retrieval), heterodyne interferometry and direct electric field reconstruction. Intensity correlation imaging was found to have several advantages. It does not require combiner spacecraft, nor nanometer-level control of the relative positions, nor diffraction-limited optics. Orbit design, telescope design, spacecraft structural design, thermal management and communications architecture trades were also addressed. A six spacecraft design involving non-repeating baselines was selected. By varying the overall scale of the baselines it was found possible to unambiguously characterize an entire multi-planet system, to image the parent star and, for the largest base scales, to determine 10X10 pixel images of individual planets.

  19. Monitoring the progression of erosive tooth wear (ETW) using BEWE index in casts and their 3D images: A retrospective longitudinal study.

    PubMed

    Marro, Francisca; De Lat, Liesa; Martens, Luc; Jacquet, Wolfgang; Bottenberg, Peter

    2018-04-13

    To determine if the Basic erosive tooth wear index (BEWE index) is able to assess and monitor ETW changes in two consecutive cast models, and detect methodological differences when using the corresponding 3D image replicas. A total of 480 pre-treatment and 2-year post-treatment orthodontic models (n = 240 cast models and n = 240 3D image replicas) from 120 adolescents treated between 2002 and 2013 at the Gent Dental Clinic, Belgium, were scored using the BEWE index. For data analysis only posterior sextants were considered, and inter-method differences were evaluated using Wilcoxon Signed Rank test, Kappa values and Mc Nemar tests (p < 0.05). Correlations between methods were determined using Kendall tau correlation test. Significant changes of ETW were detected between two consecutive models when BEWE index was used to score cast models or their 3D image replicas (p < 0.001). A strong significant correlation (τb: 0.74; p < 0.001) was shown between both methods However, 3D image-BEWE index combination showed a higher probability for detecting initial surface changes, and scored significantly higher than casts (p < 0.001). Incidence and progression of ETW using 3D images was 13.3% (n = 16) and 60.9% (n = 56) respectively, with two subjects developing BEWE = 3 in at least one tooth surface. BEWE index is a suitable tool for the scoring of ETW lesions in 3D images and cast. The combination of both digital 3D records and index, can be used for the monitoring of ETW in a longitudinal approach. The higher sensibility of BEWE index when scoring 3D images might improve the early diagnosis of ETW lesions. The BEWE index combined with digital 3D records of oral conditions might improve the practitioner performance with respect to early diagnosis, monitoring and managing ETW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Telemedicine in vascular surgery: feasibility of digital imaging for remote management of wounds.

    PubMed

    Wirthlin, D J; Buradagunta, S; Edwards, R A; Brewster, D C; Cambria, R P; Gertler, J P; LaMuraglia, G M; Jordan, D E; Kvedar, J C; Abbott, W M

    1998-06-01

    Telemedicine coupled with digital photography could potentially improve the quality of outpatient wound care and decrease medical cost by allowing home care nurses to electronically transmit images of patients' wounds to treating surgeons. To determine the feasibility of this technology, we compared bedside wound examination by onsite surgeons with viewing digital images of wounds by remote surgeons. Over 6 weeks, 38 wounds in 24 inpatients were photographed with a Kodak DC50 digital camera (resolution 756 x 504 pixels/in2). Agreements regarding wound description (edema, erythema, cellulitis, necrosis, gangrene, ischemia, and granulation) and wound management (presence of healing problems, need for emergent evaluation, need for antibiotics, and need for hospitalization) were calculated among onsite surgeons and between onsite and remote surgeons. Sensitivity and specificity of remote wound diagnosis compared with bedside examination were calculated. Potential correlates of agreement, level of surgical training, certainty of diagnosis, and wound type were evaluated by multivariate analysis. Agreement between onsite and remote surgeons (66% to 95% for wound description and 64% to 95% for wound management) matched agreement among onsite surgeons (64% to 85% for wound description and 63% to 91% for wound management). Moreover, when onsite agreement was low (i.e., 64% for erythema) agreement between onsite and remote surgeons was similarly low (i.e., 66% for erythema). Sensitivity of remote diagnosis ranged from 78% (gangrene) to 98% (presence of wound healing problem), whereas specificity ranged from 27% (erythema) to 100% (ischemia). Agreement was influenced by wound type (p < 0.01) but not by certainty of diagnosis (p > 0.01) or level of surgical training (p > 0.01). Wound evaluation on the basis of viewing digital images is comparable with standard wound examination and renders similar diagnoses and treatment in the majority of cases. Digital imaging for remote wound management is feasible and holds significant promise for improving outpatient vascular wound care.

  1. Four-Photon Imaging with Thermal Light

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Xue, Xinxin; Zhang, Xun; Yuan, Chenzhi; Sun, Jia; Song, Jianping; Zhang, Yanpeng

    2014-10-01

    In a near-field four-photon correlation measurement, ghost imaging with classical incoherent light is investigated. By applying the Klyshko advanced-wave picture, we consider the properties of four-photon spatial correlation and find that the fourth-order spatial correlation function can be decomposed into multiple lower-order correlation functions. On the basis of the spatial correlation properties, a proof-of-principle four-photon ghost imaging is proposed, and the effect of each part in a fourth-order correlation function on imaging is also analyzed. In addition, the similarities and differences among ghost imaging by fourth-, second-, and third-order correlations are also discussed. It is shown that the contrast and visibility of fourth-order correlated imaging are improved significantly, while the resolution is unchanged. Such studies can be very useful in better understanding multi photon interference and multi-channel correlation imaging.

  2. Fourier Domain Optical Coherence Tomography With 3D and En Face Imaging of the Punctum and Vertical Canaliculus: A Step Toward Establishing a Normative Database.

    PubMed

    Kamal, Saurabh; Ali, Mohammad Javed; Ali, Mohammad Hasnat; Naik, Milind N

    2016-01-01

    To report the features of Fourier domain optical coherence tomography imaging of the normal punctum and vertical canaliculus. Prospective, interventional series of consecutive healthy and asymptomatic adults, who volunteered for optical coherence tomography imaging, were included in the study. Fourier domain optical coherence tomography images of the punctum and vertical canaliculus along with 3D and En face images were captured using the RTVue scanner with a corneal adaptor module and a wide-angled lens. Maximum punctal diameter, mid-canalicular diameter, and vertical canalicular height were calculated. Statistical analysis was performed using Pearson correlation test, and scatter plot matrices were analyzed. A total of 103 puncta of 52 healthy subjects were studied. Although all the images could depict the punctum and vertical canaliculus and all the desired measurements could be obtained, occasional tear debris within the canaliculus was found to be interfering with the imaging. The mean maximum punctal diameter, mid-canalicular diameter, and vertical canalicular height were recorded as 214.71 ± 73 μm, 125.04 ± 60.69 μm, and 890.41 ± 154.76 μm, respectively, with an insignificant correlation between them. The maximum recorded vertical canalicular height in all the cases was far less than the widely reported depth of 2 mm. High-resolution 3D and En face images provided a detailed topography of punctal surface and overview of vertical canaliculus. Fourier domain optical coherence tomography with 3D and En face imaging is a useful noninvasive modality to image the proximal lacrimal system with consistently reproducible high-resolution images. This is likely to help clinicians in the management of proximal lacrimal disorders.

  3. Diffusion-weighted imaging is helpful in the accurate non-invasive diagnosis of breast abscess: correlation with necrotic breast cancer.

    PubMed

    Wang, Cuiyan; Eghtedari, Mohammad; Yang, Wei Tse; Dogan, Basak Erguvan

    2018-03-22

    Clinical differentiation of atypical breast abscesses from necrotic tumour in premenopausal women is challenging and may delay appropriate therapy. In this case report, we present a 36-year-old woman with signs, symptoms and conventional imaging features of malignancy who underwent breast MRI. On diffusion-weighted imaging (DWI), profoundly low apparent diffusion coefficient values were a distinguishing sign of breast abscess from necrotic breast cancer, and helped manage the patient conservatively. We present a companion case of necrotic breast tumour highlighting significant differences in DWI. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Acute Severe Aortic Regurgitation: Imaging with Pathological Correlation.

    PubMed

    Janardhanan, Rajesh; Pasha, Ahmed Khurshid

    2016-03-01

    Acute aortic regurgitation (AR) is an important finding associated with a wide variety of disease processes. Its timely diagnosis is of utmost importance. Delay in diagnosis could prove fatal. We describe a case of acute severe AR that was timely diagnosed using real time three-dimensional (3D) transesophageal echocardiogram (3D TEE). Not only did it diagnose but also the images obtained by 3D TEE clearly matched with the pathologic specimen. Using this sophisticated imaging modality that is mostly available at the tertiary centers helped in the timely diagnosis, which lead to the optimal management saving his life. Echocardiography and especially 3D TEE can diagnose AR very accurately. Surgical intervention is the definitive treatment but medical therapy is utilized to stabilize the patient initially.

  5. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.

    PubMed

    Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed

    2014-11-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of vertical structure will be more accurate in plots having low herbaceous cover and high amounts of dense shrubs. Through the use of statistically derived correction factors or choosing field methods that better correlate with the imagery, vegetation heights from HR DSMs could be a valuable technique for broad-scale rangeland monitoring needs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring

    USGS Publications Warehouse

    Gillan, Jeffrey K.; Karl, Jason W.; Duniway, Michael; Elaksher, Ahmed

    2014-01-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of vertical structure will be more accurate in plots having low herbaceous cover and high amounts of dense shrubs. Through the use of statistically derived correction factors or choosing field methods that better correlate with the imagery, vegetation heights from HR DSMs could be a valuable technique for broad-scale rangeland monitoring needs.

  7. Tactile Imaging Markers to Characterize Female Pelvic Floor Conditions.

    PubMed

    van Raalte, Heather; Egorov, Vladimir

    2015-08-01

    The Vaginal Tactile Imager (VTI) records pressure patterns from vaginal walls under an applied tissue deformation and during pelvic floor muscle contractions. The objective of this study is to validate tactile imaging and muscle contraction parameters (markers) sensitive to the female pelvic floor conditions. Twenty-two women with normal and prolapse conditions were examined by a vaginal tactile imaging probe. We identified 9 parameters which were sensitive to prolapse conditions ( p < 0.05 for one-way ANOVA and/or p < 0.05 for t -test with correlation factor r from -0.73 to -0.56). The list of parameters includes pressure, pressure gradient and dynamic pressure response during muscle contraction at identified locations. These parameters may be used for biomechanical characterization of female pelvic floor conditions to support an effective management of pelvic floor prolapse.

  8. Tactile Imaging Markers to Characterize Female Pelvic Floor Conditions

    PubMed Central

    van Raalte, Heather; Egorov, Vladimir

    2015-01-01

    The Vaginal Tactile Imager (VTI) records pressure patterns from vaginal walls under an applied tissue deformation and during pelvic floor muscle contractions. The objective of this study is to validate tactile imaging and muscle contraction parameters (markers) sensitive to the female pelvic floor conditions. Twenty-two women with normal and prolapse conditions were examined by a vaginal tactile imaging probe. We identified 9 parameters which were sensitive to prolapse conditions (p < 0.05 for one-way ANOVA and/or p < 0.05 for t-test with correlation factor r from −0.73 to −0.56). The list of parameters includes pressure, pressure gradient and dynamic pressure response during muscle contraction at identified locations. These parameters may be used for biomechanical characterization of female pelvic floor conditions to support an effective management of pelvic floor prolapse. PMID:26389014

  9. Image correlation and sampling study

    NASA Technical Reports Server (NTRS)

    Popp, D. J.; Mccormack, D. S.; Sedwick, J. L.

    1972-01-01

    The development of analytical approaches for solving image correlation and image sampling of multispectral data is discussed. Relevant multispectral image statistics which are applicable to image correlation and sampling are identified. The general image statistics include intensity mean, variance, amplitude histogram, power spectral density function, and autocorrelation function. The translation problem associated with digital image registration and the analytical means for comparing commonly used correlation techniques are considered. General expressions for determining the reconstruction error for specific image sampling strategies are developed.

  10. Spectrum of Abdominal Aortic Disease in a Tertiary Health Care Setup: MDCT Based Observational Study

    PubMed Central

    Kumar, DG Santosh; Gadabanahalli, Karthik; Kalyanpur, Arjun

    2016-01-01

    Introduction Abdominal aortic disease is an important cause of clinical disability that requires early detection by imaging methods for prompt and effective management. Understanding regional disease pattern and prevalence has a bearing on healthcare management and resource planning. Non-invasive, conclusive imaging strategy plays an important role in the detection of disease. Multi-Detector Computed Tomography (MDCT) with its technological developments provides affordable, accurate and comprehensive imaging solution. Aim To evaluate regional demography of abdominal aortic disease spectrum detected using MDCT imaging data in a tertiary hospital. Materials and Methods A descriptive study was conducted based on MDCT imaging data of patients who were investigated with clinical diagnosis of abdominal aortic disease, from March 2008-2010, over a period of 24 months. Patients were examined with the contrast-enhanced MDCT examination. Morphological diagnosis of the aortic disease was based on changes in relative aortic caliber, luminal irregularity, presence of wall calcification, dissection or thrombus and evidence of major branch occlusion. Patients were categorized into four groups based on imaging findings. MDCT information and associated clinical parameters were examined and correlated to management of patient. Descriptive statistical data, namely mean, standard deviation and frequency of disease were evaluated. Results A total of 90 out of 210 patients (43%) were detected with the abdominal aortic abnormality defined by imaging criteria. Group I, comprising of patients with atherosclerosis –including those with complications, constituted 65.5% of the patients. Group II represented patients with aneurysms (45.5%). Group III, consisting of 32.2% of the patients, contained those with dissections. The rest of the patients, including patients with aorto-arteritis, were classified as group IV. Eight patients with aneurysm and one patient with aorto-arteritis were considered for surgical treatment. Ten patients with dissection underwent endovascular procedure. Rest of the patients was managed conservatively. Conclusion Aortic disease was observed in 43% of investigated patients. Atherosclerosis with and without aortic aneurysm constituted the largest group. MDCT provided comprehensive information about the lesion and associated complications. In view of the wider availability and desired imaging qualities, MDCT provided optimal information for diagnosis and management of aortic pathology. Majority of our patients (90%) were treated conservatively. PMID:28050476

  11. Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yingchuan; College of Mathematics and Physics, University of South China, Hengyang 421001; Kuang Leman

    2011-05-15

    In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that themore » visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.« less

  12. Image correlation microscopy for uniform illumination.

    PubMed

    Gaborski, T R; Sealander, M N; Ehrenberg, M; Waugh, R E; McGrath, J L

    2010-01-01

    Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.

  13. Relating vegetation condition to grazing management systems in the central Keiskamma catchment, Eastern Cape Province, South Africa

    NASA Astrophysics Data System (ADS)

    Kakembo, Vincent; Ndou, Naledzani

    2017-04-01

    An investigation of the temporal changes in vegetation condition across the communal villages of the central Keiskamma catchment, Eastern Cape Province, in relation to local grazing management systems was conducted. Landsat TM images of 1984 and 1999, in conjunction with SPOT imagery of 2011 were used to assess the spatial trends in vegetation. Information regarding the functionality of local grazing management structures was obtained through structured interviews. Vegetation condition was related to grazing management systems using the logistic regression in Idrisi Selva remote sensing software. Analysis of vegetation condition trends revealed a consistent deterioration of vegetation condition in villages with weak grazing management systems. A statistically significant correlation between vegetation condition and grazing management systems was identified. High levels of vegetation degradation were associated with villages that did not adhere to sound grazing management practices. The introduction of another layer governance in the form of elected municipal committees weakened traditional village management structures. Strengthening traditional management committees should be the point of departure for vegetation restoration.

  14. Image scale measurement with correlation filters in a volume holographic optical correlator

    NASA Astrophysics Data System (ADS)

    Zheng, Tianxiang; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2013-08-01

    A search engine containing various target images or different part of a large scene area is of great use for many applications, including object detection, biometric recognition, and image registration. The input image captured in realtime is compared with all the template images in the search engine. A volume holographic correlator is one type of these search engines. It performs thousands of comparisons among the images at a super high speed, with the correlation task accomplishing mainly in optics. However, the inputted target image always contains scale variation to the filtering template images. At the time, the correlation values cannot properly reflect the similarity of the images. It is essential to estimate and eliminate the scale variation of the inputted target image. There are three domains for performing the scale measurement, as spatial, spectral and time domains. Most methods dealing with the scale factor are based on the spatial or the spectral domains. In this paper, a method with the time domain is proposed to measure the scale factor of the input image. It is called a time-sequential scaled method. The method utilizes the relationship between the scale variation and the correlation value of two images. It sends a few artificially scaled input images to compare with the template images. The correlation value increases and decreases with the increasing of the scale factor at the intervals of 0.8~1 and 1~1.2, respectively. The original scale of the input image can be measured by estimating the largest correlation value through correlating the artificially scaled input image with the template images. The measurement range for the scale can be 0.8~4.8. Scale factor beyond 1.2 is measured by scaling the input image at the factor of 1/2, 1/3 and 1/4, correlating the artificially scaled input image with the template images, and estimating the new corresponding scale factor inside 0.8~1.2.

  15. SU-E-I-81: Targeting of HER2-Expressing Tumors with Dual PET-MR Imaging Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, P; Peng, Y; Sun, M

    2015-06-15

    Purpose: The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Trastuzumab, effective in about 15 % of women with breast cancer, downregulates signalling through the Akt/PI3K and MAPK pathways.These pathways modulate metabolism which can be monitored by positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: The relationship between response of HER2 overexpressing tumours and changes in imaging PET or SPECT and MRI willmore » be examined by a integrated bimodal imaging probe.Small (7 kDa) high-affinity anti-HER2 Affibody molecules and KCCYSL targeting peptide may be suitable tracers for visualization of HER2-expressing tumors. Peptide-conjugated iron oxide nanoparticles (Fe3O4 NPs) as MRI imaging and CB-TE2A as PET imaging are integrated into a single synthetic molecule in the HER2 positive cancer. Results: One of targeted contrast bimodal imaging probe agents was synthesized and evaluated to target HER2-expressing tumors in a HER2 positive rat model. We will report the newest results regarding the development of bimodal imaging probes. Conclusion: The preliminary results of the bimodal imaging probe presents high correlation of MRI signal and PET imaging intensity in vivo. This unique feature can hardly be obtained by single model contrast agents. It is envisioned that this bimodal agents can hold great potential for accurate detection of HER2-expressing tumors which are critical for clinical management of the disease.« less

  16. Periodic diffraction correlation imaging without a beam-splitter.

    PubMed

    Li, Hu; Chen, Zhipeng; Xiong, Jin; Zeng, Guihua

    2012-01-30

    In this paper, we proposed and demonstrated a new correlation imaging mechanism based on the periodic diffraction effect. In this effect, a periodic intensity pattern is generated at the output surface of a periodic point source array. This novel correlation imaging mechanism can realize super-resolution imaging, Nth-order ghost imaging without a beam-splitter and correlation microscopy.

  17. Advances in the Diagnosis of Neuroendocrine Neoplasms.

    PubMed

    Kulkarni, Harshad R; Singh, Aviral; Baum, Richard P

    2016-09-01

    Somatostatin receptor PET/CT using (68)Ga-labeled somatostatin analogs, is a mainstay for the evaluation of the somatostatin receptor status in neuroendocrine neoplasms. In addition, the assessment of glucose metabolism by (18)F-FDG PET/CT at diagnosis can overcome probable shortcomings of histopathologic grading. This offers a systematic theranostic approach for the management of neuroendocrine neoplasms, that is, patient selection for the appropriate treatment-surgery, somatostatin analogs, peptide receptor radionuclide therapy, targeted therapies like everolimus and sunitinib, or chemotherapy-and also for therapy response monitoring. Novel targets, for example, the chemokine receptor CXCR4 in higher-grade tumors and glucagon like peptide-1 receptor in insulinomas, appear promising for imaging. Scandium-44 and Copper-64, especially on account of their longer half-life (for pretherapeutic dosimetry) and cyclotron production (which favors mass production), might be the potential alternatives to (68)Ga for PET/CT imaging. The future of molecular imaging lies in Radiomics, that is, qualitative and quantitative characterization of tumor phenotypes in correlation with tumor genomics and proteomics, for a personalized cancer management. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Evaluation of a web based informatics system with data mining tools for predicting outcomes with quantitative imaging features in stroke rehabilitation clinical trials

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Kim, Bokkyu; Park, Ji Hoon; Wang, Erik; Forsyth, Sydney; Lim, Cody; Ravi, Ragini; Karibyan, Sarkis; Sanchez, Alexander; Liu, Brent

    2017-03-01

    Quantitative imaging biomarkers are used widely in clinical trials for tracking and evaluation of medical interventions. Previously, we have presented a web based informatics system utilizing quantitative imaging features for predicting outcomes in stroke rehabilitation clinical trials. The system integrates imaging features extraction tools and a web-based statistical analysis tool. The tools include a generalized linear mixed model(GLMM) that can investigate potential significance and correlation based on features extracted from clinical data and quantitative biomarkers. The imaging features extraction tools allow the user to collect imaging features and the GLMM module allows the user to select clinical data and imaging features such as stroke lesion characteristics from the database as regressors and regressands. This paper discusses the application scenario and evaluation results of the system in a stroke rehabilitation clinical trial. The system was utilized to manage clinical data and extract imaging biomarkers including stroke lesion volume, location and ventricle/brain ratio. The GLMM module was validated and the efficiency of data analysis was also evaluated.

  19. Discriminative and predictive validity of the scoliosis research society-22 questionnaire in management and curve-severity subgroups of adolescents with idiopathic scoliosis.

    PubMed

    Parent, Eric C; Hill, Doug; Mahood, Jim; Moreau, Marc; Raso, Jim; Lou, Edmond

    2009-10-15

    Prospective cross-sectional measurement study. To determine the ability of the Scoliosis Research Society (SRS)-22 questionnaire to discriminate among management and scoliosis severity subgroups and to correlate with internal and external measures of curve severity. In earlier studies of the SRS-22 discriminative ability, age was not a controlled factor. The ability of the SRS-22 to predict curve severity has not been thoroughly examined. The SRS-22 was completed by 227 females with adolescent idiopathic scoliosis. Using Analysis of covariance analyses controlling for age, the SRS-22 scores were compared among management subgroups (observation, brace, presurgery, and postsurgery) and curve-severity subgroups (in nonoperated subjects: Cobb angles of <30 degrees, 30 degrees -50 degrees, and >50 degrees). A stepwise discriminant analysis was used to identify the SRS-22 domains most discriminative for curve-severity categories. Correlation between SRS-22 scores and radiographic or surface topography measurements was used to determine the predictive ability of the questionnaire. Pain was better for subjects treated with braces than for those planning surgery. Self-image was better for subjects under observation or postsurgery than for those planning surgery. Satisfaction was better for the brace and postsurgery subgroups than for the observation or presurgery subgroups. Statistically significant mean differences between subgroups were all larger than 0.5, which is within the range of minimal clinically important differences recommended for each of the 5-point SRS-22 domain scoring scales. Pain and mental health were worse for those with Cobb angles of >50 degrees than with Cobb angles of 30 degrees to 50 degrees. Self-image and total scores were worse for those with Cobb angles of >50 degrees than both other subgroups. Using discriminant analysis, self-image was the only SRS-22 domain score selected to classify subjects within curve severity subgroups. The percentage of patients accurately classified was 54% when trying to classify within 3 curve severity subgroups. The percentage of patients accurately classified was 73% when classifying simply as those with curves larger or smaller than 50 degrees . Pain, self-image, and satisfaction scores could discriminate among management subgroups, but function, mental health and total scores could not. The total score and all domain scores except satisfaction discriminated among curve-severity subgroups. Using discriminant analysis, self-image was the only domain retained in a model predicting curve-severity categories.

  20. Conventional digital subtractional vs non-invasive MR angiography in the assessment of brain arteriovenous malformation.

    PubMed

    Cuong, Nguyen Ngoc; Luu, Vu Dang; Tuan, Tran Anh; Linh, Le Tuan; Hung, Kieu Dinh; Ngoc, Vo Truong Nhu; Sharma, Kulbhushan; Pham, Van Huy; Chu, Dinh-Toi

    2018-06-01

    Digital subtractional angiography (DSA) is the standard method for diagnosis, assessment and management of arteriovenous malformation in the brain. Conventional DSA (cDSA) is an invasive imaging modality that is often indicated before interventional treatments (embolization, open surgery, gamma knife). Here, we aimed to compare this technique with a non-invasive MR angiography (MRI DSA) for brain arteriovenous malformation (bAVM). Fourteen patients with ruptured brain AVM underwent embolization treatment pre-operation. Imaging was performed for all patients using MRI (1.5 T). After injecting contrast Gadolinium, dynamic MRI was performed with 40 phases, each phase of a duration of 1.2 s and having 70 images. The MRI results were independently assessed by experienced radiologist blinded to the cDSA. The AVM nidus was depicted in all patients using cDSA and MRI DSA; there was an excellent correlation between these techniques in terms of the maximum diameter and Spetzler Martin grading. Of the fourteen patients, the drainage vein was depicted in 13 by both cDSA and MRI DSA showing excellent correlation between the techniques used. MRI DSA is a non-invasive imaging modality that can give the images in dynamic view. It can be considered as an adjunctive method with cDSA to plan the strategy treatment for bAVM. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Digital and optical shape representation and pattern recognition; Proceedings of the Meeting, Orlando, FL, Apr. 4-6, 1988

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Editor)

    1988-01-01

    The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.

  2. Clinical Characteristics and Current Treatment of Age-Related Macular Degeneration

    PubMed Central

    Yonekawa, Yoshihiro; Kim, Ivana K.

    2015-01-01

    Age-related macular degeneration (AMD) is a multifactorial degeneration of photoreceptors and retinal pigment epithelium. The societal impact is significant, with more than 2 million individuals in the United States alone affected by advanced stages of AMD. Recent progress in our understanding of this complex disease and parallel developments in therapeutics and imaging have translated into new management paradigms in recent years. However, there are many unanswered questions, and diagnostic and prognostic precision and treatment outcomes can still be improved. In this article, we discuss the clinical features of AMD, provide correlations with modern imaging and histopathology, and present an overview of treatment strategies. PMID:25280900

  3. Evaluation of correlation between CT image features and ERCC1 protein expression in assessing lung cancer prognosis

    NASA Astrophysics Data System (ADS)

    Tan, Maxine; Emaminejad, Nastaran; Qian, Wei; Sun, Shenshen; Kang, Yan; Guan, Yubao; Lure, Fleming; Zheng, Bin

    2014-03-01

    Stage I non-small-cell lung cancers (NSCLC) usually have favorable prognosis. However, high percentage of NSCLC patients have cancer relapse after surgery. Accurately predicting cancer prognosis is important to optimally treat and manage the patients to minimize the risk of cancer relapse. Studies have shown that an excision repair crosscomplementing 1 (ERCC1) gene was a potentially useful genetic biomarker to predict prognosis of NSCLC patients. Meanwhile, studies also found that chronic obstructive pulmonary disease (COPD) was highly associated with lung cancer prognosis. In this study, we investigated and evaluated the correlations between COPD image features and ERCC1 gene expression. A database involving 106 NSCLC patients was used. Each patient had a thoracic CT examination and ERCC1 genetic test. We applied a computer-aided detection scheme to segment and quantify COPD image features. A logistic regression method and a multilayer perceptron network were applied to analyze the correlation between the computed COPD image features and ERCC1 protein expression. A multilayer perceptron network (MPN) was also developed to test performance of using COPD-related image features to predict ERCC1 protein expression. A nine feature based logistic regression analysis showed the average COPD feature values in the low and high ERCC1 protein expression groups are significantly different (p < 0.01). Using a five-fold cross validation method, the MPN yielded an area under ROC curve (AUC = 0.669±0.053) in classifying between the low and high ERCC1 expression cases. The study indicates that CT phenotype features are associated with the genetic tests, which may provide supplementary information to help improve accuracy in assessing prognosis of NSCLC patients.

  4. Correlative visualization techniques for multidimensional data

    NASA Technical Reports Server (NTRS)

    Treinish, Lloyd A.; Goettsche, Craig

    1989-01-01

    Critical to the understanding of data is the ability to provide pictorial or visual representation of those data, particularly in support of correlative data analysis. Despite the advancement of visualization techniques for scientific data over the last several years, there are still significant problems in bringing today's hardware and software technology into the hands of the typical scientist. For example, there are other computer science domains outside of computer graphics that are required to make visualization effective such as data management. Well-defined, flexible mechanisms for data access and management must be combined with rendering algorithms, data transformation, etc. to form a generic visualization pipeline. A generalized approach to data visualization is critical for the correlative analysis of distinct, complex, multidimensional data sets in the space and Earth sciences. Different classes of data representation techniques must be used within such a framework, which can range from simple, static two- and three-dimensional line plots to animation, surface rendering, and volumetric imaging. Static examples of actual data analyses will illustrate the importance of an effective pipeline in data visualization system.

  5. Tree Canopy Light Interception Estimates in Almond and a Walnut Orchards Using Ground, Low Flying Aircraft, and Satellite Based Methods to Improve Irrigation Scheduling Programs

    NASA Technical Reports Server (NTRS)

    Rosecrance, Richard C.; Johnson, Lee; Soderstrom, Dominic

    2016-01-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  6. Tree canopy light interception estimates in almond and a walnut orchards using ground, low flying aircraft, and satellite based methods to improve irrigation scheduling programs.

    NASA Astrophysics Data System (ADS)

    Rosecrance, R. C.; Johnson, L.; Soderstrom, D.

    2016-12-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  7. Magnetic resonance imaging (MRI) of PEM dehydration and gas manifold flooding during continuous fuel cell operation

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Viswanathan, Vilayanur V.; Majors, Paul D.; Wang, Li-Qiong; Rieke, Peter C.

    Magnetic resonance imaging (MRI) was employed for visualizing water inside a proton exchange membrane (PEM) fuel cell during 11.4 h of continuous operation with a constant load. Two-dimensional images acquired every 128 s revealed the formation of a dehydration front that propagated slowly over the surface of the fuel cell membrane-starting from gas inlets and progressing toward gas outlets. After traversing the entire PEM surface, channels in the gas manifold began to flood on the cathode side. To establish a qualitative understanding of these observations, acquired images were correlated to the current output and the operating characteristics of the fuel cell. Results demonstrate the power of MRI for visualizing changing water distributions during PEM fuel cell operation, and highlight its potential utility for studying the causes of cell failure and/or strategies of water management.

  8. Acute Severe Aortic Regurgitation: Imaging with Pathological Correlation

    PubMed Central

    Janardhanan, Rajesh; Pasha, Ahmed Khurshid

    2016-01-01

    Context: Acute aortic regurgitation (AR) is an important finding associated with a wide variety of disease processes. Its timely diagnosis is of utmost importance. Delay in diagnosis could prove fatal. Case Report: We describe a case of acute severe AR that was timely diagnosed using real time three-dimensional (3D) transesophageal echocardiogram (3D TEE). Not only did it diagnose but also the images obtained by 3D TEE clearly matched with the pathologic specimen. Using this sophisticated imaging modality that is mostly available at the tertiary centers helped in the timely diagnosis, which lead to the optimal management saving his life. Conclusion: Echocardiography and especially 3D TEE can diagnose AR very accurately. Surgical intervention is the definitive treatment but medical therapy is utilized to stabilize the patient initially. PMID:27114975

  9. Thin and Slow Smoke Detection by Using Frequency Image

    NASA Astrophysics Data System (ADS)

    Zheng, Guang; Oe, Shunitiro

    In this paper, a new method to detect thin and slow smoke for early fire alarm by using frequency image has been proposed. The correlation coefficient of the frequency image between the current stage and the initial stage are calculated, so are the gray image correlation coefficient of the color image. When the thin smoke close to transparent enters into the camera view, the correlation coefficient of the frequency image becomes small, while the gray image correlation coefficient of the color image hardly change and keep large. When something which is not transparent, like human beings, etc., enters into the camera view, the correlation coefficient of the frequency image becomes small, as well as that of color image. Based on the difference of correlation coefficient between frequency image and color image in different situations, the thin smoke can be detected. Also, considering the movement of the thin smoke, miss detection caused by the illustration change or noise can be avoided. Several experiments in different situations are carried out, and the experimental results show the effect of the proposed method.

  10. EIT image reconstruction with four dimensional regularization.

    PubMed

    Dai, Tao; Soleimani, Manuchehr; Adler, Andy

    2008-09-01

    Electrical impedance tomography (EIT) reconstructs internal impedance images of the body from electrical measurements on body surface. The temporal resolution of EIT data can be very high, although the spatial resolution of the images is relatively low. Most EIT reconstruction algorithms calculate images from data frames independently, although data are actually highly correlated especially in high speed EIT systems. This paper proposes a 4-D EIT image reconstruction for functional EIT. The new approach is developed to directly use prior models of the temporal correlations among images and 3-D spatial correlations among image elements. A fast algorithm is also developed to reconstruct the regularized images. Image reconstruction is posed in terms of an augmented image and measurement vector which are concatenated from a specific number of previous and future frames. The reconstruction is then based on an augmented regularization matrix which reflects the a priori constraints on temporal and 3-D spatial correlations of image elements. A temporal factor reflecting the relative strength of the image correlation is objectively calculated from measurement data. Results show that image reconstruction models which account for inter-element correlations, in both space and time, show improved resolution and noise performance, in comparison to simpler image models.

  11. Diabetes dietary management alters responses to food pictures in brain regions associated with motivation and emotion: a functional magnetic resonance imaging study.

    PubMed

    Chechlacz, M; Rotshtein, P; Klamer, S; Porubská, K; Higgs, S; Booth, D; Fritsche, A; Preissl, H; Abele, H; Birbaumer, N; Nouwen, A

    2009-03-01

    We hypothesised that living with type 2 diabetes would enhance responses to pictures of foods in brain regions known to be involved in learnt food sensory motivation and that these stronger activations would relate to scores for dietary adherence in diabetes and to measures of potential difficulties in adherence. We compared brain responses to food images of 11 people with type 2 diabetes and 12 healthy control participants, matched for age and weight, using functional magnetic resonance imaging (fMRI). Having type 2 diabetes increased responses to pictured foods in the insula, orbitofrontal cortex (OFC) and basal ganglia and, within these regions, the effect of the fat content of the foods was larger in participants with type 2 diabetes than in healthy controls. Furthermore, increased activation to food within the insula and OFC positively correlated with external eating, dietary self-efficacy and dietary self-care. In contrast, responses within subcortical structures (amygdala and basal ganglia) were positively correlated with emotional eating and rated appetite for the food stimuli and negatively correlated with dietary self-care. Type 2 diabetes is associated with changes in brain responses to food that are modulated by dietary self-care. We propose that this is linked to the need to follow a life-long restrictive diet.

  12. Body image, weight management behavior, nutritional knowledge and dietary habits in high school boys in Korea and China.

    PubMed

    Hyun, Hwajin; Lee, Hongmie; Ro, Yoona; Gray, Heewon L; Song, Kyunghee

    2017-01-01

    Adolescence is an important period with rapid physical growth transitioning from childhood to adulthood. Distorted body image can result in eating disorders or inadequate nutrient intakes in adolescence. Limited research has been done with high school boys in both Korea and China. To examine body image, weight control behaviors, nutritional knowledge, and dietary habits in Korean and Chinese teenage boys, and to evaluate any differences in these measures between two countries. High school boys in Yongin of Korea and Weihai region of China (n=201 Korean and n=196 Chinese) participated in a selfreport survey. A previously validated questionnaire assessed height and weight, body image, nutritional knowledge, and dietary habits. Descriptive statistics, t-test, Chi-square, and Pearson correlations were used for data analysis. About 41.4% of Korean students and 40.8% of Chinese students desired to be thinner. The majority of the students from both countries showed a perception gap between ideal body image and current body image. Korean students had a higher frequency of weight control attempts compared with Chinese students (p=0.004). Overall, Korean students had higher scores in nutritional knowledge (p<0.001), while Chinese students had higher scores in dietary habits (p<0.001). Nutrition knowledge in Korean students and dietary habit in Chinese students showed positive correlation with body shape satisfaction (p<0.01). The findings of this study support that developing proper body image among high school boys is important in Korea and China. Different educational strategies might be beneficial to Korean or Chinese students.

  13. The influence of self-deception and impression management upon self-assessment in oral surgery.

    PubMed

    Evans, A W; Leeson, R M A; Newton John, T R O; Petrie, A

    2005-06-25

    To see if poor self-assessment of surgical performance during removal of mandibular third molars is influenced by self-deception (lack of insight) and impression management (trying to convey a favourable impression). A prospective study of 50 surgeons, surgically removing a lower third molar tooth. One UK dental school over a two year period. The surgeons' surgical skills were assessed (by two assessors) and self-assessed using check-list and global rating scales. Post-operatively, surgeons completed validated deception questionnaires which measured both self-deception enhancement (lack of insight), and impression management (the tendency to deliberately convey a favourable impression). Reliability between assessors, and between assessors' and surgeons' self-assessments were calculated. Discrepancies between assessors' and surgeons' scores were correlated with surgeons' deception scores. Reliability between assessors was excellent for checklist (0.96) and global rating scales (0.89) and better than the reliability between assessors and surgeons (0.51 and 0.49). There was a statistically significant correlation (r=0.45 p=0.001 checklist, r= 0.48 p<0.001 global) between over/ under-rating of their surgical performance by surgeons and their impression management scores. No statistically significant correlation was found between this inaccuracy in self-assessment and surgeons' individual self-deception scores. The majority of surgeons scored themselves higher than their assessors did for surgical skill in removing a single mandibular third molar tooth. Impression management (the tendency to deliberately convey a favourable impression) may contribute to a surgeon's inaccurate self-reporting of performance. Lack of insight appears to be much less important as a contributing factor. The authors speculate that pressure to provide evidence of good performance may be encouraging surgeons to manage their image and over-score themselves.

  14. Alpha trimmed correlation for touchless finger image mosaicing

    NASA Astrophysics Data System (ADS)

    Rao, Shishir P.; Rajendran, Rahul; Agaian, Sos S.; Mulawka, Marzena Mary Ann

    2016-05-01

    In this paper, a novel technique to mosaic multiview contactless finger images is presented. This technique makes use of different correlation methods, such as, the Alpha-trimmed correlation, Pearson's correlation [1], Kendall's correlation [2], and Spearman's correlation [2], to combine multiple views of the finger. The key contributions of the algorithm are: 1) stitches images more accurately, 2) provides better image fusion effects, 3) has better visual effect on the overall image, and 4) is more reliable. The extensive computer simulations show that the proposed method produces better or comparable stitched images than several state-of-the-art methods, such as those presented by Feng Liu [3], K Choi [4], H Choi [5], and G Parziale [6]. In addition, we also compare various correlation techniques with the correlation method mentioned in [3] and analyze the output. In the future, this method can be extended to obtain a 3D model of the finger using multiple views of the finger, and help in generating scenic panoramic images and underwater 360-degree panoramas.

  15. Study of morphological changes in scattering and optically anisotropic medium through correlation images

    NASA Astrophysics Data System (ADS)

    Jain, Neha; Shukla, Prashant; Singh, Jai

    2018-05-01

    Correlation images are very useful in determining the morphological changes. We have investigated the correlation image analysis on depolarization and retardance matrices of polystyrene and gelatine samples respectively. We observed that that correlation images have a potential to show a significant variation with change in the concentration of samples (polystyrene and gelatine). For polystyrene microspheres the correlation value decreases with increasing scattering coefficient. In gelatine samples the correlation also decreases with sample concentration. This variation in correlation for retardance shows the change in a birefringence property of gelatine solution.

  16. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    PubMed Central

    Viti, Federica; Merelli, Ivan; Caprera, Andrea; Lazzari, Barbara; Stella, Alessandra; Milanesi, Luciano

    2008-01-01

    Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes. PMID:18460177

  17. Postoperative perceived health status in adolescent following idiopathic scoliosis surgical treatment: results using the adapted French version of Scoliosis Research Society Outcomes questionnaire (SRS-22).

    PubMed

    Chaib, Y; Bachy, M; Zakine, S; Mary, P; Khouri, N; Vialle, R

    2013-06-01

    Assessing functional outcome from patient-based outcomes questionnaires are essential to the evaluation of adolescent idiopathic scoliosis surgical treatment At the minimum follow-up of 2 years, 45 operated on adolescent idiopathic scoliosis patients were mailed the French version of the Scoliosis Research Society Outcome Instrument (SRS-22) questionnaires containing items on pain, activities of daily living, and satisfaction. Mean values of the SRS-22 domains were 3,66 for the Pain domain, 3,85 for the Self-perceived image domain, 4,32 for the Function domain, 3,52 for the Mental health domain and 4,12 for the Global satisfaction with management domain. Mean value of the global SRS-22 score was 3,88. We showed no differences in functional SRS-22 health status in patients according to the type of curve (Lenke classification). We showed statistically significant correlations between the gain of Cobb angle and Patients self-image and function domain scores. There was a statistically significant correlation between preoperative Cobb angle and patient satisfaction with management. Even if Function and Self-image scores in our patients are close to control group values, indicating good short to mid-term outcome of surgical treatment, scores for pain and mental health status were significantly lower in patients than controls. Long-term follow-up studies conducted by multiple surgeons over successive generations are mandatory to assess clinical significance of these differences. Level IV. Retrospective study. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Prognostic factors of non-functioning pancreatic neuroendocrine tumor revisited: The value of WHO 2010 classification.

    PubMed

    Bu, Jiyoung; Youn, Sangmin; Kwon, Wooil; Jang, Kee Taek; Han, Sanghyup; Han, Sunjong; You, Younghun; Heo, Jin Seok; Choi, Seong Ho; Choi, Dong Wook

    2018-02-01

    Various factors have been reported as prognostic factors of non-functional pancreatic neuroendocrine tumors (NF-pNETs). There remains some controversy as to the factors which might actually serve to successfully prognosticate future manifestation and diagnosis of NF-pNETs. As well, consensus regarding management strategy has never been achieved. The aim of this study is to further investigate potential prognostic factors using a large single-center cohort to help determine the management strategy of NF-pNETs. During the time period 1995 through 2013, 166 patients with NF-pNETs who underwent surgery in Samsung Medical Center were entered in a prospective database, and those factors thought to represent predictors of prognosis were tested in uni- and multivariate models. The median follow-up time was 46.5 months; there was a maximum follow-up period of 217 months. The five-year overall survival and disease-free survival rates were 88.5% and 77.0%, respectively. The 2010 WHO classification was found to be the only prognostic factor which affects overall survival and disease-free survival in multivariate analysis. Also, pathologic tumor size and preoperative image tumor size correlated strongly with the WHO grades ( p <0.001, and p <0.001). Our study demonstrates that 2010 WHO classification represents a valuable prognostic factor of NF-pNETs and tumor size on preoperative image correlated with WHO grade. In view of the foregoing, the preoperative image size is thought to represent a reasonable reference with regard to determination and development of treatment strategy of NF-pNETs.

  19. Correlated Topic Vector for Scene Classification.

    PubMed

    Wei, Pengxu; Qin, Fei; Wan, Fang; Zhu, Yi; Jiao, Jianbin; Ye, Qixiang

    2017-07-01

    Scene images usually involve semantic correlations, particularly when considering large-scale image data sets. This paper proposes a novel generative image representation, correlated topic vector, to model such semantic correlations. Oriented from the correlated topic model, correlated topic vector intends to naturally utilize the correlations among topics, which are seldom considered in the conventional feature encoding, e.g., Fisher vector, but do exist in scene images. It is expected that the involvement of correlations can increase the discriminative capability of the learned generative model and consequently improve the recognition accuracy. Incorporated with the Fisher kernel method, correlated topic vector inherits the advantages of Fisher vector. The contributions to the topics of visual words have been further employed by incorporating the Fisher kernel framework to indicate the differences among scenes. Combined with the deep convolutional neural network (CNN) features and Gibbs sampling solution, correlated topic vector shows great potential when processing large-scale and complex scene image data sets. Experiments on two scene image data sets demonstrate that correlated topic vector improves significantly the deep CNN features, and outperforms existing Fisher kernel-based features.

  20. When Closure Fails: What the Radiologist Needs to Know About the Embryology, Anatomy, and Prenatal Imaging of Ventral Body Wall Defects.

    PubMed

    Torres, Ulysses S; Portela-Oliveira, Eduardo; Braga, Fernanda Del Campo Braojos; Werner, Heron; Daltro, Pedro Augusto Nascimento; Souza, Antônio Soares

    2015-12-01

    Ventral body wall defects (VBWDs) are one of the main categories of human congenital malformations, representing a wide and heterogeneous group of defects sharing a common feature, that is, herniation of one or more viscera through a defect in the anterior body wall. Gastroschisis and omphalocele are the 2 most common congenital VBWDs. Other uncommon anomalies include ectopia cordis and pentalogy of Cantrell, limb-body wall complex, and bladder and cloacal exstrophy. Although VBWDs are associated with multiple abnormalities with distinct embryological origins and that may affect virtually any system organs, at least in relation to anterior body wall defects, they are thought (except for omphalocele) to share a common embryologic mechanism, that is, a failure involving the lateral body wall folds responsible for closing the thoracic, abdominal, and pelvic portions of the ventral body wall during the fourth week of development. Additionally, many of the principles of diagnosis and management are similar for these conditions. Fetal ultrasound (US) in prenatal care allows the diagnosis of most of such defects with subsequent opportunities for parental counseling and optimal perinatal management. Fetal magnetic resonance imaging may be an adjunct to US, providing global and detailed anatomical information, assessing the extent of defects, and also helping to confirm the diagnosis in equivocal cases. Prenatal imaging features of VBWDs may be complex and challenging, often requiring from the radiologist a high level of suspicion and familiarity with the imaging patterns. Because an appropriate management is dependent on an accurate diagnosis and assessment of defects, radiologists should be able to recognize and distinguish between the different VBWDs and their associated anomalies. In this article, we review the relevant embryology of VBWDs to facilitate understanding of the pathologic anatomy and diagnostic imaging approach. Features will be illustrated with prenatal US and magnetic resonance imaging and correlated with postnatal and clinical imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Correlated Imaging – A Grand Challenge in Chemical Analysis

    PubMed Central

    Masyuko, Rachel; Lanni, Eric; Sweedler, Jonathan V.; Bohn, Paul W.

    2013-01-01

    Correlated chemical imaging is an emerging strategy for acquisition of images by combining information from multiplexed measurement platforms to track, visualize, and interpret in situ changes in the structure, organization, and activities of interesting chemical systems, frequently spanning multiple decades in space and time. Acquiring and correlating information from complementary imaging experiments has the potential to expose complex chemical behavior in ways that are simply not available from single methods applied in isolation, thereby greatly amplifying the information gathering power of imaging experiments. However, in order to correlate image information across platforms, a number of issues must be addressed. First, signals are obtained from disparate experiments with fundamentally different figures of merit, including pixel size, spatial resolution, dynamic range, and acquisition rates. In addition, images are often acquired on different instruments in different locations, so the sample must be registered spatially so that the same area of the sample landscape is addressed. The signals acquired must be correlated in both spatial and temporal domains, and the resulting information has to be presented in a way that is readily understood. These requirements pose special challenges for image cross-correlation that go well beyond those posed in single technique imaging approaches. The special opportunities and challenges that attend correlated imaging are explored by specific reference to correlated mass spectrometric and Raman imaging, a topic of substantial and growing interest. PMID:23431559

  2. Wandering spleen in children: a report of 3 cases and a brief literature review underlining the importance of diagnostic imaging.

    PubMed

    Lombardi, Roberta; Menchini, Laura; Corneli, Teresa; Magistrelli, Andrea; Accinni, Antonella; Monti, Lidia; Tomà, Paolo

    2014-03-01

    Wandering spleen is a rare condition in children that is often caused by loss or weakening of the splenic ligaments. Its clinical presentation is variable; 64% of children with wandering spleen have splenic torsion as a complication. To provide up-to-date information on the diagnosis, clinical management and diagnostic imaging approaches for wandering spleen in infants and children and to underline the importance of color Doppler US and CT in providing important information for patient management. We report a series of three children with wandering spleen treated at our children's hospital over the last 6 years. All three underwent clinical evaluation, color Doppler US and CT and were surgically treated. We also reviewed 40 articles that included 55 patients younger than 18 years reported in the Medline database from 2002 to 2012. We correlated pathological data with imaging findings. Color Doppler US, the first imaging modality in investigating abdominal symptoms in children with suspected wandering spleen, yielded a diagnostic sensitivity of 54.9%, whereas CT achieved about 71.7%. Radiologic evaluation has a major role in confirming the diagnosis of a suspected wandering spleen and avoiding potentially life-threatening complications requiring immediate surgery.

  3. Asymptomatic Benign Papilloma Without Atypia Diagnosed at Ultrasonography-Guided 14-Gauge Core Needle Biopsy: Which Subgroup can be Managed by Observation?

    PubMed

    Kim, Soo-Yeon; Kim, Eun-Kyung; Lee, Hye Sun; Kim, Min Jung; Yoon, Jung Hyun; Koo, Ja Seung; Moon, Hee Jung

    2016-06-01

    For asymptomatic benign papillomas detected at ultrasonography-guided 14-gauge core-needle biopsy (US-CNB), the decision to perform excision versus observation has been a topic of debate. We sought to determine which subgroup of asymptomatic benign papillomas without atypia diagnosed at US-CNB can be safely managed by observation versus immediate excision. Overall, 230 asymptomatic benign papillomas in 197 women (mean age 46.6 ± 9.5 years; range 22-78), diagnosed at US-CNB using immunohistochemistry staining when needed and then managed by surgery (n = 144) or vacuum-assisted excision (VAE) with at least 12 months of follow-up after benign VAE results (n = 86) were included in this study. The upgrade rate to malignancy was calculated. Clinical and radiological variables, including age, size, Breast Image Reporting and Data System (BI-RADS) category, and imaging-pathology correlation were evaluated to find associations with malignancy using multivariate analysis. The upgrade rate to malignancy was 2.6 % (6 of 230): four were ductal carcinomas in situ and two were 1.5- and 9-mm-sized invasive ductal carcinomas without lymph node metastasis. The upgrade rates of papillomas with a BI-RADS category 3-4a and imaging-pathology concordance were 1.4 and 1.8 %, respectively. Category 4b-5 and imaging-pathology discordance were independently associated with malignancy, with upgrade rates of 13 and 50 %, respectively. Age and lesion size were not associated with malignancy. Asymptomatic benign papillomas with probable benign or low suspicious US features or imaging-pathology concordance can be followed-up as opposed to immediate excision.

  4. Clinical and surgical correlation of hip MR arthrographic findings in adolescents.

    PubMed

    Jawahar, Anugayathri; Vade, Aruna; Lomasney, Laurie; Okur, Gokcan; Evans, Douglas; Subbaiah, Perla

    2016-06-01

    The purpose of this study was to analyze the utility of MRA-H in adolescents by comparing the results of imaging with surgical findings and/or clinical outcome. After obtaining appropriate IRB approval, the Radiologic Information System database was queried for all patients 13-18 years of age who underwent MRA-H from 2004 through 2013. The electronic medical record was reviewed for clinical history, clinical examination findings, and operative notes. MRA-H images were reviewed for soft tissue abnormalities (labral tear, paralabral ganglion, articular cartilage loss, synovitis, ligament tears) and bony abnormalities (cam-type femoroacetabular impingement (FAI), pincer-type FAI, hip dysplasia). MRA-H findings were correlated with surgical findings and with clinical outcomes. Twenty-six patients with labral tears by MRA-H were included in study and grouped as follows: Group I) patients who underwent surgical management (n=10); group II) patients managed non-surgically (medication, intra-articular injection, physical therapy) (n=9); group III) patients lost to follow up after being advised to have surgery (n=7). With regard to presenting symptomatology, 87.5% of patients with labral tear had groin pain. Of those patients who were diagnosed with a labral tear, 52% were categorized as idiopathic labral tears, 26% as secondary tears (secondary to abnormal bony morphology), and 22% as traumatic labral tears. The labral tears were found to be anterior in 61% and posterior in 22%. Associated articular cartilage lesions were found in 29% of patients. In group I (surgical patients), MRA-H labral findings were confirmed at surgery in 9/10. Seventy percent of labral tears in our study had some form of abnormal bony morphology. Nine of the 12 patients with bone abnormalities were derived from group I patients. Six out of 7 patients with cam-type FAI had a labral tear. Labral tears diagnosed by MRA-H in the adolescent population correlated well with clinical examination and surgical findings. Also, MRA-H contributed by defining bony morphology that was directly applied to surgical management. Non-surgical management of labral tears diagnosed on MRA-H had a generally favorable outcome. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Estimation of proliferative potentiality of central neurocytoma: correlational analysis of minimum ADC and maximum SUV with MIB-1 labeling index.

    PubMed

    Sakamoto, Ryo; Okada, Tomohisa; Kanagaki, Mitsunori; Yamamoto, Akira; Fushimi, Yasutaka; Kakigi, Takahide; Arakawa, Yoshiki; Takahashi, Jun C; Mikami, Yoshiki; Togashi, Kaori

    2015-01-01

    Central neurocytoma was initially believed to be benign tumor type, although atypical cases with more aggressive behavior have been reported. Preoperative estimation for proliferating activity of central neurocytoma is one of the most important considerations for determining tumor management. To investigate predictive values of image characteristics and quantitative measurements of minimum apparent diffusion coefficient (ADCmin) and maximum standardized uptake value (SUVmax) for proliferative activity of central neurocytoma measured by MIB-1 labeling index (LI). Twelve cases of central neurocytoma including one recurrence from January 2001 to December 2011 were included. Preoperative scans were conducted in 11, nine, and five patients for computed tomography (CT), diffusion-weighted imaging (DWI), and fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET), respectively, and ADCmin and SUVmax of the tumors were measured. Image characteristics were investigated using CT, T2-weighted (T2W) imaging and contrast-enhanced T1-weighted (T1W) imaging, and their differences were examined using the Fisher's exact test between cases with MIB-1 LI below and above 2%, which is recognized as typical and atypical central neurocytoma, respectively. Correlational analysis was conducted for ADCmin and SUVmax with MIB-1 LI. A P value <0.05 was considered significant. Morphological appearances had large variety, and there was no significant correlation with MIB-1 LI except a tendency that strong enhancement was observed in central neurocytomas with higher MIB-1 LI (P = 0.061). High linearity with MIB-1 LI was observed in ADCmin and SUVmax (r = -0.91 and 0.74, respectively), but only ADCmin was statistically significant (P = 0.0006). Central neurocytoma had a wide variety of image appearance, and assessment of proliferative potential was considered difficult only by morphological aspects. ADCmin was recognized as a potential marker for differentiation of atypical central neurocytomas from the typical ones. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. TU-PIS-Exhibit Hall-2: How to Move Beyond Dose Monitoring to Imaging Performance Utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valencia, D.

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has highmore » temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.« less

  7. TU-PIS-Exhibit Hall-1: Tools for Collecting and Analyzing Patient Dose Index Information from Imaging Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.; Stanford University: Introduction

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has highmore » temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.« less

  8. Development of kinetic analysis technique for PACS management and a screening examination in dynamic radiography

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yuichiro; Kodera, Yoshie

    2005-04-01

    The purpose of this study was to develop of kinetic analysis method for PACS management and computer-aided diagnosis. We obtained dynamic chest radiographs (512x512, 8bit, 4fps, and 1344x1344, 12bit, 3fps) of five healthy volunteers during respiration using an I.I. system twice, and one healthy volunteer using dynamic FPD system. Optical flows of images were obtained using customized block matching technique, and were divided into a direction, and transformed into the RGB color. Density was determined by the sum pixel length of movement during respiration phase. The made new static image was defined as the "kinetic map". The evaluation of patient's collation was performed with a template matching to the three colors. The same person's each correlation value and similar-coefficient which is defined in this study were statistically significant high (P<0.01). We used the artificial neural network (ANN) for the judgment of the same person. Five volunteers were divided into two groups, three volunteers and two volunteers became a training signal and unknown signal. Correlation value and similar-coefficient was used for the input signal, and ANN was designed so that the same person's probability might be outputted. The average of the specificity of the unknown signal obtained 98.2%. The kinetic map including the imitation tumor was used for the simulation. The tumor was detected by temporal subtraction of kinetic map, and then the superior sensitivity was obtained. Our analysis method was useful in risk management and computer-aided diagnosis.

  9. Pelvic magnetic resonance imaging for assessment of the efficacy of the Prolift system for pelvic organ prolapse.

    PubMed

    Kasturi, Seshadri; Lowman, Joye K; Lowman, Joye; Kelvin, Frederick M; Akisik, Fatih M; Akisik, Fateh; Terry, Colin L; Terry, Colin; Hale, Douglass S

    2010-11-01

    The purpose of this study was to compare pre- and postoperative pelvic organ prolapse-quantification (POP-Q) and magnetic resonance imaging (MRI) measurements in patients who undergo total Prolift (Ethicon, Inc, Somerville, NJ) colpopexy. Pre- and postoperative MRI and POP-Q examinations were performed on patients with stage 2 or greater prolapse who underwent the Prolift procedure. MRI measurements were taken at maximum descent. Correlations between changes in MRI and POP-Q measurements were determined. Ten subjects were enrolled. On MRI, statistically significant changes were seen with cystocele, enterocele, and apex. Statistically significant changes were seen on POP-Q measurements for Aa, Ba, C, Ap, Bp, and GH. Positive correlations were demonstrated between POP-Q and MRI changes. Minimal tissue reaction was seen on MRI. The Prolift system is effective in the surgical management of pelvic organ prolapse as measured by POP-Q and MRI. Postoperative MRIs support the inert nature of polypropylene mesh. Copyright © 2010 Mosby, Inc. All rights reserved.

  10. Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging

    NASA Astrophysics Data System (ADS)

    Liu, Mengmeng; Li, Qian; Liang, Le; Li, Jiang; Wang, Kun; Li, Jiajun; Lv, Min; Chen, Nan; Song, Haiyun; Lee, Joon; Shi, Jiye; Wang, Lihua; Lal, Ratnesh; Fan, Chunhai

    2017-05-01

    Mechanistic understanding of the endocytosis and intracellular trafficking of nanoparticles is essential for designing smart theranostic carriers. Physico-chemical properties, including size, clustering and surface chemistry of nanoparticles regulate their cellular uptake and transport. Significantly, even single nanoparticles could cluster intracellularly, yet their clustering state and subsequent trafficking are not well understood. Here, we used DNA-decorated gold (fPlas-gold) nanoparticles as a dually emissive fluorescent and plasmonic probe to examine their clustering states and intracellular transport. Evidence from correlative fluorescence and plasmonic imaging shows that endocytosis of fPlas-gold follows multiple pathways. In the early stages of endocytosis, fPlas-gold nanoparticles appear mostly as single particles and they cluster during the vesicular transport and maturation. The speed of encapsulated fPlas-gold transport was critically dependent on the size of clusters but not on the types of organelle such as endosomes and lysosomes. Our results provide key strategies for engineering theranostic nanocarriers for efficient health management.

  11. SU-E-J-235: Audiovisual Biofeedback Improves the Correlation Between Internal and External Respiratory Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D; Pollock, S; Keall, P

    Purpose: External respiratory surrogates are often used to predict internal lung tumor motion for beam gating but the assumption of correlation between external and internal surrogates is not always verified resulting in amplitude mismatch and time shift. To test the hypothesis that audiovisual (AV) biofeedback improves the correlation between internal and external respiratory motion, in order to improve the accuracy of respiratory-gated treatments for lung cancer radiotherapy. Methods: In nine lung cancer patients, 2D coronal and sagittal cine-MR images were acquired across two MRI sessions (pre- and mid-treatment) with (1) free breathing (FB) and (2) AV biofeedback. External anterior-posterior (AP)more » respiratory motions of (a) chest and (b) abdomen were simultaneously acquired with physiological measurement unit (PMU, 3T Skyra, Siemens Healthcare Erlangen, Germany) and real-time position management (RPM) system (Varian, Palo Alto, USA), respectively. Internal superior-inferior (SI) respiratory motions of (c) lung tumor (i.e. centroid of auto-segmented lung tumor) and (d) diaphragm (i.e. upper liver dome) were measured from individual cine-MR images across 32 dataset. The four respiratory motions were then synchronized with the cine-MR image acquisition time. Correlation coefficients were calculated in the time variation of two nominated respiratory motions: (1) chest-abdomen, (2) abdomen-diaphragm and (3) diaphragm-lung tumor. The three combinations were compared between FB and AV biofeedback. Results: Compared to FB, AV biofeedback improved chest-abdomen correlation by 17% (p=0.005) from 0.75±0.23 to 0.90±0.05 and abdomen-diaphragm correlation by 4% (p=0.058) from 0.91±0.11 to 0.95±0.05. Compared to FB, AV biofeedback improved diaphragm-lung tumor correlation by 12% (p=0.023) from 0.65±0.21 to 0.74±0.16. Conclusions: Our results demonstrated that AV biofeedback significantly improved the correlation of internal and external respiratory motion, thus suggesting the need of AV biofeedback in respiratory-gated treatments.« less

  12. An evaluation of acquired data as a tool for management of wildlife habitat in Alaska

    NASA Technical Reports Server (NTRS)

    Vantries, B. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Density sliced and digitized imagery of the Kuskokwin/Yukon Delta were analyzed. Color coded images of the isodensity displays were compared with existing vegetation maps of the ERTS-1 frames for the Yukon/Kuskokwin area. A high degree of positive correlation was found to exist between the ERTS-1 image and the conventionally prepared maps. Hydrologic phenomena were also analyzed. Digitization on South Dakota State Remote Sensing Center's SADE system provide some discrimination among several large lakes in the subject area. However, interpretation must await ground observations and depth measurements. An attempt will be made to classify large water bodies by depth classes.

  13. Advances in molecular labeling, high throughput imaging and machine intelligence portend powerful functional cellular biochemistry tools.

    PubMed

    Price, Jeffrey H; Goodacre, Angela; Hahn, Klaus; Hodgson, Louis; Hunter, Edward A; Krajewski, Stanislaw; Murphy, Robert F; Rabinovich, Andrew; Reed, John C; Heynen, Susanne

    2002-01-01

    Cellular behavior is complex. Successfully understanding systems at ever-increasing complexity is fundamental to advances in modern science and unraveling the functional details of cellular behavior is no exception. We present a collection of prospectives to provide a glimpse of the techniques that will aid in collecting, managing and utilizing information on complex cellular processes via molecular imaging tools. These include: 1) visualizing intracellular protein activity with fluorescent markers, 2) high throughput (and automated) imaging of multilabeled cells in statistically significant numbers, and 3) machine intelligence to analyze subcellular image localization and pattern. Although not addressed here, the importance of combining cell-image-based information with detailed molecular structure and ligand-receptor binding models cannot be overlooked. Advanced molecular imaging techniques have the potential to impact cellular diagnostics for cancer screening, clinical correlations of tissue molecular patterns for cancer biology, and cellular molecular interactions for accelerating drug discovery. The goal of finally understanding all cellular components and behaviors will be achieved by advances in both instrumentation engineering (software and hardware) and molecular biochemistry. Copyright 2002 Wiley-Liss, Inc.

  14. Usefulness of biological fingerprint in magnetic resonance imaging for patient verification.

    PubMed

    Ueda, Yasuyuki; Morishita, Junji; Kudomi, Shohei; Ueda, Katsuhiko

    2016-09-01

    The purpose of our study is to investigate the feasibility of automated patient verification using multi-planar reconstruction (MPR) images generated from three-dimensional magnetic resonance (MR) imaging of the brain. Several anatomy-related MPR images generated from three-dimensional fast scout scan of each MR examination were used as biological fingerprint images in this study. The database of this study consisted of 730 temporal pairs of MR examination of the brain. We calculated the correlation value between current and prior biological fingerprint images of the same patient and also all combinations of two images for different patients to evaluate the effectiveness of our method for patient verification. The best performance of our system were as follows: a half-total error rate of 1.59 % with a false acceptance rate of 0.023 % and a false rejection rate of 3.15 %, an equal error rate of 1.37 %, and a rank-one identification rate of 98.6 %. Our method makes it possible to verify the identity of the patient using only some existing medical images without the addition of incidental equipment. Also, our method will contribute to patient misidentification error management caused by human errors.

  15. Hospital Management Between The Modern Image And Aging

    NASA Astrophysics Data System (ADS)

    Dadulescu, Ana-Maria

    2015-09-01

    Hospital management has experienced significant progress with the evolution of the Romanian health system reform, it has made strides in terms of resource allocation and cost control, new systems for classification, evaluation and monitoring (DRGs, SIUI, CaPeSaRo) were implemented, some taken from other countries and adapted to local conditions, but not always integrated with the other components and sometimes incompletely implemented and developed. This material does not offer definite solutions to current problems. It only briefly addresses the main aspects of hospital activity, and points out some failures with whom hospital managers are presently faced. Once the problems are identified it creates prerequisites for solving them, it opens channels of research and development of new methodologies or correlation of the existing deficient workflows that can be corrected.

  16. Computed Tomography Studies of Lung Mechanics

    PubMed Central

    Simon, Brett A.; Christensen, Gary E.; Low, Daniel A.; Reinhardt, Joseph M.

    2005-01-01

    The study of lung mechanics has progressed from global descriptions of lung pressure and volume relationships to the high-resolution, three-dimensional, quantitative measurement of dynamic regional mechanical properties and displacements. X-ray computed tomography (CT) imaging is ideally suited to the study of regional lung mechanics in intact subjects because of its high spatial and temporal resolution, correlation of functional data with anatomic detail, increasing volumetric data acquisition, and the unique relationship between CT density and lung air content. This review presents an overview of CT measurement principles and limitations for the study of regional mechanics, reviews some of the early work that set the stage for modern imaging approaches and impacted the understanding and management of patients with acute lung injury, and presents evolving novel approaches for the analysis and application of dynamic volumetric lung image data. PMID:16352757

  17. Atypical magnetic resonance imaging features in subacute sclerosing panencephalitis.

    PubMed

    Das, Biplab; Goyal, Manoj Kumar; Modi, Manish; Mehta, Sahil; Chakravarthi, Sudheer; Lal, Vivek; Vyas, Sameer

    2016-01-01

    Subacute sclerosing panencephalitis (SSPE) is rare chronic, progressive encephalitis that affects primarily children and young adults, caused by a persistent infection with measles virus. No cure for SSPE exists, but the condition can be managed by medication if treatment is started at an early stage. Heterogeneity of imaging findings in SSPE is not very uncommon. But pial and gyral enhancements are very rarely noticed. Significant asymmetric onset as well as pial-gyral enhancements is not reported. Herein we present a case of 16 years adolescent of SSPE having remarkable asymmetric pial-gyral enhancements, which were misinterpreted as tubercular infection. Early diagnosis and treatment is encouraging in SSPE, although it is not curable with current therapy. Clinico-radiological and electrophysiological correlation is very important in diagnosis of SSPE, more gravely in patients having atypical image findings as in our index case.

  18. Is Ultrasound a Valid and Reliable Imaging Modality for Airway Evaluation?: An Observational Computed Tomographic Validation Study Using Submandibular Scanning of the Mouth and Oropharynx.

    PubMed

    Abdallah, Faraj W; Yu, Eugene; Cholvisudhi, Phantila; Niazi, Ahtsham U; Chin, Ki J; Abbas, Sherif; Chan, Vincent W

    2017-01-01

    Ultrasound (US) imaging of the airway may be useful in predicting difficulty of airway management (DAM); but its use is limited by lack of proof of its validity and reliability. We sought to validate US imaging of the airway by comparison to CT-scan, and to assess its inter- and intra-observer reliability. We used submandibular sonographic imaging of the mouth and oropharynx to examine how well the ratio of tongue thickness to oral cavity height correlates with the ratio of tongue volume to oral cavity volume, an established tomographic measure of DAM. A cohort of 34 patients undergoing CT-scan was recruited. Study standardized assessments included CT-measured ratios of tongue volume to oropharyngeal cavity volume; tongue thickness to oral cavity height; and US-measured ratio of tongue thickness to oral cavity height. Two sonographers independently performed US imaging of the airway before and after CT-scan. Our findings indicate that the US-measured ratio of tongue thickness to oral cavity height highly correlates with the CT-measured ratio of tongue volume to oral cavity volume. US measurements also demonstrated strong inter- and intra-observer reliability. This study suggests that US is a valid and reliable tool for imaging the oral and oropharyngeal parts of the airway, as well as for measuring the volumetric relationship between the tongue and oral cavity, and may therefore be a useful predictor of DAM. © 2016 by the American Institute of Ultrasound in Medicine.

  19. Contrast-enhanced CT features of hepatoblastoma: Can we predict histopathology?

    PubMed

    Baheti, Akshay D; Luana Stanescu, A; Li, Ning; Chapman, Teresa

    Hepatoblastoma is the most common hepatic malignancy occurring in the pediatric population. Intratumoral cellular behavior varies, and the small-cell undifferentiated histopathology carries a poorer prognosis than other tissue subtypes. Neoadjuvant chemotherapy is recommended for this tumor subtype prior to surgical resection in most cases. Early identification of tumors with poor prognosis could have a significant clinical impact. Objective The aim of this work was to identify imaging features of small-cell undifferentiated subtype hepatoblastoma that can help distinguish this subtype from more favorable tumors and potentially guide the clinical management. We also sought to characterize contrast-enhanced CT (CECT) features of hepatoblastoma that correlate with metastatic disease and patient outcome. Our study included 34 patients (24 males, 10 females) with a mean age of 16months (range: 0-46months) with surgically confirmed hepatoblastoma and available baseline abdominal imaging by CECT. Clinical data and CT abdominal images were retrospectively analyzed. Five tumors with small-cell undifferentiated components were identified. All of these tumors demonstrated irregular margins on CT imaging. Advanced PRETEXT stage, vascular invasion and irregular margins were associated with metastatic disease and decreased survival. Capsular retraction was also significantly associated with decreased survival. Irregular tumor margins demonstrated statistically significant association with the presence of small-cell undifferentiated components. No other imaging feature showed statistically significant association. Tumor margin irregularity, vascular invasion, capsular retraction, and PRETEXT stage correlate with worse patient outcomes. Irregular tumor margin was the only imaging feature significantly associated with more aggressive tumor subtype. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Evaluation of methods to produce an image library for automatic patient model localization for dose mapping during fluoroscopically guided procedures

    NASA Astrophysics Data System (ADS)

    Kilian-Meneghin, Josh; Xiong, Z.; Rudin, S.; Oines, A.; Bednarek, D. R.

    2017-03-01

    The purpose of this work is to evaluate methods for producing a library of 2D-radiographic images to be correlated to clinical images obtained during a fluoroscopically-guided procedure for automated patient-model localization. The localization algorithm will be used to improve the accuracy of the skin-dose map superimposed on the 3D patient- model of the real-time Dose-Tracking-System (DTS). For the library, 2D images were generated from CT datasets of the SK-150 anthropomorphic phantom using two methods: Schmid's 3D-visualization tool and Plastimatch's digitally-reconstructed-radiograph (DRR) code. Those images, as well as a standard 2D-radiographic image, were correlated to a 2D-fluoroscopic image of a phantom, which represented the clinical-fluoroscopic image, using the Corr2 function in Matlab. The Corr2 function takes two images and outputs the relative correlation between them, which is fed into the localization algorithm. Higher correlation means better alignment of the 3D patient-model with the patient image. In this instance, it was determined that the localization algorithm will succeed when Corr2 returns a correlation of at least 50%. The 3D-visualization tool images returned 55-80% correlation relative to the fluoroscopic-image, which was comparable to the correlation for the radiograph. The DRR images returned 61-90% correlation, again comparable to the radiograph. Both methods prove to be sufficient for the localization algorithm and can be produced quickly; however, the DRR method produces more accurate grey-levels. Using the DRR code, a library at varying angles can be produced for the localization algorithm.

  1. [Comparative research on the NIR and MIR micro-imaging of two similar plastic materials].

    PubMed

    Wang, Dong; Ma, Zhi-Hong; Zhao, Liu; Pan, Li-Gang; Li, Xiao-Ting; Wang, Ji-Hua

    2011-09-01

    The NIR/MIR micro-imaging can supply not only the information of spectra, but also the information of spacial distribution of the sample, which is superior to the traditional NIR/MIR spectroscopy analysis. In the present paper, polyethylene and parafilm, with similar appearances, were regarded as the research objects, of which the NIR/MIR micro-imaging was collected. Chemical imaging (CI) and compare correlation imaging were carried out for the two materials respectively to discuss the imaging methods of the two materials. The result indicated that the differentiation of the CI values of the two materials in the NIR/MIR CI for material II was 0.004 8 and 0.254 8 respectively, while those in the NIR/MIR CI for material I were 0.002 6 and 0.326 5, respectively. Clear CI was acquired, and the two materials could be differentiated. The result of the compare correlation imagings indicated that the compare correlation imagings, in which the NIR/MIR spectra of the two materials were regarded as reference spectra respectively, can differentiate the two materials remarkably with clear imagings. In the compare correlation imagings of MIR micro-imaging, the difference of the correlation coefficients between the two materials' MIR spectra and the reference spectrum was more than 0.12, which showed a better imaging result; while a tiny difference of the correlation coefficients between the two materials' NIR spectra and the reference spectrum could be employed to show a clear imaging result for NIR compare correlation imaging so as to differentiate the two materials. This thesis, to some extent, can supply the reference to not only the rapid discrimination of the safety of the packaging material for agri-food, but also the imaging methods for NIR/MIR micro-imaging to differentiate the different materials.

  2. Breast abscess after nipple piercing: sonographic findings with clinical correlation.

    PubMed

    Leibman, A Jill; Misra, Monika; Castaldi, Maria

    2011-09-01

    The purpose of this series was to review the spectrum of clinical and sonographic features associated with infection after nipple piercing. Between 2002 and 2010, 6 patients presented to our breast center with a breast abscess after nipple piercing. A retrospective analysis of the imaging findings was performed with clinical and pathologic correlation. Patients with breast infections after nipple piercing tend to be young, and the timing since piercing varies from 2 weeks to 17 months. Sonography showed a complex or hypoechoic mass in 5 of 6 patients. Treatment of breast abscesses included surgical incision and drainage, percutaneous drainage, and antibiotic therapy. Surgical evacuation is commonly performed; however, sonographically guided aspiration may be an appropriate management strategy.

  3. Correlation Plenoptic Imaging.

    PubMed

    D'Angelo, Milena; Pepe, Francesco V; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-03

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  4. Correlation Plenoptic Imaging

    NASA Astrophysics Data System (ADS)

    D'Angelo, Milena; Pepe, Francesco V.; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  5. Focal fluorine-18 fluorodeoxyglucose-avid lesions without computed tomography correlate at whole-body positron emission tomography-computed tomography in oncology patients: how often are they malignant?

    PubMed

    Kumar, Rahi; Hawkins, Randall A; Yeh, Benjamin M; Wang, Zhen Jane

    2011-09-01

    To retrospectively evaluate the rate of malignancy of focal fluorine-18 fluorodeoxyglucose (18F-FDG)-avid lesions without computed tomography (CT) correlate at whole-body positron emission tomography (PET)-CT in oncology patients, because better defining these abnormalities could potentially lead to improved patient management algorithms that rely on PET-CT for detection, staging, and treatment monitoring of malignancies. We performed a computer search of all PET-CT studies performed at our institution from 2006 to 2009, and identified 87 studies with findings of focal 18F-FDG-avid lesions without correlate at CT. The rate of malignancy of such lesions was determined by reviewing findings at follow-up imaging or by clinical or histopathological follow-up. Rates of malignancy were categorized and compared by lesion location and by the type of primary malignancy. The most common locations for focal 18F-FDG-avid lesions without CT correlate were: lymph node location (without visible lymph nodes; 27/87), bone (21/87), soft tissue (17/87), liver (9/87), and gastrointestinal tract (8/87). Forty-one percent (36/87) of the focal FDG-avid lesions without CT correlate were malignant (either metastatic disease or a second malignancy) at follow-up (mean follow-up: 5 months, range: 1-25 months). Focal FDG-avid lesions in lymph node location and in bone without CT correlate had higher rates of malignancy (56%, 15/27 and 52%, 11/21, respectively) than lesions in all other locations (26%, 10/39, P=0.028). In 15 of 87 cases, the only significant finding at PET-CT was an FDG-avid lesion without CT correlate. Of those, 53% (8/15) was positive for malignancy. There were no significant differences in the rates of malignancy for the focal FDG-avid lesions without CT correlate when stratified by the type of primary malignancy in this series. Focal FDG avid lesions without CT correlate were malignant in 41% of cases in our series of oncology patients. Lesions in lymph node location and in bones had the highest rates of malignancy. Knowledge of the patterns and risk of malignancy of focal FDG-avid lesions without CT correlate in oncology patients may facilitate the management of oncology patients with such lesions on PET-CT, and could lead to an improved interpretation of PET-CT scans by imaging specialists.

  6. Breast fat volume measurement using wide-bore 3 T MRI: comparison of traditional mammographic density evaluation with MRI density measurements using automatic segmentation.

    PubMed

    Petridou, E; Kibiro, M; Gladwell, C; Malcolm, P; Toms, A; Juette, A; Borga, M; Dahlqvist Leinhard, O; Romu, T; Kasmai, B; Denton, E

    2017-07-01

    To compare magnetic resonance imaging (MRI)-derived breast density measurements using automatic segmentation algorithms with radiologist estimations using the Breast Imaging Reporting and Data Systems (BI-RADS) density classification. Forty women undergoing mammography and dynamic breast MRI as part of their clinical management were recruited. Fat-water separated MRI images derived from a two-point Dixon technique, phase-sensitive reconstruction, and atlas-based segmentation were obtained before and after intravenous contrast medium administration. Breast density was assessed using software from Advanced MR Analytics (AMRA), Linköping, Sweden, with results compared to the widely used four-quartile quantitative BI-RADS scale. The proportion of glandular tissue in the breast on MRI was derived from the AMRA sequence. The mean unenhanced breast density was 0.31±0.22 (mean±SD; left) and 0.29±0.21 (right). Mean breast density on post-contrast images was 0.32±0.19 (left) and 0.32±0.2 (right). There was "almost perfect" correlation between pre- and post-contrast breast density quantification: Spearman's correlation rho=0.98 (95% confidence intervals [CI]: 0.97-0.99; left) and rho=0.99 (95% CI: 0.98-0.99; right). The 95% limits of agreement were -0.11-0.08 (left) and -0.08-0.03 (right). Interobserver reliability for BI-RADS was "substantial": weighted Kappa k=0.8 (95% CI: 0.74-0.87). The Spearman correlation coefficient between BI-RADS and MRI breast density was rho=0.73 (95% CI: 0.60-0.82; left) and rho=0.75 (95% CI: 0.63-0.83; right) which was also "substantial". The AMRA sequence provides a fully automated, reproducible, objective assessment of fibroglandular breast tissue proportion that correlates well with mammographic assessment of breast density with the added advantage of avoidance of ionising radiation. Copyright © 2017 The Royal College of Radiologists. All rights reserved.

  7. 4D MUSIC CMR: value-based imaging of neonates and infants with congenital heart disease.

    PubMed

    Nguyen, Kim-Lien; Han, Fei; Zhou, Ziwu; Brunengraber, Daniel Z; Ayad, Ihab; Levi, Daniel S; Satou, Gary M; Reemtsen, Brian L; Hu, Peng; Finn, J Paul

    2017-04-03

    4D Multiphase Steady State Imaging with Contrast (MUSIC) acquires high-resolution volumetric images of the beating heart during uninterrupted ventilation. We aim to evaluate the diagnostic performance and clinical impact of 4D MUSIC in a cohort of neonates and infants with congenital heart disease (CHD). Forty consecutive neonates and infants with CHD (age range 2 days to 2 years, weight 1 to 13 kg) underwent 3.0 T CMR with ferumoxytol enhancement (FE) at a single institution. Independently, two readers graded the diagnostic image quality of intra-cardiac structures and related vascular segments on FE-MUSIC and breath held FE-CMRA images using a four-point scale. Correlation of the CMR findings with surgery and other imaging modalities was performed in all patients. Clinical impact was evaluated in consensus with referring surgeons and cardiologists. One point was given for each of five key outcome measures: 1) change in overall management, 2) change in surgical approach, 3) reduction in the need for diagnostic catheterization, 4) improved assessment of risk-to-benefit for planned intervention and discussion with parents, 5) accurate pre-procedural roadmap. All FE-CMR studies were completed successfully, safely and without adverse events. On a four-point scale, the average FE-MUSIC image quality scores were >3.5 for intra-cardiac structures and >3.0 for coronary arteries. Intra-cardiac morphology and vascular anatomy were well visualized with good interobserver agreement (r = 0.46). Correspondence between the findings on MUSIC, surgery, correlative imaging and autopsy was excellent. The average clinical impact score was 4.2 ± 0.9. In five patients with discordant findings on echo/MUSIC (n = 5) and catheter angiography/MUSIC (n = 1), findings on FE-MUSIC were shown to be accurate at autopsy (n = 1) and surgery (n = 4). The decision to undertake biventricular vs univentricular repair was amended in 2 patients based on FE-MUSIC findings. Plans for surgical approaches which would have involved circulatory arrest were amended in two of 28 surgical cases. In all 28 cases requiring procedural intervention, FE-MUSIC provided accurate dynamic 3D roadmaps and more confident risk-to-benefit assessments for proposed interventions. FE-MUSIC CMR has high clinical impact by providing accurate, high quality, simple and safe dynamic 3D imaging of cardiac and vascular anatomy in neonates and infants with CHD. The findings influenced patient management in a positive manner.

  8. Feasibility study consisting of a review of contour generation methods from stereograms

    NASA Technical Reports Server (NTRS)

    Kim, C. J.; Wyant, J. C.

    1980-01-01

    A review of techniques for obtaining contour information from stereo pairs is given. Photogrammetric principles including a description of stereoscopic vision are presented. The use of conventional contour generation methods, such as the photogrammetric plotting technique, electronic correlator, and digital correlator are described. Coherent optical techniques for contour generation are discussed and compared to the electronic correlator. The optical techniques are divided into two categories: (1) image plane operation and (2) frequency plane operation. The description of image plane correlators are further divided into three categories: (1) image to image correlator, (2) interferometric correlator, and (3) positive negative transparencies. The frequency plane correlators are divided into two categories: (1) correlation of Fourier transforms, and (2) filtering techniques.

  9. Fired Cartridge Case Identification Using Optical Images and the Congruent Matching Cells (CMC) Method

    PubMed Central

    Tong, Mingsi; Song, John; Chu, Wei; Thompson, Robert M

    2014-01-01

    The Congruent Matching Cells (CMC) method for ballistics identification was invented at the National Institute of Standards and Technology (NIST). The CMC method is based on the correlation of pairs of small correlation cells instead of the correlation of entire images. Four identification parameters – TCCF, Tθ, Tx and Ty are proposed for identifying correlated cell pairs originating from the same firearm. The correlation conclusion (matching or non-matching) is determined by whether the number of CMC is ≥ 6. This method has been previously validated using a set of 780 pair-wise 3D topography images. However, most ballistic images stored in current local and national databases are in an optical intensity (grayscale) format. As a result, the reliability of applying the CMC method on optical intensity images is an important issue. In this paper, optical intensity images of breech face impressions captured on the same set of 40 cartridge cases are correlated and analyzed for the validation test of CMC method using optical images. This includes correlations of 63 pairs of matching images and 717 pairs of non-matching images under top ring lighting. Tests of the method do not produce any false identification (false positive) or false exclusion (false negative) results, which support the CMC method and the proposed identification criterion, C = 6, for firearm breech face identifications using optical intensity images. PMID:26601045

  10. Fired Cartridge Case Identification Using Optical Images and the Congruent Matching Cells (CMC) Method.

    PubMed

    Tong, Mingsi; Song, John; Chu, Wei; Thompson, Robert M

    2014-01-01

    The Congruent Matching Cells (CMC) method for ballistics identification was invented at the National Institute of Standards and Technology (NIST). The CMC method is based on the correlation of pairs of small correlation cells instead of the correlation of entire images. Four identification parameters - T CCF, T θ, T x and T y are proposed for identifying correlated cell pairs originating from the same firearm. The correlation conclusion (matching or non-matching) is determined by whether the number of CMC is ≥ 6. This method has been previously validated using a set of 780 pair-wise 3D topography images. However, most ballistic images stored in current local and national databases are in an optical intensity (grayscale) format. As a result, the reliability of applying the CMC method on optical intensity images is an important issue. In this paper, optical intensity images of breech face impressions captured on the same set of 40 cartridge cases are correlated and analyzed for the validation test of CMC method using optical images. This includes correlations of 63 pairs of matching images and 717 pairs of non-matching images under top ring lighting. Tests of the method do not produce any false identification (false positive) or false exclusion (false negative) results, which support the CMC method and the proposed identification criterion, C = 6, for firearm breech face identifications using optical intensity images.

  11. Retrospective 70 y-spatial analysis of repeated vine mortality patterns using ancient aerial time series, Pléiades images and multi-source spatial and field data

    NASA Astrophysics Data System (ADS)

    Vaudour, E.; Leclercq, L.; Gilliot, J. M.; Chaignon, B.

    2017-06-01

    For any wine estate, there is a need to demarcate homogeneous within-vineyard zones ('terroirs') so as to manage grape production, which depends on vine biological condition. Until now, the studies performing digital zoning of terroirs have relied on recent spatial data and scant attention has been paid to ancient geoinformation likely to retrace past biological condition of vines and especially occurrence of vine mortality. Is vine mortality characterized by recurrent and specific patterns and if so, are these patterns related to terroir units and/or past landuse? This study aimed at performing a historical and spatial tracing of vine mortality patterns using a long time-series of aerial survey images (1947-2010), in combination with recent data: soil apparent electrical conductivity EM38 measurements, very high resolution Pléiades satellite images, and a detailed field survey. Within a 6 ha-estate in the Southern Rhone Valley, landuse and planting history were retraced and the map of missing vines frequency was constructed from the whole time series including a 2015-Pléiades panchromatic band. Within-field terroir units were obtained from a support vector machine classifier computed on the spectral bands and NDVI of Pléiades images, EM38 data and morphometric data. Repeated spatial patterns of missing vines were highlighted throughout several plantings, uprootings, and vine replacements, and appeared to match some within-field terroir units, being explained by their specific soil characteristics, vine/soil management choices and the past landuse of the 1940s. Missing vines frequency was spatially correlated with topsoil CaCO3 content, and negatively correlated with topsoil iron, clay, total N, organic C contents and NDVI. A retrospective spatio-temporal assessment of terroir therefore brings a renewed focus on some key parameters for maintaining a sustainable grape production.

  12. Investment alternative: the status quo or PACS?

    NASA Astrophysics Data System (ADS)

    Vanden Brink, John A.; Cywinski, Jozef K.

    1990-08-01

    While the cost of Picture Archiving and Communication Systems (PACS) can be substantial, the cost of continuing with present manual methods may become prohibitive in growing departments as the need for additional space and personnel (both technical and professional) to meet the increasing requirements for all image management activities continues to grow. This will occur simultaneously with increasing pressures on problems of the present system, i.e., lost films, lost revenues, delayed reporting and longer diagnostic cycle times. Present methods of image archiving communication and management i.e. the relationship of procedure volume to VFE requirements for professional and technical personnel, costs of film, film storage space, and other performance factors are analyzed based on the database created by the Technology Marketing Group (TMG) computerized cost analysis model applied to over 50 US hospitals. Also, the model is used to provide the projected cost of present methods of film management for an average US 400 +bed hospital based on ten year growth rate assumptions. TMG PACS Tracking data provides confirmation of staffmg pattern correlation to procedure volume. The data presented in the paper provides a basis for comparing the investment in maintaining the status quo to an investment in PACS.

  13. A pilot study examining correlates of body image among women living with SCI.

    PubMed

    Bassett, R L; Martin Ginis, K A; Buchholz, A C

    2009-06-01

    Cross-sectional pilot study. To explore correlates of body image among women with spinal cord injury (SCI), within the framework of Cash's cognitive behavioral model of body image. Hamilton, Ontario, Canada. Women with SCI (N=11, 64% with tetraplegia) reported their functional and appearance body image (Adult Body Satisfaction Questionnaire). A 3-day recall of leisure time physical activity (LTPA), three measures of body composition (that is, weight, waist circumference, body fat) and several demographic variables were assessed as potential correlates. Appearance satisfaction was negatively correlated with all three measures of body composition and positively correlated with years postinjury. Functional satisfaction was positively correlated with years postinjury, and negatively correlated with various LTPA variables. Functional and appearance body image may improve with time following SCI. Body composition may impact satisfaction with physical appearance for some women. The negative relationship between LTPA and functional satisfaction merits further examination, as functional dissatisfaction may motivate individuals to engage in certain types and intensities of LTPA. Correlates of body image differ between appearance and functional satisfaction. Future research should examine appearance and functional satisfaction separately among women with SCI.

  14. Correlation of the clinical and physical image quality in chest radiography for average adults with a computed radiography imaging system.

    PubMed

    Moore, C S; Wood, T J; Beavis, A W; Saunderson, J R

    2013-07-01

    The purpose of this study was to examine the correlation between the quality of visually graded patient (clinical) chest images and a quantitative assessment of chest phantom (physical) images acquired with a computed radiography (CR) imaging system. The results of a previously published study, in which four experienced image evaluators graded computer-simulated postero-anterior chest images using a visual grading analysis scoring (VGAS) scheme, were used for the clinical image quality measurement. Contrast-to-noise ratio (CNR) and effective dose efficiency (eDE) were used as physical image quality metrics measured in a uniform chest phantom. Although optimal values of these physical metrics for chest radiography were not derived in this work, their correlation with VGAS in images acquired without an antiscatter grid across the diagnostic range of X-ray tube voltages was determined using Pearson's correlation coefficient. Clinical and physical image quality metrics increased with decreasing tube voltage. Statistically significant correlations between VGAS and CNR (R=0.87, p<0.033) and eDE (R=0.77, p<0.008) were observed. Medical physics experts may use the physical image quality metrics described here in quality assurance programmes and optimisation studies with a degree of confidence that they reflect the clinical image quality in chest CR images acquired without an antiscatter grid. A statistically significant correlation has been found between the clinical and physical image quality in CR chest imaging. The results support the value of using CNR and eDE in the evaluation of quality in clinical thorax radiography.

  15. Radiologic Assessment of Patellofemoral Pain in the Athlete

    PubMed Central

    Endo, Yoshimi; Stein, Beth E. Shubin; Potter, Hollis G.

    2011-01-01

    Context: Although disorders of the patellofemoral joint are common in the athlete, their management can be challenging and require a thorough physical examination and radiologic evaluation, including advanced magnetic resonance imaging techniques. Evidence Acquisition: Relevant articles were searched under OVID and MEDLINE (1968 to 2010) using the keywords patellofemoral joint, patellofemoral pain or patella and radiography, imaging, or magnetic resonance imaging, and the referenced sources were reviewed for additional articles. The quality and validity of the studies were assessed on the basis of careful analysis of the materials and methods before their inclusion in this article. Results: Physical examination and imaging evaluation including standard radiographs are crucial in identifying evidence of malalignment or instability. Magnetic resonance imaging provides valuable information about concomitant soft tissue injuries to the medial stabilizers as well as injuries to the articular cartilage, including chondral shears and osteochondral fractures. Quantitative magnetic resonance imaging assessing the ultrastructure of cartilage has shown high correlation with histology and may be useful for timing surgery. Conclusions: Evaluation of patellofemoral disorders is complex and requires a comprehensive assessment. Recent advancements in imaging have made possible a more precise evaluation of the individual anatomy of the patient, addressing issues of malalignment, instability, and underlying cartilage damage. PMID:23016009

  16. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.

  17. Digital-Electronic/Optical Apparatus Would Recognize Targets

    NASA Technical Reports Server (NTRS)

    Scholl, Marija S.

    1994-01-01

    Proposed automatic target-recognition apparatus consists mostly of digital-electronic/optical cross-correlator that processes infrared images of targets. Infrared images of unknown targets correlated quickly with images of known targets. Apparatus incorporates some features of correlator described in "Prototype Optical Correlator for Robotic Vision System" (NPO-18451), and some of correlator described in "Compact Optical Correlator" (NPO-18473). Useful in robotic system; to recognize and track infrared-emitting, moving objects as variously shaped hot workpieces on conveyor belt.

  18. Structural neurobiological correlates of Mayer-Salovery-Caruso Emotional Intelligence Test performance in early course schizophrenia.

    PubMed

    Wojtalik, Jessica A; Eack, Shaun M; Keshavan, Matcheri S

    2013-01-10

    The Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) is a key measure of social cognition in schizophrenia that has good psychometric properties and is recommended by the MATRICS committee. As a way to further investigate the validity of the MSCEIT, this study sought to examine the neurobiological correlates of MSCEIT performance in patients with early course schizophrenia. A total of 51 patients diagnosed with early course, stabilized schizophrenia or schizoaffective disorder completed structural magnetic resonance imaging (MRI) scans and the MSCEIT. Investigation of the associations between MSCEIT performance and gray matter morphology was examined by conducting voxel-based morphometry (VBM) analyses across hypothesized social-cognitive regions of interest using automated anatomical labeling in Statistical Parametric Mapping Software, version 5 (SPM5). All VBM analyses utilized general linear models examining gray matter density partitioned images, adjusting for demographic and illness-related confounds. VBM results were then followed up with confirmatory volumetric analyses. Patients with poorer overall and Facilitating, Understanding, and Managing Emotions subscale performances on the MSCEIT showed significantly reduced gray matter density in the left parahippocampal gyrus. Additionally, attenuated performance on the Facilitating and Managing Emotions subscales was significantly associated with reduced right posterior cingulate gray matter density. All associations observed between MSCEIT performance and gray matter density were supported with confirmatory gray matter volumetric analyses, with the exception of the association between the right posterior cingulate and the facilitation of emotions. These findings provide additional evidence for the MSCEIT as a valid social-cognitive measure by elucidating its correlates with neurobiological structures commonly implicated in emotion processing. These findings provide additional biological evidence supporting the use of the MSCEIT in cognitive enhancing clinical trials in schizophrenia. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Carotid stenosis assessment with multi-detector CT angiography: comparison between manual and automatic segmentation methods.

    PubMed

    Zhu, Chengcheng; Patterson, Andrew J; Thomas, Owen M; Sadat, Umar; Graves, Martin J; Gillard, Jonathan H

    2013-04-01

    Luminal stenosis is used for selecting the optimal management strategy for patients with carotid artery disease. The aim of this study is to evaluate the reproducibility of carotid stenosis quantification using manual and automated segmentation methods using submillimeter through-plane resolution Multi-Detector CT angiography (MDCTA). 35 patients having carotid artery disease with >30 % luminal stenosis as identified by carotid duplex imaging underwent contrast enhanced MDCTA. Two experienced CT readers quantified carotid stenosis from axial source images, reconstructed maximum intensity projection (MIP) and 3D-carotid geometry which was automatically segmented by an open-source toolkit (Vascular Modelling Toolkit, VMTK) using NASCET criteria. Good agreement among the measurement using axial images, MIP and automatic segmentation was observed. Automatic segmentation methods show better inter-observer agreement between the readers (intra-class correlation coefficient (ICC): 0.99 for diameter stenosis measurement) than manual measurement of axial (ICC = 0.82) and MIP (ICC = 0.86) images. Carotid stenosis quantification using an automatic segmentation method has higher reproducibility compared with manual methods.

  20. Coastline detection with time series of SAR images

    NASA Astrophysics Data System (ADS)

    Ao, Dongyang; Dumitru, Octavian; Schwarz, Gottfried; Datcu, Mihai

    2017-10-01

    For maritime remote sensing, coastline detection is a vital task. With continuous coastline detection results from satellite image time series, the actual shoreline, the sea level, and environmental parameters can be observed to support coastal management and disaster warning. Established coastline detection methods are often based on SAR images and wellknown image processing approaches. These methods involve a lot of complicated data processing, which is a big challenge for remote sensing time series. Additionally, a number of SAR satellites operating with polarimetric capabilities have been launched in recent years, and many investigations of target characteristics in radar polarization have been performed. In this paper, a fast and efficient coastline detection method is proposed which comprises three steps. First, we calculate a modified correlation coefficient of two SAR images of different polarization. This coefficient differs from the traditional computation where normalization is needed. Through this modified approach, the separation between sea and land becomes more prominent. Second, we set a histogram-based threshold to distinguish between sea and land within the given image. The histogram is derived from the statistical distribution of the polarized SAR image pixel amplitudes. Third, we extract continuous coastlines using a Canny image edge detector that is rather immune to speckle noise. Finally, the individual coastlines derived from time series of .SAR images can be checked for changes.

  1. Measurement of Full Field Strains in Filament Wound Composite Tubes Under Axial Compressive Loading by the Digital Image Correlation (DIC) Technique

    DTIC Science & Technology

    2013-05-01

    Measurement of Full Field Strains in Filament Wound Composite Tubes Under Axial Compressive Loading by the Digital Image Correlation (DIC...of Full Field Strains in Filament Wound Composite Tubes Under Axial Compressive Loading by the Digital Image Correlation (DIC) Technique Todd C...Wound Composite Tubes Under Axial Compressive Loading by the Digital Image Correlation (DIC) Technique 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  2. Increased anatomic severity predicts outcomes: Validation of the American Association for the Surgery of Trauma's Emergency General Surgery score in appendicitis.

    PubMed

    Hernandez, Matthew C; Aho, Johnathon M; Habermann, Elizabeth B; Choudhry, Asad J; Morris, David S; Zielinski, Martin D

    2017-01-01

    Determination and reporting of disease severity in emergency general surgery lacks standardization. Recently, the American Association for the Surgery of Trauma (AAST) proposed an anatomic severity grading system. We aimed to validate this system in patients with appendicitis and determine if cross-sectional imaging correlates with disease severity at operation. Patients 18 years or older undergoing treatment for acute appendicitis between 2013 and 2015 were identified. Baseline demographics, procedure types were recorded, and AAST grades were assigned based on intraoperative and radiologic findings. Outcomes including length of stay, 30-day mortality, and complications based on Clavien-Dindo categories and National Surgical Quality Improvement Program variables. Summary statistical univariate, nominal logistic, and standard least squares analyses were performed comparing AAST grade with key outcomes. Bland-Altman analysis compared operative findings with preoperative cross-sectional imaging to compare assigning grades. Three hundred thirty-four patients with mean (±SD) age of 39.3 years (±16.5) were included (53% men), and all patients had cross-sectional imaging. Two hundred ninety-nine underwent appendectomy, and 85% completed laparoscopic. Thirty-day mortality rate was 0.9%, complication rate was 21%. Increased (median [interquartile range, IQR]) AAST grade was recorded in patients with complications (2 [1-4]) compared with those without (1 [1-1], p = 0.001). For operative management, (median [IQR]) AAST grades were significantly associated with procedure type: laparoscopic (1 [1-1]), open (4 [2-5]), conversion to open (3 [1-4], p = 0.001). Increased (median [IQR]) AAST grades were significantly associated in nonoperative management: patients having a complication had a higher median AAST grade (4 [3-5]) compared with those without (3 [2-3], p = 0.001). Bland-Altman analysis comparing AAST grade and cross-sectional imaging demonstrated no difference (-0.02 ± 0.02; p = 0.2; coefficient of repeatability 0.9). The AAST grading system is valid in our population. Increased AAST grade is associated with open procedures, complications, and length of stay. The AAST emergency general surgery grade determined by preoperative imaging strongly correlated to operative findings. Epidemiologic/prognostic study, level III.

  3. Increased anatomic severity predicts outcomes: validation of the American Association for the Surgery of Trauma's emergency general surgery score in appendicitis

    PubMed Central

    Hernandez, Matthew; Aho, Johnathan M.; Habermann, Elizabeth B.; Choudhry, Asad; Morris, David; Zielinski, Martin

    2016-01-01

    Background Determination and reporting of disease severity in emergency general surgery (EGS) lacks standardization. Recently, the American Association for the Surgery of Trauma (AAST) proposed an anatomic severity grading system. We aimed to validate this system in patients with appendicitis, and determine if cross sectional imaging correlates with disease severity at operation. Methods Patients 18 years or older undergoing treatment for acute appendicitis between 2013 and 2015 were identified. Baseline demographics, procedure types were recorded, and AAST grades were assigned based on intraoperative and radiologic findings. Outcomes including length of stay, 30 day mortality, and complications based on Clavien-Dindo categories and National Surgical Quality Improvement Program variables. Summary statistical univariate, nominal logistic and standard least squares analyses were performed comparing AAST grade with key outcomes. Bland-Altman analysis compared operative findings to preoperative cross sectional imaging to compare assigning grades. Results 334 patients with mean (±SD) age of 39.3 years (±16.5) were included (53% male) and all patients had cross sectional imaging. 299 underwent appendectomy, and 85% completed laparoscopic. 30 day mortality rate was 0.9%, complication rate 21%. Increased median [IQR] AAST grade was recorded in patients with complications 2 [1-4] compared to those without 1 [1-1], p=0.001. For operative management, a median [IQR] AAST grades were significantly associated with procedure type: laparoscopic 1 [1-1], open 4 [2-5] conversion to open 3 [1-4], p=0.001. Increased median [IQR] AAST grades were significantly associated in non-operative management: patients having a complication had a higher median AAST grade of 4 [3-5], compared to those without 3 [2-3], p=0.001. Bland Altman analysis comparing AAST grade and cross sectional imaging demonstrated no difference; −0.02 ±0.02 p = 0.2 coefficient of repeatability 0.9. Conclusions The AAST grading system is valid in our population. Increased AAST grade is associated with open procedures, complications, and length of stay. AAST EGS grade determined by preoperative imaging strongly correlated to operative findings. PMID:27805996

  4. Automated detection of diabetic retinopathy: barriers to translation into clinical practice.

    PubMed

    Abramoff, Michael D; Niemeijer, Meindert; Russell, Stephen R

    2010-03-01

    Automated identification of diabetic retinopathy (DR), the primary cause of blindness and visual loss for those aged 18-65 years, from color images of the retina has enormous potential to increase the quality, cost-effectiveness and accessibility of preventative care for people with diabetes. Through advanced image analysis techniques, retinal images are analyzed for abnormalities that define and correlate with the severity of DR. Translating automated DR detection into clinical practice will require surmounting scientific and nonscientific barriers. Scientific concerns, such as DR detection limits compared with human experts, can be studied and measured. Ethical, legal and political issues can be addressed, but are difficult or impossible to measure. The primary objective of this review is to survey the methods, potential benefits and limitations of automated detection in order to better manage translation into clinical practice, based on extensive experience with the systems we have developed.

  5. Atypical magnetic resonance imaging features in subacute sclerosing panencephalitis

    PubMed Central

    Das, Biplab; Goyal, Manoj Kumar; Modi, Manish; Mehta, Sahil; Chakravarthi, Sudheer; Lal, Vivek; Vyas, Sameer

    2016-01-01

    Objectives: Subacute sclerosing panencephalitis (SSPE) is rare chronic, progressive encephalitis that affects primarily children and young adults, caused by a persistent infection with measles virus. No cure for SSPE exists, but the condition can be managed by medication if treatment is started at an early stage. Methods and Results: Heterogeneity of imaging findings in SSPE is not very uncommon. But pial and gyral enhancements are very rarely noticed. Significant asymmetric onset as well as pial-gyral enhancements is not reported. Herein we present a case of 16 years adolescent of SSPE having remarkable asymmetric pial-gyral enhancements, which were misinterpreted as tubercular infection. Conclusion: Early diagnosis and treatment is encouraging in SSPE, although it is not curable with current therapy. Clinico-radiological and electrophysiological correlation is very important in diagnosis of SSPE, more gravely in patients having atypical image findings as in our index case. PMID:27293348

  6. TU-F-BRB-03: Clinical Implementation of MR-Based Motion Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glide-Hurst, C.

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has highmore » temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.« less

  7. TU-F-BRB-00: MRI-Based Motion Management for RT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has highmore » temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.« less

  8. Correlation of the clinical and physical image quality in chest radiography for average adults with a computed radiography imaging system

    PubMed Central

    Wood, T J; Beavis, A W; Saunderson, J R

    2013-01-01

    Objective: The purpose of this study was to examine the correlation between the quality of visually graded patient (clinical) chest images and a quantitative assessment of chest phantom (physical) images acquired with a computed radiography (CR) imaging system. Methods: The results of a previously published study, in which four experienced image evaluators graded computer-simulated postero-anterior chest images using a visual grading analysis scoring (VGAS) scheme, were used for the clinical image quality measurement. Contrast-to-noise ratio (CNR) and effective dose efficiency (eDE) were used as physical image quality metrics measured in a uniform chest phantom. Although optimal values of these physical metrics for chest radiography were not derived in this work, their correlation with VGAS in images acquired without an antiscatter grid across the diagnostic range of X-ray tube voltages was determined using Pearson’s correlation coefficient. Results: Clinical and physical image quality metrics increased with decreasing tube voltage. Statistically significant correlations between VGAS and CNR (R=0.87, p<0.033) and eDE (R=0.77, p<0.008) were observed. Conclusion: Medical physics experts may use the physical image quality metrics described here in quality assurance programmes and optimisation studies with a degree of confidence that they reflect the clinical image quality in chest CR images acquired without an antiscatter grid. Advances in knowledge: A statistically significant correlation has been found between the clinical and physical image quality in CR chest imaging. The results support the value of using CNR and eDE in the evaluation of quality in clinical thorax radiography. PMID:23568362

  9. Water management in a planar air-breathing fuel cell array using operando neutron imaging

    NASA Astrophysics Data System (ADS)

    Coz, E.; Théry, J.; Boillat, P.; Faucheux, V.; Alincant, D.; Capron, P.; Gébel, G.

    2016-11-01

    Operando Neutron imaging is used for the investigation of a planar air-breathing array comprising multiple cells in series. The fuel cell demonstrates a stable power density level of 150 mW/cm2. Water distribution and quantification is carried out at different operating points. Drying at high current density is observed and correlated to self-heating and natural convection. Working in dead-end mode, water accumulation at lower current density is largely observed on the anode side. However, flooding mechanisms are found to begin with water condensation on the cathode side, leading to back-diffusion and anodic flooding. Specific in-plane and through-plane water distribution is observed and linked to the planar array design.

  10. Multispectral image sharpening using wavelet transform techniques and spatial correlation of edges

    USGS Publications Warehouse

    Lemeshewsky, George P.; Schowengerdt, Robert A.

    2000-01-01

    Several reported image fusion or sharpening techniques are based on the discrete wavelet transform (DWT). The technique described here uses a pixel-based maximum selection rule to combine respective transform coefficients of lower spatial resolution near-infrared (NIR) and higher spatial resolution panchromatic (pan) imagery to produce a sharpened NIR image. Sharpening assumes a radiometric correlation between the spectral band images. However, there can be poor correlation, including edge contrast reversals (e.g., at soil-vegetation boundaries), between the fused images and, consequently, degraded performance. To improve sharpening, a local area-based correlation technique originally reported for edge comparison with image pyramid fusion is modified for application with the DWT process. Further improvements are obtained by using redundant, shift-invariant implementation of the DWT. Example images demonstrate the improvements in NIR image sharpening with higher resolution pan imagery.

  11. Temporal-spatial variations and driving factors analysis of coastal reclamation in China

    NASA Astrophysics Data System (ADS)

    Meng, Weiqing; Hu, Beibei; He, Mengxuan; Liu, Baiqiao; Mo, Xunqiang; Li, Hongyuan; Wang, Zhongliang; Zhang, Yu

    2017-05-01

    Coastal reclamation is the gain of land from the sea or coastal wetlands for agricultural purposes, industrial use or port expansions. Large-scale coastal land reclamation can have adverse effects on the coastal environment, including loss of marine habitats and deterioration of coastal water quality. In recent decades, coastal land reclamation has occurred extensively to meet the increasing needs of rapid economic development and urbanization in China. The overall objective of this study is to understand the coastal reclamation status of China from 1979 to 2014 and analyzed its driving factors for mitigating negative ecological effects. The data of coastal reclamation were done with the ERDAS Imagine V9.2 platform and ArcGIS software based on remote images including Landsat, SPOT, ZY-2 and ZY-3. Potential driving factors for sea reclamation were selected based on statistics bulletins and the knowledge of experts in coastal management. In order to understand the relationships among possible impact factors and coastal reclamation, the Partial Least-Squares Regression models was constructed. The analysis results indicated that the total area of reclamation was 11162.89 km2 based on remote sensing images between 1979 and 2014. Shandong Province is the largest reclamation area, reaching 2736.54 km2, and the reclamation is mainly concentrated in Zhejiang, Jiangsu and Liaoning, where the reclamation areas were all more than 1000 km2. According to the remote sensing images, there are three coastal reclamation hotspot regions including Bohai bay (in which is located Liaoning, Tianjin and Hebei), Jiangsu province coastal area and Hangzhou bay (in Zhejiang province). A large scale land reclamation plan of more than 5880 km2 has been made by local government and 2469 km2 has approved by the State Council. From the analyzed results, there is a significant collinearity between these indicators, and no significant correlation between the area of reclamation and selected indicators. Economic development and employees in marine industries have weak positive correlation and correspondingly, the area of cultivated land (ACL) had a negative correlation. Because of the weak correlation, there is an assumption that economic development, outcome of coastal reclamation and population growth were not only was the direct driving factor, but also the outcome of coastal reclamation and population growth was not the direct driving indicator. Construction land quota and huge economic returns to local government may be the direct driving factors according to our field investigation. To resolve the contradiction between the need for land and coastal wetland conservation, it is recommended that China should establish a special management agency and coordination mechanisms, reconsidered the implementation of the reclamation plans and projects that have been approved, enhance law enforcement and increase penalties and strengthen public participation in reclamation management.

  12. A data model and database for high-resolution pathology analytical image informatics.

    PubMed

    Wang, Fusheng; Kong, Jun; Cooper, Lee; Pan, Tony; Kurc, Tahsin; Chen, Wenjin; Sharma, Ashish; Niedermayr, Cristobal; Oh, Tae W; Brat, Daniel; Farris, Alton B; Foran, David J; Saltz, Joel

    2011-01-01

    The systematic analysis of imaged pathology specimens often results in a vast amount of morphological information at both the cellular and sub-cellular scales. While microscopy scanners and computerized analysis are capable of capturing and analyzing data rapidly, microscopy image data remain underutilized in research and clinical settings. One major obstacle which tends to reduce wider adoption of these new technologies throughout the clinical and scientific communities is the challenge of managing, querying, and integrating the vast amounts of data resulting from the analysis of large digital pathology datasets. This paper presents a data model, which addresses these challenges, and demonstrates its implementation in a relational database system. This paper describes a data model, referred to as Pathology Analytic Imaging Standards (PAIS), and a database implementation, which are designed to support the data management and query requirements of detailed characterization of micro-anatomic morphology through many interrelated analysis pipelines on whole-slide images and tissue microarrays (TMAs). (1) Development of a data model capable of efficiently representing and storing virtual slide related image, annotation, markup, and feature information. (2) Development of a database, based on the data model, capable of supporting queries for data retrieval based on analysis and image metadata, queries for comparison of results from different analyses, and spatial queries on segmented regions, features, and classified objects. The work described in this paper is motivated by the challenges associated with characterization of micro-scale features for comparative and correlative analyses involving whole-slides tissue images and TMAs. Technologies for digitizing tissues have advanced significantly in the past decade. Slide scanners are capable of producing high-magnification, high-resolution images from whole slides and TMAs within several minutes. Hence, it is becoming increasingly feasible for basic, clinical, and translational research studies to produce thousands of whole-slide images. Systematic analysis of these large datasets requires efficient data management support for representing and indexing results from hundreds of interrelated analyses generating very large volumes of quantifications such as shape and texture and of classifications of the quantified features. We have designed a data model and a database to address the data management requirements of detailed characterization of micro-anatomic morphology through many interrelated analysis pipelines. The data model represents virtual slide related image, annotation, markup and feature information. The database supports a wide range of metadata and spatial queries on images, annotations, markups, and features. We currently have three databases running on a Dell PowerEdge T410 server with CentOS 5.5 Linux operating system. The database server is IBM DB2 Enterprise Edition 9.7.2. The set of databases consists of 1) a TMA database containing image analysis results from 4740 cases of breast cancer, with 641 MB storage size; 2) an algorithm validation database, which stores markups and annotations from two segmentation algorithms and two parameter sets on 18 selected slides, with 66 GB storage size; and 3) an in silico brain tumor study database comprising results from 307 TCGA slides, with 365 GB storage size. The latter two databases also contain human-generated annotations and markups for regions and nuclei. Modeling and managing pathology image analysis results in a database provide immediate benefits on the value and usability of data in a research study. The database provides powerful query capabilities, which are otherwise difficult or cumbersome to support by other approaches such as programming languages. Standardized, semantic annotated data representation and interfaces also make it possible to more efficiently share image data and analysis results.

  13. Optical Correlation of Images With Signal-Dependent Noise Using Constrained-Modulation Filter Devices

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1995-01-01

    Images with signal-dependent noise present challenges beyond those of images with additive white or colored signal-independent noise in terms of designing the optimal 4-f correlation filter that maximizes correlation-peak signal-to-noise ratio, or combinations of correlation-peak metrics. Determining the proper design becomes more difficult when the filter is to be implemented on a constrained-modulation spatial light modulator device. The design issues involved for updatable optical filters for images with signal-dependent film-grain noise and speckle noise are examined. It is shown that although design of the optimal linear filter in the Fourier domain is impossible for images with signal-dependent noise, proper nonlinear preprocessing of the images allows the application of previously developed design rules for optimal filters to be implemented on constrained-modulation devices. Thus the nonlinear preprocessing becomes necessary for correlation in optical systems with current spatial light modulator technology. These results are illustrated with computer simulations of images with signal-dependent noise correlated with binary-phase-only filters and ternary-phase-amplitude filters.

  14. Correlation of probability scores of placenta accreta on magnetic resonance imaging with hemorrhagic morbidity.

    PubMed

    Lim, Grace; Horowitz, Jeanne M; Berggruen, Senta; Ernst, Linda M; Linn, Rebecca L; Hewlett, Bradley; Kim, Jennifer; Chalifoux, Laurie A; McCarthy, Robert J

    2016-11-01

    To evaluate the hypothesis that assigning grades to magnetic resonance imaging (MRI) findings of suspected placenta accreta will correlate with hemorrhagic outcomes. We chose a single-center, retrospective, observational design. Nulliparous or multiparous women who had antenatal placental MRI performed at a tertiary level academic hospital were included. Cases with antenatal placental MRI were included and compared with cases without MRI performed. Two radiologists assigned a probability score for accreta to each study. Estimated blood loss and transfusion requirements were compared among groups by the Kruskal-Wallis H test. Thirty-five cases had placental MRI performed. MRI performance was associated with higher blood loss compared with the non-MRI group (2600 [1400-4500]mL vs 900[600-1500]mL, P<.001). There was no difference in estimated blood loss (P=.31) or transfusion (P=.57) among the MRI probability groups. In cases of suspected placenta accreta, probability scores for antenatal placental MRI may not be associated with increasing degrees of hemorrhage. Continued research is warranted to determine the effectiveness of assigning probability scores for antenatal accreta imaging studies, combined with clinical indices of suspicion, in assisting with antenatal multidisciplinary team planning for operative management of this morbid condition. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Detection of potato beetle damage using remote sensing from small unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Hunt, E. Raymond; Rondon, Silvia I.

    2017-04-01

    Colorado potato beetle (CPB) adults and larvae devour leaves of potato and other solanaceous crops and weeds, and may quickly develop resistance to pesticides. With early detection of CPB damage, more options are available for precision integrated pest management, which reduces the amount of pesticides applied in a field. Remote sensing with small unmanned aircraft systems (sUAS) has potential for CPB detection because low flight altitudes allow image acquisition at very high spatial resolution. A five-band multispectral sensor and up-looking incident light sensor were mounted on a six-rotor sUAS, which was flown at altitudes of 60 and 30 m in June 2014. Plants went from visibly undamaged to having some damage in just 1 day. Whole-plot normalized difference vegetation index (NDVI) and the number of pixels classified as damaged (0.70≤NDVI≤0.80) were not correlated with visible CPB damage ranked from least to most. Area of CPB damage estimated using object-based image analysis was highly correlated to the visual ranking of damage. Furthermore, plant height calculated using structure-from-motion point clouds was related to CPB damage, but this method required extensive operator intervention for success. Object-based image analysis has potential for early detection based on high spatial resolution sUAS remote sensing.

  16. Automated Radiology-Pathology Module Correlation Using a Novel Report Matching Algorithm by Organ System.

    PubMed

    Dane, Bari; Doshi, Ankur; Gfytopoulos, Soterios; Bhattacharji, Priya; Recht, Michael; Moore, William

    2018-05-01

    Radiology-pathology correlation is time-consuming and is not feasible in most clinical settings, with the notable exception of breast imaging. The purpose of this study was to determine if an automated radiology-pathology report pairing system could accurately match radiology and pathology reports, thus creating a feedback loop allowing for more frequent and timely radiology-pathology correlation. An experienced radiologist created a matching matrix of radiology and pathology reports. These matching rules were then exported to a novel comprehensive radiology-pathology module. All distinct radiology-pathology pairings at our institution from January 1, 2016 to July 1, 2016 were included (n = 8999). The appropriateness of each radiology-pathology report pairing was scored as either "correlative" or "non-correlative." Pathology reports relating to anatomy imaged in the specific imaging study were deemed correlative, whereas pathology reports describing anatomy not imaged with the particular study were denoted non-correlative. Overall, there was 88.3% correlation (accuracy) of the radiology and pathology reports (n = 8999). Subset analysis demonstrated that computed tomography (CT) abdomen/pelvis, CT head/neck/face, CT chest, musculoskeletal CT (excluding spine), mammography, magnetic resonance imaging (MRI) abdomen/pelvis, MRI brain, musculoskeletal MRI (excluding spine), breast MRI, positron emission tomography (PET), breast ultrasound, and head/neck ultrasound all demonstrated greater than 91% correlation. When further stratified by imaging modality, CT, MRI, mammography, and PET demonstrated excellent correlation (greater than 96.3%). Ultrasound and non-PET nuclear medicine studies demonstrated poorer correlation (80%). There is excellent correlation of radiology imaging reports and appropriate pathology reports when matched by organ system. Rapid, appropriate radiology-pathology report pairings provide an excellent opportunity to close feedback loop to the interpreting radiologist. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  17. Imaging the square of the correlated two-electron wave function of a hydrogen molecule

    DOE PAGES

    Waitz, M.; Bello, R. Y.; Metz, D.; ...

    2017-12-22

    The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in whichmore » electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Finally, our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.« less

  18. Imaging the square of the correlated two-electron wave function of a hydrogen molecule.

    PubMed

    Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R

    2017-12-22

    The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.

  19. Imaging the square of the correlated two-electron wave function of a hydrogen molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waitz, M.; Bello, R. Y.; Metz, D.

    The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in whichmore » electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Finally, our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.« less

  20. Implementation of a direct-imaging and FX correlator for the BEST-2 array

    NASA Astrophysics Data System (ADS)

    Foster, G.; Hickish, J.; Magro, A.; Price, D.; Zarb Adami, K.

    2014-04-01

    A new digital backend has been developed for the Basic Element for SKA Training II (BEST-2) array at Radiotelescopi di Medicina, INAF-IRA, Italy, which allows concurrent operation of an FX correlator, and a direct-imaging correlator and beamformer. This backend serves as a platform for testing some of the spatial Fourier transform concepts which have been proposed for use in computing correlations on regularly gridded arrays. While spatial Fourier transform-based beamformers have been implemented previously, this is, to our knowledge, the first time a direct-imaging correlator has been deployed on a radio astronomy array. Concurrent observations with the FX and direct-imaging correlator allow for direct comparison between the two architectures. Additionally, we show the potential of the direct-imaging correlator for time-domain astronomy, by passing a subset of beams though a pulsar and transient detection pipeline. These results provide a timely verification for spatial Fourier transform-based instruments that are currently in commissioning. These instruments aim to detect highly redshifted hydrogen from the epoch of reionization and/or to perform wide-field surveys for time-domain studies of the radio sky. We experimentally show the direct-imaging correlator architecture to be a viable solution for correlation and beamforming.

  1. Association between dynamic features of breast DCE-MR imaging and clinical response of neoadjuvant chemotherapy: a preliminary analysis

    NASA Astrophysics Data System (ADS)

    Huang, Lijuan; Fan, Ming; Li, Lihua; Zhang, Juan; Shao, Guoliang; Zheng, Bin

    2016-03-01

    Neoadjuvant chemotherapy (NACT) is being used increasingly in the management of patients with breast cancer for systemically reducing the size of primary tumor before surgery in order to improve survival. The clinical response of patients to NACT is correlated with reduced or abolished of their primary tumor, which is important for treatment in the next stage. Recently, the dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used for evaluation of the response of patients to NACT. To measure this correlation, we extracted the dynamic features from the DCE- MRI and performed association analysis between these features and the clinical response to NACT. In this study, 59 patients are screened before NATC, of which 47 are complete or partial response, and 12 are no response. We segmented the breast areas depicted on each MR image by a computer-aided diagnosis (CAD) scheme, registered images acquired from the sequential MR image scan series, and calculated eighteen features extracted from DCE-MRI. We performed SVM with the 18 features for classification between patients of response and no response. Furthermore, 6 of the 18 features are selected to refine the classification by using Genetic Algorithm. The accuracy, sensitivity and specificity are 87%, 95.74% and 50%, respectively. The calculated area under a receiver operating characteristic (ROC) curve is 0.79+/-0.04. This study indicates that the features of DCE-MRI of breast cancer are associated with the response of NACT. Therefore, our method could be helpful for evaluation of NACT in treatment of breast cancer.

  2. PIRATE: pediatric imaging response assessment and targeting environment

    NASA Astrophysics Data System (ADS)

    Glenn, Russell; Zhang, Yong; Krasin, Matthew; Hua, Chiaho

    2010-02-01

    By combining the strengths of various imaging modalities, the multimodality imaging approach has potential to improve tumor staging, delineation of tumor boundaries, chemo-radiotherapy regime design, and treatment response assessment in cancer management. To address the urgent needs for efficient tools to analyze large-scale clinical trial data, we have developed an integrated multimodality, functional and anatomical imaging analysis software package for target definition and therapy response assessment in pediatric radiotherapy (RT) patients. Our software provides quantitative tools for automated image segmentation, region-of-interest (ROI) histogram analysis, spatial volume-of-interest (VOI) analysis, and voxel-wise correlation across modalities. To demonstrate the clinical applicability of this software, histogram analyses were performed on baseline and follow-up 18F-fluorodeoxyglucose (18F-FDG) PET images of nine patients with rhabdomyosarcoma enrolled in an institutional clinical trial at St. Jude Children's Research Hospital. In addition, we combined 18F-FDG PET, dynamic-contrast-enhanced (DCE) MR, and anatomical MR data to visualize the heterogeneity in tumor pathophysiology with the ultimate goal of adaptive targeting of regions with high tumor burden. Our software is able to simultaneously analyze multimodality images across multiple time points, which could greatly speed up the analysis of large-scale clinical trial data and validation of potential imaging biomarkers.

  3. MO-FG-BRD-01: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: Introduction and KV Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahimian, B.

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  4. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, D.

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  5. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berbeco, R.

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  6. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keall, P.

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  7. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  8. Alterations in White Matter Integrity in Young Adults with Smartphone Dependence

    PubMed Central

    Hu, Yuanming; Long, Xiaojing; Lyu, Hanqing; Zhou, Yangyang; Chen, Jianxiang

    2017-01-01

    Smartphone dependence (SPD) is increasingly regarded as a psychological problem, however, the underlying neural substrates of SPD is still not clear. High resolution magnetic resonance imaging provides a useful tool to help understand and manage the disorder. In this study, a tract-based spatial statistics (TBSS) analysis on diffusion tensor imaging (DTI) was used to measure white matter integrity in young adults with SPD. A total of 49 subjects were recruited and categorized into SPD and control group based on their clinical behavioral tests. To localize regions with abnormal white matter integrity in SPD, the voxel-wise analysis of fractional anisotropy (FA) and mean diffusivity (MD) on the whole brain was performed by TBSS. The correlation between the quantitative variables of brain structures and the behavior measures were performed. Our result demonstrated that SPD had significantly lower white matter integrity than controls in superior longitudinal fasciculus (SLF), superior corona radiata (SCR), internal capsule, external capsule, sagittal stratum, fornix/stria terminalis and midbrain structures. Correlation analysis showed that the observed abnormalities in internal capsule and stria terminalis were correlated with the severity of dependence and behavioral assessments. Our finding facilitated a primary understanding of white matter characteristics in SPD and indicated that the structural deficits might link to behavioral impairments. PMID:29163108

  9. Fluorescence decay time imaging using an imaging photon detector with a radio frequency photon correlation system

    NASA Astrophysics Data System (ADS)

    Morgan, Christopher G.; Mitchell, A. C.; Murray, J. G.

    1990-05-01

    An imaging photon detector has been modified to incorporate fast timing electronics coupled to a custom built photon correlator interfaced to a RISC computer. Using excitation with intensity- muodulated light, fluorescence images can be readily obtained where contrast is determined by the decay time of emission, rather than by intensity. This technology is readily extended to multifrequency phase/demodulation fluorescence imaging or to differential polarised phase fluorometry. The potential use of the correlator for confocal imaging with a laser scanner is also briefly discussed.

  10. Unsupervised segmentation of low-contrast multichannel images: discrimination of tissue components in microscopic images of unstained specimens

    NASA Astrophysics Data System (ADS)

    Kopriva, Ivica; Popović Hadžija, Marijana; Hadžija, Mirko; Aralica, Gorana

    2015-06-01

    Low-contrast images, such as color microscopic images of unstained histological specimens, are composed of objects with highly correlated spectral profiles. Such images are very hard to segment. Here, we present a method that nonlinearly maps low-contrast color image into an image with an increased number of non-physical channels and a decreased correlation between spectral profiles. The method is a proof-of-concept validated on the unsupervised segmentation of color images of unstained specimens, in which case the tissue components appear colorless when viewed under the light microscope. Specimens of human hepatocellular carcinoma, human liver with metastasis from colon and gastric cancer and mouse fatty liver were used for validation. The average correlation between the spectral profiles of the tissue components was greater than 0.9985, and the worst case correlation was greater than 0.9997. The proposed method can potentially be applied to the segmentation of low-contrast multichannel images with high spatial resolution that arise in other imaging modalities.

  11. Evaluation of Existing Image Matching Methods for Deriving Glacier Surface Displacements Globally from Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Heid, T.; Kääb, A.

    2011-12-01

    Automatic matching of images from two different times is a method that is often used to derive glacier surface velocity. Nearly global repeat coverage of the Earth's surface by optical satellite sensors now opens the possibility for global-scale mapping and monitoring of glacier flow with a number of applications in, for example, glacier physics, glacier-related climate change and impact assessment, and glacier hazard management. The purpose of this study is to compare and evaluate different existing image matching methods for glacier flow determination over large scales. The study compares six different matching methods: normalized cross-correlation (NCC), the phase correlation algorithm used in the COSI-Corr software, and four other Fourier methods with different normalizations. We compare the methods over five regions of the world with different representative glacier characteristics: Karakoram, the European Alps, Alaska, Pine Island (Antarctica) and southwest Greenland. Landsat images are chosen for matching because they expand back to 1972, they cover large areas, and at the same time their spatial resolution is as good as 15 m for images after 1999 (ETM+ pan). Cross-correlation on orientation images (CCF-O) outperforms the three similar Fourier methods, both in areas with high and low visual contrast. NCC experiences problems in areas with low visual contrast, areas with thin clouds or changing snow conditions between the images. CCF-O has problems on narrow outlet glaciers where small window sizes (about 16 pixels by 16 pixels or smaller) are needed, and it also obtains fewer correct matches than COSI-Corr in areas with low visual contrast. COSI-Corr has problems on narrow outlet glaciers and it obtains fewer correct matches compared to CCF-O when thin clouds cover the surface, or if one of the images contains snow dunes. In total, we consider CCF-O and COSI-Corr to be the two most robust matching methods for global-scale mapping and monitoring of glacier velocities. If combining CCF-O with locally adaptive template sizes and by filtering the matching results automatically by comparing the displacement matrix to its low pass filtered version, the matching process can be automated to a large degree. This allows the derivation of glacier velocities with minimal (but not without!) user interaction and hence also opens up the possibility of global-scale mapping and monitoring of glacier flow.

  12. New method for identifying features of an image on a digital video display

    NASA Astrophysics Data System (ADS)

    Doyle, Michael D.

    1991-04-01

    The MetaMap process extends the concept of direct manipulation human-computer interfaces to new limits. Its specific capabilities include the correlation of discrete image elements to relevant text information and the correlation of these image features to other images as well as to program control mechanisms. The correlation is accomplished through reprogramming of both the color map and the image so that discrete image elements comprise unique sets of color indices. This process allows the correlation to be accomplished with very efficient data storage and program execution times. Image databases adapted to this process become object-oriented as a result. Very sophisticated interrelationships can be set up between images text and program control mechanisms using this process. An application of this interfacing process to the design of an interactive atlas of medical histology as well as other possible applications are described. The MetaMap process is protected by U. S. patent #4

  13. Kernel-aligned multi-view canonical correlation analysis for image recognition

    NASA Astrophysics Data System (ADS)

    Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao

    2016-09-01

    Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.

  14. Partial removal of correlated noise in thermal imagery

    NASA Astrophysics Data System (ADS)

    Borel, Christoph C.; Cooke, Bradly J.; Laubscher, Bryan E.

    1996-05-01

    Correlated noise occurs in many imaging systems such as scanners and push-broom imagers. The sources of correlated noise can be from the detectors, pre-amplifiers and sampling circuits. Correlated noise appears as streaking along the scan direction of a scanner or in the along track direction of a push-broom imager. We have developed algorithms to simulate correlated noise and pre-filter to reduce the amount of streaking while not destroying the scene content. The pre-filter in the Fourier domain consists of the product of two filters. One filter models the correlated noise spectrum, the other is a windowing function, e.g. Gaussian or Hanning window with variable width to block high frequency noise away from the origin of the Fourier Transform of the image data. We have optimized the filter parameters for various scenes and find improvements of the RMS error of the original minus the pre-filtered noisy image.

  15. Wavelet-based image compression using shuffling and bit plane correlation

    NASA Astrophysics Data System (ADS)

    Kim, Seungjong; Jeong, Jechang

    2000-12-01

    In this paper, we propose a wavelet-based image compression method using shuffling and bit plane correlation. The proposed method improves coding performance in two steps: (1) removing the sign bit plane by shuffling process on quantized coefficients, (2) choosing the arithmetic coding context according to maximum correlation direction. The experimental results are comparable or superior for some images with low correlation, to existing coders.

  16. Correlation between the signal-to-noise ratio improvement factor (KSNR) and clinical image quality for chest imaging with a computed radiography system

    NASA Astrophysics Data System (ADS)

    Moore, C. S.; Wood, T. J.; Saunderson, J. R.; Beavis, A. W.

    2015-12-01

    This work assessed the appropriateness of the signal-to-noise ratio improvement factor (KSNR) as a metric for the optimisation of computed radiography (CR) of the chest. The results of a previous study in which four experienced image evaluators graded computer simulated chest images using a visual grading analysis scoring (VGAS) scheme to quantify the benefit of using an anti-scatter grid were used for the clinical image quality measurement (number of simulated patients  =  80). The KSNR was used to calculate the improvement in physical image quality measured in a physical chest phantom. KSNR correlation with VGAS was assessed as a function of chest region (lung, spine and diaphragm/retrodiaphragm), and as a function of x-ray tube voltage in a given chest region. The correlation of the latter was determined by the Pearson correlation coefficient. VGAS and KSNR image quality metrics demonstrated no correlation in the lung region but did show correlation in the spine and diaphragm/retrodiaphragmatic regions. However, there was no correlation as a function of tube voltage in any region; a Pearson correlation coefficient (R) of  -0.93 (p  =  0.015) was found for lung, a coefficient (R) of  -0.95 (p  =  0.46) was found for spine, and a coefficient (R) of  -0.85 (p  =  0.015) was found for diaphragm. All demonstrate strong negative correlations indicating conflicting results, i.e. KSNR increases with tube voltage but VGAS decreases. Medical physicists should use the KSNR metric with caution when assessing any potential improvement in clinical chest image quality when introducing an anti-scatter grid for CR imaging, especially in the lung region. This metric may also be a limited descriptor of clinical chest image quality as a function of tube voltage when a grid is used routinely.

  17. Three-dimensional magnetic resonance imaging of physeal injury: reliability and clinical utility.

    PubMed

    Lurie, Brett; Koff, Matthew F; Shah, Parina; Feldmann, Eric James; Amacker, Nadja; Downey-Zayas, Timothy; Green, Daniel; Potter, Hollis G

    2014-01-01

    Injuries to the physis are common in children with a subset resulting in an osseous bar and potential growth disturbance. Magnetic resonance imaging allows for detailed assessment of the physis with the ability to generate 3-dimensional physeal models from volumetric data. The purpose of this study was to assess the interrater reliability of physeal bar area measurements generated using a validated semiautomated segmentation technique and to highlight the clinical utility of quantitative 3-dimensional (3D) physeal mapping in pediatric orthopaedic practice. The Radiology Information System/Picture Archiving Communication System (PACS) at our institution was searched to find consecutive patients who were imaged for the purpose of assessing a physeal bar or growth disturbance between December 2006 and October 2011. Physeal segmentation was retrospectively performed by 2 independent operators using semiautomated software to generate physeal maps and bar area measurements from 3-dimensional spoiled gradient recalled echo sequences. Inter-reliability was statistically analyzed. Subsequent surgical management for each patient was recorded from the patient notes and surgical records. We analyzed 24 patients (12M/12F) with a mean age of 11.4 years (range, 5-year to 15-year olds) and 25 physeal bars. Of the physeal bars: 9 (36%) were located in the distal tibia; 8 (32%) in the proximal tibia; 5 (20%) in the distal femur; 1 (4%) in the proximal femur; 1 (4%) in the proximal humerus; and 1 (4%) in the distal radius. The independent operator measurements of physeal bar area were highly correlated with a Pearson correlation coefficient (r) of 0.96 and an intraclass correlation coefficient for average measures of 0.99 (95% confidence interval, 0.97-0.99). Four patients underwent resection of the identified physeal bars, 9 patients were treated with epiphysiodesis, and 1 patient underwent bilateral tibial osteotomies. Semiautomated segmentation of the physis is a reproducible technique for generating physeal maps and accurately measuring physeal bars, providing quantitative and anatomic information that may inform surgical management and prognosis in patients with physeal injury. Level IV.

  18. Comorbid psychiatric diagnosis and psychological correlates of eating disorders in dance students.

    PubMed

    Liu, Chao-Yu; Tseng, Mei-Chih Meg; Chang, Chin-Hao; Fang, David; Lee, Ming-Been

    2016-02-01

    Although dancers are at risk for eating disorders (EDs), little is known about the features of EDs among the dance population. This study explores the prevalence of EDs, and their psychiatric comorbidities and correlates in dance students. In total, 442 female high-school dance students participated in a two-phase survey. All participants completed screening questionnaires as well as measures assessing teasing, self-esteem, perfectionism, body dissatisfaction, and personality. Of the participating students, 311 underwent the Structured Clinical Interview for DSM-IV-TR Axis I Disorders. Sixty-eight individuals (15.4%) had an ED by DSM-IV diagnosis. The prevalence of any co-occurring mood (47.1%) and anxiety disorders (30.9%) was high. Although low self-esteem, high neuroticism, and high psychological distress were associated with EDs in univariate analysis, only teasing for overweight and body image dissatisfaction were significantly associated with EDs by multivariate analysis. Prevention and intervention programs for dance students should include recognition and management of emotional disorders and strategies promoting positive body image and reducing the incidence of negative weight-related comments. Copyright © 2015. Published by Elsevier B.V.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rong, Y; Walston, S

    Purpose: To evaluate the use of 3D optical surface imaging as a new surrogate for respiratory motion gated deep-inspiration breath-hold (DIBH) technique for left breast cancer patients. Methods: Patients with left-sided breast cancer after lumpectomy or mastectomy were selected as candidates for DIBH technique for their external beam radiation therapy. Treatment plans were created on both free breathing (FB) and DIBH CTs to determine whether DIBH was beneficial in reducing heart doses. The Real-time Position Management (RPM) system was used to acquire patient's breathing trace during DIBH CT acquisition and treatment delivery. The reference 3D surface models from FB andmore » DIBH CTs were generated and transferred to the “AlignRT” system for patient positioning and real-time treatment monitoring. MV Cine images were acquired for each beam as quality assurance for intra-fractional position verification. The chest wall excursions measured on these images were used to define the actual target position during treatment, and to investigate the accuracy and reproducibility of RPM and AlignRT. Results: Reduction in heart dose can be achieved for left-sided breast patients using DIBH. Results showed that RPM has poor correlation with target position, as determined by the MV Cine imaging. This indicates that RPM may not be an adequate surrogate in defining the breath-hold level when used alone. Alternatively, the AlignRT surface imaging demonstrated a better correlation with the actual CW excursion during DIBH. Both the vertical and magnitude real-time deltas (RTDs) reported by AlignRT can be used as the gating parameter, with a recommend threshold of ±3 mm and 5 mm, respectively. Conclusion: 3D optical surface imaging serves as a superior target surrogate for the left breast treatment when compared to RPM. Working together with the realtime MV Cine imaging, they ensure accurate patient setup and dose delivery, while minimizing the imaging dose to patients.« less

  20. Backscatter Analysis Using Multi-Temporal SENTINEL-1 SAR Data for Crop Growth of Maize in Konya Basin, Turkey

    NASA Astrophysics Data System (ADS)

    Abdikan, S.; Sekertekin, A.; Ustunern, M.; Balik Sanli, F.; Nasirzadehdizaji, R.

    2018-04-01

    Temporal monitoring of crop types is essential for the sustainable management of agricultural activities on both national and global levels. As a practical and efficient tool, remote sensing is widely used in such applications. In this study, Sentinel-1 Synthetic Aperture Radar (SAR) imagery was utilized to investigate the performance of the sensor backscatter image on crop monitoring. Multi-temporal C-band VV and VH polarized SAR images were acquired simultaneously by in-situ measurements which was conducted at Konya basin, central Anatolia Turkey. During the measurements, plant height of maize plant was collected and relationship between backscatter values and plant height was analysed. The maize growth development was described under Biologische Bundesanstalt, bundessortenamt und CHemische industrie (BBCH). Under BBCH stages, the test site was classified as leaf development, stem elongation, heading and flowering in general. The correlation coefficient values indicated high correlation for both polarimetry during the early stages of the plant, while late stages indicated lower values in both polarimetry. As a last step, multi-temporal coverage of crop fields was analysed to map seasonal land use. To this aim, object based image classification was applied following image segmentation. About 80 % accuracies of land use maps were created in this experiment. As preliminary results, it is concluded that Sentinel-1 data provides beneficial information about plant growth. Dual-polarized Sentinel-1 data has high potential for multi-temporal analyses for agriculture monitoring and reliable mapping.

  1. The association between physical activity and eating self-regulation in overweight and obese women.

    PubMed

    Carraça, Eliana V; Silva, Marlene N; Coutinho, Sílvia R; Vieira, Paulo N; Minderico, Cláudia S; Sardinha, Luís B; Teixeira, Pedro J

    2013-01-01

    Successful weight management relies heavily on eating and exercise behaviors. However, little is known about the association between both on a psychosocial level. This study examined the relationship between exercise and eating regulation by exploring the mediating effects of negative body image investment and depressive mood, and their stability through time. Analyses were conducted at two different moments (12 and 36 months), involving a sample of 221 overweight/obese women (age: 37.6 ± 7 years; BMI: 31.6 ± 4.1 kg/m(2)) that participated in a behavioral weight control intervention. Bivariate correlations and mediation analyses using Preacher & Hayes resampling procedures were conducted. At 12 months, negative body image investment was the only significant mediator of the exercise-eating relationship. This variable explained larger portions of the indirect effects of structured rather than lifestyle exercise on eating. At 36 months, negative investment and to a lesser extent depressive mood partially explained the exercise-eating association. Our findings suggest that, besides physiological effects of exercise, psychological mechanisms related to body image and mood also explain the role of physical activity as a 'gateway behavior' for improved eating regulation in overweight women. These effects appear to be stable and may help understand the key role of exercise in long-term weight management.

  2. Automated Real-Time Behavioral and Physiological Data Acquisition and Display Integrated with Stimulus Presentation for fMRI

    PubMed Central

    Voyvodic, James T.; Glover, Gary H.; Greve, Douglas; Gadde, Syam

    2011-01-01

    Functional magnetic resonance imaging (fMRI) is based on correlating blood oxygen-level dependent (BOLD) signal fluctuations in the brain with other time-varying signals. Although the most common reference for correlation is the timing of a behavioral task performed during the scan, many other behavioral and physiological variables can also influence fMRI signals. Variations in cardiac and respiratory functions in particular are known to contribute significant BOLD signal fluctuations. Variables such as skin conduction, eye movements, and other measures that may be relevant to task performance can also be correlated with BOLD signals and can therefore be used in image analysis to differentiate multiple components in complex brain activity signals. Combining real-time recording and data management of multiple behavioral and physiological signals in a way that can be routinely used with any task stimulus paradigm is a non-trivial software design problem. Here we discuss software methods that allow users control of paradigm-specific audio–visual or other task stimuli combined with automated simultaneous recording of multi-channel behavioral and physiological response variables, all synchronized with sub-millisecond temporal accuracy. We also discuss the implementation and importance of real-time display feedback to ensure data quality of all recorded variables. Finally, we discuss standards and formats for storage of temporal covariate data and its integration into fMRI image analysis. These neuroinformatics methods have been adopted for behavioral task control at all sites in the Functional Biomedical Informatics Research Network (FBIRN) multi-center fMRI study. PMID:22232596

  3. Correlating MALDI and MRI Biomarkers of Breast Cancer

    DTIC Science & Technology

    2010-07-01

    resonance imaging ( MRI ) with matrix-assisted laser desorption ionization (MALDI) analysis of healthy and tumorous ex vivo specimens in order to examine the...assess the correlation between physiological parameters reported by magnetic resonance (MR) imaging and tumor protein distribution determined from... imaging research (e.g., Cancer Imaging , Quantitative Magnetic Resonance Imaging , and Medical Image Registration classes) • completion of

  4. Optoelectronic associative memory

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor)

    1993-01-01

    An associative optical memory including an input spatial light modulator (SLM) in the form of an edge enhanced liquid crystal light valve (LCLV) and a pair of memory SLM's in the form of liquid crystal televisions (LCTV's) forms a matrix array of an input image which is cross correlated with a matrix array of stored images. The correlation product is detected and nonlinearly amplified to illuminate a replica of the stored image array to select the stored image correlating with the input image. The LCLV is edge enhanced by reducing the bias frequency and voltage and rotating its orientation. The edge enhancement and nonlinearity of the photodetection improves the orthogonality of the stored image. The illumination of the replicate stored image provides a clean stored image, uncontaminated by the image comparison process.

  5. Insights into the Mechanism of Severe Mitral Regurgitation: RT-3D TEE Guided Management with Pathological Correlation.

    PubMed

    Anand, Senthil; Hamoud, Naktal; Thompson, Jess; Janardhanan, Rajesh

    2015-01-01

    Mitral valve perforation is an uncommon but important complication of infective endocarditis. We report a case of a 65-year-old man who was diagnosed to have infective endocarditis of his mitral valve. Through the course of his admission he had a rapid development of hemodynamic instability and pulmonary edema secondary to acutely worsening mitral regurgitation. While the TEE demonstrated an increase in the size of his bacterial vegetation, Real Time 3D TEE was ultimately the imaging modality through which the valve perforation was identified. Through this case report we discuss the advantages that RT-3D TEE has over traditional 2D TEE in the management of valve perforation.

  6. Sensors management in robotic neurosurgery: the ROBOCAST project.

    PubMed

    Vaccarella, Alberto; Comparetti, Mirko Daniele; Enquobahrie, Andinet; Ferrigno, Giancarlo; De Momi, Elena

    2011-01-01

    Robot and computer-aided surgery platforms bring a variety of sensors into the operating room. These sensors generate information to be synchronized and merged for improving the accuracy and the safety of the surgical procedure for both patients and operators. In this paper, we present our work on the development of a sensor management architecture that is used is to gather and fuse data from localization systems, such as optical and electromagnetic trackers and ultrasound imaging devices. The architecture follows a modular client-server approach and was implemented within the EU-funded project ROBOCAST (FP7 ICT 215190). Furthermore it is based on very well-maintained open-source libraries such as OpenCV and Image-Guided Surgery Toolkit (IGSTK), which are supported from a worldwide community of developers and allow a significant reduction of software costs. We conducted experiments to evaluate the performance of the sensor manager module. We computed the response time needed for a client to receive tracking data or video images, and the time lag between synchronous acquisition with an optical tracker and ultrasound machine. Results showed a median delay of 1.9 ms for a client request of tracking data and about 40 ms for US images; these values are compatible with the data generation rate (20-30 Hz for tracking system and 25 fps for PAL video). Simultaneous acquisitions have been performed with an optical tracking system and US imaging device: data was aligned according to the timestamp associated with each sample and the delay was estimated with a cross-correlation study. A median value of 230 ms delay was calculated showing that realtime 3D reconstruction is not feasible (an offline temporal calibration is needed), although a slow exploration is possible. In conclusion, as far as asleep patient neurosurgery is concerned, the proposed setup is indeed useful for registration error correction because the brain shift occurs with a time constant of few tens of minutes.

  7. Building an exceptional imaging management team: from theory to practice.

    PubMed

    Hogan, Laurie

    2010-01-01

    Building a strong, cohesive, and talented managerial team is a critical endeavor for imaging administrators, as the job will be enhanced if supported by a group of high-performing, well-developed managers. For the purposes of this article, leadership and management are discussed as two separate, yet equally important, components of an imaging administrator's role. The difference between the two is defined as: leadership relates to people, management relates to process. There are abundant leadership and management theories that can help imaging administrators develop managers and ultimately build a better team. Administrators who apply these theories in practical and meaningful ways will improve their teams' leadership and management aptitude. Imaging administrators will find it rewarding to coach and develop managers and witness transformations that result from improved leadership and management abilities.

  8. Remote thermal infrared imaging as an identifier for groundwater dependent ecosystems of esker aquifers in Northern boreal region

    NASA Astrophysics Data System (ADS)

    Rossi, Pekka M.; Korkka-Niemi, Kirsti; Rautio, Anne; Jyväsjärvi, Jussi; Isokangas, Elina; Jaros, Anna; Kløve, Bjørn

    2017-04-01

    Remote thermal infrared imaging (TIR) is a rapid and feasible method to map groundwater seepages in different surroundings. As the thermal cameras are more available, TIR could be more used as a mapping and management tool for groundwater dependent ecosystems (GDEs). This study demonstrates how TIR was used in a boreal esker aquifer where springs, peatlands, lakes and stream ecosystems are present. Two esker aquifer areas in Finland were mapped with a two-day helicopter based thermal imaging campaign. Imaging included 67 lakes, a bog mire, three headwater streams and a peatland forestry area with ditches. The results of the TIR indicated that many of the lakes had shore seepage points or longer shoreline seepage areas of groundwater. When compared to a previous groundwater dependence study with stable water isotopes of the same lakes, a one-way analysis of covariate (ANCOVA) indicated a correlation between the groundwater dependence and the seepages of a selected lake. The studied mire bog had unmapped springs 0.5 - 1 km beyond the current groundwater protection area of the esker. Also the temperature of the headwater streams referred to a groundwater connection beyond protection limits. The forestry ditches of the discharge zone had a complex temperature pattern due to groundwater seepage. With carefully planned imaging route the TIR resulted to be highly informative and an efficient method to study different GDEs on varying surroundings. The study results emphasize the use of TIR as a standard tool in GDE management planning of boreal eskers comparable to the vegetation based mapping.

  9. Diagnosing cysts with correlation coefficient images from 2-dimensional freehand elastography.

    PubMed

    Booi, Rebecca C; Carson, Paul L; O'Donnell, Matthew; Richards, Michael S; Rubin, Jonathan M

    2007-09-01

    We compared the diagnostic potential of using correlation coefficient images versus elastograms from 2-dimensional (2D) freehand elastography to characterize breast cysts. In this preliminary study, which was approved by the Institutional Review Board and compliant with the Health Insurance Portability and Accountability Act, we imaged 4 consecutive human subjects (4 cysts, 1 biopsy-verified benign breast parenchyma) with freehand 2D elastography. Data were processed offline with conventional 2D phase-sensitive speckle-tracking algorithms. The correlation coefficient in the cyst and surrounding tissue was calculated, and appearances of the cysts in the correlation coefficient images and elastograms were compared. The correlation coefficient in the cysts was considerably lower (14%-37%) than in the surrounding tissue because of the lack of sufficient speckle in the cysts, as well as the prominence of random noise, reverberations, and clutter, which decorrelated quickly. Thus, the cysts were visible in all correlation coefficient images. In contrast, the elastograms associated with these cysts each had different elastographic patterns. The solid mass in this study did not have the same high decorrelation rate as the cysts, having a correlation coefficient only 2.1% lower than that of surrounding tissue. Correlation coefficient images may produce a more direct, reliable, and consistent method for characterizing cysts than elastograms.

  10. A novel iris patterns matching algorithm of weighted polar frequency correlation

    NASA Astrophysics Data System (ADS)

    Zhao, Weijie; Jiang, Linhua

    2014-11-01

    Iris recognition is recognized as one of the most accurate techniques for biometric authentication. In this paper, we present a novel correlation method - Weighted Polar Frequency Correlation(WPFC) - to match and evaluate two iris images, actually it can also be used for evaluating the similarity of any two images. The WPFC method is a novel matching and evaluating method for iris image matching, which is complete different from the conventional methods. For instance, the classical John Daugman's method of iris recognition uses 2D Gabor wavelets to extract features of iris image into a compact bit stream, and then matching two bit streams with hamming distance. Our new method is based on the correlation in the polar coordinate system in frequency domain with regulated weights. The new method is motivated by the observation that the pattern of iris that contains far more information for recognition is fine structure at high frequency other than the gross shapes of iris images. Therefore, we transform iris images into frequency domain and set different weights to frequencies. Then calculate the correlation of two iris images in frequency domain. We evaluate the iris images by summing the discrete correlation values with regulated weights, comparing the value with preset threshold to tell whether these two iris images are captured from the same person or not. Experiments are carried out on both CASIA database and self-obtained images. The results show that our method is functional and reliable. Our method provides a new prospect for iris recognition system.

  11. Intraoperative diagnosis of nonpigmented nail tumours with ex vivo fluorescence confocal microscopy: 10 cases.

    PubMed

    Debarbieux, S; Gaspar, R; Depaepe, L; Dalle, S; Balme, B; Thomas, L

    2015-04-01

    Ex vivo fluorescence confocal microscopy (FCM) permits real-time imaging of freshly excised skin tissues. Its usefulness as a time-sparing alternative to frozen sections in Mohs surgery of basal cell carcinoma is well documented. The purpose of this study was to describe the ex vivo FCM features of a series of benign and malignant nonpigmented tumours of the nail unit, and to correlate them with conventional histopathology. Nail apparatus tumours from 10 patients were imaged during surgical exploration using ex vivo FCM after immersion in acridine orange. Confocal mosaics of the freshly performed biopsies were evaluated in real time and retrospectively compared with haematoxylin and eosin sections. Our series included two invasive epithelial tumours (Group 1), four in situ or minimally invasive squamous cell carcinomas (SCC) (Group 2), three benign epithelial tumours (Group 3) and one nodular melanoma (Group 4). The correlation was excellent for malignant epithelial tumours exhibiting marked cytological and architectural atypias (Bowen disease, invasive SCC and onycholemmal carcinoma). Onychomatricomas exhibited a very peculiar aspect with densely cellular papillae. The correlation was less favourable for minimally invasive well-differentiated SCCs with slight cytological atypias. The correlation was poor for our case of amelanotic invasive subungual melanoma. Ex vivo FCM could be a useful tool to shorten management of nonpigmented nail tumours: in the case of a malignant tumour, it could indeed lead to performing wide excision during the same surgical procedure and possibly assessing the surgical margins. © 2014 British Association of Dermatologists.

  12. Quaternion Based Thermal Condition Monitoring System

    NASA Astrophysics Data System (ADS)

    Wong, Wai Kit; Loo, Chu Kiong; Lim, Way Soong; Tan, Poi Ngee

    In this paper, we will propose a new and effective machine condition monitoring system using log-polar mapper, quaternion based thermal image correlator and max-product fuzzy neural network classifier. Two classification characteristics namely: peak to sidelobe ratio (PSR) and real to complex ratio of the discrete quaternion correlation output (p-value) are applied in the proposed machine condition monitoring system. Large PSR and p-value observe in a good match among correlation of the input thermal image with a particular reference image, while small PSR and p-value observe in a bad/not match among correlation of the input thermal image with a particular reference image. In simulation, we also discover that log-polar mapping actually help solving rotation and scaling invariant problems in quaternion based thermal image correlation. Beside that, log-polar mapping can have a two fold of data compression capability. Log-polar mapping can help smoother up the output correlation plane too, hence makes a better measurement way for PSR and p-values. Simulation results also show that the proposed system is an efficient machine condition monitoring system with accuracy more than 98%.

  13. MOCC: A Fast and Robust Correlation-Based Method for Interest Point Matching under Large Scale Changes

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Huang, Qingming; Wang, Hao; Gao, Wen

    2010-12-01

    Similarity measures based on correlation have been used extensively for matching tasks. However, traditional correlation-based image matching methods are sensitive to rotation and scale changes. This paper presents a fast correlation-based method for matching two images with large rotation and significant scale changes. Multiscale oriented corner correlation (MOCC) is used to evaluate the degree of similarity between the feature points. The method is rotation invariant and capable of matching image pairs with scale changes up to a factor of 7. Moreover, MOCC is much faster in comparison with the state-of-the-art matching methods. Experimental results on real images show the robustness and effectiveness of the proposed method.

  14. Low-cost fluorescence microscopy for point-of-care cell imaging

    NASA Astrophysics Data System (ADS)

    Lochhead, Michael J.; Ives, Jeff; Givens, Monique; Delaney, Marie; Moll, Kevin; Myatt, Christopher J.

    2010-02-01

    Fluorescence microscopy has long been a standard tool in laboratory medicine. Implementation of fluorescence microscopy for near-patient diagnostics, however, has been limited due to cost and complexity associated with traditional fluorescence microscopy techniques. There is a particular need for robust, low-cost imaging in high disease burden areas in the developing world, where access to central laboratory facilities and trained staff is limited. Here we describe a point-of-care assay that combines a disposable plastic cartridge with an extremely low cost fluorescence imaging instrument. Based on a novel, multi-mode planar waveguide configuration, the system capitalizes on advances in volume-manufactured consumer electronic components to deliver an imaging system with minimal moving parts and low power requirements. A two-color cell imager is presented, with magnification optimized for enumeration of immunostained human T cells. To demonstrate the system, peripheral blood mononuclear cells were stained with fluorescently labeled anti-human-CD4 and anti-human-CD3 antibodies. Registered images were used to generate fractional CD4+ and CD3+ staining and enumeration results that show excellent correlation with flow cytometry. The cell imager is under development as a very low cost CD4+ T cell counter for HIV disease management in limited resource settings.

  15. Rainbow correlation imaging with macroscopic twin beam

    NASA Astrophysics Data System (ADS)

    Allevi, Alessia; Bondani, Maria

    2017-06-01

    We present the implementation of a correlation-imaging protocol that exploits both the spatial and spectral correlations of macroscopic twin-beam states generated by parametric downconversion. In particular, the spectral resolution of an imaging spectrometer coupled to an EMCCD camera is used in a proof-of-principle experiment to encrypt and decrypt a simple code to be transmitted between two parties. In order to optimize the trade-off between visibility and resolution, we provide the characterization of the correlation images as a function of the spatio-spectral properties of twin beams generated at different pump power values.

  16. Key personality traits of sales managers.

    PubMed

    Lounsbury, John W; Foster, Nancy A; Levy, Jacob J; Gibson, Lucy W

    2014-01-01

    Sales managers are crucial for producing positive sales outcomes for companies. However, there has been a relative dearth of scholarly investigations into the personal attributes of sales managers. Such information could prove important in the recruitment, selection, training needs identification, career planning, counseling, and development of sales managers. Drawing on Holland's vocational theory, we sought to identify key personality traits that distinguish sales managers from other occupations and are related to their career satisfaction. The main sample was comprised of a total of 978 sales managers employed in a large number of companies across the United States (along with a comparison sample drawn from 79,512 individuals from other professional occupations). Participants completed an online version of Resource Associates' Personal Style Inventory as well a measure of career satisfaction. Our sample of 978 sales managers had higher levels of Assertiveness, Customer Service Orientation, Extraversion, Image Management, Optimism, and Visionary Style; and lower levels of Conscientiousness, Agreeableness, Intrinsic Motivation, Openness, and Tough-Mindedness than a sample of 79,512 individuals in a variety of other occupations. Nine of these traits were significantly correlated with sales managers' career satisfaction. Based on the results, a psychological profile of sales managers was presented as were implications for their recruitment, selection, training, development, and mentoring.

  17. Symmetric Phase-Only Filtering in Particle-Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Wemet, Mark P.

    2008-01-01

    Symmetrical phase-only filtering (SPOF) can be exploited to obtain substantial improvements in the results of data processing in particle-image velocimetry (PIV). In comparison with traditional PIV data processing, SPOF PIV data processing yields narrower and larger amplitude correlation peaks, thereby providing more-accurate velocity estimates. The higher signal-to-noise ratios associated with the higher amplitude correlation peaks afford greater robustness and reliability of processing. SPOF also affords superior performance in the presence of surface flare light and/or background light. SPOF algorithms can readily be incorporated into pre-existing algorithms used to process digitized image data in PIV, without significantly increasing processing times. A summary of PIV and traditional PIV data processing is prerequisite to a meaningful description of SPOF PIV processing. In PIV, a pulsed laser is used to illuminate a substantially planar region of a flowing fluid in which particles are entrained. An electronic camera records digital images of the particles at two instants of time. The components of velocity of the fluid in the illuminated plane can be obtained by determining the displacements of particles between the two illumination pulses. The objective in PIV data processing is to compute the particle displacements from the digital image data. In traditional PIV data processing, to which the present innovation applies, the two images are divided into a grid of subregions and the displacements determined from cross-correlations between the corresponding sub-regions in the first and second images. The cross-correlation process begins with the calculation of the Fourier transforms (or fast Fourier transforms) of the subregion portions of the images. The Fourier transforms from the corresponding subregions are multiplied, and this product is inverse Fourier transformed, yielding the cross-correlation intensity distribution. The average displacement of the particles across a subregion results in a displacement of the correlation peak from the center of the correlation plane. The velocity is then computed from the displacement of the correlation peak and the time between the recording of the two images. The process as described thus far is performed for all the subregions. The resulting set of velocities in grid cells amounts to a velocity vector map of the flow field recorded on the image plane. In traditional PIV processing, surface flare light and bright background light give rise to a large, broad correlation peak, at the center of the correlation plane, that can overwhelm the true particle- displacement correlation peak. This has made it necessary to resort to tedious image-masking and background-subtraction procedures to recover the relatively small amplitude particle-displacement correlation peak. SPOF is a variant of phase-only filtering (POF), which, in turn, is a variant of matched spatial filtering (MSF). In MSF, one projects a first image (denoted the input image) onto a second image (denoted the filter) as part of a computation to determine how much and what part of the filter is present in the input image. MSF is equivalent to cross-correlation. In POF, the frequency-domain content of the MSF filter is modified to produce a unitamplitude (phase-only) object. POF is implemented by normalizing the Fourier transform of the filter by its magnitude. The advantage of POFs is that they yield correlation peaks that are sharper and have higher signal-to-noise ratios than those obtained through traditional MSF. In the SPOF, these benefits of POF can be extended to PIV data processing. The SPOF yields even better performance than the POF approach, which is uniquely applicable to PIV type image data. In SPOF as now applied to PIV data processing, a subregion of the first image is treated as the input image and the corresponding subregion of the second image is treated as the filter. The Fourier transforms from both the firs and second- image subregions are normalized by the square roots of their respective magnitudes. This scheme yields optimal performance because the amounts of normalization applied to the spatial-frequency contents of the input and filter scenes are just enough to enhance their high-spatial-frequency contents while reducing their spurious low-spatial-frequency content. As a result, in SPOF PIV processing, particle-displacement correlation peaks can readily be detected above spurious background peaks, without need for masking or background subtraction.

  18. Honesty-humility in contemporary students: manipulations of self-image by inflated IQ estimations.

    PubMed

    Kajonius, P J

    2014-08-01

    The HEXACO model offers a complement to the Big Five model, including a sixth factor, Honesty-Humility, and its four facets (Sincerity, Fairness, Greed-avoidance, and Modesty). The four facets of Honesty-Humility and three indicators of intelligence (one performance-based cognitive ability test, one self-estimated academic potential, and one self-report of previous IQ test results) were assessed in students entering higher education (N = 187). A significant negative correlation was observed between Honesty-Humility and self-reported intelligence (r = -.37), most evident in the Modesty facet. These results may be interpreted as tendencies of exaggeration, using a theoretical frame of psychological image-management, concluding that the Honesty-Humility trait captures students' self-ambitions, particularly within the context of an individualistic, competitive culture such as Sweden.

  19. [Radiology in managed care environment: opportunities for cost savings in an HMO].

    PubMed

    Schmidt, C; Mohr, A; Möller, J; Levin-Scherz, J; Heller, M

    2003-09-01

    A large regional health plan in the Northeastern United States noted that its radiology costs were increasing more than it anticipated in its pricing, and noted further that other similar health plans in markets with high managed care penetration had significantly lower expenses for radiology services. This study describes the potential areas of improvement and managed care techniques that were implemented to reduce costs and reform processes. We performed an in-depth analysis of financial data, claims logic, contracting with provider units and conducted interviews with employees, to identify potential areas of improvement and cost reduction. A detailed market analysis of the environment, competitors and vendors was accompanied by extensive literature, Internet and Medline search for comparable projects. All data were docu-mented in Microsoft Excel(R) and analyzed by non-parametric tests using SPSS(R) 8.0 (Statistical Package for the Social Sciences) for Windows(R). The main factors driving the cost increases in radiology were divided into those internal or external to the HMO. Among the internal factors, the claims logic was allowing overpayment due to limitations of the IT system. Risk arrangements between insurer and provider units (PU) as well as the extent of provider unit management and administration showed a significant correlation with financial performance in terms of variance from budget. Among the external factors, shared risk arrangements between HMO and provider unit were associated with more efficient radiology utilization and overall improvement in financial performance. PU with full-time management had significantly less variance from their budget than those without. Finally, physicians with imaging equipment in their offices ordered up to 4 to 5 times more imaging procedures than physicians who did not perform imaging studies themselves. We identified initiatives with estimated potential savings of approximately $ 5.5 million. Some of these initiatives are similar to the reforms to reduce cost and improve quality that are already implemented or proposed within the German healthcare system.

  20. TU-F-BRB-02: Motion Artifacts and Suppression in MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, X.

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has highmore » temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.« less

  1. TU-F-BRB-01: Resolving and Characterizing Breathing Motion for Radiotherapy with MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tryggestad, E.

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has highmore » temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.« less

  2. TU-PIS-Exhibit Hall-4: How to implement a dose monitoring solution in the real world: a technical perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massey, S.

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has highmore » temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.« less

  3. TU-PIS-Exhibit Hall-5: Use of the Enterprise-wide Dose Tracking Software Radimetrics In an Academic Medical System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goode, A.

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has highmore » temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.« less

  4. TU-PIS-Exhibit Hall-3: Simultaneous tracking of patient and real time staff dose to optimize interventional workflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boon, S.

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has highmore » temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.« less

  5. Correlation processing for correction of phase distortions in subaperture imaging.

    PubMed

    Tavh, B; Karaman, M

    1999-01-01

    Ultrasonic subaperture imaging combines synthetic aperture and phased array approaches and permits low-cost systems with improved image quality. In subaperture processing, a large array is synthesized using echo signals collected from a number of receive subapertures by multiple firings of a phased transmit subaperture. Tissue inhomogeneities and displacements in subaperture imaging may cause significant phase distortions on received echo signals. Correlation processing on reference echo signals can be used for correction of the phase distortions, for which the accuracy and robustness are critically limited by the signal correlation. In this study, we explore correlation processing techniques for adaptive subaperture imaging with phase correction for motion and tissue inhomogeneities. The proposed techniques use new subaperture data acquisition schemes to produce reference signal sets with improved signal correlation. The experimental test results were obtained using raw radio frequency (RF) data acquired from two different phantoms with 3.5 MHz, 128-element transducer array. The results show that phase distortions can effectively be compensated by the proposed techniques in real-time adaptive subaperture imaging.

  6. Predictive factors of disordered eating and body image satisfaction in cyprus.

    PubMed

    Argyrides, Marios; Kkeli, Natalie

    2015-05-01

    This study aimed to assess possible relationships and predictor variables between disordered eating attitudes and behaviors, the internalization of the thin ideal construct, body image satisfaction, body image investment, weight-related anxiety, and body mass index (BMI) among Greek-Cypriot female university students in Cyprus. A total of 243 female university students responded to self-report measures assessing disordered eating, internalization of the thin ideal, body satisfaction, body image investment, and weight-related anxiety. Disordered eating was positively correlated to the internalization of the thin ideal, body image investment, weight-related anxiety, and BMI and negatively correlated with body image satisfaction. The internalization of the thin ideal was also positively correlated to weight-related anxiety and body image investment and negatively correlated to body image satisfaction. Furthermore, weight-related anxiety and internalization of the thin ideal have been found to be significant predictors of disordered eating attitudes. Possible explanations and vulnerability factors are addressed, as well as implication for prevention strategies and future research. © 2014 Wiley Periodicals, Inc.

  7. Spatial information management platform for Dunhuang Global Geopark

    NASA Astrophysics Data System (ADS)

    Yan-long, YU; Fa-dong, WU; Jin-fang, HAN; Yan-Jie, WANG; Hao, CHU

    2017-02-01

    As a member of UNESCO Global Geoparks, Dunhuang Global Geopark has developed a great quantity of landforms formed under special geological background and extremely droughty climate, which integrate together with specific geographic location and cultural relics on the “Silk Road Economic Belt”. The main geoheritage in Dunhuang Global Geopark is Yardang landform, which is formed by loose Quaternary sediments. According to different shapes, the Yardang landform were divided into five types, namely, ridge-shaped Yardang, wall-shaped Yardang, tower-shape Yardang, column Yardang and Yardang monadnock. In order to monitor and protect the unique morphological features of Yardang landforms, a spatial information management platform is established, using SPOT 6 remote sensing image, with object oriented approach and manual interactive interpretation. Study shows that the maximum area, perimeter, length and width of Yardang were 324843.1 m2, 3447.52 m, 1508.41m, and 285.81 m, respectively. Additionally, the aspect ratio of Yardang has a certain positive correlation, with the coefficient of correlation being 0.675. Furthermore, the relationship between length and width of Yardang is calculated using formula Y=2.546X, where Y = length, X = width.

  8. An Improved Algorithm of Congruent Matching Cells (CMC) Method for Firearm Evidence Identifications

    PubMed Central

    Tong, Mingsi; Song, John; Chu, Wei

    2015-01-01

    The Congruent Matching Cells (CMC) method was invented at the National Institute of Standards and Technology (NIST) for firearm evidence identifications. The CMC method divides the measured image of a surface area, such as a breech face impression from a fired cartridge case, into small correlation cells and uses four identification parameters to identify correlated cell pairs originating from the same firearm. The CMC method was validated by identification tests using both 3D topography images and optical images captured from breech face impressions of 40 cartridge cases fired from a pistol with 10 consecutively manufactured slides. In this paper, we discuss the processing of the cell correlations and propose an improved algorithm of the CMC method which takes advantage of the cell correlations at a common initial phase angle and combines the forward and backward correlations to improve the identification capability. The improved algorithm is tested by 780 pairwise correlations using the same optical images and 3D topography images as the initial validation. PMID:26958441

  9. An Improved Algorithm of Congruent Matching Cells (CMC) Method for Firearm Evidence Identifications.

    PubMed

    Tong, Mingsi; Song, John; Chu, Wei

    2015-01-01

    The Congruent Matching Cells (CMC) method was invented at the National Institute of Standards and Technology (NIST) for firearm evidence identifications. The CMC method divides the measured image of a surface area, such as a breech face impression from a fired cartridge case, into small correlation cells and uses four identification parameters to identify correlated cell pairs originating from the same firearm. The CMC method was validated by identification tests using both 3D topography images and optical images captured from breech face impressions of 40 cartridge cases fired from a pistol with 10 consecutively manufactured slides. In this paper, we discuss the processing of the cell correlations and propose an improved algorithm of the CMC method which takes advantage of the cell correlations at a common initial phase angle and combines the forward and backward correlations to improve the identification capability. The improved algorithm is tested by 780 pairwise correlations using the same optical images and 3D topography images as the initial validation.

  10. Assessment of Hyperspectral and SAR Remote Sensing for Solid Waste Landfill Management

    NASA Astrophysics Data System (ADS)

    Ottavianelli, Giuseppe; Hobbs, Stephen; Smith, Richard; Bruno, Davide

    2005-06-01

    Globally, waste management is one of the most critical environmental concerns that modern society is facing. Controlled disposal to land (landfill) is currently important, and due to the potentially harmful effects of gas emissions and leachate land contamination, the monitoring of a landfill is inherent in all phases of the site's life cycle. Data from satellite platforms can provide key support to a number of landfill management and monitoring practices, potentially reducing operational costs and hazards, and meeting the challenges of the future waste management agenda.The few previous studies performed show the value of EO data for mapping landcover around landfills and monitoring vegetation health. However, these were largely qualitative studies limited to single sensor types. The review of these studies highlights three key aspects. Firstly, with regard to leachate and gas monitoring, space-borne remote sensing has not proved to be a valid tool for an accurate quantitative analysis, it can only support ground remediation efforts based on the expertise of the visual interpreter and the knowledge of the landfill operator. Secondly, the additional research that focuses on landfill detection concentrates only on the images' data dimension (spatial and spectral), paying less attention to the sensor-independent bio- and geo-physical variables and the modelling of remote sensing physical principles for both active and restored landfill sites. These studies show some ambiguity in their results and additional aerial images or ground truth visits are always required to support the results. Thirdly, none of the studies explores the potential of Synthetic Aperture Radar (SAR) remote sensing and SAR interferometric processing to achieve a more robust automatic detection algorithm and extract additional information and knowledge for landfill management.Based on our previous work with ERS radar images and SAR interferometry, expertise in the waste management sector, and practical knowledge of landfill management practices, we propose to evaluate the use of hyperspectral and radar images for landfill monitoring and management. CHRIS offers hyperspectral data of commensurate spatial resolution with Envisat radarimages and thus appears ideally suited for studies using multi-sensor data fusion.The goal of the research is to identify practical ways in which EO data can support landfill management and monitoring, providing quantitative data where possible. Our objectives (based on fieldwork in UK landfills) are (1) to develop robust methods of detecting and mapping landfill sites, (2) to correlate EO data with on-site operational procedures, and (3) to investigate data fusion techniques based on our findings with the separate sensors. Dissemination of the findings will be through scientific journals, professional waste management publications and workshops. It is expected that the research will help the development of techniques which could be applied to monitor waste disposal to land beyond the UK scope of this study, including global monitoring.

  11. Hadamard multimode optical imaging transceiver

    DOEpatents

    Cooke, Bradly J; Guenther, David C; Tiee, Joe J; Kellum, Mervyn J; Olivas, Nicholas L; Weisse-Bernstein, Nina R; Judd, Stephen L; Braun, Thomas R

    2012-10-30

    Disclosed is a method and system for simultaneously acquiring and producing results for multiple image modes using a common sensor without optical filtering, scanning, or other moving parts. The system and method utilize the Walsh-Hadamard correlation detection process (e.g., functions/matrix) to provide an all-binary structure that permits seamless bridging between analog and digital domains. An embodiment may capture an incoming optical signal at an optical aperture, convert the optical signal to an electrical signal, pass the electrical signal through a Low-Noise Amplifier (LNA) to create an LNA signal, pass the LNA signal through one or more correlators where each correlator has a corresponding Walsh-Hadamard (WH) binary basis function, calculate a correlation output coefficient for each correlator as a function of the corresponding WH binary basis function in accordance with Walsh-Hadamard mathematical principles, digitize each of the correlation output coefficient by passing each correlation output coefficient through an Analog-to-Digital Converter (ADC), and performing image mode processing on the digitized correlation output coefficients as desired to produce one or more image modes. Some, but not all, potential image modes include: multi-channel access, temporal, range, three-dimensional, and synthetic aperture.

  12. Prediction of subacute infarct size in acute middle cerebral artery stroke: comparison of perfusion-weighted imaging and apparent diffusion coefficient maps.

    PubMed

    Drier, Aurélie; Tourdias, Thomas; Attal, Yohan; Sibon, Igor; Mutlu, Gurkan; Lehéricy, Stéphane; Samson, Yves; Chiras, Jacques; Dormont, Didier; Orgogozo, Jean-Marc; Dousset, Vincent; Rosso, Charlotte

    2012-11-01

    To compare perfusion-weighted (PW) imaging and apparent diffusion coefficient (ADC) maps in prediction of infarct size and growth in patients with acute middle cerebral artery infarct. This study was approved by the local institutional review board. Written informed consent was obtained from all 80 patients. Subsequent infarct volume and growth on follow-up magnetic resonance (MR) images obtained within 6 days were compared with the predictions based on PW images by using a time-to-peak threshold greater than 4 seconds and ADC maps obtained less than 12 hours after middle cerebral artery infarct. ADC- and PW imaging-predicted infarct growth areas and infarct volumes were correlated with subsequent infarct growth and follow-up diffusion-weighted (DW) imaging volumes. The impact of MR imaging time delay on the correlation coefficient between the predicted and subsequent infarct volumes and individual predictions of infarct growth by using receiver operating characteristic curves were assessed. The infarct volume measurements were highly reproducible (concordance correlation coefficient [CCC] of 0.965 and 95% confidence interval [CI]: 0.949, 0.976 for acute DW imaging; CCC of 0.995 and 95% CI: 0.993, 0.997 for subacute DW imaging). The subsequent infarct volume correlated (P<.0001) with ADC- (ρ=0.853) and PW imaging- (ρ=0.669) predicted volumes. The correlation was higher for ADC-predicted volume than for PW imaging-predicted volume (P<.005), but not when the analysis was restricted to patients without recanalization (P=.07). The infarct growth correlated (P<.0001) with PW imaging-DW imaging mismatch (ρ=0.470) and ADC-DW imaging mismatch (ρ=0.438), without significant differences between both methods (P=.71). The correlations were similar among time delays with ADC-predicted volumes but decreased with PW imaging-based volumes beyond the therapeutic window. Accuracies of ADC- and PW imaging-based predictions of infarct growth in an individual prediction were similar (area under the receiver operating characteristic curve [AUC] of 0.698 and 95% CI: 0.585, 0.796 vs AUC of 0.749 and 95% CI: 0.640, 0.839; P=.48). The ADC-based method was as accurate as the PW imaging-based method for evaluating infarct growth and size in the subacute phase. © RSNA, 2012

  13. Automated method and system for the alignment and correlation of images from two different modalities

    DOEpatents

    Giger, Maryellen L.; Chen, Chin-Tu; Armato, Samuel; Doi, Kunio

    1999-10-26

    A method and system for the computerized registration of radionuclide images with radiographic images, including generating image data from radiographic and radionuclide images of the thorax. Techniques include contouring the lung regions in each type of chest image, scaling and registration of the contours based on location of lung apices, and superimposition after appropriate shifting of the images. Specific applications are given for the automated registration of radionuclide lungs scans with chest radiographs. The method in the example given yields a system that spatially registers and correlates digitized chest radiographs with V/Q scans in order to correlate V/Q functional information with the greater structural detail of chest radiographs. Final output could be the computer-determined contours from each type of image superimposed on any of the original images, or superimposition of the radionuclide image data, which contains high activity, onto the radiographic chest image.

  14. Joint transform correlators with spatially incoherent illumination

    NASA Astrophysics Data System (ADS)

    Bykovsky, Yuri A.; Karpiouk, Andrey B.; Markilov, Anatoly A.; Rodin, Vladislav G.; Starikov, Sergey N.

    1997-03-01

    Two variants of joint transform correlators with monochromatic spatially incoherent illumination are considered. The Fourier-holograms of the reference and recognized images are recorded simultaneously or apart in a time on the same spatial light modulator directly by monochromatic spatially incoherent light. To create the signal of mutual correlation of the images it is necessary to execute nonlinear transformation when the hologram is illuminated by coherent light. In the first scheme of the correlator this aim was achieved by using double pas of a restoring coherent wave through the hologram. In the second variant of the correlator the non-linearity of the characteristic of the spatial light modulator for hologram recording was used. Experimental schemes and results on processing teste images by both variants of joint transform correlators with monochromatic spatially incoherent illumination. The use of spatially incoherent light on the input of joint transform correlators permits to reduce the requirements to optical quality of elements, to reduce accuracy requirements on elements positioning and to expand a number of devices suitable to input images in correlators.

  15. Extracting flat-field images from scene-based image sequences using phase correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caron, James N., E-mail: Caron@RSImd.com; Montes, Marcos J.; Obermark, Jerome L.

    Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method usesmore » sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.« less

  16. Correlative Microscopy Combining Secondary Ion Mass Spectrometry and Electron Microscopy: Comparison of Intensity-Hue-Saturation and Laplacian Pyramid Methods for Image Fusion.

    PubMed

    Vollnhals, Florian; Audinot, Jean-Nicolas; Wirtz, Tom; Mercier-Bonin, Muriel; Fourquaux, Isabelle; Schroeppel, Birgit; Kraushaar, Udo; Lev-Ram, Varda; Ellisman, Mark H; Eswara, Santhana

    2017-10-17

    Correlative microscopy combining various imaging modalities offers powerful insights into obtaining a comprehensive understanding of physical, chemical, and biological phenomena. In this article, we investigate two approaches for image fusion in the context of combining the inherently lower-resolution chemical images obtained using secondary ion mass spectrometry (SIMS) with the high-resolution ultrastructural images obtained using electron microscopy (EM). We evaluate the image fusion methods with three different case studies selected to broadly represent the typical samples in life science research: (i) histology (unlabeled tissue), (ii) nanotoxicology, and (iii) metabolism (isotopically labeled tissue). We show that the intensity-hue-saturation fusion method often applied for EM-sharpening can result in serious image artifacts, especially in cases where different contrast mechanisms interplay. Here, we introduce and demonstrate Laplacian pyramid fusion as a powerful and more robust alternative method for image fusion. Both physical and technical aspects of correlative image overlay and image fusion specific to SIMS-based correlative microscopy are discussed in detail alongside the advantages, limitations, and the potential artifacts. Quantitative metrics to evaluate the results of image fusion are also discussed.

  17. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon

    PubMed Central

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Abstract Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results. Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon–oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images. Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects. Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images reflected pulmonary function. Xenon images obtained with xenon-enhanced CT using a single-breath-hold technique can qualitatively depict pulmonary ventilation. A larger study comprising only COPD patients should be conducted, as xenon-enhanced CT is expected to be a promising technique for the management of COPD. PMID:28099359

  18. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon: Results of a preliminary study.

    PubMed

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results.Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon-oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images.Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects.Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images reflected pulmonary function. Xenon images obtained with xenon-enhanced CT using a single-breath-hold technique can qualitatively depict pulmonary ventilation. A larger study comprising only COPD patients should be conducted, as xenon-enhanced CT is expected to be a promising technique for the management of COPD.

  19. Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognitive Functions

    DTIC Science & Technology

    2017-05-14

    AFRL-AFOSR-JP-TR-2017-0052 Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions...invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions 5a.  CONTRACT NUMBER 5b.  GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT Brain stress level measurement (non-invasively) in quantitative term is very helpful to correlate with various

  20. Non invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions

    DTIC Science & Technology

    2017-05-14

    AFRL-AFOSR-JP-TR-2017-0052 Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions...invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions 5a.  CONTRACT NUMBER 5b.  GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT Brain stress level measurement (non-invasively) in quantitative term is very helpful to correlate with various

  1. Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging.

    PubMed

    Zhang, Dongyan; Zhou, Xingen; Zhang, Jian; Lan, Yubin; Xu, Chao; Liang, Dong

    2018-01-01

    Detection and monitoring are the first essential step for effective management of sheath blight (ShB), a major disease in rice worldwide. Unmanned aerial systems have a high potential of being utilized to improve this detection process since they can reduce the time needed for scouting for the disease at a field scale, and are affordable and user-friendly in operation. In this study, a commercialized quadrotor unmanned aerial vehicle (UAV), equipped with digital and multispectral cameras, was used to capture imagery data of research plots with 67 rice cultivars and elite lines. Collected imagery data were then processed and analyzed to characterize the development of ShB and quantify different levels of the disease in the field. Through color features extraction and color space transformation of images, it was found that the color transformation could qualitatively detect the infected areas of ShB in the field plots. However, it was less effective to detect different levels of the disease. Five vegetation indices were then calculated from the multispectral images, and ground truths of disease severity and GreenSeeker measured NDVI (Normalized Difference Vegetation Index) were collected. The results of relationship analyses indicate that there was a strong correlation between ground-measured NDVIs and image-extracted NDVIs with the R2 of 0.907 and the root mean square error (RMSE) of 0.0854, and a good correlation between image-extracted NDVIs and disease severity with the R2 of 0.627 and the RMSE of 0.0852. Use of image-based NDVIs extracted from multispectral images could quantify different levels of ShB in the field plots with an accuracy of 63%. These results demonstrate that a customer-grade UAV integrated with digital and multispectral cameras can be an effective tool to detect the ShB disease at a field scale.

  2. Clinical spectrum of Treacher Collins syndrome.

    PubMed

    Mehrotra, Divya; Hasan, Mahdi; Pandey, Rahul; Kumar, Sumit

    2011-01-01

    Treacher Collins syndrome (TCS) is the most common of the human mandibulofacial dysostosis disorders. It is an autosomal-dominant disorder of the craniofacial development occurring between the fifth and the eighth weeks of embryonic development with an incidence of 1/50,000 live births, range between 1-40,000 and 1-70,000. We present here the various clinical, radiographical and other diagnostic findings of the TCS to correlate the clinical assessment with the diagnostic imaging and review the various investigations and management options being carried out to improve their facial deformity.

  3. 2pBAb5. Validation of three-dimensional strain tracking by volumetric ultrasound image correlation in a pubovisceral muscle model

    PubMed Central

    Nagle, Anna S.; Nageswaren, Ashok R.; Haridas, Balakrishna; Mast, T. D.

    2014-01-01

    Little is understood about the biomechanical changes leading to pelvic floor disorders such as stress urinary incontinence. In order to measure regional biomechanical properties of the pelvic floor muscles in vivo, a three dimensional (3D) strain tracking technique employing correlation of volumetric ultrasound images has been implemented. In this technique, local 3D displacements are determined as a function of applied stress and then converted to strain maps. To validate this approach, an in vitro model of the pubovisceral muscle, with a hemispherical indenter emulating the downward stress caused by intra-abdominal pressure, was constructed. Volumetric B-scan images were recorded as a function of indenter displacement while muscle strain was measured independently by a sonomicrometry system (Sonometrics). Local strains were computed by ultrasound image correlation and compared with sonomicrometry-measured strains to assess strain tracking accuracy. Image correlation by maximizing an exponential likelihood function was found more reliable than the Pearson correlation coefficient. Strain accuracy was dependent on sizes of the subvolumes used for image correlation, relative to characteristic speckle length scales of the images. Decorrelation of echo signals was mapped as a function of indenter displacement and local tissue orientation. Strain measurement accuracy was weakly related to local echo decorrelation. PMID:24900165

  4. Magnetic resonance imaging of the kinked fetal brain stem: a sign of severe dysgenesis.

    PubMed

    Stroustrup Smith, Annemarie; Levine, Deborah; Barnes, Patrick D; Robertson, Richard L

    2005-12-01

    Magnetic resonance imaging (MRI) allows visualization of the fetal brain stem in a manner not previously possible. A "kinked" brain stem is a sign of severe neurodysgenesis. The purpose of this series was to describe cases of a kinked brain stem detected on prenatal MRI and to discuss the possible genetic and syndromic etiologies. Seven cases of a kinked brain stem on fetal MRI (gestational age range, 18-34 weeks) were reviewed and correlated with other clinical, genetic, imaging, and autopsy findings. In all cases, there was associated cerebellar hypogenesis. Additional findings were ventriculomegaly (4 cases), cerebral hypogenesis (3 cases), microcephaly (4 cases), schizencephaly (1 case), cephalocele (1 case), hypogenesis of the corpus callosum (1 case), and hydrocephalus (1 case). In 2 cases, prenatal sonography misidentified the kinked brain stem as the cerebellum. A kinked brain stem is an indicator of severe neurodysgenesis arising early in gestation. Magnetic resonance imaging provides the necessary resolution to detect this sign and delineate any associated anomalies in utero to assist with further genetic evaluation, management, and counseling.

  5. Telemedicine in acute plastic surgical trauma and burns.

    PubMed Central

    Jones, S. M.; Milroy, C.; Pickford, M. A.

    2004-01-01

    BACKGROUND: Telemedicine is a relatively new development within the UK, but is increasingly useful in many areas of medicine including plastic surgery. Plastic surgery centres often work on a hub-and-spoke basis with many district hospitals referring to one tertiary centre. The Queen Victoria Hospital is one such centre receiving calls from more than 28 hospitals in the Southeast of England resulting in approximately 20 referrals a day. OBJECTIVE: A telemedicine system was developed to improve trauma management. This study was designed to establish whether digital images were sufficiently accurate enough to aid decision-making. A store-and-forward telemedicine system was devised and the images of 150 trauma referrals evaluated in terms of injury severity and operative priority by each member of the plastic surgical team. RESULTS: Correlation scores for assessed images were high. Accuracy of "transmitted image" in comparison to injury on examination scored > 97%. Operative priority scores tended to be higher than injury severity. CONCLUSIONS: Telemedicine is an accurate method by which to transfer information on plastic surgical trauma including burns. PMID:15239862

  6. Open Technologies at Athabasca University's Geospace Observatories

    NASA Astrophysics Data System (ADS)

    Connors, M. G.; Schofield, I. S.

    2012-12-01

    Athabasca University Geophysical Observatories feature two auroral observation sites situated in the subauroral zone of western Canada, separated by approximately 25 km. These sites are both on high-speed internet and ideal for observing phenomena detectable from this latitude, which include noctilucent clouds, meteors, and magnetic and optical aspects of the aurora. General aspects of use of Linux in observatory management are described, with emphasis on recent imaging projects involving control of high resolution digital SLR cameras at low cadence, and inexpensive white light analog video cameras at 30 Hz. Linux shell scripts are extensively used, with image capture controlled by gphoto2, the ivtv-utils package, x264 video coding library, and ffmpeg. Imagemagick allows processing of images in an automated fashion. Image archives and movies are created and can be correlated with magnetic data. Much of the magnetic data stream also uses GMT (Generic Mapping Tools) within shell scripts for display. Additionally, SPASE metadata are generated for most of the magnetic data, thus allowing users of our AUTUMN magnetic data repository to perform SPASE queries on the dataset. Visualization products from our twin observatories will be presented.

  7. A novel CT acquisition and analysis technique for breathing motion modeling

    NASA Astrophysics Data System (ADS)

    Low, Daniel A.; White, Benjamin M.; Lee, Percy P.; Thomas, David H.; Gaudio, Sergio; Jani, Shyam S.; Wu, Xiao; Lamb, James M.

    2013-06-01

    To report on a novel technique for providing artifact-free quantitative four-dimensional computed tomography (4DCT) image datasets for breathing motion modeling. Commercial clinical 4DCT methods have difficulty managing irregular breathing. The resulting images contain motion-induced artifacts that can distort structures and inaccurately characterize breathing motion. We have developed a novel scanning and analysis method for motion-correlated CT that utilizes standard repeated fast helical acquisitions, a simultaneous breathing surrogate measurement, deformable image registration, and a published breathing motion model. The motion model differs from the CT-measured motion by an average of 0.65 mm, indicating the precision of the motion model. The integral of the divergence of one of the motion model parameters is predicted to be a constant 1.11 and is found in this case to be 1.09, indicating the accuracy of the motion model. The proposed technique shows promise for providing motion-artifact free images at user-selected breathing phases, accurate Hounsfield units, and noise characteristics similar to non-4D CT techniques, at a patient dose similar to or less than current 4DCT techniques.

  8. Joint reconstruction of multiview compressed images.

    PubMed

    Thirumalai, Vijayaraghavan; Frossard, Pascal

    2013-05-01

    Distributed representation of correlated multiview images is an important problem that arises in vision sensor networks. This paper concentrates on the joint reconstruction problem where the distributively compressed images are decoded together in order to take benefit from the image correlation. We consider a scenario where the images captured at different viewpoints are encoded independently using common coding solutions (e.g., JPEG) with a balanced rate distribution among different cameras. A central decoder first estimates the inter-view image correlation from the independently compressed data. The joint reconstruction is then cast as a constrained convex optimization problem that reconstructs total-variation (TV) smooth images, which comply with the estimated correlation model. At the same time, we add constraints that force the reconstructed images to be as close as possible to their compressed versions. We show through experiments that the proposed joint reconstruction scheme outperforms independent reconstruction in terms of image quality, for a given target bit rate. In addition, the decoding performance of our algorithm compares advantageously to state-of-the-art distributed coding schemes based on motion learning and on the DISCOVER algorithm.

  9. Personal identification based on blood vessels of retinal fundus images

    NASA Astrophysics Data System (ADS)

    Fukuta, Keisuke; Nakagawa, Toshiaki; Hayashi, Yoshinori; Hatanaka, Yuji; Hara, Takeshi; Fujita, Hiroshi

    2008-03-01

    Biometric technique has been implemented instead of conventional identification methods such as password in computer, automatic teller machine (ATM), and entrance and exit management system. We propose a personal identification (PI) system using color retinal fundus images which are unique to each individual. The proposed procedure for identification is based on comparison of an input fundus image with reference fundus images in the database. In the first step, registration between the input image and the reference image is performed. The step includes translational and rotational movement. The PI is based on the measure of similarity between blood vessel images generated from the input and reference images. The similarity measure is defined as the cross-correlation coefficient calculated from the pixel values. When the similarity is greater than a predetermined threshold, the input image is identified. This means both the input and the reference images are associated to the same person. Four hundred sixty-two fundus images including forty-one same-person's image pairs were used for the estimation of the proposed technique. The false rejection rate and the false acceptance rate were 9.9×10 -5% and 4.3×10 -5%, respectively. The results indicate that the proposed method has a higher performance than other biometrics except for DNA. To be used for practical application in the public, the device which can take retinal fundus images easily is needed. The proposed method is applied to not only the PI but also the system which warns about misfiling of fundus images in medical facilities.

  10. Estimation of aboveground biomass in Mediterranean forests by statistical modelling of ASTER fraction images

    NASA Astrophysics Data System (ADS)

    Fernández-Manso, O.; Fernández-Manso, A.; Quintano, C.

    2014-09-01

    Aboveground biomass (AGB) estimation from optical satellite data is usually based on regression models of original or synthetic bands. To overcome the poor relation between AGB and spectral bands due to mixed-pixels when a medium spatial resolution sensor is considered, we propose to base the AGB estimation on fraction images from Linear Spectral Mixture Analysis (LSMA). Our study area is a managed Mediterranean pine woodland (Pinus pinaster Ait.) in central Spain. A total of 1033 circular field plots were used to estimate AGB from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) optical data. We applied Pearson correlation statistics and stepwise multiple regression to identify suitable predictors from the set of variables of original bands, fraction imagery, Normalized Difference Vegetation Index and Tasselled Cap components. Four linear models and one nonlinear model were tested. A linear combination of ASTER band 2 (red, 0.630-0.690 μm), band 8 (short wave infrared 5, 2.295-2.365 μm) and green vegetation fraction (from LSMA) was the best AGB predictor (Radj2=0.632, the root-mean-squared error of estimated AGB was 13.3 Mg ha-1 (or 37.7%), resulting from cross-validation), rather than other combinations of the above cited independent variables. Results indicated that using ASTER fraction images in regression models improves the AGB estimation in Mediterranean pine forests. The spatial distribution of the estimated AGB, based on a multiple linear regression model, may be used as baseline information for forest managers in future studies, such as quantifying the regional carbon budget, fuel accumulation or monitoring of management practices.

  11. Relationships between visual field sensitivity and spectral absorption properties of the neuroretinal rim in glaucoma by multispectral imaging.

    PubMed

    Denniss, Jonathan; Schiessl, Ingo; Nourrit, Vincent; Fenerty, Cecilia H; Gautam, Ramesh; Henson, David B

    2011-11-07

    To investigate the relationship between neuroretinal rim (NRR) differential light absorption (DLA, a measure of spectral absorption properties) and visual field (VF) sensitivity in primary open-angle glaucoma (POAG). Patients diagnosed with (n = 22) or suspected of having (n = 7) POAG were imaged with a multispectral system incorporating a modified digital fundus camera, 250-W tungsten-halogen lamp, and fast-tuneable liquid crystal filter. Five images were captured sequentially within 1.0 second at wavelengths selected according to absorption properties of hemoglobin (range, 570-610 nm), and a Beer-Lambert law model was used to produce DLA maps of residual NRR from the images. Patients also underwent VF testing. Differences in NRR DLA in vertically opposing 180° and 45° sectors either side of the horizontal midline were compared with corresponding differences in VF sensitivity on both decibel and linear scales by Spearman's rank correlation. The decibel VF sensitivity scale showed significant relationships between superior-inferior NRR DLA difference and sensitivity differences between corresponding VF areas in 180° NRR sectors (Spearman ρ = 0.68; P < 0.0001), superior-/inferior-temporal 45° NRR sectors (ρ = 0.57; P < 0.002), and superior-/inferior-nasal 45° NRR sectors (ρ = 0.59; P < 0.001). Using the linear VF sensitivity scale significant relationships were found for 180° NRR sectors (ρ = 0.62; P < 0.0002) and superior-inferior-nasal 45° NRR sectors (ρ = 0.53; P < 0.002). No significant difference was found between correlations using the linear or decibel VF sensitivity scales. Residual NRR DLA is related to VF sensitivity in POAG. Multispectral imaging may provide clinically important information for the assessment and management of POAG.

  12. ImageJ: A Free, Easy, and Reliable Method to Measure Leg Ulcers Using Digital Pictures.

    PubMed

    Aragón-Sánchez, Javier; Quintana-Marrero, Yurena; Aragón-Hernández, Cristina; Hernández-Herero, María José

    2017-12-01

    Wound measurement to document the healing course of chronic leg ulcers has an important role in the management of these patients. Digital cameras in smartphones are readily available and easy to use, and taking pictures of wounds is becoming a routine in specialized departments. Analyzing digital pictures with appropriate software provides clinicians a quick, clean, and easy-to-use tool for measuring wound area. A set of 25 digital pictures of plain foot and leg ulcers was the basis of this study. Photographs were taken placing a ruler next to the wound in parallel with the healthy skin with the iPhone 6S (Apple Inc, Cupertino, CA), which has a camera of 12 megapixels using the flash. The digital photographs were visualized with ImageJ 1.45s freeware (National Institutes of Health, Rockville, MD; http://imagej.net/ImageJ ). Wound area measurement was carried out by 4 raters: head of the department, wound care nurse, physician, and medical student. We assessed intra- and interrater reliability using the interclass correlation coefficient. To determine intraobserver reliability, 2 of the raters repeated the measurement of the set 1 week after the first reading. The interrater model displayed an interclass correlation coefficient of 0.99 with 95% confidence interval of 0.999 to 1.000, showing excellent reliability. The intrarater model of both examiners showed excellent reliability. In conclusion, analyzing digital images of leg ulcers with ImageJ estimates wound area with excellent reliability. This method provides a free, rapid, and accurate way to measure wounds and could routinely be used to document wound healing in daily clinical practice.

  13. Relationships between Visual Field Sensitivity and Spectral Absorption Properties of the Neuroretinal Rim in Glaucoma by Multispectral Imaging

    PubMed Central

    Denniss, Jonathan; Schiessl, Ingo; Nourrit, Vincent; Fenerty, Cecilia H.; Gautam, Ramesh; Henson, David B.

    2011-01-01

    Purpose. To investigate the relationship between neuroretinal rim (NRR) differential light absorption (DLA, a measure of spectral absorption properties) and visual field (VF) sensitivity in primary open-angle glaucoma (POAG). Methods. Patients diagnosed with (n = 22) or suspected of having (n = 7) POAG were imaged with a multispectral system incorporating a modified digital fundus camera, 250-W tungsten-halogen lamp, and fast-tuneable liquid crystal filter. Five images were captured sequentially within 1.0 second at wavelengths selected according to absorption properties of hemoglobin (range, 570–610 nm), and a Beer-Lambert law model was used to produce DLA maps of residual NRR from the images. Patients also underwent VF testing. Differences in NRR DLA in vertically opposing 180° and 45° sectors either side of the horizontal midline were compared with corresponding differences in VF sensitivity on both decibel and linear scales by Spearman's rank correlation. Results. The decibel VF sensitivity scale showed significant relationships between superior–inferior NRR DLA difference and sensitivity differences between corresponding VF areas in 180° NRR sectors (Spearman ρ = 0.68; P < 0.0001), superior-/inferior-temporal 45° NRR sectors (ρ = 0.57; P < 0.002), and superior-/inferior-nasal 45° NRR sectors (ρ = 0.59; P < 0.001). Using the linear VF sensitivity scale significant relationships were found for 180° NRR sectors (ρ = 0.62; P < 0.0002) and superior–inferior–nasal 45° NRR sectors (ρ = 0.53; P < 0.002). No significant difference was found between correlations using the linear or decibel VF sensitivity scales. Conclusions. Residual NRR DLA is related to VF sensitivity in POAG. Multispectral imaging may provide clinically important information for the assessment and management of POAG. PMID:21980002

  14. The correlation study of parallel feature extractor and noise reduction approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewi, Deshinta Arrova; Sundararajan, Elankovan; Prabuwono, Anton Satria

    2015-05-15

    This paper presents literature reviews that show variety of techniques to develop parallel feature extractor and finding its correlation with noise reduction approaches for low light intensity images. Low light intensity images are normally displayed as darker images and low contrast. Without proper handling techniques, those images regularly become evidences of misperception of objects and textures, the incapability to section them. The visual illusions regularly clues to disorientation, user fatigue, poor detection and classification performance of humans and computer algorithms. Noise reduction approaches (NR) therefore is an essential step for other image processing steps such as edge detection, image segmentation,more » image compression, etc. Parallel Feature Extractor (PFE) meant to capture visual contents of images involves partitioning images into segments, detecting image overlaps if any, and controlling distributed and redistributed segments to extract the features. Working on low light intensity images make the PFE face challenges and closely depend on the quality of its pre-processing steps. Some papers have suggested many well established NR as well as PFE strategies however only few resources have suggested or mentioned the correlation between them. This paper reviews best approaches of the NR and the PFE with detailed explanation on the suggested correlation. This finding may suggest relevant strategies of the PFE development. With the help of knowledge based reasoning, computational approaches and algorithms, we present the correlation study between the NR and the PFE that can be useful for the development and enhancement of other existing PFE.« less

  15. Alignment by Maximization of Mutual Information

    DTIC Science & Technology

    1995-06-01

    Davi Geiger, David Chapman, Jose Robles, Tao Alter, Misha Bolotski, Jonathan Connel, Karen Sarachik, Maja Mataric , Ian Horswill, Colin Angle...the same pose. These images are very different and are in fact anti-correlated: bright pixels in the left image correspond to dark pixels in the right...image; dark pixels in the left image correspond to bright pixels in the right image. No variant of correlation could match these images together

  16. Application of spectrometer cropscan MSR 16R and Landsat imagery for identification the spectral characteristics of land cover

    NASA Astrophysics Data System (ADS)

    Tampubolon, Togi; Abdullah, Khiruddin bin; San, Lim Hwee

    2013-09-01

    The spectral characteristics of land cover are basic references in classifying satellite image for geophysics analysis. It can be obtained from the measurements using spectrometer and satellite image processing. The aims of this study to investigate the spectral characteristics of land cover based on the results of measurement using Spectrometer Cropscan MSR 16R and Landsat satellite imagery. The area of study in this research is in Medan, (Deli Serdang, North Sumatera) Indonesia. The scope of this study is the basic survey from the measurements of spectral land cover which is covered several type of land such as a cultivated and managed terrestrial areas, natural and semi-natural, cultivated aquatic or regularly flooded areas, natural and semi-natural aquatic, artificial surfaces and associated areas, bare areas, artificial waterbodies and natural waterbodies. The measurement and verification were conducted using a spectrometer provided their spectral characteristics and Landsat imagery, respectively. The results of the spectral characteristics of land cover shows that each type of land cover have a unique characteristic. The correlation of spectral land cover based on spectrometer Cropscan MSR 16R and Landsat satellite image are above 90 %. However, the land cover of artificial waterbodiese have a correlation under 40 %. That is because the measurement of spectrometer Cropscan MSR 16R and acquisition of Landsat satellite imagery has a time different.

  17. MR enterography-histology comparison in resected pediatric small bowel Crohn disease strictures: can imaging predict fibrosis?

    PubMed

    Barkmeier, Daniel T; Dillman, Jonathan R; Al-Hawary, Mahmoud; Heider, Amer; Davenport, Matthew S; Smith, Ethan A; Adler, Jeremy

    2016-04-01

    Crohn disease is a chronic inflammatory condition that can lead to intestinal strictures. The presence of fibrosis within strictures alters optimal management but is not reliably detected by current imaging methods. To correlate the MRI features of surgically resected small-bowel strictures in pediatric Crohn disease with histological inflammation and fibrosis scoring. We included children with Crohn disease who had symptomatic small-bowel strictures requiring surgical resection and had preoperative MR enterography (MRE) within 3 months of surgery (n = 20). Two blinded radiologists reviewed MRE examinations to document stricture-related findings. A pediatric pathologist scored stricture histological specimens for fibrosis (0-4) and inflammation (0-4). MRE findings were correlated with histological data using Spearman correlation (ρ) and exact logistic regression analysis. There was significant positive correlation between histological bowel wall fibrosis and inflammation in resected strictures (ρ = 0.55; P = 0.01). Confluent transmural histological fibrosis was associated with pre-stricture upstream small-bowel dilatation >3 cm at univariate (odds ratio [OR] = 51.7; 95% confidence interval [CI]: 7.6- > 999.9; P = 0.0002) and multivariate (OR = 43.4; 95% CI: 6.1- > 999.9; P = 0.0006, adjusted for age) analysis. The degree of bowel wall T2-weighted signal intensity failed to correlate with histological bowel wall fibrosis or inflammation (P-values >0.05). There were significant negative correlations between histological fibrosis score and patient age at resection (ρ = -0.48, P = 0.03), and time from diagnosis to surgery (ρ = -0.73, P = 0.0002). Histological fibrosis and inflammation co-exist in symptomatic pediatric Crohn disease small-bowel strictures and are positively correlated. Pre-stenotic upstream small-bowel dilatation greater than 3 cm is significantly associated with confluent transmural fibrosis.

  18. Correlation plenoptic imaging

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Di Lena, Francesco; Garuccio, Augusto; D'Angelo, Milena

    2017-06-01

    Plenoptic Imaging (PI) is a novel optical technique for achieving tridimensional imaging in a single shot. In conventional PI, a microlens array is inserted in the native image plane and the sensor array is moved behind the microlenses. On the one hand, the microlenses act as imaging pixels to reproduce the image of the scene; on the other hand, each microlens reproduces on the sensor array an image of the camera lens, thus providing the angular information associated with each imaging pixel. The recorded propagation direction is exploited, in post- processing, to computationally retrace the geometrical light path, thus enabling the refocusing of different planes within the scene, the extension of the depth of field of the acquired image, as well as the 3D reconstruction of the scene. However, a trade-off between spatial and angular resolution is built in the standard plenoptic imaging process. We demonstrate that the second-order spatio-temporal correlation properties of light can be exploited to overcome this fundamental limitation. Using two correlated beams, from either a chaotic or an entangled photon source, we can perform imaging in one arm and simultaneously obtain the angular information in the other arm. In fact, we show that the second order correlation function possesses plenoptic imaging properties (i.e., it encodes both spatial and angular information), and is thus characterized by a key re-focusing and 3D imaging capability. From a fundamental standpoint, the plenoptic application is the first situation where the counterintuitive properties of correlated systems are effectively used to beat intrinsic limits of standard imaging systems. From a practical standpoint, our protocol can dramatically enhance the potentials of PI, paving the way towards its promising applications.

  19. Data-driven optimal binning for respiratory motion management in PET.

    PubMed

    Kesner, Adam L; Meier, Joseph G; Burckhardt, Darrell D; Schwartz, Jazmin; Lynch, David A

    2018-01-01

    Respiratory gating has been used in PET imaging to reduce the amount of image blurring caused by patient motion. Optimal binning is an approach for using the motion-characterized data by binning it into a single, easy to understand/use, optimal bin. To date, optimal binning protocols have utilized externally driven motion characterization strategies that have been tuned with population-derived assumptions and parameters. In this work, we are proposing a new strategy with which to characterize motion directly from a patient's gated scan, and use that signal to create a patient/instance-specific optimal bin image. Two hundred and nineteen phase-gated FDG PET scans, acquired using data-driven gating as described previously, were used as the input for this study. For each scan, a phase-amplitude motion characterization was generated and normalized using principle component analysis. A patient-specific "optimal bin" window was derived using this characterization, via methods that mirror traditional optimal window binning strategies. The resulting optimal bin images were validated by correlating quantitative and qualitative measurements in the population of PET scans. In 53% (n = 115) of the image population, the optimal bin was determined to include 100% of the image statistics. In the remaining images, the optimal binning windows averaged 60% of the statistics and ranged between 20% and 90%. Tuning the algorithm, through a single acceptance window parameter, allowed for adjustments of the algorithm's performance in the population toward conservation of motion or reduced noise-enabling users to incorporate their definition of optimal. In the population of images that were deemed appropriate for segregation, average lesion SUV max were 7.9, 8.5, and 9.0 for nongated images, optimal bin, and gated images, respectively. The Pearson correlation of FWHM measurements between optimal bin images and gated images were better than with nongated images, 0.89 and 0.85, respectively. Generally, optimal bin images had better resolution than the nongated images and better noise characteristics than the gated images. We extended the concept of optimal binning to a data-driven form, updating a traditionally one-size-fits-all approach to a conformal one that supports adaptive imaging. This automated strategy was implemented easily within a large population and encapsulated motion information in an easy to use 3D image. Its simplicity and practicality may make this, or similar approaches ideal for use in clinical settings. © 2017 American Association of Physicists in Medicine.

  20. Confocal Imaging of porous media

    NASA Astrophysics Data System (ADS)

    Shah, S.; Crawshaw, D.; Boek, D.

    2012-12-01

    Carbonate rocks, which hold approximately 50% of the world's oil and gas reserves, have a very complicated and heterogeneous structure in comparison with sandstone reservoir rock. We present advances with different techniques to image, reconstruct, and characterize statistically the micro-geometry of carbonate pores. The main goal here is to develop a technique to obtain two dimensional and three dimensional images using Confocal Laser Scanning Microscopy. CLSM is used in epi-fluorescent imaging mode, allowing for the very high optical resolution of features well below 1μm size. Images of pore structures were captured using CLSM imaging where spaces in the carbonate samples were impregnated with a fluorescent, dyed epoxy-resin, and scanned in the x-y plane by a laser probe. We discuss the sample preparation in detail for Confocal Imaging to obtain sub-micron resolution images of heterogeneous carbonate rocks. We also discuss the technical and practical aspects of this imaging technique, including its advantages and limitation. We present several examples of this application, including studying pore geometry in carbonates, characterizing sub-resolution porosity in two dimensional images. We then describe approaches to extract statistical information about porosity using image processing and spatial correlation function. We have managed to obtain very low depth information in z -axis (~ 50μm) to develop three dimensional images of carbonate rocks with the current capabilities and limitation of CLSM technique. Hence, we have planned a novel technique to obtain higher depth information to obtain high three dimensional images with sub-micron resolution possible in the lateral and axial planes.

  1. C-arm flat detector computed tomography parenchymal blood volume imaging: the nature of parenchymal blood volume parameter and the feasibility of parenchymal blood volume imaging in aneurysmal subarachnoid haemorrhage patients.

    PubMed

    Kamran, Mudassar; Byrne, James V

    2015-09-01

    C-arm flat detector computed tomography (FDCT) parenchymal blood volume (PBV) measurements allow assessment of cerebral haemodynamics in the neurointerventional suite. This paper explores the feasibility of C-arm computed tomography (CT) PBV imaging and the relationship between the C-arm CT PBV and the MR-PWI-derived cerebral blood volume (CBV) and cerebral blood flow (CBF) parameters in aneurysmal subarachnoid haemorrhage (SAH) patients developing delayed cerebral ischemia (DCI). Twenty-six patients with DCI following aneurysmal SAH underwent a research C-arm CT PBV scan using a biplane angiography system and contemporaneous MR-PWI scan as part of a prospective study. Quantitative whole-brain atlas-based volume-of-interest analysis in conjunction with Pearson correlation and Bland-Altman tests was performed to explore the agreement between C-arm CT PBV and MR-derived CBV and CBF measurements. All patients received medical management, while eight patients (31%) underwent selective intra-arterial chemical angioplasty. Colour-coded C-arm CT PBV maps were 91% sensitive and 100% specific in detecting the perfusion abnormalities. C-arm CT rPBV demonstrated good agreement and strong correlation with both MR-rCBV and MR-rCBF measurements; the agreement and correlation were stronger for MR-rCBF relative to MR-rCBV and improved for C-arm CT PBV versus the geometric mean of MR-rCBV and MR-rCBF. Analysis of weighted means showed that the C-arm CT PBV has a preferential blood flow weighting (≈ 60% blood flow and ≈ 40% blood volume weighting). C-arm CT PBV imaging is feasible in DCI following aneurysmal SAH. PBV is a composite perfusion parameter incorporating both blood flow and blood volume weightings. That PBV has preferential (≈ 60%) blood flow weighting is an important finding, which is of clinical significance when interpreting the C-arm CT PBV maps, particularly in the setting of acute brain ischemia.

  2. Efficient Solar Scene Wavefront Estimation with Reduced Systematic and RMS Errors: Summary

    NASA Astrophysics Data System (ADS)

    Anugu, N.; Garcia, P.

    2016-04-01

    Wave front sensing for solar telescopes is commonly implemented with the Shack-Hartmann sensors. Correlation algorithms are usually used to estimate the extended scene Shack-Hartmann sub-aperture image shifts or slopes. The image shift is computed by correlating a reference sub-aperture image with the target distorted sub-aperture image. The pixel position where the maximum correlation is located gives the image shift in integer pixel coordinates. Sub-pixel precision image shifts are computed by applying a peak-finding algorithm to the correlation peak Poyneer (2003); Löfdahl (2010). However, the peak-finding algorithm results are usually biased towards the integer pixels, these errors are called as systematic bias errors Sjödahl (1994). These errors are caused due to the low pixel sampling of the images. The amplitude of these errors depends on the type of correlation algorithm and the type of peak-finding algorithm being used. To study the systematic errors in detail, solar sub-aperture synthetic images are constructed by using a Swedish Solar Telescope solar granulation image1. The performance of cross-correlation algorithm in combination with different peak-finding algorithms is investigated. The studied peak-finding algorithms are: parabola Poyneer (2003); quadratic polynomial Löfdahl (2010); threshold center of gravity Bailey (2003); Gaussian Nobach & Honkanen (2005) and Pyramid Bailey (2003). The systematic error study reveals that that the pyramid fit is the most robust to pixel locking effects. The RMS error analysis study reveals that the threshold centre of gravity behaves better in low SNR, although the systematic errors in the measurement are large. It is found that no algorithm is best for both the systematic and the RMS error reduction. To overcome the above problem, a new solution is proposed. In this solution, the image sampling is increased prior to the actual correlation matching. The method is realized in two steps to improve its computational efficiency. In the first step, the cross-correlation is implemented at the original image spatial resolution grid (1 pixel). In the second step, the cross-correlation is performed using a sub-pixel level grid by limiting the field of search to 4 × 4 pixels centered at the first step delivered initial position. The generation of these sub-pixel grid based region of interest images is achieved with the bi-cubic interpolation. The correlation matching with sub-pixel grid technique was previously reported in electronic speckle photography Sjö'dahl (1994). This technique is applied here for the solar wavefront sensing. A large dynamic range and a better accuracy in the measurements are achieved with the combination of the original pixel grid based correlation matching in a large field of view and a sub-pixel interpolated image grid based correlation matching within a small field of view. The results revealed that the proposed method outperforms all the different peak-finding algorithms studied in the first approach. It reduces both the systematic error and the RMS error by a factor of 5 (i.e., 75% systematic error reduction), when 5 times improved image sampling was used. This measurement is achieved at the expense of twice the computational cost. With the 5 times improved image sampling, the wave front accuracy is increased by a factor of 5. The proposed solution is strongly recommended for wave front sensing in the solar telescopes, particularly, for measuring large dynamic image shifts involved open loop adaptive optics. Also, by choosing an appropriate increment of image sampling in trade-off between the computational speed limitation and the aimed sub-pixel image shift accuracy, it can be employed in closed loop adaptive optics. The study is extended to three other class of sub-aperture images (a point source; a laser guide star; a Galactic Center extended scene). The results are planned to submit for the Optical Express journal.

  3. 76 FR 46854 - Hewlett Packard Company, Imaging and Printing Group, World Wide Product Data Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ..., Imaging and Printing Group, World Wide Product Data Management Operations, Including On-Site Leased... Company, Imaging and Printing Group, World Wide Products Data Management Operations, Boise, Idaho and Fort... Management Operations. The Department has determined that these workers were sufficiently under the control...

  4. Correlation of Phosphorus Cross-Linking to Hydration Rates in Sodium Starch Glycolate Tablet Disintegrants Using MRI.

    PubMed

    Abraham, Anuji; Olusanmi, Dolapo; Ilott, Andrew J; Good, David; Murphy, Denette; Mcnamara, Daniel; Jerschow, Alexej; Mantri, Rao V

    2016-06-01

    Understanding the behavior of tablet disintegrants is valuable in the development of pharmaceutical solid dosage formulations. In this study, high-resolution magnetic resonance imaging has been used to understand the hydration behavior of a series of commercial sodium starch glycolate (SSG) samples, providing robust estimates of tablet disintegration rate that could be correlated with physicochemical properties of the SSGs, such as the extent of phosphorus (P) cross-linking as obtained from infra-red spectroscopy. Furthermore, elemental analysis together with powder X-ray diffraction has been used to quantify the presence of carboxymethyl groups and salt impurities, which also contribute to the disintegration behavior. The utility of Fast Low Angle SHot magnetic resonance imaging has been demonstrated as an approach to rapidly acquire approximations of the volume of a disintegrating tablet and, together with a robust voxel analysis routine, extract tablet disintegration rates. In this manner, a complete characterization of a series of SSG grades from different sources has been performed, showing the variability in their physicochemical properties and demonstrating a correlation between their disintegration rates and intrinsic characteristics. The insights obtained will be a valuable aid in the choice of disintegrant source as well as in managing SSG variability to ensure robustness of drug products containing SSG. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Enhanced Visualization of Subtle Outer Retinal Pathology by En Face Optical Coherence Tomography and Correlation with Multi-Modal Imaging

    PubMed Central

    Chew, Avenell L.; Lamey, Tina; McLaren, Terri; De Roach, John

    2016-01-01

    Purpose To present en face optical coherence tomography (OCT) images generated by graph-search theory algorithm-based custom software and examine correlation with other imaging modalities. Methods En face OCT images derived from high density OCT volumetric scans of 3 healthy subjects and 4 patients using a custom algorithm (graph-search theory) and commercial software (Heidelberg Eye Explorer software (Heidelberg Engineering)) were compared and correlated with near infrared reflectance, fundus autofluorescence, adaptive optics flood-illumination ophthalmoscopy (AO-FIO) and microperimetry. Results Commercial software was unable to generate accurate en face OCT images in eyes with retinal pigment epithelium (RPE) pathology due to segmentation error at the level of Bruch’s membrane (BM). Accurate segmentation of the basal RPE and BM was achieved using custom software. The en face OCT images from eyes with isolated interdigitation or ellipsoid zone pathology were of similar quality between custom software and Heidelberg Eye Explorer software in the absence of any other significant outer retinal pathology. En face OCT images demonstrated angioid streaks, lesions of acute macular neuroretinopathy, hydroxychloroquine toxicity and Bietti crystalline deposits that correlated with other imaging modalities. Conclusions Graph-search theory algorithm helps to overcome the limitations of outer retinal segmentation inaccuracies in commercial software. En face OCT images can provide detailed topography of the reflectivity within a specific layer of the retina which correlates with other forms of fundus imaging. Our results highlight the need for standardization of image reflectivity to facilitate quantification of en face OCT images and longitudinal analysis. PMID:27959968

  6. Inspecting Engineering Samples

    NASA Image and Video Library

    2017-12-08

    Goddard's Ritsko Wins 2011 SAVE Award The winner of the 2011 SAVE Award is Matthew Ritsko, a Goddard financial manager. His tool lending library would track and enable sharing of expensive space-flight tools and hardware after projects no longer need them. This set of images represents the types of tools used at NASA. To read more go to: www.nasa.gov/topics/people/features/ritsko-save.html Dr. Doug Rabin (Code 671) and PI La Vida Cooper (Code 564) inspect engineering samples of the HAS-2 imager which will be tested and readout using a custom ASIC with a 16-bit ADC (analog to digital converter) and CDS (correlated double sampling) circuit designed by the Code 564 ASIC group as a part of an FY10 IRAD. The purpose of the IRAD was to develop and high resolution digitizer for Heliophysics applications such as imaging. Future goals for the collaboration include characterization testing and eventually a sounding rocket flight of the integrated system. *ASIC= Application Specific Integrated Circuit NASA/GSFC/Chris Gunn

  7. Expanding the Scope of an Automated Radiology Recommendation-Tracking Engine: Initial Experiences and Lessons Learned.

    PubMed

    Licurse, Mindy Y; Lalevic, Darco; Zafar, Hanna M; Schnall, Mitchell D; Cook, Tessa S

    2017-04-01

    An automated radiology recommendation-tracking engine for incidental focal masses in the liver, pancreas, kidneys, and adrenal glands was launched within our institution in July 2013. For 2 years, the majority of CT, MR, and US examination reports generated within our health system were mined by the engine. However, the need to expand the system beyond the initial four organs was soon identified. In July 2015, the second phase of the system was implemented and expanded to include additional anatomic structures in the abdomen and pelvis, as well as to provide non-radiology and non-imaging options for follow-up. The most frequent organs with incidental findings, outside of the original four, included the ovaries and the endometrium, which also correlated to the most frequently ordered imaging follow-up study of pelvic ultrasound and non-imaging follow-up study of endometrial biopsies, respectively. The second phase expansion has demonstrated new venues for augmenting and improving radiologist roles in optimal communication and management of incidental findings.

  8. Submaximal delayed-onset muscle soreness: correlations between MR imaging findings and clinical measures

    NASA Technical Reports Server (NTRS)

    Evans, G. F.; Haller, R. G.; Wyrick, P. S.; Parkey, R. W.; Fleckenstein, J. L.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    PURPOSE: To assess correlations between muscle edema on magnetic resonance (MR) images and clinical indexes of muscle injury in delayed-onset muscle soreness (DOMS) produced by submaximal exercise protocols. MATERIALS AND METHODS: Sixteen subjects performed 36 elbow flexions ("biceps curls") at one of two submaximal workloads that emphasized eccentric contractions. Changes in MR imaging findings, plasma levels of creatine kinase, and pain scores were correlated. RESULTS: Both exercise protocols produced DOMS in all subjects. The best correlation was between change in creatine kinase level and volume of muscle edema on MR images, regardless of the workload. Correlations tended to be better with the easier exercise protocol. CONCLUSION: Whereas many previous studies of DOMS focused on intense exercise protocols to ensure positive results, the present investigation showed that submaximal workloads are adequate to produce DOMS and that correlations between conventionally measured indexes of injury may be enhanced at lighter exercise intensities.

  9. Correlation Between Magnetic Resonance Imaging-Based Evaluation of Extramural Vascular Invasion and Prognostic Parameters of T3 Stage Rectal Cancer.

    PubMed

    Yu, Jing; Huang, Dong-Ya; Xu, Hui-Xin; Li, Yang; Xu, Qing

    2016-01-01

    The aim of this study was to analyze the correlation between magnetic resonance imaging-based extramural vascular invasion (EMVI) and the prognostic clinical and histological parameters of stage T3 rectal cancers. Eighty-six patients with T3 stage rectal cancer who received surgical resection without neoadjuvant therapy were included. Magnetic resonance imaging-based EMVI scores were determined. Correlations between the scores and pretreatment carcinoembryonic antigen levels, tumor differentiation grade, nodal stage, and vascular endothelial growth factor expression were analyzed using Spearman rank coefficient analysis. Magnetic resonance imaging-based EMVI scores were statistically different (P = 0.001) between histological nodal stages (N0 vs N1 vs N2). Correlations were found between magnetic resonance imaging-based EMVI scores and tumor histological grade (rs = 0.227, P = 0.035), histological nodal stage (rs = 0.524, P < 0.001), and vascular endothelial growth factor expression (rs = 0.422; P = 0.016). Magnetic resonance imaging-based EMVI score is correlated with prognostic parameters of T3 stage rectal cancers and has the potential to become an imaging biomarker of tumor aggressiveness. Magnetic resonance imaging-based EMVI may be useful in helping the multidisciplinary team to stratify T3 rectal cancer patients for neoadjuvant therapies.

  10. Evaluation of a linear spectral mixture model and vegetation indices (NDVI and EVI) in a study of schistosomiasis mansoni and Biomphalaria glabrata distribution in the state of Minas Gerais, Brazil.

    PubMed

    Guimarães, Ricardo J P S; Freitas, Corina C; Dutra, Luciano V; Scholte, Ronaldo G C; Amaral, Ronaldo S; Drummond, Sandra C; Shimabukuro, Yosio E; Oliveira, Guilherme C; Carvalho, Omar S

    2010-07-01

    This paper analyses the associations between Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) on the prevalence of schistosomiasis and the presence of Biomphalaria glabrata in the state of Minas Gerais (MG), Brazil. Additionally, vegetation, soil and shade fraction images were created using a Linear Spectral Mixture Model (LSMM) from the blue, red and infrared channels of the Moderate Resolution Imaging Spectroradiometer spaceborne sensor and the relationship between these images and the prevalence of schistosomiasis and the presence of B. glabrata was analysed. First, we found a high correlation between the vegetation fraction image and EVI and second, a high correlation between soil fraction image and NDVI. The results also indicate that there was a positive correlation between prevalence and the vegetation fraction image (July 2002), a negative correlation between prevalence and the soil fraction image (July 2002) and a positive correlation between B. glabrata and the shade fraction image (July 2002). This paper demonstrates that the LSMM variables can be used as a substitute for the standard vegetation indices (EVI and NDVI) to determine and delimit risk areas for B. glabrata and schistosomiasis in MG, which can be used to improve the allocation of resources for disease control.

  11. Two-dimensional confocal laser scanning microscopy image correlation for nanoparticle flow velocimetry

    NASA Astrophysics Data System (ADS)

    Jun, Brian; Giarra, Matthew; Golz, Brian; Main, Russell; Vlachos, Pavlos

    2016-11-01

    We present a methodology to mitigate the major sources of error associated with two-dimensional confocal laser scanning microscopy (CLSM) images of nanoparticles flowing through a microfluidic channel. The correlation-based velocity measurements from CLSM images are subject to random error due to the Brownian motion of nanometer-sized tracer particles, and a bias error due to the formation of images by raster scanning. Here, we develop a novel ensemble phase correlation with dynamic optimal filter that maximizes the correlation strength, which diminishes the random error. In addition, we introduce an analytical model of CLSM measurement bias error correction due to two-dimensional image scanning of tracer particles. We tested our technique using both synthetic and experimental images of nanoparticles flowing through a microfluidic channel. We observed that our technique reduced the error by up to a factor of ten compared to ensemble standard cross correlation (SCC) for the images tested in the present work. Subsequently, we will assess our framework further, by interrogating nanoscale flow in the cell culture environment (transport within the lacunar-canalicular system) to demonstrate our ability to accurately resolve flow measurements in a biological system.

  12. Multimedial data base and management system for self-education and testing the students' knowledge on pathomorphology.

    PubMed

    Szymaś, J; Gawroński, M

    1993-01-01

    The composition assumed our experience in creating and using multimedial data base of examination questions and management system, which is used for. This system is implemented on microcomputers compatible with IBM PC and works in network system Net Ware 3.11. The test questions exceeded 2000 until now. The packet consists of the two functionally individual programs: ASSISTANT, which is the administrator for the databases, and EXAMINATOR which is the executive program. This system enables to use text files and add images to each question, which are adjusted to display on standard graphics devices (VGA). Standard format of the notation files enables to elaborate the results in order to estimate the scale of answers and to find correlations between the results.

  13. Optical joint correlator for real-time image tracking and retinal surgery

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor)

    1991-01-01

    A method for tracking an object in a sequence of images is described. Such sequence of images may, for example, be a sequence of television frames. The object in the current frame is correlated with the object in the previous frame to obtain the relative location of the object in the two frames. An optical joint transform correlator apparatus is provided to carry out the process. Such joint transform correlator apparatus forms the basis for laser eye surgical apparatus where an image of the fundus of an eyeball is stabilized and forms the basis for the correlator apparatus to track the position of the eyeball caused by involuntary movement. With knowledge of the eyeball position, a surgical laser can be precisely pointed toward a position on the retina.

  14. Avoiding Stair-Step Artifacts in Image Registration for GOES-R Navigation and Registration Assessment

    NASA Technical Reports Server (NTRS)

    Grycewicz, Thomas J.; Tan, Bin; Isaacson, Peter J.; De Luccia, Frank J.; Dellomo, John

    2016-01-01

    In developing software for independent verification and validation (IVV) of the Image Navigation and Registration (INR) capability for the Geostationary Operational Environmental Satellite R Series (GOES-R) Advanced Baseline Imager (ABI), we have encountered an image registration artifact which limits the accuracy of image offset estimation at the subpixel scale using image correlation. Where the two images to be registered have the same pixel size, subpixel image registration preferentially selects registration values where the image pixel boundaries are close to lined up. Because of the shape of a curve plotting input displacement to estimated offset, we call this a stair-step artifact. When one image is at a higher resolution than the other, the stair-step artifact is minimized by correlating at the higher resolution. For validating ABI image navigation, GOES-R images are correlated with Landsat-based ground truth maps. To create the ground truth map, the Landsat image is first transformed to the perspective seen from the GOES-R satellite, and then is scaled to an appropriate pixel size. Minimizing processing time motivates choosing the map pixels to be the same size as the GOES-R pixels. At this pixel size image processing of the shift estimate is efficient, but the stair-step artifact is present. If the map pixel is very small, stair-step is not a problem, but image correlation is computation-intensive. This paper describes simulation-based selection of the scale for truth maps for registering GOES-R ABI images.

  15. Reliability and validity of an adapted Arabic version of the Scoliosis Research Society-22r Questionnaire.

    PubMed

    Haidar, Rachid K; Kassak, Kassem; Masrouha, Karim; Ibrahim, Kamal; Mhaidli, Hani

    2015-09-01

    Cross-sectional validation and reliability assessment study of Arabic version of Scoliosis Research Society-22 (SRS-22r) Questionnaire. To develop and validate the Arabic version of the SRS-22r questionnaire. The diagnosis and treatment of adolescent idiopathic scoliosis may influence patient quality of life. SRS-22r is an internationally validated questionnaire used to assess function/activity, pain, self-image, and mental health of patients with scoliosis. It has been translated into several languages but not into Arabic language. Therefore, a valid health-related quality-of-life outcome questionnaire for patients with spinal deformity is still lacking in Arabic language. The English version of SRS-22r questionnaire was translated, back-translated, and culturally adapted to Arabic language. Then, 81 patients with idiopathic adolescent scoliosis were allocated randomly into either the reliability testing group (group 1) or the validity testing group (group 2). Group 1 patients completed Arabic version of SRS-22r questionnaire twice with 1-week interval in-between. Cronbach α and intraclass correlation coefficient were measured to determine internal consistency and temporal reliability. Group 2 patients completed the Arabic version of SRS-22r questionnaire and the previously validated Arabic version of 36-Item Short Form Health Survey (Short Form-36) questionnaire concurrently, and Pearson correlation coefficient was obtained to assess validity. Content analysis, internal consistency reliability, test/retest reproducibility (intraclass correlation coefficient range: 0.82-0.90), and test of concurrent validity showed satisfactory results. Function/activity and satisfaction with management domains had a lower Cronbach α (0.58 and 0.44, respectively, vs. 0.71-0.85 range for others). Self-image/appearance and satisfaction with management had a lower correlation with domains of the 36-Item Short Form Health Survey. An Arabic version of the SRS-22r questionnaire has been developed and validated. This questionnaire will aid health care workers and researchers in evaluation of patient perception of the deformity, satisfaction with treatment, and quality of life in Arabic-speaking populations. 3.

  16. Scanning electron microscopy combined with image processing technique: Analysis of microstructure, texture and tenderness in Semitendinous and Gluteus Medius bovine muscles.

    PubMed

    Pieniazek, Facundo; Messina, Valeria

    2016-11-01

    In this study the effect of freeze drying on the microstructure, texture, and tenderness of Semitendinous and Gluteus Medius bovine muscles were analyzed applying Scanning Electron Microscopy combined with image analysis. Samples were analyzed by Scanning Electron Microscopy at different magnifications (250, 500, and 1,000×). Texture parameters were analyzed by Texture analyzer and by image analysis. Tenderness by Warner-Bratzler shear force. Significant differences (p < 0.05) were obtained for image and instrumental texture features. A linear trend with a linear correlation was applied for instrumental and image features. Image texture features calculated from Gray Level Co-occurrence Matrix (homogeneity, contrast, entropy, correlation and energy) at 1,000× in both muscles had high correlations with instrumental features (chewiness, hardness, cohesiveness, and springiness). Tenderness showed a positive correlation in both muscles with image features (energy and homogeneity). Combing Scanning Electron Microscopy with image analysis can be a useful tool to analyze quality parameters in meat.Summary SCANNING 38:727-734, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  17. SU-F-J-77: Variations in the Displacement Vector Fields Calculated by Different Deformable Image Registration Algorithms Used in Helical, Axial and Cone-Beam CT Images of a Mobile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, I; Jaskowiak, J; Ahmad, S

    Purpose: To investigate quantitatively the displacement-vector-fields (DVF) obtained from different deformable image registration algorithms (DIR) in helical (HCT), axial (ACT) and cone-beam CT (CBCT) to register CT images of a mobile phantom and its correlation with motion amplitudes and frequencies. Methods: HCT, ACT and CBCT are used to image a mobile phantom which includes three targets with different sizes that are manufactured from water-equivalent material and embedded in low density foam. The phantom is moved with controlled motion patterns where a range of motion amplitudes (0–40mm) and frequencies (0.125–0.5Hz) are used. The CT images obtained from scanning of the mobilemore » phantom are registered with the stationary CT-images using four deformable image registration algorithms including demons, fast-demons, Horn-Schunk and Locas-Kanade from DIRART software. Results: The DVF calculated by the different algorithms correlate well with the motion amplitudes that are applied on the mobile phantom where maximal DVF increase linearly with the motion amplitudes of the mobile phantom in CBCT. Similarly in HCT, DVF increase linearly with motion amplitude, however, its correlation is weaker than CBCT. In ACT, the DVF’s do not correlate well with the motion amplitudes where motion induces strong image artifacts and DIR algorithms are not able to deform the ACT image of the mobile targets to the stationary targets. Three DIR-algorithms produce comparable values and patterns of the DVF for certain CT imaging modality. However, DVF from fast-demons deviated strongly from other algorithms at large motion amplitudes. Conclusion: In CBCT and HCT, the DVF correlate well with the motion amplitude of the mobile phantom. However, in ACT, DVF do not correlate with motion amplitudes. Correlations of DVF with motion amplitude as in CBCT and HCT imaging techniques can provide information about unknown motion parameters of the mobile organs in real patients as demonstrated in this phantom visibility study.« less

  18. Full-field modal analysis during base motion excitation using high-speed 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Molina-Viedma, Ángel J.; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.

    2017-10-01

    In recent years, many efforts have been made to exploit full-field measurement optical techniques for modal identification. Three-dimensional digital image correlation using high-speed cameras has been extensively employed for this purpose. Modal identification algorithms are applied to process the frequency response functions (FRF), which relate the displacement response of the structure to the excitation force. However, one of the most common tests for modal analysis involves the base motion excitation of a structural element instead of force excitation. In this case, the relationship between response and excitation is typically based on displacements, which are known as transmissibility functions. In this study, a methodology for experimental modal analysis using high-speed 3D digital image correlation and base motion excitation tests is proposed. In particular, a cantilever beam was excited from its base with a random signal, using a clamped edge join. Full-field transmissibility functions were obtained through the beam and converted into FRF for proper identification, considering a single degree-of-freedom theoretical conversion. Subsequently, modal identification was performed using a circle-fit approach. The proposed methodology facilitates the management of the typically large amounts of data points involved in the DIC measurement during modal identification. Moreover, it was possible to determine the natural frequencies, damping ratios and full-field mode shapes without requiring any additional tests. Finally, the results were experimentally validated by comparing them with those obtained by employing traditional accelerometers, analytical models and finite element method analyses. The comparison was performed by using the quantitative indicator modal assurance criterion. The results showed a high level of correspondence, consolidating the proposed experimental methodology.

  19. Seeing and Reading Red: Hue and Color-word Correlation in Images and Attendant Text on the WWW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsam, S

    2004-07-12

    This work represents an initial investigation into determining whether correlations actually exist between metadata and content descriptors in multimedia datasets. We provide a quantitative method for evaluating whether the hue of images on the WWW is correlated with the occurrence of color-words in metadata such as URLs, image names, and attendant text. It turns out that such a correlation does exist: the likelihood that a particular color appears in an image whose URL, name, and/or attendant text contains the corresponding color-word is generally at least twice the likelihood that the color appears in a randomly chosen image on the WWW.more » While this finding might not be significant in and of itself, it represents an initial step towards quantitatively establishing that other, perhaps more useful correlations exist. These correlations form the basis for exciting novel approaches that leverage semi-supervised datasets, such as the WWW, to overcome the semantic gap that has hampered progress in multimedia information retrieval for some time now.« less

  20. Energy normalization of TV viewed optical correlation (automated correlation plane analyzer for an optical processor)

    NASA Technical Reports Server (NTRS)

    Grumet, A.

    1981-01-01

    An automatic correlation plane processor that can rapidly acquire, identify, and locate the autocorrelation outputs of a bank of multiple optical matched filters is described. The read-only memory (ROM) stored digital silhouette of each image associated with each matched filter allows TV video to be used to collect image energy to provide accurate normalization of autocorrelations. The resulting normalized autocorrelations are independent of the illumination of the matched input. Deviation from unity of a normalized correlation can be used as a confidence measure of correct image identification. Analog preprocessing circuits permit digital conversion and random access memory (RAM) storage of those video signals with the correct amplitude, pulse width, rising slope, and falling slope. TV synchronized addressing of 3 RAMs permits on-line storage of: (1) the maximum unnormalized amplitude, (2) the image x location, and (3) the image y location of the output of each of up to 99 matched filters. A fourth RAM stores all normalized correlations. A normalization approach, normalization for cross correlations, a system's description with block diagrams, and system's applications are discussed.

  1. Nursing leadership and management effects work environments.

    PubMed

    Tomey, Ann Marriner

    2009-01-01

    The aim of this literature search was to identify recent research related to nursing leadership and management effects on work environment using the 14 forces of magnetism. This article gives some historical perspective from the original 1983 American Academy of Nursing study through to the 2002 McClure and Hinshaw update to 2009 publications. Research publications were given a priority for references. The 14 forces of magnetism as identified by Unden and Monarch were: '1. Quality of leadership..., 2. Organizational structure..., 3. Management style..., 4. Personnel policies and programs..., 5. Professional models of care..., 6. Quality of care..., 7 Quality improvement..., 8. Consultation and resources..., 9. Autonomy..., 10. Community and the hospital..., 11. Nurse as teacher..., 12. Image of nursing..., 13. Interdisciplinary relationships... and 14. Professional development....'. Correlations have been found among positive workplace management initiatives, style of transformational leadership and participative management; patient-to-nurse ratios; education levels of nurses; quality of patient care, patient satisfaction, employee health and well-being programmes; nurse satisfaction and retention of nurses; healthy workplace environments and healthy patients and personnel. This article identifies some of the research that provides evidence for evidence-based nursing management and leadership practice.

  2. Mammographic Breast Density Assessment Using Automated Volumetric Software and Breast Imaging Reporting and Data System (BIRADS) Categorization by Expert Radiologists.

    PubMed

    Damases, Christine N; Brennan, Patrick C; Mello-Thoms, Claudia; McEntee, Mark F

    2016-01-01

    To investigate agreement on mammographic breast density (MD) assessment between automated volumetric software and Breast Imaging Reporting and Data System (BIRADS) categorization by expert radiologists. Forty cases of left craniocaudal and mediolateral oblique mammograms from 20 women were used. All images had their volumetric density classified using Volpara density grade (VDG) and average volumetric breast density percentage. The same images were then classified into BIRADS categories (I-IV) by 20 American Board of Radiology examiners. The results demonstrated a moderate agreement (κ = 0.537; 95% CI = 0.234-0.699) between VDG classification and radiologists' BIRADS density assessment. Interreader agreement using BIRADS also demonstrated moderate agreement (κ = 0.565; 95% CI = 0.519-0.610) ranging from 0.328 to 0.669. Radiologists' average BIRADS was lower than average VDG scores by 0.33, with their mean being 2.13, whereas the mean VDG was 2.48 (U = -3.742; P < 0.001). VDG and BIRADS showed a very strong positive correlation (ρ = 0.91; P < 0.001) as did BIRADS and average volumetric breast density percentage (ρ = 0.94; P < 0.001). Automated volumetric breast density assessment shows moderate agreement and very strong correlation with BIRADS; interreader variations still exist within BIRADS. Because of the increasing importance of MD measurement in clinical management of patients, widely accepted, reproducible, and accurate measures of MD are required. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  3. US of Right Upper Quadrant Pain in the Emergency Department: Diagnosing beyond Gallbladder and Biliary Disease.

    PubMed

    Joshi, Gayatri; Crawford, Kevin A; Hanna, Tarek N; Herr, Keith D; Dahiya, Nirvikar; Menias, Christine O

    2018-01-01

    Acute cholecystitis is the most common diagnosable cause for right upper quadrant abdominal (RUQ) pain in patients who present to the emergency department (ED). However, over one-third of patients initially thought to have acute cholecystitis actually have RUQ pain attributable to other causes. Ultrasonography (US) is the primary imaging modality of choice for initial imaging assessment and serves as a fast, cost-effective, and dynamic modality to provide a definitive diagnosis or a considerably narrowed list of differential possibilities. Multiple organ systems are included at standard RUQ US, and a variety of ultrasonographically diagnosable disease processes can be identified, including conditions of hepatic, pancreatic, adrenal, renal, gastrointestinal, vascular, and thoracic origin, all of which may result in RUQ pain. In certain cases, subsequent computed tomography, magnetic resonance (MR) imaging, MR cholangiopancreatography, or cholescintigraphy may be considered, depending on the clinical situation and US findings. Familiarity with the spectrum of disease processes outside of the gallbladder and biliary tree that may manifest with RUQ pain and recognition at US of these alternative conditions is pivotal for early diagnosis and appropriate management. Diagnosis at the time of initial US can reduce unnecessary imaging and its consequences, including excess cost, radiation exposure, nephrotoxic contrast medium use, and time to diagnosis, thereby translating into improved patient care and outcome. This article (a) reviews the causes of RUQ pain identifiable at US using an organ-system approach, (b) illustrates the US appearance of select conditions from each organ system with multimodality imaging correlates, and (c) discusses the relevant pathophysiology and treatment of these entities to aid in efficient direction of management. Online supplemental material is available for this article. © RSNA, 2018.

  4. Detection of correlated fragments in a sequence of images by superimposed Fourier holograms

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.

    2016-08-01

    The problem of detecting correlated fragments in a sequence of images recorded by the superimposing holograms within the Fourier holography scheme with angular multiplication of a spatially modulated reference beam is considered. The approach to the solution of this problem is based on the properties of the variance of the image sum. It is shown that this problem can be solved by providing a constant distance between the signal and reference images when recording superimposed holograms and a partial mutual correlatedness of reference images. The detection efficiency is analysed from the point of view of estimated image data capacity, the degree of mutual correlation of reference images, and the hologram recording conditions. The results of a numerical experiment under the most complicated conditions (representation of images by realisations of homogeneous random fields) confirm the theoretical conclusions.

  5. The mass remote sensing image data management based on Oracle InterMedia

    NASA Astrophysics Data System (ADS)

    Zhao, Xi'an; Shi, Shaowei

    2013-07-01

    With the development of remote sensing technology, getting the image data more and more, how to apply and manage the mass image data safely and efficiently has become an urgent problem to be solved. According to the methods and characteristics of the mass remote sensing image data management and application, this paper puts forward to a new method that takes Oracle Call Interface and Oracle InterMedia to store the image data, and then takes this component to realize the system function modules. Finally, it successfully takes the VC and Oracle InterMedia component to realize the image data storage and management.

  6. Spatiotemporal analysis of tumor uptake patterns in dynamic (18)FDG-PET and dynamic contrast enhanced CT.

    PubMed

    Malinen, Eirik; Rødal, Jan; Knudtsen, Ingerid Skjei; Søvik, Åste; Skogmo, Hege Kippenes

    2011-08-01

    Molecular and functional imaging techniques such as dynamic positron emission tomography (DPET) and dynamic contrast enhanced computed tomography (DCECT) may provide improved characterization of tumors compared to conventional anatomic imaging. The purpose of the current work was to compare spatiotemporal uptake patterns in DPET and DCECT images. A PET/CT protocol comprising DCECT with an iodine based contrast agent and DPET with (18)F-fluorodeoxyglucose was set up. The imaging protocol was used for examination of three dogs with spontaneous tumors of the head and neck at sessions prior to and after fractionated radiotherapy. Software tools were developed for downsampling the DCECT image series to the PET image dimensions, for segmentation of tracer uptake pattern in the tumors and for spatiotemporal correlation analysis of DCECT and DPET images. DCECT images evaluated one minute post injection qualitatively resembled the DPET images at most imaging sessions. Segmentation by region growing gave similar tumor extensions in DCECT and DPET images, with a median Dice similarity coefficient of 0.81. A relatively high correlation (median 0.85) was found between temporal tumor uptake patterns from DPET and DCECT. The heterogeneity in tumor uptake was not significantly different in the DPET and DCECT images. The median of the spatial correlation was 0.72. DCECT and DPET gave similar temporal wash-in characteristics, and the images also showed a relatively high spatial correlation. Hence, if the limited spatial resolution of DPET is considered adequate, a single DPET scan only for assessing both tumor perfusion and metabolic activity may be considered. However, further work on a larger number of cases is needed to verify the correlations observed in the present study.

  7. Measurement of fluid rotation, dilation, and displacement in particle image velocimetry using a Fourier–Mellin cross-correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giarra, Matthew N.; Charonko, John J.; Vlachos, Pavlos P.

    Traditional particle image velocimetry (PIV) uses discrete Cartesian cross correlations (CCs) to estimate the displacements of groups of tracer particles within small subregions of sequentially captured images. However, these CCs fail in regions with large velocity gradients or high rates of rotation. In this paper, we propose a new PIV correlation method based on the Fourier–Mellin transformation (FMT) that enables direct measurement of the rotation and dilation of particle image patterns. In previously unresolvable regions of large rotation, our algorithm significantly improves the velocity estimates compared to traditional correlations by aligning the rotated and stretched particle patterns prior to performingmore » Cartesian correlations to estimate their displacements. Furthermore, our algorithm, which we term Fourier–Mellin correlation (FMC), reliably measures particle pattern displacement between pairs of interrogation regions with up to ±180° of angular misalignment, compared to 6–8° for traditional correlations, and dilation/compression factors of 0.5–2.0, compared to 0.9–1.1 for a single iteration of traditional correlations.« less

  8. Measurement of fluid rotation, dilation, and displacement in particle image velocimetry using a Fourier–Mellin cross-correlation

    DOE PAGES

    Giarra, Matthew N.; Charonko, John J.; Vlachos, Pavlos P.

    2015-02-05

    Traditional particle image velocimetry (PIV) uses discrete Cartesian cross correlations (CCs) to estimate the displacements of groups of tracer particles within small subregions of sequentially captured images. However, these CCs fail in regions with large velocity gradients or high rates of rotation. In this paper, we propose a new PIV correlation method based on the Fourier–Mellin transformation (FMT) that enables direct measurement of the rotation and dilation of particle image patterns. In previously unresolvable regions of large rotation, our algorithm significantly improves the velocity estimates compared to traditional correlations by aligning the rotated and stretched particle patterns prior to performingmore » Cartesian correlations to estimate their displacements. Furthermore, our algorithm, which we term Fourier–Mellin correlation (FMC), reliably measures particle pattern displacement between pairs of interrogation regions with up to ±180° of angular misalignment, compared to 6–8° for traditional correlations, and dilation/compression factors of 0.5–2.0, compared to 0.9–1.1 for a single iteration of traditional correlations.« less

  9. Radar correlated imaging for extended target by the combination of negative exponential restraint and total variation

    NASA Astrophysics Data System (ADS)

    Qian, Tingting; Wang, Lianlian; Lu, Guanghua

    2017-07-01

    Radar correlated imaging (RCI) introduces the optical correlated imaging technology to traditional microwave imaging, which has raised widespread concern recently. Conventional RCI methods neglect the structural information of complex extended target, which makes the quality of recovery result not really perfect, thus a novel combination of negative exponential restraint and total variation (NER-TV) algorithm for extended target imaging is proposed in this paper. The sparsity is measured by a sequential order one negative exponential function, then the 2D total variation technique is introduced to design a novel optimization problem for extended target imaging. And the proven alternating direction method of multipliers is applied to solve the new problem. Experimental results show that the proposed algorithm could realize high resolution imaging efficiently for extended target.

  10. Measurement of Clavicle Fracture Shortening Using Computed Tomography and Chest Radiography.

    PubMed

    Omid, Reza; Kidd, Chris; Yi, Anthony; Villacis, Diego; White, Eric

    2016-12-01

    Nonoperative management of midshaft clavicle fractures has resulted in widely disparate outcomes and there is growing evidence that clavicle shortening poses the risk of unsatisfactory functional outcomes due to shoulder weakness and nonunion. Unfortunately, the literature does not clearly demonstrate the superiority of one particular method for measuring clavicle shortening. The purpose of this study was to compare the accuracy of clavicle shortening measurements based on plain radiographs with those based on computed tomography (CT) reconstructed images of the clavicle. A total of 51 patients with midshaft clavicle fractures who underwent both a chest CT scan and standardized anteroposterior chest radiography on the day of admission were included in this study. Both an orthopedic surgeon and a musculoskeletal radiologist measured clavicle shortening for all included patients. We then determined the accuracy and intraclass correlation coefficients for the imaging modalities. Bland-Altman plots were created to analyze agreement between the modalities and a paired t-test was used to determine any significant difference between measurements. For injured clavicles, radiographic measurements significantly overestimated the clavicular length by a mean of 8.2 mm (standard deviation [SD], ± 10.2; confidence interval [CI], 95%) compared to CT-based measurements ( p < 0.001). The intraclass correlation was 0.96 for both plain radiograph- and CT-based measurements ( p = 0.17). We found that plain radiograph-based measurements of midshaft clavicle shortening are precise, but inaccurate. When clavicle shortening is considered in the decision to pursue operative management, we do not recommend the use of plain radiograph-based measurements.

  11. Measurement of Clavicle Fracture Shortening Using Computed Tomography and Chest Radiography

    PubMed Central

    Omid, Reza; Kidd, Chris; Villacis, Diego; White, Eric

    2016-01-01

    Background Nonoperative management of midshaft clavicle fractures has resulted in widely disparate outcomes and there is growing evidence that clavicle shortening poses the risk of unsatisfactory functional outcomes due to shoulder weakness and nonunion. Unfortunately, the literature does not clearly demonstrate the superiority of one particular method for measuring clavicle shortening. The purpose of this study was to compare the accuracy of clavicle shortening measurements based on plain radiographs with those based on computed tomography (CT) reconstructed images of the clavicle. Methods A total of 51 patients with midshaft clavicle fractures who underwent both a chest CT scan and standardized anteroposterior chest radiography on the day of admission were included in this study. Both an orthopedic surgeon and a musculoskeletal radiologist measured clavicle shortening for all included patients. We then determined the accuracy and intraclass correlation coefficients for the imaging modalities. Bland-Altman plots were created to analyze agreement between the modalities and a paired t-test was used to determine any significant difference between measurements. Results For injured clavicles, radiographic measurements significantly overestimated the clavicular length by a mean of 8.2 mm (standard deviation [SD], ± 10.2; confidence interval [CI], 95%) compared to CT-based measurements (p < 0.001). The intraclass correlation was 0.96 for both plain radiograph- and CT-based measurements (p = 0.17). Conclusions We found that plain radiograph-based measurements of midshaft clavicle shortening are precise, but inaccurate. When clavicle shortening is considered in the decision to pursue operative management, we do not recommend the use of plain radiograph-based measurements. PMID:27904717

  12. Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Quintano, C.; Fernández-Manso, A.; Calvo, L.; Marcos, E.; Valbuena, L.

    2015-04-01

    Forest fires are one of the most important causes of environmental alteration in Mediterranean countries. Discrimination of different degrees of burn severity is critical for improving management of fire-affected areas. This paper aims to evaluate the usefulness of land surface temperature (LST) as potential indicator of burn severity. We used a large convention-dominated wildfire, which occurred on 19-21 September, 2012 in Northwestern Spain. From this area, a 1-year series of six LST images were generated from Landsat 7 Enhanced Thematic Mapper (ETM+) data using a single channel algorithm. Further, the Composite Burn Index (CBI) was measured in 111 field plots to identify the burn severity level (low, moderate, and high). Evaluation of the potential relationship between post-fire LST and ground measured CBI was performed by both correlation analysis and regression models. Correlation coefficients were higher in the immediate post-fire LST images, but decreased during the fall of 2012 and increased again with a second maximum value in summer, 2013. A linear regression model between post-fire LST and CBI allowed us to represent spatially predicted CBI (R-squaredadj > 85%). After performing an analysis of variance (ANOVA) between post-fire LST and CBI, a Fisher's least significant difference test determined that two burn severity levels (low-moderate and high) could be statistically distinguished. The identification of such burn severity levels is sufficient and useful to forest managers. We conclude that summer post-fire LST from moderate resolution satellite data may be considered as a valuable indicator of burn severity for large fires in Mediterranean forest ecosytems.

  13. Mass-storage management for distributed image/video archives

    NASA Astrophysics Data System (ADS)

    Franchi, Santina; Guarda, Roberto; Prampolini, Franco

    1993-04-01

    The realization of image/video database requires a specific design for both database structures and mass storage management. This issue has addressed the project of the digital image/video database system that has been designed at IBM SEMEA Scientific & Technical Solution Center. Proper database structures have been defined to catalog image/video coding technique with the related parameters, and the description of image/video contents. User workstations and servers are distributed along a local area network. Image/video files are not managed directly by the DBMS server. Because of their wide size, they are stored outside the database on network devices. The database contains the pointers to the image/video files and the description of the storage devices. The system can use different kinds of storage media, organized in a hierarchical structure. Three levels of functions are available to manage the storage resources. The functions of the lower level provide media management. They allow it to catalog devices and to modify device status and device network location. The medium level manages image/video files on a physical basis. It manages file migration between high capacity media and low access time media. The functions of the upper level work on image/video file on a logical basis, as they archive, move and copy image/video data selected by user defined queries. These functions are used to support the implementation of a storage management strategy. The database information about characteristics of both storage devices and coding techniques are used by the third level functions to fit delivery/visualization requirements and to reduce archiving costs.

  14. The Association between Physical Activity and Eating Self-Regulation in Overweight and Obese Women

    PubMed Central

    Carraça, Eliana V.; Silva, Marlene N.; Coutinho, Sílvia R.; Vieira, Paulo N.; Minderico, Cláudia S.; Sardinha, Luís B.; Teixeira, Pedro J.

    2013-01-01

    Objective Successful weight management relies heavily on eating and exercise behaviors. However, little is known about the association between both on a psychosocial level. This study examined the relationship between exercise and eating regulation by exploring the mediating effects of negative body image investment and depressive mood, and their stability through time. Methods Analyses were conducted at two different moments (12 and 36 months), involving a sample of 221 overweight/obese women (age: 37.6 ± 7 years; BMI: 31.6 ± 4.1 kg/m2) that participated in a behavioral weight control intervention. Bivariate correlations and mediation analyses using Preacher & Hayes resampling procedures were conducted. Results At 12 months, negative body image investment was the only significant mediator of the exercise-eating relationship. This variable explained larger portions of the indirect effects of structured rather than lifestyle exercise on eating. At 36 months, negative investment and to a lesser extent depressive mood partially explained the exercise-eating association. Conclusions Our findings suggest that, besides physiological effects of exercise, psychological mechanisms related to body image and mood also explain the role of physical activity as a ‘gateway behavior’ for improved eating regulation in overweight women. These effects appear to be stable and may help understand the key role of exercise in long-term weight management. PMID:24217426

  15. Software for Verifying Image-Correlation Tie Points

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Yagi, Gary

    2008-01-01

    A computer program enables assessment of the quality of tie points in the image-correlation processes of the software described in the immediately preceding article. Tie points are computed in mappings between corresponding pixels in the left and right images of a stereoscopic pair. The mappings are sometimes not perfect because image data can be noisy and parallax can cause some points to appear in one image but not the other. The present computer program relies on the availability of a left- right correlation map in addition to the usual right left correlation map. The additional map must be generated, which doubles the processing time. Such increased time can now be afforded in the data-processing pipeline, since the time for map generation is now reduced from about 60 to 3 minutes by the parallelization discussed in the previous article. Parallel cluster processing time, therefore, enabled this better science result. The first mapping is typically from a point (denoted by coordinates x,y) in the left image to a point (x',y') in the right image. The second mapping is from (x',y') in the right image to some point (x",y") in the left image. If (x,y) and(x",y") are identical, then the mapping is considered perfect. The perfect-match criterion can be relaxed by introducing an error window that admits of round-off error and a small amount of noise. The mapping procedure can be repeated until all points in each image not connected to points in the other image are eliminated, so that what remains are verified correlation data.

  16. Ex vivo tissue imaging of human glioblastoma using a small bore 7T MRI and correlation with digital pathology and proteomics profiling

    NASA Astrophysics Data System (ADS)

    Matsuda, Kant M.; Lopes-Calcas, Ana; Magyar, Thalia; O'Brien-Moran, Zoe; Buist, Richard; Martin, Melanie

    2017-03-01

    Recent advancement in MRI established multi-parametric imaging for in vivo characterization of pathologic changes in brain cancer, which is expected to play a role in imaging biomarker development. Diffusion Tensor Imaging (DTI) is a prime example, which has been deployed for assessment of therapeutic response via analysis of apparent diffusion coefficient (ADC) / mean diffusivity (MD) values. They have been speculated to reflect apoptosis/necrosis. As newer medical imaging emerges, it is essential to verify that apparent abnormal features in imaging correlate with histopathology. Furthermore, the feasibility of imaging correlation with molecular profile should be explored in order to enhance the potential of biomedical imaging as a reliable biomarker. We focus on glioblastoma, which is an aggressive brain cancer. Despite the increased number of studies involving DTI in glioblastoma; however, little has been explored to bridge the gap between the molecular biomarkers and DTI data. Due to spatial heterogeneity in, MRI signals, pathologic change and protein expression, precise correlation is required between DTI, pathology and proteomics data in a histoanatomically identical manner. The challenge is obtaining an identical plane from in vivo imaging data that exactly matches with histopathology section. Thus, we propose to incorporate ex vivo tissue imaging to bridge between in vivo imaging data and histopathology. With ex vivo scan of removed tissue, it is feasible to use high-field 7T MRI scanner, which can achieve microscopic resolution. Once histology section showing the identical plane, it is feasible to correlate protein expression by a unique technology, "multiplex tissue immunoblotting".

  17. Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography

    PubMed Central

    DeWall, Ryan J.; Varghese, Tomy; Brace, Chris L.

    2012-01-01

    Purpose: Electrode vibration elastography is a new shear wave imaging technique that can be used to visualize thermal ablation zones. Prior work has shown the ability of electrode vibration elastography to delineate radiofrequency ablations; however, there has been no previous study of delineation of microwave ablations or radiological–pathological correlations using multiple observers. Methods: Radiofrequency and microwave ablations were formed in ex vivo bovine liver tissue. Their visualization was compared on shear wave velocity and maximum displacement images. Ablation dimensions were compared to gross pathology. Elastographic imaging and gross pathology overlap and interobserver variability were quantified using similarity measures. Results: Elastographic imaging correlated with gross pathology. Correlation of area estimates was better in radiofrequency than in microwave ablations, with Pearson coefficients of 0.79 and 0.54 on shear wave velocity images and 0.90 and 0.70 on maximum displacement images for radiofrequency and microwave ablations, respectively. The absolute relative difference in area between elastographic imaging and gross pathology was 18.9% and 22.9% on shear wave velocity images and 16.0% and 23.1% on maximum displacement images for radiofrequency and microwave ablations, respectively. Conclusions: Statistically significant radiological–pathological correlation was observed in this study, but correlation coefficients were lower than other modulus imaging techniques, most notably in microwave ablations. Observers provided similar delineations for most thermal ablations. These results suggest that electrode vibration elastography is capable of imaging thermal ablations, but refinement of the technique may be necessary before it can be used to monitor thermal ablation procedures clinically. PMID:23127063

  18. Why can't I manage my digital images like MP3s? The evolution and intent of multimedia metadata

    NASA Astrophysics Data System (ADS)

    Goodrum, Abby; Howison, James

    2005-01-01

    This paper considers the deceptively simple question: Why can't digital images be managed in the simple and effective manner in which digital music files are managed? We make the case that the answer is different treatments of metadata in different domains with different goals. A central difference between the two formats stems from the fact that digital music metadata lookup services are collaborative and automate the movement from a digital file to the appropriate metadata, while image metadata services do not. To understand why this difference exists we examine the divergent evolution of metadata standards for digital music and digital images and observed that the processes differ in interesting ways according to their intent. Specifically music metadata was developed primarily for personal file management and community resource sharing, while the focus of image metadata has largely been on information retrieval. We argue that lessons from MP3 metadata can assist individuals facing their growing personal image management challenges. Our focus therefore is not on metadata for cultural heritage institutions or the publishing industry, it is limited to the personal libraries growing on our hard-drives. This bottom-up approach to file management combined with p2p distribution radically altered the music landscape. Might such an approach have a similar impact on image publishing? This paper outlines plans for improving the personal management of digital images-doing image metadata and file management the MP3 way-and considers the likelihood of success.

  19. Why can't I manage my digital images like MP3s? The evolution and intent of multimedia metadata

    NASA Astrophysics Data System (ADS)

    Goodrum, Abby; Howison, James

    2004-12-01

    This paper considers the deceptively simple question: Why can"t digital images be managed in the simple and effective manner in which digital music files are managed? We make the case that the answer is different treatments of metadata in different domains with different goals. A central difference between the two formats stems from the fact that digital music metadata lookup services are collaborative and automate the movement from a digital file to the appropriate metadata, while image metadata services do not. To understand why this difference exists we examine the divergent evolution of metadata standards for digital music and digital images and observed that the processes differ in interesting ways according to their intent. Specifically music metadata was developed primarily for personal file management and community resource sharing, while the focus of image metadata has largely been on information retrieval. We argue that lessons from MP3 metadata can assist individuals facing their growing personal image management challenges. Our focus therefore is not on metadata for cultural heritage institutions or the publishing industry, it is limited to the personal libraries growing on our hard-drives. This bottom-up approach to file management combined with p2p distribution radically altered the music landscape. Might such an approach have a similar impact on image publishing? This paper outlines plans for improving the personal management of digital images-doing image metadata and file management the MP3 way-and considers the likelihood of success.

  20. Management of flat epithelial atypia on breast core biopsy may be individualized based on correlation with imaging studies.

    PubMed

    Calhoun, Benjamin C; Sobel, Amy; White, Richard L; Gromet, Matt; Flippo, Teresa; Sarantou, Terry; Livasy, Chad A

    2015-05-01

    Flat epithelial atypia of the breast commonly co-exists with atypical ductal hyperplasia, lobular neoplasia, and indolent forms of invasive carcinomas such as tubular carcinoma. Most patients with pure flat epithelial atypia on core biopsy undergo surgical excision to evaluate for carcinoma in the adjacent breast tissue. Studies to date have reported varying upgrade rates with most recommending follow-up excision. These studies have often lacked detailed radiographic correlation, central review by breast pathologists and information regarding the biology of the carcinomas identified upon excision. In this study, we report the frequency of upgrade to invasive carcinoma or ductal carcinoma in situ in excision specimens following a diagnosis of pure flat epithelial atypia on core biopsy. Radiographic correlation is performed for each case and grade/receptor status of detected carcinomas is reported. Seventy-three (73) core biopsies containing pure flat epithelial atypia were identified from our files, meeting inclusion criteria for the study. In the subsequent excision biopsies, five (7%) cases contained invasive carcinoma or ductal carcinoma in situ and seventeen (23%) contained atypical ductal hyperplasia or lobular neoplasia. All of the ductal carcinoma in situ cases with estrogen receptor results were estrogen receptor positive and intermediate grade. The invasive tumors were small (pT1a) hormone receptor-positive, HER2-negative, low-grade invasive ductal or tubular carcinomas with negative sentinel lymph-node biopsies. No upgrades were identified in the 14 patients who had all of their calcifications removed by the stereotactic core biopsy. Our rate of upgrade to carcinoma, once cases with discordant imaging are excluded, is at the lower end of the range reported in the literature. Given the low upgrade rate and indolent nature of the carcinomas associated with flat epithelial atypia, case management may be individualized based on clinical and radiographic findings. Excision may not be necessary for patients without remaining calcifications following core biopsy.

  1. Towards building high performance medical image management system for clinical trials

    NASA Astrophysics Data System (ADS)

    Wang, Fusheng; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel

    2011-03-01

    Medical image based biomarkers are being established for therapeutic cancer clinical trials, where image assessment is among the essential tasks. Large scale image assessment is often performed by a large group of experts by retrieving images from a centralized image repository to workstations to markup and annotate images. In such environment, it is critical to provide a high performance image management system that supports efficient concurrent image retrievals in a distributed environment. There are several major challenges: high throughput of large scale image data over the Internet from the server for multiple concurrent client users, efficient communication protocols for transporting data, and effective management of versioning of data for audit trails. We study the major bottlenecks for such a system, propose and evaluate a solution by using a hybrid image storage with solid state drives and hard disk drives, RESTfulWeb Services based protocols for exchanging image data, and a database based versioning scheme for efficient archive of image revision history. Our experiments show promising results of our methods, and our work provides a guideline for building enterprise level high performance medical image management systems.

  2. Effects of threshold on single-target detection by using modified amplitude-modulated joint transform correlator

    NASA Astrophysics Data System (ADS)

    Kaewkasi, Pitchaya; Widjaja, Joewono; Uozumi, Jun

    2007-03-01

    Effects of threshold value on detection performance of the modified amplitude-modulated joint transform correlator are quantitatively studied using computer simulation. Fingerprint and human face images are used as test scenes in the presence of noise and a contrast difference. Simulation results demonstrate that this correlator improves detection performance for both types of image used, but moreso for human face images. Optimal detection of low-contrast human face images obscured by strong noise can be obtained by selecting an appropriate threshold value.

  3. An overview of the stereo correlation and triangulation formulations used in DICe.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Daniel Z.

    This document provides a detailed overview of the stereo correlation algorithm and triangulation formulation used in the Digital Image Correlation Engine (DICe) to triangulate three dimensional motion in space given the image coordinates and camera calibration parameters.

  4. Relating remotely sensed optical variability to marine benthic biodiversity.

    PubMed

    Herkül, Kristjan; Kotta, Jonne; Kutser, Tiit; Vahtmäe, Ele

    2013-01-01

    Biodiversity is important in maintaining ecosystem viability, and the availability of adequate biodiversity data is a prerequisite for the sustainable management of natural resources. As such, there is a clear need to map biodiversity at high spatial resolutions across large areas. Airborne and spaceborne optical remote sensing is a potential tool to provide such biodiversity data. The spectral variation hypothesis (SVH) predicts a positive correlation between spectral variability (SV) of a remotely sensed image and biodiversity. The SVH has only been tested on a few terrestrial plant communities. Our study is the first attempt to apply the SVH in the marine environment using hyperspectral imagery recorded by Compact Airborne Spectrographic Imager (CASI). All coverage-based diversity measures of benthic macrophytes and invertebrates showed low but statistically significant positive correlations with SV whereas the relationship between biomass-based diversity measures and SV were weak or lacking. The observed relationships did not vary with spatial scale. SV had the highest independent effect among predictor variables in the statistical models of coverage-derived total benthic species richness and Shannon index. Thus, the relevance of SVH in marine benthic habitats was proved and this forms a prerequisite for the future use of SV in benthic biodiversity assessments.

  5. Noise-immune complex correlation for vasculature imaging based on standard and Jones-matrix optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Makita, Shuichi; Kurokawa, Kazuhiro; Hong, Young-Joo; Li, En; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    A new optical coherence angiography (OCA) method, called correlation mapping OCA (cmOCA), is presented by using the SNR-corrected complex correlation. An SNR-correction theory for the complex correlation calculation is presented. The method also integrates a motion-artifact-removal method for the sample motion induced decorrelation artifact. The theory is further extended to compute more reliable correlation by using multi- channel OCT systems, such as Jones-matrix OCT. The high contrast vasculature imaging of in vivo human posterior eye has been obtained. Composite imaging of cmOCA and degree of polarization uniformity indicates abnormalities of vasculature and pigmented tissues simultaneously.

  6. Early Recognition of Chronic Traumatic Encephalopathy Through FDDNP PET Imaging

    DTIC Science & Technology

    2017-10-01

    imaging correlates with, and/or can predict, decline in cognitive function in those exposed to cumulative head trauma. 15. SUBJECT TERMS Traumatic...sheet-containing brain amyloid neuroaggregates. This project will examine whether FDDNP PET imaging correlates with, and/or can predict, decline in...with age. Table 1 - Regional uptake in ROIs with Age, Years of Pro Fighting, and Number of Pro Fights (Pearson’s correlations ; ns – non significant

  7. Plenoptic imaging with second-order correlations of light

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Scarcelli, Giuliano; Garuccio, Augusto; D'Angelo, Milena

    2016-01-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable tridimensional imaging in a single shot. We demonstrate that it is possible to implement plenoptic imaging through second-order correlations of chaotic light, thus enabling to overcome the typical limitations of classical plenoptic devices.

  8. Multiparametric magnetic resonance imaging of the prostate: current concepts*

    PubMed Central

    Bittencourt, Leonardo Kayat; Hausmann, Daniel; Sabaneeff, Natalia; Gasparetto, Emerson Leandro; Barentsz, Jelle O.

    2014-01-01

    Multiparametric MR (mpMR) imaging is rapidly evolving into the mainstay in prostate cancer (PCa) imaging. Generally, the examination consists of T2-weighted sequences, diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) evaluation, and less often proton MR spectroscopy imaging (MRSI). Those functional techniques are related to biological properties of the tumor, so that DWI correlates to cellularity and Gleason scores, DCE correlates to angiogenesis, and MRSI correlates to cell membrane turnover. The combined use of those techniques enhances the diagnostic confidence and allows for better characterization of PCa. The present article reviews and illustrates the technical aspects and clinical applications of each component of mpMR imaging, in a practical approach from the urological standpoint. PMID:25741104

  9. Proposed alteration of images of molecular orbitals obtained using a scanning tunneling microscope as a probe of electron correlation.

    PubMed

    Toroz, Dimitrios; Rontani, Massimo; Corni, Stefano

    2013-01-04

    Scanning tunneling spectroscopy (STS) allows us to image single molecules decoupled from the supporting substrate. The obtained images are routinely interpreted as the square moduli of molecular orbitals, dressed by the mean-field electron-electron interaction. Here we demonstrate that the effect of electron correlation beyond the mean field qualitatively alters the uncorrelated STS images. Our evidence is based on the ab initio many-body calculation of STS images of planar molecules with metal centers. We find that many-body correlations alter significantly the image spectral weight close to the metal center of the molecules. This change is large enough to be accessed experimentally, surviving to molecule-substrate interactions.

  10. Correlation of contrast-detail analysis and clinical image quality assessment in chest radiography with a human cadaver study.

    PubMed

    De Crop, An; Bacher, Klaus; Van Hoof, Tom; Smeets, Peter V; Smet, Barbara S; Vergauwen, Merel; Kiendys, Urszula; Duyck, Philippe; Verstraete, Koenraad; D'Herde, Katharina; Thierens, Hubert

    2012-01-01

    To determine the correlation between the clinical and physical image quality of chest images by using cadavers embalmed with the Thiel technique and a contrast-detail phantom. The use of human cadavers fulfilled the requirements of the institutional ethics committee. Clinical image quality was assessed by using three human cadavers embalmed with the Thiel technique, which results in excellent preservation of the flexibility and plasticity of organs and tissues. As a result, lungs can be inflated during image acquisition to simulate the pulmonary anatomy seen on a chest radiograph. Both contrast-detail phantom images and chest images of the Thiel-embalmed bodies were acquired with an amorphous silicon flat-panel detector. Tube voltage (70, 81, 90, 100, 113, 125 kVp), copper filtration (0.1, 0.2, 0.3 mm Cu), and exposure settings (200, 280, 400, 560, 800 speed class) were altered to simulate different quality levels. Four experienced radiologists assessed the image quality by using a visual grading analysis (VGA) technique based on European Quality Criteria for Chest Radiology. The phantom images were scored manually and automatically with use of dedicated software, both resulting in an inverse image quality figure (IQF). Spearman rank correlations between inverse IQFs and VGA scores were calculated. A statistically significant correlation (r = 0.80, P < .01) was observed between the VGA scores and the manually obtained inverse IQFs. Comparison of the VGA scores and the automated evaluated phantom images showed an even better correlation (r = 0.92, P < .001). The results support the value of contrast-detail phantom analysis for evaluating clinical image quality in chest radiography. © RSNA, 2011.

  11. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve the speed and orientation efficiency of target identification effectively, and validate the feasibility of this method primarily.

  12. Clinical, Dopaminergic, and Metabolic Correlations in Parkinson Disease: A Dual-Tracer PET Study.

    PubMed

    Liu, Feng-Tao; Ge, Jing-Jie; Wu, Jian-Jun; Wu, Ping; Ma, Yilong; Zuo, Chuan-Tao; Wang, Jian

    2018-05-31

    Neuroimaging indicators of Parkinson disease have been developed and applied in clinical practices. Dopaminergic imaging reflects nigrostriatal dopaminergic dysfunction, and metabolic network imaging offers disease-related metabolic changes at a system level. We aimed to elucidate the association between Parkinsonian symptoms and neuroimaging, and interactions between different imaging techniques. We conducted a dual-tracer PET study for the combined assessments of dopaminergic binding (C-CFT) and glucose metabolism (F-FDG) in 103 participants with Parkinson disease (65 male and 38 female subjects). The detailed clinical rating scores were systematically collected in all members. The interactions among dopaminergic bindings, metabolic changes, and clinical manifestations were evaluated at voxel, regional, and network levels. Striatal DAT binding correlated with akinesia-rigidity (P < 0.001) but not with tremor; the metabolic PET imaging, nonspecific to the dopaminergic dysfunction, disclosed a set of brain regions correlating with the cardinal symptoms, including tremor. In addition, the unilateral symptom correlated with the contralateral nigrostriatal dopamine loss, but with bilateral metabolic changes, suggesting their differences in the application of disease-related mechanistic studies. Further imaging-imaging correlation study revealed that dopaminergic dysfunction correlated with widely distributed metabolic changes in Parkinson disease, and the modest correlations supported the findings on the clinical-imaging correlation. In this dual-tracer PET study, we demonstrated the robust interactions among dopaminergic dysfunction, metabolic brain changes and clinical manifestations at voxel, regional, and network levels. Our findings might promote the understanding in the proper application of dopaminergic and metabolic PET imaging in Parkinson disease and offer more evidence in support of Parkinsonian pathophysiological mechanisms.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  13. Microseismic reverse time migration with a multi-cross-correlation staining algorithm for fracture imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Congcong; Jia, Xiaofeng; Liu, Shishuo; Zhang, Jie

    2018-02-01

    Accurate characterization of hydraulic fracturing zones is currently becoming increasingly important in production optimization, since hydraulic fracturing may increase the porosity and permeability of the reservoir significantly. Recently, the feasibility of the reverse time migration (RTM) method has been studied for the application in imaging fractures during borehole microseismic monitoring. However, strong low-frequency migration noise, poorly illuminated areas, and the low signal to noise ratio (SNR) data can degrade the imaging results. To improve the quality of the images, we propose a multi-cross-correlation staining algorithm to incorporate into the microseismic reverse time migration for imaging fractures using scattered data. Under the modified RTM method, our results are revealed in two images: one is the improved RTM image using the multi-cross-correlation condition, and the other is an image of the target region using the generalized staining algorithm. The numerical examples show that, compared with the conventional RTM, our method can significantly improve the spatial resolution of images, especially for the image of target region.

  14. Image stitching and image reconstruction of intestines captured using radial imaging capsule endoscope

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Jeng, Wei-De; Wu, Yin-Yi; Dung, Lan-Rong; Wu, Hsien-Ming; Weng, Ping-Kuo; Huang, Ker-Jer; Chiu, Luan-Jiau

    2012-05-01

    This study investigates image processing using the radial imaging capsule endoscope (RICE) system. First, an experimental environment is established in which a simulated object has a shape that is similar to a cylinder, such that a triaxial platform can be used to push the RICE into the sample and capture radial images. Then four algorithms (mean absolute error, mean square error, Pearson correlation coefficient, and deformation processing) are used to stitch the images together. The Pearson correlation coefficient method is the most effective algorithm because it yields the highest peak signal-to-noise ratio, higher than 80.69 compared to the original image. Furthermore, a living animal experiment is carried out. Finally, the Pearson correlation coefficient method and vector deformation processing are used to stitch the images that were captured in the living animal experiment. This method is very attractive because unlike the other methods, in which two lenses are required to reconstruct the geometrical image, RICE uses only one lens and one mirror.

  15. Optical Processing of Speckle Images with Bacteriorhodopsin for Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Tucker, Deanne (Technical Monitor)

    1994-01-01

    Logarithmic processing of images with multiplicative noise characteristics can be utilized to transform the image into one with an additive noise distribution. This simplifies subsequent image processing steps for applications such as image restoration or correlation for pattern recognition. One particularly common form of multiplicative noise is speckle, for which the logarithmic operation not only produces additive noise, but also makes it of constant variance (signal-independent). We examine the optical transmission properties of some bacteriorhodopsin films here and find them well suited to implement such a pointwise logarithmic transformation optically in a parallel fashion. We present experimental results of the optical conversion of speckle images into transformed images with additive, signal-independent noise statistics using the real-time photochromic properties of bacteriorhodopsin. We provide an example of improved correlation performance in terms of correlation peak signal-to-noise for such a transformed speckle image.

  16. In Vivo Imaging of Tau Pathology Using Magnetic Resonance Imaging Textural Analysis

    PubMed Central

    Colgan, Niall; Ganeshan, Balaji; Harrison, Ian F.; Ismail, Ozama; Holmes, Holly E.; Wells, Jack A.; Powell, Nick M.; O'Callaghan, James M.; O'Neill, Michael J.; Murray, Tracey K.; Ahmed, Zeshan; Collins, Emily C.; Johnson, Ross A.; Groves, Ashley; Lythgoe, Mark F.

    2017-01-01

    Background: Non-invasive characterization of the pathological features of Alzheimer's disease (AD) could enhance patient management and the development of therapeutic strategies. Magnetic resonance imaging texture analysis (MRTA) has been used previously to extract texture descriptors from structural clinical scans in AD to determine cerebral tissue heterogeneity. In this study, we examined the potential of MRTA to specifically identify tau pathology in an AD mouse model and compared the MRTA metrics to histological measures of tau burden. Methods: MRTA was applied to T2 weighted high-resolution MR images of nine 8.5-month-old rTg4510 tau pathology (TG) mice and 16 litter matched wild-type (WT) mice. MRTA comprised of the filtration-histogram technique, where the filtration step extracted and enhanced features of different sizes (fine, medium, and coarse texture scales), followed by quantification of texture using histogram analysis (mean gray level intensity, mean intensity, entropy, uniformity, skewness, standard-deviation, and kurtosis). MRTA was applied to manually segmented regions of interest (ROI) drawn within the cortex, hippocampus, and thalamus regions and the level of tau burden was assessed in equivalent regions using histology. Results: Texture parameters were markedly different between WT and TG in the cortex (E, p < 0.01, K, p < 0.01), the hippocampus (K, p < 0.05) and in the thalamus (K, p < 0.01). In addition, we observed significant correlations between histological measurements of tau burden and kurtosis in the cortex, hippocampus and thalamus. Conclusions: MRTA successfully differentiated WT and TG in brain regions with varying degrees of tau pathology (cortex, hippocampus, and thalamus) based on T2 weighted MR images. Furthermore, the kurtosis measurement correlated with histological measures of tau burden. This initial study indicates that MRTA may have a role in the early diagnosis of AD and the assessment of tau pathology using routinely acquired structural MR images. PMID:29163005

  17. SU-D-17A-07: Development and Evaluation of a Prototype Ultrasonography Respiratory Monitoring System for 4DCT Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, P; Cheng, S; Chao, C

    Purpose: Respiratory motion artifacts are commonly seen in the abdominal and thoracic CT images. A Real-time Position Management (RPM) system is integrated with CT simulator using abdominal surface as a surrogate for tracking the patient respiratory motion. The respiratory-correlated four-dimensional computed tomography (4DCT) is then reconstructed by GE advantage software. However, there are still artifacts due to inaccurate respiratory motion detecting and sorting methods. We developed an Ultrasonography Respiration Monitoring (URM) system which can directly monitor diaphragm motion to detect respiratory cycles. We also developed a new 4DCT sorting and motion estimation method to reduce the respiratory motion artifacts. Themore » new 4DCT system was compared with RPM and the GE 4DCT system. Methods: Imaging from a GE CT scanner was simultaneously correlated with both the RPM and URM to detect respiratory motion. A radiation detector, Blackcat GM-10, recorded the X-ray on/off and synchronized with URM. The diaphragm images were acquired with Ultrasonix RP system. The respiratory wave was derived from diaphragm images and synchronized with CT scanner. A more precise peaks and valleys detection tool was developed and compared with RPM. The motion is estimated for the slices which are not in the predefined respiratory phases by using block matching and optical flow method. The CT slices were then sorted into different phases and reconstructed, compared with the images reconstructed from GE Advantage software using respiratory wave produced from RPM system. Results: The 4DCT images were reconstructed for eight patients. The discontinuity at the diaphragm level due to an inaccurate identification of phases by the RPM was significantly improved by URM system. Conclusion: Our URM 4DCT system was evaluated and compared with RPM and GE 4DCT system. The new system is user friendly and able to reduce motion artifacts. It also has the potential to monitor organ motion during therapy.« less

  18. Correlation peak analysis applied to a sequence of images using two different filters for eye tracking model

    NASA Astrophysics Data System (ADS)

    Patrón, Verónica A.; Álvarez Borrego, Josué; Coronel Beltrán, Ángel

    2015-09-01

    Eye tracking has many useful applications that range from biometrics to face recognition and human-computer interaction. The analysis of the characteristics of the eyes has become one of the methods to accomplish the location of the eyes and the tracking of the point of gaze. Characteristics such as the contrast between the iris and the sclera, the shape, and distribution of colors and dark/light zones in the area are the starting point for these analyses. In this work, the focus will be on the contrast between the iris and the sclera, performing a correlation in the frequency domain. The images are acquired with an ordinary camera, which with were taken images of thirty-one volunteers. The reference image is an image of the subjects looking to a point in front of them at 0° angle. Then sequences of images are taken with the subject looking at different angles. These images are processed in MATLAB, obtaining the maximum correlation peak for each image, using two different filters. Each filter were analyzed and then one was selected, which is the filter that gives the best performance in terms of the utility of the data, which is displayed in graphs that shows the decay of the correlation peak as the eye moves progressively at different angle. This data will be used to obtain a mathematical model or function that establishes a relationship between the angle of vision (AOV) and the maximum correlation peak (MCP). This model will be tested using different input images from other subject not contained in the initial database, being able to predict angle of vision using the maximum correlation peak data.

  19. Remote Sensing Program

    NASA Technical Reports Server (NTRS)

    Philipson, W. R. (Principal Investigator); Liang, T.; Philpot, W. D.

    1983-01-01

    Field spectroradiometric and airborne multispectral scanner data were related to vineyard yield and other agronomic variables in an attempt to determine the optimum wavelengths for yield prediction modeling. Reflections between vine canopy reflectance and several management practices were also considered. Spectral analysis of test vines found that, although some correlations with vine yield were significant, they were inadequate for producing a yield prediction model. The findings also indicate that the vines examined through the field spectroradiometers were not truly representative. Geologic linears identified from aerial photographys, LANDSAT images, and maps were compared to gas well locations in three New York' counties. Correlations were found between the dominant trends in regional liners and gas field boundaries and trends. Other projects being conducted under the grant include determining vegetable acreage in mucklands, site selection for windmills, spectral effects of sulfur dioxide, and screening tomato seedlings for salt tolerance.

  20. Rapid estimation of 4DCT motion-artifact severity based on 1D breathing-surrogate periodicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guang, E-mail: lig2@mskcc.org; Caraveo, Marshall; Wei, Jie

    2014-11-01

    Purpose: Motion artifacts are common in patient four-dimensional computed tomography (4DCT) images, leading to an ill-defined tumor volume with large variations for radiotherapy treatment and a poor foundation with low imaging fidelity for studying respiratory motion. The authors developed a method to estimate 4DCT image quality by establishing a correlation between the severity of motion artifacts in 4DCT images and the periodicity of the corresponding 1D respiratory waveform (1DRW) used for phase binning in 4DCT reconstruction. Methods: Discrete Fourier transformation (DFT) was applied to analyze 1DRW periodicity. The breathing periodicity index (BPI) was defined as the sum of the largestmore » five Fourier coefficients, ranging from 0 to 1. Distortional motion artifacts (excluding blurring) of cine-scan 4DCT at the junctions of adjacent couch positions around the diaphragm were classified in three categories: incomplete, overlapping, and duplicate anatomies. To quantify these artifacts, discontinuity of the diaphragm at the junctions was measured in distance and averaged along six directions in three orthogonal views. Artifacts per junction (APJ) across the entire diaphragm were calculated in each breathing phase and phase-averaged APJ{sup ¯}, defined as motion-artifact severity (MAS), was obtained for each patient. To make MAS independent of patient-specific motion amplitude, two new MAS quantities were defined: MAS{sup D} is normalized to the maximum diaphragmatic displacement and MAS{sup V} is normalized to the mean diaphragmatic velocity (the breathing period was obtained from DFT analysis of 1DRW). Twenty-six patients’ free-breathing 4DCT images and corresponding 1DRW data were studied. Results: Higher APJ values were found around midventilation and full inhalation while the lowest APJ values were around full exhalation. The distribution of MAS is close to Poisson distribution with a mean of 2.2 mm. The BPI among the 26 patients was calculated with a value ranging from 0.25 to 0.93. The DFT calculation was within 3 s per 1DRW. Correlations were found between 1DRW periodicity and 4DCT artifact severity: −0.71 for MAS{sup D} and −0.73 for MAS{sup V}. A BPI greater than 0.85 in a 1DRW suggests minimal motion artifacts in the corresponding 4DCT images. Conclusions: The breathing periodicity index and motion-artifact severity index are introduced to assess the relationship between 1DRW and 4DCT. A correlation between 1DRW periodicity and 4DCT artifact severity has been established. The 1DRW periodicity provides a rapid means to estimate 4DCT image quality. The rapid 1DRW analysis and the correlative relationship can be applied prospectively to identify irregular breathers as candidates for breath coaching prior to 4DCT scan and retrospectively to select high-quality 4DCT images for clinical motion-management research.« less

  1. Rapid estimation of 4DCT motion-artifact severity based on 1D breathing-surrogate periodicity

    PubMed Central

    Li, Guang; Caraveo, Marshall; Wei, Jie; Rimner, Andreas; Wu, Abraham J.; Goodman, Karyn A.; Yorke, Ellen

    2014-01-01

    Purpose: Motion artifacts are common in patient four-dimensional computed tomography (4DCT) images, leading to an ill-defined tumor volume with large variations for radiotherapy treatment and a poor foundation with low imaging fidelity for studying respiratory motion. The authors developed a method to estimate 4DCT image quality by establishing a correlation between the severity of motion artifacts in 4DCT images and the periodicity of the corresponding 1D respiratory waveform (1DRW) used for phase binning in 4DCT reconstruction. Methods: Discrete Fourier transformation (DFT) was applied to analyze 1DRW periodicity. The breathing periodicity index (BPI) was defined as the sum of the largest five Fourier coefficients, ranging from 0 to 1. Distortional motion artifacts (excluding blurring) of cine-scan 4DCT at the junctions of adjacent couch positions around the diaphragm were classified in three categories: incomplete, overlapping, and duplicate anatomies. To quantify these artifacts, discontinuity of the diaphragm at the junctions was measured in distance and averaged along six directions in three orthogonal views. Artifacts per junction (APJ) across the entire diaphragm were calculated in each breathing phase and phase-averaged APJ¯, defined as motion-artifact severity (MAS), was obtained for each patient. To make MAS independent of patient-specific motion amplitude, two new MAS quantities were defined: MASD is normalized to the maximum diaphragmatic displacement and MASV is normalized to the mean diaphragmatic velocity (the breathing period was obtained from DFT analysis of 1DRW). Twenty-six patients’ free-breathing 4DCT images and corresponding 1DRW data were studied. Results: Higher APJ values were found around midventilation and full inhalation while the lowest APJ values were around full exhalation. The distribution of MAS is close to Poisson distribution with a mean of 2.2 mm. The BPI among the 26 patients was calculated with a value ranging from 0.25 to 0.93. The DFT calculation was within 3 s per 1DRW. Correlations were found between 1DRW periodicity and 4DCT artifact severity: −0.71 for MASD and −0.73 for MASV. A BPI greater than 0.85 in a 1DRW suggests minimal motion artifacts in the corresponding 4DCT images. Conclusions: The breathing periodicity index and motion-artifact severity index are introduced to assess the relationship between 1DRW and 4DCT. A correlation between 1DRW periodicity and 4DCT artifact severity has been established. The 1DRW periodicity provides a rapid means to estimate 4DCT image quality. The rapid 1DRW analysis and the correlative relationship can be applied prospectively to identify irregular breathers as candidates for breath coaching prior to 4DCT scan and retrospectively to select high-quality 4DCT images for clinical motion-management research. PMID:25370631

  2. Fuzzy inference enhanced information recovery from digital PIV using cross-correlation combined with particle tracking

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1995-01-01

    Particle Image Velocimetry provides a means of measuring the instantaneous 2-component velocity field across a planar region of a seeded flowfield. In this work only two camera, single exposure images are considered where both cameras have the same view of the illumination plane. Two competing techniques which yield unambiguous velocity vector direction information have been widely used for reducing the single exposure, multiple image data: cross-correlation and particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. The correlation technique requires identification of the correlation peak on the correlation plane corresponding to the average displacement of particles across the subregion. Noise on the images and particle dropout contribute to spurious peaks on the correlation plane, leading to misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak on the correlation plane, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus velocity. The advantage of this technique is the improved spatial resolution which is available from the particle tracking operation. Particle tracking alone may not be possible in the high seed density images typically required for achieving good results from the correlation technique. This two staged approach offers a velocimetric technique capable of measuring particle velocities with high spatial resolution over a broad range of seeding densities.

  3. Accreta placentation: a systematic review of prenatal ultrasound imaging and grading of villous invasiveness.

    PubMed

    Jauniaux, Eric; Collins, Sally L; Jurkovic, Davor; Burton, Graham J

    2016-12-01

    Determining the depth of villous invasiveness before delivery is pivotal in planning individual management of placenta accreta. We have evaluated the value of various ultrasound signs proposed in the international literature for the prenatal diagnosis of accreta placentation and assessment of the depth of villous invasiveness. We undertook a PubMed and MEDLINE search of the relevant studies published from the first prenatal ultrasound description of placenta accreta in 1982 through March 30, 2016, using key words "placenta accreta," "placenta increta," "placenta percreta," "abnormally invasive placenta," "morbidly adherent placenta," and "placenta adhesive disorder" as related to "sonography," "ultrasound diagnosis," "prenatal diagnosis," "gray-scale imaging," "3-dimensional ultrasound", and "color Doppler imaging." The primary eligibility criteria were articles that correlated prenatal ultrasound imaging with pregnancy outcome. A total of 84 studies, including 31 case reports describing 38 cases of placenta accreta and 53 series describing 1078 cases were analyzed. Placenta accreta was subdivided into placenta creta to describe superficially adherent placentation and placenta increta and placenta percreta to describe invasive placentation. Of the 53 study series, 23 did not provide data on the depth of villous myometrial invasion on ultrasound imaging or at delivery. Detailed correlations between ultrasound findings and placenta accreta grading were found in 72 cases. A loss of clear zone (62.1%) and the presence of bridging vessels (71.4%) were the most common ultrasound signs in cases of placenta creta. In placenta increta, a loss of clear zone (84.6%) and subplacental hypervascularity (60%) were the most common ultrasound signs, whereas placental lacunae (82.4%) and subplacental hypervascularity (54.5%) were the most common ultrasound signs in placenta percreta. No ultrasound sign or a combination of ultrasound signs were specific of the depth of accreta placentation. The wide heterogeneity in terminology used to describe the grades of accreta placentation and differences in study design limits the evaluation of the accuracy of ultrasound imaging in the screening and diagnosis of placenta accreta. This review emphasizes the need for further prospective studies using a standardized evidence-based approach including a systematic correlation between ultrasound signs of placenta accreta and detailed clinical and pathologic examinations at delivery. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Role of MRI in the early diagnosis of tubal ectopic pregnancy.

    PubMed

    Si, Ming-Jue; Gui, Shuang; Fan, Qin; Han, Hong-Xiu; Zhao, Qian-Qian; Li, Zhi-Xin; Zhao, Jiang-Min

    2016-07-01

    To determine the role of MRI in the early diagnosis of tubal ectopic pregnancy (EP). Clinical and MRI features of 27 cases of tubal pregnancy were reviewed. A thick-walled gestational sac (GS)-like structure was demonstrated lateral to the uterus in all cases. On T2-weighted images, the thick wall typically exhibited 3 discrete rings in 22 cases (81 %), among which 17 cases (63 %) displayed small vessels and 6 cases (33 %) exhibited small areas of fresh haemorrhage inside the thick wall. The contents demonstrated non-specific liquid in 26 %, papillary solid components in 56 %, and fresh blood or fluid-fluid level in 19 % of the cases. Dilatation of the affected fallopian tube associated with hematosalpinx was demonstrated in 18 cases (67 %) and marked enhancement of the tubal wall was observed in 22 cases (81 %). No correlation was found between the size of the GS and the estimated gestational age (r = 0.056). MRI plays an important role in the early diagnosis and management of tubal pregnancy. The characteristic MRI features include a GS-like structure with a "three rings" appearance on T2-weighted images, presence of solid components in the sac, dilatation of the affected fallopian tube with hematosalpinx, and tubal wall enhancement. • MR imaging has served as a problem-solving procedure in ectopic pregnancy. • MR imaging features can be criteria for early diagnosis of tubal pregnancy. • Detailed assessment of ectopic implantation is necessary for management decision-making.

  5. Web-Enabled Distributed Health-Care Framework for Automated Malaria Parasite Classification: an E-Health Approach.

    PubMed

    Maity, Maitreya; Dhane, Dhiraj; Mungle, Tushar; Maiti, A K; Chakraborty, Chandan

    2017-10-26

    Web-enabled e-healthcare system or computer assisted disease diagnosis has a potential to improve the quality and service of conventional healthcare delivery approach. The article describes the design and development of a web-based distributed healthcare management system for medical information and quantitative evaluation of microscopic images using machine learning approach for malaria. In the proposed study, all the health-care centres are connected in a distributed computer network. Each peripheral centre manages its' own health-care service independently and communicates with the central server for remote assistance. The proposed methodology for automated evaluation of parasites includes pre-processing of blood smear microscopic images followed by erythrocytes segmentation. To differentiate between different parasites; a total of 138 quantitative features characterising colour, morphology, and texture are extracted from segmented erythrocytes. An integrated pattern classification framework is designed where four feature selection methods viz. Correlation-based Feature Selection (CFS), Chi-square, Information Gain, and RELIEF are employed with three different classifiers i.e. Naive Bayes', C4.5, and Instance-Based Learning (IB1) individually. Optimal features subset with the best classifier is selected for achieving maximum diagnostic precision. It is seen that the proposed method achieved with 99.2% sensitivity and 99.6% specificity by combining CFS and C4.5 in comparison with other methods. Moreover, the web-based tool is entirely designed using open standards like Java for a web application, ImageJ for image processing, and WEKA for data mining considering its feasibility in rural places with minimal health care facilities.

  6. Results of stereotactic radiosurgery for patients with imaging defined cavernous sinus meningiomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollock, Bruce E.; Stafford, Scott L.

    2005-08-01

    Introduction: The purpose of this study was to evaluate the efficacy and safety of stereotactic radiosurgery as primary management for patients with imaging defined cavernous sinus meningiomas. Methods: Between 1992 and 2001, 49 patients had radiosurgery for dural-based masses of the cavernous sinus presumed to be meningiomas. The mean patient age was 55.5 years. The mean tumor volume was 10.2 mL; the mean tumor margin dose was 15.9 Gy. The mean follow-up was 58 months (range, 16-144 months). Results: No tumor enlarged after radiosurgery. Twelve of 38 patients (26%) with preexisting diplopia or facial numbness/pain had improvement in cranial nervemore » function. Five patients (10%) had new (n = 3) or worsened (n = 2) trigeminal dysfunction; 2 of these patients (4%) underwent surgery at 20 and 25 months after radiosurgery despite no evidence of tumor progression. Neither patient improved after partial tumor resection. One patient (2%) developed an oculomotor nerve injury. One patient (2%) had an ischemic stroke related to occlusion of the cavernous segment of the internal carotid artery. Event-free survival was 98%, 85%, and 80% at 1, 3, and 7 years after radiosurgery, respectively. Univariate analysis of patient and dosimetric factors found no analyzed factor correlated with postradiosurgical morbidity. Conclusions: Radiosurgery was an effective primary management strategy for patients with an imaging defined cavernous sinus meningioma. Except in situations of symptomatic mass effect, unusual clinical presentation, or atypical imaging features, surgery to confirm the histologic diagnosis is unlikely to provide clinical benefit.« less

  7. [Mobile phone-computer wireless interactive graphics transmission technology and its medical application].

    PubMed

    Huang, Shuo; Liu, Jing

    2010-05-01

    Application of clinical digital medical imaging has raised many tough issues to tackle, such as data storage, management, and information sharing. Here we investigated a mobile phone based medical image management system which is capable of achieving personal medical imaging information storage, management and comprehensive health information analysis. The technologies related to the management system spanning the wireless transmission technology, the technical capabilities of phone in mobile health care and management of mobile medical database were discussed. Taking medical infrared images transmission between phone and computer as an example, the working principle of the present system was demonstrated.

  8. Multiple template-based image matching using alpha-rooted quaternion phase correlation

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen

    2010-04-01

    In computer vision applications, image matching performed on quality-degraded imagery is difficult due to image content distortion and noise effects. State-of-the art keypoint based matchers, such as SURF and SIFT, work very well on clean imagery. However, performance can degrade significantly in the presence of high noise and clutter levels. Noise and clutter cause the formation of false features which can degrade recognition performance. To address this problem, previously we developed an extension to the classical amplitude and phase correlation forms, which provides improved robustness and tolerance to image geometric misalignments and noise. This extension, called Alpha-Rooted Phase Correlation (ARPC), combines Fourier domain-based alpha-rooting enhancement with classical phase correlation. ARPC provides tunable parameters to control the alpha-rooting enhancement. These parameter values can be optimized to tradeoff between high narrow correlation peaks, and more robust wider, but smaller peaks. Previously, we applied ARPC in the radon transform domain for logo image recognition in the presence of rotational image misalignments. In this paper, we extend ARPC to incorporate quaternion Fourier transforms, thereby creating Alpha-Rooted Quaternion Phase Correlation (ARQPC). We apply ARQPC to the logo image recognition problem. We use ARQPC to perform multiple-reference logo template matching by representing multiple same-class reference templates as quaternion-valued images. We generate recognition performance results on publicly-available logo imagery, and compare recognition results to results generated from standard approaches. We show that small deviations in reference templates of sameclass logos can lead to improved recognition performance using the joint matching inherent in ARQPC.

  9. Multi-modal Registration for Correlative Microscopy using Image Analogies

    PubMed Central

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-01-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943

  10. Intravoxel Incoherent Motion MR Imaging in the Head and Neck: Correlation with Dynamic Contrast-Enhanced MR Imaging and Diffusion-Weighted Imaging.

    PubMed

    Xu, Xiao Quan; Choi, Young Jun; Sung, Yu Sub; Yoon, Ra Gyoung; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Baek, Jung Hwan; Lee, Jeong Hyun

    2016-01-01

    To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D(*)), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D(*) and model-free parameters from the DCE-MRI (wash-in, Tmax, Emax, initial AUC60, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D(*) and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D(*) (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck.

  11. Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers

    NASA Astrophysics Data System (ADS)

    Haring, Martijn T.; Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Voortman, Lenard M.; Kruit, Pieter; Hoogenboom, Jacob P.

    2017-03-01

    In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample.

  12. Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers.

    PubMed

    Haring, Martijn T; Liv, Nalan; Zonnevylle, A Christiaan; Narvaez, Angela C; Voortman, Lenard M; Kruit, Pieter; Hoogenboom, Jacob P

    2017-03-02

    In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample.

  13. Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers

    PubMed Central

    Haring, Martijn T.; Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Voortman, Lenard M.; Kruit, Pieter; Hoogenboom, Jacob P.

    2017-01-01

    In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample. PMID:28252673

  14. THE CELL CENTERED DATABASE PROJECT: AN UPDATE ON BUILDING COMMUNITY RESOURCES FOR MANAGING AND SHARING 3D IMAGING DATA

    PubMed Central

    Martone, Maryann E.; Tran, Joshua; Wong, Willy W.; Sargis, Joy; Fong, Lisa; Larson, Stephen; Lamont, Stephan P.; Gupta, Amarnath; Ellisman, Mark H.

    2008-01-01

    Databases have become integral parts of data management, dissemination and mining in biology. At the Second Annual Conference on Electron Tomography, held in Amsterdam in 2001, we proposed that electron tomography data should be shared in a manner analogous to structural data at the protein and sequence scales. At that time, we outlined our progress in creating a database to bring together cell level imaging data across scales, The Cell Centered Database (CCDB). The CCDB was formally launched in 2002 as an on-line repository of high-resolution 3D light and electron microscopic reconstructions of cells and subcellular structures. It contains 2D, 3D and 4D structural and protein distribution information from confocal, multiphoton and electron microscopy, including correlated light and electron microscopy. Many of the data sets are derived from electron tomography of cells and tissues. In the five years since its debut, we have moved the CCDB from a prototype to a stable resource and expanded the scope of the project to include data management and knowledge engineering. Here we provide an update on the CCDB and how it is used by the scientific community. We also describe our work in developing additional knowledge tools, e.g., ontologies, for annotation and query of electron microscopic data. PMID:18054501

  15. Correlative cryogenic tomography of cells using light and soft x-rays

    PubMed Central

    Smith, Elizabeth A.; Cinquin, Bertrand P.; Do, Myan; McDermott, Gerry; Le Gros, Mark A.; Larabell, Carolyn A.

    2013-01-01

    Correlated imaging is the process of imaging a specimen with two complementary modalities, and then combining the two data sets to create a highly informative, composite view. A recent implementation of this concept has been the combination of soft x-ray tomography (SXT) with fluorescence cryogenic microscopy (FCM). SXT-FCM is used to visualize cells that are held in a near-native, cryo-preserved state. The resultant images are, therefore, highly representative of both the cellular architecture and molecular organization in vivo. SXT quantitatively visualizes the cell and sub-cellular structures; FCM images the spatial distribution of fluorescently labeled molecules. Here, we review the characteristics of SXT-FCM, and briefly discuss how this method compares with existing correlative imaging techniques. We also describe how the incorporation of a cryo-rotation stage into a cryogenic fluorescence microscope allows acquisition of fluorescence cryogenic tomography (FCT) data. FCT is optimally suited to correlation with SXT, since both techniques image the specimen in 3-D, potentially with similar, isotropic spatial resolution. PMID:24355261

  16. Research for Key Techniques of Geophysical Recognition System of Hydrocarbon-induced Magnetic Anomalies Based on Hydrocarbon Seepage Theory

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Hao, T.; Zhao, B.

    2009-12-01

    Hydrocarbon seepage effects can cause magnetic alteration zones in near surface, and the magnetic anomalies induced by the alteration zones can thus be used to locate oil-gas potential regions. In order to reduce the inaccuracy and multi-resolution of the hydrocarbon anomalies recognized only by magnetic data, and to meet the requirement of integrated management and sythetic analysis of multi-source geoscientfic data, it is necessary to construct a recognition system that integrates the functions of data management, real-time processing, synthetic evaluation, and geologic mapping. In this paper research for the key techniques of the system is discussed. Image processing methods can be applied to potential field images so as to make it easier for visual interpretation and geological understanding. For gravity or magnetic images, the anomalies with identical frequency-domain characteristics but different spatial distribution will reflect differently in texture and relevant textural statistics. Texture is a description of structural arrangements and spatial variation of a dataset or an image, and has been applied in many research fields. Textural analysis is a procedure that extracts textural features by image processing methods and thus obtains a quantitative or qualitative description of texture. When the two kinds of anomalies have no distinct difference in amplitude or overlap in frequency spectrum, they may be distinguishable due to their texture, which can be considered as textural contrast. Therefore, for the recognition system we propose a new “magnetic spots” recognition method based on image processing techniques. The method can be divided into 3 major steps: firstly, separate local anomalies caused by shallow, relatively small sources from the total magnetic field, and then pre-process the local magnetic anomaly data by image processing methods such that magnetic anomalies can be expressed as points, lines and polygons with spatial correlation, which includes histogram-equalization based image display, object recognition and extraction; then, mine the spatial characteristics and correlations of the magnetic anomalies using textural statistics and analysis, and study the features of known anomalous objects (closures, hydrocarbon-bearing structures, igneous rocks, etc.) in the same research area; finally, classify the anomalies, cluster them according to their similarity, and predict hydrocarbon induced “magnetic spots” combined with geologic, drilling and rock core data. The system uses the ArcGIS as the secondary development platform, inherits the basic functions of the ArcGIS, and develops two main sepecial functional modules, the module for conventional potential-field data processing methods and the module for feature extraction and enhancement based on image processing and analysis techniques. The system can be applied to realize the geophysical detection and recognition of near-surface hydrocarbon seepage anomalies, provide technical support for locating oil-gas potential regions, and promote geophysical data processing and interpretation to advance more efficiently.

  17. Non-Uniformly Sampled MR Correlated Spectroscopic Imaging in Breast Cancer and Nonlinear Reconstruction

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0524 TITLE: Non-Uniformly Sampled MR Correlated Spectroscopic Imaging in Breast Cancer and Nonlinear Reconstruction...author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other...COVERED 30 Sep 2016 - 29 Sep 2017 5a. CONTRACT NUMBER 4. TITLE AND SUBTITLE Non-Uniformly Sampled MR Correlated Spectroscopic Imaging in Breast

  18. Image correlation nondestructive evaluation of impact damage in a glass fiber composite

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.

    1990-01-01

    Presented in viewgraph format, digital image correlation, damage in fibrous composites, and damaged coupons (cross-ply scotchply GI-Ep laminate) are outlined. It was concluded that the image correlation accuracy was 0.03 percent; strains can be processed through Tsai-Hill failure criteria to qualify the damage; the statistical data base must be generated to evaluate certainty of the damage estimate; size effects need consideration; and better numerical techniques are needed.

  19. Spatiotemporal image correlation analysis of blood flow in branched vessel networks of zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Ceffa, Nicolo G.; Cesana, Ilaria; Collini, Maddalena; D'Alfonso, Laura; Carra, Silvia; Cotelli, Franco; Sironi, Laura; Chirico, Giuseppe

    2017-10-01

    Ramification of blood circulation is relevant in a number of physiological and pathological conditions. The oxygen exchange occurs largely in the capillary bed, and the cancer progression is closely linked to the angiogenesis around the tumor mass. Optical microscopy has made impressive improvements in in vivo imaging and dynamic studies based on correlation analysis of time stacks of images. Here, we develop and test advanced methods that allow mapping the flow fields in branched vessel networks at the resolution of 10 to 20 μm. The methods, based on the application of spatiotemporal image correlation spectroscopy and its extension to cross-correlation analysis, are applied here to the case of early stage embryos of zebrafish.

  20. Improved display of cervical intervertebral discs on water (iodine) images: incidental findings from single-source dual-energy CT angiography of head and neck arteries.

    PubMed

    Wu, Qingxia; Shi, Dapeng; Cheng, Tianming; Liu, Hongming; Hu, Niuniu; Chang, Xiaowan; Guo, Ying; Wang, Meiyun

    2018-06-19

    To (a) assess the diagnostic performance of material decomposition (MD) water (iodine) images for the evaluation of cervical intervertebral discs (IVDs) in patients who underwent dual-energy head and neck CT angiography (HNCTA) compared with 70-keV images and (b) to explore the correlation of water concentration with the T2 relaxation time of IVDs. Twenty-four consecutive patients who underwent dual-energy HNCTA and cervical spine MRI were studied. The diagnostic performance of water (iodine), 70-keV and MR images for IVD bulge and herniation was assessed. A subjective image score for each image set was recorded. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of IVDs to the cervical spinal cord were compared between water (iodine) and 70-keV images. Disc water concentration as measured on water (iodine) images was correlated with T2 relaxation time. IVD evaluations for bulge and herniation did not differ significantly among the three image sets (pairwise comparisons; all p > 0.05). SNR and CNR were significantly improved on water (iodine) images compared with those on 70-keV images (p < 0.001). Although water (iodine) images showed higher image quality scores when evaluating IVDs compared with 70-keV images, the difference is not significant (all adjusted p > 0.05). IVD water concentration exhibited no correlation with relative T2 relaxation time (all p > 0.05). Water (iodine) images facilitated analysis of cervical IVDs by providing higher SNR and CNR compared with 70-keV images. The disc water concentration measured on water (iodine) images exhibited no correlation with relative T2 relaxation time. • There was no significant difference in cervical IVD evaluations for bulge and herniation among water (iodine) images, 70-keV images and MR images. • Water (iodine) images provided higher objective and subjective image quality than 70-keV images, though the difference of subjective evaluation was not statistically significant. • The disc water concentration exhibited no correlation with relative T2 relaxation time, which reflects the inferiority of the water (iodine) images in evaluating disc water content compared with T2 maps.

  1. A framework for marketing image management.

    PubMed

    Barich, H; Kotler, P

    1991-01-01

    Managers know that the customer's impression of an organization is important. And sometimes companies attempt to determine just what that impression is. They conduct ad hoc surveys and focus groups. But too often the data is insubstantial, or difficult to analyze, or even inaccurate. Barich and Kotler introduce the concept of "marketing image" and describe a system of image management: designing a study, collecting data, analyzing image problems, modifying the image, and tracking responses to that image. They argue that only a systematic approach will yield useful and accurate information that a company can translate into action.

  2. Surface rupture and slip distribution of the 2016 Mw7.8 Kaikoura earthquake (New Zealand) from optical satellite image correlation using MicMac

    NASA Astrophysics Data System (ADS)

    Champenois, Johann; Klinger, Yann; Grandin, Raphaël; Satriano, Claudio; Baize, Stéphane; Delorme, Arthur; Scotti, Oona

    2017-04-01

    Remote sensing techniques, like optical satellite image correlation, are very efficient methods to localize and quantify surface displacements due to earthquakes. In this study, we use the french sub-pixel correlator MicMac (Multi Images Correspondances par Méthodes Automatiques de Corrélation). This free open-source software, developed by IGN, was recently adapted to process satellite images. This correlator uses regularization, and that provides good results especially in near-fault area with a high spatial resolution. We use co-seismic pair of ortho-images to measure the horizontal displacement field during the recent 2016 Mw7.8 Kaikoura earthquake. Optical satellite images from different satellites are processed (Sentinel-2A, Landsat8, etc.) to present a dense map of the surface ruptures and to analyze high density slip distribution along all major ruptures. We also provide a detail pattern of deformation along these main surface ruptures. Moreover, 2D displacement from optical correlation is compared to co-seismic measurements from GPS, static displacement from accelerometric records, geodetic marks and field investigations. Last but not least, we investigate the reconstruction of 3D displacement from combining InSAR, GPS and optic.

  3. Toward a perceptual image quality assessment of color quantized images

    NASA Astrophysics Data System (ADS)

    Frackiewicz, Mariusz; Palus, Henryk

    2018-04-01

    Color image quantization is an important operation in the field of color image processing. In this paper, we consider new perceptual image quality metrics for assessment of quantized images. These types of metrics, e.g. DSCSI, MDSIs, MDSIm and HPSI achieve the highest correlation coefficients with MOS during tests on the six publicly available image databases. Research was limited to images distorted by two types of compression: JPG and JPG2K. Statistical analysis of correlation coefficients based on the Friedman test and post-hoc procedures showed that the differences between the four new perceptual metrics are not statistically significant.

  4. Measurement of the Young's modulus of thin or flexible specimen with digital-image correlation method

    NASA Astrophysics Data System (ADS)

    Xu, Lianyun; Hou, Zhende; Qin, Yuwen

    2002-05-01

    Because some composite material, thin film material, and biomaterial, are very thin and some of them are flexible, the classical methods for measuring their Young's moduli, by mounting extensometers on specimens, are not available. A bi-image method based on image correlation for measuring Young's moduli is developed in this paper. The measuring precision achieved is one order enhanced with general digital image correlation or called single image method. By this way, the Young's modulus of a SS301 stainless steel thin tape, with thickness 0.067mm, is measured, and the moduli of polyester fiber films, a kind of flexible sheet with thickness 0.25 mm, are also measured.

  5. Characterization of Carbonate Hydrostratigraphy Using Ambient Seismic Noise: A Pilot Study in the Floridan Aquifer System, Ocala, FL, USA

    NASA Astrophysics Data System (ADS)

    James, S.; Screaton, E.; Russo, R. M.; Panning, M. P.; Bremner, P. M.; Stanciu, A. C.; Torpey, M. E.; Hongsresawat, S.; Farrell, M. E.

    2014-12-01

    Defining zones of high and low hydraulic conductivity within aquifers is vital to hydrogeologic research and groundwater management. Carbonate aquifers are particularly difficult to characterize due to dissolution and dolomitization. We investigated a new imaging technique for aquifer characterization that uses cross-correlation of ambient seismic noise to determine seismic velocity structure. Differences in densities between confining units and high permeability flow zones can produce distinct seismic velocities in the correlated signals. We deployed an array of 9 short period geophones from 11/2013 to 3/2014 in Indian Lake State Forest, Florida, to determine if the high frequency diffusive seismic wavefield can be used for imaging hydrostratigraphy. Here, a thin surficial layer of siliciclastic deposits overlie a ~ 0.6 km sequence of Cenozoic limestone and dolomite units that comprise the Floridan Aquifer System (FAS). A low permeability dolomite unit vertically divides the FAS throughout most of Florida. Deep boreholes surrounding the site constrain hydrostratigraphy, however the horizontal continuity of the middle dolomite unit as well as its effectiveness as a confining unit in the study area are not well known. The stations were spaced at distances ranging from 0.18 to 2.6 km, and yielded 72 cross-correlation Green's functions for Rayleigh wave propagation at frequencies between 0.2 and 40 Hz, with dominant peaks around 0.8 Hz, 3 Hz and 13 Hz. Local vehicle traffic did interfere to a degree with the correlation of the diffuse waves, but was minimized by using only nighttime data. At the lowest frequencies (greatest depths) investigated, velocities increase with depth; however, correlations become less coherent at higher frequencies, perhaps due to shallow complex scattering. Comparison of cross-correlations for all station pairs also indicates spatial variations in velocity. Thus, the method shows promise for characterization of the heterogeneity of the Floridan Aquifer System.

  6. Connecting Digital Repeat Photography to Ecosystem Fluxes in Inland Pacific Northwest, US Cropping Systems

    NASA Astrophysics Data System (ADS)

    Russell, E.; Chi, J.; Waldo, S.; Pressley, S. N.; Lamb, B. K.; Pan, W.

    2017-12-01

    Diurnal and seasonal gas fluxes vary by crop growth stage. Digital cameras are increasingly being used to monitor inter-annual changes in vegetation phenology in a variety of ecosystems. These cameras are not designed as scientific instruments but the information they gather can add value to established measurement techniques (i.e. eddy covariance). This work combined deconstructed digital images with eddy covariance data from five agricultural sites (1 fallow, 4 cropped) in the inland Pacific Northwest, USA. The data were broken down with respect to crop stage and management activities. The fallow field highlighted the camera response to changing net radiation, illumination, and rainfall. At the cropped sites, the net ecosystem exchange, gross primary production, and evapotranspiration were correlated with the greenness and redness values derived from the images over the growing season. However, the color values do not change quickly enough to respond to day-to-day variability in the flux exchange as the two measurement types are based on different processes. The management practices and changes in phenology through the growing season were not visible within the camera data though the camera did capture the general evolution of the ecosystem fluxes.

  7. The psychopath magnetized: insights from brain imaging

    PubMed Central

    Anderson, Nathaniel E.; Kiehl, Kent A.

    2014-01-01

    Psychopaths commit a disproportionate amount of violent crime, and this places a substantial economic and emotional burden on society. Elucidation of the neural correlates of psychopathy may lead to improved management and treatment of the condition. Although some methodological issues remain, the neuroimaging literature is generally converging on a set of brain regions and circuits that are consistently implicated in the condition: the orbitofrontal cortex, amygdala, and the anterior and posterior cingulate and adjacent (para)limbic structures. We discuss these findings in the context of extant theories of psychopathy and highlight the potential legal and policy implications of this body of work. PMID:22177031

  8. Optical correlators for automated rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1991-01-01

    The paper begins with a description of optical correlation. In this process, the propagation physics of coherent light is used to process images and extract information. The processed image is operated on as an area, rather than as a collection of points. An essentially instantaneous convolution is performed on that image to provide the sensory data. In this process, an image is sensed and encoded onto a coherent wavefront, and the propagation is arranged to create a bright spot of the image to match a model of the desired object. The brightness of the spot provides an indication of the degree of resemblance of the viewed image to the mode, and the location of the bright spot provides pointing information. The process can be utilized for AR&C to achieve the capability to identify objects among known reference types, estimate the object's location and orientation, and interact with the control system. System characteristics (speed, robustness, accuracy, small form factors) are adequate to meet most requirements. The correlator exploits the fact that Bosons and Fermions pass through each other. Since the image source is input as an electronic data set, conventional imagers can be used. In systems where the image is input directly, the correlating element must be at the sensing location.

  9. Non-isotropic noise correlation in PET data reconstructed by FBP but not by OSEM demonstrated using auto-correlation function.

    PubMed

    Razifar, Pasha; Lubberink, Mark; Schneider, Harald; Långström, Bengt; Bengtsson, Ewert; Bergström, Mats

    2005-05-13

    BACKGROUND: Positron emission tomography (PET) is a powerful imaging technique with the potential of obtaining functional or biochemical information by measuring distribution and kinetics of radiolabelled molecules in a biological system, both in vitro and in vivo. PET images can be used directly or after kinetic modelling to extract quantitative values of a desired physiological, biochemical or pharmacological entity. Because such images are generally noisy, it is essential to understand how noise affects the derived quantitative values. A pre-requisite for this understanding is that the properties of noise such as variance (magnitude) and texture (correlation) are known. METHODS: In this paper we explored the pattern of noise correlation in experimentally generated PET images, with emphasis on the angular dependence of correlation, using the autocorrelation function (ACF). Experimental PET data were acquired in 2D and 3D acquisition mode and reconstructed by analytical filtered back projection (FBP) and iterative ordered subsets expectation maximisation (OSEM) methods. The 3D data was rebinned to a 2D dataset using FOurier REbinning (FORE) followed by 2D reconstruction using either FBP or OSEM. In synthetic images we compared the ACF results with those from covariance matrix. The results were illustrated as 1D profiles and also visualized as 2D ACF images. RESULTS: We found that the autocorrelation images from PET data obtained after FBP were not fully rotationally symmetric or isotropic if the object deviated from a uniform cylindrical radioactivity distribution. In contrast, similar autocorrelation images obtained after OSEM reconstruction were isotropic even when the phantom was not circular. Simulations indicated that the noise autocorrelation is non-isotropic in images created by FBP when the level of noise in projections is angularly variable. Comparison between 1D cross profiles on autocorrelation images obtained by FBP reconstruction and covariance matrices produced almost identical results in a simulation study. CONCLUSION: With asymmetric radioactivity distribution in PET, reconstruction using FBP, in contrast to OSEM, generates images in which the noise correlation is non-isotropic when the noise magnitude is angular dependent, such as in objects with asymmetric radioactivity distribution. In this respect, iterative reconstruction is superior since it creates isotropic noise correlations in the images.

  10. Digital Correlation In Laser-Speckle Velocimetry

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.; Mathys, Donald R.

    1992-01-01

    Periodic recording helps to eliminate spurious results. Improved digital-correlation process extracts velocity field of two-dimensional flow from laser-speckle images of seed particles distributed sparsely in flow. Method which involves digital correlation of images recorded at unequal intervals, completely automated and has potential to be fastest yet.

  11. An Image Archive With The ACR/NEMA Message Formats

    NASA Astrophysics Data System (ADS)

    Seshadri, Sridhar B.; Khalsa, Satjeet; Arenson, Ronald L.; Brikman, Inna; Davey, Michael J.

    1988-06-01

    An image archive has been designed to manage and store radiologic images received from within the main Hospital and a from a suburban orthopedic clinic. Images are stored on both magnetic as well as optical media. Prior comparison examinations are combined with the current examination to generate a 'viewing folder' that is sent to the display station for primary diagnosis. An 'archive-manager' controls the database managment, periodic optical disk backup and 'viewing-folder' generation. Images are converted into the ACR/NEMA message format before being written to the optical disk. The software design of the 'archive-manager' and its associated modules is presented. Enhancements to the system are discussed.

  12. Microvax-based data management and reduction system for the regional planetary image facilities

    NASA Technical Reports Server (NTRS)

    Arvidson, R.; Guinness, E.; Slavney, S.; Weiss, B.

    1987-01-01

    Presented is a progress report for the Regional Planetary Image Facilities (RPIF) prototype image data management and reduction system being jointly implemented by Washington University and the USGS, Flagstaff. The system will consist of a MicroVAX with a high capacity (approx 300 megabyte) disk drive, a compact disk player, an image display buffer, a videodisk player, USGS image processing software, and SYSTEM 1032 - a commercial relational database management package. The USGS, Flagstaff, will transfer their image processing software including radiometric and geometric calibration routines, to the MicroVAX environment. Washington University will have primary responsibility for developing the database management aspects of the system and for integrating the various aspects into a working system.

  13. Computer-Aided Nodule Assessment and Risk Yield Risk Management of Adenocarcinoma: The Future of Imaging?

    PubMed

    Foley, Finbar; Rajagopalan, Srinivasan; Raghunath, Sushravya M; Boland, Jennifer M; Karwoski, Ronald A; Maldonado, Fabien; Bartholmai, Brian J; Peikert, Tobias

    2016-01-01

    Increased clinical use of chest high-resolution computed tomography results in increased identification of lung adenocarcinomas and persistent subsolid opacities. However, these lesions range from very indolent to extremely aggressive tumors. Clinically relevant diagnostic tools to noninvasively risk stratify and guide individualized management of these lesions are lacking. Research efforts investigating semiquantitative measures to decrease interrater and intrarater variability are emerging, and in some cases steps have been taken to automate this process. However, many such methods currently are still suboptimal, require validation and are not yet clinically applicable. The computer-aided nodule assessment and risk yield software application represents a validated tool for the automated, quantitative, and noninvasive tool for risk stratification of adenocarcinoma lung nodules. Computer-aided nodule assessment and risk yield correlates well with consensus histology and postsurgical patient outcomes, and therefore may help to guide individualized patient management, for example, in identification of nodules amenable to radiological surveillance, or in need of adjunctive therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. CANARY Risk Management of Adenocarcinoma: The Future of Imaging?

    PubMed Central

    Foley, Finbar; Rajagopalan, Srinivasan; Raghunath, Sushravya M; Boland, Jennifer M; Karwoski, Ronald A.; Maldonado, Fabien; Bartholmai, Brian J; Peikert, Tobias

    2016-01-01

    Increased clinical utilization of chest high resolution computed tomography results in increased identification of lung adenocarcinomas and persistent sub-solid opacities. However, these lesions range from very indolent to extremely aggressive tumors. Clinically relevant diagnostic tools to non-invasively risk stratify and guide individualized management of these lesions are lacking. Research efforts investigating semi-quantitative measures to decrease inter- and intra-rater variability are emerging, and in some cases steps have been taken to automate this process. However, many such methods currently are still sub-optimal, require validation and are not yet clinically applicable. The Computer-Aided Nodule Assessment and Risk Yield (CANARY) software application represents a validated tool for the automated, quantitative, non-invasive tool for risk stratification of adenocarcinoma lung nodules. CANARY correlates well with consensus histology and post-surgical patient outcomes and therefore may help to guide individualized patient management e.g. in identification of nodules amenable to radiological surveillance, or in need of adjunctive therapy. PMID:27568149

  15. Environmental management and firm performance: a case study.

    PubMed

    Claver, Enrique; López, María D; Molina, José F; Tarí, Juan J

    2007-09-01

    This study has as its aim to help to clarify the relationship between environmental management and economic performance by integrating it into a wider framework that includes the relationship between environmental strategy and firm performance, the latter being understood as the combination of environmental performance, competitive advantage and economic performance. A case study of the COATO farming cooperative showed us that its environmental management, focused on prevention logic, has had a positive net effect on its environmental performance. Besides, the order in which these practices were adopted favoured the development of new organisational capabilities that have contributed to the appearance of advantages derived from the greater accumulated experience of employees in creating new projects that are designed to reduce residues and pollution. COATO has also obtained a competitive advantage in differentiation thanks to an improved brand image and to its increased credibility in business relationships. Finally, a positive correlation exists between the pioneering proactive strategy adopted by this cooperative and the improvement of its firm performance with respect to the other firms in its sector.

  16. Applying Amide Proton Transfer MR Imaging to Hybrid Brain PET/MR: Concordance with Gadolinium Enhancement and Added Value to [18F]FDG PET.

    PubMed

    Sun, Hongzan; Xin, Jun; Zhou, Jinyuan; Lu, Zaiming; Guo, Qiyong

    2018-06-01

    The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[ 18 F-]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI. Twenty-one subjects underwent brain gadolinium-enhanced [ 18 F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [ 18 F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis. APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [ 18 F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P < 0.05) and no correlation for the remaining six [ 18 F]FDG-avid tumors. APT imaging can be used to increase diagnostic accuracy with no need to administer gadolinium chelates. APT imaging may provide an added value to [ 18 F]FDG PET in the evaluation of tumor metabolic activity during brain PET/MR studies.

  17. Reconnaissance invariante d'objets 3-D et correlation SONG

    NASA Astrophysics Data System (ADS)

    Roy, Sebastien

    Cette these propose des solutions a deux problemes de la reconnaissance automatique de formes: la reconnaissance invariante d'objets tridimensionnels a partir d'images d'intensite et la reconnaissance robuste a la presence de bruit disjoint. Un systeme utilisant le balayage angulaire des images et un classificateur par trajectoires d'espace des caracteristiques permet d'obtenir la reconnaissance invariante d'objets tridimensionnels. La reconnaissance robuste a la presence de bruit disjoint est realisee au moyen de la correlation SONG. Nous avons realise la reconnaissance invariante aux translations, rotations et changements d'echelle d'objets tridimensionnels a partir d'images d'intensite segmentees. Nous utilisons le balayage angulaire et un classificateur a trajectoires d'espace des caracteris tiques. Afin d'obtenir l'invariance aux translations, le centre de balayage angulaire coincide avec le centre geometrique de l'image. Le balayage angulaire produit un vecteur de caracteristiques invariant aux changements d'echelle de l'image et il transforme en translations du signal les rotations autour d'un axe parallele a la ligne de visee. Le classificateur par trajectoires d'espace des caracteristiques represente une rotation autour d'un axe perpendiculaire a la ligne de visee par une courbe dans l'espace. La classification se fait par la mesure de la distance du vecteur de caracteristiques de l'image a reconnaitre aux trajectoires stockees dans l'espace. Nos resultats numeriques montrent un taux de classement atteignant 98% sur une banque d'images composee de 5 vehicules militaires. La correlation non-lineaire generalisee en tranches orthogonales (SONG) traite independamment les niveaux de gris presents dans une image. Elle somme les correlations lineaires des images binaires ayant le meme niveau de gris. Cette correlation est equivalente a compter le nombre de pixels situes aux memes positions relatives et ayant les memes intensites sur deux images. Nous presentons une realisation opto-electronique de la correlation SONG. Cette realisation utilise le correlateur a transformees conjointes. Les resultats des experiences numeriques et optiques montrent que le bruit disjoint ne nuit pas a la correlation SONG.

  18. Decorrelation of L-band and C-band interferometry to volcanic risk prevention

    NASA Astrophysics Data System (ADS)

    Malinverni, E. S.; Sandwell, D.; Tassetti, A. N.; Cappelletti, L.

    2013-10-01

    SAR has several strong key features: fine spatial resolution/precision and high temporal pass frequency. Moreover, the InSAR technique allows the accurate detection of ground deformations. This high potential technology can be invaluable to study volcanoes: it provides important information on pre-eruption surface deformation, improving the understanding of volcanic processes and the ability to predict eruptions. As a downside, SAR measurements are influenced by artifacts such as atmospheric effects or bad topographic data. Correlation gives a measure of these interferences, quantifying the similarity of the phase of two SAR images. Different approaches exists to reduce these errors but the main concern remain the possibility to correlate images with different acquisition times: snow-covered or heavily-vegetated areas produce seasonal changes on the surface. Minimizing the time between passes partly limits decorrelation. Though, images with a short temporal baseline aren't always available and some artifacts affecting correlation are timeindependent. This work studies correlation of pairs of SAR images focusing on the influence of surface and climate conditions, especially snow coverage and temperature. Furthermore, the effects of the acquisition band on correlation are taken into account, comparing L-band and C-band images. All the chosen images cover most of the Yellowstone caldera (USA) over a span of 4 years, sampling all the seasons. Interferograms and correlation maps are generated. To isolate temporal decorrelation, pairs of images with the shortest baseline are chosen. Correlation maps are analyzed in relation to snow depth and temperature. Results obtained with ENVISAT and ERS satellites (C-band) are compared with the ones from ALOS (L-band). Results show a good performance during winter and a bad attitude towards wet snow (spring and fall). During summer both L-band and C-band maintain a good coherence with L-band performing better over vegetation.

  19. Local image variance of 7 Tesla SWI is a new technique for preoperative characterization of diffusely infiltrating gliomas: correlation with tumour grade and IDH1 mutational status.

    PubMed

    Grabner, Günther; Kiesel, Barbara; Wöhrer, Adelheid; Millesi, Matthias; Wurzer, Aygül; Göd, Sabine; Mallouhi, Ammar; Knosp, Engelbert; Marosi, Christine; Trattnig, Siegfried; Wolfsberger, Stefan; Preusser, Matthias; Widhalm, Georg

    2017-04-01

    To investigate the value of local image variance (LIV) as a new technique for quantification of hypointense microvascular susceptibility-weighted imaging (SWI) structures at 7 Tesla for preoperative glioma characterization. Adult patients with neuroradiologically suspected diffusely infiltrating gliomas were prospectively recruited and 7 Tesla SWI was performed in addition to standard imaging. After tumour segmentation, quantification of intratumoural SWI hypointensities was conducted by the SWI-LIV technique. Following surgery, the histopathological tumour grade and isocitrate dehydrogenase 1 (IDH1)-R132H mutational status was determined and SWI-LIV values were compared between low-grade gliomas (LGG) and high-grade gliomas (HGG), IDH1-R132H negative and positive tumours, as well as gliomas with significant and non-significant contrast-enhancement (CE) on MRI. In 30 patients, 9 LGG and 21 HGG were diagnosed. The calculation of SWI-LIV values was feasible in all tumours. Significantly higher mean SWI-LIV values were found in HGG compared to LGG (92.7 versus 30.8; p < 0.0001), IDH1-R132H negative compared to IDH1-R132H positive gliomas (109.9 versus 38.3; p < 0.0001) and tumours with significant CE compared to non-significant CE (120.1 versus 39.0; p < 0.0001). Our data indicate that 7 Tesla SWI-LIV might improve preoperative characterization of diffusely infiltrating gliomas and thus optimize patient management by quantification of hypointense microvascular structures. • 7 Tesla local image variance helps to quantify hypointense susceptibility-weighted imaging structures. • SWI-LIV is significantly increased in high-grade and IDH1-R132H negative gliomas. • SWI-LIV is a promising technique for improved preoperative glioma characterization. • Preoperative management of diffusely infiltrating gliomas will be optimized.

  20. Fetal Urinary Tract Anomalies: Review of Pathophysiology, Imaging, and Management.

    PubMed

    Mileto, Achille; Itani, Malak; Katz, Douglas S; Siebert, Joseph R; Dighe, Manjiri K; Dubinsky, Theodore J; Moshiri, Mariam

    2018-05-01

    Common fetal anomalies of the kidneys and urinary tract encompass a complex spectrum of abnormalities that can be detected prenatally by ultrasound. Common fetal anomalies of the kidneys and urinary tract can affect amniotic fluid volume production with the development of oligohydramnios or anhydramnios, resulting in fetal pulmonary hypoplasia and, potentially, abnormal development of other fetal structures. We provide an overview of common fetal anomalies of the kidneys and urinary tract with an emphasis on sonographic patterns as well as pathologic and postnatal correlation, along with brief recommendations for postnatal management. Of note, we render an updated classification of fetal abnormalities of the kidneys and urinary tract based on the presence or absence of associated urinary tract dilation. In addition, we review the 2014 classification of urinary tract dilation based on the Linthicum multidisciplinary consensus panel.

  1. Comparison between DMSP-OLS and S-NPP Day-Night Band in Correlating with Regional Socio-economic Variables

    NASA Astrophysics Data System (ADS)

    Jing, X.; Shao, X.; Cao, C.; Fu, X.

    2013-12-01

    Night-time light imagery offers a unique view of the Earth's surface. In the past, the nighttime light data collected by the DMSP-OLS sensors have been used as efficient means to correlate with the global socio-economic activities. With the launch of Suomi National Polar-orbiting Partnership (S-NPP) satellite in October 2011, the Day Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard S-NPP represents a major advancement in night time imaging capabilities because it surpassed its predecessor DMSP-OLS in radiometric accuracy, spatial resolution, and geometric quality. In this paper, we compared the performance of DNB image and DMSP image in correlating regional socio-economic activities and analyzed the leading causes for the differences. The correlation coefficients between the socio-economic variables such as population, regional GDP etc. and the characteristic variables derived from the night time light images of DNB and DMSP at provincial level in China were computed as performance metrics for comparison. In general, the correlation between DNB data and socio-economic data is better than that of DMSP data. To explain the difference in the correlation, we further analyzed the effects of several factors such as radiometric saturation and quantization of DMSP data, low spatial resolution, different data acquisition times between DNB and DMSP images, and difference in the transformation used in converting digital number (DN) value to radiance.

  2. Diagnostic strategies for urinary tract infections in French general practice.

    PubMed

    Kinouani, S; de Lary de Latour, H; Joseph, J-P; Letrilliart, L

    2017-10-01

    We aimed to describe the diagnostic management procedures for detection of urinary tract infections in general practice and their correlated factors. We analyzed data from the ECOGEN study on urinary tract infections, collected in France between November 2011 and April 2012. This national cross-sectional study was carried out in general practices. Data was coded according to the International Classification of Primary Care. A total of 340 consultations or home visits were held for urinary tract infections. The five most frequent diagnostic procedures were (in descending order) clinical examination (67.6%), urine cytobacteriological examination (UCBE) (47.9%), urine dipstick test (15.6%), blood test (8.5%), and imaging (6.5%). No urine dipstick test or UCBE was performed in 43% of cases. Factors correlated with diagnostic procedures were age and gender of patients, annual number of consultations held by family physicians, and duration of consultation. Family physicians did not comply with guidelines on diagnostic management for detection of urinary tract infections. We hypothesized that this non-compliance could be due to the family physicians' environment and characteristics, and to clinical practice guidelines. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Digital management and regulatory submission of medical images from clinical trials: role and benefits of the core laboratory

    NASA Astrophysics Data System (ADS)

    Robbins, William L.; Conklin, James J.

    1995-10-01

    Medical images (angiography, CT, MRI, nuclear medicine, ultrasound, x ray) play an increasingly important role in the clinical development and regulatory review process for pharmaceuticals and medical devices. Since medical images are increasingly acquired and archived digitally, or are readily digitized from film, they can be visualized, processed and analyzed in a variety of ways using digital image processing and display technology. Moreover, with image-based data management and data visualization tools, medical images can be electronically organized and submitted to the U.S. Food and Drug Administration (FDA) for review. The collection, processing, analysis, archival, and submission of medical images in a digital format versus an analog (film-based) format presents both challenges and opportunities for the clinical and regulatory information management specialist. The medical imaging 'core laboratory' is an important resource for clinical trials and regulatory submissions involving medical imaging data. Use of digital imaging technology within a core laboratory can increase efficiency and decrease overall costs in the image data management and regulatory review process.

  4. Bilateral filtering using the full noise covariance matrix applied to x-ray phase-contrast computed tomography.

    PubMed

    Allner, S; Koehler, T; Fehringer, A; Birnbacher, L; Willner, M; Pfeiffer, F; Noël, P B

    2016-05-21

    The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields.

  5. Parathyroid adenoma associated with neurofibromatosis: Correlative scintigraphic and magnetic resonance imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogelzang, P.J.; Oates, E.; Bankoff, M.S.

    Correlative imaging by dual-isotope thallium/technetium subtraction scintigraphy, computed tomography, and magnetic resonance imaging demonstrated a pathologically proven parathyroid adenoma in a 62-year-old man with known neurofibromatosis, who presented with hypercalcemia and an elevated parathormone level. The association between neurofibromatosis and primary hyperparathyroidism is discussed.

  6. Managing polycystic ovary syndrome: what our patients are telling us.

    PubMed

    Crete, Joan; Adamshick, Pamela

    2011-12-01

    Women with polycystic ovary syndrome (PCOS) experience symptoms such as irregular menses, hirsutism, and acne, and are at heightened risk for developing obesity, metabolic syndrome, diabetes mellitus, infertility, and some cancers. Data also indicate an inverse correlation between PCOS and health-related quality-of-life indicators and self-image. The purpose of this study was to describe the lived experience of women with PCOS in the management of their disorder and the meaning of that experience for them. This qualitative study was conducted using a phenomenological approach based on the guidelines of Van Manen. Individual, semistructured interviews were completed with 10 participants who were diagnosed with PCOS and managed by a health care practitioner(s) within the past 5 years. Data were analyzed using the process of hermeneutic phenomenological reflection. The four major themes that described women's lived experience of managing PCOS were frustration, confusion, searching, and gaining control. Women with PCOS face many challenges in managing their disorder and desire to gain control, balance, and well-being through a comprehensive treatment plan. The findings have implications for health care providers in addressing quality of life issues and overall health outcomes.

  7. Method and apparatus for the simultaneous display and correlation of independently generated images

    DOEpatents

    Vaitekunas, Jeffrey J.; Roberts, Ronald A.

    1991-01-01

    An apparatus and method for location by location correlation of multiple images from Non-Destructive Evaluation (NDE) and other sources. Multiple images of a material specimen are displayed on one or more monitors of an interactive graphics system. Specimen landmarks are located in each image and mapping functions from a reference image to each other image are calcuated using the landmark locations. A location selected by positioning a cursor in the reference image is mapped to the other images and location identifiers are simultaneously displayed in those images. Movement of the cursor in the reference image causes simultaneous movement of the location identifiers in the other images to positions corresponding to the location of the reference image cursor.

  8. Lissencephaly: expanded imaging and clinical classification

    PubMed Central

    Di Donato, Nataliya; Chiari, Sara; Mirzaa, Ghayda M.; Aldinger, Kimberly; Parrini, Elena; Olds, Carissa; Barkovich, A. James; Guerrini, Renzo; Dobyns, William B.

    2017-01-01

    Lissencephaly (“smooth brain”, LIS) is a malformation of cortical development associated with deficient neuronal migration and abnormal formation of cerebral convolutions or gyri. The LIS spectrum includes agyria, pachygyria, and subcortical band heterotopia. Our first classification of LIS and subcortical band heterotopia (SBH) was developed to distinguish between the first two genetic causes of LIS – LIS1 (PAFAH1B1) and DCX. However, progress in molecular genetics has led to identification of 19 LIS-associated genes, leaving the existing classification system insufficient to distinguish the increasingly diverse patterns of LIS. To address this challenge, we reviewed clinical, imaging and molecular data on 188 patients with LIS-SBH ascertained during the last five years, and reviewed selected archival data on another ~1,400 patients. Using these data plus published reports, we constructed a new imaging based classification system with 21 recognizable patterns that reliably predict the most likely causative genes. These patterns do not correlate consistently with the clinical outcome, leading us to also develop a new scale useful for predicting clinical severity and outcome. Taken together, our work provides new tools that should prove useful for clinical management and genetic counselling of patients with LIS-SBH (imaging and severity based classifications), and guidance for prioritizing and interpreting genetic testing results (imaging based classification). PMID:28440899

  9. Lossless compression algorithm for multispectral imagers

    NASA Astrophysics Data System (ADS)

    Gladkova, Irina; Grossberg, Michael; Gottipati, Srikanth

    2008-08-01

    Multispectral imaging is becoming an increasingly important tool for monitoring the earth and its environment from space borne and airborne platforms. Multispectral imaging data consists of visible and IR measurements from a scene across space and spectrum. Growing data rates resulting from faster scanning and finer spatial and spectral resolution makes compression an increasingly critical tool to reduce data volume for transmission and archiving. Research for NOAA NESDIS has been directed to finding for the characteristics of satellite atmospheric Earth science Imager sensor data what level of Lossless compression ratio can be obtained as well as appropriate types of mathematics and approaches that can lead to approaching this data's entropy level. Conventional lossless do not achieve the theoretical limits for lossless compression on imager data as estimated from the Shannon entropy. In a previous paper, the authors introduce a lossless compression algorithm developed for MODIS as a proxy for future NOAA-NESDIS satellite based Earth science multispectral imagers such as GOES-R. The algorithm is based on capturing spectral correlations using spectral prediction, and spatial correlations with a linear transform encoder. In decompression, the algorithm uses a statistically computed look up table to iteratively predict each channel from a channel decompressed in the previous iteration. In this paper we present a new approach which fundamentally differs from our prior work. In this new approach, instead of having a single predictor for each pair of bands we introduce a piecewise spatially varying predictor which significantly improves the compression results. Our new algorithm also now optimizes the sequence of channels we use for prediction. Our results are evaluated by comparison with a state of the art wavelet based image compression scheme, Jpeg2000. We present results on the 14 channel subset of the MODIS imager, which serves as a proxy for the GOES-R imager. We will also show results of the algorithm for on NOAA AVHRR data and data from SEVIRI. The algorithm is designed to be adapted to the wide range of multispectral imagers and should facilitate distribution of data throughout globally. This compression research is managed by Roger Heymann, PE of OSD NOAA NESDIS Engineering, in collaboration with the NOAA NESDIS STAR Research Office through Mitch Goldberg, Tim Schmit, Walter Wolf.

  10. Incorporating imaging into personalized medicine for the detection of prostate cancer: Pharmacological research-Urogenital pharmacology.

    PubMed

    Mertan, Francesca; Turkbey, Baris

    2016-12-01

    Imaging has played an important role in the administration of personalized medicine. From diagnosing diseases to guiding therapies, imaging has become an all-encompassing modality. With respect to prostate cancer, personalized management of the disease has been transformed by imaging. Specifically, multiparametric magnetic resonance imaging has emerged as a vital player in the detection, characterization, and localization of the disease thus making the incorporation of imaging in personalized prostate cancer management integral. In this review, the current role of imaging in personalized medicine for the management of prostate cancer is discussed. Copyright © 2016. Published by Elsevier Ltd.

  11. Cross-correlation photothermal optical coherence tomography with high effective resolution.

    PubMed

    Tang, Peijun; Liu, Shaojie; Chen, Junbo; Yuan, Zhiling; Xie, Bingkai; Zhou, Jianhua; Tang, Zhilie

    2017-12-01

    We developed a cross-correlation photothermal optical coherence tomography (CC-PTOCT) system for photothermal imaging with high lateral and axial resolution. The CC-PTOCT system consists of a phase-sensitive OCT system, a modulated pumping laser, and a digital cross-correlator. The pumping laser was used to induce the photothermal effect in the sample, causing a slight phase modulation of the OCT signals. A spatial phase differentiation method was employed to reduce phase accumulation. The noise brought by the phase differentiation method and the strong background noise were suppressed efficiently by the cross-correlator, which was utilized to extract the photothermal signals from the modulated signals. Combining the cross-correlation technique with spatial phase differentiation can improve both lateral and axial resolution of the PTOCT imaging system. Clear photothermal images of blood capillaries of a mouse ear in vivo were successfully obtained with high lateral and axial resolution. The experimental results demonstrated that this system can enhance the effective transverse resolution, effective depth resolution, and contrast of the PTOCT image effectively, aiding the ongoing development of the accurate 3D functional imaging.

  12. Correlation between Clinical Features and Magnetic Resonance Imaging Findings in Lumbar Disc Prolapse.

    PubMed

    Thapa, S S; Lakhey, R B; Sharma, P; Pokhrel, R K

    2016-05-01

    Magnetic resonance imaging is routinely done for diagnosis of lumbar disc prolapse. Many abnormalities of disc are observed even in asymptomatic patient.This study was conducted tocorrelate these abnormalities observed on Magnetic resonance imaging and clinical features of lumbar disc prolapse. A This prospective analytical study includes 57 cases of lumbar disc prolapse presenting to Department of Orthopedics, Tribhuvan University Teaching Hospital from March 2011 to August 2012. All patientshad Magnetic resonance imaging of lumbar spine and the findings regarding type, level and position of lumbar disc prolapse, any neural canal or foraminal compromise was recorded. These imaging findings were then correlated with clinical signs and symptoms. Chi-square test was used to find out p-value for correlation between clinical features and Magnetic resonance imaging findings using SPSS 17.0. This study included 57 patients, with mean age 36.8 years. Of them 41(71.9%) patients had radicular leg pain along specific dermatome. Magnetic resonance imaging showed 104 lumbar disc prolapselevel. Disc prolapse at L4-L5 and L5-S1 level constituted 85.5%.Magnetic resonance imaging findings of neural foramina compromise and nerve root compression were fairly correlated withclinical findings of radicular pain and neurological deficit. Clinical features and Magnetic resonance imaging findings of lumbar discprolasehad faircorrelation, but all imaging abnormalities do not have a clinical significance.

  13. Predicting plant attractiveness to pollinators with passive crowdsourcing.

    PubMed

    Bahlai, Christie A; Landis, Douglas A

    2016-06-01

    Global concern regarding pollinator decline has intensified interest in enhancing pollinator resources in managed landscapes. These efforts frequently emphasize restoration or planting of flowering plants to provide pollen and nectar resources that are highly attractive to the desired pollinators. However, determining exactly which plant species should be used to enhance a landscape is difficult. Empirical screening of plants for such purposes is logistically daunting, but could be streamlined by crowdsourcing data to create lists of plants most probable to attract the desired pollinator taxa. People frequently photograph plants in bloom and the Internet has become a vast repository of such images. A proportion of these images also capture floral visitation by arthropods. Here, we test the hypothesis that the abundance of floral images containing identifiable pollinator and other beneficial insects is positively associated with the observed attractiveness of the same species in controlled field trials from previously published studies. We used Google Image searches to determine the correlation of pollinator visitation captured by photographs on the Internet relative to the attractiveness of the same species in common-garden field trials for 43 plant species. From the first 30 photographs, which successfully identified the plant, we recorded the number of Apis (managed honeybees), non-Apis (exclusively wild bees) and the number of bee-mimicking syrphid flies. We used these observations from search hits as well as bloom period (BP) as predictor variables in Generalized Linear Models (GLMs) for field-observed abundances of each of these groups. We found that non-Apis bees observed in controlled field trials were positively associated with observations of these taxa in Google Image searches (pseudo-R (2) of 0.668). Syrphid fly observations in the field were also associated with the frequency they were observed in images, but this relationship was weak. Apis bee observations were not associated with Internet images, but were slightly associated with BP. Our results suggest that passively crowdsourced image data can potentially be a useful screening tool to identify candidate plants for pollinator habitat restoration efforts directed at wild bee conservation. Increasing our understanding of the attractiveness of a greater diversity of plants increases the potential for more rapid and efficient research in creating pollinator-supportive landscapes.

  14. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera.

    PubMed

    Spoliansky, Roii; Edan, Yael; Parmet, Yisrael; Halachmi, Ilan

    2016-09-01

    Body condition scoring (BCS) is a farm-management tool for estimating dairy cows' energy reserves. Today, BCS is performed manually by experts. This paper presents a 3-dimensional algorithm that provides a topographical understanding of the cow's body to estimate BCS. An automatic BCS system consisting of a Kinect camera (Microsoft Corp., Redmond, WA) triggered by a passive infrared motion detector was designed and implemented. Image processing and regression algorithms were developed and included the following steps: (1) image restoration, the removal of noise; (2) object recognition and separation, identification and separation of the cows; (3) movie and image selection, selection of movies and frames that include the relevant data; (4) image rotation, alignment of the cow parallel to the x-axis; and (5) image cropping and normalization, removal of irrelevant data, setting the image size to 150×200 pixels, and normalizing image values. All steps were performed automatically, including image selection and classification. Fourteen individual features per cow, derived from the cows' topography, were automatically extracted from the movies and from the farm's herd-management records. These features appear to be measurable in a commercial farm. Manual BCS was performed by a trained expert and compared with the output of the training set. A regression model was developed, correlating the features with the manual BCS references. Data were acquired for 4 d, resulting in a database of 422 movies of 101 cows. Movies containing cows' back ends were automatically selected (389 movies). The data were divided into a training set of 81 cows and a test set of 20 cows; both sets included the identical full range of BCS classes. Accuracy tests gave a mean absolute error of 0.26, median absolute error of 0.19, and coefficient of determination of 0.75, with 100% correct classification within 1 step and 91% correct classification within a half step for BCS classes. Results indicated good repeatability, with all standard deviations under 0.33. The algorithm is independent of the background and requires 10 cows for training with approximately 30 movies of 4 s each. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Radiological and endoscopic imaging methods in the management of cystic pancreatic neoplasms.

    PubMed

    Aslan, Ahmet; Inan, Ibrahim; Orman, Süleyman; Aslan, Mine; Acar, Murat

    2017-01-01

    The management of cystic pancreatic neoplasm (CPN) is a clinical dilemma because of its clinical presentations and malignant potential. Surgery is the best treatment choice ; however, pancreatic surgery still has high complication rates, even in experienced centers. Imaging methods have a definitive role in the management of CPN and computed tomography, magnetic resonance imaging, and endoscopic ultrasonography are the preferred methods since they can reveal the suspicious features for malignancy. Therefore, radiologists, gastroenterologists, endoscopists, and surgeons should be aware of the common features of CPN, its discrete presentations on imaging methods, and the limitations of these modalities in the management of the disease. This study aims to review the radiological and endoscopic imaging methods used for the management of CPN. © Acta Gastro-Enterologica Belgica.

  16. A deep learning framework to discern and count microscopic nematode eggs.

    PubMed

    Akintayo, Adedotun; Tylka, Gregory L; Singh, Asheesh K; Ganapathysubramanian, Baskar; Singh, Arti; Sarkar, Soumik

    2018-06-14

    In order to identify and control the menace of destructive pests via microscopic image-based identification state-of-the art deep learning architecture is demonstrated on the parasitic worm, the soybean cyst nematode (SCN), Heterodera glycines. Soybean yield loss is negatively correlated with the density of SCN eggs that are present in the soil. While there has been progress in automating extraction of egg-filled cysts and eggs from soil samples counting SCN eggs obtained from soil samples using computer vision techniques has proven to be an extremely difficult challenge. Here we show that a deep learning architecture developed for rare object identification in clutter-filled images can identify and count the SCN eggs. The architecture is trained with expert-labeled data to effectively build a machine learning model for quantifying SCN eggs via microscopic image analysis. We show dramatic improvements in the quantification time of eggs while maintaining human-level accuracy and avoiding inter-rater and intra-rater variabilities. The nematode eggs are correctly identified even in complex, debris-filled images that are often difficult for experts to identify quickly. Our results illustrate the remarkable promise of applying deep learning approaches to phenotyping for pest assessment and management.

  17. Hybrid-fusion SPECT/CT systems in parathyroid adenoma: Technological improvements and added clinical diagnostic value.

    PubMed

    Wong, K K; Chondrogiannis, S; Bowles, H; Fuster, D; Sánchez, N; Rampin, L; Rubello, D

    Nuclear medicine traditionally employs planar and single photon emission computed tomography (SPECT) imaging techniques to depict the biodistribution of radiotracers for the diagnostic investigation of a range of disorders of endocrine gland function. The usefulness of combining functional information with anatomy derived from computed tomography (CT), magnetic resonance imaging (MRI), and high resolution ultrasound (US), has long been appreciated, either using visual side-by-side correlation, or software-based co-registration. The emergence of hybrid SPECT/CT camera technology now allows the simultaneous acquisition of combined multi-modality imaging, with seamless fusion of 3D volume datasets. Thus, it is not surprising that there is growing literature describing the many advantages that contemporary SPECT/CT technology brings to radionuclide investigation of endocrine disorders, showing potential advantages for the pre-operative locating of the parathyroid adenoma using a minimally invasive surgical approach, especially in the presence of ectopic glands and in multiglandular disease. In conclusion, hybrid SPECT/CT imaging has become an essential tool to ensure the most accurate diagnostic in the management of patients with hyperparathyroidism. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  18. Inability to empathize: brain lesions that disrupt sharing and understanding another’s emotions

    PubMed Central

    2014-01-01

    Emotional empathy—the ability to recognize, share in, and make inferences about another person’s emotional state—is critical for all social interactions. The neural mechanisms underlying emotional empathy have been widely studied with functional imaging of healthy participants. However, functional imaging studies reveal correlations between areas of activation and performance of a task, so that they can only reveal areas engaged in a task, rather than areas of the brain that are critical for the task. Lesion studies complement functional imaging, to identify areas necessary for a task. Impairments in emotional empathy have been mostly studied in neurological diseases with fairly diffuse injury, such as traumatic brain injury, autism and dementia. The classic ‘focal lesion’ is stroke. There have been scattered studies of patients with impaired empathy after stroke and other focal injury, but these studies have included small numbers of patients. This review will bring together data from these studies, to complement evidence from functional imaging. Here I review how focal lesions affect emotional empathy. I will show how lesion studies contribute to the understanding of the cognitive and neural mechanisms underlying emotional empathy, and how they contribute to the management of patients with impaired emotional empathy. PMID:24293265

  19. Symmetric Phase Only Filtering for Improved DPIV Data Processing

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2006-01-01

    The standard approach in Digital Particle Image Velocimetry (DPIV) data processing is to use Fast Fourier Transforms to obtain the cross-correlation of two single exposure subregions, where the location of the cross-correlation peak is representative of the most probable particle displacement across the subregion. This standard DPIV processing technique is analogous to Matched Spatial Filtering, a technique commonly used in optical correlators to perform the crosscorrelation operation. Phase only filtering is a well known variation of Matched Spatial Filtering, which when used to process DPIV image data yields correlation peaks which are narrower and up to an order of magnitude larger than those obtained using traditional DPIV processing. In addition to possessing desirable correlation plane features, phase only filters also provide superior performance in the presence of DC noise in the correlation subregion. When DPIV image subregions contaminated with surface flare light or high background noise levels are processed using phase only filters, the correlation peak pertaining only to the particle displacement is readily detected above any signal stemming from the DC objects. Tedious image masking or background image subtraction are not required. Both theoretical and experimental analyses of the signal-to-noise ratio performance of the filter functions are presented. In addition, a new Symmetric Phase Only Filtering (SPOF) technique, which is a variation on the traditional phase only filtering technique, is described and demonstrated. The SPOF technique exceeds the performance of the traditionally accepted phase only filtering techniques and is easily implemented in standard DPIV FFT based correlation processing with no significant computational performance penalty. An "Automatic" SPOF algorithm is presented which determines when the SPOF is able to provide better signal to noise results than traditional PIV processing. The SPOF based optical correlation processing approach is presented as a new paradigm for more robust cross-correlation processing of low signal-to-noise ratio DPIV image data."

  20. Expectations Among Academic Clinicians of Inpatient Imaging Turnaround Time: Does it Correlate with Satisfaction?

    PubMed

    Chan, Keith T; Carroll, Tamara; Linnau, Ken F; Lehnert, Bruce

    2015-11-01

    Imaging report turnaround time (RTAT) is an important measure of radiology performance and has become the leading priority in customer satisfaction surveys conducted among nonradiologists, who may not be familiar with the imaging workflow. Our aim was to assess physicians' expected RTAT for commonly ordered studies and determine if satisfaction correlates with met expectations. Retrospective review of inpatient imaging was conducted at a single academic institution, and RTAT for 18,414 studies was calculated. Examinations were grouped by study type, priority, and time of day. A cross-sectional survey instrument was completed by 48 internal medicine and surgery resident physicians with questions regarding RTAT and their level of satisfaction with various examinations. Actual RTAT ranged from 1.6 to 26.0 hours, with chest radiographs and computed tomographies generally faster than magnetic resonance images and ultrasounds. Urgent (STAT) examinations and those ordered during business hours have shorter RTAT. The time for image interpretation largely contributed to the RTAT because of the lack of night-time radiology coverage. Referring physician expectations were consistently shorter than actual RTAT, ranging from 30 minutes to 24 hours. Overall satisfaction scores were inversely correlated with RTAT, with a strong correlation to the time from study order to imaging (r(2) = 0.63) and a weak correlation to the image interpretation time (r(2) = 0.17). Satisfaction scores did not correlate with whether the actual RTAT met expectations (r(2) = 0.06). Referring physician satisfaction is likely multifactorial. Although RTAT has been reported as a priority, shortening turnaround time alone may not directly improve clinician satisfaction. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  1. TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oines, A; Oines, A; Kilian-Meneghin, J

    2016-06-15

    Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphologymore » from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less

  2. Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography

    PubMed Central

    Makita, Shuichi; Kurokawa, Kazuhiro; Hong, Young-Joo; Miura, Masahiro; Yasuno, Yoshiaki

    2016-01-01

    This paper describes a complex correlation mapping algorithm for optical coherence angiography (cmOCA). The proposed algorithm avoids the signal-to-noise ratio dependence and exhibits low noise in vasculature imaging. The complex correlation coefficient of the signals, rather than that of the measured data are estimated, and two-step averaging is introduced. Algorithms of motion artifact removal based on non perfusing tissue detection using correlation are developed. The algorithms are implemented with Jones-matrix OCT. Simultaneous imaging of pigmented tissue and vasculature is also achieved using degree of polarization uniformity imaging with cmOCA. An application of cmOCA to in vivo posterior human eyes is presented to demonstrate that high-contrast images of patients’ eyes can be obtained. PMID:27446673

  3. Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells.

    PubMed

    Hebert, Benedict; Costantino, Santiago; Wiseman, Paul W

    2005-05-01

    We introduce a new extension of image correlation spectroscopy (ICS) and image cross-correlation spectroscopy (ICCS) that relies on complete analysis of both the temporal and spatial correlation lags for intensity fluctuations from a laser-scanning microscopy image series. This new approach allows measurement of both diffusion coefficients and velocity vectors (magnitude and direction) for fluorescently labeled membrane proteins in living cells through monitoring of the time evolution of the full space-time correlation function. By using filtering in Fourier space to remove frequencies associated with immobile components, we are able to measure the protein transport even in the presence of a large fraction (>90%) of immobile species. We present the background theory, computer simulations, and analysis of measurements on fluorescent microspheres to demonstrate proof of principle, capabilities, and limitations of the method. We demonstrate mapping of flow vectors for mixed samples containing fluorescent microspheres with different emission wavelengths using space time image cross-correlation. We also present results from two-photon laser-scanning microscopy studies of alpha-actinin/enhanced green fluorescent protein fusion constructs at the basal membrane of living CHO cells. Using space-time image correlation spectroscopy (STICS), we are able to measure protein fluxes with magnitudes of mum/min from retracting lamellar regions and protrusions for adherent cells. We also demonstrate the measurement of correlated directed flows (magnitudes of mum/min) and diffusion of interacting alpha5 integrin/enhanced cyan fluorescent protein and alpha-actinin/enhanced yellow fluorescent protein within living CHO cells. The STICS method permits us to generate complete transport maps of proteins within subregions of the basal membrane even if the protein concentration is too high to perform single particle tracking measurements.

  4. Diffusion spectral imaging modules correlate with EEG LORETA neuroimaging modules.

    PubMed

    Thatcher, Robert W; North, Duane M; Biver, Carl J

    2012-05-01

    The purpose of this study was to test the hypothesis that the highest temporal correlations between 3-dimensional EEG current source density corresponds to anatomical Modules of high synaptic connectivity. Eyes closed and eyes open EEG was recorded from 19 scalp locations with a linked ears reference from 71 subjects age 13-42 years. LORETA was computed from 1 to 30 Hz in 2,394 cortical gray matter voxels that were grouped into six anatomical Modules corresponding to the ROIs in the Hagmann et al.'s [2008] diffusion spectral imaging (DSI) study. All possible cross-correlations between voxels within a DSI Module were compared with the correlations between Modules. The Hagmann et al. [ 2008] Module correlation structure was replicated in the correlation structure of EEG three-dimensional current source density. EEG Temporal correlation between brain regions is related to synaptic density as measured by diffusion spectral imaging. Copyright © 2011 Wiley-Liss, Inc.

  5. Radiogenomics of hepatocellular carcinoma: multiregion analysis-based identification of prognostic imaging biomarkers by integrating gene data—a preliminary study

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Chen, Ying; Zhang, Rui; Yan, Zhuangzhi; Zhou, Xiaobo; Zhang, Bo; Gao, Xin

    2018-02-01

    Our objective was to identify prognostic imaging biomarkers for hepatocellular carcinoma in contrast-enhanced computed tomography (CECT) with biological interpretations by associating imaging features and gene modules. We retrospectively analyzed 371 patients who had gene expression profiles. For the 38 patients with CECT imaging data, automatic intra-tumor partitioning was performed, resulting in three spatially distinct subregions. We extracted a total of 37 quantitative imaging features describing intensity, geometry, and texture from each subregion. Imaging features were selected after robustness and redundancy analysis. Gene modules acquired from clustering were chosen for their prognostic significance. By constructing an association map between imaging features and gene modules with Spearman rank correlations, the imaging features that significantly correlated with gene modules were obtained. These features were evaluated with Cox’s proportional hazard models and Kaplan-Meier estimates to determine their prognostic capabilities for overall survival (OS). Eight imaging features were significantly correlated with prognostic gene modules, and two of them were associated with OS. Among these, the geometry feature volume fraction of the subregion, which was significantly correlated with all prognostic gene modules representing cancer-related interpretation, was predictive of OS (Cox p  =  0.022, hazard ratio  =  0.24). The texture feature cluster prominence in the subregion, which was correlated with the prognostic gene module representing lipid metabolism and complement activation, also had the ability to predict OS (Cox p  =  0.021, hazard ratio  =  0.17). Imaging features depicting the volume fraction and textural heterogeneity in subregions have the potential to be predictors of OS with interpretable biological meaning.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamichhane, N; Johnson, P; Chinea, F

    Purpose: To evaluate the correlation between image features and the accuracy of manually drawn target contours on synthetic PET images Methods: A digital PET phantom was used in combination with Monte Carlo simulation to create a set of 26 simulated PET images featuring a variety of tumor shapes and activity heterogeneity. These tumor volumes were used as a gold standard in comparisons with manual contours delineated by 10 radiation oncologist on the simulated PET images. Metrics used to evaluate segmentation accuracy included the dice coefficient, false positive dice, false negative dice, symmetric mean absolute surface distance, and absolute volumetric difference.more » Image features extracted from the simulated tumors consisted of volume, shape complexity, mean curvature, and intensity contrast along with five texture features derived from the gray-level neighborhood difference matrices including contrast, coarseness, busyness, strength, and complexity. Correlation between these features and contouring accuracy were examined. Results: Contour accuracy was reasonably well correlated with a variety of image features. Dice coefficient ranged from 0.7 to 0.90 and was correlated closely with contrast (r=0.43, p=0.02) and complexity (r=0.5, p<0.001). False negative dice ranged from 0.10 to 0.50 and was correlated closely with contrast (r=0.68, p<0.001) and complexity (r=0.66, p<0.001). Absolute volumetric difference ranged from 0.0002 to 0.67 and was correlated closely with coarseness (r=0.46, p=0.02) and complexity (r=0.49, p=0.008). Symmetric mean absolute difference ranged from 0.02 to 1 and was correlated closely with mean curvature (r=0.57, p=0.02) and contrast (r=0.6, p=0.001). Conclusion: The long term goal of this study is to assess whether contouring variability can be reduced by providing feedback to the practitioner based on image feature analysis. The results are encouraging and will be used to develop a statistical model which will enable a prediction of contour accuracy based purely on image feature analysis.« less

  7. Fully Automated Quantitative Estimation of Volumetric Breast Density from Digital Breast Tomosynthesis Images: Preliminary Results and Comparison with Digital Mammography and MR Imaging.

    PubMed

    Pertuz, Said; McDonald, Elizabeth S; Weinstein, Susan P; Conant, Emily F; Kontos, Despina

    2016-04-01

    To assess a fully automated method for volumetric breast density (VBD) estimation in digital breast tomosynthesis (DBT) and to compare the findings with those of full-field digital mammography (FFDM) and magnetic resonance (MR) imaging. Bilateral DBT images, FFDM images, and sagittal breast MR images were retrospectively collected from 68 women who underwent breast cancer screening from October 2011 to September 2012 with institutional review board-approved, HIPAA-compliant protocols. A fully automated computer algorithm was developed for quantitative estimation of VBD from DBT images. FFDM images were processed with U.S. Food and Drug Administration-cleared software, and the MR images were processed with a previously validated automated algorithm to obtain corresponding VBD estimates. Pearson correlation and analysis of variance with Tukey-Kramer post hoc correction were used to compare the multimodality VBD estimates. Estimates of VBD from DBT were significantly correlated with FFDM-based and MR imaging-based estimates with r = 0.83 (95% confidence interval [CI]: 0.74, 0.90) and r = 0.88 (95% CI: 0.82, 0.93), respectively (P < .001). The corresponding correlation between FFDM and MR imaging was r = 0.84 (95% CI: 0.76, 0.90). However, statistically significant differences after post hoc correction (α = 0.05) were found among VBD estimates from FFDM (mean ± standard deviation, 11.1% ± 7.0) relative to MR imaging (16.6% ± 11.2) and DBT (19.8% ± 16.2). Differences between VDB estimates from DBT and MR imaging were not significant (P = .26). Fully automated VBD estimates from DBT, FFDM, and MR imaging are strongly correlated but show statistically significant differences. Therefore, absolute differences in VBD between FFDM, DBT, and MR imaging should be considered in breast cancer risk assessment.

  8. A hybrid correlation analysis with application to imaging genetics

    NASA Astrophysics Data System (ADS)

    Hu, Wenxing; Fang, Jian; Calhoun, Vince D.; Wang, Yu-Ping

    2018-03-01

    Investigating the association between brain regions and genes continues to be a challenging topic in imaging genetics. Current brain region of interest (ROI)-gene association studies normally reduce data dimension by averaging the value of voxels in each ROI. This averaging may lead to a loss of information due to the existence of functional sub-regions. Pearson correlation is widely used for association analysis. However, it only detects linear correlation whereas nonlinear correlation may exist among ROIs. In this work, we introduced distance correlation to ROI-gene association analysis, which can detect both linear and nonlinear correlations and overcome the limitation of averaging operations by taking advantage of the information at each voxel. Nevertheless, distance correlation usually has a much lower value than Pearson correlation. To address this problem, we proposed a hybrid correlation analysis approach, by applying canonical correlation analysis (CCA) to the distance covariance matrix instead of directly computing distance correlation. Incorporating CCA into distance correlation approach may be more suitable for complex disease study because it can detect highly associated pairs of ROI and gene groups, and may improve the distance correlation level and statistical power. In addition, we developed a novel nonlinear CCA, called distance kernel CCA, which seeks the optimal combination of features with the most significant dependence. This approach was applied to imaging genetic data from the Philadelphia Neurodevelopmental Cohort (PNC). Experiments showed that our hybrid approach produced more consistent results than conventional CCA across resampling and both the correlation and statistical significance were increased compared to distance correlation analysis. Further gene enrichment analysis and region of interest (ROI) analysis confirmed the associations of the identified genes with brain ROIs. Therefore, our approach provides a powerful tool for finding the correlation between brain imaging and genomic data.

  9. Compression of color-mapped images

    NASA Technical Reports Server (NTRS)

    Hadenfeldt, A. C.; Sayood, Khalid

    1992-01-01

    In a standard image coding scenario, pixel-to-pixel correlation nearly always exists in the data, especially if the image is a natural scene. This correlation is what allows predictive coding schemes (e.g., DPCM) to perform efficient compression. In a color-mapped image, the values stored in the pixel array are no longer directly related to the pixel intensity. Two color indices which are numerically adjacent (close) may point to two very different colors. The correlation still exists, but only via the colormap. This fact can be exploited by sorting the color map to reintroduce the structure. The sorting of colormaps is studied and it is shown how the resulting structure can be used in both lossless and lossy compression of images.

  10. Single-shot thermal ghost imaging using wavelength-division multiplexing

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Suo, Jinli; Wang, Yuwang; Zhang, Zhili; Dai, Qionghai

    2018-01-01

    Ghost imaging (GI) is an emerging technique that reconstructs the target scene from its correlated measurements with a sequence of patterns. Restricted by the multi-shot principle, GI usually requires long acquisition time and is limited in observation of dynamic scenes. To handle this problem, this paper proposes a single-shot thermal ghost imaging scheme via a wavelength-division multiplexing technique. Specifically, we generate thousands of correlated patterns simultaneously by modulating a broadband light source with a wavelength dependent diffuser. These patterns carry the scene's spatial information and then the correlated photons are coupled into a spectrometer for the final reconstruction. This technique increases the speed of ghost imaging and promotes the applications in dynamic ghost imaging with high scalability and compatibility.

  11. Intensity correlation imaging with sunlight-like source

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Tang, Zhiguo; Zheng, Huaibin; Chen, Hui; Yuan, Yuan; Liu, Jinbin; Liu, Yanyan; Xu, Zhuo

    2018-05-01

    We show a method of intensity correlation imaging of targets illuminated by a sunlight-like source both theoretically and experimentally. With a Faraday anomalous dispersion optical filter (FADOF), we have modulated the coherence time of a thermal source up to 0.167 ns. And we carried out measurements of temporal and spatial correlations, respectively, with an intensity interferometer setup. By skillfully using the even Fourier fitting on the very sparse sampling data, the images of targets are successfully reconstructed from the low signal-noise-ratio(SNR) interference pattern by applying an iterative phase retrieval algorithm. The resulting imaging quality is as well as the one obtained by the theoretical fitting. The realization of such a case will bring this technique closer to geostationary satellite imaging illuminated by sunlight.

  12. Nurse managers' work life quality and their participation in knowledge management: a correlational study.

    PubMed

    Hashemi Dehaghi, Zahra; Sheikhtaheri, Abbas; Dehnavi, Fariba

    2015-01-01

    The association between quality of work life and participation in knowledge management is unknown. This study aimed to discover the association between quality of work life of nurse managers and their participation in implementing knowledge management. This was a correlational study. All nurse managers (71 people) from 11 hospitals affiliated with the Social Security Organization in Tehran, Iran, were included. They were asked to rate their participation in knowledge management and their quality of work life. Data was gathered by a researcher-made questionnaire (May-June 2012). The questionnaire was validated by content and construct validity approaches. Cronbach's alpha was used to evaluate reliability. Finally, 50 questionnaires were analyzed. The answers were scored and analyzed using mean of scores, T-test, ANOVA (or nonparametric test, if appropriate), Pearson's correlation coefficient and linear regression. Nurse managers' performance to implement knowledge management strategies was moderate. A significant correlation was found between quality of work life of nurse managers and their participation in implementing knowledge management strategies (r = 0.82; P < 0.001). The strongest correlations were found between implementation of knowledge management and participation of nurse managers in decision making (r = 0.82; P < 0.001). Improvement of nurse managers' work life quality, especially in decision-making, may increase their participation in implementing knowledge management.

  13. Image guidance doses delivered during radiotherapy: Quantification, management, and reduction: Report of the AAPM Therapy Physics Committee Task Group 180.

    PubMed

    Ding, George X; Alaei, Parham; Curran, Bruce; Flynn, Ryan; Gossman, Michael; Mackie, T Rock; Miften, Moyed; Morin, Richard; Xu, X George; Zhu, Timothy C

    2018-05-01

    With radiotherapy having entered the era of image guidance, or image-guided radiation therapy (IGRT), imaging procedures are routinely performed for patient positioning and target localization. The imaging dose delivered may result in excessive dose to sensitive organs and potentially increase the chance of secondary cancers and, therefore, needs to be managed. This task group was charged with: a) providing an overview on imaging dose, including megavoltage electronic portal imaging (MV EPI), kilovoltage digital radiography (kV DR), Tomotherapy MV-CT, megavoltage cone-beam CT (MV-CBCT) and kilovoltage cone-beam CT (kV-CBCT), and b) providing general guidelines for commissioning dose calculation methods and managing imaging dose to patients. We briefly review the dose to radiotherapy (RT) patients resulting from different image guidance procedures and list typical organ doses resulting from MV and kV image acquisition procedures. We provide recommendations for managing the imaging dose, including different methods for its calculation, and techniques for reducing it. The recommended threshold beyond which imaging dose should be considered in the treatment planning process is 5% of the therapeutic target dose. Although the imaging dose resulting from current kV acquisition procedures is generally below this threshold, the ALARA principle should always be applied in practice. Medical physicists should make radiation oncologists aware of the imaging doses delivered to patients under their care. Balancing ALARA with the requirement for effective target localization requires that imaging dose be managed based on the consideration of weighing risks and benefits to the patient. © 2018 American Association of Physicists in Medicine.

  14. Image management research

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1988-01-01

    Two types of research issues are involved in image management systems with space station applications: image processing research and image perception research. The image processing issues are the traditional ones of digitizing, coding, compressing, storing, analyzing, and displaying, but with a new emphasis on the constraints imposed by the human perceiver. Two image coding algorithms have been developed that may increase the efficiency of image management systems (IMS). Image perception research involves a study of the theoretical and practical aspects of visual perception of electronically displayed images. Issues include how rapidly a user can search through a library of images, how to make this search more efficient, and how to present images in terms of resolution and split screens. Other issues include optimal interface to an IMS and how to code images in a way that is optimal for the human perceiver. A test-bed within which such issues can be addressed has been designed.

  15. Fiducial marker for correlating images

    DOEpatents

    Miller, Lisa Marie [Rocky Point, NY; Smith, Randy J [Wading River, NY; Warren, John B [Port Jefferson, NY; Elliott, Donald [Hampton Bays, NY

    2011-06-21

    The invention relates to a fiducial marker having a marking grid that is used to correlate and view images produced by different imaging modalities or different imaging and viewing modalities. More specifically, the invention relates to the fiducial marking grid that has a grid pattern for producing either a viewing image and/or a first analytical image that can be overlaid with at least one other second analytical image in order to view a light path or to image different imaging modalities. Depending on the analysis, the grid pattern has a single layer of a certain thickness or at least two layers of certain thicknesses. In either case, the grid pattern is imageable by each imaging or viewing modality used in the analysis. Further, when viewing a light path, the light path of the analytical modality cannot be visualized by viewing modality (e.g., a light microscope objective). By correlating these images, the ability to analyze a thin sample that is, for example, biological in nature but yet contains trace metal ions is enhanced. Specifically, it is desired to analyze both the organic matter of the biological sample and the trace metal ions contained within the biological sample without adding or using extrinsic labels or stains.

  16. Molecular classification of patients with grade II/III glioma using quantitative MRI characteristics.

    PubMed

    Bahrami, Naeim; Hartman, Stephen J; Chang, Yu-Hsuan; Delfanti, Rachel; White, Nathan S; Karunamuni, Roshan; Seibert, Tyler M; Dale, Anders M; Hattangadi-Gluth, Jona A; Piccioni, David; Farid, Nikdokht; McDonald, Carrie R

    2018-06-02

    Molecular markers of WHO grade II/III glioma are known to have important prognostic and predictive implications and may be associated with unique imaging phenotypes. The purpose of this study is to determine whether three clinically relevant molecular markers identified in gliomas-IDH, 1p/19q, and MGMT status-show distinct quantitative MRI characteristics on FLAIR imaging. Sixty-one patients with grade II/III gliomas who had molecular data and MRI available prior to radiation were included. Quantitative MRI features were extracted that measured tissue heterogeneity (homogeneity and pixel correlation) and FLAIR border distinctiveness (edge contrast; EC). T-tests were conducted to determine whether patients with different genotypes differ across the features. Logistic regression with LASSO regularization was used to determine the optimal combination of MRI and clinical features for predicting molecular subtypes. Patients with IDH wildtype tumors showed greater signal heterogeneity (p = 0.001) and lower EC (p = 0.008) within the FLAIR region compared to IDH mutant tumors. Among patients with IDH mutant tumors, 1p/19q co-deleted tumors had greater signal heterogeneity (p = 0.002) and lower EC (p = 0.005) compared to 1p/19q intact tumors. MGMT methylated tumors showed lower EC (p = 0.03) compared to the unmethylated group. The combination of FLAIR border distinctness, heterogeneity, and pixel correlation optimally classified tumors by IDH status. Quantitative imaging characteristics of FLAIR heterogeneity and border pattern in grade II/III gliomas may provide unique information for determining molecular status at time of initial diagnostic imaging, which may then guide subsequent surgical and medical management.

  17. Breast Imaging-Reporting and Data System (BI-RADS) classification in 51 excised palpable pediatric breast masses.

    PubMed

    Koning, Jeffrey L; Davenport, Katherine P; Poole, Patricia S; Kruk, Peter G; Grabowski, Julia E

    2015-10-01

    The American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) classification was developed to risk stratify breast lesions and guide surgical management based on imaging. Previous studies validating BI-RADS for US do not include pediatric patients. Most pediatric breast masses present as palpable lesions and frequently undergo ultrasound, which is often accompanied with a BI-RADS classification. Our study aimed to correlate BI-RADS with pathology findings to assess applicability of the classification system to pediatric patients. We performed a retrospective review of all patients who underwent excision of a breast mass at a single center from July 2010 to November 2013. We identified all patients who underwent preoperative ultrasound with BI-RADS classification. Demographic data, imaging results, and surgical pathology were analyzed and correlated. A total of 119 palpable masses were excised from 105 pediatric patients during the study period. Of 119 masses, 81 had preoperative ultrasound, and BI-RADS categories were given to 51 masses. Of these 51, all patients were female and the average age was 15.9 years. BI-RADS 4 was given to 25 of 51 masses (49%), and 100% of these lesions had benign pathology, the most common being fibroadenoma. Treatment algorithm based on BI-RADS classification may not be valid in pediatric patients. In this study, all patients with a BI-RADS 4 lesion had benign pathology. BI-RADS classification may overstate the risk of malignancy or need for biopsy in this population. Further validation of BI-RADS classification with large scale studies is needed in pediatric and adolescent patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A method for predicting DCT-based denoising efficiency for grayscale images corrupted by AWGN and additive spatially correlated noise

    NASA Astrophysics Data System (ADS)

    Rubel, Aleksey S.; Lukin, Vladimir V.; Egiazarian, Karen O.

    2015-03-01

    Results of denoising based on discrete cosine transform for a wide class of images corrupted by additive noise are obtained. Three types of noise are analyzed: additive white Gaussian noise and additive spatially correlated Gaussian noise with middle and high correlation levels. TID2013 image database and some additional images are taken as test images. Conventional DCT filter and BM3D are used as denoising techniques. Denoising efficiency is described by PSNR and PSNR-HVS-M metrics. Within hard-thresholding denoising mechanism, DCT-spectrum coefficient statistics are used to characterize images and, subsequently, denoising efficiency for them. Results of denoising efficiency are fitted for such statistics and efficient approximations are obtained. It is shown that the obtained approximations provide high accuracy of prediction of denoising efficiency.

  19. The association between hospital outcomes and diagnostic imaging: early findings.

    PubMed

    Lee, David W; Foster, David A

    2009-11-01

    Resource use variation across the United States prompts the important question of whether "more is better" when it comes to health care services. The aim of this study was to examine correlations between the use of 4 common imaging modalities (CT, MR, ultrasound, and radiography) and in-hospital mortality and costs. Using clinical and utilization data for 1.1 million inpatient admissions at 102 US hospitals during 2007, two hospital-specific, risk-adjusted imaging utilization measures for each modality were constructed that controlled for patients' demographic and clinical characteristics and for hospital characteristics were constructed for each modality. First, logistic regression was used to estimate the odds that each type of imaging service would be provided during an admission. Second, the mean number of services per admission was estimated using output from a two-part ordinary least squares model. Hospital-specific, risk-adjusted inpatient mortality and total hospital costs were also computed, and correlations between the imaging utilization measures and the mortality and cost outcome measures were then assessed using Pearson's correlation coefficients (P < .05). The correlation analyses were weighted by hospital admission volume. Hospitals in which patients were more likely to receive imaging services during admissions had lower mortality, even after controlling for potential confounders. Correlation coefficients were -0.2 for all modalities (P = .02-.05). Weaker correlations existed between mean services per admission and mortality, while costs trended insignificantly higher with greater utilization. This study lays the foundation for further exploration of the relationship between resource use and the clinical and economic outcomes associated with imaging utilization.

  20. Delayed central nervous system manifestation of Chikungunya virus with magnetic resonance T2 weighted imaging high signal changes—a case report

    PubMed Central

    Hamilton, Preci L; Cruickshank, Garth

    2018-01-01

    Abstract CHIKV is a relatively new virus and we are still learning about the illness. Very little is known about CNS its involvement and even less about its delayed or long-term manifestations if any. It therefore behoves us to consider delayed CNS involvement when assessing patients with CHIKV infections that may not have had an acute neurological manifestation at the time of diagnosis coupled with new onset neurological manifestations and MRI abnormalities. It seems likely that patients with CHIKV may experience delayed CNS manifestation of the viral infection. This report highlights the importance of a travel history when assessing patients with a neurological complaint. The pathway to best manage such cases is with repeated imaging to assess if the signal changes either progress, resolve or more importantly if there is any MRI correlation should changes in neurology develop during the surveillance period. PMID:29942482

  1. Correlating Intravital Multi-Photon Microscopy to 3D Electron Microscopy of Invading Tumor Cells Using Anatomical Reference Points

    PubMed Central

    Karreman, Matthia A.; Mercier, Luc; Schieber, Nicole L.; Shibue, Tsukasa; Schwab, Yannick; Goetz, Jacky G.

    2014-01-01

    Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electron microscopy. To investigate tumor cell behavior in vivo with ultrastructural accuracy, a reliable approach is needed to retrieve single tumor cells imaged deep within the tissue. For this purpose, fluorescently labeled tumor cells were subcutaneously injected into a mouse ear and imaged using two-photon-excitation microscopy. Using near-infrared branding, the position of the imaged area within the sample was labeled at the skin level, allowing for its precise recollection. Following sample preparation for electron microscopy, concerted usage of the artificial branding and anatomical landmarks enables targeting and approaching the cells of interest while serial sectioning through the specimen. We describe here three procedures showing how three-dimensional (3D) mapping of structural features in the tissue can be exploited to accurately correlate between the two imaging modalities, without having to rely on the use of artificially introduced markers of the region of interest. The methods employed here facilitate the link between intravital and nanoscale imaging of invasive tumor cells, enabling correlating function to structure in the study of tumor invasion and metastasis. PMID:25479106

  2. Comparison of Fundus Autofluorescence Between Fundus Camera and Confocal Scanning Laser Ophthalmoscope–based Systems

    PubMed Central

    Park, Sung Pyo; Siringo, Frank S.; Pensec, Noelle; Hong, In Hwan; Sparrow, Janet; Barile, Gaetano; Tsang, Stephen H.; Chang, Stanley

    2015-01-01

    BACKGROUND AND OBJECTIVE To compare fundus autofluorescence (FAF) imaging via fundus camera (FC) and confocal scanning laser ophthalmoscope (cSLO). PATIENTS AND METHODS FAF images were obtained with a digital FC (530 to 580 nm excitation) and a cSLO (488 nm excitation). Two authors evaluated correlation of autofluorescence pattern, atrophic lesion size, and image quality between the two devices. RESULTS In 120 eyes, the autofluorescence pattern correlated in 86% of lesions. By lesion subtype, correlation rates were 100% in hemorrhage, 97% in geographic atrophy, 82% in flecks, 75% in drusen, 70% in exudates, 67% in pigment epithelial detachment, 50% in fibrous scars, and 33% in macular hole. The mean lesion size in geographic atrophy was 4.57 ± 2.3 mm2 via cSLO and 3.81 ± 1.94 mm2 via FC (P < .0001). Image quality favored cSLO in 71 eyes. CONCLUSION FAF images were highly correlated between the FC and cSLO. Differences between the two devices revealed contrasts. Multiple image capture and confocal optics yielded higher image contrast with the cSLO, although acquisition and exposure time was longer. PMID:24221461

  3. Auto-Versioning Systems Image Manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezzaglia, Larry

    2013-08-01

    The av_sys_image_mgr utility provides an interface for the creation, manipulation, and analysis of system boot images for computer systems. It is primarily intended to provide a convenient method for managing the introduction of changes to boot images for long-lived production HPC systems.

  4. Pseudo color ghost coding imaging with pseudo thermal light

    NASA Astrophysics Data System (ADS)

    Duan, De-yang; Xia, Yun-jie

    2018-04-01

    We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.

  5. Prevalence and management of urinary tract endometriosis: a clinical case series.

    PubMed

    Gabriel, Boris; Nassif, Joseph; Trompoukis, Pantelis; Barata, Sonia; Wattiez, Arnaud

    2011-12-01

    To report on the prevalence, surgical management, and outcome of urinary tract endometriosis (UTE) in a cohort of 221 patients undergoing laparoscopic surgery for severe endometriosis. UTE can cause significant morbidity, such as silent kidney or progressive renal function loss. Its frequency is underestimated and data on laparoscopic management are scarce. Between 2007 and 2010, 43 patients were eligible for this single-center, retrospective study. The inclusion criterion was the presence of UTE (ie, bladder and/or ureteral endometriosis). All patients were operated laparoscopically. The prevalence of UTE was 19.5% (43/221). There was no correlation between bladder and ureteral endometriosis (P >.05). Ureteral endometriosis was associated with patient's age (P <.01). Patients with bladder, but not ureteral, involvement complained more frequently about dysuria, hematuria, and urinary tract infections. Intraoperative and magnetic resonance imaging (MRI) findings revealed a moderate to good correlation. UTE was not associated with rectovaginal or bowel endometriosis, but rather with involvement of the uterosacral ligaments (P <.01). Twenty-two patients with bladder endometriosis were treated by mucosal skinning and 11 patients underwent partial cystectomy. Superficial ureteral excision was performed in 4 patients, whereas resection with ureteroureterostomy was done in 9 patients. There was no difference regarding the intra- and postoperative complications in patients with or without UTE. In severe pelvic endometriosis, involvement of the urinary tract is quite common. Laparoscopic management is feasible and safe. Because of the lack of specific symptoms, the preoperative diagnosis of ureteral endometriosis still remains a challenge. Pelvic MRI represents a useful preoperative diagnostic tool. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Displacement measurement with nanoscale resolution using a coded micro-mark and digital image correlation

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Ma, Chengfu; Chen, Yuhang

    2014-12-01

    A method for simple and reliable displacement measurement with nanoscale resolution is proposed. The measurement is realized by combining a common optical microscopy imaging of a specially coded nonperiodic microstructure, namely two-dimensional zero-reference mark (2-D ZRM), and subsequent correlation analysis of the obtained image sequence. The autocorrelation peak contrast of the ZRM code is maximized with well-developed artificial intelligence algorithms, which enables robust and accurate displacement determination. To improve the resolution, subpixel image correlation analysis is employed. Finally, we experimentally demonstrate the quasi-static and dynamic displacement characterization ability of a micro 2-D ZRM.

  7. Effect of the image resolution on the statistical descriptors of heterogeneous media.

    PubMed

    Ledesma-Alonso, René; Barbosa, Romeli; Ortegón, Jaime

    2018-02-01

    The characterization and reconstruction of heterogeneous materials, such as porous media and electrode materials, involve the application of image processing methods to data acquired by scanning electron microscopy or other microscopy techniques. Among them, binarization and decimation are critical in order to compute the correlation functions that characterize the microstructure of the above-mentioned materials. In this study, we present a theoretical analysis of the effects of the image-size reduction, due to the progressive and sequential decimation of the original image. Three different decimation procedures (random, bilinear, and bicubic) were implemented and their consequences on the discrete correlation functions (two-point, line-path, and pore-size distribution) and the coarseness (derived from the local volume fraction) are reported and analyzed. The chosen statistical descriptors (correlation functions and coarseness) are typically employed to characterize and reconstruct heterogeneous materials. A normalization for each of the correlation functions has been performed. When the loss of statistical information has not been significant for a decimated image, its normalized correlation function is forecast by the trend of the original image (reference function). In contrast, when the decimated image does not hold statistical evidence of the original one, the normalized correlation function diverts from the reference function. Moreover, the equally weighted sum of the average of the squared difference, between the discrete correlation functions of the decimated images and the reference functions, leads to a definition of an overall error. During the first stages of the gradual decimation, the error remains relatively small and independent of the decimation procedure. Above a threshold defined by the correlation length of the reference function, the error becomes a function of the number of decimation steps. At this stage, some statistical information is lost and the error becomes dependent on the decimation procedure. These results may help us to restrict the amount of information that one can afford to lose during a decimation process, in order to reduce the computational and memory cost, when one aims to diminish the time consumed by a characterization or reconstruction technique, yet maintaining the statistical quality of the digitized sample.

  8. Effect of the image resolution on the statistical descriptors of heterogeneous media

    NASA Astrophysics Data System (ADS)

    Ledesma-Alonso, René; Barbosa, Romeli; Ortegón, Jaime

    2018-02-01

    The characterization and reconstruction of heterogeneous materials, such as porous media and electrode materials, involve the application of image processing methods to data acquired by scanning electron microscopy or other microscopy techniques. Among them, binarization and decimation are critical in order to compute the correlation functions that characterize the microstructure of the above-mentioned materials. In this study, we present a theoretical analysis of the effects of the image-size reduction, due to the progressive and sequential decimation of the original image. Three different decimation procedures (random, bilinear, and bicubic) were implemented and their consequences on the discrete correlation functions (two-point, line-path, and pore-size distribution) and the coarseness (derived from the local volume fraction) are reported and analyzed. The chosen statistical descriptors (correlation functions and coarseness) are typically employed to characterize and reconstruct heterogeneous materials. A normalization for each of the correlation functions has been performed. When the loss of statistical information has not been significant for a decimated image, its normalized correlation function is forecast by the trend of the original image (reference function). In contrast, when the decimated image does not hold statistical evidence of the original one, the normalized correlation function diverts from the reference function. Moreover, the equally weighted sum of the average of the squared difference, between the discrete correlation functions of the decimated images and the reference functions, leads to a definition of an overall error. During the first stages of the gradual decimation, the error remains relatively small and independent of the decimation procedure. Above a threshold defined by the correlation length of the reference function, the error becomes a function of the number of decimation steps. At this stage, some statistical information is lost and the error becomes dependent on the decimation procedure. These results may help us to restrict the amount of information that one can afford to lose during a decimation process, in order to reduce the computational and memory cost, when one aims to diminish the time consumed by a characterization or reconstruction technique, yet maintaining the statistical quality of the digitized sample.

  9. Using 3 Tesla magnetic resonance imaging in the pre-operative evaluation of tongue carcinoma.

    PubMed

    Moreno, K F; Cornelius, R S; Lucas, F V; Meinzen-Derr, J; Patil, Y J

    2017-09-01

    This study aimed to evaluate the role of 3 Tesla magnetic resonance imaging in predicting tongue tumour thickness via direct and reconstructed measures, and their correlations with corresponding histological measures, nodal metastasis and extracapsular spread. A prospective study was conducted of 25 patients with histologically proven squamous cell carcinoma of the tongue and pre-operative 3 Tesla magnetic resonance imaging from 2009 to 2012. Correlations between 3 Tesla magnetic resonance imaging and histological measures of tongue tumour thickness were assessed using the Pearson correlation coefficient: r values were 0.84 (p < 0.0001) and 0.81 (p < 0.0001) for direct and reconstructed measurements, respectively. For magnetic resonance imaging, direct measures of tumour thickness (mean ± standard deviation, 18.2 ± 7.3 mm) did not significantly differ from the reconstructed measures (mean ± standard deviation, 17.9 ± 7.2 mm; r = 0.879). Moreover, 3 Tesla magnetic resonance imaging had 83 per cent sensitivity, 82 per cent specificity, 82 per cent accuracy and a 90 per cent negative predictive value for detecting cervical lymph node metastasis. In this cohort, 3 Tesla magnetic resonance imaging measures of tumour thickness correlated highly with the corresponding histological measures. Further, 3 Tesla magnetic resonance imaging was an effective method of detecting malignant adenopathy with extracapsular spread.

  10. Correlation Filters for Detection of Cellular Nuclei in Histopathology Images.

    PubMed

    Ahmad, Asif; Asif, Amina; Rajpoot, Nasir; Arif, Muhammad; Minhas, Fayyaz Ul Amir Afsar

    2017-11-21

    Nuclei detection in histology images is an essential part of computer aided diagnosis of cancers and tumors. It is a challenging task due to diverse and complicated structures of cells. In this work, we present an automated technique for detection of cellular nuclei in hematoxylin and eosin stained histopathology images. Our proposed approach is based on kernelized correlation filters. Correlation filters have been widely used in object detection and tracking applications but their strength has not been explored in the medical imaging domain up till now. Our experimental results show that the proposed scheme gives state of the art accuracy and can learn complex nuclear morphologies. Like deep learning approaches, the proposed filters do not require engineering of image features as they can operate directly on histopathology images without significant preprocessing. However, unlike deep learning methods, the large-margin correlation filters developed in this work are interpretable, computationally efficient and do not require specialized or expensive computing hardware. A cloud based webserver of the proposed method and its python implementation can be accessed at the following URL: http://faculty.pieas.edu.pk/fayyaz/software.html#corehist .

  11. Correlative cryogenic tomography of cells using light and soft x-rays.

    PubMed

    Smith, Elizabeth A; Cinquin, Bertrand P; Do, Myan; McDermott, Gerry; Le Gros, Mark A; Larabell, Carolyn A

    2014-08-01

    Correlated imaging is the process of imaging a specimen with two complementary modalities, and then combining the two data sets to create a highly informative, composite view. A recent implementation of this concept has been the combination of soft x-ray tomography (SXT) with fluorescence cryogenic microscopy (FCM). SXT-FCM is used to visualize cells that are held in a near-native, cryopreserved. The resultant images are, therefore, highly representative of both the cellular architecture and molecular organization in vivo. SXT quantitatively visualizes the cell and sub-cellular structures; FCM images the spatial distribution of fluorescently labeled molecules. Here, we review the characteristics of SXT-FCM, and briefly discuss how this method compares with existing correlative imaging techniques. We also describe how the incorporation of a cryo-rotation stage into a cryogenic fluorescence microscope allows acquisition of fluorescence cryogenic tomography (FCT) data. FCT is optimally suited for correlation with SXT, since both techniques image the specimen in 3-D, potentially with similar, isotropic spatial resolution. © 2013 Elsevier B.V. All rights reserved.

  12. A new phase-correlation-based iris matching for degraded images.

    PubMed

    Krichen, Emine; Garcia-Salicetti, Sonia; Dorizzi, Bernadette

    2009-08-01

    In this paper, we present a new phase-correlation-based iris matching approach in order to deal with degradations in iris images due to unconstrained acquisition procedures. Our matching system is a fusion of global and local Gabor phase-correlation schemes. The main originality of our local approach is that we do not only consider the correlation peak amplitudes but also their locations in different regions of the images. Results on several degraded databases, namely, the CASIA-BIOSECURE and Iris Challenge Evaluation 2005 databases, show the improvement of our method compared to two available reference systems, Masek and Open Source for Iris (OSRIS), in verification mode.

  13. Minimally invasive image-guided interventional management of hepatic artery pseudoaneurysms.

    PubMed

    Vyas, Sameer; Khandelwal, Niranjan; Gupta, Vivek; Kamal Ahuja, Chirag; Kumar, Ajay; Kalra, Naveen; Kang, Mandeep; Prakash, Mahesh

    2014-01-01

    Hepatic artery pseudoaneurysms (HAPs) are uncommon entities. With the development of interventional techniques, their management has evolved from conventional (surgical) to non-surgical minimally invasive image-guided interventional techniques. Fifteen cases of HAPs who had undergone non-surgical interventional management in our department were reviewed. All patients were comprehensively evaluated for demographic information, morphology of pseudoaneurysm, indication for intervention and means of intervention, approach (endovascular or percutaneous), follow up and complications. Trauma and iatrogenic injury were most common causes of HAPs. Most of the HAPs (9 out of 10 in whom long follow up was available) managed with image-guided interventional techniques had favorable outcome. Minimally invasive image-guided interventional management is the preferred modality for HAPs.

  14. Estimation bias from using nonlinear Fourier plane correlators for sub-pixel image shift measurement and implications for the binary joint transform correlator

    NASA Astrophysics Data System (ADS)

    Grycewicz, Thomas J.; Florio, Christopher J.; Franz, Geoffrey A.; Robinson, Ross E.

    2007-09-01

    When using Fourier plane digital algorithms or an optical correlator to measure the correlation between digital images, interpolation by center-of-mass or quadratic estimation techniques can be used to estimate image displacement to the sub-pixel level. However, this can lead to a bias in the correlation measurement. This bias shifts the sub-pixel output measurement to be closer to the nearest pixel center than the actual location. The paper investigates the bias in the outputs of both digital and optical correlators, and proposes methods to minimize this effect. We use digital studies and optical implementations of the joint transform correlator to demonstrate optical registration with accuracies better than 0.1 pixels. We use both simulations of image shift and movies of a moving target as inputs. We demonstrate bias error for both center-of-mass and quadratic interpolation, and discuss the reasons that this bias is present. Finally, we suggest measures to reduce or eliminate the bias effects. We show that when sub-pixel bias is present, it can be eliminated by modifying the interpolation method. By removing the bias error, we improve registration accuracy by thirty percent.

  15. Correlation of morphological and molecular parameters for colon cancer

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Roney, Celeste A.; Li, Qian; Jiang, James; Cable, Alex; Summers, Ronald M.; Chen, Yu

    2010-02-01

    Colorectal cancer (CRC) is the second leading cause of cancer death in the United States. There is great interest in studying the relationship among microstructures and molecular processes of colorectal cancer during its progression at early stages. In this study, we use our multi-modality optical system that could obtain co-registered optical coherence tomography (OCT) and fluorescence molecular imaging (FMI) images simultaneously to study CRC. The overexpressed carbohydrate α-L-fucose on the surfaces of polyps facilitates the bond of adenomatous polyps with UEA-1 and is used as biomarker. Tissue scattering coefficient derived from OCT axial scan is used as quantitative value of structural information. Both structural images from OCT and molecular images show spatial heterogeneity of tumors. Correlations between those values are analyzed and demonstrate that scattering coefficients are positively correlated with FMI signals in conjugated. In UEA-1 conjugated samples (8 polyps and 8 control regions), the correlation coefficient is ranged from 0.45 to 0.99. These findings indicate that the microstructure of polyps is changed gradually during cancer progression and the change is well correlated with certain molecular process. Our study demonstrated that multi-parametric imaging is able to simultaneously detect morphology and molecular information and it can enable spatially and temporally correlated studies of structure-function relationships during tumor progression.

  16. RadPath: A Web-based System for Integrating and Correlating Radiology and Pathology Findings During Cancer Diagnosis.

    PubMed

    Arnold, Corey W; Wallace, W Dean; Chen, Shawn; Oh, Andrea; Abtin, Fereidoun; Genshaft, Scott; Binder, Scott; Aberle, Denise; Enzmann, Dieter

    2016-01-01

    The current paradigm of cancer diagnosis involves uncoordinated communication of findings from radiology and pathology to downstream physicians. Discordance between these findings can require additional time from downstream users to resolve, or given incorrect resolution, may adversely impact treatment decisions. To mitigate this problem, we developed a web-based system, called RadPath, for correlating and integrating radiology and pathology reporting. RadPath includes interfaces to our institution's clinical information systems, which are used to retrieve reports, images, and test results that are structured into an interactive compendium for a diagnostic patient case. The system includes an editing interface for physicians, allowing for the inclusion of additional clinical data, as well as the ability to retrospectively correlate and contextualize imaging findings following pathology diagnosis. During pilot deployment and testing over the course of 1 year, physicians at our institution have completed 60 RadPath cases, requiring an average of 128 seconds from a radiologist and an average of 93 seconds from a pathologist per case. Several technical and workflow challenges were encountered during development, including interfacing with diverse clinical information systems, automatically structuring report contents, and determining the appropriate physicians to create RadPath summaries. Reaction to RadPath has been positive, with users valuing the system's ability to consolidate diagnostic information. With the increasing complexity of medicine and the movement toward team-based disease management, there is a need for improved clinical communication and information exchange. RadPath provides a platform for generating coherent and correlated diagnostic summaries in cancer diagnosis with minimal additional effort from physicians. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  17. Acute White-Matter Abnormalities in Sports-Related Concussion: A Diffusion Tensor Imaging Study from the NCAA-DoD CARE Consortium.

    PubMed

    Mustafi, Sourajit Mitra; Harezlak, Jaroslaw; Koch, Kevin M; Nencka, Andrew S; Meier, Timothy; West, John D; Giza, Christopher C; DiFiori, John; Guskiewicz, Kevin K; Mihalik, Jason; LaConte, Stephen M; Duma, Stefan M; Broglio, Steven P; Saykin, Andrew J; McCrea, Michael; McAllister, Thomas; Wu, Yu-Chien

    2017-10-25

    Sport-related concussion (SRC) is an important public health issue. While standardized assessment tools are useful in the clinical management of acute concussion, the underlying pathophysiology of SRC and the time course of physiological recovery after injury remain unclear. In this study, we used diffusion tensor imaging (DTI) to detect white-matter alterations in football players within 48 hours after SRC. As part of the NCAA-DoD CARE Consortium study of SRC, 30 American football players diagnosed with acute concussion, and 28 matched controls received clinical assessments and underwent advanced MRI scans. To avoid selection bias and partial voluming effects, whole-brain skeletonized white matter was examined via tract-based spatial statistics (TBSS) to investigate between group differences in DTI metrics and their associations with clinical outcome measures. Mean diffusivity was significantly higher in the brain white matter of the concussed athletes, particularly in frontal and sub-frontal long white-matter tracts. While no DTI metric was associated to any clinical measure in the contact-sport controls, in the concussed group, DTI exhibited correlations with clinical measures. Axial diffusivity demonstrated a significant positive correlation with the Brief Symptom Inventory (BSI) and a trend for a positive correlation with the symptom severity score of the Sports Concussion Assessment Tool (SCAT). In addition, concussed athletes with higher fractional anisotropy performed worse on the cognitive component of the Standardized Assessment of Concussion (SAC). Overall, the results of this study are consistent with the hypothesis that SRC is associated with changes in white-matter tracts shortly after injury, and these differences are correlated clinically with acute symptoms and functional impairments.

  18. Standardized anatomic space for abdominal fat quantification

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.

    2014-03-01

    The ability to accurately measure subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from images is important for improved assessment and management of patients with various conditions such as obesity, diabetes mellitus, obstructive sleep apnea, cardiovascular disease, kidney disease, and degenerative disease. Although imaging and analysis methods to measure the volume of these tissue components have been developed [1, 2], in clinical practice, an estimate of the amount of fat is obtained from just one transverse abdominal CT slice typically acquired at the level of the L4-L5 vertebrae for various reasons including decreased radiation exposure and cost [3-5]. It is generally assumed that such an estimate reliably depicts the burden of fat in the body. This paper sets out to answer two questions related to this issue which have not been addressed in the literature. How does one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? At what anatomic location do the volumes of SAT and VAT correlate maximally with the corresponding single-slice area measures? To answer these questions, we propose two approaches for slice localization: linear mapping and non-linear mapping which is a novel learning based strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. We then study the volume-to-area correlations and determine where they become maximal. We demonstrate on 50 abdominal CT data sets that this mapping achieves significantly improved consistency of anatomic localization compared to current practice. Our results also indicate that maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized.

  19. Online Radiology Reporting with Peer Review as a Learning and Feedback Tool in Radiology; Implementation, Validity, and Student Impressions.

    PubMed

    McEvoy, Fintan J; Shen, Nicholas W; Nielsen, Dorte H; Buelund, Lene E; Holm, Peter

    2017-02-01

    Communicating radiological reports to peers has pedagogical value. Students may be uneasy with the process due to a lack of communication and peer review skills or to their failure to see value in the process. We describe a communication exercise with peer review in an undergraduate veterinary radiology course. The computer code used to manage the course and deliver images online is reported, and we provide links to the executable files. We tested to see if undergraduate peer review of radiological reports has validity and describe student impressions of the learning process. Peer review scores for student-generated radiological reports were compared to scores obtained in the summative multiple choice (MCQ) examination for the course. Student satisfaction was measured using a bespoke questionnaire. There was a weak positive correlation (Pearson correlation coefficient = 0.32, p < 0.01) between peer review scores students received and the student scores obtained in the MCQ examination. The difference in peer review scores received by students grouped according to their level of course performance (high vs. low) was statistically significant (p < 0.05). No correlation was found between peer review scores awarded by the students and the scores they obtained in the MCQ examination (Pearson correlation coefficient = 0.17, p = 0.14). In conclusion, we have created a realistic radiology imaging exercise with readily available software. The peer review scores are valid in that to a limited degree they reflect student future performance in an examination. Students valued the process of learning to communicate radiological findings but do not fully appreciated the value of peer review.

  20. Data management in pattern recognition and image processing systems

    NASA Technical Reports Server (NTRS)

    Zobrist, A. L.; Bryant, N. A.

    1976-01-01

    Data management considerations are important to any system which handles large volumes of data or where the manipulation of data is technically sophisticated. A particular problem is the introduction of image-formatted files into the mainstream of data processing application. This report describes a comprehensive system for the manipulation of image, tabular, and graphical data sets which involve conversions between the various data types. A key characteristic is the use of image processing technology to accomplish data management tasks. Because of this, the term 'image-based information system' has been adopted.

  1. Carbon nanotube based respiratory gated micro-CT imaging of a murine model of lung tumors with optical imaging correlation

    NASA Astrophysics Data System (ADS)

    Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto

    2011-03-01

    Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.

  2. Impact of image quality on reliability of the measurements of left ventricular systolic function and global longitudinal strain in 2D echocardiography

    PubMed Central

    Nagata, Yasufumi; Kado, Yuichiro; Onoue, Takeshi; Otani, Kyoko; Nakazono, Akemi; Otsuji, Yutaka; Takeuchi, Masaaki

    2018-01-01

    Background Left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS) play important roles in diagnosis and management of cardiac diseases. However, the issue of the accuracy and reliability of LVEF and GLS remains to be solved. Image quality is one of the most important factors affecting measurement variability. The aim of this study was to investigate whether improved image quality could reduce observer variability. Methods Two sets of three apical images were acquired using relatively old- and new-generation ultrasound imaging systems (Vivid 7 and Vivid E95) in 308 subjects. Image quality was assessed by endocardial border delineation index (EBDI) using a 3-point scoring system. Three observers measured the LVEF and GLS, and these values and inter-observer variability were investigated. Results Image quality was significantly better with Vivid E95 (EBDI: 26.8 ± 5.9) than that with Vivid 7 (22.8 ± 6.3, P < 0.0001). Regarding the inter-observer variability of LVEF, the r-value, bias, 95% limit of agreement and intra-class correlation coefficient for Vivid 7 were comparable to those for Vivid E95. The % variabilities were significantly lower for Vivid E95 (5.3–6.5%) than those for Vivid 7 (6.5–7.5%). Regarding GLS, all observer variability parameters were better for Vivid E95 than for Vivid 7. Improvements in image quality yielded benefits to both LVEF and GLS measurement reliability. Multivariate analysis showed that image quality was indeed an important factor of observer variability in the measurement of LVEF and GLS. Conclusions The new-generation ultrasound imaging system offers improved image quality and reduces inter-observer variability in the measurement of LVEF and GLS. PMID:29432198

  3. Complex perirectal sepsis: clinical classification and imaging.

    PubMed

    Zbar, A P; Armitage, N C

    2006-07-01

    The use of specialized imaging to assess cryptogenic fistula-in-ano is selective, aimed at delineation of the site of the internal fistula opening and the relationship of the primary and secondary tracks and collections to the main levator plate. Advanced imaging also permits definition of the destructive effects of perirectal sepsis (e.g. internal or external anal sphincter damage, perineal body destruction and an ano- or rectovaginal fistula), which may require secondary reconstructive surgery. We performed a PubMed search of outcomes for fistula management in the English and non-English literature, and summarized results regarding the accuracy of internal opening and horseshoe detection as well as the operative correlation for cryptogenic and non-cryptogenic fistula-in-ano using endoanal ultrasound (EAUS) and magnetic resonance (MR) imaging. Only literature defining these characteristics was included. The advantages and limitations of the main forms of imaging are discussed in this review with emphasis on EAUS and endoanal or pelvic phased-array MR fistulography. The new technique of transperineal sonography is highlighted. A small but important group of patients with complex fistula-in-ano require specialized imaging. There are specific limitations of endoanal ultrasound (EAUS) which necessitate pelvic phased-array MR imaging. Initial work suggests that EAUS may have a role in intraoperative use for image-guided drainage of recurrent abscesses where operative interpretation can be difficult. The coloproctologist in a tertiary referral center must acquire the skills of ultrasound performance in order to successfully treat fistulous disease, suggesting a role for formal imaging accreditation as part of coloproctological training. Future studies should determine both what sequential imaging algorithms for imaging are cost-effective as well as predictive of fistula cure.

  4. Impact of image quality on reliability of the measurements of left ventricular systolic function and global longitudinal strain in 2D echocardiography.

    PubMed

    Nagata, Yasufumi; Kado, Yuichiro; Onoue, Takeshi; Otani, Kyoko; Nakazono, Akemi; Otsuji, Yutaka; Takeuchi, Masaaki

    2018-03-01

    Left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS) play important roles in diagnosis and management of cardiac diseases. However, the issue of the accuracy and reliability of LVEF and GLS remains to be solved. Image quality is one of the most important factors affecting measurement variability. The aim of this study was to investigate whether improved image quality could reduce observer variability. Two sets of three apical images were acquired using relatively old- and new-generation ultrasound imaging systems (Vivid 7 and Vivid E95) in 308 subjects. Image quality was assessed by endocardial border delineation index (EBDI) using a 3-point scoring system. Three observers measured the LVEF and GLS, and these values and inter-observer variability were investigated. Image quality was significantly better with Vivid E95 (EBDI: 26.8 ± 5.9) than that with Vivid 7 (22.8 ± 6.3, P  < 0.0001). Regarding the inter-observer variability of LVEF, the r -value, bias, 95% limit of agreement and intra-class correlation coefficient for Vivid 7 were comparable to those for Vivid E95. The % variabilities were significantly lower for Vivid E95 (5.3-6.5%) than those for Vivid 7 (6.5-7.5%). Regarding GLS, all observer variability parameters were better for Vivid E95 than for Vivid 7. Improvements in image quality yielded benefits to both LVEF and GLS measurement reliability. Multivariate analysis showed that image quality was indeed an important factor of observer variability in the measurement of LVEF and GLS. The new-generation ultrasound imaging system offers improved image quality and reduces inter-observer variability in the measurement of LVEF and GLS. © 2018 The authors.

  5. Flexible medical image management using service-oriented architecture.

    PubMed

    Shaham, Oded; Melament, Alex; Barak-Corren, Yuval; Kostirev, Igor; Shmueli, Noam; Peres, Yardena

    2012-01-01

    Management of medical images increasingly involves the need for integration with a variety of information systems. To address this need, we developed Content Management Offering (CMO), a platform for medical image management supporting interoperability through compliance with standards. CMO is based on the principles of service-oriented architecture, implemented with emphasis on three areas: clarity of business process definition, consolidation of service configuration management, and system scalability. Owing to the flexibility of this platform, a small team is able to accommodate requirements of customers varying in scale and in business needs. We describe two deployments of CMO, highlighting the platform's value to customers. CMO represents a flexible approach to medical image management, which can be applied to a variety of information technology challenges in healthcare and life sciences organizations.

  6. Neural correlates of cognitive processing in monolinguals and bilinguals

    PubMed Central

    Grundy, John G.; Anderson, John A.E.; Bialystok, Ellen

    2017-01-01

    Here we review the neural correlates of cognitive control associated with bilingualism. We demonstrate that lifelong practice managing two languages orchestrates global changes to both the structure and function of the brain. Compared with monolinguals, bilinguals generally show greater gray matter volume, especially in perceptual/motor regions, greater white matter integrity, and greater functional connectivity between gray matter regions. These changes complement electroencephalography findings showing that bilinguals devote neural resources earlier than monolinguals. Parallel functional findings emerge from the functional magnetic resonance imaging literature: bilinguals show reduced frontal activity, suggesting that they do not need to rely on top-down mechanisms to the same extent as monolinguals. This shift for bilinguals to rely more on subcortical/posterior regions, which we term the bilingual anterior-to-posterior and subcortical shift (BAPSS), fits with results from cognitive aging studies and helps to explain why bilinguals experience cognitive decline at later stages of development than monolinguals. PMID:28415142

  7. Parallel image logical operations using cross correlation

    NASA Technical Reports Server (NTRS)

    Strong, J. P., III

    1972-01-01

    Methods are presented for counting areas in an image in a parallel manner using noncoherent optical techniques. The techniques presented include the Levialdi algorithm for counting, optical techniques for binary operations, and cross-correlation.

  8. On the mode I fracture analysis of cracked Brazilian disc using a digital image correlation method

    NASA Astrophysics Data System (ADS)

    Abshirini, Mohammad; Soltani, Nasser; Marashizadeh, Parisa

    2016-03-01

    Mode I of fracture of centrally cracked Brazilian disc was investigated experimentally using a digital image correlation (DIC) method. Experiments were performed on PMMA polymers subjected to diametric-compression load. The displacement fields were determined by a correlation between the reference and the deformed images captured before and during loading. The stress intensity factors were calculated by displacement fields using William's equation and the least square algorithm. The parameters involved in the accuracy of SIF calculation such as number of terms in William's equation and the region of analysis around the crack were discussed. The DIC results were compared with the numerical results available in literature and a very good agreement between them was observed. By extending the tests up to the critical state, mode I fracture toughness was determined by analyzing the image of specimen captured at the moment before fracture. The results showed that the digital image correlation was a reliable technique for the calculation of the fracture toughness of brittle materials.

  9. Quantifying plant colour and colour difference as perceived by humans using digital images.

    PubMed

    Kendal, Dave; Hauser, Cindy E; Garrard, Georgia E; Jellinek, Sacha; Giljohann, Katherine M; Moore, Joslin L

    2013-01-01

    Human perception of plant leaf and flower colour can influence species management. Colour and colour contrast may influence the detectability of invasive or rare species during surveys. Quantitative, repeatable measures of plant colour are required for comparison across studies and generalisation across species. We present a standard method for measuring plant leaf and flower colour traits using images taken with digital cameras. We demonstrate the method by quantifying the colour of and colour difference between the flowers of eleven grassland species near Falls Creek, Australia, as part of an invasive species detection experiment. The reliability of the method was tested by measuring the leaf colour of five residential garden shrub species in Ballarat, Australia using five different types of digital camera. Flowers and leaves had overlapping but distinct colour distributions. Calculated colour differences corresponded well with qualitative comparisons. Estimates of proportional cover of yellow flowers identified using colour measurements correlated well with estimates obtained by measuring and counting individual flowers. Digital SLR and mirrorless cameras were superior to phone cameras and point-and-shoot cameras for producing reliable measurements, particularly under variable lighting conditions. The analysis of digital images taken with digital cameras is a practicable method for quantifying plant flower and leaf colour in the field or lab. Quantitative, repeatable measurements allow for comparisons between species and generalisations across species and studies. This allows plant colour to be related to human perception and preferences and, ultimately, species management.

  10. Quantifying Plant Colour and Colour Difference as Perceived by Humans Using Digital Images

    PubMed Central

    Kendal, Dave; Hauser, Cindy E.; Garrard, Georgia E.; Jellinek, Sacha; Giljohann, Katherine M.; Moore, Joslin L.

    2013-01-01

    Human perception of plant leaf and flower colour can influence species management. Colour and colour contrast may influence the detectability of invasive or rare species during surveys. Quantitative, repeatable measures of plant colour are required for comparison across studies and generalisation across species. We present a standard method for measuring plant leaf and flower colour traits using images taken with digital cameras. We demonstrate the method by quantifying the colour of and colour difference between the flowers of eleven grassland species near Falls Creek, Australia, as part of an invasive species detection experiment. The reliability of the method was tested by measuring the leaf colour of five residential garden shrub species in Ballarat, Australia using five different types of digital camera. Flowers and leaves had overlapping but distinct colour distributions. Calculated colour differences corresponded well with qualitative comparisons. Estimates of proportional cover of yellow flowers identified using colour measurements correlated well with estimates obtained by measuring and counting individual flowers. Digital SLR and mirrorless cameras were superior to phone cameras and point-and-shoot cameras for producing reliable measurements, particularly under variable lighting conditions. The analysis of digital images taken with digital cameras is a practicable method for quantifying plant flower and leaf colour in the field or lab. Quantitative, repeatable measurements allow for comparisons between species and generalisations across species and studies. This allows plant colour to be related to human perception and preferences and, ultimately, species management. PMID:23977275

  11. Assessment of β-zone peripapillary atrophy by optical coherence tomography and scanning laser ophthalmoscopy imaging in glaucoma patients

    PubMed Central

    Seidensticker, Florian; Reznicek, Lukas; Mann, Thomas; Hübert, Irene; Kampik, Anselm; Ulbig, Michael; Hirneiss, Christoph; Neubauer, Aljoscha S; Kernt, Marcus

    2014-01-01

    Purpose To assess β-zone peripapillary atrophy (β-PPA) using spectral domain optical coherence tomography (SD-OCT), scanning laser ophthalmoscopy (SLO), and fundus auto-fluorescence (FAF) imaging in patients with primary open-angle glaucoma with advanced glaucomatous visual field defects. Methods A consecutive, prospective series of 82 study eyes with primary open-angle glaucoma were included in this study. All study participants underwent a full ophthalmic examination followed by SD-OCT, wide-field SLO, and FAF imaging of the optic nerve head and the peripapillary region. Results Eighty-four glaucomatous eyes were included in our prospective study. Correlation analyses for horizontally and vertically obtained β-PPA for all three imaging modalities (color SLO, FAF, and SD-OCT) revealed highest correlations between FAF and color SLO (Pearson correlation coefficient: 0.904 [P<0.001] for horizontal β-PPA and 0.786 [P<0.001] for vertical β-PPA). Bland–Altman plotting revealed highest agreements between color SLO and FAF, with −2.1 pixels ±1.96 standard deviation (SD) for horizontal β-PPA, SD: 10.5 pixels and 2.4 pixels ±1.96 SD for vertical β-PPA. Conclusion β-PPA can be assessed using en-face SLO and cross-sectional SD-OCT imaging. Correlation analyses revealed highest correlations between color SLO and FAF imaging, while correlations between SLO and SD-OCT were weak. A more precise structural definition of β-PPA is needed. PMID:25061270

  12. INFLUENCE OF THE IN-PLANE ARTEFACT IN CHEST TOMOSYNTHESIS ON PULMONARY NODULE SIZE MEASUREMENTS.

    PubMed

    Söderman, Christina; Johnsson, Åse Allansdotter; Vikgren, Jenny; Norrlund, Rauni Rossi; Molnar, David; Svalkvist, Angelica; Månsson, Lars Gunnar; Båth, Magnus

    2016-06-01

    The aim of the present study was to investigate how the in-plane artefact present in the scan direction around structures in tomosynthesis images should be managed when measuring the size of nodules in chest tomosynthesis images in order to achieve acceptable measurement accuracy. Data from measurements, performed by radiologists, of the longest diameter of artificial nodules inserted in chest tomosynthesis images were used. The association between the measurement error and the direction of the longest nodule diameter, relative to the scan direction, was evaluated using the Kendall rank correlation coefficient. All of the radiologists had chosen to not include the artefact in the measurements. Significant association between measurement error and the direction of the longest diameter was found for nodules larger than 12 mm, which indicates that, for these nodules, there is a risk of underestimating the nodule size if the in-plane artefact is omitted from manual diameter measurements. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Software for Managing an Archive of Images

    NASA Technical Reports Server (NTRS)

    Hallai, Charles; Jones, Helene; Callac, Chris

    2003-01-01

    This is a revised draft by Innovators concerning the report on Software for Managing and Archive of Images.The SSC Multimedia Archive is an automated electronic system to manage images, acquired both by film and digital cameras, for the Public Affairs Office (PAO) at Stennis Space Center (SSC). Previously, the image archive was based on film photography and utilized a manual system that, by todays standards, had become inefficient and expensive. Now, the SSC Multimedia Archive, based on a server at SSC, contains both catalogs and images for pictures taken both digitally and with a traditional film-based camera, along with metadata about each image.

  14. ultraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy.

    PubMed

    Brama, Elisabeth; Peddie, Christopher J; Wilkes, Gary; Gu, Yan; Collinson, Lucy M; Jones, Martin L

    2016-12-13

    In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.

  15. Anatomo-radiological correlation using 18-FDG-PET in abdominal sepsis model in rats. A preliminary study.

    PubMed

    Azevedo, Ítalo Medeiros; Carvalho, Marília Daniela Ferreira; Nascimento, Rafael Pereira; Macedo, Robson; Aquino, Mônica Raquel de Souza; Medeiros, Aldo Cunha

    2017-03-01

    To examine a correlation of micro-PET images with photographic images of the digestive organs in abdominal sepsis model. Male Wistar rats weighing 265±18g were used. Abdominal sepsis was induced by ligature and cecal puncture. Micro-PET Images from abdominal cavity septic foci were obtained using 18-Fluoro-deoxyglucose, looking for a correlation with photographic images of abdominal cavity organs. Pearson's correlation test was used. The mean standard uptake values (SUV) and lesion areas were 2.58±0.63SUVbwg/ml and 546.87±300.95mm2, respectively. There was a strong positive correlation between the two variables (r=0.863, p=0.137), which resulted in a coefficient of determination r2?0.75, meaning that 75% of SUV variation is explained by the lesion areas of digestive organs. Micro-PET allows high throughput assessment of lesion count and volume in pre-clinical rat model of CPL abdominal sepsis.

  16. A combined method for correlative 3D imaging of biological samples from macro to nano scale

    NASA Astrophysics Data System (ADS)

    Kellner, Manuela; Heidrich, Marko; Lorbeer, Raoul-Amadeus; Antonopoulos, Georgios C.; Knudsen, Lars; Wrede, Christoph; Izykowski, Nicole; Grothausmann, Roman; Jonigk, Danny; Ochs, Matthias; Ripken, Tammo; Kühnel, Mark P.; Meyer, Heiko

    2016-10-01

    Correlative analysis requires examination of a specimen from macro to nano scale as well as applicability of analytical methods ranging from morphological to molecular. Accomplishing this with one and the same sample is laborious at best, due to deformation and biodegradation during measurements or intermediary preparation steps. Furthermore, data alignment using differing imaging techniques turns out to be a complex task, which considerably complicates the interconnection of results. We present correlative imaging of the accessory rat lung lobe by combining a modified Scanning Laser Optical Tomography (SLOT) setup with a specially developed sample preparation method (CRISTAL). CRISTAL is a resin-based embedding method that optically clears the specimen while allowing sectioning and preventing degradation. We applied and correlated SLOT with Multi Photon Microscopy, histological and immunofluorescence analysis as well as Transmission Electron Microscopy, all in the same sample. Thus, combining CRISTAL with SLOT enables the correlative utilization of a vast variety of imaging techniques.

  17. Information content exploitation of imaging spectrometer's images for lossless compression

    NASA Astrophysics Data System (ADS)

    Wang, Jianyu; Zhu, Zhenyu; Lin, Kan

    1996-11-01

    Imaging spectrometer, such as MAIS produces a tremendous volume of image data with up to 5.12 Mbps raw data rate, which needs urgently a real-time, efficient and reversible compression implementation. Between the lossy scheme with high compression ratio and the lossless scheme with high fidelity, we must make our choice based on the particular information content analysis of each imaging spectrometer's image data. In this paper, we present a careful analysis of information-preserving compression of imaging spectrometer MAIS with an entropy and autocorrelation study on the hyperspectral images. First, the statistical information in an actual MAIS image, captured in Marble Bar Australia, is measured with its entropy, conditional entropy, mutual information and autocorrelation coefficients on both spatial dimensions and spectral dimension. With these careful analyses, it is shown that there is high redundancy existing in the spatial dimensions, but the correlation in spectral dimension of the raw images is smaller than expected. The main reason of the nonstationarity on spectral dimension is attributed to the instruments's discrepancy on detector's response and channel's amplification in different spectral bands. To restore its natural correlation, we preprocess the signal in advance. There are two methods to accomplish this requirement: onboard radiation calibration and normalization. A better result can be achieved by the former one. After preprocessing, the spectral correlation increases so high that it contributes much redundancy in addition to spatial correlation. At last, an on-board hardware implementation for the lossless compression is presented with an ideal result.

  18. Cluster signal-to-noise analysis for evaluation of the information content in an image.

    PubMed

    Weerawanich, Warangkana; Shimizu, Mayumi; Takeshita, Yohei; Okamura, Kazutoshi; Yoshida, Shoko; Yoshiura, Kazunori

    2018-01-01

    (1) To develop an observer-free method of analysing image quality related to the observer performance in the detection task and (2) to analyse observer behaviour patterns in the detection of small mass changes in cone-beam CT images. 13 observers detected holes in a Teflon phantom in cone-beam CT images. Using the same images, we developed a new method, cluster signal-to-noise analysis, to detect the holes by applying various cut-off values using ImageJ and reconstructing cluster signal-to-noise curves. We then evaluated the correlation between cluster signal-to-noise analysis and the observer performance test. We measured the background noise in each image to evaluate the relationship with false positive rates (FPRs) of the observers. Correlations between mean FPRs and intra- and interobserver variations were also evaluated. Moreover, we calculated true positive rates (TPRs) and accuracies from background noise and evaluated their correlations with TPRs from observers. Cluster signal-to-noise curves were derived in cluster signal-to-noise analysis. They yield the detection of signals (true holes) related to noise (false holes). This method correlated highly with the observer performance test (R 2 = 0.9296). In noisy images, increasing background noise resulted in higher FPRs and larger intra- and interobserver variations. TPRs and accuracies calculated from background noise had high correlation with actual TPRs from observers; R 2 was 0.9244 and 0.9338, respectively. Cluster signal-to-noise analysis can simulate the detection performance of observers and thus replace the observer performance test in the evaluation of image quality. Erroneous decision-making increased with increasing background noise.

  19. Postoperative MRI Evaluation of a Radiofrequency Cordotomy Lesion for Intractable Cancer Pain

    PubMed Central

    Vedantam, A.; Hou, P.; Chi, T.L.; Hess, K.R; Dougherty, P.M.; Bruera, E.; Viswanathan, A.

    2017-01-01

    BACKGROUND AND PURPOSE There are limited data on the use of postoperative imaging to evaluate the cordotomy lesion. We aimed to describe the cordotomy lesion by using postoperative MR imaging in patients after percutaneous cordotomy for intractable cancer pain. MATERIALS AND METHODS Postoperative MR imaging and clinical outcomes were prospectively obtained for 10 patients after percutaneous cordotomy for intractable cancer pain. Area, signal intensity, and location of the lesion were recorded. Clinical outcomes were measured by using the Visual Analog Scale and the Brief Pain Inventory–Short Form, and correlations with MR imaging metrics were evaluated. RESULTS Ten patients (5 men, 5 women; mean age, 58.5 ± 9.6 years) were included in this study. The cordotomy lesion was hyperintense with central hypointense foci on T2-weighted MR imaging, and it was centered in the anterolateral quadrant at the C1–C2 level. The mean percentage of total cord area lesioned was 24.9% ± 7.9%, and most lesions were centered in the dorsolateral region of the anterolateral quadrant (66% of the anterolateral quadrant). The number of pial penetrations correlated with the percentage of total cord area that was lesioned (r = 0.78; 95% CI, 0.44–0.89; P = .008) and the length of T2-weighted hyperintensity (r = 0.85; 95% CI, 0.54–0.89; P = .002). No significant correlations were found between early clinical outcomes and quantitative MR imaging metrics. CONCLUSIONS We describe qualitative and quantitative characteristics of a cordotomy lesion on early postoperative MR imaging. The size and length of the lesion on MR imaging correlate with the number of pial penetrations. Larger studies are needed to further investigate the clinical correlates of MR imaging metrics after percutaneous cordotomy. PMID:28209581

  20. SU-E-J-115: Correlation of Displacement Vector Fields Calculated by Deformable Image Registration Algorithms with Motion Parameters of CT Images with Well-Defined Targets and Controlled-Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskowiak, J; Ahmad, S; Ali, I

    Purpose: To investigate correlation of displacement vector fields (DVF) calculated by deformable image registration algorithms with motion parameters in helical axial and cone-beam CT images with motion artifacts. Methods: A mobile thorax phantom with well-known targets with different sizes that were made from water-equivalent material and inserted in foam to simulate lung lesions. The thorax phantom was imaged with helical, axial and cone-beam CT. The phantom was moved with a cyclic motion with different motion amplitudes and frequencies along the superior-inferior direction. Different deformable image registration algorithms including demons, fast demons, Horn-Shunck and iterative-optical-flow from the DIRART software were usedmore » to deform CT images for the phantom with different motion patterns. The CT images of the mobile phantom were deformed to CT images of the stationary phantom. Results: The values of displacement vectors calculated by deformable image registration algorithm correlated strongly with motion amplitude where large displacement vectors were calculated for CT images with large motion amplitudes. For example, the maximal displacement vectors were nearly equal to the motion amplitudes (5mm, 10mm or 20mm) at interfaces between the mobile targets lung tissue, while the minimal displacement vectors were nearly equal to negative the motion amplitudes. The maximal and minimal displacement vectors matched with edges of the blurred targets along the Z-axis (motion-direction), while DVF’s were small in the other directions. This indicates that the blurred edges by phantom motion were shifted largely to match with the actual target edge. These shifts were nearly equal to the motion amplitude. Conclusions: The DVF from deformable-image registration algorithms correlated well with motion amplitude of well-defined mobile targets. This can be used to extract motion parameters such as amplitude. However, as motion amplitudes increased, image artifacts increased significantly and that limited image quality and poor correlation between the motion amplitude and DVF was obtained.« less

  1. Self-image and ethnic identification in South Africa.

    PubMed

    Bornman, E

    1999-08-01

    This study examined the relationship between self-image and ethnic identification among 3 South African groups. Participants included random samples of 347 Afrikaans-speaking Whites, 113 English-speaking Whites, and 466 Blacks in urban Gauteng. Positive and negative self-image were extracted using the Rosenberg Self-Esteem Scale (M. Rosenberg, 1965). Afrikaans-speaking Whites had the most positive self-image and Blacks the most negative self-image. A positive self-image was correlated with stronger ethnic identification among Afrikaans-speaking Whites. The opposite was true for Blacks. This relationship was insignificant among English-speaking Whites. Ambivalence toward ingroup identity was persistently correlated with self-image for all groups.

  2. Added Value of Selected Images Embedded Into Radiology Reports to Referring Clinicians

    PubMed Central

    Iyer, Veena R.; Hahn, Peter F.; Blaszkowsky, Lawrence S.; Thayer, Sarah P.; Halpern, Elkan F.; Harisinghani, Mukesh G.

    2011-01-01

    Purpose The aim of this study was to evaluate the added utility of embedding images for findings described in radiology text reports to referring clinicians. Methods Thirty-five cases referred for abdominal CT scans in 2007 and 2008 were included. Referring physicians were asked to view text-only reports, followed by the same reports with pertinent images embedded. For each pair of reports, a questionnaire was administered. A 5-point, Likert-type scale was used to assess if the clinical query was satisfactorily answered by the text-only report. A “yes-or-no” question was used to assess whether the report with images answered the clinical query better; a positive answer to this question generated “yes-or-no” queries to examine whether the report with images helped in making a more confident decision on management, whether it reduced time spent in forming the plan, and whether it altered management. The questionnaire asked whether a radiologist would be contacted with queries on reading the text-only report and the report with images. Results In 32 of 35 cases, the text-only reports satisfactorily answered the clinical queries. In these 32 cases, the reports with attached images helped in making more confident management decisions and reduced time in planning management. Attached images altered management in 2 cases. Radiologists would have been consulted for clarifications in 21 and 10 cases on reading the text-only reports and the reports with embedded images, respectively. Conclusions Providing relevant images with reports saves time, increases physicians' confidence in deciding treatment plans, and can alter management. PMID:20193926

  3. Automatic Methods in Image Processing and Their Relevance to Map-Making.

    DTIC Science & Technology

    1981-02-11

    23b) and ECfg ) = DC1 1 reIc (5-24) Is an example, let the image function f be white noise so that Cf( ) = s, ,), the Dirac impulse . Then (5-24...based on image and correlator models which describe the behavior of correlation processors under condi- tions of low image contrast or signal-to- noise ...71 Sensor Noise ......................... 74 Self Noise .7.................. 6 Ma chine Noise ................ 81 Fixed Point Processing

  4. Multimodal, multiphoton microscopy and image correlation analysis for characterizing corneal thermal damage

    NASA Astrophysics Data System (ADS)

    Lo, Wen; Chang, Yu-Lin; Liu, Jia-Shiu; Hseuh, Chiu-Mei; Hovhannisyan, Vladimir; Chen, Shean-Jen; Tan, Hsin-Yuan; Dong, Chen-Yuan

    2009-09-01

    We used the combination of multiphoton autofluorescence (MAF), forward second-harmonic generation (FWSHG), and backward second-harmonic generation (BWSHG) imaging for the qualitative and quantitative characterization of thermal damage of ex vivo bovine cornea. We attempt to characterize the structural alterations by qualitative MAF, FWSHG, and BWSHG imaging in the temperature range of 37 to 90°C. In addition to measuring the absolute changes in the three types of signals at the stromal surface, we also performed image correlation analysis between FWSHG and BWSHG and demonstrate that with increasing thermal damage, image correlation between FWSHG and BWSHG significantly increases. Our results show that while MAF and BWSHG intensities may be used as preliminary indicators of the extent of corneal thermal damage, the most sensitive measures are provided by the decay in FWSHG intensity and the convergence of FWSHG and BWSHG images.

  5. Development of image and information management system for Korean standard brain

    NASA Astrophysics Data System (ADS)

    Chung, Soon Cheol; Choi, Do Young; Tack, Gye Rae; Sohn, Jin Hun

    2004-04-01

    The purpose of this study is to establish a reference for image acquisition for completing a standard brain for diverse Korean population, and to develop database management system that saves and manages acquired brain images and personal information of subjects. 3D MP-RAGE (Magnetization Prepared Rapid Gradient Echo) technique which has excellent Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) as well as reduces image acquisition time was selected for anatomical image acquisition, and parameter values were obtained for the optimal image acquisition. Using these standards, image data of 121 young adults (early twenties) were obtained and stored in the system. System was designed to obtain, save, and manage not only anatomical image data but also subjects' basic demographic factors, medical history, handedness inventory, state-trait anxiety inventory, A-type personality inventory, self-assessment depression inventory, mini-mental state examination, intelligence test, and results of personality test via a survey questionnaire. Additionally this system was designed to have functions of saving, inserting, deleting, searching, and printing image data and personal information of subjects, and to have accessibility to them as well as automatic connection setup with ODBC. This newly developed system may have major contribution to the completion of a standard brain for diverse Korean population since it can save and manage their image data and personal information.

  6. Do postoperative radiographically verified technical success, improved cosmesis, and trunk shift corroborate with patient-reported outcomes in Lenke 1C adolescent idiopathic scoliosis?

    PubMed

    Sharma, Shallu; Bünger, Cody Eric; Andersen, Thomas; Sun, Haolin; Wu, Chunsen; Hansen, Ebbe Stender

    2015-07-01

    To examine correlation between postoperative radiographic and cosmetic improvements in Lenke 1C adolescent idiopathic scoliosis (AIS) with patients' self-rated outcomes of health and disability at follow-up as determined by the Scoliosis Research Society questionnaire (SRS-30), Oswestry Disability Index score (ODI) and measure of overall health quality Euroqol-5d (EQ-5D). 24 Lenke 1C scoliosis patients, mean age 16.5 (12.8-38.1) years, treated with posterior pedicle screw-only construct, were included. The coronal profile indices (radiographic and cosmetic) regarding magnitude of spinal deformity and truncal balance were measured preoperatively, postoperatively and at final follow-up. A comprehensive index of overall back symmetry was also measured by means of the Posterior Trunk Symmetry Index (POTSI). Pearson's correlation analysis determined the association between the radiographic-cosmetic indices and patient-rated outcomes. Mean follow-up for the cohort was 4.4 (±1.86) years. The thoracic apical vertebra-first thoracic vertebra horizontal distance (AV-TI) correction had significant correlation with function, self-image, and mental health SRS-30 scores (0.55, 0.54, 0.66). Similarly, thoracic apical vertebra horizontal translation from central sacral vertical line (AV-CSVL) correction at follow-up had significant correlation with self-image and management domains (0.57, 0.50). Follow-up POTSI correlated well with SRS-30 and EQ-5D scores (r = -0.64, -0.54). Postoperative leftward trunk shift/spinal imbalance did not influence overall cosmesis and outcomes; significant spinal realignment was evident in follow-up resulting in physiological balance and acceptable cosmesis and outcomes. Significant, but less than "perfect" correlations were observed between the radiographic, cosmetic measures and patient-rated outcomes. Thoracic AV-CSVL, AV-T1 correction and POTSI associated significantly with SRS-30 scores. Whereas, thoracic Cobb angle, Cobb correction, and coronal balance did not correlate with any patient-rated outcome measure. It is, therefore, inferred that the patients-rated subjective outcomes are only poorly reflected by the objectively measured radiographic and cosmetic measures of deformity correction.

  7. Evaluation of the utility of 99m Tc-MDP bone scintigraphy versus MIBG scintigraphy and cross-sectional imaging for staging patients with neuroblastoma.

    PubMed

    Gauguet, Jean-Marc; Pace-Emerson, Tamara; Grant, Frederick D; Shusterman, Suzanne; DuBois, Steven G; Frazier, A Lindsay; Voss, Stephan D

    2017-11-01

    Accurate staging of neuroblastoma requires multiple imaging examinations. The purpose of this study was to determine the relative contribution of 99m Tc-methylene diphosphonate (MDP) bone scintigraphy (bone scan) versus metaiodobenzylguanidine scintigraphy (MIBG scan) for accurate staging of neuroblastoma. A medical record search by the identified patients with neuroblastoma from 1993 to 2012 who underwent both MIBG and bone scan for disease staging. Cross-sectional imaging was used to corroborate the scintigraphy results. Clinical records were used to correlate imaging findings with clinical staging and patient management. One hundred thirty-two patients underwent both MIBG and bone scan for diagnosis. All stage 1 (n = 12), 2 (n = 8), and 4S (n = 4) patients had a normal bone scan with no skeletal MIBG uptake. Six of 30 stage 3 patients had false (+) bone scans. In the 78 stage 4 patients, 58/78 (74%) were both skeletal MIBG(+)/bone scan (+). In 56 of the 58 cases, skeletal involvement detected with MIBG was equal to or greater than that detected by bone scan. Only 3/78 had (-) skeletal MIBG uptake and (+) bone scans; all 3 had other sites of metastatic disease. Five of 78 had (+) skeletal MIBG with a (-) bone scan, while 12/78 had no skeletal involvement by either MIBG or bone scan. In no case did a positive bone scan alone determine a stage 4 designation. In the staging of neuroblastoma, 99m Tc-MDP bone scintigraphy does not identify unique sites of disease that affect disease stage or clinical management, and in the majority of cases bone scans can be omitted from the routine neuroblastoma staging algorithm. © 2017 Wiley Periodicals, Inc.

  8. Multimodal fusion imaging ensemble for targeted sentinel lymph node management: initial results of an innovative promising approach for anatomically difficult lymphatic drainage in different tumour entities.

    PubMed

    Maza, Sofiane; Taupitz, Mathias; Taymoorian, Kasra; Winzer, Klaus Jürgen; Rückert, Jens; Paschen, Christian; Räber, Gert; Schneider, Sylke; Trefzer, Uwe; Munz, Dieter L

    2007-03-01

    There are situations where exact identification and localisation of sentinel lymph nodes (SLNs) are very difficult using lymphoscintigraphy, a hand-held gamma probe and vital dye, either a priori or a posteriori. We developed a new method using a simultaneous injection of two lymphotropic agents for exact topographical tomographic localisation and biopsy of draining SLNs. The purpose of this prospective pilot study was to investigate the feasibility and efficacy of this method ensemble. Fourteen patients with different tumour entities were enrolled. A mixture of (99m)Tc-nanocolloid and a dissolved superparamagnetic iron oxide was injected interstitially. Dynamic, sequential static lymphoscintigraphy and SPECT served as pathfinders. MR imaging was performed 2 h after injection. SPECT, contrast MRI and, if necessary, CT scan data sets were fused and evaluated with special regard to the topographical location of SLNs. The day after injection, nine patients underwent SLN biopsy and, in the presence of SLN metastasis, an elective lymph node dissection. Twenty-five SLNs were localised in the 14 patients examined. A 100% fusion correlation was achieved in all patients. The anatomical sites of SLNs detected during surgery showed 100% agreement with those localised on the multimodal fusion images. SLNs could be excised in 11/14 patients, six of whom had nodal metastasis. Our novel approach of multimodal fusion imaging for targeted SLN management in primary tumours with lymphatic drainage to anatomically difficult regions enables SLN biopsy even in patients with lymphatic drainage to obscure regions. Currently, we are testing its validity in larger patient groups and other tumour entities.

  9. The composite classification problem in optical information processing

    NASA Technical Reports Server (NTRS)

    Hall, Eric B.

    1995-01-01

    Optical pattern recognition allows objects to be recognized from their images and permits their positional parameters to be estimated accurately in real time. The guiding principle behind optical pattern recognition is that a lens focusing a beam of coherent light modulated with an image produces the two-dimensinal Fourier transform of that image. When the resulting output is further transformed by the matched filter corresponding to the original image, one obtains the autocorrelation function of the original image, which has a peak at the origin. Such a device is called an optical correlator and may be used to recognize the locate the image for which it is designed. (From a practical perspective, an approximation to the matched filter must be used since the spatial light modulator (SLM) on which the filter is implemented usually does not allow one to independently control both the magnitude and phase of the filter.) Generally, one is not just concerned with recognizing a single image but is interested in recognizing a variety of rotated and scaled views of a particular image. In order to recognize these different views using an optical correlator, one may select a subset of these views (whose elements are called training images) and then use a composite filter that is designed to produce a correlation peak for each training image. Presumably, these peaks should be sharp and easily distinguishable from the surrounding correlation plane values. In this report we consider two areas of research regarding composite optical correlators. First, we consider the question of how best to choose the training images that are used to design the composite filter. With regard to quantity, the number of training images should be large enough to adequately represent all possible views of the targeted object yet small enough to ensure that the resolution of the filter is not exhausted. As for the images themselves, they should be distinct enough to avoid numerical difficulties yet similar enough to avoid gaps in which certain views of the target will be unrecognized. One method that we introduce to study this problem is called probing and involves the creation of the artificial imagery. The second problem we consider involves the clasification of the composite filter's correlation plane data. In particular, we would like to determine not only whether or not we are viewing a training image, but, in the former case, we would like to determine which training image is being viewed. This second problem is investigated using traditional M-ary hypothesis testing techniques.

  10. Robust mosiacs of close-range high-resolution images

    NASA Astrophysics Data System (ADS)

    Song, Ran; Szymanski, John E.

    2008-03-01

    This paper presents a robust algorithm which relies only on the information contained within the captured images for the construction of massive composite mosaic images from close-range and high-resolution originals, such as those obtained when imaging architectural and heritage structures. We first apply Harris algorithm to extract a selection of corners and, then, employ both the intensity correlation and the spatial correlation between the corresponding corners for matching them. Then we estimate the eight-parameter projective transformation matrix by the genetic algorithm. Lastly, image fusion using a weighted blending function together with intensity compensation produces an effective seamless mosaic image.

  11. Imaging of the shoulder with arthroscopic correlation.

    PubMed

    Sharma, Pranshu; Morrison, William B; Cohen, Steven

    2013-07-01

    Shoulder pain with or without trauma is a common complaint. MRI is often the most useful imaging study for evaluating the shoulder. This review provides an overview of various modalities and their role in evaluating various clinical issues in shoulder pathologies. Imaging and arthroscopic correlation of common conditions are provided. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. TU-D-207B-01: A Prediction Model for Distinguishing Radiation Necrosis From Tumor Progression After Gamma Knife Radiosurgery Based On Radiomics Features From MR Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z; MD Anderson Cancer Center, Houston, TX; Ho, A

    Purpose: To develop and validate a prediction model using radiomics features extracted from MR images to distinguish radiation necrosis from tumor progression for brain metastases treated with Gamma knife radiosurgery. Methods: The images used to develop the model were T1 post-contrast MR scans from 71 patients who had had pathologic confirmation of necrosis or progression; 1 lesion was identified per patient (17 necrosis and 54 progression). Radiomics features were extracted from 2 images at 2 time points per patient, both obtained prior to resection. Each lesion was manually contoured on each image, and 282 radiomics features were calculated for eachmore » lesion. The correlation for each radiomics feature between two time points was calculated within each group to identify a subset of features with distinct values between two groups. The delta of this subset of radiomics features, characterizing changes from the earlier time to the later one, was included as a covariate to build a prediction model using support vector machines with a cubic polynomial kernel function. The model was evaluated with a 10-fold cross-validation. Results: Forty radiomics features were selected based on consistent correlation values of approximately 0 for the necrosis group and >0.2 for the progression group. In performing the 10-fold cross-validation, we narrowed this number down to 11 delta radiomics features for the model. This 11-delta-feature model showed an overall prediction accuracy of 83.1%, with a true positive rate of 58.8% in predicting necrosis and 90.7% for predicting tumor progression. The area under the curve for the prediction model was 0.79. Conclusion: These delta radiomics features extracted from MR scans showed potential for distinguishing radiation necrosis from tumor progression. This tool may be a useful, noninvasive means of determining the status of an enlarging lesion after radiosurgery, aiding decision-making regarding surgical resection versus conservative medical management.« less

  13. Assessment of contrast enhanced respiration managed cone-beam CT for image guided radiotherapy of intrahepatic tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Nikolaj K. G., E-mail: nkyj@regionsjaelland.dk; Stewart, Errol; Imaging Research Lab, Robarts Research Institute, London, Ontario N6A 5B7

    2014-05-15

    Purpose: Contrast enhancement and respiration management are widely used during image acquisition for radiotherapy treatment planning of liver tumors along with respiration management at the treatment unit. However, neither respiration management nor intravenous contrast is commonly used during cone-beam CT (CBCT) image acquisition for alignment prior to radiotherapy. In this study, the authors investigate the potential gains of injecting an iodinated contrast agent in combination with respiration management during CBCT acquisition for liver tumor radiotherapy. Methods: Five rabbits with implanted liver tumors were subjected to CBCT with and without motion management and contrast injection. The acquired CBCT images were registeredmore » to the planning CT to determine alignment accuracy and dosimetric impact. The authors developed a simulation tool for simulating contrast-enhanced CBCT images from dynamic contrast enhanced CT imaging (DCE-CT) to determine optimal contrast injection protocols. The tool was validated against contrast-enhanced CBCT of the rabbit subjects and was used for five human patients diagnosed with hepatocellular carcinoma. Results: In the rabbit experiment, when neither motion management nor contrast was used, tumor centroid misalignment between planning image and CBCT was 9.2 mm. This was reduced to 2.8 mm when both techniques were employed. Tumors were not visualized in clinical CBCT images of human subjects. Simulated contrast-enhanced CBCT was found to improve tumor contrast in all subjects. Different patients were found to require different contrast injections to maximize tumor contrast. Conclusions: Based on the authors’ animal study, respiration managed contrast enhanced CBCT improves IGRT significantly. Contrast enhanced CBCT benefits from patient specific tracer kinetics determined from DCE-CT.« less

  14. Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy.

    PubMed

    Gröner, Nadine; Capoulade, Jérémie; Cremer, Christoph; Wachsmuth, Malte

    2010-09-27

    The intracellular mobility of biomolecules is determined by transport and diffusion as well as molecular interactions and is crucial for many processes in living cells. Methods of fluorescence microscopy like confocal laser scanning microscopy (CLSM) can be used to characterize the intracellular distribution of fluorescently labeled biomolecules. Fluorescence correlation spectroscopy (FCS) is used to describe diffusion, transport and photo-physical processes quantitatively. As an alternative to FCS, spatially resolved measurements of mobilities can be implemented using a CLSM by utilizing the spatio-temporal information inscribed into the image by the scan process, referred to as raster image correlation spectroscopy (RICS). Here we present and discuss an extended approach, multiple scan speed image correlation spectroscopy (msICS), which benefits from the advantages of RICS, i.e. the use of widely available instrumentation and the extraction of spatially resolved mobility information, without the need of a priori knowledge of diffusion properties. In addition, msICS covers a broad dynamic range, generates correlation data comparable to FCS measurements, and allows to derive two-dimensional maps of diffusion coefficients. We show the applicability of msICS to fluorophores in solution and to free EGFP in living cells.

  15. Vision based tunnel inspection using non-rigid registration

    NASA Astrophysics Data System (ADS)

    Badshah, Amir; Ullah, Shan; Shahzad, Danish

    2015-04-01

    Growing numbers of long tunnels across the globe has increased the need for safety measurements and inspections of tunnels in these days. To avoid serious damages, tunnel inspection is highly recommended at regular intervals of time to find any deformations or cracks at the right time. While following the stringent safety and tunnel accessibility standards, conventional geodetic surveying using techniques of civil engineering and other manual and mechanical methods are time consuming and results in troublesome of routine life. An automatic tunnel inspection by image processing techniques using non rigid registration has been proposed. There are many other image processing methods used for image registration purposes. Most of the processes are operation of images in its spatial domain like finding edges and corners by Harris edge detection method. These methods are quite time consuming and fail for some or other reasons like for blurred or images with noise. Due to use of image features directly by these methods in the process, are known by the group, correlation by image features. The other method is featureless correlation, in which the images are converted into its frequency domain and then correlated with each other. The shift in spatial domain is the same as in frequency domain, but the processing is order faster than in spatial domain. In the proposed method modified normalized phase correlation has been used to find any shift between two images. As pre pre-processing the tunnel images i.e. reference and template are divided into small patches. All these relative patches are registered by the proposed modified normalized phase correlation. By the application of the proposed algorithm we get the pixel movement of the images. And then these pixels shifts are converted to measuring units like mm, cm etc. After the complete process if there is any shift in the tunnel at described points are located.

  16. Spectral analysis of pair-correlation bandwidth: application to cell biology images.

    PubMed

    Binder, Benjamin J; Simpson, Matthew J

    2015-02-01

    Images from cell biology experiments often indicate the presence of cell clustering, which can provide insight into the mechanisms driving the collective cell behaviour. Pair-correlation functions provide quantitative information about the presence, or absence, of clustering in a spatial distribution of cells. This is because the pair-correlation function describes the ratio of the abundance of pairs of cells, separated by a particular distance, relative to a randomly distributed reference population. Pair-correlation functions are often presented as a kernel density estimate where the frequency of pairs of objects are grouped using a particular bandwidth (or bin width), Δ>0. The choice of bandwidth has a dramatic impact: choosing Δ too large produces a pair-correlation function that contains insufficient information, whereas choosing Δ too small produces a pair-correlation signal dominated by fluctuations. Presently, there is little guidance available regarding how to make an objective choice of Δ. We present a new technique to choose Δ by analysing the power spectrum of the discrete Fourier transform of the pair-correlation function. Using synthetic simulation data, we confirm that our approach allows us to objectively choose Δ such that the appropriately binned pair-correlation function captures known features in uniform and clustered synthetic images. We also apply our technique to images from two different cell biology assays. The first assay corresponds to an approximately uniform distribution of cells, while the second assay involves a time series of images of a cell population which forms aggregates over time. The appropriately binned pair-correlation function allows us to make quantitative inferences about the average aggregate size, as well as quantifying how the average aggregate size changes with time.

  17. A Perceptually Weighted Rank Correlation Indicator for Objective Image Quality Assessment

    NASA Astrophysics Data System (ADS)

    Wu, Qingbo; Li, Hongliang; Meng, Fanman; Ngan, King N.

    2018-05-01

    In the field of objective image quality assessment (IQA), the Spearman's $\\rho$ and Kendall's $\\tau$ are two most popular rank correlation indicators, which straightforwardly assign uniform weight to all quality levels and assume each pair of images are sortable. They are successful for measuring the average accuracy of an IQA metric in ranking multiple processed images. However, two important perceptual properties are ignored by them as well. Firstly, the sorting accuracy (SA) of high quality images are usually more important than the poor quality ones in many real world applications, where only the top-ranked images would be pushed to the users. Secondly, due to the subjective uncertainty in making judgement, two perceptually similar images are usually hardly sortable, whose ranks do not contribute to the evaluation of an IQA metric. To more accurately compare different IQA algorithms, we explore a perceptually weighted rank correlation indicator in this paper, which rewards the capability of correctly ranking high quality images, and suppresses the attention towards insensitive rank mistakes. More specifically, we focus on activating `valid' pairwise comparison towards image quality, whose difference exceeds a given sensory threshold (ST). Meanwhile, each image pair is assigned an unique weight, which is determined by both the quality level and rank deviation. By modifying the perception threshold, we can illustrate the sorting accuracy with a more sophisticated SA-ST curve, rather than a single rank correlation coefficient. The proposed indicator offers a new insight for interpreting visual perception behaviors. Furthermore, the applicability of our indicator is validated in recommending robust IQA metrics for both the degraded and enhanced image data.

  18. Genital and reproductive organ complications of Crohn disease: technical considerations as it relates to perianal disease, imaging features, and implications on management.

    PubMed

    Kammann, Steven; Menias, Christine; Hara, Amy; Moshiri, Mariam; Siegel, Cary; Safar, Bashar; Brandes, Steven; Shaaban, Akram; Sandrasegaran, Kumar

    2017-06-01

    A relatively large proportion of patients with Crohn disease (CD) develop complications including abscess formation, stricture, and penetrating disease. A subset of patients will have genital and reproductive organ involvement of CD, resulting in significant morbidity. These special circumstances create unique management challenges that must be tailored to the activity, location, and extent of disease. Familiarity with the epidemiology, pathogenesis, imaging features, and treatment strategies for patients with genital CD can aid imaging diagnoses and guide appropriate patient management. The purpose of this study is to illustrate the spectrum of CD in the genital tract and reproductive organs and discuss the complex management strategies in these patients as it relates to imaging. Given the impact on patient outcome and treatment planning, familiarity with the epidemiology, pathogenesis, imaging features, and treatment of patients with genital Crohn disease can aid radiologic diagnoses and guide appropriate patient management.

  19. Brain Correlates of Stuttering and Syllable Production: Gender Comparison and Replication.

    ERIC Educational Resources Information Center

    Ingham, Roger J.; Fox, Peter T.; Ingham, Janis C.; Xiong, Jinhu; Zamarripa, Frank; Hardies, L. Jean; Lancaster, Jack L.

    2004-01-01

    This article reports a gender replication study of the P. T. Fox et a. (2000) performance correlation analysis of neural systems that distinguish between normal and stuttered speech in adult males. Positron-emission tomographic (PET) images of cerebral blood flow (CBF) were correlated with speech behavior scores obtained during PET imaging for 10…

  20. Correlates of Intellectual Ability with Morphology of the Hippocampus and Amygdala in Healthy Adults

    ERIC Educational Resources Information Center

    Amat, Jose A.; Bansal, Ravi; Whiteman, Ronald; Haggerty, Rita; Royal, Jason; Peterson, Bradley S.

    2008-01-01

    Several prior imaging studies of healthy adults have correlated volumes of the hippocampus and amygdala with measures of general intelligence (IQ), with variable results. In this study, we assessed correlations between volumes of the hippocampus and amygdala and full-scale IQ scores (FSIQ) using a method of image analysis that permits detailed…

  1. Four-dimensional ultrasonography of the fetal heart using color Doppler spatiotemporal image correlation.

    PubMed

    Gonçalves, Luís F; Romero, Roberto; Espinoza, Jimmy; Lee, Wesley; Treadwell, Marjorie; Chintala, Kavitha; Brandl, Helmut; Chaiworapongsa, Tinnakorn

    2004-04-01

    To describe clinical and research applications of 4-dimensional imaging of the fetal heart using color Doppler spatiotemporal image correlation. Forty-four volume data sets were acquired by color Doppler spatiotemporal image correlation. Seven subjects were examined: 4 fetuses without abnormalities, 1 fetus with ventriculomegaly and a hypoplastic cerebellum but normal cardiac anatomy, and 2 fetuses with cardiac anomalies detected by fetal echocardiography (1 case of a ventricular septal defect associated with trisomy 21 and 1 case of a double-inlet right ventricle with a 46,XX karyotype). The median gestational age at the time of examination was 21 3/7 weeks (range, 19 5/7-34 0/7 weeks). Volume data sets were reviewed offline by multiplanar display and volume-rendering methods. Representative images and online video clips illustrating the diagnostic potential of this technology are presented. Color Doppler spatiotemporal image correlation allowed multiplanar visualization of ventricular septal defects, multiplanar display and volume rendering of tricuspid regurgitation, volume rendering of the outflow tracts by color and power Doppler ultrasonography (both in a normal case and in a case of a double-inlet right ventricle with a double-outlet right ventricle), and visualization of venous streams at the level of the foramen ovale. Color Doppler spatiotemporal image correlation has the potential to simplify visualization of the outflow tracts and improve the evaluation of the location and extent of ventricular septal defects. Other applications include 3-dimensional evaluation of regurgitation jets and venous streams at the level of the foramen ovale.

  2. Autofocus algorithm using one-dimensional Fourier transform and Pearson correlation

    NASA Astrophysics Data System (ADS)

    Bueno Mario, A.; Alvarez-Borrego, Josue; Acho, L.

    2004-10-01

    A new autofocus algorithm based on one-dimensional Fourier transform and Pearson correlation for Z automatized microscope is proposed. Our goal is to determine in fast response time and accuracy, the best focused plane through an algorithm. We capture in bright and dark field several images set at different Z distances from biological organism sample. The algorithm uses the one-dimensional Fourier transform to obtain the image frequency content of a vectors pattern previously defined comparing the Pearson correlation of these frequency vectors versus the reference image frequency vector, the most out of focus image, we find the best focusing. Experimental results showed the algorithm has fast response time and accuracy in getting the best focus plane from captured images. In conclusions, the algorithm can be implemented in real time systems due fast response time, accuracy and robustness. The algorithm can be used to get focused images in bright and dark field and it can be extended to include fusion techniques to construct multifocus final images beyond of this paper.

  3. Kingfisher: a system for remote sensing image database management

    NASA Astrophysics Data System (ADS)

    Bruzzo, Michele; Giordano, Ferdinando; Dellepiane, Silvana G.

    2003-04-01

    At present retrieval methods in remote sensing image database are mainly based on spatial-temporal information. The increasing amount of images to be collected by the ground station of earth observing systems emphasizes the need for database management with intelligent data retrieval capabilities. The purpose of the proposed method is to realize a new content based retrieval system for remote sensing images database with an innovative search tool based on image similarity. This methodology is quite innovative for this application, at present many systems exist for photographic images, as for example QBIC and IKONA, but they are not able to extract and describe properly remote image content. The target database is set by an archive of images originated from an X-SAR sensor (spaceborne mission, 1994). The best content descriptors, mainly texture parameters, guarantees high retrieval performances and can be extracted without losses independently of image resolution. The latter property allows DBMS (Database Management System) to process low amount of information, as in the case of quick-look images, improving time performance and memory access without reducing retrieval accuracy. The matching technique has been designed to enable image management (database population and retrieval) independently of dimensions (width and height). Local and global content descriptors are compared, during retrieval phase, with the query image and results seem to be very encouraging.

  4. Neural correlation of successful cognitive behaviour therapy for spider phobia: a magnetoencephalography study.

    PubMed

    Wright, Barry; Alderson-Day, Ben; Prendergast, Garreth; Kennedy, Juliette; Bennett, Sophie; Docherty, Mary; Whitton, Clare; Manea, Laura; Gouws, Andre; Tomlinson, Heather; Green, Gary

    2013-12-30

    Cognitive behavioural therapy (CBT) can be an effective treatment for spider phobia, but the underlying neural correlates of therapeutic change are yet to be specified. The present study used magnetoencephalography (MEG) to study responses within the first half second, to phobogenic stimuli in a group of individuals with spider phobia prior to treatment (n=12) and then in nine of them following successful CBT (where they could touch and manage live large common house spiders) at least 9 months later. We also compared responses to a group of age-matched healthy control participants (n=11). Participants viewed static photographs of real spiders, other fear-inducing images (e.g. snakes, sharks) and neutral stimuli (e.g. kittens). Beamforming methods were used to localise sources of significant power changes in response to stimuli. Prior to treatment, participants with spider phobia showed a significant maximum response in the right frontal pole when viewing images of real spiders specifically. No significant frontal response was observed for either control participants or participants with spider phobia post-treatment. In addition, participants' subjective ratings of spider stimuli significantly predicted peak responses in right frontal regions. The implications for understanding brain-based effects of cognitive therapies are discussed. © 2013 Published by Elsevier Ireland Ltd.

  5. Overview of Nonoperative Blunt Splenic Injury Management with Associated Splenic Artery Pseudoaneurysm.

    PubMed

    Morrison, Chet A; Gross, Brian W; Kauffman, Matthew; Rittenhouse, Katelyn J; Rogers, Frederick B

    2017-06-01

    The delayed development of splenic artery pseudoaneurysm (SAP) can complicate the nonoperative management of splenic injuries. We sought to determine the utility of repeat imaging in diagnosing SAP in patients managed nonoperatively without angioembolization. We hypothesized that a significant rate of SAPs would be found in this population on repeat imaging. Patients undergoing nonoperative splenic injury management from January 2011 to June 2015 were queried from the trauma registry. Rates of repeat imaging, angioembolization, readmission, and SAP development were analyzed. Further, subanalyses investigating the incidence of SAP in patients managed nonoperatively without angioembolization were conducted. A total of 133 patients met inclusion criteria. Repeat imaging rate was 40 per cent, angioembolization rate was 26 per cent, and readmission rate was 6 per cent. Within the study population, nine SAPs were found (8/9 in patients with splenic injury grade ≥III). Of these nine SAPs, three (33%) were identified on initial scans and embolized, whereas six (67%) were found on repeat imaging in patients not initially receiving angioembolization. Splenic injuries are typically managed nonoperatively without serious complications. Our results suggest patients with splenic injuries grade ≥III managed nonoperatively without angioembolization should have repeat imaging within 48 hours to rule out the possibility of SAP.

  6. Ventilation/perfusion SPECT or SPECT/CT for lung function imaging in patients with pulmonary emphysema?

    PubMed

    Froeling, Vera; Heimann, Uwe; Huebner, Ralf-Harto; Kroencke, Thomas J; Maurer, Martin H; Doellinger, Felix; Geisel, Dominik; Hamm, Bernd; Brenner, Winfried; Schreiter, Nils F

    2015-07-01

    To evaluate the utility of attenuation correction (AC) of V/P SPECT images for patients with pulmonary emphysema. Twenty-one patients (mean age 67.6 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. AC/non-AC V/P SPECT images were compared visually and semiquantitatively. Visual comparison of AC/non-AC images was based on a 5-point likert scale. Semiquantitative comparison assessed absolute counts per lung (aCpLu) and lung lobe (aCpLo) for AC/non-AC images using software-based analysis; percentage counts (PC = (aCpLo/aCpLu) × 100) were calculated. Correlation between AC/non-AC V/P SPECT images was analyzed using Spearman's rho correlation coefficient; differences were tested for significance with the Wilcoxon rank sum test. Visual analysis revealed high conformity for AC and non-AC V/P SPECT images. Semiquantitative analysis of PC in AC/non-AC images had an excellent correlation and showed no significant differences in perfusion (ρ = 0.986) or ventilation (ρ = 0.979, p = 0.809) SPECT/CT images. AC of V/P SPECT images for lung lobe-based function imaging in patients with pulmonary emphysema do not improve visual or semiquantitative image analysis.

  7. Cross Correlation versus Normalized Mutual Information on Image Registration

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Tilton, James C.; Lin, Guoqing

    2016-01-01

    This is the first study to quantitatively assess and compare cross correlation and normalized mutual information methods used to register images in subpixel scale. The study shows that the normalized mutual information method is less sensitive to unaligned edges due to the spectral response differences than is cross correlation. This characteristic makes the normalized image resolution a better candidate for band to band registration. Improved band-to-band registration in the data from satellite-borne instruments will result in improved retrievals of key science measurements such as cloud properties, vegetation, snow and fire.

  8. Plus Disease in Retinopathy of Prematurity: Improving Diagnosis by Ranking Disease Severity and Using Quantitative Image Analysis.

    PubMed

    Kalpathy-Cramer, Jayashree; Campbell, J Peter; Erdogmus, Deniz; Tian, Peng; Kedarisetti, Dharanish; Moleta, Chace; Reynolds, James D; Hutcheson, Kelly; Shapiro, Michael J; Repka, Michael X; Ferrone, Philip; Drenser, Kimberly; Horowitz, Jason; Sonmez, Kemal; Swan, Ryan; Ostmo, Susan; Jonas, Karyn E; Chan, R V Paul; Chiang, Michael F

    2016-11-01

    To determine expert agreement on relative retinopathy of prematurity (ROP) disease severity and whether computer-based image analysis can model relative disease severity, and to propose consideration of a more continuous severity score for ROP. We developed 2 databases of clinical images of varying disease severity (100 images and 34 images) as part of the Imaging and Informatics in ROP (i-ROP) cohort study and recruited expert physician, nonexpert physician, and nonphysician graders to classify and perform pairwise comparisons on both databases. Six participating expert ROP clinician-scientists, each with a minimum of 10 years of clinical ROP experience and 5 ROP publications, and 5 image graders (3 physicians and 2 nonphysician graders) who analyzed images that were obtained during routine ROP screening in neonatal intensive care units. Images in both databases were ranked by average disease classification (classification ranking), by pairwise comparison using the Elo rating method (comparison ranking), and by correlation with the i-ROP computer-based image analysis system. Interexpert agreement (weighted κ statistic) compared with the correlation coefficient (CC) between experts on pairwise comparisons and correlation between expert rankings and computer-based image analysis modeling. There was variable interexpert agreement on diagnostic classification of disease (plus, preplus, or normal) among the 6 experts (mean weighted κ, 0.27; range, 0.06-0.63), but good correlation between experts on comparison ranking of disease severity (mean CC, 0.84; range, 0.74-0.93) on the set of 34 images. Comparison ranking provided a severity ranking that was in good agreement with ranking obtained by classification ranking (CC, 0.92). Comparison ranking on the larger dataset by both expert and nonexpert graders demonstrated good correlation (mean CC, 0.97; range, 0.95-0.98). The i-ROP system was able to model this continuous severity with good correlation (CC, 0.86). Experts diagnose plus disease on a continuum, with poor absolute agreement on classification but good relative agreement on disease severity. These results suggest that the use of pairwise rankings and a continuous severity score, such as that provided by the i-ROP system, may improve agreement on disease severity in the future. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  9. A Palmprint Recognition Algorithm Using Phase-Only Correlation

    NASA Astrophysics Data System (ADS)

    Ito, Koichi; Aoki, Takafumi; Nakajima, Hiroshi; Kobayashi, Koji; Higuchi, Tatsuo

    This paper presents a palmprint recognition algorithm using Phase-Only Correlation (POC). The use of phase components in 2D (two-dimensional) discrete Fourier transforms of palmprint images makes it possible to achieve highly robust image registration and matching. In the proposed algorithm, POC is used to align scaling, rotation and translation between two palmprint images, and evaluate similarity between them. Experimental evaluation using a palmprint image database clearly demonstrates efficient matching performance of the proposed algorithm.

  10. Optimal monochromatic color combinations for fusion imaging of FDG-PET and diffusion-weighted MR images.

    PubMed

    Kamei, Ryotaro; Watanabe, Yuji; Sagiyama, Koji; Isoda, Takuro; Togao, Osamu; Honda, Hiroshi

    2018-05-23

    To investigate the optimal monochromatic color combination for fusion imaging of FDG-PET and diffusion-weighted MR images (DW) regarding lesion conspicuity of each image. Six linear monochromatic color-maps of red, blue, green, cyan, magenta, and yellow were assigned to each of the FDG-PET and DW images. Total perceptual color differences of the lesions were calculated based on the lightness and chromaticity measured with the photometer. Visual lesion conspicuity was also compared among the PET-only, DW-only and PET-DW-double positive portions with mean conspicuity scores. Statistical analysis was performed with a one-way analysis of variance and Spearman's rank correlation coefficient. Among all the 12 possible monochromatic color-map combinations, the 3 combinations of red/cyan, magenta/green, and red/green produced the highest conspicuity scores. Total color differences between PET-positive and double-positive portions correlated with conspicuity scores (ρ = 0.2933, p < 0.005). Lightness differences showed a significant negative correlation with conspicuity scores between the PET-only and DWI-only positive portions. Chromaticity differences showed a marginally significant correlation with conspicuity scores between DWI-positive and double-positive portions. Monochromatic color combinations can facilitate the visual evaluation of FDG-uptake and diffusivity as well as registration accuracy on the FDG-PET/DW fusion images, when red- and green-colored elements are assigned to FDG-PET and DW images, respectively.

  11. Mapped Landmark Algorithm for Precision Landing

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew; Ansar, Adnan; Matthies, Larry

    2007-01-01

    A report discusses a computer vision algorithm for position estimation to enable precision landing during planetary descent. The Descent Image Motion Estimation System for the Mars Exploration Rovers has been used as a starting point for creating code for precision, terrain-relative navigation during planetary landing. The algorithm is designed to be general because it handles images taken at different scales and resolutions relative to the map, and can produce mapped landmark matches for any planetary terrain of sufficient texture. These matches provide a measurement of horizontal position relative to a known landing site specified on the surface map. Multiple mapped landmarks generated per image allow for automatic detection and elimination of bad matches. Attitude and position can be generated from each image; this image-based attitude measurement can be used by the onboard navigation filter to improve the attitude estimate, which will improve the position estimates. The algorithm uses normalized correlation of grayscale images, producing precise, sub-pixel images. The algorithm has been broken into two sub-algorithms: (1) FFT Map Matching (see figure), which matches a single large template by correlation in the frequency domain, and (2) Mapped Landmark Refinement, which matches many small templates by correlation in the spatial domain. Each relies on feature selection, the homography transform, and 3D image correlation. The algorithm is implemented in C++ and is rated at Technology Readiness Level (TRL) 4.

  12. Correlated optical and isotopic nanoscopy

    NASA Astrophysics Data System (ADS)

    Saka, Sinem K.; Vogts, Angela; Kröhnert, Katharina; Hillion, François; Rizzoli, Silvio O.; Wessels, Johannes T.

    2014-04-01

    The isotopic composition of different materials can be imaged by secondary ion mass spectrometry. In biology, this method is mainly used to study cellular metabolism and turnover, by pulsing the cells with marker molecules such as amino acids labelled with stable isotopes (15N, 13C). The incorporation of the markers is then imaged with a lateral resolution that can surpass 100 nm. However, secondary ion mass spectrometry cannot identify specific subcellular structures like organelles, and needs to be correlated with a second technique, such as fluorescence imaging. Here, we present a method based on stimulated emission depletion microscopy that provides correlated optical and isotopic nanoscopy (COIN) images. We use this approach to study the protein turnover in different organelles from cultured hippocampal neurons. Correlated optical and isotopic nanoscopy can be applied to a variety of biological samples, and should therefore enable the investigation of the isotopic composition of many organelles and subcellular structures.

  13. Dimensions of Attention Associated With the Microstructure of Corona Radiata White Matter.

    PubMed

    Stave, Elise A; De Bellis, Michael D; Hooper, Steven R; Woolley, Donald P; Chang, Suk Ki; Chen, Steven D

    2017-04-01

    Mirsky proposed a model of attention that included these dimensions: focus/execute, sustain, stabilize, encode, and shift. The neural correlates of these dimensions were investigated within corona radiata subregions in healthy youth. Diffusion tensor imaging and neuropsychological assessments were conducted in 79 healthy, right-handed youth aged 4-17 years. Diffusion tensor imaging maps were analyzed using standardized parcellation methods. Partial Pearson correlations between neuropsychological standardized scores, representing these attention dimensions, and diffusion tensor imaging measures of corona radiata subregions were calculated after adjusting for gender and IQ. Significant correlations were found between the focus/execute, sustain, stabilize, and shift dimensions and imaging metrics in hypothesized corona radiata subregions. Results suggest that greater microstructural white matter integrity of the corona radiata is partly associated with attention across 4 attention dimensions. Findings suggest that white matter microstructure of the corona radiata is a neural correlate of several, but not all, attention dimensions.

  14. Dimensions of Attention Associated with the Microstructure of Corona Radiata White Matter

    PubMed Central

    Stave, Elise A.; Hooper, Stephen R.; Woolley, Donald P.; Chang, Suk Ki; Chen, Steven D.

    2016-01-01

    Mirsky proposed a model of attention that included these dimensions: focus/execute, sustain, stabilize, encode, and shift. The neural correlates of these dimensions were investigated within corona radiate subregions in healthy youth. Diffusion tensor imaging and neuropsychological assessments were conducted in 79 healthy, right-handed youth aged 4–17 years. Diffusion tensor imaging maps were analyzed using standardized parcellation methods. Partial Pearson correlations between neuropsychological standardized scores, representing these attention dimensions, and diffusion tensor imaging measures of corona radiate subregions were calculated after adjusting for gender and IQ. Significant correlations were found between the focus/execute, sustain, stabilize and shift dimensions and imaging metrics in hypothesized corona radiate subregions. Results suggest that greater microstructural white matter integrity of the corona radiata is partly associated with attention across four attention dimensions. Findings suggest that white matter microstructure of the corona radiata is a neural correlate of several, but not all, attention dimensions. PMID:28090797

  15. Correlation estimation and performance optimization for distributed image compression

    NASA Astrophysics Data System (ADS)

    He, Zhihai; Cao, Lei; Cheng, Hui

    2006-01-01

    Correlation estimation plays a critical role in resource allocation and rate control for distributed data compression. A Wyner-Ziv encoder for distributed image compression is often considered as a lossy source encoder followed by a lossless Slepian-Wolf encoder. The source encoder consists of spatial transform, quantization, and bit plane extraction. In this work, we find that Gray code, which has been extensively used in digital modulation, is able to significantly improve the correlation between the source data and its side information. Theoretically, we analyze the behavior of Gray code within the context of distributed image compression. Using this theoretical model, we are able to efficiently allocate the bit budget and determine the code rate of the Slepian-Wolf encoder. Our experimental results demonstrate that the Gray code, coupled with accurate correlation estimation and rate control, significantly improves the picture quality, by up to 4 dB, over the existing methods for distributed image compression.

  16. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    NASA Technical Reports Server (NTRS)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  17. Correlation pattern recognition: optimal parameters for quality standards control of chocolate marshmallow candy

    NASA Astrophysics Data System (ADS)

    Flores, Jorge L.; García-Torales, G.; Ponce Ávila, Cristina

    2006-08-01

    This paper describes an in situ image recognition system designed to inspect the quality standards of the chocolate pops during their production. The essence of the recognition system is the localization of the events (i.e., defects) in the input images that affect the quality standards of pops. To this end, processing modules, based on correlation filter, and segmentation of images are employed with the objective of measuring the quality standards. Therefore, we designed the correlation filter and defined a set of features from the correlation plane. The desired values for these parameters are obtained by exploiting information about objects to be rejected in order to find the optimal discrimination capability of the system. Regarding this set of features, the pop can be correctly classified. The efficacy of the system has been tested thoroughly under laboratory conditions using at least 50 images, containing 3 different types of possible defects.

  18. An optical processor for object recognition and tracking

    NASA Technical Reports Server (NTRS)

    Sloan, J.; Udomkesmalee, S.

    1987-01-01

    The design and development of a miniaturized optical processor that performs real time image correlation are described. The optical correlator utilizes the Vander Lugt matched spatial filter technique. The correlation output, a focused beam of light, is imaged onto a CMOS photodetector array. In addition to performing target recognition, the device also tracks the target. The hardware, composed of optical and electro-optical components, occupies only 590 cu cm of volume. A complete correlator system would also include an input imaging lens. This optical processing system is compact, rugged, requires only 3.5 watts of operating power, and weighs less than 3 kg. It represents a major achievement in miniaturizing optical processors. When considered as a special-purpose processing unit, it is an attractive alternative to conventional digital image recognition processing. It is conceivable that the combined technology of both optical and ditital processing could result in a very advanced robot vision system.

  19. Terrain detection and classification using single polarization SAR

    DOEpatents

    Chow, James G.; Koch, Mark W.

    2016-01-19

    The various technologies presented herein relate to identifying manmade and/or natural features in a radar image. Two radar images (e.g., single polarization SAR images) can be captured for a common scene. The first image is captured at a first instance and the second image is captured at a second instance, whereby the duration between the captures are of sufficient time such that temporal decorrelation occurs for natural surfaces in the scene, and only manmade surfaces, e.g., a road, produce correlated pixels. A LCCD image comprising the correlated and decorrelated pixels can be generated from the two radar images. A median image can be generated from a plurality of radar images, whereby any features in the median image can be identified. A superpixel operation can be performed on the LCCD image and the median image, thereby enabling a feature(s) in the LCCD image to be classified.

  20. Managing and Querying Image Annotation and Markup in XML.

    PubMed

    Wang, Fusheng; Pan, Tony; Sharma, Ashish; Saltz, Joel

    2010-01-01

    Proprietary approaches for representing annotations and image markup are serious barriers for researchers to share image data and knowledge. The Annotation and Image Markup (AIM) project is developing a standard based information model for image annotation and markup in health care and clinical trial environments. The complex hierarchical structures of AIM data model pose new challenges for managing such data in terms of performance and support of complex queries. In this paper, we present our work on managing AIM data through a native XML approach, and supporting complex image and annotation queries through native extension of XQuery language. Through integration with xService, AIM databases can now be conveniently shared through caGrid.

  1. Managing and Querying Image Annotation and Markup in XML

    PubMed Central

    Wang, Fusheng; Pan, Tony; Sharma, Ashish; Saltz, Joel

    2010-01-01

    Proprietary approaches for representing annotations and image markup are serious barriers for researchers to share image data and knowledge. The Annotation and Image Markup (AIM) project is developing a standard based information model for image annotation and markup in health care and clinical trial environments. The complex hierarchical structures of AIM data model pose new challenges for managing such data in terms of performance and support of complex queries. In this paper, we present our work on managing AIM data through a native XML approach, and supporting complex image and annotation queries through native extension of XQuery language. Through integration with xService, AIM databases can now be conveniently shared through caGrid. PMID:21218167

  2. The Correlation Between a Short-term Conventional Electroencephalography in the First Day of Life and Brain Magnetic Resonance Imaging in Newborns Undergoing Hypothermia for Hypoxic-Ischemic Encephalopathy.

    PubMed

    Obeid, Rawad; Sogawa, Yoshimi; Gedela, Satyanarayana; Naik, Monica; Lee, Vince; Telesco, Richard; Wisnowski, Jessica; Magill, Christine; Painter, Michael J; Panigrahy, Ashok

    2017-02-01

    Electroencephalograph recorded in the first day of life in newborns treated with hypothermia for hypoxic-ischemic encephalopathy could be utilized as a predictive tool for the severity of brain injury on magnetic resonance imaging and mortality. We analyzed newborns who were admitted for therapeutic hypothermia due to hypoxic-ischemic encephalopathy. All enrolled infants underwent encephalography within the first 24 hours of life and underwent brain magnetic resonance imaging after rewarming. All encephalographs were independently reviewed for background amplitude, continuity, and variability. Brain injury determined by magnetic resonance imaging was scored using methods described by Bonifacio et al. Forty-one newborns were included in the study. Each encephalograph variable correlated significantly with the severity of injury on brain magnetic resonance imaging (P < 0.001 for each). The overall encephalograph severity estimated as mild, moderate, and severe also correlated with injury (P < 0.001). Each encephalograph variable correlated with mortality (P < 0.001 for each) and also the overall encephalograph severity (P < 0.001). Severity of electrographic findings on encephalograph in the first day of life during therapeutic hypothermia for hypoxic-ischemic encephalopathy correlated with the extent of injury on brain magnetic resonance imaging. This information may be useful for families and aid guide clinical decision making. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. An application of digital network technology to medical image management.

    PubMed

    Chu, W K; Smith, C L; Wobig, R K; Hahn, F A

    1997-01-01

    With the advent of network technology, there is considerable interest within the medical community to manage the storage and distribution of medical images by digital means. Higher workflow efficiency leading to better patient care is one of the commonly cited outcomes [1,2]. However, due to the size of medical image files and the unique requirements in detail and resolution, medical image management poses special challenges. Storage requirements are usually large, which implies expenses or investment costs make digital networking projects financially out of reach for many clinical institutions. New advances in network technology and telecommunication, in conjunction with the decreasing cost in computer devices, have made digital image management achievable. In our institution, we have recently completed a pilot project to distribute medical images both within the physical confines of the clinical enterprise as well as outside the medical center campus. The design concept and the configuration of a comprehensive digital image network is described in this report.

  4. Multi-wavelengths digital holography: reconstruction, synthesis and display of holograms using adaptive transformation.

    PubMed

    Memmolo, P; Finizio, A; Paturzo, M; Ferraro, P; Javidi, B

    2012-05-01

    A method based on spatial transformations of multiwavelength digital holograms and the correlation matching of their numerical reconstructions is proposed, with the aim to improve superimposition of different color reconstructed images. This method is based on an adaptive affine transform of the hologram that permits management of the physical parameters of numerical reconstruction. In addition, we present a procedure to synthesize a single digital hologram in which three different colors are multiplexed. The optical reconstruction of the synthetic hologram by a spatial light modulator at one wavelength allows us to display all color features of the object, avoiding loss of details.

  5. The Changing Epidemiology of Pediatric Endocarditis.

    PubMed

    Elder, Robert W; Baltimore, Robert S

    2015-09-01

    The epidemiology of infective endocarditis (IE) appears to be related to changes in the management of children with congenital heart disease (CHD) and the virtual disappearance of rheumatic heart disease. To better understand these changes, we divide the history into: I. The pre-surgical era, II. The early years of CHD surgical intervention, correlated with introduction of antibiotics, III. The modern era of cardiac interventions. Microbiologic changes include an early predominance of viridans streptococci and an overtaking by staphylococci. Additionally, there have been advances in imaging that allow earlier detection of IE and a reduction in IE-related mortality. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Erectile dysfunction in patients with cardiovascular disease

    PubMed Central

    Ophuis, A.J.M. Oude; Nijeholt, A.A.B. Lycklama à

    2006-01-01

    Erectile dysfunction is a highly prevalent disease, especially in cardiovascular-compromised men. Many of the well-established risk factors for cardiovascular disease are also risk factors for erectile dysfunction. A correlation between erectile dysfunction and endothelial dysfunction is well established. It is postulated that erectile dysfunction with an arteriovascular aetiology can predate and be an indicator of potential coronary artery disease. In this paper we will attempt to increase awareness among cardiologists for the predictive value of erectile dysfunction for future cardiovascular disease in order to optimise cardiovascular risk management. The treatment of erectile dysfunction and cardiovascular interactions is also discussed in detail. ImagesFigure 1AFigure 1B PMID:25696612

  7. Pocket computers: a new aid to nutritional support.

    PubMed Central

    Colley, C M; Fleck, A; Howard, J P

    1985-01-01

    A program has been written to run on a pocket computer (Sharp PC-1500) that can be used at the bedside to predict the nutritional requirements of patients with a wide range of clinical conditions. The predictions of the program showed good correlation with measured values for energy and nitrogen requirements. The program was used, with good results, in the management of over 100 patients needing nutritional support. The calculation of nutritional requirements for each patient individually facilitates more appropriate treatment and may also produce financial savings when compared with administration of a standard feeding regimen to all patients. Images FIG 1 PMID:3922512

  8. Correlation of 18F-FDG PET and MRI Apparent Diffusion Coefficient Histogram Metrics with Survival in Diffuse Intrinsic Pontine Glioma: A Report from the Pediatric Brain Tumor Consortium.

    PubMed

    Zukotynski, Katherine A; Vajapeyam, Sridhar; Fahey, Frederic H; Kocak, Mehmet; Brown, Douglas; Ricci, Kelsey I; Onar-Thomas, Arzu; Fouladi, Maryam; Poussaint, Tina Young

    2017-08-01

    The purpose of this study was to describe baseline 18 F-FDG PET voxel characteristics in pediatric diffuse intrinsic pontine glioma (DIPG) and to correlate these metrics with baseline MRI apparent diffusion coefficient (ADC) histogram metrics, progression-free survival (PFS), and overall survival. Methods: Baseline brain 18 F-FDG PET and MRI scans were obtained in 33 children from Pediatric Brain Tumor Consortium clinical DIPG trials. 18 F-FDG PET images, postgadolinium MR images, and ADC MR images were registered to baseline fluid attenuation inversion recovery MR images. Three-dimensional regions of interest on fluid attenuation inversion recovery MR images and postgadolinium MR images and 18 F-FDG PET and MR ADC histograms were generated. Metrics evaluated included peak number, skewness, and kurtosis. Correlation between PET and MR ADC histogram metrics was evaluated. PET pixel values within the region of interest for each tumor were plotted against MR ADC values. The association of these imaging markers with survival was described. Results: PET histograms were almost always unimodal (94%, vs. 6% bimodal). None of the PET histogram parameters (skewness or kurtosis) had a significant association with PFS, although a higher PET postgadolinium skewness tended toward a less favorable PFS (hazard ratio, 3.48; 95% confidence interval [CI], 0.75-16.28 [ P = 0.11]). There was a significant association between higher MR ADC postgadolinium skewness and shorter PFS (hazard ratio, 2.56; 95% CI, 1.11-5.91 [ P = 0.028]), and there was the suggestion that this also led to shorter overall survival (hazard ratio, 2.18; 95% CI, 0.95-5.04 [ P = 0.067]). Higher MR ADC postgadolinium kurtosis tended toward shorter PFS (hazard ratio, 1.30; 95% CI, 0.98-1.74 [ P = 0.073]). PET and MR ADC pixel values were negatively correlated using the Pearson correlation coefficient. Further, the level of PET and MR ADC correlation was significantly positively associated with PFS; tumors with higher values of ADC-PET correlation had more favorable PFS (hazard ratio, 0.17; 95% CI, 0.03-0.89 [ P = 0.036]), suggesting that a higher level of negative ADC-PET correlation leads to less favorable PFS. A more significant negative correlation may indicate higher-grade elements within the tumor leading to poorer outcomes. Conclusion: 18 F-FDG PET and MR ADC histogram metrics in pediatric DIPG demonstrate different characteristics with often a negative correlation between PET and MR ADC pixel values. A higher negative correlation is associated with a worse PFS, which may indicate higher-grade elements within the tumor. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  9. Ghost imaging with atoms

    NASA Astrophysics Data System (ADS)

    Khakimov, R. I.; Henson, B. M.; Shin, D. K.; Hodgman, S. S.; Dall, R. G.; Baldwin, K. G. H.; Truscott, A. G.

    2016-12-01

    Ghost imaging is a counter-intuitive phenomenon—first realized in quantum optics—that enables the image of a two-dimensional object (mask) to be reconstructed using the spatio-temporal properties of a beam of particles with which it never interacts. Typically, two beams of correlated photons are used: one passes through the mask to a single-pixel (bucket) detector while the spatial profile of the other is measured by a high-resolution (multi-pixel) detector. The second beam never interacts with the mask. Neither detector can reconstruct the mask independently, but temporal cross-correlation between the two beams can be used to recover a ‘ghost’ image. Here we report the realization of ghost imaging using massive particles instead of photons. In our experiment, the two beams are formed by correlated pairs of ultracold, metastable helium atoms, which originate from s-wave scattering of two colliding Bose-Einstein condensates. We use higher-order Kapitza-Dirac scattering to generate a large number of correlated atom pairs, enabling the creation of a clear ghost image with submillimetre resolution. Future extensions of our technique could lead to the realization of ghost interference, and enable tests of Einstein-Podolsky-Rosen entanglement and Bell’s inequalities with atoms.

  10. Modern imaging techniques: applications in the management of acute aortic pathologies.

    PubMed

    Nagpal, Prashant; Khandelwal, Ashish; Saboo, Sachin S; Bathla, Girish; Steigner, Michael L; Rybicki, Frank J

    2015-08-01

    Acute aortic pathologies include traumatic and non-traumatic life-threatening emergencies of the aorta. Since the clinical manifestation of these entities can be non-specific and may overlap with other conditions presenting with chest pain, non-invasive imaging plays a crucial role in their rapid and accurate evaluation. The early diagnosis and accurate radiological assessment of acute aortic diseases is essential for improved clinical outcomes. Multidetector CT is the imaging modality of choice for evaluation of acute aortic diseases with MRI playing more of a problem-solving role. The management can be medical, endovascular or surgical depending upon pathology, and imaging remains an indispensable management-guiding tool. It is important to understand the pathogenesis, natural history, and imaging principles of acute aortic diseases for appropriate use of advanced imaging modalities. This understanding helps to formulate a more appropriate management and follow-up plan for optimised care of these patients. Imaging reporting pearls for day-to-day radiology as well as treatment options based on latest multidisciplinary guidelines are discussed. With newer techniques of image acquisition and processing, we are hopeful that imaging would further help in predicting aortic disease progression and assessing the haemodynamic parameters based on which decisions on management can be made. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Orthographic Stereo Correlator on the Terrain Model for Apollo Metric Images

    NASA Technical Reports Server (NTRS)

    Kim, Taemin; Husmann, Kyle; Moratto, Zachary; Nefian, Ara V.

    2011-01-01

    A stereo correlation method on the object domain is proposed to generate the accurate and dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce high-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. Given camera parameters of an image pair from bundle adjustment in ASP, a correlation window is defined on the terrain with the predefined surface normal of a post rather than image domain. The squared error of back-projected images on the local terrain is minimized with respect to the post elevation. This single dimensional optimization is solved efficiently and improves the accuracy of the elevation estimate.

  12. Image classification at low light levels

    NASA Astrophysics Data System (ADS)

    Wernick, Miles N.; Morris, G. Michael

    1986-12-01

    An imaging photon-counting detector is used to achieve automatic sorting of two image classes. The classification decision is formed on the basis of the cross correlation between a photon-limited input image and a reference function stored in computer memory. Expressions for the statistical parameters of the low-light-level correlation signal are given and are verified experimentally. To obtain a correlation-based system for two-class sorting, it is necessary to construct a reference function that produces useful information for class discrimination. An expression for such a reference function is derived using maximum-likelihood decision theory. Theoretically predicted results are used to compare on the basis of performance the maximum-likelihood reference function with Fukunaga-Koontz basis vectors and average filters. For each method, good class discrimination is found to result in milliseconds from a sparse sampling of the input image.

  13. Adapting the ISO 20462 softcopy ruler method for online image quality studies

    NASA Astrophysics Data System (ADS)

    Burns, Peter D.; Phillips, Jonathan B.; Williams, Don

    2013-01-01

    In this paper we address the problem of Image Quality Assessment of no reference metrics, focusing on JPEG corrupted images. In general no reference metrics are not able to measure with the same performance the distortions within their possible range and with respect to different image contents. The crosstalk between content and distortion signals influences the human perception. We here propose two strategies to improve the correlation between subjective and objective quality data. The first strategy is based on grouping the images according to their spatial complexity. The second one is based on a frequency analysis. Both the strategies are tested on two databases available in the literature. The results show an improvement in the correlations between no reference metrics and psycho-visual data, evaluated in terms of the Pearson Correlation Coefficient.

  14. Demosaicing images from colour cameras for digital image correlation

    NASA Astrophysics Data System (ADS)

    Forsey, A.; Gungor, S.

    2016-11-01

    Digital image correlation is not the intended use for consumer colour cameras, but with care they can be successfully employed in such a role. The main obstacle is the sparsely sampled colour data caused by the use of a colour filter array (CFA) to separate the colour channels. It is shown that the method used to convert consumer camera raw files into a monochrome image suitable for digital image correlation (DIC) can have a significant effect on the DIC output. A number of widely available software packages and two in-house methods are evaluated in terms of their performance when used with DIC. Using an in-plane rotating disc to produce a highly constrained displacement field, it was found that the bicubic spline based in-house demosaicing method outperformed the other methods in terms of accuracy and aliasing suppression.

  15. Elongation measurement using 1-dimensional image correlation method

    NASA Astrophysics Data System (ADS)

    Phongwisit, Phachara; Kamoldilok, Surachart; Buranasiri, Prathan

    2016-11-01

    Aim of this paper was to study, setup, and calibrate an elongation measurement by using 1- Dimensional Image Correlation method (1-DIC). To confirm our method and setup correctness, we need calibration with other methods. In this paper, we used a small spring as a sample to find a result in terms of spring constant. With a fundamental of Image Correlation method, images of formed and deformed samples were compared to understand the difference between deformed process. By comparing the location of reference point on both image's pixel, the spring's elongation were calculated. Then, the results have been compared with the spring constants, which were found from Hooke's law. The percentage of 5 percent error has been found. This DIC method, then, would be applied to measure the elongation of some different kinds of small fiber samples.

  16. The positive impact of radiologic imaging on high-stage cutaneous squamous cell carcinoma management.

    PubMed

    Ruiz, Emily Stamell; Karia, Pritesh S; Morgan, Frederick C; Schmults, Chrysalyne D

    2017-02-01

    There is limited evidence on the utility of radiologic imaging for prognostic staging of cutaneous squamous cell carcinoma (CSCC). Review utilization of radiologic imaging of high-stage CSCCs to evaluate whether imaging impacted management and outcomes. Tumors classified as Brigham and Women's Hospital (BWH) tumor (T) stage T2B or T3 over a 13-year period were reviewed to identify whether imaging was performed and whether results affected treatment. Disease-related outcomes (DRO: local recurrence, nodal metastasis, death from disease) were compared between patients by type of imaging used. 108 high-stage CSCCs in 98 patients were included. Imaging (mostly computed tomography, 79%) was utilized in 45 (46%) patients and management was altered in 16 (33%) patients who underwent imaging. Patients that received no imaging were at higher risk of developing nodal metastases (nonimaging, 30%; imaging, 13%; P = .041) and any DRO (nonimaging, 42%; imaging, 20%; P = .028) compared to the imaging group. Imaging was associated with a lower risk for DRO (subhazard ratio, 0.5; 95% CI 0.2-0.9; P = .046) adjusted for BWH T stage, sex, and location. Single institution retrospective design and changes in technology overtime. Radiologic imaging of high-stage CSCC may influence management and appears to positively impact outcomes. Further prospective studies are needed to establish which patients benefit from imaging. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  17. Reconstruction of pulse noisy images via stochastic resonance

    PubMed Central

    Han, Jing; Liu, Hongjun; Sun, Qibing; Huang, Nan

    2015-01-01

    We investigate a practical technology for reconstructing nanosecond pulse noisy images via stochastic resonance, which is based on the modulation instability. A theoretical model of this method for optical pulse signal is built to effectively recover the pulse image. The nanosecond noise-hidden images grow at the expense of noise during the stochastic resonance process in a photorefractive medium. The properties of output images are mainly determined by the input signal-to-noise intensity ratio, the applied voltage across the medium, and the correlation length of noise background. A high cross-correlation gain is obtained by optimizing these parameters. This provides a potential method for detecting low-level or hidden pulse images in various imaging applications. PMID:26067911

  18. The Oncosurgery Approach to Managing Liver Metastases from Colorectal Cancer: A Multidisciplinary International Consensus

    PubMed Central

    De Gramont, Aimery; Figueras, Joan; Guthrie, Ashley; Kokudo, Norihiro; Kunstlinger, Francis; Loyer, Evelyne; Poston, Graeme; Rougier, Philippe; Rubbia-Brandt, Laura; Sobrero, Alberto; Tabernero, Josep; Teh, Catherine; Van Cutsem, Eric

    2012-01-01

    An international panel of multidisciplinary experts convened to develop recommendations for the management of patients with liver metastases from colorectal cancer (CRC). The aim was to address the main issues facing the CRC hepatobiliary multidisciplinary team (MDT) when managing such patients and to standardize the treatment patients receive in different centers. Based on current evidence, the group agreed on a number of issues including the following: (a) the primary aim of treatment is achieving a long disease-free survival (DFS) interval following resection; (b) assessment of resectability should be performed with high-quality cross-sectional imaging, staging the liver with magnetic resonance imaging and/or abdominal computed tomography (CT), depending on local expertise, staging extrahepatic disease with thoracic and pelvic CT, and, in selected cases, fluorodeoxyglucose positron emission tomography with ultrasound (preferably contrast-enhanced ultrasound) for intraoperative staging; (c) optimal first-line chemotherapy—doublet or triplet chemotherapy regimens combined with targeted therapy—is advisable in potentially resectable patients; (d) in this situation, at least four courses of first-line chemotherapy should be given, with assessment of tumor response every 2 months; (e) response assessed by the Response Evaluation Criteria in Solid Tumors (conventional chemotherapy) or nonsize-based morphological changes (antiangiogenic agents) is clearly correlated with outcome; no imaging technique is currently able to accurately diagnose complete pathological response but high-quality imaging is crucial for patient management; (f) the duration of chemotherapy should be as short as possible and resection achieved as soon as technically possible in the absence of tumor progression; (g) the number of metastases or patient age should not be an absolute contraindication to surgery combined with chemotherapy; (h) for synchronous metastases, it is not advisable to undertake major hepatic surgery during surgery for removal of the primary CRC; the reverse surgical approach (liver first) produces as good an outcome as the conventional approach in selected cases; (i) for patients with resectable liver metastases from CRC, perioperative chemotherapy may be associated with a modestly better DFS outcome; and (j) whether initially resectable or unresectable, cure or at least a long survival duration is possible after complete resection of the metastases, and MDT treatment is essential for improving clinical and survival outcomes. The group proposed a new system to classify initial unresectability based on technical and oncological contraindications. PMID:22962059

  19. Racial/Ethnic Differences in the Criterion-Related Validity of Cognitive Ability Tests: A Qualitative and Quantitative Review

    ERIC Educational Resources Information Center

    Berry, Christopher M.; Clark, Malissa A.; McClure, Tara K.

    2011-01-01

    The correlation between cognitive ability test scores and performance was separately meta-analyzed for Asian, Black, Hispanic, and White racial/ethnic subgroups. Compared to the average White observed correlation ([image omitted] = 0.33, N = 903,779), average correlations were lower for Black samples ([image omitted] = 0.24, N = 112,194) and…

  20. Region-Based Prediction for Image Compression in the Cloud.

    PubMed

    Begaint, Jean; Thoreau, Dominique; Guillotel, Philippe; Guillemot, Christine

    2018-04-01

    Thanks to the increasing number of images stored in the cloud, external image similarities can be leveraged to efficiently compress images by exploiting inter-images correlations. In this paper, we propose a novel image prediction scheme for cloud storage. Unlike current state-of-the-art methods, we use a semi-local approach to exploit inter-image correlation. The reference image is first segmented into multiple planar regions determined from matched local features and super-pixels. The geometric and photometric disparities between the matched regions of the reference image and the current image are then compensated. Finally, multiple references are generated from the estimated compensation models and organized in a pseudo-sequence to differentially encode the input image using classical video coding tools. Experimental results demonstrate that the proposed approach yields significant rate-distortion performance improvements compared with the current image inter-coding solutions such as high efficiency video coding.

Top