Sample records for manager space shuttle

  1. KENNEDY SPACE CENTER, FLA. -- NASA and United Space Alliance (USA) Space Shuttle program managers attend a briefing, part of activities during a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC. Starting third from left are NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, USA Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Space Shuttle Program Manager William Parsons, and USA Associate Program Manager of Ground Operations Andy Allen.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA and United Space Alliance (USA) Space Shuttle program managers attend a briefing, part of activities during a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC. Starting third from left are NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, USA Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Space Shuttle Program Manager William Parsons, and USA Associate Program Manager of Ground Operations Andy Allen.

  2. KENNEDY SPACE CENTER, FLA. -- From left, United Space Alliance (USA) Deputy Space Shuttle Program Manager of Operations Loren Shriver, USA Associate Program Manager of Ground Operations Andy Allen, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and USA Vice President and Space Shuttle Program Manager Howard DeCastro examine a tile used in the Shuttle's Thermal Protection System (TPS) in KSC's TPS Facility. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, United Space Alliance (USA) Deputy Space Shuttle Program Manager of Operations Loren Shriver, USA Associate Program Manager of Ground Operations Andy Allen, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and USA Vice President and Space Shuttle Program Manager Howard DeCastro examine a tile used in the Shuttle's Thermal Protection System (TPS) in KSC's TPS Facility. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  3. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  4. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, United Space Alliance (USA) Director of Orbiter Operations Patty Stratton, and NASA Space Shuttle Program Manager William Parsons view the underside of Shuttle Discovery in Orbiter Processing Facility Bay 3. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, United Space Alliance (USA) Director of Orbiter Operations Patty Stratton, and NASA Space Shuttle Program Manager William Parsons view the underside of Shuttle Discovery in Orbiter Processing Facility Bay 3. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  5. KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  6. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro are briefed on the properties of the tile used in the Shuttle's Thermal Protection System (TPS) by USA Manager of the TPS Facility Martin Wilson (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro are briefed on the properties of the tile used in the Shuttle's Thermal Protection System (TPS) by USA Manager of the TPS Facility Martin Wilson (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  7. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) technicians demonstrate the construction of a thermal blanket used in the Shuttle's thermal protection system for USA Vice President and Space Shuttle Program Manager Howard DeCastro (second from left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) technicians demonstrate the construction of a thermal blanket used in the Shuttle's thermal protection system for USA Vice President and Space Shuttle Program Manager Howard DeCastro (second from left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  8. KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with USA Vice President and Space Shuttle Program Manager Howard DeCastro and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with USA Vice President and Space Shuttle Program Manager Howard DeCastro and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  9. KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility Bay 1, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (right) are briefed by a USA technician (center) on Shuttle processing in the payload bay of orbiter Atlantis. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility Bay 1, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (right) are briefed by a USA technician (center) on Shuttle processing in the payload bay of orbiter Atlantis. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  10. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (third from left) watch as a USA technician (right) creates a tile for use in the Shuttle's Thermal Protection System (TPS). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (third from left) watch as a USA technician (right) creates a tile for use in the Shuttle's Thermal Protection System (TPS). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  11. KENNEDY SPACE CENTER, FLA. -- From front row left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons are trained on the proper use of the Emergency Life Support Apparatus (ELSA). NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From front row left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons are trained on the proper use of the Emergency Life Support Apparatus (ELSA). NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  12. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons each don an Emergency Life Support Apparatus (ELSA) during training on the proper use of the escape devices. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons each don an Emergency Life Support Apparatus (ELSA) during training on the proper use of the escape devices. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  13. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Manager of the Thermal Protection System (TPS) Facility Martin Wilson (right) briefs NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) on the properties of a thermal blanket used in the Shuttle's TPS. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Manager of the Thermal Protection System (TPS) Facility Martin Wilson (right) briefs NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) on the properties of a thermal blanket used in the Shuttle's TPS. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  14. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) are briefed on the use of a cold plate in Orbiter Processing Facility Bay 2 by a USA technician (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) are briefed on the use of a cold plate in Orbiter Processing Facility Bay 2 by a USA technician (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  15. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (top) discusses the inner workings of Shuttle Atlantis in Orbiter Processing Facility Bay 1 with a United Space Alliance (USA) technician (bottom). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (top) discusses the inner workings of Shuttle Atlantis in Orbiter Processing Facility Bay 1 with a United Space Alliance (USA) technician (bottom). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  16. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right) discusses a speed brake on Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (left). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right) discusses a speed brake on Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (left). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  17. KENNEDY SPACE CENTER, FLA. -- A United Space Alliance (USA) technician (center) discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- A United Space Alliance (USA) technician (center) discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  18. KSC-03pd3255

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, United Space Alliance (USA) Manager of the Thermal Protection System (TPS) Facility Martin Wilson briefs NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and USA Vice President and Space Shuttle Program Manager Howard DeCastro on aspects of creating the tile used in the Shuttle's TPS. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  19. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) discusses some of the working parts inside the nose of Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (back to camera). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) discusses some of the working parts inside the nose of Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (back to camera). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  20. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) tours a solid rocket booster (SRB) retrieval ship at Cape Canaveral. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) tours a solid rocket booster (SRB) retrieval ship at Cape Canaveral. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  1. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Associate Program Manager of Florida Operations Bill Pickavance (left front) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right front) tour a solid rocket booster (SRB) retrieval ship at Cape Canaveral. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Associate Program Manager of Florida Operations Bill Pickavance (left front) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right front) tour a solid rocket booster (SRB) retrieval ship at Cape Canaveral. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  2. KSC-03PD-3240

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, United Space Alliance (USA) Director of Orbiter Operations Patty Stratton, and NASA Space Shuttle Program Manager William Parsons view the underside of Shuttle Discovery in Orbiter Processing Facility Bay 3. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  3. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) is given a tour of a solid rocket booster (SRB) retrieval ship by United Space Alliance (USA) employee Joe Chaput (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) is given a tour of a solid rocket booster (SRB) retrieval ship by United Space Alliance (USA) employee Joe Chaput (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  4. KSC-03pd3258

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- A United Space Alliance (USA) technician (left) discusses the construction of a thermal blanket used in the Shuttle's thermal protection system with USA Vice President and Space Shuttle Program Manager Howard DeCastro (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  5. KSC-03PD-3248

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- From front row left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons are trained on the proper use of the Emergency Life Support Apparatus (ELSA). NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  6. KSC-2010-4885

    NASA Image and Video Library

    2010-09-28

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Bill McArthur, (left) Space Shuttle Program Orbiter Projects manager; John Casper, Assistant Space Shuttle Program manager; John Shannon, Space Shuttle Program manager and Canadian Space Agency astronaut Chris Hadfield attend a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett

  7. KSC-03PD-3249

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons each don an Emergency Life Support Apparatus (ELSA) during training on the proper use of the escape devices. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  8. KSC-03pd3259

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Manager of the Thermal Protection System (TPS) Facility Martin Wilson (right) briefs USA Associate Program Manager of Ground Operations Andy Allen (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) on the properties of the components used in the Shuttle's TPS. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  9. KSC-2012-2141

    NASA Image and Video Library

    2012-04-14

    CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, media representatives interview space shuttle managers following the arrival of space shuttle Discovery. Behind the rope with their backs to the camera are, from left, Bart Pannullo, NASA Transition and Retirement vehicle manager at Kennedy Dorothy Rasco, manager for Space Shuttle Program Transition and Retirement at NASA’s Johnson Space Center Stephanie Stilson, NASA flow director for Orbiter Transition and Retirement at Kennedy and Kevin Templin, transition manager for the Space Shuttle Program at Johnson. Discovery will be hoisted onto a Shuttle Carrier Aircraft, or SCA, with the aid of the mate-demate device at the landing facility. The SCA, a modified Boeing 747 jet airliner, is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on permanent public display in the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Kim Shiflett

  10. KSC-2013-3517

    NASA Image and Video Library

    2013-09-09

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, officials pose at the site where a Shuttle Program time capsule has been secured vault within the walls of the Space Shuttle Atlantis home at the Kennedy Space Center Visitor Complex. From the left are: Pete Nickolenko, deputy director of NASA Ground Processing at Kennedy, Patty Stratton of Abacus Technology, currently program manager for the Information Management Communications Support Contract. During the Shuttle Program she was deputy director of Ground Operations for NASA's Space Program Operations Contractor, United Space Alliance, Rita Wilcoxon, NASA's now retired director of Shuttle Processing, Bob Cabana, director of the Kennedy Space Center and George Jacobs, deputy director of Center Operations, who was manager of the agency's Shuttle Transition and Retirement Project Office. The time capsule, containing artifacts and other memorabilia associated with the history of the program is designated to be opened on the 50th anniversary of the shuttle's final landing, STS-135. The new $100 million "Space Shuttle Atlantis" facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. Photo credit: NASA/Jim Grossmann

  11. Space Shuttle Project

    NASA Image and Video Library

    1981-01-01

    A Space Shuttle Main Engine undergoes test-firing at the National Space Technology Laboratories (now the Sternis Space Center) in Mississippi. The Marshall Space Flight Center had management responsibility of Space Shuttle propulsion elements, including the Main Engines.

  12. KSC-2009-1505

    NASA Image and Video Library

    2009-02-03

    CAPE CANAVERAL, Fla. – Mike Curie (left), with NASA Public Affairs, introduces NASA managers following their day-long Flight Readiness Review of space shuttle Discovery for the STS-119 mission. Next to Curie are (from left) William H. Gerstenmaier, associate administrator for Space Operations, John Shannon, Shuttle Program manager, Mike Suffredini, program manager for the International Space Station, and Mike Leinbach, shuttle launch director. NASA managers decided to plan a launch no earlier than Feb. 19, pending additional analysis and particle impact testing associated with a flow control valve in the shuttle's main engine system. Photo credit: NASA/Cory Huston

  13. Functional Requirements for Onboard Management of Space Shuttle Consumables. Volume 2

    NASA Technical Reports Server (NTRS)

    Graf, P. J.; Herwig, H. A.; Neel, L. W.

    1973-01-01

    This report documents the results of the study "Functional Requirements for Onboard Management of Space Shuttle Consumables." The study was conducted for the Mission Planning and Analysis Division of the NASA Lyndon B. Johnson Space Center, Houston, Texas, between 3 July 1972 and 16 November 1973. The overall study program objective was two-fold. The first objective was to define a generalized consumable management concept which is applicable to advanced spacecraft. The second objective was to develop a specific consumables management concept for the Space Shuttle vehicle and to generate the functional requirements for the onboard portion of that concept. Consumables management is the process of controlling or influencing the usage of expendable materials involved in vehicle subsystem operation. The report consists of two volumes. Volume I presents a description of the study activities related to general approaches for developing consumable management, concepts for advanced spacecraft applications, and functional requirements for a Shuttle consumables management concept. Volume II presents a detailed description of the onboard consumables management concept proposed for use on the Space Shuttle.

  14. NASA Space Shuttle Program: Shuttle Environmental Assurance (SEA) Initiative

    NASA Technical Reports Server (NTRS)

    Glover, Steve E.; McCool, Alex (Technical Monitor)

    2002-01-01

    The first Space Shuttle flight was in 1981 and the fleet was originally expected to be replaced with a new generation vehicle in the early 21st century. Space Shuttle Program (SSP) elements proactively address environmental and obsolescence concerns and continue to improve safety and supportability. The SSP manager created the Shuttle Environmental Assurance (SEA) Initiative in 2000. SEA is to provide an integrated approach for the SSP to promote environmental excellence, proactively manage materials obsolescence, and optimize associated resources.

  15. STS-114: Discovery Mission Status/Post MMT Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Bob Castle, Mission Operations Representative, and Wayne Hale, Space Shuttle Deputy Program Manager are seen during a post Mission Management Team (MMT) briefing. Bob Castle talks about the Multi-Purpose Logistics Module (MPLM) payload and its readiness for unberthing. Wayne Hale presents pictures of the Space Shuttle Thermal Blanket, Wind Tunnel Tests, and Space Shuttle Blanket Pre and Post Tests. Questions from the news media about the Thermal Protection System after undocking and re-entry of the Space Shuttle Discovery, and lessons learned are addressed.

  16. A History of Space Shuttle Main Engine (SSME) Redline Limits Management

    NASA Technical Reports Server (NTRS)

    Arnold, Thomas M.

    2011-01-01

    The Space Shuttle Main Engine (SSME) has several "redlines", which are operational limits designated to preclude a catastrophic shutdown of the SSME. The Space Shuttle Orbiter utilizes a combination of hardware and software to enable or disable the automated redline shutdown capability. The Space Shuttle is launched with the automated SSME redline limits enabled, but there are many scenarios which may result in the manual disabling of the software by the onboard crew. The operational philosophy for manually enabling and disabling the redline limits software has evolved continuously throughout the history of the Space Shuttle Program, due to events such as SSME hardware changes and updates to Space Shuttle contingency abort software. In this paper, the evolution of SSME redline limits management will be fully reviewed, including the operational scenarios which call for manual intervention, and the events that triggered changes to the philosophy. Following this review, improvements to the management of redline limits for future spacecraft will be proposed.

  17. Functional requirements for onboard management of space shuttle consumables, volume 2.

    NASA Technical Reports Server (NTRS)

    Graf, P. J.; Herwig, H. A.; Neel, L. W.

    1973-01-01

    A study was conducted to develop the functional requirements for onboard management of space shuttle consumables. A specific consumables management concept for the space shuttle vehicle was developed and the functional requirements for the onboard portion of the concept were generated. Consumables management is the process of controlling or influencing the usage of expendable materials involved in vehicle subsystem operation. The subsystems considered in the study are: (1) propulsion, (2) power generation, and (3) environmental and life support.

  18. KSC-2011-6479

    NASA Image and Video Library

    2011-08-13

    CAPE CANAVERAL, Fla. -- NASA’s Space Shuttle Program Launch Integration Manager Mike Moses speaks to current and former space shuttle workers and their families during the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor shuttle workers’ dedication to the agency’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Gianni Woods

  19. STS-121 Space Shuttle Processing Update

    NASA Image and Video Library

    2006-04-27

    NASA Administrator Michael Griffin, left, and Associate Administrator for Space Operations William Gerstenmaier, right, look on as Space Shuttle Program Manager Wayne Hale talks from NASA's Marshall Space Flight Center about the space shuttle's ice frost ramps during a media briefing about the space shuttle program and processing for the STS-121 mission, Friday, April 28, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  20. The Shuttle Era

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An overview of the Space Shuttle Program is presented. The missions of the space shuttle orbiters, the boosters and main engine, and experimental equipment are described. Crew and passenger accommodations are discussed as well as the shuttle management teams.

  1. Information management system: A summary discussion. [for use in the space shuttle sortie, modular space station and TDR satellite

    NASA Technical Reports Server (NTRS)

    Sayers, R. S.

    1972-01-01

    An information management system is proposed for use in the space shuttle sortie, the modular space station, the tracking data relay satellite and associated ground support systems. Several different information management functions, including data acquisition, transfer, storage, processing, control and display are integrated in the system.

  2. KSC-05PD-1592

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Media gather in the television studio at the NASA News Center to hear members of the Mission Management Team reveal aspects of the troubleshooting and testing being done on the liquid hydrogen tank low-level fuel cut-off sensor. On the stage at right are (from left) Wayne Hale, Space Shuttle deputy program manager; John Muratore, manager of Systems Engineering and Integration for the Space Shuttle Program; and Mike Wetmore, director of Space Shuttle Processing. The sensor failed a routine prelaunch check during the launch countdown July 13, causing mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).

  3. Toward a history of the space shuttle. An annotated bibliography

    NASA Technical Reports Server (NTRS)

    Launius, Roger D. (Compiler); Gillette, Aaron K. (Compiler)

    1992-01-01

    This selective, annotated bibliography discusses those works judged to be most essential for researchers writing scholarly studies on the Space Shuttle's history. A thematic arrangement of material concerning the Space Shuttle will hopefully bring clarity and simplicity to such a complex subject. Subjects include the precursors of the Space Shuttle, its design and development, testing and evaluation, and operations. Other topics revolve around the Challenger accident and its aftermath, promotion of the Space Shuttle, science on the Space Shuttle, commercial uses, the Space Shuttle's military implications, its astronaut crew, the Space Shuttle and international relations, the management of the Space Shuttle Program, and juvenile literature. Along with a summary of the contents of each item, judgments have been made on the quality, originality, or importance of some of these publications. An index concludes this work.

  4. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-057 (16 Nov. 2009) --- From left, LeRoy Cain, NASA's deputy manager, Space Shuttle Program; Michael Coats, director of NASA's Johnson Space Center; and Bob Cabana, director of NASA's Kennedy Space Center, watch the launch of Space Shuttle Atlantis from the Operations Management Room, a glass partitioned area overlooking the main floor of Firing Room 4, in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.

  5. Space Shuttle aerothermodynamic data report, phase C

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration are included. An up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program is provided. Tables are designed to provide suvery information to the various space shuttle managerial and technical levels.

  6. KSC-05PD-1590

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Media gather in the television studio at the NASA News Center to hear members of the Mission Management Team reveal aspects of the troubleshooting and testing being done on the liquid hydrogen tank low-level fuel cut-off sensor. On the stage at right are (from left) Bruce Buckingham, NASA news chief; Wayne Hale, Space Shuttle deputy program manager; John Muratore, manager of Systems Engineering and Integration for the Space Shuttle Program; and Mike Wetmore, director of Space Shuttle Processing. The sensor failed a routine prelaunch check during the launch countdown July 13, causing mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).

  7. Space Shuttle wind tunnel testing program

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Hillje, E. R.

    1984-01-01

    A major phase of the Space Shuttle Vehicle (SSV) Development Program was the acquisition of data through the space shuttle wind tunnel testing program. It became obvious that the large number of configuration/environment combinations would necessitate an extremely large wind tunnel testing program. To make the most efficient use of available test facilities and to assist the prime contractor for orbiter design and space shuttle vehicle integration, a unique management plan was devised for the design and development phase. The space shuttle program is reviewed together with the evolutional development of the shuttle configuration. The wind tunnel testing rationale and the associated test program management plan and its overall results is reviewed. Information is given for the various facilities and models used within this program. A unique posttest documentation procedure and a summary of the types of test per disciplines, per facility, and per model are presented with detailed listing of the posttest documentation.

  8. KSC-2009-1800

    NASA Image and Video Library

    2009-02-20

    CAPE CANAVERAL, Fla. – Mike Curie (far left), with NASA Public Affairs, moderates the flight readiness review news conference for space shuttle Discovery's STS-119 mission. On the panel are (from left) Associate Administrator for Space Operations Bill Gerstenmaier, Space Shuttle Program Manager John Shannon and Space Shuttle Launch Director Mike Leinbach. During a thorough review of Discovery's readiness for flight, NASA managers decided Feb. 20 more data and possible testing are required before proceeding to launch. Engineering teams have been working to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. A new launch date has not been determined. NASA managers decided Feb. 20 more data and possible testing are required before proceeding to launch. Engineering teams have been working to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. A new launch date has not been determined. Photo credit: NASA/Glenn Benson

  9. Space Shuttle operational logistics plan

    NASA Technical Reports Server (NTRS)

    Botts, J. W.

    1983-01-01

    The Kennedy Space Center plan for logistics to support Space Shuttle Operations and to establish the related policies, requirements, and responsibilities are described. The Directorate of Shuttle Management and Operations logistics responsibilities required by the Kennedy Organizational Manual, and the self-sufficiency contracting concept are implemented. The Space Shuttle Program Level 1 and Level 2 logistics policies and requirements applicable to KSC that are presented in HQ NASA and Johnson Space Center directives are also implemented.

  10. Report of the Presidential Commission on the Space Shuttle Challenger Accident, Volume 5

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This volume contains all the hearings of the Presidential Commission on the Space Shuttle Challenger accident from 26 February to 2 May 1986. Among others is the testimony of L. Mulloy, Manager, Space Shuttle Solid Rocket Booster Program, Marshall Space Flight Center and G. Hardy, Deputy Director, Science and Engineering, Marshall Space Flight Center.

  11. KSC-2011-5062

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, NASA managers brief media about the launch status of space shuttle Atlantis' STS-135 mission to the International Space Station. Seen here are Public Affairs Officer Candrea Thomas (left), Space Shuttle Program Launch Integration Manager Mike Moses, Shuttle Launch Director Mike Leinbach and Shuttle Weather Officer Kathy Winters. Atlantis and its crew of four are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jack Pfaller

  12. National Space Transportation System Reference. Volume 2: Operations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An overview of the Space Transportation System is presented in which aspects of the program operations are discussed. The various mission preparation and prelaunch operations are described including astronaut selection and training, Space Shuttle processing, Space Shuttle integration and rollout, Complex 39 launch pad facilities, and Space Shuttle cargo processing. Also, launch and flight operations and space tracking and data acquisition are described along with the mission control and payload operations control center. In addition, landing, postlanding, and solid rocket booster retrieval operations are summarized. Space Shuttle program management is described and Space Shuttle mission summaries and chronologies are presented. A glossary of acronyms and abbreviations are provided.

  13. Space shuttle program: Shuttle Avionics Integration Laboratory. Volume 7: Logistics management plan

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The logistics management plan for the shuttle avionics integration laboratory defines the organization, disciplines, and methodology for managing and controlling logistics support. Those elements requiring management include maintainability and reliability, maintenance planning, support and test equipment, supply support, transportation and handling, technical data, facilities, personnel and training, funding, and management data.

  14. Functional requirements for onboard management of space shuttle consumables, volume 1

    NASA Technical Reports Server (NTRS)

    Graf, P. J.; Herwig, H. A.; Neel, L. W.

    1973-01-01

    A study was conducted to determine the functional requirements for onboard management of space shuttle consumables. A generalized consumable management concept was developed for application to advanced spacecraft. The subsystems and related consumables selected for inclusion in the consumables management system are: (1) propulsion, (2) power generation, and (3) environmental and life support.

  15. Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel. Part 2: Space shuttle program. Section 2: Summary of information developed in the Panel's fact-finding activities

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The management areas and the individual elements of the shuttle system were investigated. The basic management or design approach including the most obvious limits or hazards that are significant to crew safety was reviewed. Shuttle program elements that were studied included the orbiter, the space shuttle main engine, the external tank project, solid rocket boosters, and the launch and landing elements.

  16. Shuttle filter study. Volume 1: Characterization and optimization of filtration devices

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A program to develop a new technology base for filtration equipment and comprehensive fluid particulate contamination management techniques was conducted. The study has application to the systems used in the space shuttle and space station projects. The scope of the program is as follows: (1) characterization and optimization of filtration devices, (2) characterization of contaminant generation and contaminant sensitivity at the component level, and (3) development of a comprehensive particulate contamination management plane for space shuttle fluid systems.

  17. STS-121 Space Shuttle Processing Update

    NASA Image and Video Library

    2006-04-27

    NASA Administrator Michael Griffin, left, and Associate Administrator for Space Operations William Gerstenmaier, right, look on as Space Shuttle Program Manager Wayne Hale from NASA's Marshall Space Flight Center, holds a test configuration of an ice frost ramp during a media briefing about the space shuttle program and processing for the STS-121 mission, Friday, April 28, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  18. Review of Issues Associated with Safe Operation and Management of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Johnstone, Paul M.; Blomberg, Richard D.; Gleghorn, George J.; Krone, Norris J.; Voltz, Richard A.; Dunn, Robert F.; Donlan, Charles J.; Kauderer, Bernard M.; Brill, Yvonne C.; Englar, Kenneth G.; hide

    1996-01-01

    At the request of the President of the United States through the Office of Science and Technology Policy (OSTP), the NASA Administrator tasked the Aerospace Safety Advisory Panel with the responsibility to identify and review issues associated with the safe operation and management of the Space Shuttle program arising from ongoing efforts to improve and streamline operations. These efforts include the consolidation of operations under a single Space Flight Operations Contract (SFOC), downsizing the Space Shuttle workforce and reducing costs of operations and management. The Panel formed five teams to address the potentially significant safety impacts of the seven specific topic areas listed in the study Terms of Reference. These areas were (in the order in which they are presented in this report): Maintenance of independent safety oversight; implementation plan for the transition of Shuttle program management to the Lead Center; communications among NASA Centers and Headquarters; transition plan for downsizing to anticipated workforce levels; implementation of a phased transition to a prime contractor for operations; Shuttle flight rate for Space Station assembly; and planned safety and performance upgrades for Space Station assembly. The study teams collected information through briefings, interviews, telephone conversations and from reviewing applicable documentation. These inputs were distilled by each team into observations and recommendations which were then reviewed by the entire Panel.

  19. KSC-07pd1336

    NASA Image and Video Library

    2007-05-31

    KENNEDY SPACE CENTER, FLA. -- Following the Flight Readiness Review for the STS-117 mission, NASA officials presented the decisions of NASA senior managers in a television conference. Bill Gerstenmaier, associate administrator of NASA Space Operations Mission, confirmed the launch time and date of Space Shuttle Atlantis at 7:38 p.m. EDT on June 8. Seen here is Space Shuttle Program Manager Wayne Hale (left) demonstrating the level of scrutiny engineers apply to inspecting the smallest of components that make up the shuttle system. This housing and bolt insert are part of the main engine low pressure oxidizer turbopump (LPOTP). Photo credit: NASA/Kim Shiflett

  20. Aerothermodynamic data base. Data file contents report, phase C

    NASA Technical Reports Server (NTRS)

    Lutz, G. R.

    1983-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration is listed to provide an up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program. Tables provide survey information to the various space shuttle managerial and technical levels.

  1. Aerothermodynamic Data Base

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. A list of documentation of DMS processed data arranged sequentially and by space shuttle configuration is presented. The listing provides an up to date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program. Tables are designed to provide survey information to the various space shuttle managerial and technical levels.

  2. Space Shuttle Orbiter logistics - Managing in a dynamic environment

    NASA Technical Reports Server (NTRS)

    Renfroe, Michael B.; Bradshaw, Kimberly

    1990-01-01

    The importance and methods of monitoring logistics vital signs, logistics data sources and acquisition, and converting data into useful management information are presented. With the launch and landing site for the Shuttle Orbiter project at the Kennedy Space Center now totally responsible for its own supportability posture, it is imperative that logistics resource requirements and management be continually monitored and reassessed. Detailed graphs and data concerning various aspects of logistics activities including objectives, inventory operating levels, customer environment, and data sources are provided. Finally, some lessons learned from the Shuttle Orbiter project and logistics options which should be considered by other space programs are discussed.

  3. Report of the Space Shuttle Management Independent Review Team

    NASA Technical Reports Server (NTRS)

    1995-01-01

    At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

  4. Report of the Space Shuttle Management Independent Review Team

    NASA Astrophysics Data System (ADS)

    1995-02-01

    At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

  5. Actions to Implement the Recommendations of the Presidential Commission on the Space Shuttle Challenger Accident: Executive Summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The status of the implementation of the recommendations of the Presidential Commission on the Space Shuttle Challenger Accident is reported. The implementation of recommendations in the following areas is detailed: (1) solid rocket motor design; (2) shuttle management structure, including the shuttle safety panel and astronauts in management; (3) critical item review and hazard analysis; (4) safety organization; (5) improved communication; (6) landing safety; (7) launch abort and crew escape; (8) flight rate; and (9) maintenance safeguards. Supporting memoranda and communications from NASA are appended.

  6. KSC-06pd0376

    NASA Image and Video Library

    2006-02-28

    KENNEDY SPACE CENTER, FLA. - NASA managers brief the media about the Space Shuttle Program and mission STS-121 from the press site at NASA's Kennedy Space Center in Florida. Public Information Officer Jessica Rye moderated. Seated at her right are Space Shuttle Program Manager Wayne Hale, NASA Launch Director Mike Leinbach and STS-114 External Tank Tiger Team lead Tim Wilson, with the NASA Engineering & Safety Center. Photo credit: NASA/Jack Pfaller

  7. KSC-2011-4243

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, NASA managers brief media after space shuttle Endeavour's successful landing and conclusion of its STS-134 and final mission. From left are, Associate Administrator for Space Operations Bill Gerstenmaier, Space Shuttle Program Launch Integration Manager Mike Moses; and Shuttle Launch Director Mike Leinbach. Endeavour and its crew delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Kim Shiflett

  8. Organizing Space Shuttle parametric data for maintainability

    NASA Technical Reports Server (NTRS)

    Angier, R. C.

    1983-01-01

    A model of organization and management of Space Shuttle data is proposed. Shuttle avionics software is parametrically altered by a reconfiguration process for each flight. As the flight rate approaches an operational level, current methods of data management would become increasingly complex. An alternative method is introduced, using modularized standard data, and its implications for data collection, integration, validation, and reconfiguration processes are explored. Information modules are cataloged for later use, and may be combined in several levels for maintenance. For each flight, information modules can then be selected from the catalog at a high level. These concepts take advantage of the reusability of Space Shuttle information to reduce the cost of reconfiguration as flight experience increases.

  9. KSC-00pp1244

    NASA Image and Video Library

    2000-09-06

    The ribbon is cut and the new Checkout and Launch Control System (CLCS) declared operational. Those taking part in the ceremony are (from left) Joseph Rothenberg, NASA Associate Administrator for Space Flight; Pam Gillespie, from Rep. Dave Weldon's office; Roy Bridges, Kennedy Space Center director; Dave King, director of Shuttle Processing; Retha Hart, deputy associate director, Spaceport Technology Management Office; and Ron Dittemore, manager, Space Shuttle Program. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing

  10. KSC00pp1244

    NASA Image and Video Library

    2000-09-06

    The ribbon is cut and the new Checkout and Launch Control System (CLCS) declared operational. Those taking part in the ceremony are (from left) Joseph Rothenberg, NASA Associate Administrator for Space Flight; Pam Gillespie, from Rep. Dave Weldon's office; Roy Bridges, Kennedy Space Center director; Dave King, director of Shuttle Processing; Retha Hart, deputy associate director, Spaceport Technology Management Office; and Ron Dittemore, manager, Space Shuttle Program. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing

  11. KSC-07pd1335

    NASA Image and Video Library

    2007-05-31

    KENNEDY SPACE CENTER, FLA. -- Following the Flight Readiness Review for the STS-117 mission, NASA officials presented the decisions of NASA senior managers in a press conference. Bill Gerstenmaier, associate administrator of NASA Space Operations Mission, confirmed the launch time and date of Space Shuttle Atlantis at 7:38 p.m. EDT on June 8. Seen here is Space Shuttle Program Manager Wayne Hale (left) demonstrating the level of scrutiny engineers apply to inspecting the smallest of components that make up the shuttle system. This housing and bolt insert are part of the main engine low pressure oxidizer turbopump (LPOTP). NASA Launch Director Mike Leinbach looks on. Photo credit: NASA/Kim Shiflett

  12. KSC-98pc1882

    NASA Image and Video Library

    1998-12-18

    Federal, state, NASA, KSC and Space Florida Authority (SFA) officials dig in at the planned site of a multi-purpose hangar, phase one of the Reusable Launch Vehicle (RLV) Support Complex to be built near the Shuttle Landing Facility. From left, they are a representative from Rush Construction; Ed O'Connor, executive director of the Spaceport Florida Authority (SFA); Stephen T. Black, Lockheed Martin technical operations program manager; Warren Wiley, deputy director of engineering development; Tom Best, district director, representing U.S. Congressman Dave Weldon; Roy Bridges, director, Kennedy Space Center; Bill Posey, 32nd district representative; Randy Ball, state representative; Charlie Bronson, state senator; Donald McMonagle, manager of launch integration; and John London, Marshall Space Flight Center X-34 program manager. The new complex is jointly funded by SFA, NASA's Space Shuttle Program and Kennedy Space Center. It is intended to support the Space Shuttle and other RLV and X-vehicle systems. Completion is expected by the year 2000

  13. Space Shuttle Projects

    NASA Image and Video Library

    1978-03-01

    A liquid hydrogen tank of the Shuttle's external tank (ET) is installed into the S-1C Test Stand for a structural test at the Marshall Space Flight Center. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and is the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.

  14. Space Shuttle Project

    NASA Image and Video Library

    1972-03-07

    This early chart conceptualizes the use of two parallel Solid Rocket Motor Boosters in conjunction with three main engines to launch the proposed Space Shuttle to orbit. At approximately twenty-five miles altitude, the boosters would detach from the Orbiter and parachute back to Earth where they would be recovered and refurbished for future use. The Shuttle was designed as NASA's first reusable space vehicle, launching vertically like a spacecraft and landing on runways like conventional aircraft. Marshall Space Flight Center had management responsibility for the Shuttle's propulsion elements, including the Solid Rocket Boosters.

  15. KSC-2011-2872

    NASA Image and Video Library

    2011-04-12

    CAPE CANAVERAL, Fla. -- Mike Parrish, space shuttle Endeavour's vehicle manager with United Space Alliance addresses the audience after the announcement that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett

  16. Detailed requirements document for Stowage List and Hardware Tracking System (SLAHTS). [computer based information management system in support of space shuttle orbiter stowage configuration

    NASA Technical Reports Server (NTRS)

    Keltner, D. J.

    1975-01-01

    The stowage list and hardware tracking system, a computer based information management system, used in support of the space shuttle orbiter stowage configuration and the Johnson Space Center hardware tracking is described. The input, processing, and output requirements that serve as a baseline for system development are defined.

  17. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John

    2004-01-01

    Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.

  18. Space Shuttle Projects

    NASA Image and Video Library

    1977-02-01

    This photograph shows an inside view of a liquid hydrogen tank for the Space Shuttle external tank (ET) Main Propulsion Test Article (MPTA). The ET provides liquid hydrogen and liquid oxygen to the Shuttle's three main engines during the first 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and is the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.

  19. Space Shuttle Projects

    NASA Image and Video Library

    1978-05-01

    This photograph shows a liquid oxygen tank for the Shuttle External Tank (ET) during a hydroelastic modal survey test at the Marshall Space Flight Center. The ET provides liquid hydrogen and liquid oxygen to the Shuttle's three main engines during the first 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and is the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.

  20. Actions to implement the recommendations of the Presidential Commission on the Space Shuttle Challenger Accident. Report to the President

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The status of the implementation of the recommendations of the Presidential Commission on the Space Shuttle Challenger Accident is reported. The implementation of recommendations in the following areas is detailed: (1) solid rocket motor design; (2) shuttle management structure, including the shuttle safety panel and astronauts in management; (3) critical item review and hazard analysis; (4) safety organization; (5) improved communication; (6) landing safety; (7) launch abort and crew escape; (8) flight rate; and (9) maintenance safeguards. Supporting memoranda and communications from NASA are appended.

  1. KSC-06pd0299

    NASA Image and Video Library

    2006-02-17

    KENNEDY SPACE CENTER, FLA. - At a space shuttle all hands meeting in the training auditorium at NASA's Kennedy Space Center, Space Shuttle Program Manager Wayne Hale discusses effects of Hurricane Katrina on NASA facilities, the status of the program, successes of the STS-114 mission, and the newly released budget. Photo credit: NASA/Jim Grossmann

  2. KSC-06pd0298

    NASA Image and Video Library

    2006-02-17

    KENNEDY SPACE CENTER, FLA. - At a space shuttle all hands meeting in the training auditorium at NASA's Kennedy Space Center, Space Shuttle Program Manager Wayne Hale discusses the status of the program, successes of the STS-114 mission, effects of Hurricane Katrina on NASA facilities, and the newly released budget. Photo credit: NASA/Jim Grossmann

  3. KSC-06pd0300

    NASA Image and Video Library

    2006-02-17

    KENNEDY SPACE CENTER, FLA. - At a space shuttle all hands meeting in the training auditorium at NASA's Kennedy Space Center, Space Shuttle Program Manager Wayne Hale discusses effects of Hurricane Katrina on NASA facilities, the status of the program, successes of the STS-114 mission, and the newly released budget. Photo credit: NASA/Jim Grossmann

  4. KSC-2013-2976

    NASA Image and Video Library

    2013-06-28

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Andrea Farmer, Delaware North Parks and Resorts manager of Public Relations speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  5. KSC-06pd1418

    NASA Image and Video Library

    2006-07-04

    KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Program manager Wayne Hale (far left), NASA Associate Administrator for Space Operations Mission Bill Gerstenmaier (third from left) and Center Director Jim Kennedy (far right) watch the historic ride of Space Shuttle Discovery as it rockets through the sky on mission STS-121 -- the first ever Independence Day launch of a space shuttle. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett

  6. KSC-2011-2889

    NASA Image and Video Library

    2011-04-12

    CAPE CANAVERAL, Fla. -- Standing under the insignia designed for the Space Shuttle Program, Patty Stratton, associate program manager for Ground Operations at United Space Alliance, speaks to the audience attending a 30th anniversary celebration in honor of the Space Shuttle Program's first shuttle launch at NASA's Kennedy Space Center Visitor Complex in Florida. The celebration followed an announcement by NASA Administrator Charles Bolden where the four orbiters will be placed for permanent display after retirement. Photo credit: NASA/Kim Shiflett

  7. Study of solid rocket motor for space shuttle booster, Volume 3: Program acquisition planning

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program planning acquisition functions for the development of the solid propellant rocket engine for the space shuttle booster is presented. The subjects discussed are: (1) program management, (2) contracts administration, (3) systems engineering, (4) configuration management, and (5) maintenance engineering. The plans for manufacturing, testing, and operations support are included.

  8. Risk management in fly-by-wire systems

    NASA Technical Reports Server (NTRS)

    Knoll, Karyn T.

    1993-01-01

    A general description of various types of fly-by-wire systems is provided. The risks inherent in digital flight control systems, like those used in the Space Shuttle, are identified. The results of a literature survey examining risk management methods in use throughout the aerospace industry are presented. The applicability of these methods to the Space Shuttle program is discussed.

  9. Space Shuttle Projects

    NASA Image and Video Library

    1977-03-01

    This photograph shows the liquid hydrogen tank and liquid oxygen tank for the Space Shuttle external tank (ET) being assembled in the weld assembly area of the Michoud Assembly Facility (MAF). The ET provides liquid hydrogen and liquid oxygen to the Shuttle's three main engines during the first eight 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.

  10. KSC-2011-5044

    NASA Image and Video Library

    2011-07-05

    CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, NASA managers brief media about the payload and launch status of space shuttle Atlantis' STS-135 mission to the International Space Station. From left are NASA Test Director Jeremy Graeber, Payload Mission Manager Joe Delai and Shuttle Weather Officer Kathy Winters. Atlantis and its crew are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  11. KSC-2011-5046

    NASA Image and Video Library

    2011-07-05

    CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, NASA managers brief media about the payload and launch status of space shuttle Atlantis' STS-135 mission to the International Space Station. Seen here are Public Affairs Officer Candrea Thomas, NASA Test Director Jeremy Graeber, Payload Mission Manager Joe Delai and Shuttle Weather Officer Kathy Winters (obscured). Atlantis and its crew are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  12. KSC-2011-5045

    NASA Image and Video Library

    2011-07-05

    CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, NASA managers brief media about the payload and launch status of space shuttle Atlantis' STS-135 mission to the International Space Station. Seen here are Public Affairs Officer Candrea Thomas, NASA Test Director Jeremy Graeber, Payload Mission Manager Joe Delai and Shuttle Weather Officer Kathy Winters (obscured). Atlantis and its crew are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  13. Shuttle Inventory Management

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Inventory Management System (SIMS) consists of series of integrated support programs providing supply support for both Shuttle program and Kennedy Space Center base opeations SIMS controls all supply activities and requirements from single point. Programs written in COBOL.

  14. Advanced Software Techniques for Data Management Systems. Volume 2: Space Shuttle Flight Executive System: Functional Design

    NASA Technical Reports Server (NTRS)

    Pepe, J. T.

    1972-01-01

    A functional design of software executive system for the space shuttle avionics computer is presented. Three primary functions of the executive are emphasized in the design: task management, I/O management, and configuration management. The executive system organization is based on the applications software and configuration requirements established during the Phase B definition of the Space Shuttle program. Although the primary features of the executive system architecture were derived from Phase B requirements, it was specified for implementation with the IBM 4 Pi EP aerospace computer and is expected to be incorporated into a breadboard data management computer system at NASA Manned Spacecraft Center's Information system division. The executive system was structured for internal operation on the IBM 4 Pi EP system with its external configuration and applications software assumed to the characteristic of the centralized quad-redundant avionics systems defined in Phase B.

  15. Shuttle era waste management and biowaste monitoring

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Fogal, G. L.

    1976-01-01

    The acquisition of crew biomedical data has been an important task on manned space missions. The monitoring of biowastes from the crew to support water and mineral balance studies and endocrine studies has been a valuable part of this activity. This paper will present a review of waste management systems used in past programs. This past experience will be cited as to its influence on the Shuttle design. Finally, the Shuttle baseline waste management system and the proposed Shuttle biomedical measurement and sampling systems will be presented.

  16. International Space Station (ISS) Oxygen High Pressure Storage Management

    NASA Technical Reports Server (NTRS)

    Lewis, John R.; Dake, Jason; Cover, John; Leonard, Dan; Bohannon, Carl

    2004-01-01

    High pressure oxygen onboard the ISS provides support for Extra Vehicular Activities (EVA) and contingency metabolic support for the crew. This high pressure 02 is brought to the ISS by the Space Shuttle and is transferred using the Oxygen Recharge Compressor Assembly (ORCA). There are several drivers that must be considered in managing the available high pressure 02 on the ISS. The amount of O2 the Shuttle can fly up is driven by manifest mass limitations, launch slips, and on orbit Shuttle power requirements. The amount of 02 that is used from the ISS high pressure gas tanks (HPGT) is driven by the number of Shuttle docked and undocked EVAs, the type of EVA prebreath protocol that is used and contingency use of O2 for metabolic support. Also, the use of the ORCA must be managed to optimize its life on orbit and assure that it will be available to transfer the planned amount of O2 from the Shuttle. Management of this resource has required long range planning and coordination between Shuttle manifest on orbit plans. To further optimize the situation hardware options have been pursued.

  17. The Space Shuttle Decision: NASA's Search for a Reusable Space Vehicle

    NASA Technical Reports Server (NTRS)

    Heppenheimer, T. A.

    1999-01-01

    This significant new study of the decision to build the Space Shuttle explains the Shuttle's origins and early development. In addition to internal NASA discussions, this work details the debates in the late 1960s and early 1970s among policymakers in Congress, the Air Force, and the Office of Management and Budget over the roles and technical designs of the Shuttle. Examining the interplay of these organizations with sometimes conflicting goals, the author not only explains how the world's premier space launch vehicle came into being, but also how politics can interact with science, technology, national security, and economics in national government. The weighty policy decision to build the Shuttle represents the first component of the broader story: future NASA volumes will cover the Shuttle's development and operational histories.

  18. Study of airborne science experiment management concepts for application to space shuttle. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    The management concepts and operating procedures are documented as they apply to the planning of shuttle spacelab operations. Areas discussed include: airborne missions; formulation of missions; management procedures; experimenter involvement; experiment development and performance; data handling; safety procedures; and applications to shuttle spacelab planning. Characteristics of the airborne science experience are listed, and references and figures are included.

  19. Study of airborne science experiment management concepts for application to space shuttle, volume 2

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.

  20. An expert system to manage the operation of the Space Shuttle's fuel cell cryogenic reactant tanks

    NASA Technical Reports Server (NTRS)

    Murphey, Amy Y.

    1990-01-01

    This paper describes a rule-based expert system to manage the operation of the Space Shuttle's cryogenic fuel system. Rules are based on standard fuel tank operating procedures described in the EECOM Console Handbook. The problem of configuring the operation of the Space Shuttle's fuel tanks is well-bounded and well defined. Moreover, the solution of this problem can be encoded in a knowledge-based system. Therefore, a rule-based expert system is the appropriate paradigm. Furthermore, the expert system could be used in coordination with power system simulation software to design operating procedures for specific missions.

  1. Structural Margins Assessment Approach

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S.

    1988-01-01

    A general approach to the structural design and verification used to determine the structural margins of the space vehicle elements under Marshall Space Flight Center (MSFC) management is described. The Space Shuttle results and organization will be used as illustrations for techniques discussed. Given also are: (1) the system analyses performed or to be performed by, and (2) element analyses performed by MSFC and its contractors. Analysis approaches and their verification will be addressed. The Shuttle procedures are general in nature and apply to other than Shuttle space vehicles.

  2. Langley applications experiments data management system study. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Lanham, C. C., Jr.

    1975-01-01

    A data management system study is presented that defines, in functional terms, the most cost effective ground data management system to support Advanced Technology Laboratory (ATL) flights of the space shuttle. Results from each subtask performed and the recommended system configuration for reformatting the experiment instrumentation tapes to computer compatible tape are examined. Included are cost factors for development of a mini control center for real-time support of the ATL flights.

  3. 07pd2985

    NASA Image and Video Library

    2007-10-23

    In the firing room of the Kennedy Space Center in Florida, NASA Shuttle Launch Director Michael Leinbach (2nd from right) and launch managers watch the 11:38 a.m. EDT launch of Space Shuttle Discovery. Discovery launched Oct. 23 on a 14-day construction mission to the International Space Station. Photo credit: "NASA/Bill Ingalls"

  4. KENNEDY SPACE CENTER, FLA. - Suzy Cunningham sings the national anthem to kick off Center Director Jim Kennedy’s first all-hands meeting conducted for employees. She is senior spaceport manager, NASA/Air Force Spaceport Planning and Customer Service Office. Making presentations were Dr. Woodrow Whitlow Jr., KSC deputy director; Tim Wilson, assistant chief engineer for Shuttle; and Bill Pickavance, vice president and deputy program manager, Florida operations, United Space Alliance. Representatives from the Shuttle program and contractor team were on hand to discuss the Columbia Accident Investigation Board report and where KSC stands in its progress toward return to flight.

    NASA Image and Video Library

    2003-09-17

    KENNEDY SPACE CENTER, FLA. - Suzy Cunningham sings the national anthem to kick off Center Director Jim Kennedy’s first all-hands meeting conducted for employees. She is senior spaceport manager, NASA/Air Force Spaceport Planning and Customer Service Office. Making presentations were Dr. Woodrow Whitlow Jr., KSC deputy director; Tim Wilson, assistant chief engineer for Shuttle; and Bill Pickavance, vice president and deputy program manager, Florida operations, United Space Alliance. Representatives from the Shuttle program and contractor team were on hand to discuss the Columbia Accident Investigation Board report and where KSC stands in its progress toward return to flight.

  5. Space Shuttle Placement Announcement

    NASA Image and Video Library

    2011-04-12

    From left, Pilot of the first space shuttle mission, STS-1, Bob Crippen, NASA Administrator Charles Bolden, NASA Johnson Space Center Director of Flight Crew Operations, and Astronaut, Janet Kavandi, NASA Kennedy Space Center Director and former astronaut Bob Cabana, and Endeavour Vehicle Manager for United Space Alliance Mike Parrish pose for a photograph outside of the an Orbiter Processing Facility with the space shuttle Atlantis shortly after Bolden announced where four space shuttle orbiters will be permanently displayed at the conclusion of the Space Shuttle Program, Tuesday, April 12, 2011, at Kennedy Space Center in Cape Canaveral, Fla. The four orbiters, Enterprise, which currently is on display at the Smithsonian's Steven F. Udvar-Hazy Center near Washington Dulles International Airport, will move to the Intrepid Sea, Air & Space Museum in New York, Discovery will move to Udvar-Hazy, Endeavour will be displayed at the California Science Center in Los Angeles and Atlantis, in background, will be displayed at the Kennedy Space Center Visitor’s Complex. Photo Credit: (NASA/Bill Ingalls)

  6. KSC-2011-2867

    NASA Image and Video Library

    2011-04-12

    CAPE CANAVERAL, Fla. -- Standing proudly in front of shuttle Atlantis' three main engines are, from left, STS-1 Pilot and former Kennedy Space Center Director Bob Crippen, NASA Administrator Charles Bolden, NASA Astronaut and Director of Flight Crew Operations Janet Kavandi, Kennedy Center Director Bob Cabana and Mike Parrish, space shuttle Endeavour's vehicle manager with United Space Alliance. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. Later, employees, their families and friends, will celebrate the 30th anniversary of the first shuttle launch at the visitor complex. Photo credit: NASA/Kim Shiflett

  7. Space Shuttle Project

    NASA Image and Video Library

    1995-10-20

    A Great Blue Heron seems oblivious to the tremendous spectacle of light and sound generated by a Shuttle liftoff, as the Space Shuttle Columbia (STS-73) soars skyward from Launch Pad 39B. Columbia's seven member crew's mission included continuing experimentation in the Marshall managed payloads including the United States Microgravity Laboratory 2 (USML-2) and the keel-mounted accelerometer that characterizes the very low frequency acceleration environment of the orbiter payload bay during space flight, known as the Orbital Acceleration Research Experiment (OARE).

  8. The space shuttle payload planning working groups. Volume 3: High energy astrophysics

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of the High Energy Astrophysics working group of the space shuttle payload planning activity are presented. The objectives to be accomplished during space shuttle missions are defined as: (1) X-ray astronomy, (2) hard X-ray and gamma ray astronomy, and (3) cosmic ray astronomy. The instruments and test equipment required to accomplish the mission are identified. Recommendations for managing the installation of the equipment and conducting the missions are included.

  9. Space Flight Resource Management for ISS Operations

    NASA Technical Reports Server (NTRS)

    Schmidt, Larry; Slack, Kelley; O'Keefe, William; Huning, Therese; Sipes, Walter; Holland, Albert

    2011-01-01

    This slide presentation reviews the International Space Station (ISS) Operations space flight resource management, which was adapted to the ISS from the shuttle processes. It covers crew training and behavior elements.

  10. KSC-86PC-0310

    NASA Image and Video Library

    1986-10-09

    CAPE CANAVERAL, Fla. - Kennedy Space Center Director Lt. Gen. Forrest S. McCartney, far right, stands in front of the space shuttle Atlantis the morning after it is rolled out to Launch Pad 39B. Standing with McCartney is, from right to left, Bob Sieck, director of Shuttle Management and Operations, Bill Warren, pad site manager, and Gene Thomas, director of Launch and Landing Operations. Photo credit: NASA

  11. An intelligent interactive visual database management system for Space Shuttle closeout image management

    NASA Technical Reports Server (NTRS)

    Ragusa, James M.; Orwig, Gary; Gilliam, Michael; Blacklock, David; Shaykhian, Ali

    1994-01-01

    Status is given of an applications investigation on the potential for using an expert system shell for classification and retrieval of high resolution, digital, color space shuttle closeout photography. This NASA funded activity has focused on the use of integrated information technologies to intelligently classify and retrieve still imagery from a large, electronically stored collection. A space shuttle processing problem is identified, a working prototype system is described, and commercial applications are identified. A conclusion reached is that the developed system has distinct advantages over the present manual system and cost efficiencies will result as the system is implemented. Further, commercial potential exists for this integrated technology.

  12. KSC-2011-5102

    NASA Image and Video Library

    2011-07-07

    CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, NASA managers brief media about the payload and launch status of space shuttle Atlantis' STS-135 mission to the International Space Station. Seen here are NASA Test Director Jeff Spaulding (left), Payload Mission Manager Joe Delai and Shuttle Weather Officer Kathy Winters. Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim, are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin

  13. STS-3 MISSION OPERATIONS CONTROL ROOM (MOCR) - JSC

    NASA Image and Video Library

    1982-03-26

    Mission Control Activities during the STS-3 Mission, Day-4 with: Maj. Gen. James A. Abrahamson, Associate Administrator of the Space Transportation System (STS), NASA Hdqs., conversing with Dr. Kraft; Glynn S. Lunney, Manager, Space Shuttle Program Office, JSC, Aaron Cohen, Manager, Space Shuttle Orbiter Project Office; and, J. E. Conner, Ford Aerospace Engineer at the Instrumentation and Communications Officer (INCO) Console position. 1. Glynn S. Lunney 2. Major General James A. Abrahamson 3. Aaron Cohen 4. J. E. Conner 5. Dr. Christopher Kraft JSC, Houston, TX

  14. STS-114: Discovery Return to Flight: Langley Engineers Analysis Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This video features a briefing on NASA Langley Research Center (LaRC) contributions to the Space Shuttle fleet's Return to Flight (RTF). The briefing is split into two sections, which LaRC Shuttle Project Manager Robert Barnes and Deputy Manager Harry Belvin deliver in the form of a viewgraph presentation. Barnes speaks about LaRC contributions to the STS-114 mission of Space Shuttle Discovery, and Belvin speaks about LaRC contributions to subsequent Shuttle missions. In both sections of the briefing, LaRC contributions are in the following areas: External Tank (ET), Orbiter, Systems Integration, and Corrosion/Aging. The managers discuss nondestructive and destructive tests performed on ET foam, wing leading edge reinforced carbon-carbon (RCC) composites, on-orbit tile repair, aerothermodynamic simulation of reentry effects, Mission Management Team (MMT) support, and landing gear tests. The managers briefly answer questions from reporters, and the video concludes with several short video segments about LaRC contributions to the RTF effort.

  15. The SSMEPF opens with a ribbon-cutting ceremony

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Participants in the ribbon cutting for KSC's new 34,600-square- foot Space Shuttle Main Engine Processing Facility (SSMEPF) pose in front of a Space Shuttle Main Engine on display for the ceremony. From left, they are Ed Adamek, vice president and associate program manager for Ground Operations of United Space Alliance; John Plowden, vice president of Rocketdyne; Donald R. McMonagle, manager of Launch Integration; U.S. Congressman Dave Weldon; KSC Center Director Roy D. Bridges Jr.; Wade Ivey of Ivey Construction, Inc.; and Robert B. Sieck, director of Shuttle Processing. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.

  16. Post-Challenger evaluation of space shuttle risk assessment and management

    NASA Technical Reports Server (NTRS)

    1988-01-01

    As the shock of the Space Shuttle Challenger accident began to subside, NASA initiated a wide range of actions designed to ensure greater safety in various aspects of the Shuttle system and an improved focus on safety throughout the National Space Transportation System (NSTS) Program. Certain specific features of the NASA safety process are examined: the Critical Items List (CIL) and the NASA review of the Shuttle primary and backup units whose failure might result in the loss of life, the Shuttle vehicle, or the mission; the failure modes and effects analyses (FMEA); and the hazard analysis and their review. The conception of modern risk management, including the essential element of objective risk assessment is described and it is contrasted with NASA's safety process in general terms. The discussion, findings, and recommendations regarding particular aspects of the NASA STS safety assurance process are reported. The 11 subsections each deal with a different aspect of the process. The main lessons learned by SCRHAAC in the course of the audit are summarized.

  17. NASA management of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Peters, F.

    1975-01-01

    The management system and management technology described have been developed to meet stringent cost and schedule constraints of the Space Shuttle Program. Management of resources available to this program requires control and motivation of a large number of efficient creative personnel trained in various technical specialties. This must be done while keeping track of numerous parallel, yet interdependent activities involving different functions, organizations, and products all moving together in accordance with intricate plans for budgets, schedules, performance, and interaction. Some techniques developed to identify problems at an early stage and seek immediate solutions are examined.

  18. Introducing new technologies into Space Station subsystems

    NASA Technical Reports Server (NTRS)

    Wiskerchen, Michael J.; Mollakarimi, Cindy L.

    1989-01-01

    A new systems engineering technology has been developed and applied to Shuttle processing. The new engineering approach emphasizes the identification, quantitative assessment, and management of system performance and risk related to the dynamic nature of requirements, technology, and operational concepts. The Space Shuttle Tile Automation System is described as an example of the first application of the new engineering technology. Lessons learned from the Shuttle processing experience are examined, and concepts are presented which are applicable to the design and development of the Space Station Freedom.

  19. STS-124 Space Shuttle Discovery Landing

    NASA Image and Video Library

    2008-06-14

    NASA Deputy Shuttle Program Manager LeRoy Cain points out a portion of the space shuttle Discovery to NASA Associate Administrator for Space Operations Bill Gerstenmaier, left, during a walk around shortly after Discovery touched down at 11:15 a.m., Saturday, June 14, 2008, at the Kennedy Space Center in Cape Canaveral, Florida. During the 14-day STS-124 mission Discovery's crew installed the Japan Aerospace Exploration Agency's large Kibo laboratory and its remote manipulator system leaving a larger space station and one with increased science capabilities. Discovery also brought home NASA astronaut Garrett Reisman after his 3 month mission onboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  20. Functional design specification for the problem data system. [space shuttle

    NASA Technical Reports Server (NTRS)

    Boatman, T. W.

    1975-01-01

    The purpose of the Functional Design Specification is to outline the design for the Problem Data System. The Problem Data System is a computer-based data management system designed to track the status of problems and corrective actions pertinent to space shuttle hardware.

  1. STS-120 launch

    NASA Image and Video Library

    2007-10-23

    STS120-S-026 (23 Oct. 2007) --- In the firing room of the Kennedy Space Center in Florida, NASA Shuttle Launch Director Michael Leinbach (second right) and launch managers watch the 11:38 a.m. (EDT) launch of Space Shuttle Discovery. Discovery launched Oct. 23 on a 14-day construction mission to the International Space Station. Photo credit: NASA/Bill Ingalls

  2. KENNEDY SPACE CENTER, FLA. - NASA Manager Steve Cain explains aspects of Space Shuttle processing to Consul General of Japan Ko Kodaira and his family in the Orbiter Processing Facility during their visit to Kennedy Space Center (KSC). From left are Kodaira's wife Marie, his daughter Reiko, Kodaira, and Cain, Senior Future International Space Station Element Manager. Kodaira is touring the facilities at KSC at the invitation of the local office of the National Space Development Agency of Japan (NASDA) to acquaint him with KSC's unique processing capabilities.

    NASA Image and Video Library

    2003-08-26

    KENNEDY SPACE CENTER, FLA. - NASA Manager Steve Cain explains aspects of Space Shuttle processing to Consul General of Japan Ko Kodaira and his family in the Orbiter Processing Facility during their visit to Kennedy Space Center (KSC). From left are Kodaira's wife Marie, his daughter Reiko, Kodaira, and Cain, Senior Future International Space Station Element Manager. Kodaira is touring the facilities at KSC at the invitation of the local office of the National Space Development Agency of Japan (NASDA) to acquaint him with KSC's unique processing capabilities.

  3. Space Shuttle Placement Announcement

    NASA Image and Video Library

    2011-04-12

    Endeavour Vehicle Manager for United Space Alliance Mike Parrish speaks at an event where NASA Administrator Charles Bolden announced where four space shuttle orbiters will be permanently displayed at the conclusion of the Space Shuttle Program, Tuesday, April 12, 2011, at Kennedy Space Center in Cape Canaveral, Fla. The four orbiters, Enterprise, which currently is on display at the Smithsonian's Steven F. Udvar-Hazy Center near Washington Dulles International Airport, will move to the Intrepid Sea, Air & Space Museum in New York, Discovery will move to Udvar-Hazy, Endeavour will be displayed at the California Science Center in Los Angeles and Atlantis, in background, will be displayed at the Kennedy Space Center Visitor’s Complex. Photo Credit: (NASA/Bill Ingalls)

  4. KSC-2009-2301

    NASA Image and Video Library

    2009-03-25

    CAPE CANAVERAL, Fla. – NASA's Kennedy Space Center management host a ceremony near Launch Pad 39B to mark the handover of Mobile Launcher Platform-1 (behind them) from NASA's Space Shuttle Program to the Constellation Program for the Ares I-X flight test targeted for this summer. Seated are (left) Shuttle Launch Director Mike Leinbach and (right) Pepper E. Phillips, director of the Constellation Project Office, and Brett Raulerson, manager of MLP Operations with United Space Alliance. At the podium is Rita Willcoxon, director of Launch Vehicle Processing at Kennedy. Constructed in 1964, the mobile launchers used in Apollo/Saturn operations were modified for use in shuttle operations. With cranes, umbilical towers and swing arms removed, the mobile launchers were renamed Mobile Launcher Platforms, or MLPs. Photo credit: NASA/Kim Shiflett

  5. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.

    1984-01-01

    The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.

  6. MCC/shuttle test plan. Volume 1: Philosophy and guidelines

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Mission Control Center/Shuttle Test Plan is defined from development through operations to a level of detail which will support the National Aeronautics and Space Administration and contractor management in the following areas: test management, test tool development, and resource and schedule planning.

  7. KSC-2011-5751

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- The Convoy Command Center vehicle is positioned on the Shuttle Landing Facility (SLF) at NASA's Kennedy Space Center in Florida awaiting the landing of space shuttle Atlantis. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Seen here is Chris Hasselbring, USA Operations Manager. Securing the space shuttle fleet's place in history, Atlantis marks the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Ben Smegelsky

  8. STS-114: Discovery Post MMT Press Conference

    NASA Technical Reports Server (NTRS)

    2005-01-01

    George Diller, NASA Public Affairs, introduces the panel who consist of: Bill Parsons, Space Shuttle Program Manager; Wayne Hale, Space Shuttle Deputy Program Manager; Ed Mango, Deputy Manager JSC Orbiter Project Office; and Mike Wetmore, Director of Shuttle Processing. Bill Parsons begins by expressing that he is still searching for the problem with the low level fuel sensor inside the external tank. Hale talks about more ambient tests that will be performed to fix this problem. Mango expresses his findings from tests in the aft engine compartment, point sensor box, orbiter wiring, and wire resistance. He also talks about looking in detail into the circuit analysis of the point sensor box. Questions from the news media about tanking tests and extending the launch window are addressed.

  9. KENNEDY SPACE CENTER, FLA. -- KSC management and other employees gather in the Center’s television studio to watch the address by President George W. Bush from NASA Headquarters stating his goals for NASA’s new mission. Seated in the front row, left to right, are Ken Aguilar, chief, Equal Opportunity office; Lisa Malone, director of External Affairs; Bruce Buckingham, assistant to Dr. Woodrow Whitlow, KSC deputy director; Dr. Whitlow; Shannon Roberts, with External Affairs; Howard DeCastro, vice president and Space Shuttle program manager, United Space Alliance; and Bill Pickavance vice president and associate program manager of Florida Operations, USA. The President’s goals are completing the International Space Station, retiring the Space Shuttle orbiters, developing a new crew exploration vehicle, and returning to the moon and beyond within the next two decades. Pres. Bush was welcomed by NASA Administrator Sean O’Keefe and Expedition 8 Commander Michael Foale, who greeted him from the International Space Station. Members of the Washington, D.C., audience included astronauts Eileen Collins, Ed Lu and Michael Lopez-Alegria, and former astronaut Gene Cernan.

    NASA Image and Video Library

    2004-01-14

    KENNEDY SPACE CENTER, FLA. -- KSC management and other employees gather in the Center’s television studio to watch the address by President George W. Bush from NASA Headquarters stating his goals for NASA’s new mission. Seated in the front row, left to right, are Ken Aguilar, chief, Equal Opportunity office; Lisa Malone, director of External Affairs; Bruce Buckingham, assistant to Dr. Woodrow Whitlow, KSC deputy director; Dr. Whitlow; Shannon Roberts, with External Affairs; Howard DeCastro, vice president and Space Shuttle program manager, United Space Alliance; and Bill Pickavance vice president and associate program manager of Florida Operations, USA. The President’s goals are completing the International Space Station, retiring the Space Shuttle orbiters, developing a new crew exploration vehicle, and returning to the moon and beyond within the next two decades. Pres. Bush was welcomed by NASA Administrator Sean O’Keefe and Expedition 8 Commander Michael Foale, who greeted him from the International Space Station. Members of the Washington, D.C., audience included astronauts Eileen Collins, Ed Lu and Michael Lopez-Alegria, and former astronaut Gene Cernan.

  10. KSC-2010-4470

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- Mark Sistilli, AMS Program Manager from NASA Headquarters looks on as Trent Martin, AMS Project Manager from NASA's Johnson Space Center in Houston speaks to the media prior to the arrival of the Alpha Magnetic Spectrometer, or AMS, to the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett

  11. KSC-2010-4471

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- Mark Sistilli, AMS Program Manager from NASA Headquarters speaks to the media before the arrival of the Alpha Magnetic Spectrometer, or AMS, to the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, while Trent Martin, AMS Project Manager from NASA's Johnson Space Center in Houston looks on. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett

  12. KSC-04PD-0020

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- From the KSC television studio, KSC management and other employees applaud President George W. Bush, who addressed the public and an assembly of government officials at NASA Headquarters as he outlined a new focus and vision for the space agency. Shown from left are Mike Leinbach, Shuttle launch director; David Culp, with NASA; Steve Francois, director, Launch Services Program; Richard Cota, deputy chief financial officer, KSC; Bill Pickavance vice president and associate program manager of Florida Operations, United Space Alliance (USA) ; Howard DeCastro, vice president and Space Shuttle program manager, USA; Shannon Roberts, with External Affairs; Woodrow Whitlow, KSC deputy director; Bruce Buckingham, assistant to Dr. Whitlow; Lisa Malone, director of External Affairs; Ken Aguilar, chief, Equal Opportunity office; and Cheryl Cox, External Affairs. The President stated his goals for NASAs new mission: Completing the International Space Station, retiring the Space Shuttle orbiters, developing a new crew exploration vehicle, and returning to the moon and beyond within the next two decades. Pres. Bush was welcomed by NASA Administrator Sean OKeefe and Expedition 8 Commander Michael Foale, who greeted him from the International Space Station. Members of the Washington, D.C., audience included astronauts Eileen Collins, Ed Lu and Michael Lopez-Alegria, and former astronaut Gene Cernan

  13. KSC00pp0142

    NASA Image and Video Library

    2000-02-01

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour sits on Launch Pad 39A waiting for the Rotating Service Structure to be rolled back into its protective position. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9

  14. KSC-00pp0142

    NASA Image and Video Library

    2000-02-01

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour sits on Launch Pad 39A waiting for the Rotating Service Structure to be rolled back into its protective position. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9

  15. STS-132 Launch Tweetup

    NASA Image and Video Library

    2010-05-12

    NASA Astronaut Janet Voss speaks to participants at the two-day STS-132 Launch Tweetup at Kennedy Space Center, Thursday, May 13, 2010, in Cape Canaveral, Fla. NASA Twitter followers in attendance will have the opportunity to take a tour of NASA's Kennedy Space Center, view the space shuttle launch and speak with shuttle technicians, engineers, astronauts and managers. Photo Credit: (NASA/Paul E. Alers)

  16. Launch and Landing Effects Ground Operations (LLEGO) Model

    NASA Technical Reports Server (NTRS)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  17. Concepts for the evolution of the Space Station Program

    NASA Technical Reports Server (NTRS)

    Michaud, Roger B.; Miller, Ladonna J.; Primeaux, Gary R.

    1986-01-01

    An evaluation is made of innovative but pragmatic waste management, interior and exterior orbital module construction, Space Shuttle docking, orbital repair operation, and EVA techniques applicable to the NASA Space Station program over the course of its evolution. Accounts are given of the Space Shuttle's middeck extender module, an on-orbit module assembly technique employing 'Pringles' stack-transportable conformal panels, a flexible Shuttle/Space Station docking tunnel, an 'expandable dome' for transfer of objects into the Space Station, and a Space Station dual-hatch system. For EVA operations, pressurized bubbles with articulating manipulator arms and EVA hard suits incorporating maneuvering, life support and propulsion capabilities, as well as an EVA gas propulsion system, are proposed. A Space Station ultrasound cleaning system is also discussed.

  18. KSC-06pd0297

    NASA Image and Video Library

    2006-02-17

    KENNEDY SPACE CENTER, FLA. - In the training auditorium at NASA's Kennedy Space Center, Deputy Director Bill Parsons, at the beginning of a space shuttle all hands meeting, speaks to employees about his journey through NASA. He was followed by Space Shuttle Program Manager Wayne Hale discussed the status of the program, successes of the STS-114 mission, effects of Hurricane Katrina on NASA facilities, and the newly released budget. Photo credit: NASA/Jim Grossmann

  19. KSC-06pd0296

    NASA Image and Video Library

    2006-02-17

    KENNEDY SPACE CENTER, FLA. - In the training auditorium at NASA's Kennedy Space Center, Center Director Jim Kennedy (at podium) welcomes Deputy Director Bill Parsons back to the center during a space shuttle all hands meeting. Following Kennedy, Space Shuttle Program Manager Wayne Hale discussed the status of the program, successes of the STS-114 mission, effects of Hurricane Katrina on NASA facilities, and the newly released budget. Photo credit: NASA/Jim Grossmann

  20. KSC-08pd0826

    NASA Image and Video Library

    2008-03-26

    CAPE CANAVERAL, Fla. --- The STS-123 crewmembers are greeted by NASA VIPs and guests at NASA Kennedy Space Center's Shuttle Landing Facility. From left, in the blue flight suits, are Commander Dominic Gorie, Mission Specialist Mike Foreman, Pilot Gregory H. Johnson, and Mission Specialists Robert L. Behnken, Takao Doi of the Japan Aerospace Exploration Agency, and Rick Linnehan. From left, the NASA managers in the back row are Space Shuttle Launch Director Mike Leinbach, Kennedy Space Center Director Bill Parsons, and Chairman of Mission Management Team LeRoy Cain. Space shuttle Endeavour landed on Runway 15 at NASA Kennedy Space Center's Shuttle Landing Facility to end the STS-123 mission, a 16-day flight to the International Space Station. This was the 16th night landing at Kennedy. The main landing gear touched down at 8:39:08 p.m. EDT. The nose landing gear touched down at 8:39:17 p.m. and wheel stop was at 8:40:41 p.m. The mission completed nearly 6.6 million miles. The landing was on the second opportunity after the first was waved off due to unstable weather in the Kennedy Space Center area. The STS-123 mission delivered the first segment of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, known as Dextre. Photo credit: NASA/Kim Shiflett

  1. KSC-98pc1881

    NASA Image and Video Library

    1998-12-18

    Donald McMonagle (left), manager, Launch Integration, speaks to federal and state elected officials during the ground breaking ceremony for a multi-purpose hangar, phase one of the Reusable Launch Vehicle (RLV) Support Complex to be built near the Shuttle Landing Facility. At right are Center Director Roy Bridges and Executive Director of the Spaceport Florida Authority (SFA) Ed O'Connor. The new complex is jointly funded by SFA, NASA's Space Shuttle Program and Kennedy Space Center. It is intended to support the Space Shuttle and other RLV land X-vehicle systems. Completion is expected by the year 2000

  2. Shuttle Program Information Management System (SPIMS) data base

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Shuttle Program Information Management System (SPIMS) is a computerized data base operations system. The central computer is the CDC 170-730 located at Johnson Space Center (JSC), Houston, Texas. There are several applications which have been developed and supported by SPIMS. A brief description is given.

  3. Inventory Management

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Known as MRO for Maintenance, Repair and Operating supplies, Tropicana Products, Inc.'s automated inventory management system is an adaptation of the Shuttle Inventory Management System (SIMS) developed by NASA to assure adequate supply of every item used in support of the Space Shuttle. The Tropicana version monitors inventory control, purchasing receiving and departmental costs for eight major areas of the company's operation.

  4. Shuttle waste management system design improvements and flight evaluation

    NASA Technical Reports Server (NTRS)

    Winkler, H. Eugene; Goodman, Jerry R.; Murray, Robert W.; Mcintosh, Mathew E.

    1986-01-01

    The Space Shuttle waste management system has undergone a variety of design changes to improve performance and man-machine interface. These design improvements have resulted in more reliable operation and hygienic usage. Design enhancements include individual urinals, increased urine collection airflows, increased solids storage capacity, easier access to personal hygiene items, and additional wet trash stowage. The development and flight evaluation of these improvements are described herein. The Space Shuttle Orbiter has proved to be an invaluable test bed for development and in-flight evaluation of life support and habitability concepts which involve transport or separation of solids, liquids, and gases in a zero-g environment.

  5. Ecological Impacts of the Space Shuttle Program at John F. Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Hall, Carlton R.; Schmalzer, Paul A.; Breininger, David R.; Duncan, Brean W.; Drese, John H.; Scheidt, Doug A.; Lowers, Russ H.; Reyier, Eric A.; Holloway-Adkins, Karen G.; Oddy, Donna M.; hide

    2014-01-01

    The Space Shuttle Program was one of NASAs first major undertakings to fall under the environmental impact analysis and documentation requirements of the National Environmental Policy Act of 1969 (NEPA). Space Shuttle Program activities at John F. Kennedy Space Center (KSC) and the associated Merritt Island National Wildlife Refuge (MINWR) contributed directly and indirectly to both negative and positive ecological trends in the region through the long-term, stable expenditure of resources over the 40 year program life cycle. These expenditures provided support to regional growth and development in conjunction with other sources that altered land use patterns, eliminated and modified habitats, and contributed to cultural eutrophication of the Indian River Lagoon. At KSC, most Space Shuttle Program related actions were conducted in previously developed facilities and industrial areas with the exception of the construction of the shuttle landing facility (SLF) and the space station processing facility (SSPF). Launch and operations impacts were minimal as a result of the low annual launch rate. The majority of concerns identified during the NEPA process such as potential weather modification, acid rain off site, and local climate change did not occur. Launch impacts from deposition of HCl and particulates were assimilated as a result of the high buffering capacity of the system and low launch and loading rates. Metals deposition from exhaust deposition did not display acute impacts. Sub-lethal effects are being investigated as part of the Resource Conservation and Recovery Act (RCRA) regulatory process. Major positive Space Shuttle Program effects were derived from the adequate resources available at the Center to implement the numerous environmental laws and regulations designed to enhance the quality of the environment and minimize impacts from human activities. This included reduced discharges of domestic and industrial wastewater, creation of stormwater management systems, remediation of past contamination sites, implementation of hazardous waste management systems, and creation of a culture of sustainability. Working with partners such as the USFWS and the St Johns River Water Management District (SJRWMD), wetlands and scrub restoration and management initiatives were implemented to enhance fish and wildlife populations at the Center. KSC remains the single largest preserve on the east coast of Florida in part due to NASAs commitment to stewardship. Ongoing Ecological Program projects are directed at development of information and knowledge to address future KSC management questions including the transition to a joint government and commercial launch facility, enhanced habitat management requirements for wetlands and scrub, potential impacts of emerging contaminants, and adaptation to climate change including projected sea level rise over the next 50-75 years.

  6. Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel on the space shuttle program. Part 2: Summary of information developed in the panel's fact-finding activities

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Safety management areas of concern include the space shuttle main engine, shuttle avionics, orbiter thermal protection system, the external tank program, and the solid rocket booster program. The ground test program and ground support equipment system were reviewed. Systems integration and technical 'conscience' were of major priorities for the investigating teams.

  7. Around Marshall

    NASA Image and Video Library

    2003-01-16

    After four decades of contribution to America's space program, George Hopson, manager of the Space Shuttle Main Engine Project at Marshall Space Flight Center, accepted NASA's Distinguished Service Medal. Awarded to those who, by distinguished ability or courage, have made a personal contribution to the NASA mission, NASA's Distinguished Service Medal is the highest honor NASA confers. Hopson's contributions to America's space program include work on the country's first space station, Skylab; the world's first reusable space vehicle, the Space Shuttle; and the International Space Station. Hopson joined NASA's Marshall team as chief of the Fluid and Thermal Systems Branch in the Propulsion Division in 1962, and later served as chief of the Engineering Analysis Division of the Structures and Propulsion Laboratory. In 1979, he was named director of Marshall's Systems Dynamics Laboratory. In 1981, he was chosen to head the Center's Systems Analysis and Integration. Seven years later, in 1988, Hopson was appointed associate director for Space Transportation Systems and one year later became the manager of the Space Station Projects Office at Marshall. In 1994, Hopson was selected as deputy director for Space Systems in the Science and Engineering Directorate at Marshall where he supervised the Chief Engineering Offices of both marned and unmanned space systems. He was named manager of the Space Shuttle Main Engine Project in 1997. In addition to the Distinguished Service Medal, Hopson has also been recognized with the NASA Outstanding Leadership Medal and NASA's Exceptional Service Medal.

  8. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 Commander Ken Cockrell (right) applaud the unveiling of the name "Destiny" for the U.S. Laboratory module. The lab, which is behnd them on a workstand, is scheduled to be launched on STS-98 on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. The Shuttle will spend six days docked to the Station while the laboratory is attached and three spacewalks are conducted to compete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for Station systems, including high data-rate communications, and maintain the Station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 Commander Ken Cockrell (right) applaud the unveiling of the name "Destiny" for the U.S. Laboratory module. The lab, which is behnd them on a workstand, is scheduled to be launched on STS-98 on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. The Shuttle will spend six days docked to the Station while the laboratory is attached and three spacewalks are conducted to compete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for Station systems, including high data-rate communications, and maintain the Station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.

  9. KSC-2011-3420

    NASA Image and Video Library

    2011-05-09

    CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, NASA managers brief media about the launch status of space shuttle Endeavour's STS-134 mission and announce a new launch date. From left are NASA News Chief Allard Beutel, Space Shuttle Program Launch Integration Manager, Mike Moses and Shuttle Launch Director Mike Leinbach. Technicians replaced and tested the aft load control assembly-2 (ALCA-2) and wiring located in Endeavour's aft avionics bay 5. ALCA-2 distributes power to nine shuttle systems and is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt. Launch now is scheduled for May 16 at 8:56 a.m. EDT. Endeavour and its crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the station. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller

  10. NASA Headquarters Space Operations Center: Providing Situational Awareness for Spaceflight Contingency Response

    NASA Technical Reports Server (NTRS)

    Maxwell, Theresa G.; Bihner, William J.

    2010-01-01

    This paper discusses the NASA Headquarters mishap response process for the Space Shuttle and International Space Station programs, and how the process has evolved based on lessons learned from the Space Shuttle Challenger and Columbia accidents. It also describes the NASA Headquarters Space Operations Center (SOC) and its special role in facilitating senior management's overall situational awareness of critical spaceflight operations, before, during, and after a mishap, to ensure a timely and effective contingency response.

  11. Space Shuttle Projects

    NASA Image and Video Library

    1995-09-09

    Astronaut and mission specialist Kalpana Chawla, receives assistance in donning a training version of the Extravehicular Mobility Unit (EMU) space suit, prior to an underwater training session in the Neutral Buoyancy Laboratory (NBL) near Johnson Space Center. This particular training was in preparation for the STS-87 mission. The Space Shuttle Columbia (STS-87) was the fourth flight of the United States Microgravity Payload (USMP-4) and Spartan-201 satellite, both managed by scientists and engineers from the Marshall Space Flight Center.

  12. Shuttle on-orbit contamination and environmental effects

    NASA Technical Reports Server (NTRS)

    Leger, L. J.; Jacobs, S.; Ehlers, H. K. F.; Miller, E.

    1985-01-01

    Ensuring the compatibility of the space shuttle system with payloads and payload measurements is discussed. An extensive set of quantitative requirements and goals was developed and implemented by the space shuttle program management. The performance of the Shuttle system as measured by these requirements and goals was assessed partly through the use of the induced environment contamination monitor on Shuttle flights 2, 3, and 4. Contamination levels are low and generally within the requirements and goals established. Additional data from near-term payloads and already planned contamination measurements will complete the environment definition and allow for the development of contamination avoidance procedures as necessary for any payload.

  13. KSC-2009-1949

    NASA Image and Video Library

    2009-03-03

    CAPE CANAVERAL, Fla. – One of the three thoroughly inspected gaseous hydrogen flow control valves is shown after its arrival at NASA's Kennedy Space Center in Florida. Technicians installed and retested them in space shuttle Discovery. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have worked to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Space Shuttle Program managers decided to replace Discovery's valves with others that have undergone a detailed eddy current inspection. Program managers will review the testing and determine whether to meet on March 6 for the Flight Readiness Review for the STS-119 mission. Launch of Discovery tentatively is targeted for March 12. Photo credit: NASA/Chris Rhodes

  14. KSC-2009-1950

    NASA Image and Video Library

    2009-03-03

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians prepare to install three gaseous hydrogen flow control valves on space shuttle Discovery. The valves were retested after installation. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have worked to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Space Shuttle Program managers decided to replace Discovery's valves with others that have undergone a detailed eddy current inspection. Program managers will review the testing and determine whether to meet on March 6 for the Flight Readiness Review for the STS-119 mission. Launch of Discovery tentatively is targeted for March 12. Photo credit: NASA/Chris Rhodes

  15. KSC-2009-1951

    NASA Image and Video Library

    2009-03-03

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians install three gaseous hydrogen flow control valves on space shuttle Discovery. The valves were retested after installation. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have worked to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Space Shuttle Program managers decided to replace Discovery's valves with others that have undergone a detailed eddy current inspection. Program managers will review the testing and determine whether to meet on March 6 for the Flight Readiness Review for the STS-119 mission. Launch of Discovery tentatively is targeted for March 12. Photo credit: NASA/Chris Rhodes

  16. KSC-2009-1948

    NASA Image and Video Library

    2009-03-03

    CAPE CANAVERAL, Fla. – One of the three thoroughly inspected gaseous hydrogen flow control valves is shown after its arrival at NASA's Kennedy Space Center in Florida. Technicians installed and retested them in space shuttle Discovery. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have worked to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Space Shuttle Program managers decided to replace Discovery's valves with others that have undergone a detailed eddy current inspection. Program managers will review the testing and determine whether to meet on March 6 for the Flight Readiness Review for the STS-119 mission. Launch of Discovery tentatively is targeted for March 12. Photo credit: NASA/Chris Rhodes

  17. Application of computer image enhancement techniques to shuttle hand-held photography

    NASA Technical Reports Server (NTRS)

    David, B. E.

    1986-01-01

    With the advent of frequent Space Transportation System Shuttle missions, photography from hyperaltitudes stands to become an accessible and convenient resource for scientists and environmental managers. As satellite products (such as LANDSAT) continue to spiral in costs, all but the most affluent consumer is finding Earth imagery from space to be more and more unavailable. Therefore, the potential for Shuttle photography to serve a wide variety of users is increasing. However, despite the popularity of photos from space as public relations tools and report illustrations, little work has been performed to prove their scientific worth beyond that as basic mapping bases. It is the hypothesis of this project that hand-held Earth photography from the Space Shuttle has potentially high scientific merit and that primary data can be extracted. In effect, Shuttle photography should be considered a major remote sensing information resource.

  18. Space Shuttle processing - A case study in artificial intelligence

    NASA Technical Reports Server (NTRS)

    Mollikarimi, Cindy; Gargan, Robert; Zweben, Monte

    1991-01-01

    A scheduling system incorporating AI is described and applied to the automated processing of the Space Shuttle. The unique problem of addressing the temporal, resource, and orbiter-configuration requirements of shuttle processing is described with comparisons to traditional project management for manufacturing processes. The present scheduling system is developed to handle the late inputs and complex programs that characterize shuttle processing by incorporating fixed preemptive scheduling, constraint-based simulated annealing, and the characteristics of an 'anytime' algorithm. The Space-Shuttle processing environment is modeled with 500 activities broken down into 4000 subtasks and with 1600 temporal constraints, 8000 resource constraints, and 3900 state requirements. The algorithm is shown to scale to very large problems and maintain anytime characteristics suggesting that an automated scheduling process is achievable and potentially cost-effective.

  19. KSC-2011-5074

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- The Press Site auditorium at NASA's Kennedy Space Center in Florida hosted a Robotic Refueling Mission (RRM) module demonstration. Seen here speaking with media are Dewayne Washington from NASA's Goddard Space Flight Center in Maryland, moderator (left); Frank Cepollina, project manager with NASA's Satellite Servicing Capabilities Office and Mathieu Caron, Mission Operations manager with the Canadian Space Agency. Space shuttle Atlantis will fly the RRM on its STS-135 mission to the International Space Station. Once in place the RRM will use the station's two-armed robotic system, known as Dextre, to investigate the potential for robotically refueling existing satellites in orbit. Atlantis and its crew of four are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Atlantis also will fly the RRM and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin

  20. STS-132 Launch Tweetup

    NASA Image and Video Library

    2010-05-12

    Ron Woods, an equipment specialist, who has been a space suit designer from Mercury to now speaks to participants at the two-day STS-132 Launch Tweetup at Kennedy Space Center, Thursday, May 13, 2010, in Cape Canaveral, Fla. NASA Twitter followers in attendance will have the opportunity to take a tour of NASA's Kennedy Space Center, view the space shuttle launch and speak with shuttle technicians, engineers, astronauts and managers. Photo Credit: (NASA/Paul E. Alers)

  1. KSC-00pp0143

    NASA Image and Video Library

    2000-02-01

    KENNEDY SPACE CENTER, Fla. -- Cloud cover rolls in behind Space Shuttle Endeavour as the Rotating Service Structure begins rolling back into its protective position on Launch Pad 39A. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9

  2. KSC00pp0143

    NASA Image and Video Library

    2000-02-01

    KENNEDY SPACE CENTER, Fla. -- Cloud cover rolls in behind Space Shuttle Endeavour as the Rotating Service Structure begins rolling back into its protective position on Launch Pad 39A. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9

  3. Probabilistic risk assessment of the Space Shuttle. Phase 3: A study of the potential of losing the vehicle during nominal operation, volume 1

    NASA Technical Reports Server (NTRS)

    Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.

    1995-01-01

    This document is the Executive Summary of a technical report on a probabilistic risk assessment (PRA) of the Space Shuttle vehicle performed under the sponsorship of the Office of Space Flight of the US National Aeronautics and Space Administration. It briefly summarizes the methodology and results of the Shuttle PRA. The primary objective of this project was to support management and engineering decision-making with respect to the Shuttle program by producing (1) a quantitative probabilistic risk model of the Space Shuttle during flight, (2) a quantitative assessment of in-flight safety risk, (3) an identification and prioritization of the design and operations that principally contribute to in-flight safety risk, and (4) a mechanism for risk-based evaluation proposed modifications to the Shuttle System. Secondary objectives were to provide a vehicle for introducing and transferring PRA technology to the NASA community, and to demonstrate the value of PRA by applying it beneficially to a real program of great international importance.

  4. Avionics upgrade strategies for the Space Shuttle and derivatives

    NASA Astrophysics Data System (ADS)

    Swaim, Richard A.; Wingert, William B.

    Some approaches aimed at providing a low-cost, low-risk strategy to upgrade the shuttle onboard avionics are described. These approaches allow migration to a shuttle-derived vehicle and provide commonality with Space Station Freedom avionics to the extent practical. Some goals of the Shuttle cockpit upgrade include: offloading of the main computers by distributing avionics display functions, reducing crew workload, reducing maintenance cost, and providing display reconfigurability and context sensitivity. These goals are being met by using a combination of off-the-shelf and newly developed software and hardware. The software will be developed using Ada. Advanced active matrix liquid crystal displays are being used to meet the tight space, weight, and power consumption requirements. Eventually, it is desirable to upgrade the current shuttle data processing system with a system that has more in common with the Space Station data management system. This will involve not only changes in Space Shuttle onboard hardware, but changes in the software. Possible approaches to maximizing the use of the existing software base while taking advantage of new language capabilities are discussed.

  5. Shuttle Propulsion System Major Events and the Final 22 Flights

    NASA Technical Reports Server (NTRS)

    Owen, James W.

    2011-01-01

    Numerous lessons have been documented from the Space Shuttle Propulsion elements. Major events include loss of the Solid Rocket Boosters (SRB's) on STS-4 and shutdown of a Space Shuttle Main Engine (SSME) during ascent on STS-51F. On STS-112 only half the pyrotechnics fired during release of the vehicle from the launch pad, a testament for redundancy. STS-91 exhibited freezing of a main combustion chamber pressure measurement and on STS-93 nozzle tube ruptures necessitated a low liquid level oxygen cut off of the main engines. A number of on pad aborts were experienced during the early program resulting in delays. And the two accidents, STS-51L and STS-107, had unique heritage in history from early program decisions and vehicle configuration. Following STS-51L significant resources were invested in developing fundamental physical understanding of solid rocket motor environments and material system behavior. And following STS-107, the risk of ascent debris was better characterized and controlled. Situational awareness during all mission phases improved, and the management team instituted effective risk assessment practices. The last 22 flights of the Space Shuttle, following the Columbia accident, were characterized by remarkable improvement in safety and reliability. Numerous problems were solved in addition to reduction of the ascent debris hazard. The Shuttle system, though not as operable as envisioned in the 1970's, successfully assembled the International Space Station (ISS). By the end of the program, the remarkable Space Shuttle Propulsion system achieved very high performance, was largely reusable, exhibited high reliability, and was a heavy lift earth to orbit propulsion system. During the program a number of project management and engineering processes were implemented and improved. Technical performance, schedule accountability, cost control, and risk management were effectively managed and implemented. Award fee contracting was implemented to provide performance incentives. The Certification of Flight Readiness and Mission Management processes became very effective. A key to the success of the propulsion element projects was related to relationships between the MSFC project office and support organizations with their counterpart contractor organizations. The teams worked diligently to understand and satisfy requirements and achieve mission success.

  6. STARS - Supportability Trend Analysis and Reporting System for the National Space Transportation System

    NASA Technical Reports Server (NTRS)

    Graham, Leroy J.; Doempke, Gerald T.

    1990-01-01

    The concept, implementation, and long-range goals of a Supportability Trend Analysis and Reporting System (STARS) for the National Space Transportation System (NSTS) are discussed. The requirement was established as a direct result of the recommendations of the Rogers Commission investigation of the circumstances of the Space Shuttle Challenger accident. STARS outlines the requirements for the supportability-trend data collection, analysis, and reporting requirements that each of the project offices supporting the Space Shuttle are required to provide to the NSTS program office. STARS data give the historic and predictive logistics information necessary for all levels of NSTS management to make safe and cost-effective decisions concerning the smooth flow of Space Shuttle turnaround.

  7. Spacelab

    NASA Image and Video Library

    1985-07-01

    This photograph shows the Instrument Pointing System (IPS) for Spacelab-2 being deployed in the cargo bay of the Space Shuttle Orbiter Challenger. The European Space Agency (ESA) developed this irnovative pointing system for the Spacelab program. Previously, instruments were pointed toward particular celestial objects or areas by maneuvering the Shuttle to an appropriate attitude. The IPS could aim instruments more accurately than the Shuttle and kept them fixed on a target as the Shuttle moved. On the first pallet, three solar instruments and one atmospheric instrument were mounted on the IPS. Spacelab-2 was the first pallet-only mission. One of the goals of the mission was to verify that the pallets' configuration was satisfactory for observations and research. Except for two biological experiments and an experiment that uses ground-based instruments, the Spacelab-2 scientific instruments needed direct exposure to space. The Spacelab-2 mission was designed to capitalize on the Shuttle-Spacelab capabilities to carry very large instruments, launch and retrieve satellites, and point several instruments independently with accuracy and stability. Spacelab-2 (STS-51F, 19th Shuttle mission) was launched on July 29, 1985 aboard the Space Shuttle Orbiter Challenger. The Marshall Space Flight Center had overall management responsibilities of the Spacelab missions.

  8. Spacelab

    NASA Image and Video Library

    1985-07-01

    This photograph shows the Instrument Pointing System (IPS) for Spacelab-2 being deployed in the cargo bay of the Space Shuttle Orbiter Challenger. The European Space Agency (ESA) developed this irnovative pointing system for the Spacelab program. Previously, instruments were pointed toward particular celestial objects or areas by maneuvering the Shuttle to an appropriate attitude. The IPS could aim instruments more accurately than the Shuttle and kept them fixed on a target as the Shuttle moved. On the first pallet, three solar instruments and one atmospheric instrument were mounted on the IPS. Spacelab-2 was the first pallet-only mission. One of the goals of the mission was to verify that the pallets' configuration was satisfactory for observations and research. Except for two biological experiments and an experiment that used ground-based instruments, the Spacelab-2 scientific instruments needed direct exposure to space. The Spacelab-2 mission was designed to capitalize on the Shuttle-Spacelab capabilities to carry very large instruments, launch and retrieve satellites, and point several instruments independently with accuracy and stability. Spacelab-2 (STS-51F, 19th Shuttle mission) was launched on July 29, 1985 aboard the Space Shuttle Orbiter Challenger. The Marshall Space Flight Center had overall management responsibilities of the Spacelab missions.

  9. KSC-2011-5043

    NASA Image and Video Library

    2011-07-05

    CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, NASA managers brief media about the payload and launch status of space shuttle Atlantis' STS-135 mission to the International Space Station. Seen here is Shuttle Weather Officer Kathy Winters. Atlantis and its crew are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  10. Range Systems Simulation for the NASA Shuttle: Emphasis on Disaster and Prevention Management During Lift-Off

    NASA Technical Reports Server (NTRS)

    Rabelo, Lisa; Sepulveda, Jose; Moraga, Reinaldo; Compton, Jeppie; Turner, Robert

    2005-01-01

    This article describes a decision-making system composed of a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this distributed simulation environment represent the different systems that must collaborate to establish the Expectation of Casualties (E(sub c)) caused by a failed Space Shuttle launch and subsequent explosion (accidental or instructed) of the spacecraft shortly after liftoff. This decision-making tool employs Space Shuttle reliability models, trajectory models, a blast model, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system. Since one of the important features of this proposed simulation environment is to measure blast, toxic, and debris effects, the clear benefits is that it can help safety managers not only estimate the population at risk, but also to help plan evacuations, make sheltering decisions, establish the resources required to provide aid and comfort, and mitigate damages in case of a disaster.

  11. Space Shuttle GN and C Development History and Evolution

    NASA Technical Reports Server (NTRS)

    Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don

    2011-01-01

    Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.

  12. KSC-2011-5745

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- The Convoy Command Center vehicle is positioned on the Shuttle Landing Facility (SLF) at NASA's Kennedy Space Center in Florida awaiting the landing of space shuttle Atlantis. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Accompanying the command convoy team are STS-135 Assistant Launch Director Pete Nickolenko (right), NASA astronaut Janet Kavandi and Chris Hasselbring, USA Operations Manager (left). Securing the space shuttle fleet's place in history, Atlantis marks the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Ben Smegelsky

  13. Melvin Burke, Ike Gillam, Fitz Fulton, and Deke Slayton give the Space Shuttle Columbia a humorous sendoff before it's ferry flight back to KSC in Florida

    NASA Image and Video Library

    1981-04-28

    After completing it's first orbital mission with a landing at Edwards Air Force Base on April 14, 1981, Space Shuttle Columbia received a humorous sendoff before it's ferry flight atop a modified 747 back to the Kennedy Space Center in Florida. Holding the sign are, left to right: Melvin Burke, DFRC Orbital Flight Test (OFT) Program Manager; Isaac 'Ike' Gillam, DFRC Center Director; Fitzhugh 'Fitz' L. Fulton Jr., NASA DFRC 747 SCA Pilot; and Donald K. 'Deke' Slayton, JSC OFT Project Manager.

  14. Space Vehicle Powerdown Philosophies Derived from the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Willsey, Mark; Bailey, Brad

    2011-01-01

    In spaceflight, electrical power is a vital but limited resource. Almost every spacecraft system, from avionics to life support systems, relies on electrical power. Since power can be limited by the generation system s performance, available consumables, solar array shading, or heat rejection capability, vehicle power management is a critical consideration in spacecraft design, mission planning, and real-time operations. The purpose of this paper is to capture the powerdown philosophies used during the Space Shuttle Program. This paper will discuss how electrical equipment is managed real-time to adjust the overall vehicle power level to ensure that systems and consumables will support changing mission objectives, as well as how electrical equipment is managed following system anomalies. We will focus on the power related impacts of anomalies in the generation systems, air and liquid cooling systems, and significant environmental events such as a fire, decrease in cabin pressure, or micrometeoroid debris strike. Additionally, considerations for executing powerdowns by crew action or by ground commands from Mission Control will be presented. General lessons learned from nearly 30 years of Space Shuttle powerdowns will be discussed, including an in depth case-study of STS-117. During this International Space Station (ISS) assembly mission, a failure of computers controlling the ISS guidance, navigation, and control system required that the Space Shuttle s maneuvering system be used to maintain attitude control. A powerdown was performed to save power generation consumables, thus extending the docked mission duration and allowing more time to resolve the issue.

  15. Report to the NASA Administrator by the Aerospace Safety Advisory Panel on the Space Shuttle Program. Part 1: Observations and Conclusions

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Each system was chosen on the basis of its importance with respect to crew safety and mission success. An overview of the systems management is presented. The space shuttle main engine, orbiter thermal protection system, avionics, external tanks and solid rocket boosters were examined. The ground test and ground support equipment programs were studied. Program management was found to have an adequate understanding of the significant ground and flight risks involved.

  16. Lessons Learned: Mechanical Component and Tribology Activities in Support of Return to Flight

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Zaretsky, Erwin V.

    2017-01-01

    The February 2003 loss of the Space Shuttle Columbia resulted in NASA Management revisiting every critical system onboard this very complex, reusable space vehicle in a an effort to Return to Flight. Many months after the disaster, contact between NASA Johnson Space Center and NASA Glenn Research Center evolved into an in-depth assessment of the actuator drive systems for the Rudder Speed Brake and Body Flap Systems. The actuators are CRIT 1-1 systems that classifies them as failure of any of the actuators could result in loss of crew and vehicle. Upon further evaluation of these actuator systems and the resulting issues uncovered, several research activities were initiated, conducted, and reported to the NASA Space Shuttle Program Management. The papers contained in this document are the contributions of many researchers from NASA Glenn Research Center and Marshall Space Flight Center as part of a Lessons Learned on mechanical actuation systems as used in space applications. Many of the findings contained in this document were used as a basis to safely Return to Flight for the remaining Space Shuttle Fleet until their retirement.

  17. Space Shuttle redesign status

    NASA Technical Reports Server (NTRS)

    Brand, Vance D.

    1986-01-01

    NASA has conducted an extensive redesign effort for the Space Shutle in the aftermath of the STS 51-L Challenger accident, encompassing not only Shuttle vehicle and booster design but also such system-wide factors as organizational structure, management procedures, flight safety, flight operations, sustainable flight rate, and maintenance safeguards. Attention is presently given to Solid Rocket Booster redesign features, the Shuttle Main Engine's redesigned high pressure fuel and oxidizer turbopumps, the Shuttle Orbiter's braking and rollout (landing gear) system, the entry control mode of the flight control system, a 'split-S' abort maneuver for the Orbiter, and crew escape capsule proposals.

  18. KSC-06pd2006

    NASA Image and Video Library

    2006-08-29

    KENNEDY SPACE CENTER, FLA. - Space Shuttle Atlantis is hard down on the launch pad after rolling back to Launch Pad 39B. The Atlantic Ocean and lagoon water in the background reflect the glowing light of a setting sun. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett

  19. KSC-2010-4883

    NASA Image and Video Library

    2010-09-28

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, John Casper, Assistant Space Shuttle Program manager and Kennedy Center Director Bob Cabana talk with each other during a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett

  20. STS-129 Tweetup

    NASA Image and Video Library

    2009-11-15

    Veronica McGregor, NASA public affairs officer, known on twitter as @veronicamcg, speaks during a two-day NASA Tweetup event held at NASA's Kennedy Space Center in Cape Canaveral, Fla, Sunday, Nov. 15, 2009. NASA Twitter followers in attendance will have the opportunity to take a tour of NASA's Kennedy Space Center, view the STS-129 space shuttle launch and speak with shuttle technicians, engineers, astronauts and managers. Photo Credit: (NASA/Carla Cioffi)

  1. STS-132 Launch Tweetup

    NASA Image and Video Library

    2010-05-12

    Kendal Van Dyke, a database professional that is followed on Twitter @twitter.com/sqldba, takes part in the two-day STS-132 Launch Tweetup at Kennedy Space Center, Thursday, May 13, 2010, in Cape Canaveral, Fla. NASA Twitter followers in attendance will have the opportunity to take a tour of NASA's Kennedy Space Center, view the space shuttle launch and speak with shuttle technicians, engineers, astronauts and managers. Photo Credit: (NASA/Paul E. Alers)

  2. STS-129 Tweetup

    NASA Image and Video Library

    2009-11-15

    Twitter user Karim Jazouani from Casablanca, Morocco, who goes by the twitter name @karimjazouani, uses his laptop during a two-day NASA Tweetup event held at NASA's Kennedy Space Center in Cape Canaveral, Fla, Sunday, Nov. 15, 2009. NASA Twitter followers in attendance will have the opportunity to take a tour of NASA's Kennedy Space Center, view the space shuttle launch and speak with shuttle technicians, engineers, astronauts and managers. Photo Credit: (NASA/Carla Cioffi)

  3. KENNEDY SPACE CENTER, FLA. - Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu oversees the image lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

    NASA Image and Video Library

    2004-02-04

    KENNEDY SPACE CENTER, FLA. - Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu oversees the image lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

  4. KENNEDY SPACE CENTER, FLA. - Reporters are eager to hear from Armando Oliu about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu, Final Inspection Team lead for the Shuttle program, oversees the lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

    NASA Image and Video Library

    2004-02-04

    KENNEDY SPACE CENTER, FLA. - Reporters are eager to hear from Armando Oliu about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu, Final Inspection Team lead for the Shuttle program, oversees the lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

  5. Spares Management : Optimizing Hardware Usage for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Gulbrandsen, K. A.

    1999-01-01

    The complexity of the Space Shuttle Main Engine (SSME), combined with mounting requirements to reduce operations costs have increased demands for accurate tracking, maintenance, and projections of SSME assets. The SSME Logistics Team is developing an integrated asset management process. This PC-based tool provides a user-friendly asset database for daily decision making, plus a variable-input hardware usage simulation with complex logic yielding output that addresses essential asset management issues. Cycle times on critical tasks are significantly reduced. Associated costs have decreased as asset data quality and decision-making capability has increased.

  6. Shuttle Shortfalls and Lessons Learned for the Sustainment of Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; Levack, Daniel J. H.; Rhodes, Russell E.; Robinson, John W.

    2009-01-01

    Much debate and national soul searching has taken place over the value of the Space Shuttle which first flew in 1981 and which is currently scheduled to be retired in 2010. Originally developed post-Saturn Apollo to emphasize affordability and safety, the reusable Space Shuttle instead came to be perceived as economically unsustainable and lacking the technology maturity to assure safe, routine access to low earth orbit (LEO). After the loss of two crews, aboard Challenger and Columbia, followed by the decision to retire the system in 2010, it is critical that this three decades worth of human space flight experience be well understood. Understanding of the past is imperative to further those goals for which the Space Shuttle was a stepping-stone in the advancement of knowledge. There was significant reduction in life cycle costs between the Saturn Apollo and the Space Shuttle. However, the advancement in life cycle cost reduction from Saturn Apollo to the Space Shuttle fell far short of its goal. This paper will explore the reasons for this shortfall. Shortfalls and lessons learned can be categorized as related to design factors, at the architecture, element and sub-system levels, as well as to programmatic factors, in terms of goals, requirements, management and organization. Additionally, no review of the Space Shuttle program and attempt to take away key lessons would be complete without a strategic review. That is, how do national space goals drive future space transportation development strategies? The lessons of the Space Shuttle are invaluable in all respects - technical, as in design, program-wise, as in organizational approach and goal setting, and strategically, within the context of the generational march toward an expanded human presence in space. Beyond lessons though (and the innumerable papers, anecdotes and opinions published on this topic) this paper traces tangible, achievable steps, derived from the Space Shuttle program experience, that must be a part of any 2l century initiatives furthering a growing human presence beyond earth.

  7. Space shuttle program information control and retrieval system feasibility study report

    NASA Technical Reports Server (NTRS)

    Lingle, C. P.

    1973-01-01

    The feasibility of having a common information management network for space shuttle data, is studied. Identified are the information types required, sources and users of the information, and existing techniques for acquiring, storing and retrieving the data. The study concluded that a decentralized system is feasible, and described a recommended development plan for it.

  8. Study of solid rocket motors for a space shuttle booster. Volume 3: Program acquisition planning

    NASA Technical Reports Server (NTRS)

    Vonderesch, A. H.

    1972-01-01

    Plans for conducting Phase C/D for a solid rocket motor booster vehicle are presented. Methods for conducting this program with details of scheduling, testing, and program management and control are included. The requirements of the space shuttle program to deliver a minimum cost/maximum reliability booster vehicle are examined.

  9. KSC-2011-5333

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Members of the media gather for a post-launch news conference held in the Press Site auditorium at NASA's Kennedy Space Center in Florida, following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen here are NASA Public Affairs Officer Mike Curie (left) moderator; Associate Administrator for Space Operations Bill Gerstenmaier, Kennedy Center Director Bob Cabana, Shuttle Program Launch Integration Manager Mike Moses, and Shuttle Launch Director Mike Leinbach. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  10. KSC-2011-5332

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Members of the media gather for a post-launch news conference held in the Press Site auditorium at NASA's Kennedy Space Center in Florida, following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen here are NASA Public Affairs Officer Mike Curie (left) moderator; Associate Administrator for Space Operations Bill Gerstenmaier, Kennedy Center Director Bob Cabana, Shuttle Program Launch Integration Manager Mike Moses, and Shuttle Launch Director Mike Leinbach. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  11. KSC-2011-5337

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Members of the media gather for a post-launch news conference held in the Press Site auditorium at NASA's Kennedy Space Center in Florida, following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen here are NASA Public Affairs Officer Mike Curie (left) moderator; Associate Administrator for Space Operations Bill Gerstenmaier, Kennedy Center Director Bob Cabana, Shuttle Program Launch Integration Manager Mike Moses, and Shuttle Launch Director Mike Leinbach. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  12. KSC-2011-5334

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Members of the media gather for a post-launch news conference held in the Press Site auditorium at NASA's Kennedy Space Center in Florida, following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen here are NASA Public Affairs Officer Mike Curie (left) moderator; Associate Administrator for Space Operations Bill Gerstenmaier, Kennedy Center Director Bob Cabana, Shuttle Program Launch Integration Manager Mike Moses, and Shuttle Launch Director Mike Leinbach. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  13. Proton Exchange Membrane (PEM) fuel Cell for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.

    1999-01-01

    Development of a PEM fuel cell powerplant (PFCP) for use in the Space Shuttle offers multiple benefits to NASA. A PFCP with a longer design life than is delivered currently from the alkaline fuel will reduce Space Shuttle Program maintenance costs. A PFCP compatible with zero-gravity can be adapted for future NASA transportation and exploration programs. Also, the commercial PEM fuel cell industry ensures a competitive environment for select powerplant components. Conceptual designs of the Space Shuttle PFCP have resulted in identification of key technical areas requiring resolution prior to development of a flight system. Those technical areas include characterization of PEM fuel cell stack durability under operational conditions and water management both within and external to the stack. Resolution of the above issues is necessary to adequately control development, production, and maintenance costs for a PFCP.

  14. KSC-2009-3614

    NASA Image and Video Library

    2009-06-08

    CAPE CANAVERAL, Fla. – During a media event at NASA's Kennedy Space Center in Florida to showcase the newest section of the International Space Station, the Tranquility node, STS-130 Commander George Zamka speaks to the media and guests. Tranquility will be delivered to the station during space shuttle Endeavour's STS-130 mission, targeted for launch in February 2010. Others present at right of Zamka are Russ Romanella, director of the ISS and Payload Processing Directorate, STS-130 Pilot Terry Virts and Mission Specialists Stephen Robinson and Kathryn Hire, Philippe Deloo, ISS Nodes project manager with the European Space Agency, and Rafael Garcia, ISS Nodes and Express Logistics Carrier project manager with NASA's Johnson Space Center. Managers from NASA, the European Space Agency, Thales Alenia Space and Boeing -- the organizations involved in building and processing the module for flight -- were available for a question-and-answer session during the event. Tranquility will be delivered to the station during space shuttle Endeavour's STS-130 mission, targeted for launch in February 2010. Photo credit: NASA/Jim Grossmann

  15. KSC-2009-2102

    NASA Image and Video Library

    2009-03-15

    CAPE CANAVERAL, Fla. – In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, Flow Director for space shuttle Discovery Stephanie Stilson (center) and Shuttle Launch Director Mike Leinbach applaud the mission management team for the successful launch of space shuttle Discovery on the STS-119 mission. Launch was on time at 7:43 p.m. EDT. The STS-119 mission is the 28th to the space station and Discovery's 36th flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Photo credit: NASA/Kim Shiflett

  16. KSC-08pd0817

    NASA Image and Video Library

    2008-03-26

    CAPE CANAVERAL, Fla. --- NASA managers examine the thermal protection system tile under space shuttle Endeavour on Runway 15 at Kennedy Space Center's Shuttle Landing Facility at the end of the STS-123 mission, a 16-day flight to the International Space Station. From left are a member of the convoy crew, Shuttle Launch Director Mike Leinbach, Mission Management Team Chairman LeRoy Cain, NASA Administrator Mike Griffin and NASA Deputy Administrator Shana Dale. Behind them is Kennedy Space Center Director Bill Parsons. This was the 16th night landing at Kennedy. The main landing gear touched down at 8:39:08 p.m. EDT. The nose landing gear touched down at 8:39:17 p.m. and wheel stop was at 8:40:41 p.m. The mission completed nearly 6.6 million miles. The landing was on the second opportunity after the first was waved off due to unstable weather in the Kennedy Space Center area. The STS-123 mission delivered the first segment of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, known as Dextre. Photo credit: NASA/Kim Shiflett

  17. KSC-06pd1938

    NASA Image and Video Library

    2006-08-26

    KENNEDY SPACE CENTER, FLA. - The dark clouds of a heavy rainstorm moving into Kennedy Space Center in the late afternoon on Sat., August 26, 2006, seem to illuminate the Space Shuttle Atlantis as it sits on Launch Pad 39B. A lightning strike to the pad's lightning protection system on August 25, caused the mission management team to postpone the launch of mission STS-115 for 24 hours in order to review all electrical systems on the space shuttle and ground support equipment at the pad. Photo credit: NASA/Ken Thornsley.

  18. KSC-06pd1937

    NASA Image and Video Library

    2006-08-26

    KENNEDY SPACE CENTER, FLA. - The dark clouds of a heavy rainstorm moving into Kennedy Space Center in the late afternoon on Sat., August 26, 2006, seem to illuminate the Space Shuttle Atlantis as it sits on Launch Pad 39B. A lightning strike to the pad's lightning protection system on August 25, caused the mission management team to postpone the launch of mission STS-115 for 24 hours in order to review all electrical systems on the space shuttle and ground support equipment at the pad. Photo credit: NASA/Ken Thornsley.

  19. STS-120 landing

    NASA Image and Video Library

    2007-11-07

    (left to right) NASA Administrator Michael Griffin, NASA Assistant Administrator for Public Affairs David Mould and NASA Space Shuttle Manager Wayne Hale watch as the space shuttle Discovery comes in for landing at NASA's Kennedy Space Center, Fla., completing the 15-day STS-120 mission to the International Space Station. Discovery landed at 1:01pm EST Wednesday after a mission that included on-orbit construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo Credit: 'NASA/Bill Ingalls"

  20. 07pd3206

    NASA Image and Video Library

    2007-11-07

    (left to right) NASA Administrator Michael Griffin, NASA Assistant Administrator for Public Affairs David Mould and NASA Space Shuttle Manager Wayne Hale watch as the space shuttle Discovery comes in for landing at NASA's Kennedy Space Center, Fla., completing the 15-day STS-120 mission to the International Space Station. Discovery landed at 1:01pm EST Wednesday after a mission that included on-orbit construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo Credit: 'NASA/Bill Ingalls"

  1. KSC-06pd2137

    NASA Image and Video Library

    2006-09-09

    KENNEDY SPACE CENTER, FLA. - Inside the Launch Control Center, Robbie Ashley, STS-115 payload manager, and Pat Lesley, with United Space Alliance, receive a special award from (at left) Shuttle Launch Director Mike Leinbach and (at right) NASA Flow Director Angie Brewer. Mission STS-115 is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett

  2. n/a

    NASA Image and Video Library

    1977-09-09

    The first Space Shuttle External Tank, the Main Propulsion Test Article (MPTA), rolls off the assembly line September 9, 1977 at the Michoud Assembly Facility in New Orleans. The MPTA was then transported to the National Space Technology Laboratories in southern Mississippi where it was used in the first static firing of the three main engines. Marshall Space Flight Center had management responsibility for Space Shuttle propulsion elements, including the External Tank. Martin Marietta was the prime contractor who designed and assembled the tanks at Michoud.

  3. Griffin Lifts Off at NASA With Calls for Speeding Shuttle Replacement, Reopening Hubble Decision

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    Michael D. Griffin launched his tenure as NASA's 11th administrator on a fast track, using his "emergency" confiimation by the U.S. Senate to plug himself into space shuttle return-to-flight decision-making and urging faster development of the shuttle replacement. He also deftly sidestepped the treacherous issue of letting the aging Hubble Space Telescope die that was left behind by former Administrator Sean O'Keefe. Griffin told the Senate Commerce, Science and Transportation Committee that he would take another look at a shuttle mission to service the telescope, but not until the redesigned shuttle system makes a couple of test flights. Griffin made clear at his confirmation hearing Apr. 12 that he has long supported the ideas embodied in President Bush s push to move human exploration out of low Earth orbit, while finishing the International Space Station and retiring the space shuttle as soon as possible. And he showed right out of the blocks that his technical training and management background should serve him well in implementing Bush's directives.

  4. STS-129 Tweetup

    NASA Image and Video Library

    2009-11-15

    Twitter users Risa Wechster from Stanford University, left, and Daniel Holz from Los Alamos, both twitter for @cosmicvariance during a two-day NASA Tweetup event held at NASA's Kennedy Space Center in Cape Canaveral, Fla, Sunday, Nov. 15, 2009. NASA Twitter followers in attendance will have the opportunity to take a tour of NASA's Kennedy Space Center, view the STS-129 space shuttle launch and speak with shuttle technicians, engineers, astronauts and managers. Photo Credit: (NASA/Carla Cioffi)

  5. KSC-2011-5805

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- In the Flight Vehicle Support Building at NASA Kennedy Space Center's Shuttle Landing Facility (SLF), Mission Convoy Commander Tim Obrien strategies with NASA managers and convoy crew members during a prelanding meeting. A Convoy Command Center vehicle will be positioned near shuttle Atlantis on the SLF. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Securing the space shuttle fleet's place in history, Atlantis will mark the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  6. KSC-2011-5806

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- In the Flight Vehicle Support Building at NASA Kennedy Space Center's Shuttle Landing Facility (SLF), NASA Administrator Charles Bolden discusses strategies with NASA managers and convoy crew members during a prelanding convoy meeting. A Convoy Command Center vehicle will be positioned near shuttle Atlantis on the SLF. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Securing the space shuttle fleet's place in history, Atlantis will mark the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  7. KSC-2011-3308

    NASA Image and Video Library

    2011-04-29

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Public Affairs Officer George Diller, Kennedy Director Bob Cabana, Space Shuttle Program Launch Integration Manager Mike Moses and Shuttle Launch Director Mike Leinbach participate in a news conference following the April 29 scrubbed launch attempt of space shuttle Endeavour. During the STS-134 countdown, fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) failed. Technicians later discovered that the Load Control Assembly-2 (LCA-2), which distributes power to nine shuttle systems, was the cause of the failure reading. The LCA-2 located in Endeavour's aft section will be replaced and systems will be retested before the launch is rescheduled. STS-134 will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. The mission also will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett

  8. KSC-2009-2397

    NASA Image and Video Library

    2009-03-28

    CAPE CANAVERAL, Fla. – STS-119 Commander Lee Archambault shakes hands with NASA Deputy Manager of Space Shuttle Program LeRoy Cain (third from left) as Pilot Tony Antonelli, behind him, is greeted by NASA Associate Administrator for Space Operations Bill Gerstenmaier. Shuttle Launch Director Mike Leinbach, left, and Kennedy Space Center Deputy Director Janet Petro also await their turns to welcome the crew home. Space shuttle Discovery’s landing completed the 13-day, 5.3-million mile journey of the STS-119 mission to the International Space Station. Main gear touchdown was at 3:13:17 p.m. EDT. Nose gear touchdown was at 3:13:40 p.m. and wheels stop was at 3:14:45 p.m. Discovery delivered the final pair of large power-generating solar array wings and the S6 truss segment. The mission was the 28th flight to the station, the 36th flight of Discovery and the 125th in the Space Shuttle Program, as well as the 70th landing at Kennedy. Photo credit: NASA/Kim Shiflett

  9. KSC-07pd3206

    NASA Image and Video Library

    2007-11-07

    KENNEDY SPACE CENTER, FLA. -- (From left) NASA Administrator Michael Griffin, NASA Assistant Administrator for Public Affairs David Mould and NASA Space Shuttle Manager Wayne Hale watch as the space shuttle Discovery comes in for landing at NASA's Kennedy Space Center, Fla., completing the 15-day, STS-120 mission to the International Space Station. Discovery landed at 1:01 p.m. EST Wednesday after a mission that included on-orbit construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo credit: NASA/Bill Ingalls

  10. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-054 (16 Nov. 2009) --- Michael Coats (left), director of NASA's Johnson Space Center in Houston; and Bob Cabana, director of NASA's Kennedy Space Center in Florida, monitor the progress of Space Shuttle Atlantis' countdown from consoles in the Operations Management Room, a glass partitioned area overlooking the main floor of Firing Room 4, in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) on Nov. 16, 2009.

  11. Organizing for low cost space transportation

    NASA Technical Reports Server (NTRS)

    Lee, C. M.

    1977-01-01

    The paper describes the management concepts and organizational structure NASA is establishing to operate the Space Transportation System. Policies which would encourage public and commercial organizations and private individuals to use the new STS are discussed, and design criteria for experiments, spacecraft, and other systems elements are considered. The design criteria are intented to facilitate cost reductions for space operations. NASA plans for the transition from currently used expendable launch vehicles to Shuttle use and Shuttle pricing policies are explained in detail. Hardware development is basically complete, management functions have been defined, pricing policies have been published, and procedures for user contact and services have been places into operation.

  12. KSC-03pd1102

    NASA Image and Video Library

    2003-04-10

    KENNEDY SPACE CENTER, FLA. -- (From left) Dean Schaaf, Barksdale site manager and NASA KSC Shuttle Process Integration Ground Operations manager, and Elliot Clement, an United Space Alliance engineer at Kennedy Space Center, inspect bagged pieces of Columbia at the Barksdale Hangar site. KSC workers are participating in the Columbia Recovery efforts at the Lufkin (Texas) Command Center, four field sites in East Texas, and the Barksdale, La., hangar site. KSC is working with representatives from other NASA Centers and with those from a number of federal, state and local agencies in the recovery effort. KSC provides vehicle technical expertise in the field to identify, collect and return Shuttle hardware to KSC.

  13. The Right Stuff: A Look Back at Three Decades of Flight Controller Training for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.

    2011-01-01

    Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors. These endeavors could range from going to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle and inspire the next generation of space explorers.

  14. NASA Shuttle Logistics Depot (NSLD) - The application of ATE

    NASA Technical Reports Server (NTRS)

    Simpkins, Lorenz G.; Jenkins, Henry C.; Mauceri, A. Jack

    1990-01-01

    The concept of the NASA Shuttle Logistics Depot (NSLD) developed for the Space Shuttle Orbiter Program is described. The function of the NSLD at Cape Canaveral is to perform the acceptance and diagnostic testing of the Shuttle's space-rated line-replaceable units and shop-replaceable units (SRUs). The NSLD includes a comprehensive electronic automatic test station, program development stations, and assorted manufacturing support equipment (including thermal and vibration test equipment, special test equipment, and a card SRU test system). The depot activities also include the establishment of the functions for manufacturing of mechanical parts, soldering, welding, painting, clean room operation, procurement, and subcontract management.

  15. KSC-05PD-1577

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Members of the engineering team are meeting in the Launch Control Center to review data and possible troubleshooting plans for the liquid hydrogen tank low-level fuel cut-off sensor. At left is John Muratore, manager of Systems Engineering and Integration for the Space Shuttle Program; Ed Mango, JSC deputy manager of the orbiter project office; and Carol Scott, KSC Integration Manager. The sensor failed a routine prelaunch check during the launch countdown July 13, causing mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).

  16. KSC-06pd2004

    NASA Image and Video Library

    2006-08-29

    KENNEDY SPACE CENTER, FLA. - Space Shuttle Atlantis rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At right are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett

  17. KSC-06pd2003

    NASA Image and Video Library

    2006-08-29

    KENNEDY SPACE CENTER, FLA. - A late-day sun spotlights Space Shuttle Atlantis as it rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At left are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett

  18. KSC-06pd2002

    NASA Image and Video Library

    2006-08-29

    KENNEDY SPACE CENTER, FLA. - A late-day sun spotlights Space Shuttle Atlantis as it rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At left are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett

  19. Experiment module concepts study. Volume 5 book 1, appendix A: Shuttle only task

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Results of a preliminary investigation of the effect on the candidate experiment program implementation of experiment module operations in the absence of an orbiting space station and with the availability of the space shuttle orbiter vehicle only are presented. The fundamental hardware elements for shuttle-only operation of the program are: (1) integrated common experiment modules CM-1, CM-3, and CM-4, together with the propulsion slice; (2) support modules capable of supplying on-orbit crew life support, power, data management, and other services normally provided by a space station; (3) dormancy kits to enable normally attached modules to remain in orbit while shuttle returns to earth; and (4) shuttle orbiter. Preliminary cost estimates for 30 day on-orbit and 5 day on-orbit capabilities for a four year implementation period are $4.2 billion and $2.1 billion, respectively.

  20. Telemetry packetization for improved mission operations. [instrument packages for Space Shuttle mission operations data management

    NASA Technical Reports Server (NTRS)

    Greene, E. P.

    1976-01-01

    The requirements for mission-operations data management will accelerate sharply when the Space Transportation System (i.e., Space Shuttle) becomes the primary vehicle for research from space. These demands can be satisfied most effectively by providing a higher-level source encoding function within the spaceborne vehicle. An Instrument Telemetry Packet (ITP) concept is described which represents an alternative to the conventional multiplexed telemetry frame approach for acquiring spaceborne instrument data. By providing excellent data-integrity protection at the source and a variable instrument bandwidth capability, this ITP concept represents a significant improvement over present data acquisition procedures. Realignments in the ground telemetry processing functions are described which are intended to take advantage of the ITP concept and to make the data management system more responsive to the scientific investigators.

  1. Continual Improvement in Shuttle Logistics

    NASA Technical Reports Server (NTRS)

    Flowers, Jean; Schafer, Loraine

    1995-01-01

    It has been said that Continual Improvement (CI) is difficult to apply to service oriented functions, especially in a government agency such as NASA. However, a constrained budget and increasing requirements are a way of life at NASA Kennedy Space Center (KSC), making it a natural environment for the application of CI tools and techniques. This paper describes how KSC, and specifically the Space Shuttle Logistics Project, a key contributor to KSC's mission, has embraced the CI management approach as a means of achieving its strategic goals and objectives. An overview of how the KSC Space Shuttle Logistics Project has structured its CI effort and examples of some of the initiatives are provided.

  2. Experiment module concepts study. Volume 1: Management summary

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The minimum number of standardized (common) module concepts that will satisfy the experiment program for manned space stations at least cost is investigated. The module interfaces with other elements such as the space shuttle, ground stations, and the experiments themselves are defined. The total experiment module program resource and test requirements are also considered. The minimum number of common module concepts that will satisfy the program at least cost is found to be three, plus a propulsion slice and certain experiment-peculiar integration hardware. The experiment modules rely on the space station for operational, maintenance, and logistic support. They are compatible with both expendable and shuttle launch vehicles, and with servicing by shuttle, tug, or directly from the space station. A total experiment module program cost of approximately $2319M under the study assumptions is indicated. This total is made up of $838M for experiment module development and production, $806M for experiment equipment, and $675M for interface hardware, experiment integration, launch and flight operations, and program management and support.

  3. KSC-06pd1959

    NASA Image and Video Library

    2006-08-28

    KENNEDY SPACE CENTER, FLA. - Crawler-transporter No. 2 nears Launch Pad 39B (in the background, right). The tip of the orange external tank can be seen above the rotating service structure surrounding the shuttle. The crawler is being moved nearby in the event the mission management team decides to roll back Space Shuttle Atlantis due to Hurricane Ernesto. The hurricane has been forecast on a heading north and east from Cuba, taking it along the eastern coast of Florida. NASA's lighted launch window extends to Sept. 13, but mission managers are hoping to launch on mission STS-115 by Sept. 7 to avoid a conflict with a Russian Soyuz rocket also bound for the International Space Station. The crawler is 131 feet long, 113 feet wide and 20 feet high. It weights 5.5 million pounds unloaded. The combined weight of crawler, mobile launcher platform and a space shuttle is 12 million pounds. Unloaded, the crawler moves at 2 mph. Loaded, the snail's pace slows to 1 mph. Photo credit: NASA/Kim Shiflett

  4. KSC-06pd1958

    NASA Image and Video Library

    2006-08-28

    KENNEDY SPACE CENTER, FLA. - Crawler-transporter No. 2 makes its way toward Launch Pad 39B (in the background). The tip of the orange external tank can be seen above the rotating service structure surrounding the shuttle. The crawler is being moved nearby in the event the mission management team decides to roll back Space Shuttle Atlantis due to Hurricane Ernesto. The hurricane has been forecast on a heading north and east from Cuba, taking it along the eastern coast of Florida. NASA's lighted launch window extends to Sept. 13, but mission managers are hoping to launch on mission STS-115 by Sept. 7 to avoid a conflict with a Russian Soyuz rocket also bound for the International Space Station. The crawler is 131 feet long, 113 feet wide and 20 feet high. It weights 5.5 million pounds unloaded. The combined weight of crawler, mobile launcher platform and a space shuttle is 12 million pounds. Unloaded, the crawler moves at 2 mph. Loaded, the snail's pace slows to 1 mph. Photo credit: NASA/Kim Shiflett

  5. Mission Possible: BioMedical Experiments on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Bopp, E.; Kreutzberg, K.

    2011-01-01

    Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical experiments aboard the Space Shuttle.

  6. General purpose simulation system of the data management system for Space Shuttle mission 18

    NASA Technical Reports Server (NTRS)

    Bengtson, N. M.; Mellichamp, J. M.; Smith, O. C.

    1976-01-01

    A simulation program for the flow of data through the Data Management System of Spacelab and Space Shuttle was presented. The science, engineering, command and guidance, navigation and control data were included. The programming language used was General Purpose Simulation System V (OS). The science and engineering data flow was modeled from its origin at the experiments and subsystems to transmission from Space Shuttle. Command data flow was modeled from the point of reception onboard and from the CDMS Control Panel to the experiments and subsystems. The GN&C data flow model handled data between the General Purpose Computer and the experiments and subsystems. Mission 18 was the particular flight chosen for simulation. The general structure of the program is presented, followed by a user's manual. Input data required to make runs are discussed followed by identification of the output statistics. The appendices contain a detailed model configuration, program listing and results.

  7. Preliminary input to the space shuttle reaction control subsystem failure detection and identification software requirements (uncontrolled)

    NASA Technical Reports Server (NTRS)

    Bergmann, E.

    1976-01-01

    The current baseline method and software implementation of the space shuttle reaction control subsystem failure detection and identification (RCS FDI) system is presented. This algorithm is recommended for conclusion in the redundancy management (RM) module of the space shuttle guidance, navigation, and control system. Supporting software is presented, and recommended for inclusion in the system management (SM) and display and control (D&C) systems. RCS FDI uses data from sensors in the jets, in the manifold isolation valves, and in the RCS fuel and oxidizer storage tanks. A list of jet failures and fuel imbalance warnings is generated for use by the jet selection algorithm of the on-orbit and entry flight control systems, and to inform the crew and ground controllers of RCS failure status. Manifold isolation valve close commands are generated in the event of failed on or leaking jets to prevent loss of large quantities of RCS fuel.

  8. KSC-2010-5380

    NASA Image and Video Library

    2010-11-01

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery Flow Director Stephanie Stilson addresses participants of the STS-133 Tweetup. NASA is hosting about 150 of its Twitter followers from around the world and several dozen states and providing them with a behind-the-scenes perspective to share with their own followers on the social networking service. The "Tweeps," as NASA calls them, will have a chance to tour Kennedy and meet with shuttle technicians, managers, engineers and astronauts. They also will receive a demonstration of Robonaut, a human-like robot similar to the one that will be delivered to the International Space Station on the STS-133 mission. Space shuttle Discovery and its STS-133 crew are scheduled to launch Nov. 3 at 3:52 p.m. EDT. For more information on the upcoming mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  9. TACAN operational description for the space shuttle orbital flight test program

    NASA Technical Reports Server (NTRS)

    Hughes, C. L.; Hudock, P. J.

    1979-01-01

    The TACAN subsystems (three TACAN transponders, six antennas, a subsystem operating program, and redundancy management software in a tutorial form) are discussed and the interaction between these subsystems and the shuttle navigation system are identified. The use of TACAN during the first space transportation system (STS-1), is followed by a brief functional description of the TACAN hardware, then proceeds to cover the software units with a view to the STS-1, and ends with a discussion on the shuttle usage of the TACAN data and anticipated performance.

  10. KSC-04pd1841

    NASA Image and Video Library

    2004-09-18

    KENNEDY SPACE CENTER, FLA. - Martin Wilson (second from right), manager of Thermal Protection System (TPS) operations for United Space Alliance (USA), briefs NASA Administrator Sean O’Keefe, KSC Director of Shuttle Processing Michael E. Wetmore and Center Director James Kennedy about the temporary tile shop set up in the RLV hangar. At far right is USA Manager of Soft Goods Production in the TPSF, Kevin Harrington. O’Keefe and NASA Associate Administrator of Space Operations Mission Directorate William Readdy are visiting KSC to survey the damage sustained by KSC facilities from Hurricane Frances. The Thermal Protection System Facility (TPSF), which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof in the storm, which blew across Central Florida Sept. 4-5. Undamaged equipment was removed from the TPSF and stored in the hangar. The Labor Day storm also caused significant damage to the Vehicle Assembly Building and Processing Control Center. Additionally, the Operations and Checkout Building, Vertical Processing Facility, Hangar AE, Hangar S and Hangar AF Small Parts Facility each received substantial damage. However, well-protected and unharmed were NASA’s three Space Shuttle orbiters -- Discovery, Atlantis and Endeavour - along with the Shuttle launch pads, all of the critical flight hardware for the orbiters and the International Space Station, and NASA’s Swift spacecraft that is awaiting launch in October.

  11. KENNEDY SPACE CENTER, FLA. - Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Behind him at right is Mike Rein, External Affairs division chief. Oliu oversees the image lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

    NASA Image and Video Library

    2004-02-04

    KENNEDY SPACE CENTER, FLA. - Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Behind him at right is Mike Rein, External Affairs division chief. Oliu oversees the image lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.

  12. Space Shuttle security policies and programs

    NASA Astrophysics Data System (ADS)

    Keith, E. L.

    The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.

  13. Space Shuttle security policies and programs

    NASA Technical Reports Server (NTRS)

    Keith, E. L.

    1985-01-01

    The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.

  14. Shuttle OFT medical report: Summary of medical results from STS-1, STS-2, STS-3, and STS-4

    NASA Technical Reports Server (NTRS)

    Pool, S. L. (Editor); Johnson, P. C., Jr. (Editor); Mason, J. A. (Editor)

    1983-01-01

    The medical operations for the orbital test flights which includes a review of the health of the crews before, during, and immediately after the four shuttle orbital flights are reported. Health evaluation, health stabilization program, medical training, medical "kit" carried in flight, tests and countermeasures for space motion sickness, cardiovascular, biochemistry and endocrinology results, hematology and immunology analyses, medical microbiology, food and nutrition, potable water, Shuttle toxicology, radiological health, and cabin acoustical noise are reviewed. Information on environmental effects of Shuttle launch and landing, medical information management, and management, planning, and implementation of the medical program are included.

  15. KSC-2011-1517

    NASA Image and Video Library

    2011-02-18

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, NASA Public Affairs Officer Michael Curie, left, Associate Administrator for Space Operations Bill Gerstenmaier, Space Shuttle Program Launch Integration Manager Mike Moses and Shuttle Launch Director Mike Leinbach talk to media following a Flight Readiness Review that gave a unanimous "go" to launch space shuttle Discovery on the STS-133 mission to the International Space Station. This will be the second launch attempt for Discovery, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its six-member crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  16. Space Shuttle STS-87 Columbia launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia (STS-87) soared from Launch Pad 39B on the fourth flight of the United States Microgravity Payload (USMP-4) and Spartan-201 satellite which were managed by scientists and engineers from the Marshall Space Flight Center. During the 16-day mission, the crew oversaw experiments in microgravity; deployed and retrieved a solar satellite; and tested a new experimental camera, the AERCam Sprint. Two crew members, Dr. Takao Doi and Winston Scott also performed a spacewalk to practice International Space Station maneuvers.

  17. KSC-2009-2097

    NASA Image and Video Library

    2009-03-15

    CAPE CANAVERAL, Fla. – In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, NASA management waits for the launch of space shuttle Discovery on the STS-119 mission. From left are (standing) Director of NASA's Marshall Space Flight Center Dave King, Center Director Bob Cabana, Director of NASA's Johnson Space Center Michael Coats, (seated) Space Shuttle Program Manager John Shannon, NASA Associate Administrator for Space Operations William Gerstenmaier and NASA Acting Administrator Chris Scolese. Launch was on time at 7:43 p.m. EDT. The STS-119 mission is the 28th to the space station and Discovery's 36th flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Photo credit: NASA/Kim Shiflett

  18. Safety and Mission Assurance Knowledge Management Retention: Managing Knowledge for Successful Mission Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Teresa A.

    2006-01-01

    Knowledge Management is a proactive pursuit for the future success of any large organization faced with the imminent possibility that their senior managers/engineers with gained experiences and lessons learned plan to retire in the near term. Safety and Mission Assurance (S&MA) is proactively pursuing unique mechanism to ensure knowledge learned is retained and lessons learned captured and documented. Knowledge Capture Event/Activities/Management helps to provide a gateway between future retirees and our next generation of managers/engineers. S&MA hosted two Knowledge Capture Events during 2005 featuring three of its retiring fellows (Axel Larsen, Dave Whittle and Gary Johnson). The first Knowledge Capture Event February 24, 2005 focused on two Safety and Mission Assurance Safety Panels (Space Shuttle System Safety Review Panel (SSRP); Payload Safety Review Panel (PSRP) and the latter event December 15, 2005 featured lessons learned during Apollo, Skylab, and Space Shuttle which could be applicable in the newly created Crew Exploration Vehicle (CEV)/Constellation development program. Gemini, Apollo, Skylab and the Space Shuttle promised and delivered exciting human advances in space and benefits of space in people s everyday lives on earth. Johnson Space Center's Safety & Mission Assurance team work over the last 20 years has been mostly focused on operations we are now beginning the Exploration development program. S&MA will promote an atmosphere of knowledge sharing in its formal and informal cultures and work processes, and reward the open dissemination and sharing of information; we are asking "Why embrace relearning the "lessons learned" in the past?" On the Exploration program the focus will be on Design, Development, Test, & Evaluation (DDT&E); therefore, it is critical to understand the lessons from these past programs during the DDT&E phase.

  19. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. As the space shuttle program ends in 2011, a review of how training for STS-1 was conducted compared to STS-134 will show multiple changes in training of shuttle flight controller over a thirty year period. This paper will additionally give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams have been trained certified over the life span of the space shuttle. The training methods for developing flight controllers have evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.

  20. STS-335 food tasting in the JSC Food Lab

    NASA Image and Video Library

    2010-11-12

    JSC2010-E-185482 (10 Nov. 2010) --- STS-135 crew members participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Pictured from the left are NASA astronauts Chris Ferguson, commander; Doug Hurley, pilot; Rex Walheim and Sandy Magnus, both mission specialists. Michele Perchonok, manager, Shuttle Food System, assisted the crew members. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  1. A concept for Space Shuttle payload ground operations

    NASA Technical Reports Server (NTRS)

    Mccoy, G.

    1973-01-01

    A Space Transportation System that involves the reusable Space Shuttle offers mankind's next great frontier. The country and the NASA must approach this potential opportunity with an open mind for new ideas and concepts in operations management, business principles, and sensitivity to cost. Our long term future in this new frontier will depend as much on our success in these areas as on our technological successes. This paper attempts to provide, for people with a working understanding of current ground operations, some examples of these evolving concepts.

  2. STS-129 Tweetup

    NASA Image and Video Library

    2009-11-15

    Twitter user Ann Marie Cunningham who goes by the twitter name @talkingscience.org, right, uses her laptop, while Laura Burns, who goes by the twitter name @moonrangerlaura, listens to a guest speaker during a two-day NASA Tweetup event held at NASA's Kennedy Space Center in Cape Canaveral, Fla, Sunday, Nov. 15, 2009. NASA Twitter followers in attendance will have the opportunity to take a tour of NASA's Kennedy Space Center, view the space shuttle launch and speak with shuttle technicians, engineers, astronauts and managers. Photo Credit: (NASA/Carla Cioffi) 

  3. STS-129 Tweetup

    NASA Image and Video Library

    2009-11-15

    Twitter user Laura Burns, left, who goes by the twitter name @moonrangerlaura, listens to a guest speaker, while Ann Marie Cunningham who goes by the twitter name @talkingscience.org, uses her laptop during a two-day NASA Tweetup event held at NASA's Kennedy Space Center in Cape Canaveral, Fla, Sunday, Nov. 15, 2009. NASA Twitter followers in attendance will have the opportunity to take a tour of NASA's Kennedy Space Center, view the space shuttle launch and speak with shuttle technicians, engineers, astronauts and managers. Photo Credit: (NASA/Carla Cioffi) 

  4. Use of PRA in Shuttle Decision Making Process

    NASA Technical Reports Server (NTRS)

    Boyer, Roger L.; Hamlin, Teri L.

    2010-01-01

    How do you use PRA to support an operating program? This presentation will explore how the Shuttle Program Management has used the Shuttle PRA in its decision making process. It will reveal how the PRA has evolved from a tool used to evaluate Shuttle upgrades like Electric Auxiliary Power Unit (EAPU) to a tool that supports Flight Readiness Reviews (FRR) and real-time flight decisions. Specific examples of Shuttle Program decisions that have used the Shuttle PRA as input will be provided including how it was used in the Hubble Space Telescope (HST) manifest decision. It will discuss the importance of providing management with a clear presentation of the analysis, applicable assumptions and limitations, along with estimates of the uncertainty. This presentation will show how the use of PRA by the Shuttle Program has evolved overtime and how it has been used in the decision making process providing specific examples.

  5. STS-1 medical report

    NASA Technical Reports Server (NTRS)

    Pool, S. L. (Editor); Johnson, P. C., Jr. (Editor); Mason, J. A. (Editor)

    1981-01-01

    The report includes a review of the health of the crew before, during and immediately after the first Shuttle orbital flight (April 12-14, 1981). Areas reviewed include: health evaluation, medical debriefing of crewmembers, health stabilization program, medical training, medical kit carried inflight; tests and countermeasures for space motion sickness, cardiovascular profile, biochemistry and endocrinology results; hematology and immunology analyses; medical microbiology; food and nutrition; potable water; shuttle toxicology; radiological health; cabin acoustical noise. Also included is information on: environmental effects of Shuttle launch and landing, medical information management; and management, planning and implementation of the medical program.

  6. KSC-04pd1770

    NASA Image and Video Library

    2004-09-10

    KENNEDY SPACE CENTER, FLA. - Members of a hurricane assessment team from Johnson Space Center and Marshall Space Flight Center tour the Thermal Protection System (TPS) Facility at KSC after Hurricane Frances hit the east coast of Central Florida and Kennedy Space Center. At left is Martin Wilson, manager of the TPS operations. The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof. Equipment and materials that survived the storm have been relocated to the RLV hangar near the KSC Shuttle Landing Facility.

  7. Space Shuttle Atlantis rolls back to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Photographed from the top of the Vehicle Assembly Building, Space Shuttle Atlantis creeps along the crawlerway for the 3.4-mile trek to Launch Pad 39A (upper left). In the background is the Atlantic Ocean; on either side is water from the Banana Creek (left) and Banana River (right). The Shuttle has been in the VAB undergoing tests on the solid rocket booster cables. A prior extensive evaluation of NASA's SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis, causing return of the Shuttle to the VAB a week ago. Launch of Atlantis on STS-98 has been rescheduled to Feb. 7 at 6:11 p.m. EST.

  8. A dented LH2 recirculation line is removed from Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers with United Space Alliance remove Shuttle Discovery's dented main propulsion system liquid hydrogen recirculation line. From left are James Stickley, George Atkins, and Todd Biddle. The 12-inch-long dent was discovered during routine aft compartment inspections Tuesday, Dec. 7. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. The line is being replaced and managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  9. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- United Space Alliance SRB technician Richard Bruns attaches a cable end cover to a cable pulled from the solid rocket booster on Space Shuttle Atlantis. The Shuttle was rolled back from Launch Pad 39A in order to conduct tests on the SRB cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  10. The Right Stuff: A Look Back at Three Decades of Flight Controller Training for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.; Bertels, Christie

    2010-01-01

    This paper will summarize the thirty-year history of Space Shuttle operations from the perspective of training in NASA Johnson Space Center's Mission Control Center. It will focus on training and development of flight controllers and instructors, and how training practices have evolved over the years as flight experience was gained, new technologies developed, and programmatic needs changed. Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The audience will learn what it is like to perform a simulation as a shuttle flight controller. Finally, we will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.

  11. KSC-06pd1296

    NASA Image and Video Library

    2006-06-30

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility at NASA's Kennedy Space Center, flight crew systems technician Troy Mann and flight crew systems manager Jim Blake store the food containers that will be stowed on Space Shuttle Discovery for the flight of mission STS-121. The containers hold meals prepared for the mission crew. Mann and Blake are with United Space Alliance ground operations. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. Launch of Space Shuttle Discovery on mission STS-121 is scheduled for July 1. Photo credit: NASA/Jack Pfaller

  12. Space shuttle entry terminal area energy management

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.

    1991-01-01

    A historical account of the development for Shuttle's Terminal Area Energy Management (TAEM) is presented. A derivation and explanation of logic and equations are provided as a supplement to the well documented guidance computation requirements contained within the official Functional Subsystem Software Requirements (FSSR) published by Rockwell for NASA. The FSSR contains the full set of equations and logic, whereas this document addresses just certain areas for amplification.

  13. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An assessment of NASA's safety performance for 1983 affirms that NASA Headquarters and Center management teams continue to hold the safety of manned flight to be their prime concern, and that essential effort and resources are allocated for maintaining safety in all of the development and operational programs. Those conclusions most worthy of NASA management concentration are given along with recommendations for action concerning; product quality and utility; space shuttle main engine; landing gear; logistics and management; orbiter structural loads, landing speed, and pitch control; the shuttle processing contractor; and the safety of flight operations. It appears that much needs to be done before the Space Transportation System can achieve the reliability necessary for safe, high rate, low cost operations.

  14. KSC-03pd0705

    NASA Image and Video Library

    2003-03-14

    KENNEDY SPACE CENTER, Fla. - In the RLV Hangar, Mike Leinbach, Shuttle launch director, describes some of the debris to U.S. Representative Tom Feeney (second from left), who is visiting KSC to see the Columbia debris collected in the hangar. At right, from KSC, are JoAnn Morgan, director of External Relations and Business Development; Greg Katnik, technical manager, Space Shuttle Program Launch Integration Office; and John Halsema, Chief/Federal & International Liaison, Government Relations Office.

  15. Orbiter Atlantis (STS-110) Launch With New Block II Engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Powered by three newly-enhanced Space Shuttle Maine Engines (SSMEs), called the Block II Maine Engines, the Space Shuttle Orbiter Atlantis lifted off from the Kennedy Space Center launch pad on April 8, 2002 for the STS-110 mission. The Block II Main Engines incorporate an improved fuel pump featuring fewer welds, a stronger integral shaft/disk, and more robust bearings, making them safer and more reliable, and potentially increasing the number of flights between major overhauls. NASA continues to increase the reliability and safety of Shuttle flights through a series of enhancements to the SSME. The engines were modified in 1988 and 1995. Developed in the 1970s and managed by the Space Shuttle Projects Office at the Marshall Space Flight Center, the SSME is the world's most sophisticated reusable rocket engine. The new turbopump made by Pratt and Whitney of West Palm Beach, Florida, was tested at NASA's Stennis Space Center in Mississippi. Boeing Rocketdyne in Canoga Park, California, manufactures the SSME. This image was extracted from engineering motion picture footage taken by a tracking camera.

  16. KSC-2009-2393

    NASA Image and Video Library

    2009-03-28

    CAPE CANAVERAL, Fla. – NASA Deputy Manager of Space Shuttle Program LeRoy Cain and NASA Associate Administrator for Space Operations Bill Gerstenmaier inspect the thermal protection system tile beneath space shuttle Discovery following touchdown on Runway 15 at NASA's Kennedy Space Center in Florida. Discovery’s landing completed the 13-day, 5.3-million mile journey on the STS-119 mission to the International Space Station. Main gear touchdown was at 3:13:17 p.m. EDT. Nose gear touchdown was at 3:13:40 p.m. and wheels stop was at 3:14:45 p.m. Discovery delivered the final pair of large power-generating solar array wings and the S6 truss segment. The mission was the 28th flight to the station, the 36th flight of Discovery and the 125th in the Space Shuttle Program, as well as the 70th landing at Kennedy. Photo credit: NASA/Kim Shiflett

  17. KSC-2011-5302

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, Shuttle Launch Director Mike Leinbach, and Payloads Launch Manager and Deputy Director of ISS and Spacecraft Processing at Kennedy, Bill Dowdell along with the launch control members, watch intently as space shuttle Atlantis lifts off on its STS-135 mission to the International Space Station. Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  18. KSC-2010-5508

    NASA Image and Video Library

    2010-11-05

    CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 Mission Specialist Nicole Stott prepares to depart NASA's Kennedy Space Center in Florida in a T-38 training jet. Stott and her five crewmates will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  19. KSC-2010-5512

    NASA Image and Video Library

    2010-11-05

    CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 crew members depart NASA's Kennedy Space Center in Florida in a T-38 training jet. The six-member crew will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  20. KSC-2010-5509

    NASA Image and Video Library

    2010-11-05

    CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 Commander Steve Lindsey prepares to depart NASA's Kennedy Space Center in Florida in a T-38 training jet. Lindsey and his five crewmates will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  1. KSC-2010-5513

    NASA Image and Video Library

    2010-11-05

    CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 crew members depart NASA's Kennedy Space Center in Florida in a T-38 training jet. The six-member crew will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  2. KSC-2010-5510

    NASA Image and Video Library

    2010-11-05

    CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 Commander Steve Lindsey, left, and Mission Specialist Nicole Stott prepare to depart NASA's Kennedy Space Center in Florida in a T-38 training jet. The six-member crew will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  3. KSC-2010-5507

    NASA Image and Video Library

    2010-11-05

    CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 Pilot Eric Boe prepares to depart NASA's Kennedy Space Center in Florida in a T-38 training jet. Boe and his five crewmates will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  4. KSC-2010-5505

    NASA Image and Video Library

    2010-11-05

    CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 crew prepares to depart NASA's Kennedy Space Center in Florida in T-38 training jets. Mission Specialist Michael Barratt, left, Pilot Eric Boe and Mission Specialist Nicole Stott and their three crewmates will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  5. KSC-2010-5511

    NASA Image and Video Library

    2010-11-05

    CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 Pilot Eric Boe prepares to depart NASA's Kennedy Space Center in Florida in a T-38 training jet. Boe and his five crewmates will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  6. KSC-2010-5506

    NASA Image and Video Library

    2010-11-05

    CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 Mission Specialist Tim Kopra prepares to depart NASA's Kennedy Space Center in Florida in a T-38 training jet. Kopra and his five crewmates will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  7. KENNEDY SPACE CENTER, FLA. - On a tour of the Orbiter Processing Facility, Center Director Jim Kennedy (left) listens to Kathy Laufenberg, Orbiter Airframe Engineering ground area manager, with United Space Alliance, about corrosion work being done on the external tank door of orbiter Endeavour. On either side of Laufenberg are Tom Roberts, Airframe Engineering System specialist, also with USA, and Joy Huff, with KSC Space Shuttle Processing. Endeavour is in its Orbiter Major Modification period, which began in December 2003.

    NASA Image and Video Library

    2004-02-25

    KENNEDY SPACE CENTER, FLA. - On a tour of the Orbiter Processing Facility, Center Director Jim Kennedy (left) listens to Kathy Laufenberg, Orbiter Airframe Engineering ground area manager, with United Space Alliance, about corrosion work being done on the external tank door of orbiter Endeavour. On either side of Laufenberg are Tom Roberts, Airframe Engineering System specialist, also with USA, and Joy Huff, with KSC Space Shuttle Processing. Endeavour is in its Orbiter Major Modification period, which began in December 2003.

  8. KSC-06pd1297

    NASA Image and Video Library

    2006-06-30

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility at NASA's Kennedy Space Center, flight crew systems technician Troy Mann and flight crew systems manager Jim Blake secure the storage boxes holding the food containers that will be stowed on Space Shuttle Discovery for the flight of mission STS-121. The containers hold meals prepared for the mission crew. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. Launch of Space Shuttle Discovery on mission STS-121 is scheduled for July 1. Photo credit: NASA/Jack Pfaller

  9. Decisions, endings, and new beginnings.

    PubMed

    Dorr, Robert F

    2005-08-01

    The Washington Watch column examines NASA shuttle developments, airline pilot age issues, development of a personnel recovery vehicle, and includes an obituary for retired Air Force General Bernard Schriever, remembered as an air and space pioneer. The discussion of NASA shuttle developments reports on the space shuttle flight schedule and NASA's ability to deliver hardware to the International Space Station, funding levels and equipment development schedules related to President Bush's mandate to visit Mars, a report on the space program by the American Academy of Arts and Sciences, and top-level management changes at NASA. The discussion of airline pilot age issues examines efforts to change mandatory retirement requirements. The discussion of personnel recovery vehicles reports on development of an aircraft designed to rescue survivors during combat search and rescue missions.

  10. Space Shuttle Program (SSP) Dual Docked Operations (DDO)

    NASA Technical Reports Server (NTRS)

    Sills, Joel W., Jr.; Bruno, Erica E.

    2016-01-01

    This document describes the concept definition, studies, and analysis results generated by the Space Shuttle Program (SSP), International Space Station (ISS) Program (ISSP), and Mission Operations Directorate for implementing Dual Docked Operations (DDO) during mated Orbiter/ISS missions. This work was performed over a number of years. Due to the ever increasing visiting vehicle traffic to and from the ISS, it became apparent to both the ISSP and the SSP that there would arise occasions where conflicts between a visiting vehicle docking and/or undocking could overlap with a planned Space Shuttle launch and/or during docked operations. This potential conflict provided the genesis for evaluating risk mitigations to gain maximum flexibility for managing potential visiting vehicle traffic to and from the ISS and to maximize launch and landing opportunities for all visiting vehicles.

  11. Docking Offset Between the Space Shuttle and the International Space Station and Resulting Impacts to the Transfer of Attitude Reference and Control

    NASA Technical Reports Server (NTRS)

    Helms, W. Jason; Pohlkamp, Kara M.

    2011-01-01

    The Space Shuttle does not dock at an exact 90 degrees to the International Space Station (ISS) x-body axis. This offset from 90 degrees, along with error sources within their respective attitude knowledge, causes the two vehicles to never completely agree on their attitude, even though they operate as a single, mated stack while docked. The docking offset can be measured in flight when both vehicles have good attitude reference and is a critical component in calculations to transfer attitude reference from one vehicle to another. This paper will describe how the docking offset and attitude reference errors between both vehicles are measured and how this information would be used to recover Shuttle attitude reference from ISS in the event of multiple failures. During STS-117, ISS on-board Guidance, Navigation and Control (GNC) computers began having problems and after several continuous restarts, the systems failed. The failure took the ability for ISS to maintain attitude knowledge. This paper will also demonstrate how with knowledge of the docking offset, the contingency procedure to recover Shuttle attitude reference from ISS was reversed in order to provide ISS an attitude reference from Shuttle. Finally, this paper will show how knowledge of the docking offset can be used to speed up attitude control handovers from Shuttle to ISS momentum management. By taking into account the docking offset, Shuttle can be commanded to hold a more precise attitude which better agrees with the ISS commanded attitude such that start up transients with the ISS momentum management controllers are reduced. By reducing start-up transients, attitude control can be transferred from Shuttle to ISS without the use of ISS thrusters saving precious on-board propellant, crew time and minimizing loads placed upon the mated stack.

  12. Space Shuttle Avionics: a Redundant IMU On-Board Checkout and Redundancy Management System

    NASA Technical Reports Server (NTRS)

    Mckern, R. A.; Brown, D. G.; Dove, D. W.; Gilmore, J. P.; Landey, M. E.; Musoff, H.; Amand, J. S.; Vincent, K. T., Jr.

    1972-01-01

    A failure detection and isolation philosophy applicable to multiple off-the-shelf gimbaled IMUs are discussed. The equations developed are implemented and evaluated with actual shuttle trajectory simulations. The results of these simulations are presented for both powered and unpowered flight phases and at operational levels of four, three, and two IMUs. A multiple system checkout philosophy is developed and simulation results presented. The final task develops a laboratory test plan and defines the hardware and software requirements to implement an actual multiple system and evaluate the interim study results for space shuttle application.

  13. KSC-98pc783

    NASA Image and Video Library

    1998-07-06

    KSC Center Director Roy D. Bridges Jr. and U.S. Congressman Dave Weldon (holding scissors) cut the ribbon at a ceremony on July 6 to open KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF). Joining in the ribbon cutting are (left) Ed Adamek, vice president and associate program manager for Ground Operations of United Space Alliance; Marvin L. Jones, director of Installation Operations; Donald R. McMonagle, manager of Launch Integration; (right) Wade Ivey of Ivey Construction, Inc.; Robert B. Sieck, director of Shuttle Processing; and John Plowden, vice president of Rocketdyne. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998

  14. 2009 Space Shuttle Probabilistic Risk Assessment Overview

    NASA Technical Reports Server (NTRS)

    Hamlin, Teri L.; Canga, Michael A.; Boyer, Roger L.; Thigpen, Eric B.

    2010-01-01

    Loss of a Space Shuttle during flight has severe consequences, including loss of a significant national asset; loss of national confidence and pride; and, most importantly, loss of human life. The Shuttle Probabilistic Risk Assessment (SPRA) is used to identify risk contributors and their significance; thus, assisting management in determining how to reduce risk. In 2006, an overview of the SPRA Iteration 2.1 was presented at PSAM 8 [1]. Like all successful PRAs, the SPRA is a living PRA and has undergone revisions since PSAM 8. The latest revision to the SPRA is Iteration 3. 1, and it will not be the last as the Shuttle program progresses and more is learned. This paper discusses the SPRA scope, overall methodology, and results, as well as provides risk insights. The scope, assumptions, uncertainties, and limitations of this assessment provide risk-informed perspective to aid management s decision-making process. In addition, this paper compares the Iteration 3.1 analysis and results to the Iteration 2.1 analysis and results presented at PSAM 8.

  15. The SSMEPF opens with a ribbon-cutting ceremony

    NASA Technical Reports Server (NTRS)

    1998-01-01

    KSC Center Director Roy D. Bridges Jr. and U.S. Congressman Dave Weldon (holding scissors) cut the ribbon at a ceremony on July 6 to open KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF). Joining in the ribbon cutting are (left) Ed Adamek, vice president and associate program manager for Ground Operations of United Space Alliance; Marvin L. Jones, director of Installation Operations; Donald R. McMonagle, manager of Launch Integration; (right) Wade Ivey of Ivey Construction, Inc.; Robert B. Sieck, director of Shuttle Processing; and John Plowden, vice president of Rocketdyne. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.

  16. KSC-04pd1840

    NASA Image and Video Library

    2004-09-18

    KENNEDY SPACE CENTER, FLA. - Martin Wilson (second from right), manager of Thermal Protection System (TPS) operations for United Space Alliance (USA) , introduces Kevin Harrington, manager of Soft Goods Production in the TPSF, during a briefing to (from left) NASA Administrator Sean O’Keefe, KSC Director of Shuttle Processing Michael E. Wetmore, Center Director James Kennedy and KSC Director of the Spaceport Services Scott Kerr (behind Kennedy), on the temporary tile shop set up in the RLV hangar. O’Keefe and NASA Associate Administrator of Space Operations Mission Directorate William Readdy are visiting KSC to survey the damage sustained by KSC facilities from Hurricane Frances. The Thermal Protection System Facility (TPSF), which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof in the storm, which blew across Central Florida Sept. 4-5. The Labor Day storm also caused significant damage to the Vehicle Assembly Building and Processing Control Center. Additionally, the Operations and Checkout Building, Vertical Processing Facility, Hangar AE, Hangar S and Hangar AF Small Parts Facility each received substantial damage. Undamaged equipment was removed from the TPSF and stored in the hangar. However, well-protected and unharmed were NASA’s three Space Shuttle orbiters -- Discovery, Atlantis and Endeavour - along with the Shuttle launch pads, all of the critical flight hardware for the orbiters and the International Space Station, and NASA’s Swift spacecraft that is awaiting launch in October.

  17. Space shuttle orbiter guidance, naviagation and control software functional requirements: Horizontal flight operations

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The shuttle GN&C software functions for horizontal flight operations are defined. Software functional requirements are grouped into two categories: first horizontal flight requirements and full mission horizontal flight requirements. The document privides the intial step in the shuttle GN&C software design process. It also serves as a management tool to identify analyses which are required to define requirements.

  18. Learning from Past Experiences

    NASA Technical Reports Server (NTRS)

    Hulet, Michael W.

    2007-01-01

    Space flight is a risky business. This truism has been bandied about since the earliest days of the space program. When asked by the young daughter of a coworker, one of the Mercury astronauts likened launching into space to "riding a Roman candle" -- it was both exciting and dangerous. Even in these more technologically advanced days, the solid rocket boosters and external tanks of the space shuttle provide a no less exciting, or dangerous, ride into space. However much the phrase "risk mitigation" is bandied about within the U.S. space program, there is still the history of the Apollo 1 fire during a ground test at Cape Canaveral, Fla., the loss of the shuttle Challenger during liftoff, and the loss of the shuttle Columbia when returning to Earth to remind us that while we give lip-service to risk management, we have not learned to manage risk as well as we ought. Moreover, there are many more less dramatic, but equally critical, incidents that have occurred in association with the space program that also highlight our inability to accurately gauge and manage risk. Why do we seem caught in a senseless spiral in which we focus most on risk only after a tragedy? Why do we repeat serious mishaps and not learn from our mistakes? This paper reviews some possible explanations for our risk-taking behavior and provides examples of interest to the NASA centers, while also discussing inter center and intra-center opportunities for sharing information to mitigate risk.

  19. Industrial Engineering Lifts Off at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Barth, Tim

    1998-01-01

    When the National Aeronautics and Space Administration (NASA) began the Space Shuttle Program, it did not have an established industrial engineering (IE) capability for several probable reasons. For example, it was easy for some managers to dismiss IE principles as being inapplicable at NASA's John F. Kennedy Space Center (KSC). When NASA was formed by the National Aeronautics and Space Act of 1958, most industrial engineers worked in more traditional factory environments. The primary emphasis early in the shuttle program, and during previous human space flight programs such as Mercury and Apollo, was on technical accomplishments. Industrial engineering is sometimes difficult to explain in NASA's highly technical culture. IE is different in many ways from other engineering disciplines because it is devoted to process management and improvement, rather than product design. Images of clipboards and stopwatches still come to the minds of many people when the term industrial engineering is mentioned. The discipline of IE has only recently begun to gain acceptance and understanding in NASA. From an IE perspective today, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are among the most spectacular in the world: safe and successful launches of shuttles and expendable vehicles that carry tremendous payloads into space.

  20. KSC-2009-6402

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - A post-launch news conference is held in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida after the successful launch of space shuttle Atlantis. From left are Public Affairs moderator Mike Curie; Bill Gerstenmaier, associate administrator for Space Operations; Mike Moses, chair, Mission Management Team; and Mike Leinbach, space shuttle launch director. Liftoff of Atlantis on its STS-129 mission came at 2:28 p.m. EST Nov. 16 from Launch Pad 39A. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two ExPRESS Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  1. Wind Lidar Edge Technique Shuttle Demonstration Mission: Anemos

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.; Bundas, David J.; Martino, Anthony J.; Carnahan, Timothy M.; Zukowski, Barbara J.

    1998-01-01

    A NASA mission is planned to demonstrate the technology for a wind lidar. This will implement the direct detection edge technique. The Anemos instrument will fly on the Space Transportation System (STS), or shuttle, aboard a Hitchhiker bridge. The instrument is being managed by the Goddard Space Flight Center as an in-house build, with science leadership from the GSFC Laboratory for Atmospheres, Mesoscale Atmospheric Processes Branch. During a roughly ten-day mission, the instrument will self calibrate and adjust for launch induced mis-alignments, and perform a campaign of measurements of tropospheric winds. The mission is planned for early 2001. The instrument is being developed under the auspices of NASA's New Millennium Program, in parallel with a comparable mission being managed by the Marshall Space Flight Center. That mission, called SPARCLE, will implement the coherent technique. NASA plans to fly the two missions together on the same shuttle flight, to allow synergy of wind measurements and a direct comparison of performance.

  2. Results of prototype software development for automation of shuttle proximity operations

    NASA Technical Reports Server (NTRS)

    Hiers, Harry K.; Olszewski, Oscar W.

    1991-01-01

    A Rendezvous Expert System (REX) was implemented on a Symbolics 3650 processor and integrated with the 6 DOF, high fidelity Systems Engineering Simulator (SES) at the NASA Johnson Space Center in Houston, Texas. The project goals were to automate the terminal phase of a shuttle rendezvous, normally flown manually by the crew, and proceed automatically to docking with the Space Station Freedom (SSF). The project goals were successfully demonstrated to various flight crew members, managers, and engineers in the technical community at JSC. The project was funded by NASA's Office of Space Flight, Advanced Program Development Division. Because of the complexity of the task, the REX development was divided into two distinct efforts. One to handle the guidance and control function using perfect navigation data, and another to provide the required visuals for the system management functions needed to give visibility to the crew members of the progress being made towards docking the shuttle with the LVLH stabilized SSF.

  3. Spacelab

    NASA Image and Video Library

    1992-01-22

    This is the Space Shuttle Orbiter Discovery, STS-42 mission, with the First International Microgravity Laboratory (IML-1) module shown in the cargo bay. IML-1, the first in a series of Shuttle flights, was dedicated to study the fundamental materials and life sciences in the microgravity environment inside Spacelab, a laboratory carried aloft by the Shuttle. The mission explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. The IML program gave a team of scientists from around the world access to a unique environment, one that is free from most of Earth's gravity. The 14-nation European Space Agency (ESA), the Canadian Space Agency (SCA), the French National Center for Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DARA/DLR), and the National Space Development Agency of Japan (NASDA) participated in developing hardware and experiments for the IML missions. The missions were managed by NASA's Marshall Space Flight Center. The Orbiter Discovery was launched on January 22, 1992 for the IML-1 mission.

  4. KSC-02pd0695

    NASA Image and Video Library

    2002-05-15

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, FAA Administrator Patti Smith (second from left) listens to Jim Halsell (right), manager of KSC's Space Shuttle Program Launch Integration, during a tour of KSC.

  5. KSC-98pc786

    NASA Image and Video Library

    1998-07-06

    James W. Tibble (pointing at engine), an Engine Systems/Ground Support Equipment team manager for Rocketdyne, discusses the operation of a Space Shuttle Main Engine with Robert B. Sieck, director of Shuttle Processing; U.S. Congressman Dave Weldon; and KSC Center Director Roy D. Bridges Jr. Following the ribbon cutting ceremony for KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF), KSC employees and media explored the facility. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998

  6. The SSMEPF opens with a ribbon-cutting ceremony

    NASA Technical Reports Server (NTRS)

    1998-01-01

    James W. Tibble (pointing at engine), an Engine Systems/Ground Support Equipment team manager for Rocketdyne, discusses the operation of a Space Shuttle Main Engine with Robert B. Sieck, director of Shuttle Processing; U.S. Congressman Dave Weldon; and KSC Center Director Roy D. Bridges Jr. Following the ribbon cutting ceremony for KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF), KSC employees and media explored the facility. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.

  7. Case Studies in NASA High-Technology Risk Assessment and Management

    NASA Technical Reports Server (NTRS)

    Lambright, W. Henry

    1998-01-01

    This study discusses the approach of NASA managers in the assessment of risk in three critical decisions: the Apollo 8 decision to orbit the Moon in 1968, the servicing of the Hubble Space Telescope in 1993, and the privitization of the Space Shuttle in the latter 1990s.

  8. Innovative applications of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Schorr, Herbert; Rappaport, Alain

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  9. KSC-2011-2200

    NASA Image and Video Library

    2011-03-10

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility's conference room at NASA's Kennedy Space Center in Florida, Ken Bollweg, Alpha Magnetic Spectrometer-2 (AMS) deputy project manager, talks to media about the particle physics detector. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS-2 will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Glenn Benson

  10. Noise Control in Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.

    2009-01-01

    Acoustic limits in habitable space enclosures are required to ensure crew safety, comfort, and habitability. Noise control is implemented to ensure compliance with the acoustic requirements. The purpose of this paper is to describe problems with establishing acoustic requirements and noise control efforts, and present examples of noise control treatments and design applications used in the Space Shuttle Orbiter. Included is the need to implement the design discipline of acoustics early in the design process, and noise control throughout a program to ensure that limits are met. The use of dedicated personnel to provide expertise and oversight of acoustic requirements and noise control implementation has shown to be of value in the Space Shuttle Orbiter program. It is concluded that to achieve acceptable and safe noise levels in the crew habitable space, early resolution of acoustic requirements and implementation of effective noise control efforts are needed. Management support of established acoustic requirements and noise control efforts is essential.

  11. Space Shuttle Projects Overview to Columbia Air Forces War College

    NASA Technical Reports Server (NTRS)

    Singer, Jody; McCool, Alex (Technical Monitor)

    2000-01-01

    This paper presents, in viewgraph form, a general overview of space shuttle projects. Some of the topics include: 1) Space Shuttle Projects; 2) Marshall Space Flight Center Space Shuttle Projects Office; 3) Space Shuttle Propulsion systems; 4) Space Shuttle Program Major Sites; 5) NASA Office of Space flight (OSF) Center Roles in Space Shuttle Program; 6) Space Shuttle Hardware Flow; and 7) Shuttle Flights To Date.

  12. STS-3 medical report

    NASA Technical Reports Server (NTRS)

    Pool, S. L. (Editor); Johnson, P. C., Jr. (Editor); Mason, J. A. (Editor)

    1982-01-01

    The medical operations report for STS-3, which includes a review of the health of the crew before, during, and immediately after the third Shuttle orbital flight is presented. Areas reviewed include: health evaluation, medical debriefing of crewmembers, health stabilization program, medical training, medical 'kit' carried in flight, tests and countermeasures for space motion sickness, cardiovascular profile, biochemistry and endocrinology results, hematology and immunology analyses, medical microbiology, food and nutrition, potable water, shuttle toxicology, radiological health, and cabin acoustic noise. Environmental effects of shuttle launch and landing medical information management, and management, planning, and implementation of the medical program are also dicussed.

  13. KSC-03pd0270

    NASA Image and Video Library

    2003-02-05

    KENNEDY SPACE CENTER, FLA. -- Members of the Recovery Management Team at KSC are at work in the Operations Support Building. They are part of the investigation into the accident that claimed orbiter Columbia and her crew of seven on Feb. 1, 2003, over East Texas as they returned to Earth after a 16-day research mission. Seated around the table (clockwise from far left) are Chris Hasselbring, Landing Operations, USA (co-chair of the Response Management Team); Don Maxwell, Safety, United Space Alliance (USA); Russ DeLoach, chief, Shuttle Mission Assurance Branch, NASA; George Jacobs, Shuttle Engineering; Jeff Campbell, Shuttle Engineering; Denny Gagen, Landing Recovery Manager (second co-chair of the team); and Dave Rainer, Launch and Landing Operations. The team is coordinating KSC technical support and assets to the Mishap Investigation Team in Barksdale, La., and providing support for the Recovery teams in Los Angeles, Texas, New Mexico, Arizona and California. In addition, the team is following up on local leads pertaining to potential debris in the KSC area. .

  14. KSC-03pd0269

    NASA Image and Video Library

    2003-02-05

    KENNEDY SPACE CENTER, FLA. -- Members of the Recovery Management Team at KSC are at work in the Operations Support Building. They are part of the investigation into the accident that claimed orbiter Columbia and her crew of seven on Feb. 1, 2003, over East Texas as they returned to Earth after a 16-day research mission. From left around the table are Don Maxwell, Safety, United Space Alliance (USA); Russ DeLoach, chief, Shuttle Mission Assurance Branch, NASA; George Jacobs, Shuttle Engineering; Jeff Campbell, Shuttle Engineering; Dave Rainer, Launch and Landing Operations; and the two co-chairs of the Response Management Team, Denny Gagen, Landing Recovery Manager, and Chris Hasselbring, Landing Operations, USA. The team is coordinating KSC technical support and assets to the Mishap Investigation Team in Barksdale, La., and providing support for the Recovery teams in Los Angeles, Texas, New Mexico, Arizona and California. In addition, the team is following up on local leads pertaining to potential debris in the KSC area. .

  15. KSC-03pd0272

    NASA Image and Video Library

    2003-02-05

    KENNEDY SPACE CENTER, FLA. - Don Maxwell, Safety, United Space Alliance, checks a map of Texas during a meeting of the Recovery Management Team at KSC. The team is part of the investigation into the accident that claimed orbiter Columbia and her crew of seven on Feb. 1, 2003, over East Texas as they returned to Earth after a 16-day research mission. Other team members are Russ DeLoach, chief, Shuttle Mission Assurance Branch, NASA; George Jacobs, Shuttle Engineering; Jeff Campbell, Shuttle Engineering; Dave Rainer, Launch and Landing Operations; the two co-chairs of the Response Management Team, Denny Gagen, Landing Recovery Manager, Chris Hasselbring, Landing Operations, USA; and Larry Ulmer, Safety, NASA. The team is coordinating KSC technical support and assets to the Mishap Investigation Team in Barksdale, La., and providing support for the Recovery teams in Los Angeles, Texas, New Mexico, Arizona and California. In addition, the team is following up on local leads pertaining to potential debris in the KSC area. .

  16. KSC-03pd0271

    NASA Image and Video Library

    2003-02-05

    KENNEDY SPACE CENTER, FLA. - Two members of the Recovery Management Team at KSC are at work in the Operations Support Building. At left is Don Maxwell, Safety, United Space Alliance, and at right is Larry Ulmer, Safety, NASA. They are part of the investigation into the accident that claimed orbiter Columbia and her crew of seven on Feb. 1, 2003, over East Texas as they returned to Earth after a 16-day research mission. Other team members are Russ DeLoach, chief, Shuttle Mission Assurance Branch, NASA; George Jacobs, Shuttle Engineering; Jeff Campbell, Shuttle Engineering; Dave Rainer, Launch and Landing Operations; and the two co-chairs of the Response Management Team, Denny Gagen, Landing Recovery Manager, and Chris Hasselbring, Landing Operations, USA. The team is coordinating KSC technical support and assets to the Mishap Investigation Team in Barksdale, La., and providing support for the Recovery teams in Los Angeles, Texas, New Mexico, Arizona and California. In addition, the team is following up on local leads pertaining to potential debris in the KSC area. .

  17. Simulation of Range Safety for the NASA Space Shuttle

    NASA Technical Reports Server (NTRS)

    Rabelo, Luis; Sepulveda, Jose; Compton, Jeppie; Turner, Robert

    2005-01-01

    This paper describes a simulation environment that seamlessly combines a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this simulation environment represent the different systems that must interact in order to determine the Expectation of casualties (E(sub c)) resulting from the toxic effects of the gas dispersion that occurs after a disaster affecting a Space Shuttle within 120 seconds of lift-off. The utilization of the Space Shuttle reliability models, trajectory models, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system are all integrated to create this environment. This simulation environment can help safety managers estimate the population at risk in order to plan evacuation, make sheltering decisions, determine the resources required to provide aid and comfort, and mitigate damages in case of a disaster. This simulation environment may also be modified and used for the landing phase of a space vehicle but will not be discussed in this paper.

  18. KSC-2011-4202

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- NASA's Deputy Manager for the Space Shuttle Program Leroy Cain, left, and Kennedy Center Director Bob Cabana chat underneath the belly of space shuttle Endeavour following the vehicle's successful trip home. Endeavour's final return from space completed the 16-day, 6.5-million-mile STS-134 mission. Main gear touchdown on the Shuttle Landing Facility's Runway 15 was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Kim Shiflett

  19. KSC-2011-2893

    NASA Image and Video Library

    2011-04-12

    CAPE CANAVERAL, Fla. -- Patty Stratton, associate program manager for Ground Operations at United Space Alliance, NASA Astronaut and STS-135 Commander Chris Ferguson and NASA Administrator Charles Bolden take a moment to converse on a very warm, sunny Florida afternoon while attending the 30th anniversary celebration in honor of the Space Shuttle Program's first shuttle launch. The event is being held at NASA's Kennedy Space Center Visitor Complex. The celebration followed an announcement by NASA Administrator Charles Bolden where the four orbiters will be placed for permanent display after retirement. Photo credit: NASA/Kim Shiflett

  20. Space Operations Center - A concept analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Space Operations Center (SOC) which is a concept for a Shuttle serviced, permanent, manned facility in low earth orbit is viewed as a major candidate for the manned space flight following the completion of an operational Shuttle. The primary objectives of SOC are: (1) the construction, checkout, and transfer to operational orbit of large, complex space systems, (2) on-orbit assembly, launch, recovery, and servicing of manned and unmanned spacecraft, (3) managing operations of co-orbiting free-flying satellites, and (4) the development of reduced dependence on earth for control and resupply. The structure of SOC, a self-contained orbital facility containing several Shuttle launched modules, includes the service, habitation, and logistics modules as well as construction, and flight support facilities. A schedule is proposed for the development of SOC over ten years and costs for the yearly programs are estimated.

  1. STS-114: Discovery Flight Day 7 Post MMT Meeting

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Wayne Hale Space Shuttle Deputy Program Manager, and Chuck Campbell Subsystem Engineer in Aerothermodynamics are seen in this post mission management teem briefing on this seventh day of space flight. Wayne Hale begins with talking about how the International Space Station has been resupplied with its necessities, and that the Control Moment Gyroscope (CSG) has been replaced. Hale expresses his concern about the health of the Space Shuttle Discovery with the two protruding gap fillers present, and the aerothermodynamics surrounding the gap fillers. These concerns led to the conclusion to have spacewalker Stephen Robinson remove the gap fillers during EVA-3. Campbell shows a video of the protruding gap filler aft of Nose Landing Gear Door (NLGD). Campbell and Hale answer questions from the news media about the risks of performing this spacewalk, boundary layer transitions, flight safety, inspections, and temperature concerns.

  2. Shuttle mission simulator. Volume 2: Requirement report, volume 2, revision C

    NASA Technical Reports Server (NTRS)

    Burke, J. F.

    1973-01-01

    The requirements for space shuttle simulation which are discussed include: general requirements, program management, system engineering, design and development, crew stations, on-board computers, and systems integration. For Vol. 1, revision A see N73-22203, for Vol 2, revision A see N73-22204.

  3. Space transportation system flight 2 OSTA-1 scientific payload data management plan

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Shuttle Imaging Radar-A (SIR-A), Shuttle Multispectral Infrared Radiometer (SMIRR), Future Identification and Location Experiment (FILE), Measurement of Air Pollution from Satellites (MAPS), Ocean Color Experiment (OCE), the Night/Day Optical Survey of Lightning (NOSL), and the Heflex Bioengineering Test (HBT) experiments are described.

  4. KSC-08pd0703

    NASA Image and Video Library

    2008-03-11

    KENNEDY SPACE CENTER, FLA. -- In the Firing Room of the Launch Control Center at NASA's Kennedy Space Center, John Swanson (center), Thermal Protection System manager with United Space Alliance, receives the Flow Award from Shuttle Launch Director Mike Leinbach (right) after the successful launch of space shuttle Endeavour on the STS-123 mission. At left is NASA Flow Director for Endeavour Ken Tenbusch. Liftoff of Endeavour was on time at 2:28 a.m. EDT. Endeavour's crew will make a record-breaking 16-day mission to the International Space Station and deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett

  5. Food and waste management biotechnology for the space shuttle

    NASA Technical Reports Server (NTRS)

    Murray, R. W.; Schelkopf, J. D.; Hunt, S. R.; Sauer, R. L.

    1979-01-01

    Space-crew facilities for preparation, eating, personal hygiene and waste management are contained in one small area of the Shuttle Orbiter Mid-Deck, all the functional systems being interconnected. The paper discusses three major systems: (1) the Galley, which includes the personal hygiene station and food packages; (2) the Waste Collector, which includes provisions for male and female users, urine, feces and emesis collection in both a normal and contigency mode of operation; and (3) Biowaste Monitoring, which includes mass measurement and sampling. The technology improvement continues by assuring that the Orbiter systems have sufficient design flexibility to permit later improvements in operation and in function.

  6. Spacelab

    NASA Image and Video Library

    1992-01-01

    The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research with the international partners. The participating space agencies included: NASA, the 14-nation European Space Agency (ESA), the Canadian Space Agency (CSA), the French National Center of Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DAR/DLR), and the National Space Development Agency of Japan (NASDA). Dedicated to the study of life and materials sciences in microgravity, the IML missions explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. Both life and materials sciences benefited from the extended periods of microgravity available inside the Spacelab science module in the cargo bay of the Space Shuttle Orbiter. In this photograph, Commander Ronald J. Grabe works with the Mental Workload and Performance Evaluation Experiment (MWPE) in the IML-1 module. This experiment was designed as a result of difficulty experienced by crewmembers working at a computer station on a previous Space Shuttle mission. The problem was due to the workstation's design being based on Earthbound conditions with the operator in a typical one-G standing position. Information gained from this experiment was used to design workstations for future Spacelab missions and the International Space Station. Managed by the Marshall Space Flight Center, IML-1 was launched on January 22, 1992 aboard the Space Shuttle Orbiter Discovery (STS-42 mission).

  7. Status of shuttle fuel cell technology program.

    NASA Technical Reports Server (NTRS)

    Rice, W. E.; Bell, D., III

    1972-01-01

    The hydrogen-oxygen fuel cell has been proved as an efficient and reliable electrical power supply for NASA manned-space-flight vehicles. It has thus ensured a role in the Space Shuttle Program as the primary electrical power supply for the Orbiter vehicle. The advanced fuel cell technology programs conducted under the management of the NASA Manned Spacecraft Center over the past two years have resulted in a high level of technical readiness in fuel cell power generation to support shuttle mission requirements. These programs have taken advantage of technological developments that have occurred since the designs were completed for the Gemini and Apollo fuel cells.

  8. STS-121: Discovery L-1 Countdown Status Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Bruce Buckingham, NASA Public Affairs, introduces Jeff Spaulding, NASA Test Director; Debbie Hahn, STS-121 Payload Manager; and Kathy Winters, Shuttle Weather Officer. Spaulding gives his opening statement on this one day prior to the launching of the Space Shuttle Discovery. He discusses the following topics: 1) Launch of the Space Shuttle Discovery; 2) Weather; 3) Load over of onboard reactants; 4) Hold time for liquid hydrogen; 5) Stowage of Mid-deck completion; 6) Check-out of onboard and ground network systems; 7) Launch windows; 8) Mission duration; 9) Extravehicular (EVA) plans; 10) Space Shuttle landing day; and 11) Scrub turn-around plans. Hahn presents and discusses a short video of the STS-121 payload flow. Kathy Winters gives her weather forecast for launch. She then presents a slide presentation on the following weather conditions for the Space Shuttle Discovery: 1) STS-121 Tanking Forecast; 2) Launch Forecast; 3) SRB Recovery; 4) CONUS Launch; 5) TAL Launch; 6) 24 Hour Delay; 7) CONUS 24 Hour; 8) TAL 24 Hour; 9) 48 Hour Launch; 10) CONUS 48 Hour; and 11) TAL 48 Hour. The briefing ends with a question and answer period from the media.

  9. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John; Rodela, Chris

    2006-01-01

    Pratt & Whitney Rocketdyne, Inc., in cooperation with NASA-Marshall Space Flight Center (MSFC), has developed a new Advanced Health Management System (AHMS) controller for the Space Shuttle Main Engine (SSME) that will increase the probability of successfully placing the shuttle into the intended orbit and increase the safety of the Space Transportation System (STS) launches. The AHMS is an upgrade o the current Block II engine controller whose primary component is an improved vibration monitoring system called the Real-Time Vibration Monitoring System (RTVMS) that can effectively and reliably monitor the state of the high pressure turbomachinery and provide engine protection through a new synchronous vibration redline which enables engine shutdown if the vibration exceeds predetermined thresholds. The introduction of this system required improvements and modification to the Block II controller such as redesigning the Digital Computer Unit (DCU) memory and the Flight Accelerometer Safety Cut-Off System (FASCOS) circuitry, eliminating the existing memory retention batteries, installation of the Digital Signal Processor (DSP) technology, and installation of a High Speed Serial Interface (HSSI) with accompanying outside world connectors. Test stand hot-fire testing along with lab testing have verified successful implementation and is expected to reduce the probability of catastrophic engine failures during the shuttle ascent phase and improve safely by about 23% according to the Quantitative Risk Assessment System (QRAS), leading to a safer and more reliable SSME.

  10. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1992-01-01

    This volume is the fifth in an ongoing series on aerospace project management at NASA. Articles in this volume cover: an overview of the project cycle; SE&I management for manned space flight programs; shared experiences from NASA Programs and Projects - 1975; cost control for Mariner Venus/Mercury 1973; and the Space Shuttle - a balancing of design and politics. A section on resources for NASA managers rounds out the publication.

  11. TNT equivalency study for space shuttle (EOS). Volume 1: Management summary report

    NASA Technical Reports Server (NTRS)

    Wolfe, R. R.

    1971-01-01

    The existing TNT equivalency criterion for LO2/LH2 propellant is reevaluated. It addresses the static, on-pad phase of the space shuttle launch operations and was performed to determine whether the use of a TNT equivalency criterion lower than that presently used (60%) could be substantiated. The large quantity of propellant on-board the space shuttle, 4 million pounds, was considered of prime importance to the study. A qualitative failure analysis of the space shuttle (EOS) on the launch pad was made because it was concluded that available test data on the explosive yield of LO2/LH2 propellant was insufficient to support a reduction in the present TNT equivalency value, considering the large quantity of propellant used in the space shuttle. The failure analysis had two objectives. The first was to determine whether a failure resulting in the total release of propellant could occur. The second was to determine whether, if such a failure did occur, ignition could be delayed long enough to allow the degree of propellant mixing required to produce an explosion of 60% TNT equivalency since the explosive yield of this propellant is directly related to the quantities of LH2 and LO2 mixed at the time of the explosion.

  12. Modular space station phase B extension program master plan

    NASA Technical Reports Server (NTRS)

    Munsey, E. H.

    1971-01-01

    The project is defined for design, development, fabrication, test, and pre-mission and mission operations of a shuttle-launched modular space station. The project management approach is described in terms of organization, management requirements, work breakdown structure, schedule, time-phased logic, implementation plans, manpower, and funding. The programmatic and technical problems are identified.

  13. STS-106 crew is welcomed home at the SLF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the Shuttle Landing Facility, KSC Launch Director Michael Leinbach (shaking hands) greets STS-106 Pilot Scott D. Altman and Commander Terrence W. Wilcutt after their successful mission and landing. Just behind Leinbach is Jim Halsell, manager of Space Shuttle Launch Integration and former Shuttle Commander, plus other dignitaries on hand to welcome the crew home. Landing occurred on-time at 3:56:48 a.m. EDT. Atlantis and crew traveled 4.9 million miles on the 11-day, 19-hour, 11-minute STS-106 mission. During the mission to the International Space Station, the crew transferred nearly 5,000 pounds of equipment and supplies for use by the first resident crew expected to arrive in November. STs-106 was the 99th flight in the Shuttle program and the 22nd for Atlantis. STS-106 also marked the 15th nighttime landing in Shuttle history and the 23rd consecutive landing at KSC.

  14. Conversations: with Sean O'Keefe. Interview by Frank Sietzen Jr.

    PubMed

    O'Keefe, Sean

    2002-10-01

    Sean O'Keefe, who took office as the 10th NASA administrator in December 2001, is interviewed after 9 months on the job. Topics of conversation include his transition from the Office of Management and Budget to NASA, management priorities, space shuttle safety, the Space Launch Initiative and the National Aerospace Initiative, future space exploration, relationships with Congress and the President, and NASA's budget.

  15. Maintaining space shuttle safety within an environment of change

    NASA Astrophysics Data System (ADS)

    Greenfield, Michael A.

    1999-09-01

    In the 10 years since the Challenger accident, NASA has developed a set of stable and capable processes to prepare the Space Shuttle for safe launch and return. Capitalizing on the extensive experience gained from a string of over 50 successful flights, NASA today is changing the way it does business in an effort to reduce cost. A single Shuttle Flight Operations Contractor (SFOC) has been chosen to operate the Shuttle. The Government role will change from direct "oversight" to "insight" gained through understanding and measuring the contractor's processes. This paper describes the program management changes underway and the NASA Safety and Mission Assurance (S&MA) organization's philosophy, role, and methodology for pursuing this new approach. It describes how audit and surveillance will replace direct oversight and how meaningful performance metrics will be implemented.

  16. Unisys' experience in software quality and productivity management of an existing system

    NASA Technical Reports Server (NTRS)

    Munson, John B.

    1988-01-01

    A summary of Quality Improvement techniques, implementation, and results in the maintenance, management, and modification of large software systems for the Space Shuttle Program's ground-based systems is provided.

  17. KSC-2009-6403

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - Media representatives and Twitter followers participate in a post-launch news conference in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida after the successful launch of space shuttle Atlantis. On the dais, from left, are Public Affairs moderator Mike Curie; Bill Gerstenmaier, associate administrator for Space Operations; Mike Moses, chair, Mission Management Team; and Mike Leinbach, space shuttle launch director. Liftoff of Atlantis on its STS-129 mission came at 2:28 p.m. EST Nov. 16 from Launch Pad 39A. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two ExPRESS Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  18. Integration and Test of Shuttle Small Payloads

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.

    2003-01-01

    Recommended approaches for space shuttle small payload integration and test (I&T) are presented. The paper is intended for consideration by developers of shuttle small payloads, including I&T managers, project managers, and system engineers. Examples and lessons learned are presented based on the extensive history of NASA's Hitchhiker project. All aspects of I&T are presented, including: (1) I&T team responsibilities, coordination, and communication; (2) Flight hardware handling practices; (3) Documentation and configuration management; (4) I&T considerations for payload development; (5) I&T at the development facility; (6) Prelaunch operations, transfer, orbiter integration and interface testing; (7) Postflight operations. This paper is of special interest to those payload projects that have small budgets and few resources: that is, the truly faster, cheaper, better projects. All shuttle small payload developers are strongly encouraged to apply these guidelines during I&T planning and ground operations to take full advantage of today's limited resources and to help ensure mission success.

  19. Propulsion and fluid management - Station keeping will eat energy on a new scale

    NASA Technical Reports Server (NTRS)

    Petrash, D. A.

    1983-01-01

    An attempt is made to identify technologies that could be brought to a state of minimal development risk in the near term, yet offer the potential for evolutionary growth consistent with future space station propulsion requirements. Prospective auxiliary propulsion propellants will be usable by other systems, thereby offering resupply benefits and a benign rather than corrosive or toxic handling environment. NASA programs are currently underway to develop the storage and supply methods for cryogenic liquids in orbit. The recovery of unused propellants from the Space Shuttle Orbiter and External Tank are being evaluated in order to define Shuttle modifications and performance penalties. Fluid management subsystem requirements and characteristics cannot, however, be fully defined until a firm mission scenario has been established and other space station subsystems are more clearly defined.

  20. Legacy of Environmental Research During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.

    2011-01-01

    The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over the last 30 years and represents the longest and largest U.S. human spaceflight program. Risks to crewmembers were included in the research areas of nutrition, microbiology, toxicology, radiation, and sleep quality. To better understand the Shuttle environment, Crew Health Care System was developed. As part of this system, the Environmental Health Subsystem was developed to monitor the atmosphere for gaseous contaminants and microbial contamination levels and to monitor water quality and radiation. This program expended a great deal of effort in studying and mitigating risks related to contaminations due to food, water, air, surfaces, crewmembers, and payloads including those with animals. As the Shuttle had limited stowage space and food selection, the development of nutritional requirements for crewmembers was imperative. As the Shuttle was a reusable vehicle, microbial contamination was of great concern. The development of monitoring instruments that could withstand the space environment took several years and many variations to come up with a suitable instrument. Research with space radiation provided an improved understanding of the various sources of ionizing radiation and the development of monitoring instrumentation for space weather and the human exposure within the orbiter's cabin. Space toxicology matured to include the management of offgassing products that could pollute the crewmembers air quality. The Shuttle Program implemented a 5-level toxicity rating system and developed new monitoring instrumentation to detect toxic compounds. The environment of space caused circadian desynchrony, sleep deficiency, and fatigue leading to much research and major emphasis on countermeasures. Outcomes of the research in these areas were countermeasures, operational protocols, and hardware. Learning Objectives: This symposium will provide an overview of the major environmental lessons learned and the development of countermeasures, monitoring hardware, and procedures.

  1. Space Shuttle Software Development and Certification

    NASA Technical Reports Server (NTRS)

    Orr, James K.; Henderson, Johnnie A

    2000-01-01

    Man-rated software, "software which is in control of systems and environments upon which human life is critically dependent," must be highly reliable. The Space Shuttle Primary Avionics Software System is an excellent example of such a software system. Lessons learn from more than 20 years of effort have identified basic elements that must be present to achieve this high degree of reliability. The elements include rigorous application of appropriate software development processes, use of trusted tools to support those processes, quantitative process management, and defect elimination and prevention. This presentation highlights methods used within the Space Shuttle project and raises questions that must be addressed to provide similar success in a cost effective manner on future long-term projects where key application development tools are COTS rather than internally developed custom application development tools

  2. KSC-07pd3172

    NASA Image and Video Library

    2007-11-07

    KENNEDY SPACE CENTER, FLA. -- Associate Administrator for NASA Space Operations William Gerstenmaier and Shuttle Program Manager Wayne Hale examine the thermal protection system on the wing of space shuttle Discovery after its landing at NASA's Kennedy Space Center. Discovery completed the 15-day mission STS-120, with an on-time landing at 1:01:16 p.m. Wheel stop was at 1:02:07 p.m. Mission elapsed time was 15 days, 2 hours, 24 minutes and 2 seconds. Mission STS-120 continued the construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo credit: NASA//Kim Shiflett

  3. KSC-07pd3171

    NASA Image and Video Library

    2007-11-07

    KENNEDY SPACE CENTER, FLA. -- Shuttle Program Manager Wayne Hale points to the left wing of space shuttle Discovery after its landing at NASA's Kennedy Space Center. To the left is Associate Administrator for NASA Space Operations William Gerstenmaier. Discovery completed the 15-day mission STS-120, with an on-time landing at 1:01:16 p.m. Wheel stop was at 1:02:07 p.m. Mission elapsed time was 15 days, 2 hours, 24 minutes and 2 seconds. Mission STS-120 continued the construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo credit: NASA/Kim Shiflett

  4. KSC-04PD-1560

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Sen. John F. Kerry (center), D-Mass., discusses Space Shuttle processing with NASA Vehicle Manager Stephanie Stilson during a tour of the Orbiter Processing Facility (OPF). They are standing under the orbiter Discovery, which is being prepared for flight on the next Space Shuttle mission. The tour follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes Americas commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.

  5. KSC-04pd1560

    NASA Image and Video Library

    2004-07-26

    KENNEDY SPACE CENTER, FLA. - Sen. John F. Kerry (center), D-Mass., discusses Space Shuttle processing with NASA Vehicle Manager Stephanie Stilson during a tour of the Orbiter Processing Facility (OPF). They are standing under the orbiter Discovery, which is being prepared for flight on the next Space Shuttle mission. The tour follows a public meeting Kerry held at the Dr. Kurt H. Debus Conference Facility at the Kennedy Space Center Visitor Complex. He said he chose to speak at KSC because it symbolizes America’s commitment to science, innovation and technology. He and Sen. John Edwards, D-N.C., are on a speaking tour prior to their appearance at the Democratic National Convention in Boston.

  6. A shuttle and space station manipulator system for assembly, docking, maintenance cargo handling and spacecraft retrieval (preliminary design). Volume 1: Management summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A preliminary design is established for a general purpose manipulator system which can be used interchangeably on the shuttle and station and can be transferred back and forth between them. Control of the manipulator is accomplished by hard wiring from internal control stations in the shuttle or station. A variety of shuttle and station manipulator operations are considered including servicing the Large Space Telescope; however, emphasis is placed on unloading modules from the shuttle and assembling the space station. Simulation studies on foveal stereoscopic viewing and manipulator supervisory computer control have been accomplished to investigate the feasibility of their use in the manipulator system. The basic manipulator system consists of a single 18.3 m long, 7 degree of freedom (DOF), electrically acutated main boom with an auxiliary 3 DOF electrically actuated, extendible 18.3 m maximum length, lighting, and viewing boom. A 3 DOF orientor assembly is located at the tip of the viewing boom to provide camera pan, tilt, and roll.

  7. Managing Toxicological Risks: The Legacy of Shuttle Operations

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Space toxicology greatly matured as a result of research and operations associated with the Shuttle. Materials offgassing had been a manageable concern since the Apollo days, but we learned to pay careful attention to compounds that could escape containment, to combustion events, to toxic propellants, to overuse of utility compounds, and to microbial and human metabolites. We also learned that flying real-time hardware to monitor air pollutants was a pathway with unanticipated speed bumps. Each new orbiter was tested for any excess offgassing products that could pollute the air during flight. In the late 1990s toxicologists and safety experts developed a 5-level toxicity rating system to guide containment of toxic compounds. This system is now in use aboard the International Space Station (ISS). Several combustion events during Shuttle Mir and also during Shuttle free-flight impelled toxicologists to identify hardware capable of monitoring toxic products; however, rapid adaptation of the hardware for the unique conditions of spaceflight caused unexpected missteps. Current and planned combustion analyzers would be useful to commercial partners that wish to manage the risk of health effects from thermal events. Propellants received special attention during the Shuttle program because of the possibility of bringing them into the habitable volume on extravehicular activity suits. Monitors for the airlocks were developed to mitigate this risk. Utility materials, such as lubricants, posed limited toxicological problems because water was not recovered. One clearly documented case of microbial metabolites polluting the Shuttle atmosphere was noted, and this has implications for commercial flights and control of microbes. Finally, carbon dioxide, the major human metabolite, episodically presented air quality problems aboard Shuttle, especially when nominal air flows were obstructed. Commercial vehicles must maintain robust air circulation given the anticipated high density of human occupants.

  8. KSC-08pd0818

    NASA Image and Video Library

    2008-03-26

    CAPE CANAVERAL, Fla. --- NASA managers examine the thermal protection system tile under space shuttle Endeavour on Runway 15 at Kennedy Space Center's Shuttle Landing Facility at the end of the STS-123 mission, a 16-day flight to the International Space Station. From left are Mission Management Team Chairman LeRoy Cain, NASA Administrator Mike Griffin, Kennedy Space Center Director Bill Parsons and NASA Deputy Administrator Shana Dale. This was the 16th night landing at Kennedy. The main landing gear touched down at 8:39:08 p.m. EDT. The nose landing gear touched down at 8:39:17 p.m. and wheel stop was at 8:40:41 p.m. The mission completed nearly 6.6 million miles. The landing was on the second opportunity after the first was waved off due to unstable weather in the Kennedy Space Center area. The STS-123 mission delivered the first segment of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, known as Dextre. Photo credit: NASA/Kim Shiflett

  9. KSC-06pd2066

    NASA Image and Video Library

    2006-09-07

    KENNEDY SPACE CENTER, FLA. - Storm clouds roll across Launch Pad 39B where Space Shuttle Atlantis still sits on the pad. Atlantis was originally scheduled to launch Aug. 27, but a scrub was called by mission managers due to a concern with fuel cell 1. Towering above the shuttle is the 80-foot lightning mast. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Ken Thornsley

  10. KSC-06pd2064

    NASA Image and Video Library

    2006-09-07

    KENNEDY SPACE CENTER, FLA. - Storm clouds gather behind Space Shuttle Atlantis on Launch Pad 39B. Atlantis was originally scheduled to launch on Aug. 27, but a scrub was called by mission managers due to a concern with fuel cell 1. Towering above the shuttle is the 80-foot lightning mast. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Ken Thornsley

  11. KSC-06pd2065

    NASA Image and Video Library

    2006-09-07

    KENNEDY SPACE CENTER, FLA. - A heavy bank of storm clouds gather behind Space Shuttle Atlantis on Launch Pad 39B. Atlantis was originally scheduled to launch Aug. 27, but a scrub was called by mission managers due to a concern with fuel cell 1. Towering above the shuttle is the 80-foot lightning mast. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Ken Thornsley

  12. KSC-2010-5379

    NASA Image and Video Library

    2010-11-01

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, NASA Associate Administrator for Space Operations Bill Gerstenmaier addresses participants of the STS-133 Tweetup. NASA is hosting about 150 of its Twitter followers from around the world and several dozen states and providing them with a behind-the-scenes perspective to share with their own followers on the social networking service. The "Tweeps," as NASA calls them, will have a chance to tour Kennedy and meet with shuttle technicians, managers, engineers and astronauts. They also will receive a demonstration of Robonaut, a human-like robot similar to the one that will be delivered to the International Space Station on the STS-133 mission. Space shuttle Discovery and its STS-133 crew are scheduled to launch Nov. 3 at 3:52 p.m. EDT. For more information on the upcoming mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  13. KSC-2010-5378

    NASA Image and Video Library

    2010-11-01

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, NASA Associate Administrator for Space Operations Bill Gerstenmaier addresses participants of the STS-133 Tweetup. NASA is hosting about 150 of its Twitter followers from around the world and several dozen states and providing them with a behind-the-scenes perspective to share with their own followers on the social networking service. The "Tweeps," as NASA calls them, will have a chance to tour Kennedy and meet with shuttle technicians, managers, engineers and astronauts. They also will receive a demonstration of Robonaut, a human-like robot similar to the one that will be delivered to the International Space Station on the STS-133 mission. Space shuttle Discovery and its STS-133 crew are scheduled to launch Nov. 3 at 3:52 p.m. EDT. For more information on the upcoming mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  14. Space shuttle requirements/configuration evolution

    NASA Technical Reports Server (NTRS)

    Andrews, E. P.

    1991-01-01

    Space Shuttle chronology; Space Shuttle comparison; Cost comparison; Performance; Program ground rules; Sizing criteria; Crew/passenger provisions; Space Shuttle Main Engine (SSME) characteristics; Space Shuttle program milestones; and Space Shuttle requirements are outlined. This presentation is represented by viewgraphs.

  15. The Digital Space Shuttle, 3D Graphics, and Knowledge Management

    NASA Technical Reports Server (NTRS)

    Gomez, Julian E.; Keller, Paul J.

    2003-01-01

    The Digital Shuttle is a knowledge management project that seeks to define symbiotic relationships between 3D graphics and formal knowledge representations (ontologies). 3D graphics provides geometric and visual content, in 2D and 3D CAD forms, and the capability to display systems knowledge. Because the data is so heterogeneous, and the interrelated data structures are complex, 3D graphics combined with ontologies provides mechanisms for navigating the data and visualizing relationships.

  16. KSC-06pd1957

    NASA Image and Video Library

    2006-08-28

    KENNEDY SPACE CENTER, FLA. - Crawler-transporter No. 2 makes its way toward Launch Pad 39B (in the background). The crawler is being moved nearby in the event the mission management team decides to roll back Space Shuttle Atlantis due to Hurricane Ernesto. The hurricane has been forecast on a heading north and east from Cuba, taking it along the eastern coast of Florida. NASA's lighted launch window extends to Sept. 13, but mission managers are hoping to launch on mission STS-115 by Sept. 7 to avoid a conflict with a Russian Soyuz rocket also bound for the International Space Station. The crawler is 131 feet long, 113 feet wide and 20 feet high. It weights 5.5 million pounds unloaded. The combined weight of crawler, mobile launcher platform and a space shuttle is 12 million pounds. Unloaded, the crawler moves at 2 mph. Loaded, the snail's pace slows to 1 mph. Photo credit: NASA/Kim Shiflett

  17. Space shuttle solid rocket booster cost-per-flight analysis technique

    NASA Technical Reports Server (NTRS)

    Forney, J. A.

    1979-01-01

    A cost per flight computer model is described which considers: traffic model, component attrition, hardware useful life, turnaround time for refurbishment, manufacturing rates, learning curves on the time to perform tasks, cost improvement curves on quantity hardware buys, inflation, spares philosophy, long lead, hardware funding requirements, and other logistics and scheduling constraints. Additional uses of the model include assessing the cost per flight impact of changing major space shuttle program parameters and searching for opportunities to make cost effective management decisions.

  18. KSC-03pd0360

    NASA Image and Video Library

    2003-02-12

    KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. Gehman Jr. (second from right), chairman of the Columbia Accident Investigation Board, visits the Thermal Protection System shop and is briefed by Martin Wilson (left), the shop manager. Gehman and other members of the board are visiting sites at KSC to become familiar with the Shuttle launch process. The independent board is charged with determining what caused the destruction of the Space Shuttle Columbia and the loss of its seven-member crew on Feb. 1 during reentry.

  19. KSC-03pd0362

    NASA Image and Video Library

    2003-02-12

    KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. Gehman Jr. (third from left), chairman of the Columbia Accident Investigation Board, visits the Thermal Protection System shop and is briefed by Martin Wilson (second from left), the shop manager. Gehman and other members of the board are visiting sites at KSC to become familiar with the Shuttle launch process. The independent board is charged with determining what caused the destruction of the Space Shuttle Columbia and the loss of its seven-member crew on Feb. 1 during reentry.

  20. KSC-03pd0359

    NASA Image and Video Library

    2003-02-12

    KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. Gehman Jr. (second from left), chairman of the Columbia Accident Investigation Board, visits the Thermal Protection System shop and is briefed by Martin Wilson (second from right), the shop manager. Gehman and other members of the board are visiting sites at KSC to become familiar with the Shuttle launch process. The independent board is charged with determining what caused the destruction of the Space Shuttle Columbia and the loss of its seven-member crew on Feb. 1 during reentry.

  1. KSC-03pd0358

    NASA Image and Video Library

    2003-02-12

    KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. Gehman Jr. (left), chairman of the Columbia Accident Investigation Board, visits the Thermal Protection System shop and is briefed by Martin Wilson (right), the shop manager. Gehman and other members of the board are visiting sites at KSC to become familiar with the Shuttle launch process. The independent board is charged with determining what caused the destruction of the Space Shuttle Columbia and the loss of its seven-member crew on Feb. 1 during reentry.

  2. KSC-03pd0361

    NASA Image and Video Library

    2003-02-12

    KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. Gehman Jr. (center), chairman of the Columbia Accident Investigation Board, visits the Thermal Protection System shop and is briefed by Martin Wilson (pointing), the shop manager. Gehman and other members of the board are visiting sites at KSC to become familiar with the Shuttle launch process. The independent board is charged with determining what caused the destruction of the Space Shuttle Columbia and the loss of its seven-member crew on Feb. 1 during reentry.

  3. A study of space shuttle energy management, approach and landing analysis

    NASA Technical Reports Server (NTRS)

    Morth, R.

    1973-01-01

    The steering system of the space shuttle vehicle is presented for the several hundred miles of flight preceding landing. The guidance scheme is characterized by a spiral turn to dissipate excess potential energy (altitude) prior to a standard straight-in final approach. In addition, the system features pilot oriented control, drag brakes, phugoid damping, and a navigational capacity founded upon an inertial measurement unit and an on-board computer. Analytic formulas are used to calculate, represent, and insure the workability of the system's specifications

  4. Space Shuttle Reusable Solid Rocket Motor Program Overview and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Graves, Stan R.; McCool, Alex (Technical Monitor)

    2001-01-01

    An overview of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program is provided with a summary of lessons learned since the first test firing in 1977. Fifteen different lessons learned are discussed that fundamentally changed the motor's design, processing, and RSRM program risk management systems. The evolution of the rocket motor design is presented including the baseline or High Performance Solid Rocket Motor (HPM), the Filament Wound Case (FWC), the RSRM, and the proposed Five-Segment Booster (FSB).

  5. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  6. Preparing for the High Frontier: The Role and Training of NASA Astronauts in the Post- Space Shuttle Era

    NASA Technical Reports Server (NTRS)

    2011-01-01

    In May 2010, the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC s Committee on Human Spaceflight Crew Operations was tasked to answer several questions: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change after space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA s human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA s human spaceflight program has garnered considerable discussion in recent years and there is considerable uncertainty about what the program will involve in the coming years, the committee was not tasked to address whether human spaceflight should continue or what form it should take. The committee s task restricted it to studying activities managed by the Flight Crew Operations Directorate or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

  7. SPACEHAB - Space Shuttle Columbia mission STS-107

    NASA Image and Video Library

    2003-01-14

    Students display an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  8. A Collection of Technical Papers

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Papers presented at the 6th Space Logistics Symposium covered such areas as: The International Space Station; The Hubble Space Telescope; Launch site computer simulation; Integrated logistics support; The Baikonur Cosmodrome; Probabalistic tools for high confidence repair; A simple space station rescue vehicle; Integrated Traffic Model for the International Space Station; Packaging the maintenance shop; Leading edge software support; Storage information management system; Consolidated maintenance inventory logistics planning; Operation concepts for a single stage to orbit vehicle; Mission architecture for human lunar exploration; Logistics of a lunar based solar power satellite scenario; Just in time in space; NASA acquisitions/logistics; Effective transition management; Shuttle logistics; and Revitalized space operations through total quality control management.

  9. STS-114 Mission Management Team Meeting

    NASA Image and Video Library

    2005-08-04

    JSC2005-E-32012 (4 August 2005) --- John Muratore, Manager of Space Shuttle Systems Engineering & Integration Office, discusses a key STS-114 issue during the Mission Management Team (MMT) session of the afternoon of August 4. The MMT meets daily in Houston's Mission Control Center.

  10. Aerospace Management, Volume 5 Number 1.

    ERIC Educational Resources Information Center

    Kaprielyan, S. Peter

    Presented are articles and reports dealing with aspects of the aerospace programs of the National Aeronautics and Space Administration (NASA). Of major concern are the technological and managerial challenges within the space station and space shuttle programs. Other reports are given on: (1) medical experiments, (2) satellites, (3) international…

  11. Space disposal of nuclear wastes. Volume 1: Socio-political aspects

    NASA Technical Reports Server (NTRS)

    Laporte, T.; Rochlin, G. I.; Metlay, D.; Windham, P.

    1976-01-01

    The history and interpretation of radioactive waste management in the U.S., criteria for choosing from various options for waste disposal, and the impact of nuclear power growth from 1975 to 2000 are discussed. Preconditions for the existence of high level wastes in a form suitable for space disposal are explored. The role of the NASA space shuttle program in the space disposal of nuclear wastes, and the impact on program management, resources and regulation are examined.

  12. Recent Space Shuttle crew compartment design improvements

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.

    1986-01-01

    Significant design changes to the Space Shuttle waste management system (WMS) and its related personal hygiene support provisions (PHSP) have been made recently to improve overall operational performance and human factors interfaces. The WMS design improvements involve increased urinal flow, individual urinals, and provisions for manually compacting feces and cleanup materials to ensure adequate mission capacity. The basic arrangement and stowage of the PHSP used during waste management operations were extensively changed to better serve habitability concerns and operations needs, and to improve the hygiene of WMS operations. This paper describes these changes and the design, development, and flight test evaluation. In addition, provisions for an eighth crewmember and a new four-tier sleep station are described.

  13. What's Next for NASA? Life After the Shuttle Program

    NASA Technical Reports Server (NTRS)

    MacLaughlin, Mary; Petro, Janet E.

    2012-01-01

    KSC is the world's preeminent launch complex for government and commercial space access, enabling the world to explore and work in space. KSC safely manages, develops, integrates, and sustains space systems through partnerships that enable innovative, diverse access to space and inspires the Nation's future explorers capabilities to make accessing space less costly and more routine.

  14. Research and technology 1988

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report presents the on-going research activities at the NASA Marshall Space Flight Center for the year 1988. The subjects presented are space transportation systems, shuttle cargo vehicle, materials processing in space, environmental data base management, microgravity science, astronomy, astrophysics, solar physics, magnetospheric physics, aeronomy, atomic physics, rocket propulsion, materials and processes, telerobotics, and space systems.

  15. KENNEDY SPACE CENTER, FLA. - Alan Thirkettle (center), International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Alan Thirkettle (center), International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik (right), deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. At left, also part of the signing, is Andrea Lorenzoni (left), International Space Station Program manager for Node 2, Italian Space Agency. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  16. Marshall Space Flight Center's role in EASE/ACCESS mission management

    NASA Technical Reports Server (NTRS)

    Hawkins, Gerald W.

    1987-01-01

    The Marshall Space Flight Center (MSFC) Spacelab Payload Project Office was responsible for the mission management and development of several successful payloads. Two recent space construction experiments, the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS), were combined into a payload managed by the center. The Ease/ACCESS was flown aboard the Space Shuttle Mission 61-B. The EASE/ACCESS experiments were the first structures assembled in space, and the method used to manage this successful effort will be useful for future space construction missions. The MSFC mission management responsibilities for the EASE/ACCESS mission are addressed and how the lessons learned from the mission can be applied to future space construction projects are discussed.

  17. KSC-2011-3419

    NASA Image and Video Library

    2011-05-09

    CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, Space Shuttle Program Launch Integration Manager Mike Moses briefs media about the launch status of space shuttle Endeavour's STS-134 mission and announces a new launch date. Technicians replaced and tested the aft load control assembly-2 (ALCA-2) and wiring located in Endeavour's aft avionics bay 5. ALCA-2 distributes power to nine shuttle systems and is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt. Launch now is scheduled for May 16 at 8:56 a.m. EDT. Endeavour and its crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the station. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller

  18. Spacehab

    NASA Technical Reports Server (NTRS)

    Rossi, David

    1991-01-01

    Information is given in viewgraph form on the Spacehab company and its work on a pressurized module to be carried on the Space Shuttle. The module augments the Shuttle's capability to support man-tended microgravity experiments. The augmentation modules are designed to duplicate the resources, such as power, environmental control, and data management that are available in the Shuttle's middeck. Topics covered include a company overview, company financing, system overview, module description, payload resources, locker accommodations, program status, and a listing of candidate payloads.

  19. KSC-2011-5076

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- The Press Site auditorium at NASA's Kennedy Space Center in Florida hosted a Robotic Refueling Mission (RRM) module demonstration. Seen here is Benjamin Reed, deputy project manager with NASA's Satellite Servicing Capabilities Office, giving media an overview of the RRM. Space shuttle Atlantis will fly the RRM on its STS-135 mission to the International Space Station. Once in place, the RRM will use the station's two-armed robotic system, known as Dextre, to investigate the potential for robotically refueling existing satellites in orbit. Atlantis and its crew of four are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Atlantis also will fly the RRM and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin

  20. KSC-2011-5075

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- The Press Site auditorium at NASA's Kennedy Space Center in Florida hosted a Robotic Refueling Mission (RRM) module demonstration. Seen here is Benjamin Reed, deputy project manager with NASA's Satellite Servicing Capabilities Office, giving media an overview of the RRM. Space shuttle Atlantis will fly the RRM on its STS-135 mission to the International Space Station. Once in place, the RRM will use the station's two-armed robotic system, known as Dextre, to investigate the potential for robotically refueling existing satellites in orbit. Atlantis and its crew of four are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Atlantis also will fly the RRM and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin

  1. Space Shuttle Projects

    NASA Image and Video Library

    1996-02-23

    An STS-75 onboard photo of the Tethered Satellite System-1 Reflight (TSS-1R) atop its extended boom. The TSS-1R was a reflight of TSS-1, which was flown on the Space Shuttle in July/August, 1992. Building on the knowledge gained on the TSS-1 about tether dynamics, the TSS will circle the Earth at an altitude of 296 kilometers (184 miles), placing the tether system well within the rarefield, electrically charged layer of the atmosphere known as the ionosphere. The satellite was plarned to be deployed 20.7 kilometers (12.9 miles) above the Shuttle. The conducting tether, generating high voltage and electrical currents as it moves through the ionosphere cutting magnetic field lines, would allow scientists to examine the electrodynamics of a conducting tether system. In addition, the TSS would increase our understanding of physical processes in the near-Earth space environment, such as plasma waves and currents. The tether on the TSS broke as the Satellite was nearing the full extent of its 12.5 mile deployment from the Shuttle. The TSS was a cooperative development effort by the Italian Space Agency (ASI) and NASA, and was managed by scientists at the Marshall Space Flight Center.

  2. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report presents the results of the Aerospace Safety Advisory Panel (ASAP) activities during 2002. The format of the report has been modified to capture a long-term perspective. Section II is new and highlights the Panel's view of NASA's safety progress during the year. Section III contains the pivotal safety issues facing NASA in the coming year. Section IV includes the program area findings and recommendations. The Panel has been asked by the Administrator to perform several special studies this year, and the resulting white papers appear in Appendix C. The year has been filled with significant achievements for NASA in both successful Space Shuttle operations and International Space Station (ISS) construction. Throughout the year, safety has been first and foremost in spite of many changes throughout the Agency. The relocation of the Orbiter Major Modifications (OMMs) from California to Kennedy Space Center (KSC) appears very successful. The transition of responsibilities for program management of the Space Shuttle and ISS programs from Johnson Space Center (JSC) to NASA Headquarters went smoothly. The decision to extend the life of the Space Shuttle as the primary NASA vehicle for access to space is viewed by the Panel as a prudent one. With the appropriate investments in safety improvements, in maintenance, in preserving appropriate inventories of spare parts, and in infrastructure, the Space Shuttle can provide safe and reliable support for the ISS for the foreseeable future. Indications of an aging Space Shuttle fleet occurred on more than one occasion this year. Several flaws went undetected in the early prelaunch tests and inspections. In all but one case, the problems were found prior to launch. These incidents were all handled properly and with safety as the guiding principle. Indeed, launches were postponed until the problems were fully understood and mitigating action could be taken. These incidents do, however, indicate the need to analyze the Space Shuttle certification criteria closely. Based on this analysis, NASA can determine the need to receritfy the vehicles and to incorporate more stringent inspections throughout the process to minimize launch schedule impact. A highly skilled and experience workforce will be increasingly important for safe and reliable operations as the Space Shuttle vehicles and infrastructure continue to age.

  3. Space Shuttle Status News Conference

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Richard Gilbech, External Tank "Tiger Team" Lead, begins this space shuttle news conference with detailing the two major objectives of the team. The objectives include: 1) Finding the root cause of the foam loss on STS-114; and 2) Near and long term improvements for the external tank. Wayne Hale, Space Shuttle Program Manager, presents a chart to explain the external tank foam loss during STS-114. He gives a possible launch date for STS-121 after there has been a repair to the foam on the External Tank. He further discusses the changes that need to be made to the surrounding areas of the plant in New Orleans, due to Hurricane Katrina. Bill Gerstemaier, NASA Associate Administrator for Space Operations, elaborates on the testing of the external tank foam loss. The discussion ends with questions from the news media about a fix for the foam, replacement of the tiles, foam loss avoidance, the root cause of foam loss and a possible date for a new external tank to be shipped to NASA Kennedy Space Center.

  4. KSC-98pc1752

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Center Director Roy Bridges, Program Manager of the International Space Station (ISS) Randy Brinkley, and STS-98 crew members Pilot Mark Polansky, Commander Ken Cockrell and Mission Specialist Marsha Ivins wait for the unveiling of the name "Destiny" for the U.S. Lab module, which is behind them on a workstand. The lab, scheduled to be launched on Space Shuttle Endeavour in early 2000, will become the centerpiece of scientific research on the ISS. Polansky, Cockrell and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights

  5. KSC-98pc1750

    NASA Image and Video Library

    1998-12-02

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and (right) STS-98 Commander Ken Cockrell applaud the unveiling of the name Destiny given the U.S. Lab module. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. Cockrell is part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights

  6. KSC-2011-4199

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Managers check out the heat shield tiles that protected space shuttle Endeavour on its successful trip home to the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida. Endeavour's final return from space completed the 16-day, 6.5-million-mile STS-134 mission. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Kim Shiflett

  7. Engineering and simulation of life sciences Spacelab experiments

    NASA Technical Reports Server (NTRS)

    Johnston, R. S.; Bush, W. H. Jr; Rummel, J. A.; Alexander, W. C.

    1979-01-01

    The third in a series of Spacelab Mission Development tests was conducted at the Johnson (correction of Johnston) Space Center as a part of the development of Life Sciences experiments for the Space Shuttle era. The latest test was a joint effort of the Ames Research and Johnson Space Centers and utilized animals and men for study. The basic objective of this test was to evaluate the operational concepts planned for the Space Shuttle life science payloads program. A three-man crew (Mission Specialist and two Payload Specialists) conducted 26 experiments and 12 operational tests, which were selected for this 7-day mission simulation. The crew lived on board a simulated Orbiter/Spacelab mockup 24 hr a day. The Orbiter section contained the mid deck crew quarters area, complete with sleeping, galley and waste management provisions. The Spacelab was identical in geometry to the European Space Agency Spacelab design, complete with removable rack sections and stowage provisions. Communications between the crewmen and support personnel were configured and controlled as currently planned for operational shuttle flights. For this test a Science Operations Remote Center was manned at the Ames Research Center and was managed by simulated Mission Control and Payload Operation Control Centers at the Johnson Space Center. This paper presents the test objectives, description of the facilities and test program, and the results of this test.

  8. Space Shuttle avionics upgrade - Issues and opportunities

    NASA Astrophysics Data System (ADS)

    Swaim, Richard A.; Wingert, William B.

    An overview is conducted of existing Space Shuttle avionics and the possibilities for upgrading the cockpit to reduce costs and increase functionability. The current avionics include five general-purpose computers fitted with multifunction displays, dedicated switches and indicators, and dedicated flight instruments. The operational needs of the Shuttle are reviewed in the light of the avionics and potential upgrades in the form of microprocessors and display systems. The use of better processors can provide hardware support for multitasking and memory management and can reduce the life-cycle cost for software. Some limitations of the current technology are acknowledged including the Shuttle's power budget and structural configuration. A phased infusion of upgraded avionics is proposed that provides a functionally transparent replacement of crew-interface equipment as well as the addition of interface enhancements and the migration of selected functions.

  9. Shuttle Upgrade Using 5-Segment Booster (FSB)

    NASA Technical Reports Server (NTRS)

    Sauvageau, Donald R.; Huppi, Hal D.; McCool, A. A. (Technical Monitor)

    2000-01-01

    In support of NASA's continuing effort to improve the over-all safety and reliability of the Shuttle system- a 5-segment booster (FSB) has been identified as an approach to satisfy that overall objective. To assess the feasibility of a 5-segment booster approach, NASA issued a feasibility study contract to evaluate the potential of a 5-segment booster to improve the overall capability of the Shuttle system, especially evaluating the potential to increase the system reliability and safety. In order to effectively evaluate the feasibility of the 5-segment concept, a four-member contractor team was established under the direction of NASA Marshall Space Flight Center (MSFC). MSFC provided the overall program oversight and integration as well as program contractual management. The contractor team consisted of Thiokol, Boeing North American Huntington Beach (BNA), Lockheed Martin Michoud Space Systems (LMMSS) and United Space Alliance (USA) and their subcontractor bd Systems (Control Dynamics Division, Huntsville, AL). United Space Alliance included the former members of United Space Booster Incorporated (USBI) who managed the booster element portion of the current Shuttle solid rocket boosters. Thiokol was responsible for the overall integration and coordination of the contractor team across all of the booster elements. They were also responsible for all of the motor modification evaluations. Boeing North American (BNA) was responsible for all systems integration analyses, generation of loads and environments. and performance and abort mode capabilities. Lockheed Martin Michoud Space Systems (LMMSS) was responsible for evaluating the impacts of any changes to the booster on the external tank (ET), and evaluating any design changes on the external tank necessary to accommodate the FSB. USA. including the former USBI contingent. was responsible for evaluating any modifications to facilities at the launch site as well as any booster component design modifications.

  10. A dented LH2 recirculation line is removed from Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Changeout Room, Launch Pad 39B, United Space Alliance and NASA workers look at the replacement main propulsion system liquid hydrogen recirculation line (left) to be installed in Shuttle Discovery's aft compartment. At right is the dented line that has been removed. The 12-inch-long dent was discovered during routine aft compartment inspections Tuesday, Dec. 7. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. The line is being replaced and managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  11. Automation of checkout for the shuttle operations era

    NASA Technical Reports Server (NTRS)

    Anderson, J. A.; Hendrickson, K. O.

    1985-01-01

    The Space Shuttle checkout is different from its Apollo predecessor. The complexity of the hardware, the shortened turnaround time, and the software that performs ground checkout are outlined. Generating new techniques and standards for software development and the management structure to control it are implemented. The utilization of computer systems for vehicle testing is high lighted.

  12. KSC-04pd1850

    NASA Image and Video Library

    2004-09-18

    KENNEDY SPACE CENTER, FLA. - Martin Wilson (left, in foreground), manager of Thermal Protection System (TPS) operations for United Space Alliance (USA), gives a tour of the hurricane-ravaged Thermal Protection System Facility to (from center) NASA Associate Administrator of Space Operations Mission Directorate William Readdy, NASA Administrator Sean O’Keefe, Center Director James Kennedy and Director of Shuttle Processing Michael E. Wetmore. The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof during Hurricane Frances, which blew across Central Florida Sept. 4-5. O’Keefe and Readdy are visiting KSC to survey the damage sustained by KSC facilities from the hurricane. The Labor Day storm also caused significant damage to the Vehicle Assembly Building and Processing Control Center. Additionally, the Operations and Checkout Building, Vertical Processing Facility, Hangar AE, Hangar S and Hangar AF Small Parts Facility each received substantial damage. However, well-protected and unharmed were NASA’s three Space Shuttle orbiters - Discovery, Atlantis and Endeavour - along with the Shuttle launch pads, all of the critical flight hardware for the orbiters and the International Space Station, and NASA’s Swift spacecraft that is awaiting launch in October.

  13. Mission Control Center (MCC) System Specification for the Shuttle Orbital Flight Test (OFT) Timeframe

    NASA Technical Reports Server (NTRS)

    1976-01-01

    System specifications to be used by the mission control center (MCC) for the shuttle orbital flight test (OFT) time frame were described. The three support systems discussed are the communication interface system (CIS), the data computation complex (DCC), and the display and control system (DCS), all of which may interfere with, and share processing facilities with other applications processing supporting current MCC programs. The MCC shall provide centralized control of the space shuttle OFT from launch through orbital flight, entry, and landing until the Orbiter comes to a stop on the runway. This control shall include the functions of vehicle management in the area of hardware configuration (verification), flight planning, communication and instrumentation configuration management, trajectory, software and consumables, payloads management, flight safety, and verification of test conditions/environment.

  14. KSC-08pd2526

    NASA Image and Video Library

    2008-09-03

    CAPE CANAVERAL, Fla. – Space shuttle Atlantis stands ready in the Vehicle Assembly Building at NASA’s Kennedy Space Center for the pending rollout to Launch Pad 39A. The Sept. 2 rollout date was postponed due to Tropical Storm Hanna’s shift to a northern track. Managers are closely following Hanna to determine when would be the best time this week to move space shuttle Atlantis to its launch pad. The tentative rollout time is 10 a.m. Sept. 4, depending on the track Hanna follows along the Florida coast. Atlantis is scheduled to launch on the STS-125 mission to service NASA’s Hubble Space Telescope. Launch is targeted for Oct. 8. Photo credit: NASA/Jack Pfaller

  15. KSC-04PD-2677

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Before a road test of the Crawler Transporter, United Space Alliance Vice President, Associate Program Manager of Florida Operations, Bill Pickavance (in front), look at the controls of the cab. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.

  16. KSC-2012-1967

    NASA Image and Video Library

    2012-04-05

    CAPE CANAVERAL, Fla. – Florida’s Lt. Gov. Jennifer Carroll asks questions of her guides during a tour of Kennedy Space Center’s Orbiter Processing Facility-1 as they scrutinize the forward end of space shuttle Atlantis. United Space Alliance manager Buddy McKenzie is at left, and Kennedy Director Bob Cabana, at right. The tour coincided with Carroll’s visit to Kennedy for a meeting with Cabana. Atlantis is being prepared for public display at the Kennedy Space Center Visitor Complex in 2013. The groundbreaking for Atlantis’ exhibit hall took place in January Atlantis is scheduled to be moved to the visitor complex in November. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann

  17. The Spartan 207 free-flyer is held in a low-hover mode above its berth in the Space Shuttle

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- The Spartan 207 free-flyer is held in a low-hover mode above its berth in the Space Shuttle Endeavour's cargo bay in the grasp of the Remote Manipulator System (RMS). The free-flyer was re-captured by the six crew members on May 21, 1996. The crew has spent a portion of the early stages of the mission in various activities involving the Spartan 207 and the related Inflatable Antenna Experiment (IAE). The Spartan project is managed by NASA's Goddard Space Flight Center (GSFC) for NASA's Office of Space Science, Washington, D.C. GMT: 09:51:29.

  18. KSC-99pp0697

    NASA Image and Video Library

    1999-06-17

    A panel of NASA and contractor senior staff, plus officers from the 45th Space Wing, discuss safetyand health-related concerns in front of an audience of KSC employees as part of Super Safety and Health Day. Moderating at the podium is Loren Shriver, deputy director for Launch & Payload Processing. Seated left to right are Burt Summerfield, associate director of the Biomedical Office; Colonel William S. Swindling, commander, 45th Medical Group, Patrick Air Force Base, Fla.; Ron Dittemore, manager, Space Shuttle Programs, Johnson Space Center; Roy Bridges, Center Director; Col. Tom Deppe, vice commander, 45th Space Wing, Patrick Air Force Base; Jim Schoefield, program manager, Payload Ground Operations, Boeing; Bill Hickman, program manager, Space Gateway Support; and Ed Adamek, vice president and associate program manager for Ground Operations, United Space Alliance. Answering a question at the microphone on the floor is Dave King, director, Shuttle Processing. The panel was one of the presentations during KSC's second annual day-long dedication to safety. Most normal work activities were suspended to allow personnel to attend related activities. The theme, "Safety and Health Go Hand in Hand," emphasized KSC's commitment to place the safety and health of the public, astronauts, employees and space-related resources first and foremost. Events also included a keynote address, vendor exhibits, and safety training in work groups. The keynote address and panel session were also broadcast internally over NASA television

  19. Expert panel answers questions for Super Safety and Health Day at KSC.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A panel of NASA and contractor senior staff, plus officers from the 45th Space Wing, discuss safety- and health-related concerns in front of an audience of KSC employees as part of Super Safety and Health Day. Moderating at the podium is Loren Shriver, deputy director for Launch & Payload Processing. Seated left to right are Burt Summerfield, associate director of the Biomedical Office; Colonel William S. Swindling, commander, 45th Medical Group, Patrick Air Force Base, Fla.; Ron Dittemore, manager, Space Shuttle Programs, Johnson Space Center; Roy Bridges, Center Director; Col. Tom Deppe, vice commander, 45th Space Wing, Patrick Air Force Base; Jim Schoefield, program manager, Payload Ground Operations, Boeing; Bill Hickman, program manager, Space Gateway Support; and Ed Adamek, vice president and associate program manager for Ground Operations, United Space Alliance. Answering a question at the microphone on the floor is Dave King, director, Shuttle Processing. The panel was one of the presentations during KSC's second annual day-long dedication to safety. Most normal work activities were suspended to allow personnel to attend related activities. The theme, 'Safety and Health Go Hand in Hand,' emphasized KSC's commitment to place the safety and health of the public, astronauts, employees and space- related resources first and foremost. Events also included a keynote address, vendor exhibits, and safety training in work groups. The keynote address and panel session were also broadcast internally over NASA television.

  20. KSC-04pd1775

    NASA Image and Video Library

    2004-09-10

    KENNEDY SPACE CENTER, FLA. - Members of a hurricane assessment team from Johnson Space Center and Marshall Space Flight Center observe the damage to the roof of the Thermal Protection System (TPS) Facility at KSC after Hurricane Frances hit the east coast of Central Florida and Kennedy Space Center. At left is astronaut Scott Altmann, a member of the team, and at center is Martin Wilson, manager of the TPS operations. The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof. Equipment and materials that survived the storm have been relocated to the RLV hangar near the KSC Shuttle Landing Facility.

  1. KSC-03pd0257

    NASA Image and Video Library

    2003-02-01

    KENNEDY SPACE CENTER, FLA. - Anchor and managing editor of CNN's Lou Dobbs Moneyline, Lou Dobbs is at KSC reporting on the tragic loss of Space Shuttle Columbia as it was returning to Earth on mission STS-107. Journalists from around the world covered the event.

  2. KSC-03PD-0257

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Anchor and managing editor of CNN's Lou Dobbs Moneyline, Lou Dobbs is at KSC reporting on the tragic loss of Space Shuttle Columbia as it was returning to Earth on mission STS-107. Journalists from around the world covered the event.

  3. Investigation Development Plan for Reflight of the Small Helium-cooled Infrared Telescope Experiment. Volume 1: Investigation and Technical/management

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Infrared Telescope (IRT) is designed to survey extended celestial sources of infrared radiation between 4 and 120 micrometers wavelength. It will provide data regarding Space Shuttle induced environmental contamination and the zodical light. And, it will provide experience in the management of large volumes of superfluid helium in the space environment.

  4. Probabilistic risk assessment of the Space Shuttle. Phase 3: A study of the potential of losing the vehicle during nominal operation. Volume 5: Auxiliary shuttle risk analyses

    NASA Technical Reports Server (NTRS)

    Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.

    1995-01-01

    Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report.

  5. KSC-06pd1204

    NASA Image and Video Library

    2006-06-23

    KENNEDY SPACE CENTER, FLA. - An overview of the new Firing Room 4 shows the expanse of computer stations and the various operations the facility will be able to manage. FR4 is now designated the primary firing room for all remaining shuttle launches, and will also be used daily to manage operations in the Orbiter Processing Facilities and for integrated processing for the shuttle. The firing room now includes sound-suppressing walls and floors, new humidity control, fire-suppression systems and consoles, support tables with computer stations, communication systems and laptop computer ports. FR 4 also has power and computer network connections and a newly improved Checkout, Control and Monitor Subsystem. The renovation is part of the Launch Processing System Extended Survivability Project that began in 2003. United Space Alliance's Launch Processing System directorate managed the FR 4 project for NASA. Photo credit: NASA/Dimitri Gerondidakis

  6. KSC-98pc1751

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Program Manager of the International Space Station (ISS) Randy Brinkley addresses the media before unveiling the name of "Destiny" given the U.S. Lab module, the centerpiece of scientific research on the ISS. With Brinkley on the stand are Center Director Roy Bridges (behind him), and (left to right) STS-98 Commander Ken Cockrell, Pilot Mark Polansky, and Mission Specialist Marsha Ivins. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Polansky, Cockrell and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights

  7. KSC-04pd1839

    NASA Image and Video Library

    2004-09-18

    KENNEDY SPACE CENTER, FLA. - From left, Martin Wilson, manager of Thermal Protection System (TPS) operations for United Space Alliance, briefs NASA Administrator Sean O’Keefe, KSC Director of the Spaceport Services Scott Kerr, NASA Associate Administrator of the Space Operations Mission Directorate William Readdy, and Center Director James Kennedy (right) on the temporary tile shop set up in the RLV hangar. O’Keefe and Readdy are visiting KSC to survey the damage sustained by KSC facilities from Hurricane Frances. The Thermal Protection System Facility (TPSF), which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof in the storm, which blew across Central Florida Sept. 4-5. Undamaged equipment was removed from the TPSF and stored in the hangar. NASA’s three Space Shuttle orbiters -- Discovery, Atlantis and Endeavour - along with the Shuttle launch pads, all of the critical flight hardware for the orbiters and the International Space Station, and NASA’s Swift spacecraft, awaiting launch in October, were well protected and unharmed.

  8. KSC-2012-4433

    NASA Image and Video Library

    2012-08-14

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility OPF Bay 2 at NASA’s Kennedy Space Center in Florida, weight and center of gravity checks are underway on the space shuttle Endeavour. Monitoring data on the activity are United Space Alliance USA OPF Manager Mark Barnes, standing to the left, and Mike McClure, of USA Orbiter Handling Engineering. Seated, from the left, are USA move director Cliff Semonski, USA move director Mark McGee, USA lead aerospace Quality Mission Assurance inspector Jesse English, Doug Robison, of USA Orbiter Handling Engineering, and Robert Handl, of Boeing Mass Properties. The work is part of Transition and Retirement of the remaining space shuttles, Endeavour and Atlantis. Endeavour is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA’s orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Jim Grossmann

  9. KSC-04PD-0155

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu oversees the image lab that is using an advanced SGI TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASAs Marshall Space Flight Center in Alabama in reviewing the tape.

  10. KSC-04PD-0157

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Reporters are eager to hear from Armando Oliu about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu, Final Inspection Team lead for the Shuttle program, oversees the lab that is using an advanced SGI TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASAs Marshall Space Flight Center in Alabama in reviewing the tape.

  11. KSC-04PD-0156

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aidced the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu oversees the image lab that is using an advanced SGI TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASAs Marshall Space Flight Center in Alabama in reviewing the tape.

  12. MOCR activity during Day 4 of STS-3 mission

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Major General J.A. Abrahamson, right, talks to JSC Director Christopher C. Kraft, Jr., (seated left) and Space Shuttle Program Manager Glynn S. Lunney on the back row of consoles in the mission operations control room (MOCR) in the Johnson Space Center mission control center. The reflection behind the men is a window for the MOCR viewing room (28772,28775); Abrahamson, second right, talks to JSC's Aaron Cohen, right, as Kraft (seated left) and Lunney listen in mission control (28773); Flight controller J.E. Connor monitors a television transmission from the Space Shuttle Columbia during day 4 of the STS-3 mission. Conner is seated at his INCO console (28774).

  13. Crew appliance study

    NASA Technical Reports Server (NTRS)

    Proctor, B. W.; Reysa, R. P.; Russell, D. J.

    1975-01-01

    Viable crew appliance concepts were identified by means of a thorough literature search. Studies were made of the food management, personal hygiene, housekeeping, and off-duty habitability functions to determine which concepts best satisfy the Space Shuttle Orbiter and Modular Space Station mission requirements. Models of selected appliance concepts not currently included in the generalized environmental-thermal control and life support systems computer program were developed and validated. Development plans of selected concepts were generated for future reference. A shuttle freezer conceptual design was developed and a test support activity was provided for regenerative environmental control life support subsystems.

  14. KSC01pp0134

    NASA Image and Video Library

    2001-01-19

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis begins rolling back to the Vehicle Assembly Building on the crawler-transporter. In the VAB workers will conduct inspections, make continuity checks and conduct X-ray analysis on the 36 solid rocket booster cables located inside each booster’s system tunnel. An extensive evaluation of NASA’s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching Jan. 19. The launch has been rescheduled no earlier than Feb. 6

  15. KSC01padig015

    NASA Image and Video Library

    2001-01-19

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis begins moving back to the Vehicle Assembly Building where workers will conduct inspections, make continuity checks and conduct X-ray analysis on the 36 solid rocket booster cables located inside each booster’s system tunnel. An extensive evaluation of NASA’s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching Jan. 19. The launch has been rescheduled no earlier than Feb. 6

  16. Space shuttle avionics system

    NASA Technical Reports Server (NTRS)

    Hanaway, John F.; Moorehead, Robert W.

    1989-01-01

    The Space Shuttle avionics system, which was conceived in the early 1970's and became operational in the 1980's represents a significant advancement of avionics system technology in the areas of systems and redundacy management, digital data base technology, flight software, flight control integration, digital fly-by-wire technology, crew display interface, and operational concepts. The origins and the evolution of the system are traced; the requirements, the constraints, and other factors which led to the final configuration are outlined; and the functional operation of the system is described. An overall system block diagram is included.

  17. KENNEDY SPACE CENTER, FLA. - Lisa Malone, deputy director of External Relations and Business Development at KSC, emcees a ceremony in the Space Station Processing Facility to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Speakers at the ceremony included KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Lisa Malone, deputy director of External Relations and Business Development at KSC, emcees a ceremony in the Space Station Processing Facility to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Speakers at the ceremony included KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  18. KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. The signing was part of a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA); and NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, sign documents officially transferring ownership of Node 2 between the ESA and NASA. The signing was part of a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s William Gerstenmaier, International Space Station Program manager; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  19. STS-114: Mission Status/Post MMT Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Paul Hill, STS-114 Lead Shuttle Flight Director, and Wayne Hill, Deputy Manager for the Space Shuttle Program and Chair of the Mission Management Team, discusses with the News media the complete operational success of the STS-114 Flight. Paul Hill mentioned the undocking and flight around did occur right on time that day, and checking out Discovery's entry system in preparation for de-orbit on Monday morning. He summarized the long list of flight operations and activities demonstrated like various forms of inspections on RCC and tile, gap fillers and blanket, imagery and photography, three space walks and re-supply. Wayne Hill talked about flight control check out, pre-entry plans, opportunity landing in Cape Carneval, Florida and back-up landing operations in Edwards Air Force Base, California. He emphasized the concern for crew and public safety during landing. News media focused their questions on public expectations and feelings about the return of the Shuttle to Earth, analysis of mechanical and technical failures, safety of dark or daylight landings.

  20. Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility program

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Rudland, R. S.

    1985-01-01

    The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.

  1. Advanced Concept

    NASA Image and Video Library

    2008-03-15

    Shown is an illustration of the Ares I concept. The first stage will be a single, five-segment solid rocket booster derived from the space shuttle programs reusable solid rocket motor. The first stage is managed by NASA's Marshall Space Flight Center in Huntsville, Alabama for NASA's Constellation program.

  2. The Role and Training of NASA Astronauts in the Post-Shuttle Era

    NASA Technical Reports Server (NTRS)

    2011-01-01

    In May 2010 the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC's Committee on Human Spaceflight Crew Operations was tasked to: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change following space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA's human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA's human spaceflight program has garnered considerable discussion in recent years, and there is considerable uncertainty about what that program will involve in the coming years, the committee was not tasked to address whether or not human spaceflight should continue, or what form it should take. The committee's task restricted it to studying those activities managed by the Flight Crew Operations Directorate, or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

  3. STS-114: Discovery Launch Readiness Press Conference

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Michael Griffin, NASA Administrator; Wayne Hale, Space Shuttle Deputy Program Manager; Mike Wetmore, Director of Shuttle Processing; and 1st Lieutenant Mindy Chavez, Launch Weather Officer-United States Air Force 45th Weather Squadron are in attendance for this STS-114 Discovery launch readiness press conference. The discussion begins with Wayne Hale bringing to the table a low level sensor device for everyone to view. He talks in detail about all of the extensive tests that were performed on these sensors and the completion of these ambient tests. Chavez presents her weather forecast for the launch day of July 26th 2005. Michael Griffin and Wayne Hale answer questions from the news media pertaining to the sensors and launch readiness. The video ends with footage of Pilot Jim Kelly and Commander Eileen Collins conducting test flights in a Shuttle Training Aircraft (STA) that simulates Space Shuttle landing.

  4. KSC-06pd1287

    NASA Image and Video Library

    2006-06-29

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, Michele Perchonok packs the meals that the STS-121 crew will eat on the 12-day mission. Perchonok is a NASA Subsystem manager for Shuttle Food Systems from Johnson Space Center. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Diets are designed to supply each astronaut with 100 percent of the daily value of vitamins and minerals necessary for the environment of space. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. A supplementary food supply (pantry) consisting of two extra days per person is stowed aboard the space shuttle for each flight. Pantry items are flown in addition to the menu in case the flight is unexpectedly extended because of bad weather at the landing site or for some other unforeseen reason. Photo credit: NASA/Kim Shiflett

  5. KSC-06pd1286

    NASA Image and Video Library

    2006-06-29

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, Michele Perchonok packs the meals that the STS-121 crew will eat on the 12-day mission. Perchonok is a NASA Subsystem manager for Shuttle Food Systems from Johnson Space Center. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Diets are designed to supply each astronaut with 100 percent of the daily value of vitamins and minerals necessary for the environment of space. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. A supplementary food supply (pantry) consisting of two extra days per person is stowed aboard the space shuttle for each flight. Pantry items are flown in addition to the menu in case the flight is unexpectedly extended because of bad weather at the landing site or for some other unforeseen reason. Photo credit: NASA/Kim Shiflett

  6. Shuttle cryogenic supply system optimization study. Volume 1: Management supply, sections 1 - 3

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An analysis of the cryogenic supply system for use on space shuttle vehicles was conducted. The major outputs of the analysis are: (1) evaluations of subsystem and integrated system concepts, (2) selection of representative designs, (3) parametric data and sensitivity studies, (4) evaluation of cryogenic cooling in environmental control subsystems, and (5) development of mathematical model.

  7. KENNEDY SPACE CENTER, FLA. - On a tour of the Orbiter Processing Facility, Center Director Jim Kennedy (center) and Deputy Director Woodrow Whitlow Jr. (far left) look at the external tank door corrosion work being done on Endeavour. Next to Whitlow is Bruce Buckingham, assistant to the deputy director. Providing information, at right, are Orbiter Airframe Engineering ground area manager, and Tom Roberts, Airframe Engineering System specialist, both with United Space Alliance; and Joy Huff, with KSC Space Shuttle Processing. Endeavour is in its Orbiter Major Modification period, which began in December 2003.

    NASA Image and Video Library

    2004-02-25

    KENNEDY SPACE CENTER, FLA. - On a tour of the Orbiter Processing Facility, Center Director Jim Kennedy (center) and Deputy Director Woodrow Whitlow Jr. (far left) look at the external tank door corrosion work being done on Endeavour. Next to Whitlow is Bruce Buckingham, assistant to the deputy director. Providing information, at right, are Orbiter Airframe Engineering ground area manager, and Tom Roberts, Airframe Engineering System specialist, both with United Space Alliance; and Joy Huff, with KSC Space Shuttle Processing. Endeavour is in its Orbiter Major Modification period, which began in December 2003.

  8. KENNEDY SPACE CENTER, FLA. - On a tour of the Orbiter Processing Facility, Center Director Jim Kennedy (center) and Deputy Director Woodrow Whitlow Jr. (far left) look at the external tank door corrosion work being done on Endeavour. Next to Whitlow is Bruce Buckingham, assistant to the deputy director. Providing information, at right, are Kathy Laufenberg, Orbiter Airframe Engineering ground area manager, and Tom Roberts, Airframe Engineering System specialist, both with United Space Alliance; and Joy Huff, with Space Shuttle Processing. Endeavour is in its Orbiter Major Modification period, which began in December 2003.

    NASA Image and Video Library

    2004-02-25

    KENNEDY SPACE CENTER, FLA. - On a tour of the Orbiter Processing Facility, Center Director Jim Kennedy (center) and Deputy Director Woodrow Whitlow Jr. (far left) look at the external tank door corrosion work being done on Endeavour. Next to Whitlow is Bruce Buckingham, assistant to the deputy director. Providing information, at right, are Kathy Laufenberg, Orbiter Airframe Engineering ground area manager, and Tom Roberts, Airframe Engineering System specialist, both with United Space Alliance; and Joy Huff, with Space Shuttle Processing. Endeavour is in its Orbiter Major Modification period, which began in December 2003.

  9. Space Transportation System Liftoff Debris Mitigation Process Overview

    NASA Technical Reports Server (NTRS)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  10. KSC-04pd1852

    NASA Image and Video Library

    2004-09-18

    KENNEDY SPACE CENTER, FLA. - Looking at damage on the second floor of the hurricane-ravaged Thermal Protection System Facility (TPSF) are (from left) Kevin Harrington, manager of Soft Goods Production, TPSF ; Martin Wilson, manager of Thermal Protection System operations for USA; Scott Kerr, KSC director of Spaceport Services; and James Kennedy, Center director. The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof during Hurricane Frances, which blew across Central Florida Sept. 4-5. Undamaged equipment was removed from the TPSF and stored in the RLV hangar. NASA Administrator Sean O’Keefe and NASA Associate Administrator of Space Operations Mission Directorate William Readdy are visiting KSC to survey the damage sustained by KSC facilities from the hurricane. The Labor Day storm also caused significant damage to the Vehicle Assembly Building and Processing Control Center. Additionally, the Operations and Checkout Building, Vertical Processing Facility, Hangar AE, Hangar S and Hangar AF Small Parts Facility each received substantial damage. However, well-protected and unharmed were NASA’s three Space Shuttle orbiters - Discovery, Atlantis and Endeavour - along with the Shuttle launch pads, all of the critical flight hardware for the orbiters and the International Space Station, and NASA’s Swift spacecraft that is awaiting launch in October.

  11. KSC-06pd0047

    NASA Image and Video Library

    2006-01-12

    KENNEDY SPACE CENTER, FLA. - Pilot Steve Fossett talks to the media after his landing of the Virgin Atlantic Airways GlobalFlyer aircraft at NASA Kennedy Space Center’s Shuttle Landing Facility. Standing at left are KSC Spaceport Development Manager Jim Ball, Center Director James Kennedy and Executive Director of Florida Space Authority Winston Scott. The aircraft is being relocated from Salina, Kan., to the Shuttle Landing Facility to begin preparations for an attempt to set a new world record for the longest flight made by any aircraft. An exact takeoff date for the record-setting flight has not been determined and is contingent on weather and jet-stream conditions. The window for the attempt opens in mid-January, making the flight possible anytime between then and the end of February. NASA agreed to let Virgin Atlantic Airways use Kennedy's Shuttle Landing Facility as a takeoff site. The facility use is part of a pilot program to expand runway access for non-NASA activities.

  12. Risk management in international manned space program operations.

    PubMed

    Seastrom, J W; Peercy, R L; Johnson, G W; Sotnikov, B J; Brukhanov, N

    2004-02-01

    New, innovative joint safety policies and requirements were developed in support of the Shuttle/Mir program, which is the first phase of the International Space Station program. This work has resulted in a joint multinational analysis culminating in joint certification for mission readiness. For these planning and development efforts, each nation's risk programs and individual safety practices had to be integrated into a comprehensive and compatible system that reflects the joint nature of the endeavor. This paper highlights the major incremental steps involved in planning and program integration during development of the Shuttle/Mir program. It traces the transition from early development to operational status and highlights the valuable lessons learned that apply to the International Space Station program (Phase 2). Also examined are external and extraneous factors that affected mission operations and the corresponding solutions to ensure safe and effective Shuttle/Mir missions. c2003 Published by Elsevier Ltd.

  13. Voice loops as coordination aids in space shuttle mission control.

    PubMed

    Patterson, E S; Watts-Perotti, J; Woods, D D

    1999-01-01

    Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.

  14. KSC-2010-5377

    NASA Image and Video Library

    2010-11-01

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, NASA Public Affairs Officer John Yembrick welcomes participants to the STS-133 Tweetup. NASA is hosting about 150 of its Twitter followers from around the world and several dozen states and providing them with a behind-the-scenes perspective to share with their own followers on the social networking service. The "Tweeps," as NASA calls them, will have a chance to tour Kennedy and meet with shuttle technicians, managers, engineers and astronauts. They also will receive a demonstration of Robonaut, a human-like robot similar to the one that will be delivered to the International Space Station on the STS-133 mission. Space shuttle Discovery and its STS-133 crew are scheduled to launch Nov. 3 at 3:52 p.m. EDT. For more information on the upcoming mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  15. KSC-2010-5382

    NASA Image and Video Library

    2010-11-01

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, NASA astronaut Ron Garan addresses participants of the STS-133 Tweetup. NASA is hosting about 150 of its Twitter followers from around the world and several dozen states and providing them with a behind-the-scenes perspective to share with their own followers on the social networking service. The "Tweeps," as NASA calls them, will have a chance to tour Kennedy and meet with shuttle technicians, managers, engineers and astronauts. They also will receive a demonstration of Robonaut, a human-like robot similar to the one that will be delivered to the International Space Station on the STS-133 mission. Space shuttle Discovery and its STS-133 crew are scheduled to launch Nov. 3 at 3:52 p.m. EDT. For more information on the upcoming mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  16. KSC-2010-5376

    NASA Image and Video Library

    2010-11-01

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, NASA Public Affairs Officer John Yembrick welcomes participants to the STS-133 Tweetup. NASA is hosting about 150 of its Twitter followers from around the world and several dozen states and providing them with a behind-the-scenes perspective to share with their own followers on the social networking service. The "Tweeps," as NASA calls them, will have a chance to tour Kennedy and meet with shuttle technicians, managers, engineers and astronauts. They also will receive a demonstration of Robonaut, a human-like robot similar to the one that will be delivered to the International Space Station on the STS-133 mission. Space shuttle Discovery and its STS-133 crew are scheduled to launch Nov. 3 at 3:52 p.m. EDT. For more information on the upcoming mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  17. Voice loops as coordination aids in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Patterson, E. S.; Watts-Perotti, J.; Woods, D. D.

    1999-01-01

    Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.

  18. Space shuttle configuration accounting functional design specification

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis is presented of the requirements for an on-line automated system which must be capable of tracking the status of requirements and engineering changes and of providing accurate and timely records. The functional design specification provides the definition, description, and character length of the required data elements and the interrelationship of data elements to adequately track, display, and report the status of active configuration changes. As changes to the space shuttle program levels II and III configuration are proposed, evaluated, and dispositioned, it is the function of the configuration management office to maintain records regarding changes to the baseline and to track and report the status of those changes. The configuration accounting system will consist of a combination of computers, computer terminals, software, and procedures, all of which are designed to store, retrieve, display, and process information required to track proposed and proved engineering changes to maintain baseline documentation of the space shuttle program levels II and III.

  19. Robot Rescue

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Tests with robots and the high-fidelity Hubble Space Telescope mockup astronauts use to train for servicing missions have convinced NASA managers it may be possible to maintain and upgrade the orbiting observatory without sending a space shuttle to do the job. In a formal request last week, the agency gave bidders until July 16 to sub-mit proposals for a robotic mission to the space telescope before the end of 2007. At a minimum, the mission would attach a rocket motor to deorbit the telescope safely when its service life ends. In the best case, it would use state-of-the- art robotics to prolong its life on orbit and install new instruments. With the space shuttle off-limits for the job under strict post-Columbia safety policies set by Administrator Sean O'Keefe, NASA has designed a "straw- man" robotic mission that would use an Atlas V or Delta N to launch a 20,ooO-lb. "Hubble Robotic Vehicle" to service the telescope. There, a robotic arm would grapple it, much as the shuttle does.

  20. KSC-00padig073

    NASA Image and Video Library

    2000-11-02

    Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS) presents an award of appreciation to H.T. Everett, KSC Propellants manager, at the commissioning of a new high-pressure helium pipeline at Kennedy Space Center. The pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch’s worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Center Director Roy Bridges;); Col. Samuel Dick, representative of the 45th Space Wing; Ramon Lugo, acting executive director, JPMO; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS

  1. KSC00padig073

    NASA Image and Video Library

    2000-11-02

    Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS) presents an award of appreciation to H.T. Everett, KSC Propellants manager, at the commissioning of a new high-pressure helium pipeline at Kennedy Space Center. The pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch’s worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Center Director Roy Bridges;); Col. Samuel Dick, representative of the 45th Space Wing; Ramon Lugo, acting executive director, JPMO; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS

  2. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS) presents an award of appreciation to H.T. Everett, KSC Propellants manager, at the commissioning of a new high-pressure helium pipeline at Kennedy Space Center. The pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Center Director Roy Bridges;); Col. Samuel Dick, representative of the 45th Space Wing; Ramon Lugo, acting executive director, JPMO; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS.

  3. Thermal Management Coating As Thermal Protection System for Space Transportation System

    NASA Technical Reports Server (NTRS)

    Kaul, Raj; Stuckey, C. Irvin

    2003-01-01

    This paper presents viewgraphs on the development of a non-ablative thermal management coating used as the thermal protection system material for space shuttle rocket boosters and other launch vehicles. The topics include: 1) Coating Study; 2) Aerothermal Testing; 3) Preconditioning Environments; 4) Test Observations; 5) Lightning Strike Test Panel; 6) Test Panel After Impact Testing; 7) Thermal Testing; and 8) Mechanical Testing.

  4. Environmental Assessment for Routine Basewide Military-Sponsored Training Exercises, Edwards Air Force Base, California

    DTIC Science & Technology

    2007-02-01

    control AVAQMD Antelope Valley Air Quality Management District AQMD Air Quality Management Districts BACT Best Available Control Technology BLM Bureau...Aeronautics NAGPRA Native American Graves Protection and Repatriation Act NASA National Aeronautics and Space Administration NBCC nuclear, biological...support of the National Aeronautics and Space Administration ( NASA ) shuttle program is required to be maintained. This includes rescue, medical evaluation

  5. Phase 111A Crew Interface Specifications Development for Inflight Maintenance and Stowage Functions

    NASA Technical Reports Server (NTRS)

    Carl, John G.

    1973-01-01

    This report presents the findings and data products developed during the Phase IIIA Crew Interface Specification Study for Inflight Maintenance and Stowage Functions, performed by General Electric for the NASA, Johnson Space Center with a set of documentation that can be used as definitive guidelines to improve the present process of defining, controlling and managing flight crew interface requirements that are related to inflight maintenance (including assembly and servicing) and stowage functions. During the Phase IIIA contract period, the following data products were developed: 1) Projected NASA Crew Procedures/Flight Data File Development Process. 2) Inflight Maintenance Management Process Description. 3) Preliminary Draft, General Specification, Inflight Maintenance Management Requirements. 4) Inflight Maintenance Operational Process Description. 5) Preliminary Draft, General Specification, Inflight Maintenance Task and Support Requirements Analysis. 6) Suggested IFM Data Processing Reports for Logistics Management The above Inflight Maintenance data products have been developed during the Phase IIIA study after review of Space Shuttle Program Documentation, including the Level II Integrated Logistics Requirements and other DOD and NASA data relative to Payloads Accommodations and Satellite On-Orbit Servicing. These Inflight Maintenance data products were developed to be in consonance with Space Shuttle Program technical and management requirements.

  6. Space transportation system flight 2 OSTA-1 scientific payload data management plan: Addendum

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Flight events for the OSTA-1 scientific payload on the second flight of the Space Shuttle, STS-2 are described. Data acquisition is summarized. A discussion of problems encountered and a preliminary evaluation of data quality is also provided.

  7. Carbon Dioxide Removal Troubleshooting aboard the International Space Station (ISS) during Space Shuttle (STS) Docked Operations

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.; Cover, John M.

    2009-01-01

    The International Space Station (ISS) represents a largely closed-system habitable volume which requires active control of atmospheric constituents, including removal of exhaled Carbon Dioxide (CO2). The ISS provides a unique opportunity to observe system requirements for (CO2) removal. CO2 removal is managed by the Carbon Dioxide Removal Assembly (CDRA) aboard the US segment of ISS and by Lithium Hydroxide (LiOH) aboard the Space Shuttle (STS). While the ISS and STS are docked, various methods are used to balance the CO2 levels between the two vehicles, including mechanical air handling and management of general crew locations. Over the course of ISS operation, several unexpected anomalies have occurred which have required troubleshooting, including possible compromised performance of the CDRA and LiOH systems, and possible imbalance in CO2 levels between the ISS and STS while docked. This paper will cover efforts to troubleshoot the CO2 removal systems aboard the ISS and docked STS.

  8. Spacelab

    NASA Image and Video Library

    1990-12-02

    Onboard the Space Shuttle Orbiter Columbia (STS-35), the various components of the Astro-1 payload are seen backdropped against dark space. Parts of the Hopkins Ultraviolet Telescope (HUT), Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE) are visible on the Spacelab pallet. The Broad-Band X-Ray Telescope (BBXRT) is behind the pallet and is not visible in this scene. The smaller cylinder in the foreground is the igloo. The igloo was a pressurized container housing the Command Data Management System, that interfaced with the in-cabin controllers to control the Instrument Pointing System (IPS) and the telescopes. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Astronomical targets of observation selected for Astro missions included planets, stars, star clusters, galaxies, clusters of galaxies, quasars, remnants of exploded stars (supernovae), clouds of gas and dust (nebulae), and the interstellar medium. Managed by the Marshall Space Flight Center, the Astro-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  9. KSC-02pd1866

    NASA Image and Video Library

    2002-12-07

    KENNEDY SPACE CENTER, FLA. - Mrs. Daniel R. Mulville shakes hands with Kent V. Rominger, Deputy Director of Flight Crew Operations, on the runway of the Shuttle Landing Facility following the landing of Endeavour. Mrs. Mulville is the wife of Dr. Daniel R. Mulville, NASA Associate Deputy Administrator. In the group, from left are KSC Director Roy D. Bridges; Mrs. Mulville; Dr. Mulville (back to camera); James D. Halsell Jr., Manager of Launch Integration at KSC, Space Shuttle Program; Rominger; and STS-113 Commander James Wetherbee. Commander Wetherbee earlier guided Space Shuttle Endeavour to a flawless touchdown on runway 33 at the Shuttle Landing Facility after completing the 13-day, 18-hour, 48-minute, 5.74-million mile STS-113 mission to the International Space Station. Main gear touchdown was at 2:37:12 p.m. EST, nose gear touchdown was at 2:37:23 p.m., and wheel stop was at 2:38:25 p.m. Poor weather conditions thwarted landing opportunities until a fourth day, the first time in Shuttle program history that a landing has been waved off for three consecutive days. The orbiter also carried the other members of the STS-113 crew, Pilot Paul Lockhart and Mission Specialists Michael Lopez-Alegria and John Herrington, as well as the returning Expedition Five crew, Commander Valeri Korzun, ISS Science Officer Peggy Whitson and Flight Engineer Sergei Treschev. The installation of the P1 truss on the International Space Station was accomplished during the mission.

  10. Space Shuttle Guidance, Navigation, and Rendezvous Knowledge Capture Reports. Revision 1

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2011-01-01

    This document is a catalog and readers guide to lessons learned, experience, and technical history reports, as well as compilation volumes prepared by United Space Alliance personnel for the NASA/Johnson Space Center (JSC) Flight Dynamics Division.1 It is intended to make it easier for future generations of engineers to locate knowledge capture documentation from the Shuttle Program. The first chapter covers observations on documentation quality and research challenges encountered during the Space Shuttle and Orion programs. The second chapter covers the knowledge capture approach used to create many of the reports covered in this document. These chapters are intended to provide future flight programs with insight that could be used to formulate knowledge capture and management strategies. The following chapters contain descriptions of each knowledge capture report. The majority of the reports concern the Space Shuttle. Three are included that were written in support of the Orion Program. Most of the reports were written from the years 2001 to 2011. Lessons learned reports concern primarily the shuttle Global Positioning System (GPS) upgrade and the knowledge capture process. Experience reports on navigation and rendezvous provide examples of how challenges were overcome and how best practices were identified and applied. Some reports are of a more technical history nature covering navigation and rendezvous. They provide an overview of mission activities and the evolution of operations concepts and trajectory design. The lessons learned, experience, and history reports would be considered secondary sources by historians and archivists.

  11. Total Quality Management in Space Shuttle Main Engine manufacturing

    NASA Technical Reports Server (NTRS)

    Ding, J.

    1992-01-01

    The Total Quality Management (TQM) philosophy developed in the Marshall Space Flight Center (MSFC) is briefly reviewed and the ongoing TQM implementation effort which is being pursued through the continuous improvement (CI) process is discussed. TQM is based on organizational excellence which integrates the new supportive culture with the technical tools necessary to identify, assess, and correct manufacturing processes. Particular attention is given to the prime contractor's change to the organizational excellence management philosophy in SSME manufacturing facilities.

  12. KSC-04PD-2676

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Bill Pickavance (in front), vice president, associate program manager of Florida Operations, United Space Alliance, joins workers Sam Dove, left, and Dan Drake in the cab of the Crawler Transporter before a road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.

  13. The Spartan 207 free-flyer is held in a low-hover mode above its berth in the Space Shuttle

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- The Spartan 207 free-flyer is held in a low-hover mode above its berth in the Space Shuttle Endeavour's cargo bay in the grasp of the Remote Manipulator System (RMS). The Spacehab module can be seen in the foreground. The free-flyer was re-captured by the six crew members on May 21, 1996. The crew has spent a portion of the early stages of the mission in various activities involving the Spartan 207 and the related Inflatable Antenna Experiment (IAE). The Spartan project is managed by NASA's Goddard Space Flight Center (GSFC) for NASA's Office of Space Science, Washington, D.C. GMT: 09:51:50.

  14. Hubble Space Telescope

    NASA Image and Video Library

    2017-12-08

    The Hubble Space Telescope in a picture snapped by a Servicing Mission 4 crewmember just after the Space Shuttle Atlantis captured Hubble with its robotic arm on May 13, 2009, beginning the mission to upgrade and repair the telescope. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  15. Use of an engineering data management system in the analysis of Space Shuttle Orbiter tiles

    NASA Technical Reports Server (NTRS)

    Giles, G. L.; Vallas, M.

    1981-01-01

    This paper demonstrates the use of an engineering data management system to facilitate the extensive stress analyses of the Space Shuttle Orbiter thermal protection system. Descriptions are given of the approach and methods used (1) to gather, organize, and store the data, (2) to query data interactively, (3) to generate graphic displays of the data, and (4) to access, transform, and prepare the data for input to a stress analysis program. The relational information management system was found to be well suited to the tile analysis problem because information related to many separate tiles could be accessed individually from a data base having a natural organization from an engineering viewpoint. The flexible user features of the system facilitated changes in data content and organization which occurred during the development and refinement of the tile analysis procedure. Additionally, the query language supported retrieval of data to satisfy a variety of user-specified conditions.

  16. STS-114: Engine Cut-Off Sensors Are a No-Go: Teaching Notes for NASA Case Study

    NASA Technical Reports Server (NTRS)

    Ransom, Khadijah S.; Johnson, Grace K.

    2013-01-01

    This case study format is intended to simulate the experience of facing the same difficult challenges and making the same critical decisions as managers, engineers, and scientists in the Space Shuttle Program. It has been designed for use in the classroom setting to help students develop skills related to decision-making. Students will read about the engine cut-off sensor anomaly which created challenges during the STS-114 mission and have the opportunity to make decisions as lead NASA engineers and Mission Management Team members. Included within this document are three case study presentation options - class discussion, group activity, and open-ended research. Please read the full case prior to in-class presentation to allow ample time for students' analysis and reflection, as well as to prepare additional questions. activities or exercises, material selection, etc. Depending upon the setting of your presentation and the number of participants, please choose at least one presentation format beforehand and plan accordingly. You may expect the following learning objectives by using the proposed formats. Learning Objectives: To enable students to experience the responsibilities of NASA management, engineers, and analysis; to discover possible procedures for investigating system anomalies; to become familiar with the liquid hydrogen low level engine cut-off sensor, including its function, connecting components, and location within the Space Shuttle; and to encourage critical analysis and stimulating discussion of Space Shuttle mission challenges.

  17. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1989-01-01

    This new collection of papers on aerospace management issues contains a history of NASA program and project management, some lessons learned in the areas of management and budget from the Space Shuttle Program, an analysis of tools needed to keep large multilayer programs organized and on track, and an update of resources for NASA managers. A wide variety of opinions and techniques are presented.

  18. STS-78 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-78 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-eighth flight of the Space Shuttle Program, the fifty-third flight since the return-to-flight, and the twentieth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-79; three SSME's that were designated as serial numbers 2041, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-081. The RSRM's, designated RSRM-55, were installed in each SRB and the individual RSRM's were designated as 360L055A for the left SRB, and 360L055B for the right SRB. The STS-78 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 7, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of this flight was to successfully perform the planned operations of the Life and Microgravity Spacelab experiments. The secondary objectives of this flight were to complete the operations of the Orbital Acceleration Research Experiment (OARE), Biological Research in Canister Unit-Block II (BRIC), and the Shuttle Amateur Radio Experiment II-Configuration C (SAREX-II). The STS-78 mission was planned as a 16-day, plus one day flight plus two contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-78 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 2. The Government Furnished Equipment/Flight Crew Equipment (GFE/FCE) Problem Tracking List is shown in Table 3. The Marshall Space Flight Center (MSFC) Problem Tracking List is shown in Table 4. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).

  19. The prevention of electronical breakdown and electrostatic voltage problems in the space shuttle and its payloads. Part 2: Design guides and operations considerations

    NASA Technical Reports Server (NTRS)

    Whitson, D. W.

    1975-01-01

    The specific electrical discharge problems that can directly affect the shuttle vehicle and its payloads are addressed. General design guidelines are provided to assist flight hardware managers in minimizing these kinds of problems. Specific data are included on workmanship practices and system testing while in low pressure environments. Certain electrical discharge problems that may be unique to the design of the shuttle vehicle itself and to its various mission operational models are discussed.

  20. Study of space shuttle orbiter system management computer function. Volume 2: Automated performance verification concepts

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The findings are presented of investigations on concepts and techniques in automated performance verification. The investigations were conducted to provide additional insight into the design methodology and to develop a consolidated technology base from which to analyze performance verification design approaches. Other topics discussed include data smoothing, function selection, flow diagrams, data storage, and shuttle hydraulic systems.

  1. Shuttle Atlantis in Mate-Demate Device Being Loaded onto SCA-747 for Return to Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows a night view of the orbiter Atlantis being loaded onto one of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at the Dryden Flight Research Center, Edwards, California. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  2. STS-127 Firing Room

    NASA Image and Video Library

    2009-07-11

    Mike Suffredini, NASA Manager, International Space Station (ISS) Program, talks with other NASA mission managers in from Firing Room Four of the Launch Control Center at NASA's Kennedy Space Center in Cape Canaveral, Florida, Sunday, July 12, 2009. The space shuttle Endeavour is set to launch at 7:13p.m. EDT with the crew of STS-127 and start a 16-day mission that will feature five spacewalks and complete construction of the Japan Aerospace Exploration Agency's Kibo laboratory. Photo Credit: (NASA/Bill Ingalls)

  3. KSC-04PD-0392

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. At the SRB Assembly and Refurbishment Facility, STS-114 Commander Eileen Collins (center) is flanked by Bob Herman (left), SRB deputy associate program manager with United Space Alliance, and Jim Carleton (right), director, SRB Program Management, as they walk past solid rocket booster aft skirts. The crew is at KSC for familiarization with Shuttle and mission equipment. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment, plus the external stowage platform, to the International Space Station.

  4. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-08-11

    Bohdan Bejmuk, chair, Constellation program Standing Review Board, and former manager of the Boeing Space Shuttle and Sea Launch programs, right, asks a question during the final meeting of the Human Space Flight Review Committee as Dr. Wanda Austin, president and CEO, The Aerospace Corp., looks on at left, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)

  5. Artist concept of STS-34 SSBUV in orbit calibration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Artist concept titled SSBUV IN ORBIT CALIBRATION shows how the shuttle solar backscatter ultraviolet (UV) (SSBUV) instrument will calibrate ozone measuring space-based instruments on the National Oceanic and Atmospheric Administration's (NOAA's) TIROS satellites NOAA-9 and NOAA-11. During STS-34, SSBUV instruments mounted in get away special (GAS) canisters in Atlantis', Orbiter Vehicle (OV) 104's, payload bay will use the Space Shuttle's orbital flight path to assess instrument performance by directly comparing data from identical instruments aboard the TIROS satellite, as OV-104 and the satellite pass over the same Earth location within a one-hour window. SSBUV is managed by NASA's Goddard Space Flight Center (GSFC). Alternate number on image is E66.001.

  6. KSC-04PD-0158

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Behind him at right is Mike Rein, External Affairs division chief. Oliu oversees the image lab that is using an advanced SGI TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASAs Marshall Space Flight Center in Alabama in reviewing the tape.

  7. KSC-2009-2026

    NASA Image and Video Library

    2009-03-11

    CAPE CANAVERAL, Fla. – Seen in the photo is the hydrogen vent line attached to the Ground Umbilical Carrier Plate on space shuttle Discovery's external fuel tank. The shuttle is on Launch Pad 39A at NASA's Kennedy Space Center in Florida. A leak of hydrogen at the location during tanking caused the STS-119 mission to be scrubbed at 2:36 p.m. March 11. The vent line is at the intertank and is the overboard vent to the pad and the flare stack where the vented hydrogen is burned off. Mission management teams believe they have sufficient understanding of the repair plan to continue toward a March 15 launch at 7:43 p.m. EDT. Photo courtesy of United Space Alliance

  8. Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Scholz, A. L.; Hart, M. T.; Lowry, D. J.

    1987-01-01

    Methods and technolgoy were defined to reduce the overall operations cost of a major space program. Space Shuttle processing at Kennedy Space Center (KSC) was designed as the working model that would be the source of the operational information. Methods of improving efficiency of ground operations were assessed and technology elements that could reduce cost identified. Emphasis is on: (1) specific technology items and (2) management approaches required to develop and support efficient ground operations. Prime study results are to be recommendations on how to achieve more efficient operations and identification of existing or new technology that would make vehicle processing in both the current program and future programs more efficient and, therefore, less costly.

  9. Use of an engineering data management system in the analysis of space shuttle orbiter tiles

    NASA Technical Reports Server (NTRS)

    Giles, G. L.; Vallas, M.

    1981-01-01

    The use of an engineering data management system to facilitate the extensive stress analyses of the space shuttle orbiter thermal protection system is demonstrated. The methods used to gather, organize, and store the data; to query data interactively; to generate graphic displays of the data; and to access, transform, and prepare the data for input to a stress analysis program are described. Information related to many separate tiles can be accessed individually from the data base which has a natural organization from an engineering viewpoint. The flexible user features of the system facilitate changes in data content and organization which occur during the development and refinement of the tile analysis procedure. Additionally, the query language supports retrieval of data to satisfy a variety of user-specified conditions.

  10. KSC-03pd0578

    NASA Image and Video Library

    2003-03-04

    KENNEDY SPACE CENTER, FLA. -- -- Lifting their shovels for the groundbreaking of the Operations Support Building II are (left to right) Bill Pickavance, Vice President & Deputy Program Manager Florida Operations, United Space Alliance; Mike Wetmore, director of Shuttle Processing; Miguel Morales, chief, Facilities Division, Spaceport Services; Mike Sumner, chief of operations, Spaceport Services; David Wolfberg, designer of the facility, with Architect and Engineers Wolfberg, Alvarez and Partners of Coral Gables; Roy Bridges, KSC director; and Don Minderman, OSB II project manager, Spaceport Services. Not shown: David Boland, David Boland Inc.(construction company). The new building will replace modular housing constructed more than 20 years ago and house NASA and contractor support staff for shuttle operations. The demolition of the modular buildings has begun and construction will immediately follow. The new structure is projected to be ready in April 2005.

  11. KSC-03PD-0578

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- -- Lifting their shovels for the groundbreaking of the Operations Support Building II are (left to right) Bill Pickavance, Vice President & Deputy Program Manager Florida Operations, United Space Alliance; Mike Wetmore, director of Shuttle Processing; Miguel Morales, chief, Facilities Division, Spaceport Services; Mike Sumner, chief of operations, Spaceport Services; David Wolfberg, designer of the facility, with Architect and Engineers Wolfberg, Alvarez and Partners of Coral Gables; Roy Bridges, KSC director; and Don Minderman, OSB II project manager, Spaceport Services. Not shown: David Boland, David Boland Inc.(construction company). The new building will replace modular housing constructed more than 20 years ago and house NASA and contractor support staff for shuttle operations. The demolition of the modular buildings has begun and construction will immediately follow. The new structure is projected to be ready in April 2005.

  12. A waning of technocratic faith - NASA and the politics of the Space Shuttle decision, 1967-1972

    NASA Technical Reports Server (NTRS)

    Launius, R. D.

    1992-01-01

    This paper analyzes the decision to build the Space Shuttle as part of a broader public policy trend away from a deference to technical experts and toward greater politicization of traditionally apolitical issues. At the beginning of the 1960s U.S. leaders had a strong faith in the ability of technology to solve most problems. By 1970 this commitment to technological answers had waned and a resurgence of the right of elected officials to control technical matters was gaining currency. The lengthy and bitter Shuttle decision-making process was part of a much broader shift in the formation of public policy, played out in other arenas as well, aimed at the reemergence of direct political management of technological and scientific affairs by politicians.

  13. Presidential commission investigating Challenger accident at JSC

    NASA Image and Video Library

    1986-03-05

    S86-28751 (5 March 1986) --- Two NASA officials talk with members of the Presidential Commission on the Space Shuttle Challenger Accident in the Executive Conference Room of JSC’s Project Management Building. Left to right are JSC Deputy Director Robert C. Goetz; Richard H. Kohrs, Deputy Manager, National Space Transportation Systems Office; and commission members Dr. Arthur B.C. Walker Jr., Robert W. Rummel and Joseph F. Sutter. Photo credit: NASA

  14. Presidential commission investigating Challenger accident at JSC

    NASA Image and Video Library

    1986-03-05

    S86-28750 (5 March 1986) --- Two JSC officials and two members of the Presidential Commission on the Space Shuttle Challenger Accident meet in the Executive Conference Room of JSC’s Project Management Building. Left to right are JSC Deputy Director Robert C. Goetz; Richard H. Kohrs, Deputy Manager for National Space Transportation Systems Program Office; and commission members Joseph F. Sutter and Dr. Arthur B.C. Walker Jr. Photo credit: NASA

  15. Shuttle Discovery Landing at Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Dryden Flight Research Center pilot Tom McMurtry lands NASA's Shuttle Carrier Aircraft with Space Shuttle Discovery attached at Rockwell Aerospace's Palmdale, California, facility about 1:00 p.m. Pacific Daylight Time (PDT). There for nine months of scheduled maintenance, Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  16. Shuttle Discovery Being Unloaded from SCA-747 at Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Space Shuttle Discovery being unloaded from NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at Rockwell Aerospace's Palmdale facility for nine months of scheduled maintenance. Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  17. Shuttle Enterprise Mated to 747 SCA for Delivery to Smithsonian

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Space Shuttle Enterprise atop the NASA 747 Shuttle Carrier Aircraft as it leaves NASA's Dryden Flight Research Center, Edwards, California. The Enterprise, first orbiter built, was not spaceflight rated and was used in 1977 to verify the landing, approach, and glide characteristics of the orbiters. It was also used for engineering fit-checks at the shuttle launch facilities. Following approach and landing tests in 1977 and its use as an engineering vehicle, Enterprise was donated to the National Air and Space Museum in Washington, D.C. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  18. Around Marshall

    NASA Image and Video Library

    1994-01-25

    Gene Porter Bridwell served as the director of the Marshall Space Flight Center from January 6, 1994 until February 3, 1996, when he retired from NASA after thirty-four years service. Bridwell, a Marshall employee since 1962, had been Marshall's Space Shuttle Projects Office Director and Space Station Redesign Team deputy manager. Under Bridwell, Marshall worked to develop its role as a Center of Excellence for propulsion and for providing access to space.

  19. KSC01pp0133

    NASA Image and Video Library

    2001-01-19

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis is ready to roll back to the Vehicle Assembly Building via the crawler-transporter. In the VAB workers will conduct inspections, make continuity checks and conduct X-ray analysis on the 36 solid rocket booster cables located inside each booster’s system tunnel. An extensive evaluation of NASA’s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching Jan. 19. The launch has been rescheduled no earlier than Feb. 6

  20. KSC01pp0149

    NASA Image and Video Library

    2001-01-20

    KENNEDY SPACE CENTER, FLA. -- Solid rocket booster cables are exposed after removal of the SRB system tunnel cover. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA’s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  1. KSC01padig016

    NASA Image and Video Library

    2001-01-19

    KENNEDY SPACE CENTER, FLA. -- Traveling about 1 mph on the crawler-transporter, Space Shuttle Atlantis begins the 3.4-mile trek back to the Vehicle Assembly Building. In the VAB workers will conduct inspections, make continuity checks and conduct X-ray analysis on the 36 solid rocket booster cables located inside each booster’s system tunnel. An extensive evaluation of NASA’s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching Jan. 19. The launch has been rescheduled no earlier than Feb. 6

  2. KSC01padig022

    NASA Image and Video Library

    2001-01-19

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis joins blue skies and palm trees on the Florida landscape. Atlantis is rolling back from Launch Pad 39A to the Vehicle Assembly Building so that workers can conduct inspections, make continuity checks and conduct X-ray analysis on the 36 SRB cables located inside each booster’s system tunnel. An extensive evaluation of NASA’s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching Jan. 19. The launch has been rescheduled no earlier than Feb. 6

  3. The epistemic integrity of NASA practices in the Space Shuttle Program.

    PubMed

    De Winter, Jan; Kosolosky, Laszlo

    2013-01-01

    This article presents an account of epistemic integrity and uses it to demonstrate that the epistemic integrity of different kinds of practices in NASA's Space Shuttle Program was limited. We focus on the following kinds of practices: (1) research by working engineers, (2) review by middle-level managers, and (3) communication with the public. We argue that the epistemic integrity of these practices was undermined by production pressure at NASA, i.e., the pressure to launch an unreasonable amount of flights per year. Finally, our findings are used to develop some potential strategies to protect epistemic integrity in aerospace science.

  4. KSC-06pd1580

    NASA Image and Video Library

    2006-07-17

    KENNEDY SPACE CENTER, FLA. - LeRoy Cain, manager of Shuttle Launch Integration, and Michael Fossum, STS-121 mission specialist, take a look at the orbiter Discovery during the traditional post-flight walk-around after the landing. Discovery's smooth and perfect landing was on time at 9:14 a.m. EDT on Runway 15 of NASA's Shuttle Landing Facility after traveling 5.3 million miles on 202 orbits. Mission elapsed time was 12 days, 18 hours, 37 minutes and 54 seconds. The landing is the 62nd at Kennedy Space Center and the 32nd for Discovery. Photo credit: NASA/Kim Shiflett

  5. KSC-05PD-1575

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. The gate is open to Launch Pad 39B where Space Shuttle Discovery remains on the pad after scrub of Return to Flight mission STS-114. The July 13 mission was scrubbed when a low-level fuel cut-off sensor for the liquid hydrogen tank inside the External Tank failed a routine prelaunch check during the countdown July 13, causing mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).

  6. NASA Managers Set July 20 As Launch Date for Chandra Telescope

    NASA Astrophysics Data System (ADS)

    1999-07-01

    NASA managers set Tuesday, July 20, 1999, as the official launch date for NASA's second Space Shuttle Mission of the year that will mark the launch of the first female Shuttle Commander and the Chandra X-Ray Observatory. Columbia is scheduled to liftoff from Launch Pad 39-B at the Kennedy Space Center on July 20 at the opening of a 46-minute launch window at 12:36 a.m. EDT. Columbia's planned five-day mission is scheduled to end with a night landing at the Kennedy Space Center just after 11:30 p.m. EDT on July 24. Following its deployment from the Shuttle, Chandra will join the Hubble Space Telescope and the Compton Gamma Ray Observatory as the next in NASA's series of "Great Observatories." Chandra will spend at least five years in a highly elliptical orbit which will carry it one-third of the way to the moon to observe invisible and often violent realms of the cosmos containing some of the most intriguing mysteries in astronomy ranging from comets in our solar system to quasars at the edge of the universe. Columbia's 26th flight is led by Air Force Col. Eileen Collins, who will command a Space Shuttle mission following two previous flights as a pilot. The STS-93 Pilot is Navy Captain Jeff Ashby who will be making his first flight into space. The three mission specialists for the flight are: Air Force Lt. Col. Catherine "Cady" Coleman, who will be making her second flight into space; Steven A. Hawley, Ph.D, making his fifth flight; and French Air Force Col. Michel Tognini of the French Space Agency (CNES), who is making his first Space Shuttle flight and second trip into space after spending two weeks on the Mir Space Station as a visiting cosmonaut in 1992. NASA press releases and other information are available automatically by sending an Internet electronic mail message to domo@hq.nasa.gov. In the body of the message (not the subject line) users should type the words "subscribe press-release" (no quotes). The system will reply with a confirmation via E-mail of each subscription. A second automatic message will include additional information on the service. NASA releases also are available via CompuServe using the command GO NASA. To unsubscribe from this mailing list, address an E-mail message to domo@hq.nasa.gov, leave the subject blank, and type only "unsubscribe press-release" (no quotes) in the body of the message.

  7. Shuttle in Mate-Demate Device being Loaded onto SCA-747

    NASA Technical Reports Server (NTRS)

    1991-01-01

    At NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA #911) for the ferry flight back to the Kennedy Space Center, Florida, following its STS-44 flight 24 November - 1 December 1991. Post-flight servicing of the orbiters, and the mating operation, is carried out at Dryden at the Mate-Demate Device (MDD), the large gantry-like structure that hoists the spacecraft to various levels during post-space flight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  8. Space Shuttle orbiter modifications to support Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Segert, Randall; Lichtenfels, Allyson

    1992-01-01

    The Space Shuttle will be the primary vehicle to support the launch, assembly, and maintenance of the Space Station Freedom (SSF). In order to accommodate this function, the Space Shuttle orbiter will require significant modifications. These modifications are currently in development in the Space Shuttle Program. The requirements for the planned modifications to the Space Shuttle orbiter are dependent on the design of the SSF. Therefore, extensive coordination is required with the Space Station Freedom Program (SSFP) in order to identify requirements and resolve integration issues. This paper describes the modifications to the Space Shuttle orbiter required to support SSF assembly and operations.

  9. Autonomy, Interdependence, and Social Control: NASA and the Space Shuttle "Challenger."

    ERIC Educational Resources Information Center

    Vaughan, Diane

    1990-01-01

    Shows that the organizations responsible for regulating safety at the National Aeronautics and Space Administration (NASA) failed to identify flaws in management procedures and technical design that, if corrected, might have prevented the "Challenger" tragedy. Regulatory effectiveness was inhibited by the autonomy and interdependence of…

  10. STS118-S-073

    NASA Image and Video Library

    2007-08-21

    STS118-S-073 (21 Aug. 2007) --- NASA Administrator Michael Griffin (center in white shirt) and other NASA managers give thumbs up signals to the crew of the Space Shuttle Endeavour shortly after its touchdown August 21, 2007, at the Kennedy Space Center, Florida, concluding STS-118. Photo Credit: NASA/Bill Ingalls

  11. KSC-98pc1753

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Program Manager of the International Space Station (ISS) Randy Brinkley addresses the media before lowering the banner to unveil the name of "Destiny" given the U.S. Lab module, the centerpiece of scientific research on the ISS. With Brinkley on the stand are Center Director Roy Bridges (behind him on the left), and (the other side, left to right) STS-98 Commander Ken Cockrell, Pilot Mark Polansky, and Mission Specialist Marsha Ivins. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Polansky, Cockrel and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights

  12. KSC-04pd1842

    NASA Image and Video Library

    2004-09-18

    KENNEDY SPACE CENTER, FLA. - NASA Administrator Sean O’Keefe looks at equipment moved from the Thermal Protection System Facility to the RLV Hangar. AT right is Martin Wilson, manager of TPS operations for United Space Alliance. O’Keefe and NASA Associate Administrator of Space Operations Mission Directorate William Readdy are visiting KSC to survey the damage sustained by KSC facilities from Hurricane Frances. The Thermal Protection System Facility (TPSF), which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof in the storm, which blew across Central Florida Sept. 4-5. Undamaged equipment was removed from the TPSF and stored in the hangar. The Labor Day storm also caused significant damage to the Vehicle Assembly Building and Processing Control Center. Additionally, the Operations and Checkout Building, Vertical Processing Facility, Hangar AE, Hangar S and Hangar AF Small Parts Facility each received substantial damage. However, well-protected and unharmed were NASA’s three Space Shuttle orbiters -- Discovery, Atlantis and Endeavour - along with the Shuttle launch pads, all of the critical flight hardware for the orbiters and the International Space Station, and NASA’s Swift spacecraft that is awaiting launch in October.

  13. Study to identify future cryogen payload elements/users for space shuttle launch during period 1990 to 2000

    NASA Technical Reports Server (NTRS)

    Elim, Frank M.

    1989-01-01

    This study provides a summary of future cryogenic space payload users, their currently projected needs and reported planning for space operations over the next decade. At present, few users with payloads consisting of reactive cryogens, or any cryogen in significant quantities, are contemplating the use of the Space Shuttle. Some members of the cryogenic payload community indicated an interest in flying their future planned payloads on the orbiter, versus an expendable launch vehicle (ELV), but are awaiting the outcome of a Rockwell study to define what orbiter mods and payloads requirements are needed to safely fly chemically reactive cryogen payloads, and the resultant cost, schedule, and operational impacts. Should NASA management decide in early 1990 to so modify orbiter(s), based on the Rockwell study and/or changes in national defense payloads launch requirements, then at least some cryo payload customers will reportedly plan on using the Shuttle orbiter vehicle in preference to an ELV. This study concludes that the most potential for possible future cryogenic space payloads for the Space Transportation System Orbiter fleet lies within the scientific research and defense communities.

  14. The potential impact of the space shuttle on space benefits to mankind

    NASA Technical Reports Server (NTRS)

    Rattinger, I.

    1972-01-01

    The potential impact of the space shuttle on space benefits to mankind is discussed. The space shuttle mission profile is presented and the capabilities of the spacecraft to perform various maneuvers and operations are described. The cost effectiveness of the space shuttle operation is analyzed. The effects upon technological superiority and national economics are examined. Line drawings and artist concepts of space shuttle configurations are included to clarify the discussion.

  15. Nonwoven Fabric Uses and Prospects in Human Space Flight

    NASA Technical Reports Server (NTRS)

    Bacon, Jack

    2001-01-01

    The US space shuttle fleet has been flying for over 20 years. Although the shuttle operates in a unique exterior environment, the interior is intentionally made to be as close to the "normal" human environment as possible. The filtration needs of the shuttle are not substantially different from those of a large mobile home or camper, supporting the needs of a family of seven for up to two weeks. Therefore, most of the materials that are used to filter the air, water, and other fluids on the Shuttle are similar or identical to those employed in other sectors of the transportation industry. The only significantly different feature of the space environment is the unique "three-phase" nature of the air (with suspended liquids and solids ranging in size from aerosol droplets to binoculars). Such suspended debris contributes to the air filtration and waste management problem. Careful flow management and cleanliness practices help to mitigate the effect of debris, and liquid spills are rare, seldom making it to the filters. (It has been common on all spacecraft to look first for lost items on the air intake filters, since all objects ultimately migrate there in the flow. Liquids tend to seep rather than "spill", and so tend to aggregate in a ball near the source.) In addition to the basic fluids of the interior environment (water and water wastes, air, and its constituent supply gasses) the shuttle also has unfiltered fluid systems for Freon, hydrogen, helium, ammonia, hydraulic fluid, and propellants. Only the propellant system, owing to its uncommon chemistry, represents a fluid system that is not typical of household or medical applications. Careful external filtration prior to flight assures the cleanliness in these closed systems.

  16. KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  17. STS-68 747 SCA Ferry Flight Takeoff for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Columbia, atop NASA's 747 Shuttle Carrier Aircraft (SCA), taking off for the Kennedy Space Center shortly after its landing on 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  18. Enterprise - First Tailcone Off Free Flight

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) to begin a powerless glide flight back to NASA's Dryden Flight Research Center, Edwards, California, on its fourth of the five free flights in the Shuttle program's Approach and Landing Tests (ALT), 12 October 1977. The tests were carried out at Dryden to verify the aerodynamic and control characteristics of the orbiters in preperation for the first space mission with the orbiter Columbia in April 1981. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  19. Shuttle Columbia Post-landing Tow - with Reflection in Water

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A rare rain allowed this reflection of the Space Shuttle Columbia as it was towed 16 Nov. 1982, to the Shuttle Processing Area at NASA's Ames-Dryden Flight Research Facility (from 1976 to 1981 and after 1994, the Dryden Flight Research Center), Edwards, California, following its fifth flight in space. Columbia was launched on mission STS-5 11 Nov. 1982, and landed at Edwards Air Force Base on concrete runway 22. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines withtwo solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. MartinMarietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  20. 14 CFR 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...

  1. 14 CFR 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...

  2. 14 CFR 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...

  3. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. (a) In agreements covering Space Shuttle services, certain ELV launches, and Space Station...

  4. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. (a) In agreements covering Space Shuttle services, certain ELV launches, and Space Station...

  5. Workers begin removing PDU from STS-101 Atlantis

    NASA Technical Reports Server (NTRS)

    2000-01-01

    United Space Alliance technicians at Launch Pad 39A look at the site of the power drive unit (PDU) for the rudder/speed brake on Shuttle Atlantis. From left are Mark Noel, Tod Biddle and Bob Wright. Shuttle managers decided to replace the faulty PDU, about the size of an office copy machine, at the launch pad. If successful, launch preparations will continue as planned, with liftoff targeted for April 24 at 4:15 p.m. on mission STS-101. The mission is the third assembly flight for the International Space Station, carrying logistics and supplies to the Space Station, plus the crew will be preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station.

  6. KSC-06pd1289

    NASA Image and Video Library

    2006-06-29

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, Michele Perchonok stows packages of food that the STS-121 crew will eat on the 12-day mission. Perchonok is a NASA Subsystem manager for Shuttle Food Systems from Johnson Space Center. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Diets are designed to supply each astronaut with 100 percent of the daily value of vitamins and minerals necessary for the environment of space. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. A supplementary food supply (pantry) consisting of two extra days per person is stowed aboard the space shuttle for each flight. Pantry items are flown in addition to the menu in case the flight is unexpectedly extended because of bad weather at the landing site or for some other unforeseen reason. Photo credit: NASA/Kim Shiflett

  7. KSC-06pd1290

    NASA Image and Video Library

    2006-06-29

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, Michele Perchonok closes a container of food packages that the STS-121 crew will eat on the 12-day mission. Perchonok is a NASA Subsystem manager for Shuttle Food Systems from Johnson Space Center. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Diets are designed to supply each astronaut with 100 percent of the daily value of vitamins and minerals necessary for the environment of space. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. A supplementary food supply (pantry) consisting of two extra days per person is stowed aboard the space shuttle for each flight. Pantry items are flown in addition to the menu in case the flight is unexpectedly extended because of bad weather at the landing site or for some other unforeseen reason. Photo credit: NASA/Kim Shiflett

  8. KSC-06pd1288

    NASA Image and Video Library

    2006-06-29

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, Michele Perchonok stows packages of food that the STS-121 crew will eat on the 12-day mission. Perchonok is a NASA Subsystem manager for Shuttle Food Systems from Johnson Space Center. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Diets are designed to supply each astronaut with 100 percent of the daily value of vitamins and minerals necessary for the environment of space. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. A supplementary food supply (pantry) consisting of two extra days per person is stowed aboard the space shuttle for each flight. Pantry items are flown in addition to the menu in case the flight is unexpectedly extended because of bad weather at the landing site or for some other unforeseen reason. Photo credit: NASA/Kim Shiflett

  9. Parking Lot and Public Viewing Area for STS-4 Landing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This aerial photo shows the large crowd of people and vehicles that assembled to watch the landing of STS-4 at Edwards Air Force Base in California in July 1982. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  10. User benefits and funding strategies. [technology assessment and economic analysis of the space shuttles and NASA Programs

    NASA Technical Reports Server (NTRS)

    Archer, J. L.; Beauchamp, N. A.; Day, C. F.

    1975-01-01

    The justification, economic and technological benefits of NASA Space Programs (aside from pure scientific objectives), in improving the quality of life in the United States is discussed and outlined. Specifically, a three-step, systematic method is described for selecting relevant and highly beneficial payloads and instruments for the Interim Upper Stage (IUS) that will be used with the space shuttle until the space tug becomes available. Viable Government and private industry cost-sharing strategies which would maximize the number of IUS payloads, and the benefits obtainable under a limited NASA budget were also determined. Charts are shown which list the payload instruments, and their relevance in contributing to such areas as earth resources management, agriculture, weather forecasting, and many others.

  11. Microgravity

    NASA Image and Video Library

    2000-04-14

    Representatives of NASA materials science experiments supported the NASA exhibit at the Rernselaer Polytechnic Institute's Space Week activities, April 5 through 11, 1999. From left to right are: Angie Jackman, project manager at NASA's Marshall Space Flight Center for dendritic growth experiments; Dr. Martin Glicksman of Rennselaer Polytechnic Instutute, Troy, NY, principal investigator on the Isothermal Dendritic Growth Experiment (IDGE) that flew three times on the Space Shuttle; and Dr. Matthew Koss of College of the Holy Cross in Worcester, MA, a co-investigator on the IDGE and now principal investigator on the Transient Dendritic Solidification Experiment being developed for the International Space Station (ISS). The image at far left is a dendrite grown in Glicksman's IDGE tests aboard the Shuttle. Glicksman is also principal investigator for the Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters.

  12. Planned development of the space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Information pertaining to the planned development of the space shuttle vehicle is presented. The package contains: (1) President's statement; (2) Dr. Fletcher's statement; (3) space shuttle fact sheet; (4) important reasons for the space shuttle.

  13. Space Shuttle Project

    NASA Image and Video Library

    1997-07-01

    The Space Shuttle Columbia (STS-94) soared from Launch Pad 39A begirning its 16-day Microgravity Science Laboratory -1 (MSL-1) mission. The launch window was opened 47 minutes earlier than the originally scheduled time to improve the opportunity to lift off before Florida summer rain showers reached the space center. During the space flight, the MSL-1 was used to test some of the hardware, facilities and procedures that were planned for use on the International Space Station which were managed by scientists and engineers from the Marshall Space Flight Center, while the flight crew conducted combustion, protein crystal growth and materials processing experiments. Also onboard was the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which was attached to the right side of Columbia's payload bay. These payloads had previously flown on the STS-83 mission in April, which was cut short after nearly four days because of indications of a faulty fuel cell. STS-94 was a reflight of that mission.

  14. KSC-04pd0684

    NASA Image and Video Library

    2004-04-03

    KENNEDY SPACE CENTER, FLA. -- John J. “Tip” Talone (right) shares a bit of humor with Shuttle Program Manager Bill Parsons (left) and Center Director Jim Kennedy during the annual National Space Club Debus Award Banquet. Talone received the award that was created by the National Space Club to recognize significant achievements made in Florida to American aerospace efforts. The event was held at the Dr. Kurt H. Debus Conference Facility in the Visitor Complex. Talone is director of the International Space Station/Payloads Processing directorate at KSC that is responsible for prelaunch and launch preparations for all Shuttle payloads. He was honored for his outstanding personal and professional efforts in supporting the U.S. space program, especially in his current role. The award was created by the National Space Club Florida Committee to recognize significant achievements and contributions made in Florida to American aerospace efforts. It is named for Dr. Kurt H. Debus, first director of KSC, from 1962 to 1974.

  15. Workers begin removing PDU from STS-101 Atlantis

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With coverings removed from a site near the tail of Space Shuttle Atlantis, Tod Biddle, a United Space Alliance (USA) technician, points to the power drive unit (PDU) inside. The PDU controls the rudder/speed brake on the orbiter. The hands at right belong to Bob Wright, also a USA technician. Shuttle managers decided to replace the faulty PDU, about the size of an office copy machine, at the launch pad. If successful, launch preparations will continue as planned, with liftoff targeted for April 24 at 4:15 p.m. on mission STS-101. The mission is the third assembly flight for the International Space Station, carrying logistics and supplies to the Space Station, plus the crew will be preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station.

  16. Workers begin removing PDU from STS-101 Atlantis

    NASA Technical Reports Server (NTRS)

    2000-01-01

    United Space Alliance technicians (left to right) Tod Biddle, Bob Wright and Mark Noel (hidden) remove the coverings from a site near the tail of Space Shuttle Atlantis to reveal the power drive unit (PDU) inside. The PDU controls the rudder/speed brake on the orbiter. Shuttle managers decided to replace the faulty PDU, about the size of an office copy machine, at the launch pad. If successful, launch preparations will continue as planned, with liftoff targeted for April 24 at 4:15 p.m. on mission STS-101. The mission is the third assembly flight for the International Space Station, carrying logistics and supplies to the Space Station, plus the crew will be preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station.

  17. Earth Observatory Satellite system definition study. Report 6: Space shuttle interfaces/utilization

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis was conducted to determine the compatibility of the Earth Observatory Satellite (EOS) with the space shuttle. The mechanical interfaces and provisions required for a launch or retrieval of the EOS by the space shuttle are summarized. The space shuttle flight support equipment required for the operation is defined. Diagrams of the space shuttle in various configurations are provised to show the mission capability with the EOS. The subjects considered are as follows: (1) structural and mechanical interfaces, (2) spacecraft retention and deployment, (3) spacecraft retrieval, (4) electrical interfaces, (5) payload shuttle operations, (6) shuttle mode cost analysis, (7) shuttle orbit trades, and (8) safety considerations.

  18. Backstop: Shuttle Will Fly with Outstanding Waivers; New Oversight Eases Conflicts on Safety

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    he space shuttle Discovery is carrying some 300 waivers to technical specifications as it enters the home stretch of its planned return to flight next month. There were about 6,000 waivers in place when Columbia crashed. Shuttle managers say they are working to reduce the number of waivers remaining by fixing the problems they highlight, a change prompted by the Columbia Accident Investigation Board. In the wake of the accident, NASA has heeded the CAWS recommendation that waivers be the responsibility of an "independent technical authority" (ITA), rather than the shuttle program itself. To carry out the recommendation of the CAIB-which found an inherent conflict of interest in having the same managers make decisions about cost, schedule and safety-then-Administrator Sean O'Keefe designated the agency's chief engineer as the formal ITA. He is responsible for setting, maintaining and granting waivers across the agency. In mid-January, Fred Gregory, then O'Keefe's deputy and now his acting replacement, launched the ITA within NASA under Chief Engineer Rex Geveden, the former program manager on the Gravity Probe B experiment.

  19. NASA Applications and Lessons Learned in Reliability Engineering

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Fuller, Raymond P.

    2011-01-01

    Since the Shuttle Challenger accident in 1986, communities across NASA have been developing and extensively using quantitative reliability and risk assessment methods in their decision making process. This paper discusses several reliability engineering applications that NASA has used over the year to support the design, development, and operation of critical space flight hardware. Specifically, the paper discusses several reliability engineering applications used by NASA in areas such as risk management, inspection policies, components upgrades, reliability growth, integrated failure analysis, and physics based probabilistic engineering analysis. In each of these areas, the paper provides a brief discussion of a case study to demonstrate the value added and the criticality of reliability engineering in supporting NASA project and program decisions to fly safely. Examples of these case studies discussed are reliability based life limit extension of Shuttle Space Main Engine (SSME) hardware, Reliability based inspection policies for Auxiliary Power Unit (APU) turbine disc, probabilistic structural engineering analysis for reliability prediction of the SSME alternate turbo-pump development, impact of ET foam reliability on the Space Shuttle System risk, and reliability based Space Shuttle upgrade for safety. Special attention is given in this paper to the physics based probabilistic engineering analysis applications and their critical role in evaluating the reliability of NASA development hardware including their potential use in a research and technology development environment.

  20. KSC-97pc355

    NASA Image and Video Library

    1997-02-21

    Accompanied by former astronaut Michael J. McCulley, several members of the STS-82 crew look at thermal protection system tile under the Space Shuttle Discovery on the runway at the Shuttle Landing Facility shortly after the conclusion of a 10-day mission to service the orbiting Hubble Space Telescope (HST). From left to right, they are Mission Specialist Steven A. Hawley; Michael J. McCulley, currently vice president and associate program manager for ground operations for the United Space Alliance at KSC; Mission Specialists Joseph R. "Joe" Tanner and Steven L. Smith (back to camera); and Payload Commander Mark C. Lee. STS-82 is the ninth Shuttle nighttime landing, and the fourth nighttime landing at KSC. The seven-member crew performed a record-tying five back-to-back extravehicular activities (EVAs) or spacewalks to service the telescope, which has been in orbit for nearly seven years. Two new scientific instruments were installed, replacing two outdated instruments. Five spacewalks also were performed on the first servicing mission, STS-61, in December 1993. Only four spacewalks were scheduled for STS-82, but a fifth one was added during the flight to install several thermal blankets over some aging insulation covering three HST compartments containing key data processing, electronics and scientific instrument telemetry packages. STS-82 was the 82nd Space Shuttle flight and the second mission of 1997

Top