Irwin, Elise R.; Freeman, Mary C.
2002-01-01
Conserving river biota will require innovative approaches that foster and utilize scientific understanding of ecosystem responses to alternative river-management scenarios. We describe ecological and societal issues involved in flow management of a section of the Tallapoosa River (Alabama, U.S.A.) in which a species-rich native fauna is adversely affected by flow alteration by an upstream hydropower dam. We hypothesize that depleted Iow flows, flow instability and thermal alteration resulting from pulsed flow releases at the hydropower dam are most responsible for changes in the Tallapoosa River biota. However, existing data are insufficient to prescribe with certainty minimum flow levels or the frequency and duration of stable flow periods that would be necessary or sufficient to protect riverine biotic integrity. Rather than negotiate a specific change in the flow regime, we propose that stakeholders--including management agencies, the power utility, and river advocates--engage in a process of adaptive-flow management. This process would require that stakeholders (1) develop and agree to management objectives; (2) model hypothesized relations between dam operations and management objectives; (3) implement a change in dam operations; and (4) evaluate biological responses and other stakeholder benefits through an externally reviewed monitoring program. Models would be updated with monitoring data and stakeholders would agree to further modify flow regimes as necessary to achieve management objectives. A primary obstacle to adaptive management will be a perceived uncertainty of future costs for the power utility and other stakeholders. However, an adaptive, iterative approach offers the best opportunity for improving flow regimes for native biota while gaining information critical to guiding management decisions in other flow-regulated rivers.
Visualization of Flow Alternatives, Lower Missouri River
Jacobson, Robert B.; Heuser, Jeanne
2002-01-01
Background The U.S. Army Corps of Engineers (COE) 'Missouri River Master Water Control Manual' (Master Manual) review has resulted in consideration of many flow alternatives for managing the water in the river (COE, 2001; 1998a). The purpose of this report is to present flow-management alternative model results in a way that can be easily visualized and understood. This report was updated in October 2001 to focus on the specific flow-management alternatives presented by the COE in the 'Master Manual Revised Draft Environmental Impact Statement' (RDEIS; COE, 2001). The original version (February 2000) is available by clicking here. The COE, U.S. Fish and Wildlife Service (FWS), Missouri River states, and Missouri River basin tribes have been participating in discussions concerning water management of the Missouri River mainstem reservoir system (MRMRS), the Missouri River Bank Stabilization and Navigation Project, and the Kansas River reservoir system since 1986. These discussions include general input to the revision of the Master Manual as well as formal consultation under Section 7 of the Endangered Species Act. In 2000, the FWS issued a Biological Opinion that prescribed changes to reservoir management on the Missouri River that were believed to be necessary to preclude jeopardy to three endangered species, the pallid sturgeon, piping plover, and interior least tern (USFWS, 2000). The combined Missouri River system is large and complex, including many reservoirs, control structures, and free-flowing reaches extending over a broad region. The ability to assess future impacts of altered management scenarios necessarily involves complex, computational models that attempt to integrate physical, chemical, biological, and economic effects. Graphical visualization of the model output is intended to improve understanding of the differences among flow-management alternatives.
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Tsai Tsai, Wen-Ping; Chang, Li-Chiu
2016-04-01
Water resources development is very challenging in Taiwan due to her diverse geographic environment and climatic conditions. To pursue sustainable water resources development, rationality and integrity is essential for water resources planning. River water quality and flow regimes are closely related to each other and affect river ecosystems simultaneously. This study aims to explore the complex impacts of water quality and flow regimes on fish community in order to comprehend the situations of the eco-hydrological system in the Danshui River of northern Taiwan. To make an effective and comprehensive strategy for sustainable water resources management, this study first models fish diversity through implementing a hybrid artificial neural network (ANN) based on long-term observational heterogeneity data of water quality, stream flow and fish species in the river. Then we use stream flow to estimate the loss of dissolved oxygen based on back-propagation neural networks (BPNNs). Finally, the non-dominated sorting genetic algorithm II (NSGA-II) is established for river flow management over the Shihmen Reservoir which is the main reservoir in this study area. In addition to satisfying the water demands of human beings and ecosystems, we also consider water quality for river flow management. The ecosystem requirement takes the form of maximizing fish diversity, which can be estimated by the hybrid ANN. The human requirement is to provide a higher satisfaction degree of water supply while the water quality requirement is to reduce the loss of dissolved oxygen in the river among flow stations. The results demonstrate that the proposed methodology can offer diversified alternative strategies for reservoir operation and improve reservoir operation strategies for producing downstream flows that could better meet both human and ecosystem needs as well as maintain river water quality. Keywords: Artificial intelligence (AI), Artificial neural networks (ANNs), Non-dominated sorting genetic algorithm II (NSGA-II), Sustainable water resources management, Flow regime, River ecosystem.
Informed Decision Making Process for Managing Environmental Flows in Small River Basins
NASA Astrophysics Data System (ADS)
Padikkal, S.; Rema, K. P.
2013-03-01
Numerous examples exist worldwide of partial or complete alteration to the natural flow regime of river systems as a consequence of large scale water abstraction from upstream reaches. The effects may not be conspicuous in the case of very large rivers, but the ecosystems of smaller rivers or streams may be completely destroyed over a period of time. While restoration of the natural flow regime may not be possible, at present there is increased effort to implement restoration by regulating environmental flow. This study investigates the development of an environmental flow management model at an icon site in the small river basin of Bharathapuzha, west India. To determine optimal environmental flow regimes, a historic flow model based on data assimilated since 1978 indicated a satisfactory minimum flow depth for river ecosystem sustenance is 0.907 m (28.8 m3/s), a value also obtained from the hydraulic model; however, as three of the reservoirs were already operational at this time a flow depth of 0.922 m is considered a more viable estimate. Analysis of daily stream flow in 1997-2006, indicated adequate flow regimes during the monsoons in June-November, but that sections of the river dried out in December-May with alarming water quality conditions near the river mouth. Furthermore, the preferred minimum `dream' flow regime expressed by stakeholders of the region is a water depth of 1.548 m, which exceeds 50 % of the flood discharge in July. Water could potentially be conserved for environmental flow purposes by (1) the de-siltation of existing reservoirs or (2) reducing water spillage in the transfer between river basins. Ultimately environmental flow management of the region requires the establishment of a co-ordinated management body and the regular assimilation of water flow information from which science based decisions are made, to ensure both economic and environmental concerns are adequately addressed.
Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.
2010-01-01
The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.
High flow and riparian vegetation along the San Miguel River, Colorado
Friedman, J.M.; Auble, G.T.
2000-01-01
Riparian ecosystems are characterized by abundance of water and frequent flow related disturbance. River regulation typically decreases peak flows, reducing the amount of disturbance and altering the vegetation. The San Miguel River is one of the last relatively unregulated rivers remaining in the Colorado River Watershed. One goal of major landowners along the San Miguel including the Bureau of Land Management and The Nature Conservancy is to maintain their lands in a natural condition. Conservation of an entire river corridor requires an integrated understanding of the variability in ecosystems and external influences along the river. Therefore, the Bureau of Land Management and others have fostered a series of studies designed to catalogue that variability, and to characterize the processes that maintain the river as a whole. In addition to providing information useful to managers, these studies present a rare opportunity to investigate how a Colorado river operates in the absence of regulation.
NASA Astrophysics Data System (ADS)
Wolfenden, Benjamin J.; Wassens, Skye M.; Jenkins, Kim M.; Baldwin, Darren S.; Kobayashi, Tsuyoshi; Maguire, James
2018-03-01
For many floodplain rivers, reinstating wetland connectivity is necessary for ecosystems to recover from decades of regulation. Environmental return flows (the managed delivery of wetland water to an adjacent river) can be used strategically to facilitate natural ecosystem connectivity, enabling the transfer of nutrients, energy, and biota from wetland habitats to the river. Using an informal adaptive management framework, we delivered return flows from a forested wetland complex into a large lowland river in south-eastern Australia. We hypothesized that return flows would (a) increase river nutrient concentrations; (b) reduce wetland nutrient concentrations; (c) increase rates of ecosystem metabolism through the addition of potentially limiting nutrients, causing related increases in the concentration of water column chlorophyll-a; and (d) increase the density and species richness of microinvertebrates in riverine benthic habitats. Our monitoring results demonstrated a small increase in the concentrations of several key nutrients but no evidence for significant ecological responses was found. Although return flows can be delivered from forested floodplain areas without risking hypoxic blackwater events, returning nutrient and carbon-rich water to increase riverine productivity is limited by the achievable scale of return flows. Nevertheless, using return flows to flush carbon from floodplains may be a useful management tool to reduce carbon loads, preparing floodplains for subsequent releases (e.g., mitigating the risk of hypoxic blackwater events). In this example, adaptive management benefited from a semi-formal collaboration between science and management that allowed for prompt decision-making.
Koehn, John D; Todd, Charles R; Zampatti, Brenton P; Stuart, Ivor G; Conallin, Anthony; Thwaites, Leigh; Ye, Qifeng
2018-03-01
Carp are a highly successful invasive fish species, now widespread, abundant and considered a pest in south-eastern Australia. To date, most management effort has been directed at reducing abundances of adult fish, with little consideration of population growth through reproduction. Environmental water allocations are now an important option for the rehabilitation of aquatic ecosystems, particularly in the Murray-Darling Basin. As carp respond to flows, there is concern that environmental watering may cause floodplain inundation and provide access to spawning habitats subsequently causing unwanted population increase. This is a management conundrum that needs to be carefully considered within the context of contemporary river flow management (natural, environmental, irrigation). This paper uses a population model to investigate flow-related carp population dynamics for three case studies in the Murray-Darling Basin: (1) river and terminal lakes; (2) wetlands and floodplain lakes; and (3) complex river channel and floodplain system. Results highlight distinctive outcomes depending on site characteristics. In particular, the terminal lakes maintain a significant source carp population regardless of river flow; hence any additional within-channel environmental flows are likely to have little impact on carp populations. In contrast, large-scale removal of carp from the lakes may be beneficial, especially in times of extended low river flows. Case studies 2 and 3 show how wetlands, floodplain lakes and the floodplain itself can now often be inundated for several months over the carp spawning season by high volume flows provided for irrigation or water transfers. Such inundations can be a major driver of carp populations, compared to within channel flows that have relatively little effecton recruitment. The use of a population model that incorporates river flows and different habitats for this flow-responsive species, allows for the comparison of likely population outcomes for differing hydrological scenarios to improve the management of risks relating to carp reproduction and flows.
NASA Astrophysics Data System (ADS)
Koehn, John D.; Todd, Charles R.; Zampatti, Brenton P.; Stuart, Ivor G.; Conallin, Anthony; Thwaites, Leigh; Ye, Qifeng
2018-03-01
Carp are a highly successful invasive fish species, now widespread, abundant and considered a pest in south-eastern Australia. To date, most management effort has been directed at reducing abundances of adult fish, with little consideration of population growth through reproduction. Environmental water allocations are now an important option for the rehabilitation of aquatic ecosystems, particularly in the Murray-Darling Basin. As carp respond to flows, there is concern that environmental watering may cause floodplain inundation and provide access to spawning habitats subsequently causing unwanted population increase. This is a management conundrum that needs to be carefully considered within the context of contemporary river flow management (natural, environmental, irrigation). This paper uses a population model to investigate flow-related carp population dynamics for three case studies in the Murray-Darling Basin: (1) river and terminal lakes; (2) wetlands and floodplain lakes; and (3) complex river channel and floodplain system. Results highlight distinctive outcomes depending on site characteristics. In particular, the terminal lakes maintain a significant source carp population regardless of river flow; hence any additional within-channel environmental flows are likely to have little impact on carp populations. In contrast, large-scale removal of carp from the lakes may be beneficial, especially in times of extended low river flows. Case studies 2 and 3 show how wetlands, floodplain lakes and the floodplain itself can now often be inundated for several months over the carp spawning season by high volume flows provided for irrigation or water transfers. Such inundations can be a major driver of carp populations, compared to within channel flows that have relatively little effecton recruitment. The use of a population model that incorporates river flows and different habitats for this flow-responsive species, allows for the comparison of likely population outcomes for differing hydrological scenarios to improve the management of risks relating to carp reproduction and flows.
Muhlfeld, Clint C.; Jones, Leslie A.; Kotter, D.; Miller, William J.; Geise, Doran; Tohtz, Joel; Marotz, Brian
2012-01-01
Hungry Horse Dam on the South Fork Flathead River, Montana, USA, has modified the natural flow regimen for power generation, flood risk management and flow augmentation for anadromous fish recovery in the Columbia River. Concern over the detrimental effects of dam operations on native resident fishes prompted research to quantify the impacts of alternative flow management strategies on threatened bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats. Seasonal and life‐stage specific habitat suitability criteria were combined with a two‐dimensional hydrodynamic habitat model to assess discharge effects on usable habitats. Telemetry data used to construct seasonal habitat suitability curves revealed that subadult (fish that emigrated from natal streams to the river system) bull trout move to shallow, low‐velocity shoreline areas at night, which are most sensitive to flow fluctuations. Habitat time series analyses comparing the natural flow regimen (predam, 1929–1952) with five postdam flow management strategies (1953–2008) show that the natural flow conditions optimize the critical bull trout habitats and that the current strategy best resembles the natural flow conditions of all postdam periods. Late summer flow augmentation for anadromous fish recovery, however, produces higher discharges than predam conditions, which reduces the availability of usable habitat during this critical growing season. Our results suggest that past flow management policies that created sporadic streamflow fluctuations were likely detrimental to resident salmonids and that natural flow management strategies will likely improve the chances of protecting key ecosystem processes and help to maintain and restore threatened bull trout and westslope cutthroat trout populations in the upper Columbia River Basin.
Eng, Ken; Wolock, David M.; Carlisle, Daren M.
2013-01-01
The effects of land and water management practices (LWMP)—such as the construction of dams and roads—on river flows typically have been studied at the scale of single river watersheds or for a single type of LWMP. For the most part, assessments of the relative effects of multiple LWMP within many river watersheds across regional and national scales have been lacking. This study assesses flow alteration—quantified as deviation of several flow metrics from natural conditions—at 4196 gauged rivers affected by a variety of LWMP across the conterminous United States. The most widespread causes of flow changes among the LWMP considered were road density and dams. Agricultural development and wastewater discharges also were associated with flow changes in some regions. Dams generally reduced most attributes of flow, whereas road density, agriculture and wastewater discharges tended to be associated with increased flows compared to their natural condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A; Orth, Dr. Donald J; Dolloff, Dr. Charles A
2013-01-01
In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate flow alteration-ecological response relationships and then determined whether those relationshipsmore » could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not support the assertion that over-generalized univariate relationships between flow and ecology can produce results sufficient to guide management in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted four years post- restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.« less
Modeling potential river management conflicts between frogs and salmonids
Steven F. Railsback; Bret C. Harvey; Sarah J. Kupferberg; Margaret M. Lang; Scott McBain; Hart H. Welsh
2016-01-01
Management of regulated rivers for yellow-legged frogs (Rana boylii) and salmonids exemplifies potential conflicts among species adapted to different parts of the natural flow and temperature regimes. Yellow-legged frogs oviposit in rivers in spring and depend on declining flows and warming temperatures for egg and tadpole survival and growth,...
Geomorphic and hydrologic study of peak-flow management on the Cedar River, Washington
Magirl, Christopher S.; Gendaszek, Andrew S.; Czuba, Christiana R.; Konrad, Christopher P.; Marineau, Mathieu D.
2012-01-01
Assessing the linkages between high-flow events, geomorphic response, and effects on stream ecology is critical to river management. High flows on the gravel-bedded Cedar River in Washington are important to the geomorphic function of the river; however, high flows can deleteriously affect salmon embryos incubating in streambed gravels. A geomorphic analysis of the Cedar River showed evidence of historical changes in river form over time and quantified the effects of anthropogenic alterations to the river corridor. Field measurements with accelerometer scour monitors buried in the streambed provided insight into the depth and timing of streambed scour during high-flow events. Combined with a two-dimensional hydrodynamic model, the recorded accelerometer disturbances allowed the prediction of streambed disturbance at the burial depth of Chinook and sockeye salmon egg pockets for different peak discharges. Insight gained from these analyses led to the development of suggested monitoring metrics for an ongoing geomorphic monitoring program on the Cedar River.
Val, Jonatan; Chinarro, David; Pino, María Rosa; Navarro, Enrique
2016-11-01
Global change is transforming freshwater ecosystems, mainly through changes in basin flow dynamics. This study assessed how the combination of climate change and human management of river flow impacts metabolism of the Ebro River (the largest river basin in Spain, 86,100km(2)), assessed as gross primary production-GPP-and ecosystem respiration-ER. In order to investigate the influence of global change on freshwater ecosystems, an analysis of trends and frequencies from 25 sampling sites of the Ebro river basin was conducted. For this purpose, we examined the effect of anthropogenic flow control on river metabolism with a Granger causality study; simultaneously, took into account the effects of climate change, a period of extraordinary drought (largest in past 140years). We identified periods of sudden flow changes resulting from both human management and global climate effects. From 1998 to 2012, the Ebro River basin was trending toward a more autotrophic condition indicated by P/R ratio. Particularly, the results show that floods that occurred after long periods of low flows had a dramatic impact on the respiration (i.e., mineralization) capacity of the river. This approach allowed for a detailed characterization of the relationships between river metabolism and drought impacts at the watershed level. These findings may allow for a better understanding of the ecological impacts provoked by flow management, thus contributing to maintain the health of freshwater communities and ecosystem services that rely on their integrity. Copyright © 2016 Elsevier B.V. All rights reserved.
Large-scale flow experiments for managing river systems
Konrad, Christopher P.; Olden, Julian D.; Lytle, David A.; Melis, Theodore S.; Schmidt, John C.; Bray, Erin N.; Freeman, Mary C.; Gido, Keith B.; Hemphill, Nina P.; Kennard, Mark J.; McMullen, Laura E.; Mims, Meryl C.; Pyron, Mark; Robinson, Christopher T.; Williams, John G.
2011-01-01
Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.
River Bank Erosion and the Influence of Environmental Flow Management.
Vietz, Geoff J; Lintern, Anna; Webb, J Angus; Straccione, David
2018-03-01
Environmental flows aim to influence river hydrology to provide appropriate physical conditions for ecological functioning within the restrictions of flow regulation. The hydrologic characteristics of flow events, however, may also lead to unintended morphologic effects in rivers, such as increases in riverbank erosion beyond natural rates. This may negatively impact habitat for biota, riparian infrastructure, and land use. Strategic environmental flow delivery linked to monitoring and adaptive management can help mitigate risks. We monitor riverbank condition (erosion and deposition) relative to environmental flows on the Goulburn River, Victoria, Australia. We describe the process of adaptive management aimed at reducing potential impacts of flow management on bank condition. Field measurements (erosion pins) quantify the hydrogeomorphic response of banks to the delivery of planned and natural flow events. Managed flows provide opportunities for monitoring riverbank response to flows, which in turn informs planning. The results demonstrate that environmental flows have little influence on bank erosion and visual perceptions in the absence of monitoring are an unreliable guide. This monitoring project represents a mutually beneficial, science-practice partnership demonstrating that a traditional 'know then do' approach can be foreshortened by close collaboration between researchers and managers. To do so requires transparent, often informal lines of communication. The benefits for researchers-a more strategic and targeted approach to monitoring activities; and benefits for the practitioners-reduced time between actions and understanding response; mean that a learn by doing approach is likely to have better outcomes for researchers, stakeholders, the public, and the environment.
River Bank Erosion and the Influence of Environmental Flow Management
NASA Astrophysics Data System (ADS)
Vietz, Geoff J.; Lintern, Anna; Webb, J. Angus; Straccione, David
2018-03-01
Environmental flows aim to influence river hydrology to provide appropriate physical conditions for ecological functioning within the restrictions of flow regulation. The hydrologic characteristics of flow events, however, may also lead to unintended morphologic effects in rivers, such as increases in riverbank erosion beyond natural rates. This may negatively impact habitat for biota, riparian infrastructure, and land use. Strategic environmental flow delivery linked to monitoring and adaptive management can help mitigate risks. We monitor riverbank condition (erosion and deposition) relative to environmental flows on the Goulburn River, Victoria, Australia. We describe the process of adaptive management aimed at reducing potential impacts of flow management on bank condition. Field measurements (erosion pins) quantify the hydrogeomorphic response of banks to the delivery of planned and natural flow events. Managed flows provide opportunities for monitoring riverbank response to flows, which in turn informs planning. The results demonstrate that environmental flows have little influence on bank erosion and visual perceptions in the absence of monitoring are an unreliable guide. This monitoring project represents a mutually beneficial, science-practice partnership demonstrating that a traditional `know then do' approach can be foreshortened by close collaboration between researchers and managers. To do so requires transparent, often informal lines of communication. The benefits for researchers-a more strategic and targeted approach to monitoring activities; and benefits for the practitioners-reduced time between actions and understanding response; mean that a learn by doing approach is likely to have better outcomes for researchers, stakeholders, the public, and the environment.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
... Environmental Impact Statement for Tuolumne Wild and Scenic River Comprehensive Management Plan, Yosemite... Statement (DEIS) for the proposed Tuolumne Wild and Scenic River Comprehensive Management Plan (TRPCMP). The...), and will provide long-term guidance for management of the 54 miles of the Tuolumne River that flows...
Environmental flows and water quality objectives for the River Murray.
Gippel, C; Jacobs, T; McLeod, T
2002-01-01
Over the past decade, there intense consideration of managing flows in the River Murray to provide environmental benefits. In 1990 the Murray-Darling Basin Ministerial Council adopted a water quality policy: To maintain and, where necessary, improve existing water quality in the rivers of the Murray-Darling Basin for all beneficial uses - agricultural, environmental, urban, industrial and recreational, and in 1994 a flow policy: To maintain and where necessary improve existing flow regimes in the waterways of the Murray-Darling Basin to protect and enhance the riverine environment. The Audit of Water Use followed in 1995, culminating in the decision of the Ministerial Council to implement an interim cap on new diversions for consumptive use (the "Cap") in a bid to halt declining river health. In March 1999 the Environmental Flows and Water Quality Objectives for the River Murray Project (the Project) was set up, primarily to establish be developed that aims to achieve a sustainable river environment and water quality, in accordance with community needs, and including an adaptive approach to management and operation of the River. It will lead to objectives for water quality and environmental flows that are feasible, appropriate, have the support of the scientific, management and stakeholder communities, and carry acceptable levels of risk. This paper describes four key aspects of the process being undertaken to determine the objectives, and design the flow options that will meet those objectives: establishment of an appropriate technical, advisory and administrative framework; establishing clear evidence for regulation impacts; undergoing assessment of environmental flow needs; and filling knowledge gaps. A review of the impacts of flow regulation on the health of the River Murray revealed evidence for decline, but the case for flow regulation as the main cause is circumstantial or uncertain. This is to be expected, because the decline of the River Murray results from many factors acting over a long period. Also, the health of the river varies along its length, from highly degraded to reasonably healthy, so it is clear that different approaches will be needed in the various river zones, with some problems requiring reach or even point scale solutions. Environmental flow needs have been determined through two major Expert Panel reports that identified the ecological priorities for the river. The next step is to translate these needs into feasible flow management actions that will provide the necessary hydrological conditions. Several investigations are underway to recommend options for flow management. Two important investigations are described in this paper: how to enhance flows to wetlands of national and international significance, and how to physically alter or change the operation of structures (including a dam, weir, lock, regulator, barrage or causeway), to provide significant environmental benefits. Early modelling suggests that the only option which has a positive environmental effect in all zones of the River is a reduction in overall water consumption.
NASA Astrophysics Data System (ADS)
Schmidt, J. C.
2014-12-01
Throughout the Colorado River basin (CRb), scientists and river managers collaborate to improve native ecosystems. Native ecosystems have deteriorated due to construction of dams and diversions that alter natural flow, sediment supply, and temperature regimes, trans-basin diversions that extract large amounts of water from some segments of the channel network, and invasion of non-native animals and plants. These scientist/manager collaborations occur in large, multi-stakeholder, adaptive management programs that include the Lower Colorado River Multi-Species Conservation Program, the Glen Canyon Dam Adaptive Management Program, and the Upper Colorado River Endangered Species Recovery Program. Although a fundamental premise of native species recovery is that restoration of predam flow regimes inevitably leads to native species recovery, such is not the case in many parts of the CRb. For example, populations of the endangered humpback chub (Gila cypha) are largest in the sediment deficit, thermally altered conditions of the Colorado River downstream from Glen Canyon Dam, but these species occur in much smaller numbers in the upper CRb even though the flow regime, sediment supply, and sediment mass balance are less perturbed. Similar contrasts in the physical and biological response of restoration of predam flow regimes occurs in floodplains dominated by nonnative tamarisk (Tamarix spp.) where reestablishment of floods has the potential to exacerbate vertical accretion processes that disconnect the floodplain from the modern flow regime. A significant challenge in restoring segments of the CRb is to describe this paradox of physical and biological response to reestablishment of pre-dam flow regimes, and to clearly identify objectives of environmentally oriented river management. In many cases, understanding the nature of the perturbation to sediment mass balance caused by dams and diversions and understanding the constraints imposed by societal commitments to provide assured water supplies and hydroelectricity constrains the opportunities for rehabilitation and limits the management objectives to focus either on restoring predam physical processes or recovering native fish fauna and/or recovering native plant communities.
Poff, N.L.; Richter, B.D.; Arthington, A.H.; Bunn, S.E.; Naiman, R.J.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, Mary C.; Henriksen, J.; Jacobson, R.B.; Kennen, J.G.; Merritt, D.M.; O'Keeffe, J. H.; Olden, J.D.; Rogers, K.; Tharme, R.E.; Warner, A.
2010-01-01
The flow regime is a primary determinant of the structure and function of aquatic and riparian ecosystems for streams and rivers. Hydrologic alteration has impaired riverine ecosystems on a global scale, and the pace and intensity of human development greatly exceeds the ability of scientists to assess the effects on a river-by-river basis. Current scientific understanding of hydrologic controls on riverine ecosystems and experience gained from individual river studies support development of environmental flow standards at the regional scale. 2. This paper presents a consensus view from a group of international scientists on a new framework for assessing environmental flow needs for many streams and rivers simultaneously to foster development and implementation of environmental flow standards at the regional scale. This framework, the ecological limits of hydrologic alteration (ELOHA), is a synthesis of a number of existing hydrologic techniques and environmental flow methods that are currently being used to various degrees and that can support comprehensive regional flow management. The flexible approach allows scientists, water-resource managers and stakeholders to analyse and synthesise available scientific information into ecologically based and socially acceptable goals and standards for management of environmental flows. 3. The ELOHA framework includes the synthesis of existing hydrologic and ecological databases from many rivers within a user-defined region to develop scientifically defensible and empirically testable relationships between flow alteration and ecological responses. These relationships serve as the basis for the societally driven process of developing regional flow standards. This is to be achieved by first using hydrologic modelling to build a 'hydrologic foundation' of baseline and current hydrographs for stream and river segments throughout the region. Second, using a set of ecologically relevant flow variables, river segments within the region are classified into a few distinctive flow regime types that are expected to have different ecological characteristics. These river types can be further subclassified according to important geomorphic features that define hydraulic habitat features. Third, the deviation of current-condition flows from baseline-condition flow is determined. Fourth, flow alteration-ecological response relationships are developed for each river type, based on a combination of existing hydroecological literature, expert knowledge and field studies across gradients of hydrologic alteration. 4. Scientific uncertainty will exist in the flow alteration-ecological response relationships, in part because of the confounding of hydrologic alteration with other important environmental determinants of river ecosystem condition (e.g. temperature). Application of the ELOHA framework should therefore occur in a consensus context where stakeholders and decision-makers explicitly evaluate acceptable risk as a balance between the perceived value of the ecological goals, the economic costs involved and the scientific uncertainties in functional relationships between ecological responses and flow alteration. 5. The ELOHA framework also should proceed in an adaptive management context, where collection of monitoring data or targeted field sampling data allows for testing of the proposed flow alteration-ecological response relationships. This empirical validation process allows for a fine-tuning of environmental flow management targets. The ELOHA framework can be used both to guide basic research in hydroecology and to further implementation of more comprehensive environmental flow management of freshwater sustainability on a global scale. ?? 2009 Blackwell Publishing Ltd.
Analysis of managed aquifer recharge for retiming streamflow in an alluvial river
NASA Astrophysics Data System (ADS)
Ronayne, Michael J.; Roudebush, Jason A.; Stednick, John D.
2017-01-01
Maintenance of low flows during dry periods is critical for supporting ecosystem function in many rivers. Managed aquifer recharge is one method that can be used to augment low flows in rivers that are hydraulically connected to an alluvial groundwater system. In this study, we performed numerical modeling to evaluate a managed recharge operation designed to retime streamflow in the South Platte River, northeastern Colorado (USA). Modeling involved the simulation of spatially and temporally variable groundwater-surface water exchange, as well as streamflow routing in the river. Periodic solutions that incorporate seasonality were developed for two scenarios, a natural base case scenario and an active management scenario that included groundwater pumping and managed recharge. A framework was developed to compare the scenarios by analyzing changes in head-dependent inflows and outflows to/from the aquifer, which was used to interpret the simulated impacts on streamflow. The results clearly illustrate a retiming of streamflow. Groundwater pumping near the river during winter months causes a reduction in streamflow during those months. Delivery of the pumped water to recharge ponds, located further from the river, has the intended effect of augmenting streamflow during low-flow summer months. Higher streamflow is not limited to the target time period, however, which highlights an inefficiency of flow augmentation projects that rely on water retention in the subsurface.
Kozak, Justin P; Bennett, Micah G; Hayden-Lesmeister, Anne; Fritz, Kelley A; Nickolotsky, Aaron
2015-06-01
Large river systems are inextricably linked with social systems; consequently, management decisions must be made within a given ecological, social, and political framework that often defies objective, technical resolution. Understanding flow-ecology relationships in rivers is necessary to assess potential impacts of management decisions, but translating complex flow-ecology relationships into stakeholder-relevant information remains a struggle. The concept of ecosystem services provides a bridge between flow-ecology relationships and stakeholder-relevant data. Flow-ecology relationships were used to explore complementary and trade-off relationships among 12 ecosystem services and related variables in the Atchafalaya River Basin, Louisiana. Results from Indicators of Hydrologic Alteration were reduced to four management-relevant hydrologic variables using principal components analysis. Multiple regression was used to determine flow-ecology relationships and Pearson correlation coefficients, along with regression results, were used to determine complementary and trade-off relationships among ecosystem services and related variables that were induced by flow. Seven ecosystem service variables had significant flow-ecology relationships for at least one hydrologic variable (R (2) = 0.19-0.64). River transportation and blue crab (Callinectes sapidus) landings exhibited a complementary relationship mediated by flow; whereas transportation and crawfish landings, crawfish landings and crappie (Pomoxis spp.) abundance, and blue crab landings and blue catfish (Ictalurus furcatus) abundance exhibited trade-off relationships. Other trade-off and complementary relationships among ecosystem services and related variables, however, were not related to flow. These results give insight into potential conflicts among stakeholders, can reduce the dimensions of management decisions, and provide initial hypotheses for experimental flow modifications.
NASA Astrophysics Data System (ADS)
Kozak, Justin P.; Bennett, Micah G.; Hayden-Lesmeister, Anne; Fritz, Kelley A.; Nickolotsky, Aaron
2015-06-01
Large river systems are inextricably linked with social systems; consequently, management decisions must be made within a given ecological, social, and political framework that often defies objective, technical resolution. Understanding flow-ecology relationships in rivers is necessary to assess potential impacts of management decisions, but translating complex flow-ecology relationships into stakeholder-relevant information remains a struggle. The concept of ecosystem services provides a bridge between flow-ecology relationships and stakeholder-relevant data. Flow-ecology relationships were used to explore complementary and trade-off relationships among 12 ecosystem services and related variables in the Atchafalaya River Basin, Louisiana. Results from Indicators of Hydrologic Alteration were reduced to four management-relevant hydrologic variables using principal components analysis. Multiple regression was used to determine flow-ecology relationships and Pearson correlation coefficients, along with regression results, were used to determine complementary and trade-off relationships among ecosystem services and related variables that were induced by flow. Seven ecosystem service variables had significant flow-ecology relationships for at least one hydrologic variable ( R 2 = 0.19-0.64). River transportation and blue crab ( Callinectes sapidus) landings exhibited a complementary relationship mediated by flow; whereas transportation and crawfish landings, crawfish landings and crappie ( Pomoxis spp.) abundance, and blue crab landings and blue catfish ( Ictalurus furcatus) abundance exhibited trade-off relationships. Other trade-off and complementary relationships among ecosystem services and related variables, however, were not related to flow. These results give insight into potential conflicts among stakeholders, can reduce the dimensions of management decisions, and provide initial hypotheses for experimental flow modifications.
Burned forests impact water supplies.
Hallema, Dennis W; Sun, Ge; Caldwell, Peter V; Norman, Steven P; Cohen, Erika C; Liu, Yongqiang; Bladon, Kevin D; McNulty, Steven G
2018-04-10
Wildland fire impacts on surface freshwater resources have not previously been measured, nor factored into regional water management strategies. But, large wildland fires are increasing and raise concerns about fire impacts on potable water. Here we synthesize long-term records of wildland fire, climate, and river flow for 168 locations across the United States. We show that annual river flow changed in 32 locations, where more than 19% of the basin area was burned. Wildland fires enhanced annual river flow in the western regions with a warm temperate or humid continental climate. Wildland fires increased annual river flow most in the semi-arid Lower Colorado region, in spite of frequent droughts in this region. In contrast, prescribed burns in the subtropical Southeast did not significantly alter river flow. These extremely variable outcomes offer new insights into the potential role of wildfire and prescribed fire in regional water resource management, under a changing climate.
Tracy-Smith, Emily; Galat, David L.; Jacobson, Robert B.
2012-01-01
Sandbars are an important aquatic terrestrial transition zone (ATTZ) in the active channel of rivers that provide a variety of habitat conditions for riverine biota. Channelization and flow regulation in many large rivers have diminished sandbar habitats and their rehabilitation is a priority. We developed sandbar-specific models of discharge-area relationships to determine how changes in flow regime affect the area of different habitat types within the submerged sandbar ATTZ (depth) and exposed sandbar ATTZ (elevation) for a representative sample of Lower Missouri River sandbars. We defined six different structural habitat types within the sandbar ATTZ based on depth or exposed elevation ranges that are important to different biota during at least part of their annual cycle for either survival or reproduction. Scenarios included the modelled natural flow regime, current managed flow regime and two environmental flow options, all modelled within the contemporary river active channel. Thirteen point and wing-dike sandbars were evaluated under four different flow scenarios to explore the effects of flow regime on seasonal habitat availability for foraging of migratory shorebirds and wading birds, nesting of softshell turtles and nursery of riverine fishes. Managed flows provided more foraging habitat for shorebirds and wading birds and more nursery habitat for riverine fishes within the channelized reach sandbar ATTZ than the natural flow regime or modelled environmental flows. Reduced summer flows occurring under natural and environmental flow alternatives increased exposed sandbar nesting habitat for softshell turtle hatchling emergence. Results reveal how management of channelized and flow regulated large rivers could benefit from a modelling framework that couples hydrologic and geomorphic characteristics to predict habitat conditions for a variety of biota.
Can the Gila River reduce risk in the Colorado River Basin?
NASA Astrophysics Data System (ADS)
Wade, L. C.; Rajagopalan, B.; Lukas, J.; Kanzer, D.
2012-12-01
The Colorado River is the most important source of water in the southwest United States and Northern Mexico, providing water to approximately 35 million people and 4-5 million acres of irrigated lands. To manage the water resources of the basin, estimated to be about 17 million acre-feet (MAF) of undepleted supplies per year, managers use reservoir facilities that can store more than 60 MAF. As the demands on the water resources of the basin approach or exceed the average annual supply, and with average flow projected to decrease due to climate change, smart water management is vital for its sustainability. To quantify the future risk of depleting reservoir storage, Rajagopalan et al. (2009) developed a water-balance model and ran it under scenarios based on historical, paleo-reconstructed and future projections of flows, and different management alternatives. That study did not consider the impact of the Gila River, which enters the Colorado River below all major reservoirs and U.S. diversions. Due to intensive use in Central Arizona, the Gila only has significant inflows to the Colorado in wet years. However, these irregular inflows could beneficially influence system reliability in the US by helping to meet a portion of the 1.5 MAF delivery obligations to Mexico. To help quantify the potential system reliability benefit of the Gila River, we modify the Rajagopalan et al (2009) model to incorporate simulated Gila River inflows. These new data inputs to the water balance model are based on historical flows and tree-ring reconstructions of flow in the Upper Colorado River Basin (at Lee's Ferry), the Lower Colorado River Basin (tributary inflows), and the intermittent flows from the Gila River which are generated using extreme value analysis methods. Incorporating Gila River inflows, although they are highly variable and intermittent, reduces the modeled cumulative risk of reservoir depletion by 4 to 11% by 2057, depending on the demand schedule, reservoir operation guidelines, and climate change scenario assumptions. This potential risk mitigation could be at least partly realized through enhancements to current management practices, possibly in the Gila River, that could improve the water supply reliability for all stakeholders in the Colorado River Basin.
Brown, Larry R.; Bauer, Marissa L.
2010-01-01
Alteration of natural flow regimes is generally acknowledged to have negative effects on native biota; however, methods for defining ecologically appropriate flow regimes in managed river systems are only beginning to be developed. Understanding how past and present water management has affected rivers is an important part of developing such tools. In this paper, we evaluate how existing hydrologic infrastructure and management affect streamflow characteristics of rivers in the Central Valley, California and discuss those characteristics in the context of habitat requirements of native and alien fishes. We evaluated the effects of water management by comparing observed discharges with estimated discharges assuming no water management ("full natural runoff"). Rivers in the Sacramento River drainage were characterized by reduced winter–spring discharges and augmented discharges in other months. Rivers in the San Joaquin River drainage were characterized by reduced discharges in all months but particularly in winter and spring. Two largely unaltered streams had hydrographs similar to those based on full natural runoff of the regulated rivers. The reduced discharges in the San Joaquin River drainage streams are favourable for spawning of many alien species, which is consistent with observed patterns of fish distribution and abundance in the Central Valley. However, other factors, such as water temperature, are also important to the relative success of native and alien resident fishes. As water management changes in response to climate change and societal demands, interdisciplinary programs of research and monitoring will be essential for anticipating effects on fishes and to avoid unanticipated ecological outcomes.
NASA Astrophysics Data System (ADS)
Blauhut, Veit; Stölzle, Michael; Stahl, Kerstin
2017-04-01
Drought induced low flow extremes, despite a variety of management strategies, can cause direct and indirect impacts on socio economic and ecological functions of rivers. These negative effects determine local risk and are a function of the regional drought hazard and the river system's vulnerability. Whereas drought risk analysis is known to be essential for drought management, risk analysis for low flow is less common. Where no distributed hydrological models exist, merely the local hazard at gauging stations is available to represent the entire catchment. Vulnerability information are only sparsely available. Hence, a comprehensive understanding of the drivers of low flow risk along the longitudinal river profile is often lacking. For two different rivers in southwestern Germany, this study analysed major low flow events of the past five decades. Applying a transdisciplinary approach, the hazard component is assessed by hydro-climatic analysis, hydrological modelling and forward looking stress test scenarios; the vulnerability component is estimated by a combination of impact assessment and vulnerability estimation, based on stakeholder workshops, questionnaires and regional characteristics. The results show distinct differences in low flow risk between the catchments and along the river. These differences are due to: hydrogeological characteristics that govern groundwater-surface water interaction, catchment-specific anthropogenic stimuli such as low flow decrease by near-stream groundwater pumping for public water supply or low flow augmentation by treatment plant discharge. Thus, low flow risk is anthropogenically influenced in both ways: positive and negative. Furthermore, the measured longitudinal profiles highlight the impracticability of single gauges to represent quantitative and qualitative conditions of entire rivers. Hence, this work calls for a comprehensive spatially variable consideration of flow characteristics and human influences to analyse low flow risk as the basis for an adequate low flow management.
The natural sediment regime in rivers: broadening the foundation for ecosystem management
Wohl, Ellen E.; Bledsoe, Brian P.; Jacobson, Robert B.; Poff, N. LeRoy; Rathburn, Sara L.; Walters, David M.; Wilcox, Andrew C.
2015-01-01
Water and sediment inputs are fundamental drivers of river ecosystems, but river management tends to emphasize flow regime at the expense of sediment regime. In an effort to frame a more inclusive paradigm for river management, we discuss sediment inputs, transport, and storage within river systems; interactions among water, sediment, and valley context; and the need to broaden the natural flow regime concept. Explicitly incorporating sediment is challenging, because sediment is supplied, transported, and stored by nonlinear and episodic processes operating at different temporal and spatial scales than water and because sediment regimes have been highly altered by humans. Nevertheless, managing for a desired balance between sediment supply and transport capacity is not only tractable, given current geomorphic process knowledge, but also essential because of the importance of sediment regimes to aquatic and riparian ecosystems, the physical template of which depends on sediment-driven river structure and function.
The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin
Miller, Matthew P.; Buto, Susan G.; Susong, David D.; Rumsey, Christine
2016-01-01
The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions. We adapted and applied the spatially referenced regression on watershed attributes (SPARROW) water quality model to assess the spatial distribution of base flow, the fraction of streamflow supported by base flow, and estimates of and potential processes contributing to the amount of base flow that is lost during in-stream transport in the Upper Colorado River Basin (UCRB). On average, 56% of the streamflow in the UCRB originated as base flow, and precipitation was identified as the dominant driver of spatial variability in base flow at the scale of the UCRB, with the majority of base flow discharge to streams occurring in upper elevation watersheds. The model estimates an average of 1.8 × 1010 m3/yr of base flow in the UCRB; greater than 80% of which is lost during in-stream transport to the Lower Colorado River Basin via processes including evapotranspiration and water diversion for irrigation. Our results indicate that surface waters in the Colorado River Basin are dependent on base flow, and that management approaches that consider groundwater and surface water as a joint resource will be needed to effectively manage current and future water resources in the Basin.
The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin
NASA Astrophysics Data System (ADS)
Miller, Matthew P.; Buto, Susan G.; Susong, David D.; Rumsey, Christine A.
2016-05-01
The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions. We adapted and applied the spatially referenced regression on watershed attributes (SPARROW) water quality model to assess the spatial distribution of base flow, the fraction of streamflow supported by base flow, and estimates of and potential processes contributing to the amount of base flow that is lost during in-stream transport in the Upper Colorado River Basin (UCRB). On average, 56% of the streamflow in the UCRB originated as base flow, and precipitation was identified as the dominant driver of spatial variability in base flow at the scale of the UCRB, with the majority of base flow discharge to streams occurring in upper elevation watersheds. The model estimates an average of 1.8 × 1010 m3/yr of base flow in the UCRB; greater than 80% of which is lost during in-stream transport to the Lower Colorado River Basin via processes including evapotranspiration and water diversion for irrigation. Our results indicate that surface waters in the Colorado River Basin are dependent on base flow, and that management approaches that consider groundwater and surface water as a joint resource will be needed to effectively manage current and future water resources in the Basin.
Comparison and Validation of Hydrological E-Flow Methods through Hydrodynamic Modelling
NASA Astrophysics Data System (ADS)
Kuriqi, Alban; Rivaes, Rui; Sordo-Ward, Alvaro; Pinheiro, António N.; Garrote, Luis
2017-04-01
Flow regime determines physical habitat conditions and local biotic configuration. The development of environmental flow guidelines to support the river integrity is becoming a major concern in water resources management. In this study, we analysed two sites located in southern part of Portugal, respectively at Odelouca and Ocreza Rivers, characterised by the Mediterranean climate. Both rivers are almost in pristine condition, not regulated by dams or other diversion construction. This study presents an analysis of the effect on fish habitat suitability by the implementation of different hydrological e-flow methods. To conduct this study we employed certain hydrological e-flow methods recommended by the European Small Hydropower Association (ESHA). River hydrology assessment was based on approximately 30 years of mean daily flow data, provided by the Portuguese Water Information System (SNIRH). The biological data, bathymetry, physical and hydraulic features, and the Habitat Suitability Index for fish species were collected from extensive field works. We followed the Instream Flow Incremental Methodology (IFIM) to assess the flow-habitat relationship taking into account the habitat suitability of different instream flow releases. Initially, we analysed fish habitat suitability based on natural conditions, and we used it as reference condition for other scenarios considering the chosen hydrological e-flow methods. We accomplished the habitat modelling through hydrodynamic analysis by using River-2D model. The same methodology was applied to each scenario by considering as input the e-flows obtained from each of the hydrological method employed in this study. This contribution shows the significance of ecohydrological studies in establishing a foundation for water resources management actions. Keywords: ecohydrology, e-flow, Mediterranean rivers, river conservation, fish habitat, River-2D, Hydropower.
43 CFR 418.18 - Diversions at Derby Dam.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Operations and Management § 418.18 Diversions at Derby Dam. (a) Diversions of Truckee River water at Derby Dam must be managed to maintain minimum terminal flow to Lahontan Reservoir or the Carson River except... achieve an average terminal flow of 20 cfs or less during times when diversions to Lahontan Reservoir are...
Merritt, D.M.; Scott, M.L.; Leroy, Poff N.; Auble, G.T.; Lytle, D.A.
2010-01-01
Riparian vegetation composition, structure and abundance are governed to a large degree by river flow regime and flow-mediated fluvial processes. Streamflow regime exerts selective pressures on riparian vegetation, resulting in adaptations (trait syndromes) to specific flow attributes. Widespread modification of flow regimes by humans has resulted in extensive alteration of riparian vegetation communities. Some of the negative effects of altered flow regimes on vegetation may be reversed by restoring components of the natural flow regime. 2. Models have been developed that quantitatively relate components of the flow regime to attributes of riparian vegetation at the individual, population and community levels. Predictive models range from simple statistical relationships, to more complex stochastic matrix population models and dynamic simulation models. Of the dozens of predictive models reviewed here, most treat one or a few species, have many simplifying assumptions such as stable channel form, and do not specify the time-scale of response. In many cases, these models are very effective in developing alternative streamflow management plans for specific river reaches or segments but are not directly transferable to other rivers or other regions. 3. A primary goal in riparian ecology is to develop general frameworks for prediction of vegetation response to changing environmental conditions. The development of riparian vegetation-flow response guilds offers a framework for transferring information from rivers where flow standards have been developed to maintain desirable vegetation attributes, to rivers with little or no existing information. 4. We propose to organise riparian plants into non-phylogenetic groupings of species with shared traits that are related to components of hydrologic regime: life history, reproductive strategy, morphology, adaptations to fluvial disturbance and adaptations to water availability. Plants from any river or region may be grouped into these guilds and related to hydrologic attributes of a specific class of river using probabilistic response curves. 5. Probabilistic models based on riparian response guilds enable prediction of the likelihood of change in each of the response guilds given projected changes in flow, and facilitate examination of trade-offs and risks associated with various flow management strategies. Riparian response guilds can be decomposed to the species level for individual projects or used to develop flow management guidelines for regional water management plans. ?? 2009 Published.
Lacher, Laurel J.; Turner, Dale S.; Gungle, Bruce W.; Bushman, Brooke M.; Richter, Holly E.
2014-01-01
The San Pedro River originates in Sonora, Mexico, and flows north through Arizona, USA, to its confluence with the Gila River. The 92-km Upper San Pedro River is characterized by interrupted perennial flow, and serves as a vital wildlife corridor through this semiarid to arid region. Over the past century, groundwater pumping in this bi-national basin has depleted baseflows in the river. In 2007, the United States Geological Survey published the most recent groundwater model of the basin. This model served as the basis for predictive simulations, including maps of stream flow capture due to pumping and of stream flow restoration due to managed aquifer recharge. Simulation results show that ramping up near-stream recharge, as needed, to compensate for downward pumping-related stress on the water table, could sustain baseflows in the Upper San Pedro River at or above 2003 levels until the year 2100 with less than 4.7 million cubic meters per year (MCM/yr). Wet-dry mapping of the river over a period of 15 years developed a body of empirical evidence which, when combined with the simulation tools, provided powerful technical support to decision makers struggling to manage aquifer recharge to support baseflows in the river while also accommodating the economic needs of the basin.
NASA Astrophysics Data System (ADS)
Hardie, Scott A.; Bobbi, Chris J.
2018-03-01
Defining the ecological impacts of water extraction from free-flowing river systems in altered landscapes is challenging as multiple stressors (e.g., flow regime alteration, increased sedimentation) may have simultaneous effects and attributing causality is problematic. This multiple-stressor context has been acknowledged in environmental flows science, but is often neglected when it comes to examining flow-ecology relationships, and setting and implementing environmental flows. We examined the impacts of land and water use on rivers in the upper Ringarooma River catchment in Tasmania (south-east Australia), which contains intensively irrigated agriculture, to support implementation of a water management plan. Temporal and spatial and trends in river condition were assessed using benthic macroinvertebrates as bioindicators. Relationships between macroinvertebrate community structure and environmental variables were examined using univariate and multivariate analyses, focusing on the impacts of agricultural land use and water use. Structural changes in macroinvertebrate communities in rivers in the catchment indicated temporal and spatial declines in the ecological condition of some stretches of river associated with agricultural land and water use. Moreover, water extraction appeared to exacerbate impairment associated with agricultural land use (e.g., reduced macroinvertebrate density, more flow-avoiding taxa). The findings of our catchment-specific bioassessments will underpin decision-making during the implementation of the Ringarooma water management plan, and highlight the need to consider compounding impacts of land and water use in environmental flows and water planning in agricultural landscapes.
Hardie, Scott A; Bobbi, Chris J
2018-03-01
Defining the ecological impacts of water extraction from free-flowing river systems in altered landscapes is challenging as multiple stressors (e.g., flow regime alteration, increased sedimentation) may have simultaneous effects and attributing causality is problematic. This multiple-stressor context has been acknowledged in environmental flows science, but is often neglected when it comes to examining flow-ecology relationships, and setting and implementing environmental flows. We examined the impacts of land and water use on rivers in the upper Ringarooma River catchment in Tasmania (south-east Australia), which contains intensively irrigated agriculture, to support implementation of a water management plan. Temporal and spatial and trends in river condition were assessed using benthic macroinvertebrates as bioindicators. Relationships between macroinvertebrate community structure and environmental variables were examined using univariate and multivariate analyses, focusing on the impacts of agricultural land use and water use. Structural changes in macroinvertebrate communities in rivers in the catchment indicated temporal and spatial declines in the ecological condition of some stretches of river associated with agricultural land and water use. Moreover, water extraction appeared to exacerbate impairment associated with agricultural land use (e.g., reduced macroinvertebrate density, more flow-avoiding taxa). The findings of our catchment-specific bioassessments will underpin decision-making during the implementation of the Ringarooma water management plan, and highlight the need to consider compounding impacts of land and water use in environmental flows and water planning in agricultural landscapes.
Krstolic, Jennifer L.; Hayes, Donald C.; Ruhl, Peter M.
2006-01-01
Increasing development and increasing water withdrawals for public, industrial, and agricultural water supply threaten to reduce streamflows in the Shenandoah River basin in Virginia. Water managers need more information to balance human water-supply needs with the daily streamflows necessary for maintaining the aquatic ecosystems. To meet the need for comprehensive information on hydrology, water supply, and instream-flow requirements of the Shenandoah River basin, the U.S. Geological Survey and the Northern Shenandoah Valley Regional Commission conducted a cooperative investigation of habitat availability during low-flow periods on the North Fork Shenandoah River. Historic streamflow data and empirical data on physical habitat, river hydraulics, fish community structure, and recreation were used to develop a physical habitat simulation model. Hydraulic measurements were made during low, medium, and high flows in six reaches at a total of 36 transects that included riffles, runs, and pools, and that had a variety of substrates and cover types. Habitat suitability criteria for fish were developed from detailed fish-community sampling and microhabitat observations. Fish were grouped into four guilds of species and life stages with similar habitat requirements. Simulated habitat was considered in the context of seasonal flow regimes to show the availability of flows that sustain suitable habitat during months when precipitation and streamflow are scarce. The North Fork Shenandoah River basin was divided into three management sections for analysis purposes: the upper section, middle section, and lower section. The months of July, August, and September were chosen to represent a low-flow period in the basin with low mean monthly flows, low precipitation, high temperatures, and high water withdrawals. Exceedance flows calculated from the combined data from these three months describe low-flow periods on the North Fork Shenandoah River. Long-term records from three streamflow-gaging stations were used to characterize the flow regime: North Fork Shenandoah River at Cootes Store, Va. (1925-2002), North Fork Shenandoah River at Mount Jackson, Va. (1943-2002), and North Fork Shenandoah River near Strasburg, Va. (1925-2002). The predominant mesohabitat types (14 percent riffle, 67.3 percent run, and 18.7 percent pool) were classified along the entire river (100 miles) to assist in the selection of reaches for hydraulic and fish community data collection. The upper section has predominantly particle substrate, ranging in size from sand to boulders, and the shortest habitat units. The middle section is a transitional section with increased bedrock substrate and habitat unit length. The lower section has predominantly bedrock substrate and the longest habitat units in the river. The model simulations show that weighted usable-habitat area in the upper management section is highest at flows higher than the 25-percent exceedance flow for July, August, and September. During these three months, total weighted usable-habitat area in this section is often less than the simulated maximum weighted usable-habitat area. Habitat area in the middle management section is highest at flows between the 25- and 75-percent exceedance flows for July, August, and September. In the middle section during these months, both the actual weighted usable-habitat area and the simulated maximum weighted usable-habitat area are associated with this flow range. Weighted usable-habitat area in the lower management section is highest at flows lower than the 75-percent exceedance flow for July, August, and September. In the lower section during these three months, some weighted usable-habitat area is available, but the normal range of flows does not include the simulated maximum weighted usable-habitat area. A time-series habitat analysis associated with the historic streamflow, zero water withdrawals, and doubled water withdrawals was completed. During s
D. Caamano; P. Goodwin; J. M. Buffington
2010-01-01
Detailed field measurements and simulations of three-dimensional flow structure were used to develop a conceptual model to explain the sustainability of self-formed pool-riffle sequences in gravel-bed rivers. The analysis was conducted at the Red River Wildlife Management Area in Idaho, USA, and enabled characterization of the flow structure through two consecutive...
Management scenarios for the Jordan River salinity crisis
Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.
2005-01-01
Recent geochemical and hydrological findings show that the water quality of the base flow of the Lower Jordan River, between the Sea of Galilee and the Dead Sea, is dependent upon the ratio between surface water flow and groundwater discharge. Using water quality data, mass-balance calculations, and actual flow-rate measurements, possible management scenarios for the Lower Jordan River and their potential affects on its salinity are investigated. The predicted scenarios reveal that implementation of some elements of the Israel-Jordan peace treaty will have negative effects on the Jordan River water salinity. It is predicted that removal of sewage effluents dumped into the river (???13 MCM/a) will significantly reduce the river water's flow and increase the relative proportion of the saline groundwater flux into the river. Under this scenario, the Cl content of the river at its southern point (Abdalla Bridge) will rise to almost 7000 mg/L during the summer. In contrast, removal of all the saline water (16.5 MCM/a) that is artificially discharged into the Lower Jordan River will significantly reduce its Cl concentration, to levels of 650-2600 and 3000-3500 mg/L in the northern and southern areas of the Lower Jordan River, respectively. However, because the removal of either the sewage effluents or the saline water will decrease the river's discharge to a level that could potentially cause river desiccation during the summer months, other water sources must be allocated to preserve in-stream flow needs and hence the river's ecosystem. ?? 2005 Elsevier Ltd. All rights reserved.
Design of a naturalized flow regime—An example from the Lower Missouri River, USA
Jacobson, Robert B.; Galat, David L.
2008-01-01
group of river managers, stakeholders, and scientists met during summer 2005 to design a more naturalized flow regime for the Lower Missouri River (LMOR). The objective was to comply with requirements under the U.S. Endangered Species Act to support reproduction and survival of threatened and endangered species, with emphasis on the endangered pallid sturgeon (Scaphirhynchus albus), while minimizing negative effects to existing social and economic benefits of prevailing river management. Specific hydrograph requirements for pallid sturgeon reproduction are unknown, hence much of the design process was based on features of the natural flow regime. Environmental flow components (EFCs) extracted from the reference natural flow regime were used to design and assess performance of alternative flow regimes.The design process incorporated a primary stage in which conceptual hydrographs were developed and assessed for their general ecological and social-economic performance. The second stage accounted for hydroclimatic variation by coding the conceptual hydrographs into reservoir release rules, adding constraints for downstream flooding and low-storage precludes, and running the rules through 100 years of hydroclimatic simulation. The output flow regimes were then evaluated for presumed ecological benefits based on how closely they resembled EFCs in the reference natural flow regime. Flow regimes also were assessed for social-economic cost indicators, including days of flooding of low-lying agricultural land, days over flood stage, and storage levels in system reservoirs.Our experience with flow-regime design on the LMOR underscored the lack of confidence the stakeholders place in the value of the natural flow regime as a measure of ecosystem benefit in the absence of fundamental scientific documentation. Stakeholders desired proof of ecological benefits commensurate with the certainty of economic losses. We also gained insight into the processes of integrating science into a collaborative management exercise. Although the 2005 collaborative effort failed to reach a consensus among stakeholders on a naturalized flow regime, the process was successful in pilot-testing a design approach; it helped focus scienctific efforts on key knowledge gaps; and it demonstrated the potential for collaborations among scientists, stakeholders, and managers in river management decision making.
Courter, Ian; Garrison, Thomas; Kock, Tobias J.; Perry, Russell W.; Child, David; Hubble, Joel
2016-01-01
The influence of streamflow on survival of emigrating juvenile Pacific salmonids Oncorhynchus spp. (smolts) is a major concern for water managers throughout the northeast Pacific Rim. However, few studies have quantified flow effects on smolt survival, and available information does not indicate a consistent flow–survival relationship within the typical range of flows under management control. In the Yakima Basin, Washington, the potential effects of streamflow alterations on smolt survival have been debated for over 20 years. Using a series of controlled flow releases from upper basin reservoirs and radiotelemetry, we quantified the relationship between flow and yearling Chinook salmon smolt survival in the 208 km reach between Roza Dam and the Yakima River mouth. A multistate mark–recapture model accounted for weekly variation in flow conditions experienced by tagged fish in four discrete river segments. Smolt survival was significantly associated with streamflow in the Roza Reach [river kilometre (rkm) 208–189] and marginally associated with streamflow in the Sunnyside Reach (rkm 169–77). However, smolt survival was not significantly associated with flow in the Naches and Prosser Reaches (rkm 189–169 and rkm 77–3). This discrepancy indicates potential differences in underlying flow-related survival mechanisms, such as predation or passage impediments. Our results clarify trade-offs between flow augmentation for fisheries enhancement and other beneficial uses, and our study design provides a framework for resolving uncertainties about streamflow effects on migratory fish survival in other river systems.
Melis, Theodore S.; Pine, William E.; Korman, Josh; Yard, Michael D.; Jain, Shaleen; Pulwarty, Roger S.; Miller, Kathleen; Hamlet, Alan F.; Kenney, Douglas S.; Redmond, Kelly T.
2016-01-01
Adaptive management of Glen Canyon Dam is improving downstream resources of the Colorado River in Glen Canyon National Recreation Area and Grand Canyon National Park. The Glen Canyon Dam Adaptive Management Program (AMP), a federal advisory committee of 25 members with diverse special interests tasked to advise the U.S. Department of the Interior), was established in 1997 in response to the 1992 Grand Canyon Protection Act. Adaptive management assumes that ecosystem responses to management policies are inherently complex and unpredictable, but that understanding and management can be improved through monitoring. Best known for its high-flow experiments intended to benefit physical and biological resources by simulating one aspect of pre-dam conditions—floods, the AMP promotes collaboration among tribal, recreation, hydropower, environmental, water and other natural resource management interests. Monitoring has shown that high flow experiments move limited new tributary sand inputs below the dam from the bottom of the Colorado River to shorelines; rebuilding eroded sandbars that support camping areas and other natural and cultural resources. Spring-timed high flows have also been shown to stimulate aquatic productivity by disturbing the river bed below the dam in Glen Canyon. Understanding about how nonnative tailwater rainbow trout (Oncorhynchus mykiss), and downstream endangered humpback chub (Gila cypha) respond to dam operations has also increased, but this learning has mostly posed “surprise” adaptation opportunities to managers. Since reoperation of the dam to Modified Low Fluctuating Flows in 1996, rainbow trout now benefit from more stable daily flows and high spring releases, but possibly at a risk to humpback chub and other native fishes downstream. In contrast, humpback chub have so far proven robust to all flows, and native fish have increased under the combination of warmer river temperatures associated with reduced storage in Lake Powell, and a system-wide reduction in trout from 2000-06, possibly due to several years of natural reproduction under limited food supply. Uncertainties about dam operations and ecosystem responses remain, including how native and nonnative fish will interact and respond to possible increased river temperatures under drier basin conditions. Ongoing assessment of operating policies by the AMP’s diverse stakeholders represents a major commitment to the river’s valued resources, while surprise learning opportunities can also help identify a resilient climate-change strategy for co-managing nonnative and endangered native fish, sandbar habitats and other river resources in a region with already complex and ever-increasing water demands.
NASA Astrophysics Data System (ADS)
Kałuża, Tomasz; Radecki-Pawlik, Artur; Plesiński, Karol; Walczak, Natalia; Szoszkiewicz, Krzysztof; Radecki-Pawlik, Bartosz
2016-04-01
In the present time integrated water management is directly connected with management and direct works in river channels themselves which are taking into account morphological processes in rivers and improve flow conditions. Our work focused on the hydraulic and hydrodynamic consequences upon the introduction of the concept of the improvement of the hydromorphological conditions of the Flinta River in a given reach following river channel management concept. Based on a comprehensive study of the hydromorphological state of the river, four sections were selected where restoration measures can efficiently improve river habitat conditions in the river. For each section a set of technical and biological measures were proposed and implemented in practice. One of the proposed solutions was to construct plant basket hydraulic structures (PBHS) within the river channel, which are essentially plant barriers working as sediment traps, changing river channel morphology and are in line with concepts of Water Framework Directive. These relatively small structures work as crested weirs and unquestionably change the channel morphology. Along our work we show the results of three-year long (2013-2015) systematic measurements that provided information on the morphological consequences of introducing such structures into a river channel. Our main conclusions are as follows: 1. Plant basket hydraulic structures cause changes in hydrodynamic conditions and result in sediment accumulation and the formation of river backwaters upstream and downstream the obstacle; 2. The introduced plant basket hydraulic structures cause plant debris accumulation which influences the hydrodynamic flow conditions; 3. The installation of plant basket hydraulic structures on the river bed changes flow pattern as well as flow hydrodynamic conditions causing river braiding process; 4. The erosion rate below the plant basket hydraulic structures is due to the hydraulic work conditions of the PBHS and its calculated value was confirmed by direct measurements in the field. In our calculations we used VCmaster software. This Work funded by the National Science Centre allocated based on the number of decision: DEC-2011/01 / B / ST10 / 06959
Summer water use by mixed-age and young forest stands, Mattole River, northern California, U.S.A
Andrew Stubblefield; Max Kaufman; Greg Blomstrom; John Rogers
2012-01-01
Resource managers have noted a decline in summer flow levels in the last decade in the Mattole River watershed, Humboldt County, California. Reduced river flows pose a threat to endangered coho and chinook salmon in the watershed, as stream heating is inversely proportional to discharge. While the cause of the reduced flow is unclear, several factors have been cited:...
A potential approach for low flow selection in water resource supply and management
NASA Astrophysics Data System (ADS)
Ouyang, Ying
2012-08-01
SummaryLow flow selections are essential to water resource management, water supply planning, and watershed ecosystem restoration. In this study, a new approach, namely the frequent-low (FL) approach (or frequent-low index), was developed based on the minimum frequent-low flow or level used in minimum flows and/or levels program in northeast Florida, USA. This FL approach was then compared to the conventional 7Q10 approach for low flow selections prior to its applications, using the USGS flow data from the freshwater environment (Big Sunflower River, Mississippi) as well as from the estuarine environment (St. Johns River, Florida). Unlike the FL approach that is associated with the biological and ecological impacts, the 7Q10 approach could lead to the selections of extremely low flows (e.g., near-zero flows) that may hinder its use for establishing criteria to prevent streams from significant harm to biological and ecological communities. Additionally, the 7Q10 approach could not be used when the period of data records is less than 10 years by definition while this may not the case for the FL approach. Results from both approaches showed that the low flows from the Big Sunflower River and the St. Johns River decreased as time elapsed, demonstrating that these two rivers have become drier during the last several decades with a potential of salted water intrusion to the St. Johns River. Results from the FL approach further revealed that the recurrence probability of low flow increased while the recurrence interval of low flow decreased as time elapsed in both rivers, indicating that low flows occurred more frequent in these rivers as time elapsed. This report suggests that the FL approach, developed in this study, is a useful alternative for low flow selections in addition to the 7Q10 approach.
A large-scale environmental flow experiment for riparian restoration in the Colorado River delta
Shafroth, Patrick B.; Schlatter, Karen; Gomez-Sapiens, Martha; Lundgren, Erick; Grabau, Matthew R.; Ramirez-Hernandez, Jorge; Rodriguez-Burgeueno, J. Eliana; Flessa, Karl W.
2017-01-01
Managing streamflow is a widely-advocated approach to provide conditions necessary for seed germination and seedling establishment of trees in the willow family (Salicaceae). Experimental flow releases to the Colorado River delta in 2014 had a primary objective of promoting seedling establishment of Fremont cottonwood (Populus fremontii) and Goodding's willow (Salix gooddingii). We assessed seed germination and seedling establishment of these taxa as well as the non-native tamarisk (Tamarix spp.) and native seepwillow shrubs (Baccharis spp.) in the context of seedling requirements and active land management (land grading, vegetation removal) at 23 study sites along 87 river km. In the absence of associated active land management, experimental flows to the Colorado River delta were minimally successful at promoting establishment of new woody riparian seedlings, except for non-native Tamarix. Our results suggest that the primary factors contributing to low seedling establishment varied across space, but included low or no seed availability in some locations for some taxa, insufficient soil moisture availability during the growing season indicated by deep groundwater tables, and competition from adjacent vegetation (and, conversely, availability of bare ground). Active land management to create bare ground and favorable land grades contributed to significantly higher rates of Salicaceae seedling establishment in a river reach with high groundwater tables. Our results provide insights that can inform future environmental flow deliveries to the Colorado River delta and its ecosystems and other similar efforts to restore Salicaceae taxa around the world.
Peterson, Steven M.; Flynn, Amanda T.; Vrabel, Joseph; Ryter, Derek W.
2015-08-12
The calibrated groundwater-flow model was used with the Groundwater-Management Process for the 2005 version of the U.S. Geological Survey modular three-dimensional groundwater model, MODFLOW–2005, to provide a tool for the NPNRD to better understand how water-management decisions could affect stream base flows of the North Platte River at Bridgeport, Nebr., streamgage in a future period from 2008 to 2019 under varying climatic conditions. The simulation-optimization model was constructed to analyze the maximum increase in simulated stream base flow that could be obtained with the minimum amount of reductions in groundwater withdrawals for irrigation. A second analysis extended the first to analyze the simulated base-flow benefit of groundwater withdrawals along with application of intentional recharge, that is, water from canals being released into rangeland areas with sandy soils. With optimized groundwater withdrawals and intentional recharge, the maximum simulated stream base flow was 15–23 cubic feet per second (ft3/s) greater than with no management at all, or 10–15 ft3/s larger than with managed groundwater withdrawals only. These results indicate not only the amount that simulated stream base flow can be increased by these management options, but also the locations where the management options provide the most or least benefit to the simulated stream base flow. For the analyses in this report, simulated base flow was best optimized by reductions in groundwater withdrawals north of the North Platte River and in the western half of the area. Intentional recharge sites selected by the optimization had a complex distribution but were more likely to be closer to the North Platte River or its tributaries. Future users of the simulation-optimization model will be able to modify the input files as to type, location, and timing of constraints, decision variables of groundwater withdrawals by zone, and other variables to explore other feasible management scenarios that may yield different increases in simulated future base flow of the North Platte River.
Water Quality Planning in Rivers: Assimilative Capacity and Dilution Flow.
Hashemi Monfared, Seyed Arman; Dehghani Darmian, Mohsen; Snyder, Shane A; Azizyan, Gholamreza; Pirzadeh, Bahareh; Azhdary Moghaddam, Mehdi
2017-11-01
Population growth, urbanization and industrial expansion are consequentially linked to increasing pollution around the world. The sources of pollution are so vast and also include point and nonpoint sources, with intrinsic challenge for control and abatement. This paper focuses on pollutant concentrations and also the distance that the pollution is in contact with the river water as objective functions to determine two main necessary characteristics for water quality management in the river. These two necessary characteristics are named assimilative capacity and dilution flow. The mean area of unacceptable concentration [Formula: see text] and affected distance (X) are considered as two objective functions to determine the dilution flow by a non-dominated sorting genetic algorithm II (NSGA-II) optimization algorithm. The results demonstrate that the variation of river flow discharge in different seasons can modify the assimilation capacity up to 97%. Moreover, when using dilution flow as a water quality management tool, results reveal that the content of [Formula: see text] and X change up to 97% and 93%, respectively.
Socio-hydrology and integrated water resources management in northern Australia
NASA Astrophysics Data System (ADS)
Douglas, Michael; Jackson, Sue
2017-04-01
Australia's tropical rivers account for more than half of the nation's freshwater resources. Nearly all of these rivers flow freely to the sea, with less than 0. 01% of river flows diverted for human use, but there is increasing interest in developing the region's water resources for irrigated agriculture. Interdisciplinary research conducted over the past decade has demonstrated the reliance of biodiversity on free-flowing rivers and has also identified a broad range of benefits that people derive from these river systems including irrigated agriculture, tourism, commercial and recreational fishing and Indigenous subsistence harvesting. This has revealed the highly coupled nature of the socio-hydrological system in northern Australia's catchments and the trade-offs among different water users. This paper provides an overview of past and current research with a focus on how socio-hydrology may assist in undertaking integrated water resource management in this region.
Kinzel, P.J.; Nelson, J.M.; Heckman, A.K.
2009-01-01
Over the past century, flow regulation and vegetation encroachment have reduced active channel widths along the central Platte River, Nebraska. During the last two decades, an annual program of in-channel vegetation management has been implemented to stabilize or expand active channel widths. Vegetation management practices are intended to enhance riverine habitats which include nocturnal roosting habitat for sandhill cranes. Evaluating the success of other management treatments such as streamflow modification requires an understanding of how flow shapes the sandbars in the river and how sandbar morphology interacts with flow to create crane habitat. These linkages were investigated along a 1-km managed river reach by comparing the spatial pattern of riverine roosts and emergent sandbars identified with aerial infrared imagery to variables computed with a two-dimensional hydraulic model. Nocturnal observations made multiple years showed that the area and patterns of riverine roosts and emergent sandbars and the densities of cranes within roosts changed with stage. Despite sandbar vegetation management, low flows were concentrated into incised channels rather than spread out over broad sandbars. The flow model was used to compute hydraulic variables for identical streamflows through two sandbar morphologies; one following a period of relatively high flow and the other following the low-flow period. Compared with the simulation using the morphology from the antecedent high flow, the simulation using the morphology from the antecedent low flow produced a smaller quantity of available wetted area. These remote-sensing observations and hydraulic simulations illustrate the importance of considering flow history when designing streamflows to manage in-channel habitat for cranes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, H.W.; Hiew, K.L.; Loubser, E.
1985-11-01
The Whooping Crane, an endangered species, uses the Platte River downstream from Overton, Nebraska in its migratory route. Maintenance of favorable habitat conditions required by law may mean restrictions on development and management of Colorado's entitled water in the South Platte River. The project investigated meeting crane habitat flow requirements by alternative plans for flow releases through Kingsley Dam (North Platte River) and Narrows Dam (a proposed project on the South Platte River). The analysis is based on mean monthly flow of the past 39 years. Irrigation releases were held firm, hydroelectric power production was maximized, and flows available tomore » meet habitat requirements were determined. A simulation model was developed to model the operation of the North Platte and South Platte Rivers.« less
Adaptive Flow Management in Regulated Rivers: Successes and Challenges (Invited)
NASA Astrophysics Data System (ADS)
Robinson, C. T.; Melis, T. S.; Kennedy, T.; Korman, J.; Ortlepp, J.
2013-12-01
Experimental high flows are becoming common management actions in rivers affected by large dams. When implemented under clear objectives and goals, experimental flows provide opportunities for long-term ecological successes but also impose various ecological challenges as systems shift under environmental change or from human-related actions. We present case studies from long-term adaptive flow management programs on the River Spöl, Switzerland and the Colorado River, USA, both of which are regulated by high dams and flow through National Parks. The management goals in each system differ thus reflecting the different high flow practices implemented over time. Regulated flows in the Spöl reflect a compromise between hydropower needs and ecology (native brown trout fishery), whereas Glen Canyon Dam flows have mainly been directed towards maintenance of river beaches in Grand Canyon National Park with co-management of both nonnative rainbow trout in the tailwater immediately below the dam and downstream endangered native fish of Grand Canyon also an objective. Some 24 experimental floods have occurred on the Spöl over the last 13 years, resulting in a positive effect on the trout fishery and a zoobenthic assemblage having a more typical alpine stream composition. The system has experienced various shifts in assemblage composition over time with the last shift occurring 7 years after the initial floods. A major challenge occurred in spring 2013 with an accidental release of fine sediments from the reservoir behind Punt dal Gall Dam, causing high fish mortality and smothering of the river bottom. Results showed that the effect was pronounced near the dam and gradually lessened downriver to the lower reservoir. Zoobenthic assemblages displayed relatively high resistance to the event and some fish found refugia in the lower reservoir and larger side tributaries, thus projecting a faster recovery than initially thought. Below Glen Canyon dam, benefits to sandbars have been marginal since experimental constrained hydropower releases began in 1991 and controlled floods began in 1996 (7 have been released through 2012), while native fish populations have increased, although apparently not in response to flows. However, nonnative rainbow trout have been shown to increase in abundance repeatedly below Glen Canyon Dam in response to both controlled floods and more stable flows, both of which were originally proposed to benefit Grand Canyon beaches. Survival of trout fry following the 2008 spring flood was apparently tied to increased abundance of benthic invertebrates in the tailwater. Expansion of nonnative trout in response to high flows pose a potential threat to native fish downstream through competition for limited food and habitat, and through predation of juvenile native fish. Challenges are presented for each system in terms of flow implementation under hydropower needs (Spöl) and environmental change (Colorado). We close with perspectives on improving adaptive flow management actions in regulated rivers as learning-based, long-term ecological experiments.
Defining ecosystem flow requirements for the Bill Williams River, Arizona
Shafroth, Patrick B.; Beauchamp, Vanessa B.
2006-01-01
Alteration of natural river flows resulting from the construction and operation of dams can result in substantial changes to downstream aquatic and bottomland ecosystems and undermine the long-term health of native species and communities (for general review, cf. Ward and Stanford, 1995; Baron and others, 2002; Nilsson and Svedmark, 2002). Increasingly, land and water managers are seeking ways to manage reservoir releases to produce flow regimes that simultaneously meet human needs and maintain the health and sustainability of downstream biotaa.
NASA Astrophysics Data System (ADS)
Wescoat, James L.; Siddiqi, Afreen; Muhammad, Abubakr
2018-01-01
This paper presents a socio-hydrologic analysis of channel flows in Punjab province of the Indus River basin in Pakistan. The Indus has undergone profound transformations, from large-scale canal irrigation in the mid-nineteenth century to partition and development of the international river basin in the mid-twentieth century, systems modeling in the late-twentieth century, and new technologies for discharge measurement and data analytics in the early twenty-first century. We address these processes through a socio-hydrologic framework that couples historical geographic and analytical methods at three levels of flow in the Punjab. The first level assesses Indus River inflows analysis from its origins in 1922 to the present. The second level shows how river inflows translate into 10-daily canal command deliveries that vary widely in their conformity with canal entitlements. The third level of analysis shows how new flow measurement technologies raise questions about the performance of established methods of water scheduling (warabandi) on local distributaries. We show how near real-time measurement sheds light on the efficiency and transparency of surface water management. These local socio-hydrologic changes have implications in turn for the larger scales of canal and river inflow management in complex river basins.
Optimally managing water resources in large river basins for an uncertain future
Edwin A. Roehl, Jr.; Conrads, Paul
2014-01-01
Managers of large river basins face conflicting needs for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting local economies for years. The Savannah River Basin’s coastal area contains municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent since the 1970s. There is a planned deepening of the harbor that includes flow-alteration features to minimize further migration of salinity. The effectiveness of the flow-alteration features will only be known after they are constructed. One of the challenges of basin management is the optimization of water use through ongoing development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to significantly reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the flow-alteration features after the deepening also is demonstrated
Does reintroducing large wood influence the hydraulic landscape of a lowland river system?
NASA Astrophysics Data System (ADS)
Matheson, Adrian; Thoms, Martin; Reid, Michael
2017-09-01
Our understanding of the effectiveness of reintroduced large wood for restoration is largely based on studies from high energy river systems. By contrast, few studies of the effectiveness of reintroducing large wood have been undertaken on large, low energy, lowland river systems: river systems where large wood is a significant physical feature on the in-channel environment. This study investigated the effect of reintroduced large wood on the hydraulic landscape of the Barwon-Darling River, Australia, at low flows. To achieve this, the study compared three hydraulic landscapes of replicated reference (naturally wooded), control (unwooded,) and managed (wood reintroduced) treatments on three low flow periods. These time periods were prior to the reintroduction of large wood to managed reaches; several months after the reintroduction of large wood into the managed reaches; and then more than four years after wood reintroduction following several large flood events. Hydraulic landscapes of reaches were characterised using a range of spatial measures calculated from velocity measurements taken with a boat-mounted Acoustic Doppler Profiler. We hypothesised that reintroduced large wood would increase the diversity of the hydraulic landscape at low flows and that managed reaches would be more similar to the reference reaches. Our results suggest that the reintroduction of large wood did not significantly change the character of the hydraulic landscape at the reach scale after several months (p = 0.16) or several years (p = 0.29). Overall, the character of the hydraulic landscape in the managed reaches was more similar to the hydraulic landscape of the control reaches than the hydraulic landscape of the reference reaches, at low flows. Some variability in the hydraulic landscapes was detected over time, and this may reflect reworking of riverbed sediments and sensitivity to variation in discharge. The lack of a response in the low flow hydraulic landscape to the reintroduction of large wood is inferred because the character (the size and complexity of individual pieces) and positioning of large wood in managed reaches did not mimic that of reference reaches effectively despite the abundance of wood pieces being similar in the reference and managed reaches. The results of this study highlight the importance of understanding the natural character and distribution of large wood on hydraulic landscapes in large low energy lowland river systems, especially when reintroducing large wood for river management purposes.
Modelling white-water rafting suitability in a hydropower regulated Alpine River.
Carolli, Mauro; Zolezzi, Guido; Geneletti, Davide; Siviglia, Annunziato; Carolli, Fabiano; Cainelli, Oscar
2017-02-01
Cultural and recreational river ecosystem services and their relations with the flow regime are still poorly investigated. We develop a modelling-based approach to assess recreational flow requirements and the spatially distributed river suitability for white-water rafting, a typical service offered by mountain streams, with potential conflicts of interest with hydropower regulation. The approach is based on the principles of habitat suitability modelling using water depth as the main attribute, with preference curves defined through interviews with local rafting guides. The methodology allows to compute streamflow thresholds for conditions of suitability and optimality of a river reach in relation to rafting. Rafting suitability response to past, present and future flow management scenarios can be predicted on the basis of a hydrological model, which is incorporated in the methodology and is able to account for anthropic effects. Rafting suitability is expressed through a novel metric, the "Rafting hydro-suitability index" (RHSI) which quantifies the cumulative duration of suitable and optimal conditions for rafting. The approach is applied on the Noce River (NE Italy), an Alpine River regulated by hydropower production and affected by hydropeaking, which influences suitability at a sub-daily scale. A dedicated algorithm is developed within the hydrological model to resemble hydropeaking conditions with daily flow data. In the Noce River, peak flows associated with hydropeaking support rafting activities in late summer, highlighting the dual nature of hydropeaking in regulated rivers. Rafting suitability is slightly reduced under present, hydropower-regulated flow conditions compared to an idealized flow regime characterised by no water abstractions. Localized water abstractions for small, run-of-the-river hydropower plants are predicted to negatively affect rafting suitability. The proposed methodology can be extended to support decision making for flow management in hydropower regulated streams, as it has the potential to quantify the response of different ecosystem services to flow regulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Schefter, John E.; Hirsch, Robert M.
1980-01-01
A method for evaluating the cost-effectiveness of alternative strategies for dissolved-oxygen (DO) management is demonstrated, using the Chattahoochee River, GA., as an example. The conceptual framework for the analysis is suggested by the economic theory of production. The minimum flow of the river and the percentage of the total waste inflow receiving nitrification are considered to be two variable inputs to be used in the production of given minimum concentration of DO in the river. Each of the inputs has a cost: the loss of dependable peak hydroelectric generating capacity at Buford Dam associated with flow augmentation and the cost associated with nitrification of wastes. The least-cost combination of minimum flow and waste treatment necessary to achieve a prescribed minimum DO concentration is identified. Results of the study indicate that, in some instances, the waste-assimilation capacity of the Chattahoochee River can be substituted for increased waste treatment; the associated savings in waste-treatment costs more than offset the benefits foregone because of the loss of peak generating capacity at Buford Dam. The sensitivity of the results to the estimates of the cost of replacing peak generating capacity is examined. It is also demonstrated that a flexible approach to the management of DO in the Chattahoochee River may be much more cost effective than a more rigid, institutional approach wherein constraints are placed on the flow of the river and(or) on waste-treatment practices. (USGS)
An ecological response model for the Cache la Poudre River through Fort Collins
Shanahan, Jennifer; Baker, Daniel; Bledsoe, Brian P.; Poff, LeRoy; Merritt, David M.; Bestgen, Kevin R.; Auble, Gregor T.; Kondratieff, Boris C.; Stokes, John; Lorie, Mark; Sanderson, John
2014-01-01
The ERM was designed to represent the multi-dimensional ecological character of the contemporary urban Poudre River. It provides a scientific foundation that can serve as a decision support tool and foster a more informed community discussion about the future of the river as it provides a better understanding of the likely response of the Poudre River ecosystem to environmental flow management and other stewardship activities. In particular, model results can assist managers in developing specific management actions to achieve desirable goals for key indicators of river health.
The Role of Forests in Regulating the River Flow Regime of Large Basins of the World
NASA Astrophysics Data System (ADS)
Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.
2016-12-01
Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.
The Role of Forests in Regulating the River Flow Regime of Large Basins of the World
NASA Astrophysics Data System (ADS)
Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.
2017-12-01
Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.
Orlando, James L.; Kuivila, Kathryn
2005-01-01
Concentrations of organic contaminants were determined in water samples collected at six surface-water sites located along the San Joaquin and Old Rivers during April through June 2001. Water samples were collected, coincident with salmon smolt caging studies conducted by researchers from the Bodega Marine Laboratory at the University of California at Davis to characterize exposure of the salmon smolt to organic contaminants. Sampling occurred prior to, during, and following the implementation of managed streamflow conditions on the San Joaquin and Old Rivers as part of the Vernalis Adaptive Management Plan. Thirteen pesticides were detected in water samples collected during this study, and at least five pesticides were detected in each sample. The total number of pesticide detections varied little between river systems and between sites, but the maximum concentrations of most pesticides occurred in San Joaquin River samples. The total number of pesticides detected varied little over the three time periods. However, during the period of managed streamflow, the fewest number of pesticides were detected at their absolute maximum concentration. Nine wastewater compounds were detected during this study. Suspended-sediment concentrations were similar for the San Joaquin and Old Rivers except during the period of managed streamflow conditions, when suspended-sediment concentration was higher at sites on the San Joaquin River than at sites on the Old River. Values for water parameters (pH, specific conductance, and hardness) were lowest during the period of managed flows.
Integrated Analysis of Flow, Form, and Function for River Management and Design Testing
NASA Astrophysics Data System (ADS)
Lane, B. A. A.; Pasternack, G. B.; Sandoval Solis, S.
2017-12-01
Rivers are highly complex, dynamic systems that support numerous ecosystem functions including transporting sediment, modulating biogeochemical processes, and regulating habitat availability for native species. The extent and timing of these functions is largely controlled by the interplay of hydrologic dynamics (i.e. flow) and the shape and composition of the river corridor (i.e. form). This study applies synthetic channel design to the evaluation of river flow-form-function linkages, with the aim of evaluating these interactions across a range of flows and forms to inform process-driven management efforts with limited data and financial requirements. In an application to California's Mediterranean-montane streams, the interacting roles of channel form, water year type, and hydrologic impairment were evaluated across a suite of ecosystem functions related to hydrogeomorphic processes, aquatic habitat, and riparian habitat. Channel form acted as the dominant control on hydrogeomorphic processes considered, while water year type controlled salmonid habitat functions. Streamflow alteration for hydropower increased redd dewatering risk and altered aquatic habitat availability and riparian recruitment dynamics. Study results highlight critical tradeoffs in ecosystem function performance and emphasize the significance of spatiotemporal diversity of flow and form at multiple scales for maintaining river ecosystem integrity. The approach is broadly applicable and extensible to other systems and ecosystem functions, where findings can be used to characterize complex controls on river ecosystems, assess impacts of proposed flow and form alterations, and inform river restoration strategies.
Assessing the impact of managed aquifer recharge on seasonal low flows in a semi-arid alluvial river
NASA Astrophysics Data System (ADS)
Ronayne, M. J.; Roudebush, J. A.; Stednick, J. D.
2016-12-01
Managed aquifer recharge (MAR) is one strategy that can be used to augment seasonal low flows in alluvial rivers. Successful implementation requires an understanding of spatio-temporal groundwater-surface water exchange. In this study we conducted numerical groundwater modeling to analyze the performance of an existing MAR system in the South Platte River Valley in northeastern Colorado (USA). The engineered system involves a spatial reallocation of water during the winter months; alluvial groundwater is extracted near the river and pumped to upgradient recharge ponds, with the intent of producing a delayed hydraulic response that increases the riparian zone water table (and therefore streamflow) during summer months. Higher flows during the summer are required to improve riverine habitat for threatened species in the Platte River. Modeling scenarios were constrained by surface (streamflow gaging) and subsurface (well data) measurements throughout the study area. We compare two scenarios to analyze the impact of MAR: a natural base case scenario and an active management scenario that includes groundwater pumping and managed recharge. Steady-periodic solutions are used to evaluate the long-term stabilized behavior of the stream-aquifer system with and without pumping/recharge. Streamflow routing is included in the model, which permits quantification of the timing and location of streamflow accretion (increased streamflow associated with MAR). An analysis framework utilizing capture concepts is developed to interpret seasonal changes in head-dependent flows to/from the aquifer, including groundwater-surface water exchange that impacts streamflow. Results demonstrate that accretion occurs during the target low-flow period but is not limited to those months, highlighting an inefficiency that is a function of the aquifer geometry and hydraulic properties. The results of this study offer guidance for other flow augmentation projects that rely on water storage in shallow alluvial aquifers.
Abdi, Reza; Yasi, Mehdi
2015-01-01
The assessment of environmental flows in rivers is of vital importance for preserving riverine ecosystem processes. This paper addresses the evaluation of environmental flow requirements in three reaches along a typical perennial river (the Zab transboundary river, in north-west Iran), using different hydraulic, hydrological and ecological methods. The main objective of this study came from the construction of three dams and inter-basin transfer of water from the Zab River to the Urmia Lake. Eight hydrological methods (i.e. Tennant, Tessman, flow duration curve analysis, range of variability approach, Smakhtin, flow duration curve shifting, desktop reserve and 7Q2&10 (7-day low flow with a 2- and 10-year return period)); two hydraulic methods (slope value and maximum curvature); and two habitat simulation methods (hydraulic-ecologic, and Q Equation based on water quality indices) were used. Ecological needs of the riverine key species (mainly Barbus capito fish), river geometries, natural flow regime and the environmental status of river management were the main indices for determining the minimum flow requirements. The results indicate that the order of 35%, 17% and 18% of the mean annual flow are to be maintained for the upper, middle and downstream river reaches, respectively. The allocated monthly flow rates in the three Dams steering program are not sufficient to preserve the Zab River life.
Climate Change and River Ecosystems: Protection and Adaptation Options
NASA Astrophysics Data System (ADS)
Palmer, Margaret A.; Lettenmaier, Dennis P.; Poff, N. Leroy; Postel, Sandra L.; Richter, Brian; Warner, Richard
2009-12-01
Rivers provide a special suite of goods and services valued highly by the public that are inextricably linked to their flow dynamics and the interaction of flow with the landscape. Yet most rivers are within watersheds that are stressed to some extent by human activities including development, dams, or extractive uses. Climate change will add to and magnify risks that are already present through its potential to alter rainfall, temperature, runoff patterns, and to disrupt biological communities and sever ecological linkages. We provide an overview of the predicted impacts based on published studies to date, discuss both reactive and proactive management responses, and outline six categories of management actions that will contribute substantially to the protection of valuable river assets. To be effective, management must be place-based focusing on local watershed scales that are most relevant to management scales. The first priority should be enhancing environmental monitoring of changes and river responses coupled with the development of local scenario-building exercises that take land use and water use into account. Protection of a greater number of rivers and riparian corridors is essential, as is conjunctive groundwater/surface water management. This will require collaborations among multiple partners in the respective river basins and wise land use planning to minimize additional development in watersheds with valued rivers. Ensuring environmental flows by purchasing or leasing water rights and/or altering reservoir release patterns will be needed for many rivers. Implementing restoration projects proactively can be used to protect existing resources so that expensive reactive restoration to repair damage associated with a changing climate is minimized. Special attention should be given to diversifying and replicating habitats of special importance and to monitoring populations at high risk or of special value so that management interventions can occur if the risks to habitats or species increase significantly over time.
A Riparian Approach to Dendrochronological Flow Reconstruction, Yellowstone River, Montana
NASA Astrophysics Data System (ADS)
Schook, D. M.; Rathburn, S. L.; Friedman, J. M.
2015-12-01
Tree ring-based flow reconstructions can reveal river discharge variability over durations far exceeding the gauged record, building perspective for both the measured record and future flows. We use plains cottonwood (Populus deltoides subsp. monilifera) tree rings collected from four rivers to reconstruct flow history of the Yellowstone River near its confluence with the Missouri River. Upland trees in dry regions are typically used in flow reconstruction because their annual growth is controlled by the same precipitation that drives downstream flow, but our study improves flow reconstruction by including floodplain trees that are directly affected by the river. Cores from over 1000 cottonwoods along the Yellowstone, Powder, Little Missouri, and Redwater Rivers were collected from within a 170 km radius to reconstruct flows using the Age Curve Standardization technique in a multiple regression analysis. The large sample from trees spanning many age classes allows us to use only the rings that were produced when each tree was less than 50 years old and growth was most strongly correlated to river discharge. Using trees from a range of rivers improves our ability to differentiate between growth resulting from local precipitation and river flow, and we show that cottonwood growth differs across these neighboring rivers having different watersheds. Using the program Seascorr, tree growth is found to better correlated to seasonal river discharge (R = 0.69) than to local precipitation (R = 0.45). Our flow reconstruction reveals that the most extreme multi-year or multi-decade drought periods of the last 250 years on either the Yellowstone (1817-1821) or Powder (1846-1865) Rivers are missed by the gauged discharge record. Across all sites, we document increased growth in the 20th century compared to the 19th, a finding unattainable with conventional methods but having important implications for flow management.
Characterizing effects of hydropower plants on sub-daily flow regimes
NASA Astrophysics Data System (ADS)
Bejarano, María Dolores; Sordo-Ward, Álvaro; Alonso, Carlos; Nilsson, Christer
2017-07-01
A characterization of short-term changes in river flow is essential for understanding the ecological effects of hydropower plants, which operate by turning the turbines on or off to generate electricity following variations in the market demand (i.e., hydropeaking). The goal of our study was to develop an approach for characterizing the effects of hydropower plant operations on within-day flow regimes across multiple dams and rivers. For this aim we first defined ecologically meaningful metrics that provide a full representation of the flow regime at short time scales from free-flowing rivers and rivers exposed to hydropeaking. We then defined metrics that enable quantification of the deviation of the altered short-term flow regime variables from those of the unaltered state. The approach was successfully tested in two rivers in northern Sweden, one free-flowing and another regulated by cascades of hydropower plants, which were additionally classified based on their impact on short-term flows in sites of similar management. The largest differences between study sites corresponded to metrics describing sub-daily flow magnitudes such as amplitude (i.e., difference between the highest and the lowest hourly flows) and rates (i.e., rise and fall rates of hourly flows). They were closely followed by frequency-related metrics accounting for the numbers of within-day hourly flow patterns (i.e., rises, falls and periods of stability of hourly flows). In comparison, between-site differences for the duration-related metrics were smallest. In general, hydropeaking resulted in higher within-day flow amplitudes and rates and more but shorter periods of a similar hourly flow patterns per day. The impacted flow feature and the characteristics of the impact (i.e., intensity and whether the impact increases or decreases whatever is being described by the metric) varied with season. Our approach is useful for catchment management planning, defining environmental flow targets, prioritizing river restoration or dam reoperation efforts and contributing information for relicensing hydropower dams.
Ryan A. McManamay; Donald J. Orth; Charles A. Dolloff; Emmaneul A. Firmpong
2012-01-01
River regulation has resulted in substantial losses in habitat connectivity, biodiversity and ecosystem services. River managers are faced with a growing need to protect the key aspects of the natural flow regime. A practical approach to providing environmental flow standards is to create a regional framework by classifying unregulated streams into groups of similar...
Analysis of Pulsed Flow Modification Alternatives, Lower Missouri River, 2005
Jacobson, Robert B.
2008-01-01
The graphical, tabular, and statistical data presented in this report resulted from analysis of alternative flow regime designs considered by a group of Missouri River managers, stakeholders, and scientists during the summer of 2005. This plenary group was charged with designing a flow regime with increased spring flow pulses to support reproduction and survival of the endangered pallid sturgeon. Environmental flow components extracted from the reference natural flow regime were used to design and assess performance of alternative flow regimes. The analysis is based on modeled flow releases from Gavins Point Dam (near Yankton, South Dakota) for nine design alternatives and two reference scenarios; the reference scenarios are the run-of-the-river and the water-control plan implemented in 2004. The alternative designs were developed by the plenary group with the goal of providing pulsed spring flows, while retaining traditional social and economic uses of the river.
Garcia, Ana Maria
2012-01-01
The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve water quality and protect the aquatic habitat of the Roanoke River.
NASA Astrophysics Data System (ADS)
Caldwell, P. V.; Sun, G.; McNulty, S. G.; Cohen, E. C.; Moore Myers, J. A.
2012-08-01
Rivers are essential to aquatic ecosystem and societal sustainability, but are increasingly impacted by water withdrawals, land-use change, and climate change. The relative and cumulative effects of these stressors on continental river flows are relatively unknown. In this study, we used an integrated water balance and flow routing model to evaluate the impacts of impervious cover and water withdrawal on river flow across the conterminous US at the 8-digit Hydrologic Unit Code (HUC) watershed scale. We then estimated the impacts of projected change in withdrawals, impervious cover, and climate under the B1 "Low" and A2 "High" emission scenarios on river flows by 2060. Our results suggest that compared to no impervious cover, 2010 levels of impervious cover increased river flows by 9.9% on average with larger impacts in and downstream of major metropolitan areas. In contrast, compared to no water withdrawals, 2005 withdrawals decreased river flows by 1.4% on average with larger impacts in heavily irrigated arid regions of Western US. By 2060, impacts of climate change were predicted to overwhelm the potential gain in river flow due to future changes in impervious cover and add to the potential reduction in river flows from withdrawals, decreasing mean annual river flows from 2010 levels by 16% on average. However, increases in impervious cover by 2060 may offset the impact of climate change during the growing season in some watersheds. Large water withdrawals will aggravate the predicted impact of climate change on river flows, particularly in the Western US. Predicted ecohydrological impacts of land cover, water withdrawal, and climate change will likely include alteration of the terrestrial water balance, stream channel habitat, riparian and aquatic community structure in snow-dominated basins, and fish and mussel extirpations in heavily impacted watersheds. These changes may also require new infrastructure to support increasing anthropogenic demand for water, relocation of agricultural production, and/or water conservation measures. Given that the impacts of land use, withdrawals and climate may be either additive or offsetting in different magnitudes, integrated and spatially explicit modeling and management approaches are necessary to effectively manage water resources for aquatic life and human use in the face of global change.
River management impacts on riparian forest vegetation along the Middle Rio Grande: 1935-2014
NASA Astrophysics Data System (ADS)
Petrakis, Roy E.
Riparian ecosystems of the southwestern United States are highly valuable to both the ecological and human communities which surround them. Over the past century, they have been subject to shifting management practices to maximize human use, control, ecosystem service, and conservation. This creates a complex relationship between water policy, management, and the natural ecosystem necessitating research on spatial and temporal dynamics of riparian vegetation. The San Acacia Reach of the Middle Rio Grande, a 60 mile stretch from the San Acacia Diversion Dam to San Marcial, has experienced multiple management and river flow fluctuations over the past 80 years, resulting in threats to riparian and aquatic ecosystems. This research was completed through the use and analysis of multi-source remote sensing data, GIS, and a review of the on-the-ground management decisions to better understand how the location and composition of the riparian vegetation has been affected by these shifting practices. This research focused on four phases, each highlighting different management practices and river flow patterns during the last 80-years. Each of these periods provides a unique opportunity to observe a direct relationship between river management and riparian land cover response and change. Overall, management practices reduced surface river flows and limited overbank flooding and resulted in changes in the composition, density, and spatial patterns of the vegetation, including increased non-native vegetation growth. Restoration efforts over the past few decades have begun to reduce the presence of non-native species. Despite these changes, this ecosystem was shown to be extremely resilient in maintaining its function/service throughout the entire study time frame.
Burau, Jon; Ruhl, Cathy; Work, Paul A.
2016-01-29
The U.S. Geological Survey (USGS) installed the first gage to measure the flow of water into California’s Sacramento–San Joaquin River Delta from the Sacramento River in the late 1800s. Today, a network of 35 hydro-acoustic meters measure flow throughout the delta. This region is a critical part of California’s freshwater supply and conveyance system. With the data provided by this flow-station network—sampled every 15 minutes and updated to the web every hour—state and federal water managers make daily decisions about how much freshwater can be pumped for human use, at which locations, and when. Fish and wildlife scientists, working with water managers, also use this information to protect fish species affected by pumping and loss of habitat. The data are also used to help determine the success or failure of efforts to restore ecosystem processes in what has been called the “most managed and highly altered” watershed in the country.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
..., 6:30-8:30 p.m. Vancouver, WA, January 31, 2008, at the Water Resources Education Center, 6:30-8:30 p... influenced by Columbia River tributary/ mainstem water withdrawals and other water management actions in... River tributary/ mainstem water withdrawals and other water management actions in tributaries. Flow...
77 FR 22551 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-16
... Tributary 5, Puyallup River (overflow through golf course between State Route 162 and Puyallup River... Waterway via numerous flow paths), Puyallup River (with consideration of levees), Puyallup River (without..., State, or regional entities. These proposed elevations are used to meet the floodplain management...
Simulation of unsteady flow and solute transport in a tidal river network
Zhan, X.
2003-01-01
A mathematical model and numerical method for water flow and solute transport in a tidal river network is presented. The tidal river network is defined as a system of open channels of rivers with junctions and cross sections. As an example, the Pearl River in China is represented by a network of 104 channels, 62 nodes, and a total of 330 cross sections with 11 boundary section for one of the applications. The simulations are performed with a supercomputer for seven scenarios of water flow and/or solute transport in the Pearl River, China, with different hydrological and weather conditions. Comparisons with available data are shown. The intention of this study is to summarize previous works and to provide a useful tool for water environmental management in a tidal river network, particularly for the Pearl River, China.
Flow status of three transboundary rivers in Northern Greece as a tool for hydro-diplomacy
NASA Astrophysics Data System (ADS)
Hatzigiannakis, Eyaggelos; Hatzispiroglou, Ioannis; Arampatzis, Georgios; Ilia, Andreas; Pantelakis, Dimitrios; Filintas, Agathos; Panagopoulos, Andreas
2015-04-01
The aim of this paper is to examine how the river flow monitoring consists a tool for hydro-diplomacy. Management of transboundary catchments and the demand of common water resources, often comprise the cause of conflicts and tension threatening the peaceful coexistence of nations. The Water Framework Directive 2000/60/EU sets a base for water management contributing to common approaches, common goals, common principles as well as providing new definitions and measures for Europe's water resources. In northern Greece the main renewable resources are "imported" (over 25% of its water reserves) and for this reason the implementation of continuous flow measurements throughout the year is necessary, even though difficult to achieve. This paper focuses on the three largest transboundary rivers in Northern Greece. Axios and Strymonas river flow across the region of Central Macedonia in Northern Greece. Axios flows from FYROM to Greece, and Strymonas from Bulgaria to Greece. Nestos river flows from Bulgaria to Greece. The Greek part is in the region of Eastern Macedonia and Thrace in Northern Greece. Significant productive agricultural areas around these rivers are irrigated from them so they are very important for the local society. Measurements of the river flow velocity and the flow depth have been made at bridges. The frequency of the measurements is roughly monthly, because it is expected a significant change in the depth flow and discharge. A series of continuously flow measure-ments were performed during 2013 and 2014 using flowmeters (Valeport and OTT type). The cross-section characteristics, the river flow velocity of segments and the mean water flow velocity and discharge total profile were measured and calculated re-spectively. Measurements are conducted in the framework of the national water resources monitoring network, which is realised in compliance to the Water Framework Directive under the supervision and coordination of the Hellenic Ministry for the Environment and Climate Change. This project is elaborated in the framework of the operational program "Environment and Sustainable Development" which is co-funded by the National Strategic Reference Framework (NSRF) and the Public Investment Program (PIP).
Roehl, Edwin A.; Conrads, Paul
2015-01-01
Managers of large river basins face conflicting demands for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin, for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting dependent economies for years. The Savannah River estuary contains two municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor to expand ship traffic since the 1970s have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent. A planned deepening of the harbor includes flow-alteration features to minimize further migration of salinity, whose effectiveness will only be known after all construction is completed.One of the challenges of large basin management is the optimization of water use through ongoing regional economic development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to substantially reduce salinity intrusions in the Savannah National Wildlife Refuge, while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the flow-alteration features after the deepening also is demonstrated.
Mapping ecosystem services in the St. Louis River Estuary
Sustainable management of ecosystems for the perpetual flow of services beneficial to human communities requires reliable data about from where in the ecosystem services flow. Our objective is to map ecosystem services in the St. Louis River with the overarching U.S. EPA goal of ...
Assessment of flow forces on large wood in rivers
USDA-ARS?s Scientific Manuscript database
Large wood (LW) exerts an important influence on the geomorphology and ecology of streams and rivers. LW management activities are diverse, including placement in streams for restoring habitats or controlling bank erosion and mitigation of LW-related hazards to bridges and other structures. Flow f...
NASA Astrophysics Data System (ADS)
Springer, A. E.; Stevens, L. E.
2008-12-01
Ecological flow needs assessments are beginning to become an important part of regulated river management, but are more challenging for unregulated rivers. Water needs for ecosystems are greater than just consumptive use by riparian and aquatic vegetation and include the magnitude, frequency, duration and timing of flows and the depth and annual fluctuations of groundwater levels of baseflow supported streams. An ecological flow needs assessment was adapted and applied to an unregulated, baseflow dependent river in the arid to semi-arid Southwestern U.S. A separate process was developed to determine groundwater sources potentially at risk from climate, land management, or groundwater use changes in a large regional groundwater basin in the same semi-arid region. In 2007 and 2008, workshops with ecological, cultural, and physical experts from agencies, universities, tribes, and other organizations were convened. Flow-ecology response functions were developed with either conceptual or actual information for a baseflow dependent river, and scoring systems were developed to assign values to categories of risks to groundwater sources in a large groundwater basin. A reduction of baseflow to the river was predicted to lead to a decline in cottonwood and willow tree abundance, decreases in riparian forest diversity, and increases in non-native tree species, such as tamarisk. These types of forest vegetation changes would likely cause reductions or loss of some bird species. Loss of riffle habitat through declines in groundwater discharge and the associated river levels would likely lead to declines in native fish and amphibian species. A research agenda was developed to develop techniques to monitor, assess and hopefully better manage the aquifers supporting the baseflow dependent river to prevent potential threshold responses of the ecosystems. The scoring system for categories of risk was applied to four systems (aquifers, springs, standing water bodies, and streams) in the groundwater basin. The process was developed to allow water managers to assess and prioritize potential impacts to the biological, historical, or cultural aspects of the four types of systems from groundwater abstraction. These approaches can be adapted to other baseflow dependent, unregulated rivers or to assess risks to natural features associated with water sources in other regions.
A novel approach to flow estimation in tidal rivers
NASA Astrophysics Data System (ADS)
Moftakhari, H. R.; Jay, D. A.; Talke, S. A.; Kukulka, T.; Bromirski, P. D.
2013-08-01
Reliable estimation of river discharge to the ocean from large tidal rivers is vital for water resources management and climate analyses. Due to the difficulties inherent in measuring tidal-river discharge, flow records are often limited in length and/or quality and tidal records often predate discharge records. Tidal theory indicates that tides and river discharge interact through quadratic bed friction, which diminishes and distorts the tidal wave as discharge increases. We use this phenomenon to develop a method of estimating river discharge for time periods with tidal data but no flow record. Employing sequential 32 day harmonic analyses of tidal properties, we calibrate San Francisco (SF), CA tide data to the Sacramento River delta outflow index from 1930 to 1990, and use the resulting relationship to hindcast river flow from 1858 to 1929. The M2 admittance (a ratio of the observed M2 tidal constituent to its astronomical forcing) best reproduces high flows, while low-flow periods are better represented by amplitude ratios based on higher harmonics (e.g.,M4/M22). Results show that the annual inflow to SF Bay is now 30% less than before 1900 and confirm that the flood of January 1862 was the largest since 1858.
Space-Time Variability in River Flow Regimes of Northeast Turkey
NASA Astrophysics Data System (ADS)
Saris, F.; Hannah, D. M.; Eastwood, W. J.
2011-12-01
The northeast region of Turkey is characterised by relatively high annual precipitation totals and river flow. It is a mountainous region with high ecological status and also it is of prime interest to the energy sector. These characteristics make this region an important area for a hydroclimatology research in terms of future availability and management of water resources. However, there is not any previous research identifying hydroclimatological variability across the region. This study provides first comprehensive and detailed information on river flow regimes of northeast Turkey which is delimited by two major river basins namely East Black Sea (EBS) and Çoruh River (ÇRB) basins. A novel river flow classification is used that yields a large-scale perspective on hydroclimatology patterns of the region and allows interpretations regarding the controlling factors on river flow variability. River flow regimes are classified (with respect to timing and magnitude of flow) to examine spatial variability based on long-term average regimes, and also by grouping annual regimes for each station-year to identify temporal (between-year) variability. Results indicate that rivers in northeast Turkey are characterised by marked seasonal flow variation with an April-May-June maximum flow period. Spatial variability in flow regime seasonality is dependent largely on the topography of the study area. The EBS Basin, for which the North Anatolian Mountains cover the eastern part, is characterised by a May-June peak; whereas the ÇRB is defined by an April-May flow peak. The timing of river flows indicates that snowmelt is an important process and contributor of river flow maxima for both basins. The low flow season is January and February. Intermediate and low regime magnitude classes dominate in ÇRB and EBS basins, respectively, while high flow magnitude class is observed for one station only across the region. Result of regime stability analysis (year-to-year variation) shows that April-May and May-June peak shape classes together with low and intermediate magnitude classes are the most frequent and persistent flow regimes. This research has advanced understanding of hydroclimatological processes in northeast Turkey by identifying river flow regimes and together with explanations regarding the controlling factors on river flow variability.
2008-08-01
wilderness areas, and a self-guided auto tour. BUREAU OF LAND MANAGEMENT The l49-mile Upper Missouri National Wild and Scenic River flows between Fort...and CMR. This segment is classified as scenic. The National Park Service (NPS) is the overseeing agency for the National Wild and Scenic Rivers...System. Under NPS oversight, the Bureau of Land Management (BLM) is the managing agency for the Upper Missouri National Wild and Scenic River. Within
Woodward, Brenda K.
2008-01-01
The central Platte River is a dynamic, braided, sand-bed river located near Grand Island, Nebraska. An understanding of the Platte River channel characteristics, hydrologic flow patterns, and geomorphic conditions is important for the operation and management of water resources by the City of Grand Island. The north channel of the Platte River flows within 1 mile of the municipal well field, and its surface-water flow recharges the underlying aquifer, which serves as a water source for the city. Recharge from the north channel helps minimize the flow of contaminated ground water from the north of the channel towards the well field. In recent years the river channels have experienced no-flow conditions for extended periods during the summer and fall seasons, and it has been observed that no-flow conditions in the north channel often persist after streamflow has returned to the other three channels. This potentially allows more contaminated ground water to move toward the municipal well field each year, and has caused resource managers to ask whether human disturbances or natural geomorphic change have contributed to the increased frequency of no-flow conditions in the north channel. Analyses of aerial photography, channel surveys, Light Detection and Ranging data, discharge measurements, and historical land surveys were used to understand the past and present dynamics of the four channels of the Platte River near Grand Island and to detect changes with time. Results indicate that some minor changes have occurred in the channels. Changes in bed elevation, channel location, and width were minimal when compared using historical information. Changes in discharge distribution among channels indicate that low- and no-flow conditions in the north channel may be attributed to the small changes in channel characteristics or small elevation differences, along with recent reductions in total streamflow within the Platte River near Grand Island, or to factors not measured in this study, such as increased channel roughness from increased vegetation within the channel.
Integrating Flow, Form, and Function for Improved Environmental Water Management
NASA Astrophysics Data System (ADS)
Albin Lane, Belize Arela
Rivers are complex, dynamic natural systems. The performance of river ecosystem functions, such as habitat availability and sediment transport, depends on the interplay of hydrologic dynamics (flow) and geomorphic settings (form). However, most river restoration studies evaluate the role of either flow or form without regard for their dynamic interactions. Despite substantial recent interest in quantifying environmental water requirements to support integrated water management efforts, the absence of quantitative, transferable relationships between river flow, form, and ecosystem functions remains a major limitation. This research proposes a novel, process-driven methodology for evaluating river flow-form-function linkages in support of basin-scale environmental water management. This methodology utilizes publically available geospatial and time-series data and targeted field data collection to improve basic understanding of river systems with limited data and resource requirements. First, a hydrologic classification system is developed to characterize natural hydrologic variability across a highly altered, physio-climatically diverse landscape. Next, a statistical analysis is used to characterize reach-scale geomorphic variability and to investigate the utility of topographic variability attributes (TVAs, subreach-scale undulations in channel width and depth), alongside traditional reach-averaged attributes, for distinguishing dominant geomorphic forms and processes across a hydroscape. Finally, the interacting roles of flow (hydrologic regime, water year type, and hydrologic impairment) and form (channel morphology) are quantitatively evaluated with respect to ecosystem functions related to hydrogeomorphic processes, aquatic habitat, and riparian habitat. Synthetic river corridor generation is used to evaluate and isolate the role of distinct geomorphic attributes without the need for intensive topographic surveying. This three-part methodology was successfully applied in the Sacramento Basin of California, USA, a large, heavily altered Mediterranean-montane basin. A spatially-explicit hydrologic classification of California distinguished eight natural hydrologic regimes representing distinct flow sources, hydrologic characteristics, and rainfall-runoff controls. A hydro-geomorphic sub-classification of the Sacramento Basin based on stratified random field surveys of 161 stream reaches distinguished nine channel types consisting of both previously identified and new channel types. Results indicate that TVAs provide a quantitative basis for interpreting non-uniform as well as uniform geomorphic processes to better distinguish linked channel forms and functions of ecological significance. Finally, evaluation of six ecosystem functions across alternative flow-form scenarios in the Yuba River watershed highlights critical tradeoffs in ecosystem performance and emphasizes the significance of spatiotemporal diversity of flow and form for maintaining ecosystem integrity. The methodology developed in this dissertation is broadly applicable and extensible to other river systems and ecosystem functions, where findings can be used to characterize complex controls on river ecosystems, assess impacts of proposed flow and form alterations, and inform river restoration strategies. Overall, this research improves scientific understanding of the linkages between hydrology, geomorphology, and river ecosystems to more efficiently allocate scare water resources for human and environmental objectives across natural and built landscapes.
Mitigating Dam Impacts Using Environmental Flow Releases
NASA Astrophysics Data System (ADS)
Richter, B. D.
2017-12-01
One of the most ecologically disruptive impacts of dams is their alteration of natural river flow variability. Opportunities exist for modifying the operations of existing dams to recover many of the environmental and social benefits of healthy ecosystems that have been compromised by present modes of dam operation. The potential benefits of dam "re-operation" include recovery of fish, shellfish, and other wildlife populations valued both commercially and recreationally, including estuarine species; reactivation of the flood storage and water purification benefits that occur when floods are allowed to flow into floodplain forests and wetlands; regaining some semblance of the naturally dynamic balance between river erosion and sedimentation that shapes physical habitat complexity, and arresting problems associated with geomorphic imbalances; cultural and spiritual uses of rivers; and many other socially valued products and services. Assessing the potential benefits of dam re-operation begins by characterizing the dam's effects on the river flow regime, and formulating hypotheses about the ecological and social benefits that might be restored by releasing water from the dam in a manner that more closely resembles natural flow patterns. These hypotheses can be tested by implementing a re-operation plan, tracking the response of the ecosystem, and continually refining dam operations through adaptive management. This presentation will highlight a number of land and water management strategies useful in implementing a dam re-operation plan, with reference to a variety of management contexts ranging from individual dams to cascades of dams along a river to regional energy grids. Because many of the suggested strategies for dam re-operation are predicated on changes in the end-use of the water, such as reductions in urban or agricultural water use during droughts, a systemic perspective of entire water management systems will be required to attain the fullest possible benefits of dam re-operations.
DOT National Transportation Integrated Search
2017-03-01
Reliable estimates of the magnitude and frequency of floods are needed by Federal, regional, State, and local infrastructure designers and water-resource managers for the design of highway, road, and other bridge crossings of rivers, delineation of f...
Westenburg, C.L.
1995-01-01
The Bureau of Land Management administers about 9,300 square miles of public lands in southeastern Nevada that are part of the Colorado River Basin. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, began a 5-year program in October 1988 to assess the contribution of dissolved solids to the fiver from those lands. About 6,200 square miles of public lands are in the Muddy River subbasin in Nevada. The estimated average dissolved-solids load contributed to the Colorado River from those lands was 28,000 tons per year from October 1988 through September 1993. Subsurface flow contributed about 86 percent (24,000 tons per year) of that load. About 730 square miles of public lands in the Las Vegas Wash subbasin contribute dissolved-solids load to the Colorado River. (About 120 square miles of public lands do not contribute to the river.) The estimated average dissolved-solids load contributed to the river from those lands was about 1,300 tons per year from October 1988 through September 1993. Subsurface flow contributed almost all of that load. About 1,100 square miles of public lands are in the Virgin River subbasin in Nevada. The estimated average dissolved- solids load contributed to the Colorado River from Nevada public lands in the subbasin was 8,700 tons per year. Subsurface flow contributed almost the entire load. About 1,200 square miles of Nevada public lands are in ephemeral tributaries that drain direcfly to the Colorado River or its impoundments (Lake Mead and Lake Mobave). The estimated average dissolved-solids load contributed to the river from those lands was 50 tons per year from surface runoff; however, the dissolved-solids load contributed by subsurface flow was not estimated. From October 1992 to September 1993, the Colorado River carried about 6,600,000 tons of dissolved solids past a streamflow gaging station 0.3 mile downstream from Hoover Dam. In contrast, surface runoff and subsurface flow contribute an estimated average dissolved-solids load of 38,000 tons per year from public lands in southeastern Nevada to the Colorado River. Land-management practices probably would not substantially reduce this contribution.
Importance of floodplain connectivity to fish populations in the Apalachicola River, Florida
Burgess, O.T.; Pine, William E.; Walsh, S.J.
2013-01-01
Floodplain habitats provide critical spawning and rearing habitats for many large-river fishes. The paradigm that floodplains are essential habitats is often a key reason for restoring altered rivers to natural flow regimes. However, few studies have documented spatial and temporal utilization of floodplain habitats by adult fish of sport or commercial management interest or assessed obligatory access to floodplain habitats for species' persistence. In this study, we applied telemetry techniques to examine adult fish movements between floodplain and mainstem habitats, paired with intensive light trap sampling of larval fish in these same habitats, to assess the relationships between riverine flows and fish movement and spawning patterns in restored and unmodified floodplain distributaries of the Apalachicola River, Florida. Our intent is to inform resource managers on the relationships between the timing, magnitude and duration of flow events and fish spawning as part of river management actions. Our results demonstrate spawning by all study species in floodplain and mainstem river habitat types, apparent migratory movements of some species between these habitats, and distinct spawning events for each study species on the basis of fish movement patterns and light trap catches. Additionally, Micropterus spp., Lepomis spp. and, to a lesser degree, Minytrema melanops used floodplain channel habitat that was experimentally reconnected to the mainstem within a few weeks of completing the restoration. This result is of interest to managers assessing restoration activities to reconnect these habitats as part of riverine restoration programmes globally.
NASA Astrophysics Data System (ADS)
Khadka, Mitra B.; Martin, Jonathan B.; Kurz, Marie J.
2017-01-01
Groundwater (GW) seepage can provide a major source of water, solutes, and contaminants to rivers, but identifying magnitudes, directions and locations of seepage is complicated by its diffuse and heterogeneous distributions. However, such information is necessary to develop programs and policies for protecting ecosystems and managing water resources. Here, we assess GW seepage to the Ichetucknee River, a spring-fed, low gradient, gaining stream in north-central Florida, through automated longitudinal surveys of radon (222Rn) activities at three different flow conditions. A 222Rn mass balance model, which integrates groundwater and spring water end member 222Rn activities and longitudinal 222Rn distributions in river water, shows that diffuse groundwater seepage represents about 16% of the total river baseflow, consistent with previous results obtained from ion (Ca2+, Cl-, SRP and Fe) mass balances and dye tracer methods. During high river stage, the contribution from seepage increases to 18-23% of the river flow. The spatial distribution of GW seepage is more variable in the upper 2.2-km reach of the river than the lower 2.8-km reach, regardless of river flow conditions. The upper reach has a narrower flood plain than the lower reach, which limits evapotranspiration and increases hydraulic gradients toward the river following storm events. Seepage in the lower reach is also limited by hydrologic damming by the receiving river, which inundates the floodplain during high flow conditions, and reduces the hydraulic head gradient. These results demonstrate the variable nature of seepage to a gaining river in both time and space and indicate that multiple synoptic analyses of GW seepage are required to assess seepage rates, determine time-averaged solute fluxes, and develop optimal management policies for riverine ecosystems.
Galat, D.L.; Lipkin, R.
2000-01-01
Restoring the ecological integrity of regulated large rivers necessitates characterizing the natural flow regime. We applied 'Indicators of Hydrologic Alteration' to assess the natural range of variation of the Missouri River's flow regime at 11 locations before (1929-1948) and after (1967-1996) mainstem impoundment. The 3768 km long Missouri River was divided into three sections: upper basin least-altered from flow regulation, including the lower Yellowstone River; middle basin inter-reservoir, and lower basin channelized. Flow regulation was associated with a reduction in magnitude and duration of the annual flood pulse, an increase in magnitude and duration of annual discharge minima, a reduction in frequency of annual low-flow pulses, earlier timing of March-October low-flow pulses, and a general increase in frequency of flow reversals with a reduction in the rate of change in river flows. Hydrologic alterations were smallest at two least-altered upper-basin sites and most frequent and severe in inter-reservoir and upper-channelized river sections. The influence of reservoir operations on depressing the annual flood pulse was partially offset by tributary inflow in the lower 600 km of river. Reservoir operations could be modified to more closely approximate the 1929-1948 flow regime to establish a simulated natural riverine ecosystem. For inter-reservoir and upper channelized-river sections, we recommend periodic controlled flooding through managed reservoir releases during June and July; increased magnitude, frequency and duration of annual high-flow pulses; and increased annual rates of hydrograph rises and falls. All of the regulated Missouri River would benefit from reduced reservoir discharges during August-February, modified timing of reservoir releases and a reduced number of annual hydrograph reversals. Assessment of ecological responses to a reregulation of Missouri River flows that more closely approximates the natural flow regime should then be used in an adaptive fashion to further adjust reservoir operations.
Petrakis, Roy; van Leeuwen, Willem J.D.; Villarreal, Miguel; Tashjian, Paul; Dello Russo, Regina; Scott, Christopher A.
2017-01-01
Riparian ecosystems are valuable to the ecological and human communities that depend on them. Over the past century, they have been subject to shifting management practices to maximize human use and ecosystem services, creating a complex relationship between water policy, management, and the natural ecosystem. This has necessitated research on the spatial and temporal dynamics of riparian vegetation change. The San Acacia Reach of the Middle Rio Grande has experienced multiple management and river flow fluctuations, resulting in threats to its riparian and aquatic ecosystems. This research uses remote sensing data, GIS, a review of management decisions, and an assessment of climate to both quantify how riparian vegetation has been altered over time and provide interpretations of the relationships between riparian change and shifting climate and management objectives. This research focused on four management phases from 1935 to 2014, each highlighting different management practices and climate-driven river patterns, providing unique opportunities to observe a direct relationship between river management, climate, and riparian response. Overall, we believe that management practices coupled with reduced surface river-flows with limited overbank flooding influenced the compositional and spatial patterns of vegetation, including possibly increasing non-native vegetation coverage. However, recent restoration efforts have begun to reduce non-native vegetation coverage.
Ecological River Basin Management.
ERIC Educational Resources Information Center
Smith, Anthony Wayne
Addressing the Seventh American Water Resources Conference, Washington, D. C., October, 1971, Anthony Wayne Smith, President, National Parks and Conservation Association, presents an expose on how rivers should be managed by methods which restores and preserve the natural life balances of the localities and regions through which they flow. The…
Fanaian, Safa; Graas, Susan; Jiang, Yong; van der Zaag, Pieter
2015-02-01
The flow regime of rivers, being an integral part of aquatic ecosystems, provides many important services benefiting humans in catchments. Past water resource developments characterized by river embankments and dams, however, were often dominated by one (or few) economic use(s) of water. This results in a dramatically changed flow regime negatively affecting the provision of other ecosystem services sustained by the river flow. This study is intended to demonstrate the value of alternative flow regimes in a river that is highly modified by the presence of large hydropower dams and reservoirs, explicitly accounting for a broad range of flow-dependent ecosystem services. In this study, we propose a holistic approach for conducting an ecological economic assessment of a river's flow regime. This integrates recent advances in the conceptualization and classification of ecosystem services (UK NEA, 2011) with the flow regime evaluation technique developed by Korsgaard (2006). This integrated approach allows for a systematic comparison of the economic values of alternative flow regimes, including those that are considered beneficial for aquatic ecosystems. As an illustration, we applied this combined approach to the Lower Zambezi Basin, Mozambique. Empirical analysis shows that even though re-operating dams to create environmentally friendly flow regimes reduces hydropower benefits, the gains to goods derived from the aquatic ecosystem may offset the forgone hydropower benefits, thereby increasing the total economic value of river flow to society. The proposed integrated flow assessment approach can be a useful tool for welfare-improving decision-making in managing river basins. Copyright © 2014 Elsevier B.V. All rights reserved.
Hupp, C.R.
2000-01-01
Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation. Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat. Copyright ?? 2000 John Wiley & Sons, Ltd.Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation. Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat.
Perry, Russell W.; Brandes, Patricia L.; Burau, Jon R.; Sandstrom, Philip T.; Skalski, John R.
2015-01-01
Juvenile Chinook Salmon Oncorhynchus tshawytscha emigrating from natal tributaries of the Sacramento River, California, must negotiate the Sacramento-San Joaquin River Delta (hereafter, the Delta), a complex network of natural and man-made channels linking the Sacramento River with San Francisco Bay. Fish that enter the interior and southern Delta—the region to the south of the Sacramento River where water pumping stations are located—survive at a lower rate than fish that use alternative migration routes. Consequently, total survival decreases as the fraction of the population entering the interior Delta increases, thus spurring management actions to reduce the proportion of fish that are entrained into the interior Delta. To better inform management actions, we modeled entrainment probability as a function of hydrodynamic variables. We fitted alternative entrainment models to telemetry data that identified when tagged fish in the Sacramento River entered two river channels leading to the interior Delta (Georgiana Slough and the gated Delta Cross Channel). We found that the probability of entrainment into the interior Delta through both channels depended strongly on the river flow and tidal stage at the time of fish arrival at the river junction. Fish that arrived during ebb tides had a low entrainment probability, whereas fish that arrived during flood tides (i.e., when the river's flow was reversed) had a high probability of entering the interior Delta. We coupled our entrainment model with a flow simulation model to evaluate the effect of nighttime closures of the Delta Cross Channel gates on the daily probability of fish entrainment into the interior Delta. Relative to 24-h gate closures, nighttime closures increased daily entrainment probability by 3 percentage points on average if fish arrived at the river junction uniformly throughout the day and by only 1.3 percentage points if 85% of fish arrived at night. We illustrate how our model can be used to evaluate the effects of alternative water management actions on fish entrainment into the interior Delta.
Drawdown II: Water quality and ecological responses to a managed hydrologic drawdown during autumn
USDA-ARS?s Scientific Manuscript database
A water drawdown of Roundaway Lake, a tributary of the Big Sunflower River, was initiated in mid-autumn to alleviate critical low river flow. While water releases have been demonstrated to alleviate critical low flows, effects of these releases on water quality in contributing tributaries is necessa...
Haj, Adel E.; Christiansen, Daniel E.; Hutchinson, Kasey J.
2015-10-14
The accuracy of Precipitation-Runoff Modeling System model streamflow estimates of nine river basins in eastern Iowa as compared to measured values at U.S. Geological Survey streamflow-gaging stations varied. The Precipitation-Runoff Modeling System models of nine river basins in eastern Iowa were satisfactory at estimating daily streamflow at 57 of the 79 calibration sites and 13 of the 14 validation sites based on statistical results. Unsatisfactory performance can be contributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) the availability and accuracy of meteorological input data. The Precipitation- Runoff Modeling System models of nine river basins in eastern Iowa will provide water-resource managers with a consistent and documented method for estimating streamflow at ungaged sites and aid in environmental studies, hydraulic design, water management, and water-quality projects.
Salmaso, Francesca; Crosa, Giuseppe; Espa, Paolo; Gentili, Gaetano; Quadroni, Silvia; Zaccara, Serena
2017-12-20
An eco-hydraulic survey of the highly regulated Adda River (northern Italy) was carried out to highlight the ecological implications of the current water management, including minimum flows (MFs) set as environmental protection measures. Macroinvertebrates, flows, and other main physico-chemical parameters were monitored from 2010 to 2012 at seven sites located in two river reaches characterized by different water abstraction schemes. In the upper part of the river, water is mainly diverted for hydro-power, and, in water-depleted reaches, discharges equalled MF for more than 100 days y -1 , mainly during winter. In the downstream river reach, where irrigation use prevails, discharges were on average three times higher than in the upper part of the river, and flow values similar to MF were detected only for short periods during summer. The two resulting streamflow patterns seem to have shaped different benthic communities, superimposing to the natural downstream variation. The upper reach is characterized by univoltine taxa, while the lower reach by multivoltine taxa adapted to a more disturbed environment. Chironomidae, a well-known tolerant benthic family, dominated at a site affected by point-source pollution, which turned out to be another determinant of macroinvertebrate community. Despite these differences among sites in the benthic community structure, the current water management seems to allow, for all of the investigated river sites, the achievement of the good ecological status as defined by the local law set in accomplishment of the Water Framework Directive.
NASA Astrophysics Data System (ADS)
Rodríguez, Estiven; Salazar, Juan Fernando; Villegas, Juan Camilo; Mercado-Bettín, Daniel
2018-07-01
Extreme flows are key components of river flow regimes that affect manifold hydrological, geomorphological and ecological processes with societal relevance. One fundamental characteristic of extreme flows in river basins is that they exhibit scaling properties which can be identified through scaling (power) laws. Understanding the physical mechanisms behind such scaling laws is a continuing challenge in hydrology, with potential implications for the prediction of river flow regimes in a changing environment and ungauged basins. After highlighting that the scaling properties are sensitive to environmental change, we develop a physical interpretation of how temporal changes in scaling exponents relate to the capacity of river basins to regulate extreme river flows. Regulation is defined here as the basins' capacity to either dampen high flows or to enhance low flows. Further, we use this framework to infer temporal changes in the regulation capacity of five large basins in tropical South America. Our results indicate that, during the last few decades, the Amazon river basin has been reducing its capacity to enhance low flows, likely as a consequence of pronounced environmental change in its south and south-eastern sub-basins. The proposed framework is widely applicable to different basins, and provides foundations for using scaling laws as empirical tools for inferring temporal changes of hydrological regulation, particularly relevant for identifying and managing hydrological consequences of environmental change.
NASA Astrophysics Data System (ADS)
Julian, J.; Castro, A.; Vaughn, C.; Atkinson, C.
2014-12-01
South-Central United States is one of the fastest growing regions in the nation; however, it is experiencing water supply limitations. In response, multiple interests have focused on the Kiamichi River watershed in southeast Oklahoma as a future inter-basin water supply. The Kiamichi River provides many ecosystem services, including freshwater provision to 19 cities/towns, outdoor recreation hub for the South-Central U.S., cultural capital of the Choctaw Indian Nation, and a national biodiversity hotspot. With multiple recent stressors, these ecosystem services are highly threatened. Here we present how drought and water management have impacted these benefits over the past 20 years. First, we assessed the river's sensitivity to drought (which is cyclical) and water regulation (which has increased over the past three decades). Second, we analyzed how these hydrologic changes have impacted freshwater habitat, focusing on mussels because of their sensitivity to flow alterations and because they provide additional ecosystem services such as biofiltration, nutrient recycling/storage, and cultural resources. Third, we performed a sociocultural valuation for a suite of ecosystem services provided by the Kiamichi River watershed, including 505 interviews of five different ecosystem services beneficiary (ESB) groups. We obtained ESB perceptions on how ecosystem services changed with different flow conditions and water management strategies. Analyses revealed that increased regulation (fewer dam releases) has caused the Kiamichi River to have long no flow periods during droughts (e.g. 176 days with no flow in 2006). These long dry periods have been the main culprit for a 60% decline in mussel biomass over the past 20 years, and subsequent large losses in biofiltration and nutrient recycling. Interestingly, ESBs perceived similar losses of ecosystem services. Without being provided any information on flow, more than half of the ESBs believed that water supply, freshwater habitat, and water quality had all declined over the past decade. Overall, we found strong relationships among river flow, mussel abundance, and social perception of watershed services, suggesting that water management is key in maximizing the product of ecosystem services for all stakeholders.
Risley, John C.; Hess, Glen W.; Fisher, Bruce J.
2006-01-01
Records of diversion and return flows for water years 1961?2004 along a reach of the Klamath River between Link River and Keno Dams in south-central Oregon were evaluated to determine the cause of a water-balance inconsistency in the hydrologic data. The data indicated that the reach was losing flow in the 1960s and 1970s and gaining flow in the 1980s and 1990s. The absolute mean annual net water-balance difference in flows between the first and second half of the 44-year period (1961-2004) was approximately 103,000 acre-feet per year (acre-ft/yr). The quality of the diversion and return-flow records used in the water balance was evaluated using U.S. Geological Survey (USGS) criteria for accuracy. With the exception of the USGS Klamath River at Keno record, which was rated as 'good' or 'excellent,' the eight other flow records, all from non-USGS flow-measurement sites, were rated as 'poor' by USGS standards due to insufficient data-collection documentation and a lack of direct discharge measurements to verify the rating curves. The record for the Link River site, the most upstream in the study area, included both river and westside power canal flows. Because of rating curve biases, the river flows might have been overestimated by 25,000 acre-ft/yr on average from water years 1961 to 1982 and underestimated by 7,000 acre-ft/yr on average from water years 1983 to 2004. For water years 1984-2004, westside power canal flows might have been underestimated by 11,000 acre-ft/yr. Some diversion and return flows (for mostly agricultural, industrial, and urban use) along the Klamath River study reach, not measured continuously and not included in the water-balance equation, also were evaluated. However, the sum of these diversion and return flows was insufficient to explain the water-balance inconsistency. The possibility that ground-water levels in lands adjacent to the river rose during water years 1961-2004 and caused an increase in ground-water discharge to the river also was evaluated. However, water-level data from local wells did not have a rising trend during the period. The most likely cause of the water-balance inconsistency was flow measurement error in the eight non-USGS flow records. Part of the water-balance inconsistency can be explained by a 43,000 acre-foot error in the river and canal flow portions of the Link River flow record. A remaining 60,000 acre-foot error might have been distributed among the seven other flow records, or much of the remaining 60,000 acre-foot error might have been in the Link River flow record because flows in that record had a greater magnitude than flows in the seven other records. As an additional analysis of the water-balance issue, flow records used in the water balance were evaluated for trends and compared to known changes in water management in the Bureau of Reclamation Klamath Project and Lower Klamath and Tule Lake National Wildlife Refuges over the 44-year period. Many of the water-management changes were implemented in the early 1980s. For three diversion flow records, 1983-2004 mean annual flows were 16,000, 8,000, and 21,000 acre-ft/yr greater than their 1961-82 mean annual flows. Return flows to the Klamath River at two flow-measurement sites decreased by 31,000 and 27,000 acre-ft/yr for 1983-2004 compared with the 1961-82 period.
Modeled streamflow metrics on small, ungaged stream reaches in the Upper Colorado River Basin
Reynolds, Lindsay V.; Shafroth, Patrick B.
2016-01-20
Modeling streamflow is an important approach for understanding landscape-scale drivers of flow and estimating flows where there are no streamgage records. In this study conducted by the U.S. Geological Survey in cooperation with Colorado State University, the objectives were to model streamflow metrics on small, ungaged streams in the Upper Colorado River Basin and identify streams that are potentially threatened with becoming intermittent under drier climate conditions. The Upper Colorado River Basin is a region that is critical for water resources and also projected to experience large future climate shifts toward a drying climate. A random forest modeling approach was used to model the relationship between streamflow metrics and environmental variables. Flow metrics were then projected to ungaged reaches in the Upper Colorado River Basin using environmental variables for each stream, represented as raster cells, in the basin. Last, the projected random forest models of minimum flow coefficient of variation and specific mean daily flow were used to highlight streams that had greater than 61.84 percent minimum flow coefficient of variation and less than 0.096 specific mean daily flow and suggested that these streams will be most threatened to shift to intermittent flow regimes under drier climate conditions. Map projection products can help scientists, land managers, and policymakers understand current hydrology in the Upper Colorado River Basin and make informed decisions regarding water resources. With knowledge of which streams are likely to undergo significant drying in the future, managers and scientists can plan for stream-dependent ecosystems and human water users.
Optimally managing water resources in large river basins for an uncertain future
Roehl, Edwin A.; Conrads, Paul
2014-01-01
One of the challenges of basin management is the optimization of water use through ongoing regional economic development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to substantially reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the flow-alteration features after the deepening also is demonstrated.
Modeling the Effect of Wetlands, Flooding, and Irrigation on River Flow: Application to the Aral Sea
NASA Technical Reports Server (NTRS)
Ferrari, Michael R.; Miller, James R.; Russell, Gary L.
1999-01-01
As the world's population continues to increase, additional stress is placed on water resources. This stress, coupled with future uncertainties regarding climate change, makes arid and semi-arid regions particularly vulnerable. One example is the Aral Sea where the freshwater inflow, which is dominated by snowmelt runoff, has decreased significantly since the expansion of intensive irrigation in the 1960s. The purpose of this paper is to use a river routing scheme from a global climate model to examine the flow of the Amu Dar'ya River into the Aral Sea. The river routing scheme is modified to include groundwater flow, flooding, and evaporative losses in the river's wetlands and floodplain, and anthropogenic withdrawals for irrigation. A set of scenarios is designed to test the sensitivity of river flow to the inclusion of these modifications into the river routing scheme. When riverine wetlands and floodplains are present, the river flow is reduced significantly and is similar to the observed flow. In addition the model results show that it is essential to incorporate human diversions to accurately represent the inflow to the Aral Sea, and they also indicate potential management strategies that might be appropriate to maintain a balance between inflow to the Sea and upstream diversions for irrigation.
Modeling the effect of wetlands, flooding, and irrigation on river flow: Application to the Aral Sea
NASA Astrophysics Data System (ADS)
Ferrari, Michael R.; Miller, James R.; Russell, Gary L.
1999-06-01
As the world's population continues to increase, additional stress is placed on water resources. This stress, coupled with future uncertainties regarding climate change, makes arid and semiarid regions particularly vulnerable. One example is the Aral Sea where the freshwater inflow, which is dominated by snowmelt runoff, has decreased significantly since the expansion of intensive irrigation in the 1960s. The purpose of this paper is to use a river routing scheme from a global climate model to examine the flow of the Amu Dar'ya River into the Aral Sea. The river routing scheme is modified to include groundwater flow, flooding, and evaporative losses in the river's wetlands and floodplain and anthropogenic withdrawals for irrigation. A set of scenarios is designed to test the sensitivity of river flow to the inclusion of these modifications into the river routing scheme. When riverine wetlands and floodplains are present, the river flow is reduced significantly and is similar to the observed flow. In addition, the model results show that it is essential to incorporate human diversions to represent accurately the inflow to the Aral Sea, and they also indicate potential management strategies that might be appropriate to maintain a balance between inflow to the sea and upstream diversions for irrigation.
Mooney, C; Farrier, D
2002-01-01
Kangaroo Valley is a drinking water supply catchment for Kangaroo Valley village, parts of the Southern Highlands and Sydney. It is also a popular recreation area both for swimming and canoeing. Land use has traditionally been dominated by dairy farming but there has been significant and continuing development of land for hobby farms and rural residential subdivision. Dairy industry restructuring has affected the viability of some farms in the Valley and created additional pressure for subdivision. River health is a function of flows, water quality, riparian vegetation, geomorphology and aquatic habitat and riverine biota. River flows in the Kangaroo River are affected by water extraction and storage for urban water supply and extraction by commercial irrigators and riparian land holders which have a significant impact at low flows. Current water quality often does not meet ANZECC Guidelines for primary contact and recreation and the river is a poor source of raw drinking water. Key sources of contaminants are wastewater runoff from agriculture, and poorly performing on-site sewage management systems. Riparian vegetation, which is critical to the maintenance of in-stream ecosystems suffers from uncontrolled stock access and weed infestation. The management of land use and resulting diffuse pollution sources is critical to the long term health of the river. The Healthy Rivers Commission of New South Wales Independent Inquiry into the Shoalhaven River System Final Report July, 1999 found that the longer term protection of the health of the Kangaroo River is contingent upon achievement of patterns of land use that have regard to land capability and also to the capability of the river to withstand the impacts of inappropriate or poorly managed land uses. This micro case study of Kangaroo Valley examines the complex legal and administrative arrangements with particular reference to the management of diffuse pollution for river health. In the past, diffuse pollution has fallen through the gaps in legislation and its administration. Although water pollution legislation is broad enough to embrace diffuse pollution, in practice the Environment Protection Authority has focused on regulating point sources. Water legislation has traditionally been concerned with issues of water quantity rather than water quality. Legislation which allows agency intervention in relation to land degradation has grown from soil conservation roots, neglecting the flow-on effects upon water quality. Under the land use planning system existing land uses are protected from new regulatory requirements. A number of recent developments in NSW law and its administration have set the scene for addressing this past neglect. Water planning provisions in the Water Management Act 2000 have the potential to enable community based Water Management Committees to move away from a narrow focus on water quantity to the broader issues of river health, including water quality. Improved management of on-site sewage management systems is expected as a result of the Local Government (Approvals) Amendment (Sewage Management Regulation) 1998. A draft Regional Environmental Plan prepared for the Sydney Catchment Authority aims to improve the assessment of new development in terms of its impact on drinking water quality. It also moves away from an exclusive concern with controlling new development towards grappling with existing uses. Proposed amendments to the Environmental Planning and Assessment Act, 1979 as detailed in the White Paper, Plan First (2001) include the integration of imperatives derived from catchment strategies and water management plans into local land use plans.
Suwannee River flow variability 1550-2005 CE reconstructed from a multispecies tree-ring network
NASA Astrophysics Data System (ADS)
Harley, Grant L.; Maxwell, Justin T.; Larson, Evan; Grissino-Mayer, Henri D.; Henderson, Joseph; Huffman, Jean
2017-01-01
Understanding the long-term natural flow regime of rivers enables resource managers to more accurately model water level variability. Models for managing water resources are important in Florida where population increase is escalating demand on water resources and infrastructure. The Suwannee River is the second largest river system in Florida and the least impacted by anthropogenic disturbance. We used new and existing tree-ring chronologies from multiple species to reconstruct mean March-October discharge for the Suwannee River during the period 1550-2005 CE and place the short period of instrumental flows (since 1927 CE) into historical context. We used a nested principal components regression method to maximize the use of chronologies with varying time coverage in the network. Modeled streamflow estimates indicated that instrumental period flow conditions do not adequately capture the full range of Suwannee River flow variability beyond the observational period. Although extreme dry and wet events occurred in the gage record, pluvials and droughts that eclipse the intensity and duration of instrumental events occurred during the 16-19th centuries. The most prolonged and severe dry conditions during the past 450 years occurred during the 1560s CE. In this prolonged drought period mean flow was estimated at 17% of the mean instrumental period flow. Significant peaks in spectral density at 2-7, 10, 45, and 85-year periodicities indicated the important influence of coupled oceanic-atmospheric processes on Suwannee River streamflow over the past four centuries, though the strength of these periodicities varied over time. Future water planning based on current flow expectations could prove devastating to natural and human systems if a prolonged and severe drought mirroring the 16th and 18th century events occurred. Future work in the region will focus on updating existing tree-ring chronologies and developing new collections from moisture-sensitive sites to improve understandings of past hydroclimate in the region.
Advanced Tools for River Science: EAARL and MD_SWMS: Chapter 3
Kinzel, Paul J.
2009-01-01
Disruption of flow regimes and sediment supplies, induced by anthropogenic or climatic factors, can produce dramatic alterations in river form, vegetation patterns, and associated habitat conditions. To improve habitat in these fluvial systems, resource managers may choose from a variety of treatments including flow and/or sediment prescriptions, vegetation management, or engineered approaches. Monitoring protocols developed to assess the morphologic response of these treatments require techniques that can measure topographic changes above and below the water surface efficiently, accurately, and in a standardized, cost-effective manner. Similarly, modeling of flow, sediment transport, habitat, and channel evolution requires characterization of river morphology for model input and verification. Recent developments by the U.S. Geological Survey with regard to both remotely sensed methods (the Experimental Advanced Airborne Research LiDAR; EAARL) and computational modeling software (the Multi-Dimensional Surface-Water Modeling System; MD_SWMS) have produced advanced tools for spatially explicit monitoring and modeling in aquatic environments. In this paper, we present a pilot study conducted along the Platte River, Nebraska, that demonstrates the combined use of these river science tools.
NASA Astrophysics Data System (ADS)
Szemis, J. M.; Maier, H. R.; Dandy, G. C.
2012-08-01
Rivers, wetlands, and floodplains are in need of management as they have been altered from natural conditions and are at risk of vanishing because of river development. One method to mitigate these impacts involves the scheduling of environmental flow management alternatives (EFMA); however, this is a complex task as there are generally a large number of ecological assets (e.g., wetlands) that need to be considered, each with species with competing flow requirements. Hence, this problem evolves into an optimization problem to maximize an ecological benefit within constraints imposed by human needs and the physical layout of the system. This paper presents a novel optimization framework which uses ant colony optimization to enable optimal scheduling of EFMAs, given constraints on the environmental water that is available. This optimization algorithm is selected because, unlike other currently popular algorithms, it is able to account for all aspects of the problem. The approach is validated by comparing it to a heuristic approach, and its utility is demonstrated using a case study based on the Murray River in South Australia to investigate (1) the trade-off between plant recruitment (i.e., promoting germination) and maintenance (i.e., maintaining habitat) flow requirements, (2) the trade-off between flora and fauna flow requirements, and (3) a hydrograph inversion case. The results demonstrate the usefulness and flexibility of the proposed framework as it is able to determine EFMA schedules that provide optimal or near-optimal trade-offs between the competing needs of species under a range of operating conditions and valuable insight for managers.
Dynamic hydro-climatic networks in pristine and regulated rivers
NASA Astrophysics Data System (ADS)
Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.
2014-12-01
Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A < 103 km2) are usually mild enough to guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly impact important biotic processes involved in the river food web (e.g. biofilm and riparian vegetation dynamics), the study of rivers as dynamic networks provides important clues to water management strategies and freshwater ecosystem studies.
Legacies of flood reduction on a dryland river
Stromberg, J.C.; Shafroth, P.B.; Hazelton, A.F.
2012-01-01
The Bill Williams (Arizona) is a regulated dryland river that is being managed, in part, for biodiversity via flow management. To inform management, we contrasted riparian plant communities between the Bill Williams and an upstream free-flowing tributary (Santa Maria). Goals of a first study (1996-1997) were to identify environmental controls on herbaceous species richness and compare richness among forest types. Analyses revealed that herbaceous species richness was negatively related to woody stem density, basal area and litter cover and positively related to light levels. Introduced Tamarix spp. was more frequent at the Bill Williams, but all three main forest types (Tamarix, Salix/Populus, Prosopis) had low understory richness, as well as high stem density and low light, on the Bill Williams as compared to the Santa Maria. The few edaphic differences between rivers (higher salinity at Bill Williams) had only weak connections with richness. A second study (2006-2007) focused on floristic richness at larger spatial scales. It revealed that during spring, and for the study cumulatively (spring and fall samplings combined), the riparian zone of the unregulated river had considerably more plant species. Annuals (vs. herbaceous perennials and woody species) showed the largest between-river difference. Relative richness of exotic (vs. native) species did not differ. We conclude that: (1) The legacy of reduced scouring frequency and extent at the Bill Williams has reduced the open space available for colonization by annuals; and (2) Change in forest biomass structure, more so than change in forest composition, is the major driver of changes in plant species richness along this flow-altered river. Our study informs dryland river management options by revealing trade-offs that exist between forest biomass structure and plant species richness. ?? 2010 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buenau, Kate E.; Hiller, Tim L.; Tyre, Andrew J.
Humans make extensive use of rivers and floodplains for economic benefits including agriculture, hydropower, commerce and recreation. Economic development of floodplains subsequently requires control of river levels to avoid flood damage. This process began in the Missouri River basin in the 1890s with the construction of a series of hydropower dams in Montana and escalated to new levels with the approval of the Pick-Sloan plan in the 1944 Flood Control Act. Maximizing these human uses of the river led to changes in and losses of hydrological and ecological processes, ultimately resulting in the federal listing of three fish and wildlifemore » species under the Endangered Species Act: the pallid sturgeon (Scaphirhyncus albus; 1983), the piping plover (Charadrius melodus; 1984), and the interior population of least tern (Sternula antillarum; 1985). The listing of terns and plovers did not affect river management until the United States Army Corps of Engineers (USACE) proposed to modify the governing document of the Missouri River Mainstem System, the Master Manual, a process which was completed in 2003. Although there was little disagreement over the habitat conditions that terns and plovers used for nesting, there was substantial disagreement over the amount of habitat necessary for terns and plovers to meet population recovery goals. Answering this question requires forecasting species-specific population responses to dynamic habitat affected by both human actions (reservoir management and habitat restoration) and natural variability in precipitation. Piping plovers and least terns nest along the Missouri River from Fort Peck, Montana to just north of Sioux City, Iowa (Figure 1). Both species prefer to nest on sand and fine gravel substrates with no or sparse vegetation cover (Prindiville Gaines and Ryan, 1988; Sherfy et al., 2012), such as riverine sandbars (emergent sandbar habitat; ESH). Piping plovers also nest on reservoir shorelines that lack vegetation cover (Anteau et al., 2012). The amount of ESH available for nesting in a given year is strongly affected by the amount of water entering the Missouri River system through precipitation and the management of water flow from six reservoirs operated by the USACE on the mainstem Missouri River. Prior to the construction of dams, the Missouri River experienced bimodal peak flows in spring and early summer in concordance with the melting of plains and mountain snowpack (Galat and Lipkin, 2000). Flows decreased during summer months, with river stage then dependent upon rainfall. The combination of consistent high flows and occasional extreme high flows, together with the meandering characteristic of the river, regularly reshaped and scoured vegetation from ESH.« less
River-aquifer interactions, geologic heterogeneity, and low-flow management
Fleckenstein, J.H.; Niswonger, R.G.; Fogg, G.E.
2006-01-01
Low river flows are commonly controlled by river-aquifer exchange, the magnitude of which is governed by hydraulic properties of both aquifer and aquitard materials beneath the river. Low flows are often important ecologically. Numerical simulations were used to assess how textural heterogeneity of an alluvial system influences river seepage and low flows. The Cosumnes River in California was used as a test case. Declining fall flows in the Cosumnes River have threatened Chinook salmon runs. A ground water-surface water model for the lower river basin was developed, which incorporates detailed geostatistical simulations of aquifer heterogeneity. Six different realizations of heterogeneity and a homogenous model were run for a 3-year period. Net annual seepage from the river was found to be similar among the models. However, spatial distribution of seepage along the channel, water table configuration and the level of local connection, and disconnection between the river and aquifer showed strong variations among the different heterogeneous models. Most importantly, the heterogeneous models suggest that river seepage losses can be reduced by local reconnections, even when the regional water table remains well below the riverbed. The percentage of river channel responsible for 50% of total river seepage ranged from 10% to 26% in the heterogeneous models as opposed to 23% in the homogeneous model. Differences in seepage between the models resulted in up to 13 d difference in the number of days the river was open for salmon migration during the critical fall months in one given year. Copyright ?? 2006 The Author(s).
Chase, Katherine J.
2013-01-01
Major floods in 1996 and 1997 on the Yellowstone River in Montana intensified public debate over the effects of human activities on the Yellowstone River. In 1999, the Yellowstone River Conservation District Council was formed to address conservation issues on the river. The Yellowstone River Conservation District Council partnered with the U.S. Army Corps of Engineers to conduct a cumulative-effects study on the main stem of the Yellowstone River. The cumulative-effects study is intended to provide a basis for future management decisions in the watershed. Streamflow statistics, such as flow-frequency and flow-duration data calculated for unregulated and regulated streamflow conditions, are a necessary component of the cumulative effects study. The U.S. Geological Survey, in cooperation with the Yellowstone River Conservation District Council and the U.S. Army Corps of Engineers, calculated streamflow statistics for unregulated and regulated conditions for the Yellowstone, Tongue, and Powder Rivers for the 1928–2002 study period. Unregulated streamflow represents flow conditions that might have occurred during the 1928–2002 study period if there had been no water-resources development in the Yellowstone River Basin. Regulated streamflow represents estimates of flow conditions during the 1928–2002 study period if the level of water-resources development existing in 2002 was in place during the entire study period. Peak-flow frequency estimates for regulated and unregulated streamflow were developed using methods described in Bulletin 17B. High-flow frequency and low-flow frequency data were developed for regulated and unregulated streamflows from the annual series of highest and lowest (respectively) mean flows for specified n-day consecutive periods within the calendar year. Flow-duration data, and monthly and annual streamflow characteristics, also were calculated for the unregulated and regulated streamflows.
Options for managing hypoxic blackwater events in river systems: a review.
Kerr, Janice L; Baldwin, Darren S; Whitworth, Kerry L
2013-01-15
Blackwater events are characterised by a high concentration of dissolved organic carbon in the water column. They occur naturally in lowland rivers with forested floodplains and bring a variety of benefits to both aquatic and floodplain biota. However, particularly when accompanied by high temperatures, respiration of the organic carbon may cause blackwater to become hypoxic. This may lead to a range of lethal and sub-lethal effects on the aquatic biota. We review the current scientific knowledge concerning the management of blackwater and hypoxia, and examine how this knowledge may be applied to the management of hypoxic blackwater events in lowland river systems. A range of management options, which aim to either prevent the development of hypoxic blackwater or to reintroduce oxygen into deoxygenated waters, are reported. Mitigation options that may be applicable to lowland river systems include manipulating the season and magnitude of floods in regulated rivers, increasing roughness in flow paths, establishing oxygenated refugia for aquatic biota and introducing hydraulic structures that promote turbulence and re-aeration. With climatic changes trending towards a scenario where extreme events leading to the development of hypoxic blackwater are more probable, it is now vital to validate and optimise management options on local and regional scales and work towards closing knowledge gaps. With judicious management of regulated rivers, it is possible to minimise the impacts of hypoxic flows while preserving the benefits brought to floodplain and river ecosystems by seasonal flooding and carbon exchange. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Measuring mountain river discharge using seismographs emplaced within the hyporheic zone
R. E. Anthony; R. C. Aster; S. Ryan; S. Rathburn; M. G. Baker
2018-01-01
Flow and sediment transport dynamics in fluvial systems play critical roles in shaping river morphology, in the design and use of riverine infrastructure, and in the broader management of watersheds. However, these properties are often difficult to measure comprehensively. Previous work has suggested the use of proximal seismic signals resulting from flow and bed load...
NASA Astrophysics Data System (ADS)
Zhao, C. S.; Yang, S. T.; Zhang, H. T.; Liu, C. M.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Dong, B. E.; Lim, R. P.
2017-08-01
Sustaining adequate environmental flows (e-flows) is a key principle for maintaining river biodiversity and ecosystem health, and for supporting sustainable water resource management in basins under intensive human activities. But few methods could correctly relate river health to e-flows assessment at the catchment scale when they are applied to rivers highly impacted by human activities. An effective method is presented in this study to closely link river health to e-flows assessment for rivers at the catchment scale. Key fish species, as indicators of ecosystem health, were selected by using the foodweb model. A multi-species-based habitat suitability model (MHSI) was improved, and coupled with dominance of the key fish species as well as the Index of Biological Integrity (IBI) to enhance its accuracy in determining the fish-preferred key hydrologic habitat variables related to ecosystem health. Taking 5964 fish samples and concurrent hydrological habitat variables as the basis, the combination of key variables of flow-velocity and water-depth were determined and used to drive the Adapted Ecological Hydraulic Radius Approach (AEHRA) to study e-flows in a Chinese urban river impacted by intensive human activities. Results showed that upstream urbanization resulted in abnormal river-course geomorphology and consequently abnormal e-flows under intensive human activities. Selection of key species based on the foodweb and trophic levels of aquatic ecosystems can reflect a comprehensive requirement on e-flows of the whole aquatic ecosystem, which greatly increases its potential to be used as a guidance tool for rehabilitation of degraded ecosystems at large spatial scales. These findings have significant ramifications for catchment e-flows assessment under intensive human activities and for river ecohealth restoration in such rivers globally.
Social, political, and institutional setting: Water management problems of the Rio Grande
Douglas, A.J.
2009-01-01
This paper discusses various water management issues facing federal, state, and local agencies charged with managing the water resources of the Rio Grande River Basin and its major tributaries. The Rio Grande - 3,058 km (=1,900 mi) long - is the fourth longest river in the United States. The river's basin is 870,236 km2 (=336,000 mi2) and for roughly two-thirds of its length it forms the United States-Mexican border. It is a major recreational resource providing world class trout fishing near its headwaters in Colorado's San Juan Mountains and shoreline, angling, and boating opportunities near the Colorado-New Mexico border. The Rio Grande is the principal tourist attraction of Big Bend National Park and flows through downtown Albuquerque and El Paso. Many reaches are wide and broad, but almost all are relatively shallow and not navigable by commercial ships. Nevertheless, it is one of the most important renewable water resources of the southwestern United States and North America. The issue of the "manageability" of the river in the face of social forces and disparate administrative jurisdictions that adversely impact Rio Grande flows is a thread linking various sections of the paper together. The length of the river; the fact that major reaches lie in Colorado, New Mexico, and Texas; and its unique role as an international boundary pose complex management problems. The allocation status quo formed by the complex nexus of existing river laws make it difficult to reshape Rio Grande management. ?? 2009 ASCE.
Maloney, Kelly O.; Talbert, Colin B.; Cole, Jeffrey C.; Galbraith, Heather S.; Blakeslee, Carrie J.; Hanson, Leanne; Holmquist-Johnson, Christopher L.
2015-01-01
In regulated rivers, managers must evaluate competing flow release scenarios that attempt to balance both human and natural needs. Meeting these natural flow needs is complex due to the myriad of interacting physical and hydrological factors that affect ecosystems. Tools that synthesize the voluminous scientific data and models on these factors will facilitate management of these systems. Here, we present the Riverine Environmental Flow Decision Support System (REFDSS), a tool that enables evaluation of competing flow scenarios and other variables on instream habitat. We developed a REFDSS for the Upper Delaware River, USA, a system that is regulated by three headwater reservoirs. This version of the REFDSS has the ability to integrate any set of spatially explicit data and synthesizes modeled discharge for three competing management scenarios, flow-specific 2-D hydrodynamic modeled estimates of local hydrologic conditions (e.g., depth, velocity, shear stress, etc.) at a fine pixel-scale (1 m2), and habitat suitability criteria (HSC) for a variety of taxa. It contains all individual model outputs, computationally integrates these data, and outputs the amount of potentially available habitat for a suite of species of interest under each flow release scenario. Users have the flexibility to change the time period of interest and vary the HSC. The REFDSS was developed to enable side-by-side evaluation of different flow management scenarios and their effects on potential habitat availability, allowing managers to make informed decisions on the best flow scenarios. An exercise comparing two alternative flow scenarios to a baseline scenario for several key species is presented. The Upper Delaware REFDSS was robust to minor changes in HSC (± 10 %). The general REFDSS platform was developed as a user-friendly Windows desktop application that was designed to include other potential parameters of interest (e.g., temperature) and for transferability to other riverine systems.
Daily River Flow Forecasting with Hybrid Support Vector Machine – Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Zaini, N.; Malek, M. A.; Yusoff, M.; Mardi, N. H.; Norhisham, S.
2018-04-01
The application of artificial intelligence techniques for river flow forecasting can further improve the management of water resources and flood prevention. This study concerns the development of support vector machine (SVM) based model and its hybridization with particle swarm optimization (PSO) to forecast short term daily river flow at Upper Bertam Catchment located in Cameron Highland, Malaysia. Ten years duration of historical rainfall, antecedent river flow data and various meteorology parameters data from 2003 to 2012 are used in this study. Four SVM based models are proposed which are SVM1, SVM2, SVM-PSO1 and SVM-PSO2 to forecast 1 to 7 day ahead of river flow. SVM1 and SVM-PSO1 are the models with historical rainfall and antecedent river flow as its input, while SVM2 and SVM-PSO2 are the models with historical rainfall, antecedent river flow data and additional meteorological parameters as input. The performances of the proposed model are measured in term of RMSE and R2 . It is found that, SVM2 outperformed SVM1 and SVM-PSO2 outperformed SVM-PSO1 which meant the additional meteorology parameters used as input to the proposed models significantly affect the model performances. Hybrid models SVM-PSO1 and SVM-PSO2 yield higher performances as compared to SVM1 and SVM2. It is found that hybrid models are more effective in forecasting river flow at 1 to 7 day ahead at the study area.
Belmar, Oscar; Velasco, Josefa; Martinez-Capel, Francisco
2011-05-01
Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the "Ecological Limits of Hydrologic Alteration (ELOHA)". The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81-2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.
Trend detection in river flow indices in Poland
NASA Astrophysics Data System (ADS)
Piniewski, Mikołaj; Marcinkowski, Paweł; Kundzewicz, Zbigniew W.
2018-02-01
The issue of trend detection in long time series of river flow records is of vast theoretical interest and considerable practical relevance. Water management is based on the assumption of stationarity; hence, it is crucial to check whether taking this assumption is justified. The objective of this study is to analyse long-term trends in selected river flow indices in small- and medium-sized catchments with relatively unmodified flow regime (semi-natural catchments) in Poland. The examined indices describe annual and seasonal average conditions as well as annual extreme conditions—low and high flows. The special focus is on the spatial analysis of trends, carried out on a comprehensive, representative data set of flow gauges. The present paper is timely, as no spatially comprehensive studies (i.e. covering the entire Poland or its large parts) on trend detection in time series of river flow have been done in the recent 15 years or so. The results suggest that there is a strong random component in the river flow process, the changes are weak and the spatial pattern is complex. Yet, the results of trend detection in different indices of river flow in Poland show that there exists a spatial divide that seems to hold quite generally for various indices (annual, seasonal, as well as low and high flow). Decreases of river flow dominate in the northern part of the country and increases usually in the southern part. Stations in the central part show mostly `no trend' results. However, the spatial gradient is apparent only for the data for the period 1981-2016 rather than for 1956-2016. It seems also that the magnitude of increases of river flow is generally lower than that of decreases.
NASA Astrophysics Data System (ADS)
Praskievicz, S. J.; Luo, C.
2017-12-01
Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.
Braided river flow and invasive vegetation dynamics in the Southern Alps, New Zealand.
Caruso, Brian S; Edmondson, Laura; Pithie, Callum
2013-07-01
In mountain braided rivers, extreme flow variability, floods and high flow pulses are fundamental elements of natural flow regimes and drivers of floodplain processes, understanding of which is essential for management and restoration. This study evaluated flow dynamics and invasive vegetation characteristics and changes in the Ahuriri River, a free-flowing braided, gravel-bed river in the Southern Alps of New Zealand's South Island. Sixty-seven flow metrics based on indicators of hydrologic alteration and environmental flow components (extreme low flows, low flows, high flow pulses, small floods and large floods) were analyzed using a 48-year flow record. Changes in the areal cover of floodplain and invasive vegetation classes and patch characteristics over 20 years (1991-2011) were quantified using five sets of aerial photographs, and the correlation between flow metrics and cover changes were evaluated. The river exhibits considerable hydrologic variability characteristic of mountain braided rivers, with large variation in floods and other flow regime metrics. The flow regime, including flood and high flow pulses, has variable effects on floodplain invasive vegetation, and creates dynamic patch mosaics that demonstrate the concepts of a shifting mosaic steady state and biogeomorphic succession. As much as 25 % of the vegetation cover was removed by the largest flood on record (570 m(3)/s, ~50-year return period), with preferential removal of lupin and less removal of willow. However, most of the vegetation regenerated and spread relatively quickly after floods. Some flow metrics analyzed were highly correlated with vegetation cover, and key metrics included the peak magnitude of the largest flood, flood frequency, and time since the last flood in the interval between photos. These metrics provided a simple multiple regression model of invasive vegetation cover in the aerial photos evaluated. Our analysis of relationships among flow regimes and invasive vegetation cover has implications for braided rivers impacted by hydroelectric power production, where increases in invasive vegetation cover are typically greater than in unimpacted rivers.
NASA Astrophysics Data System (ADS)
Zhang, X.; Voisin, N.; Cheng, Y.; Niemeyer, R. J.; Nijssen, B.; Yearsley, J. R.; Zhou, T.
2017-12-01
In many areas, climate change is expected to alter the flow regime and increase stream temperature, especially during summer low flow periods. During these low flow periods, water management increases flows in order to sustain human activities such as water for irrigation and hydroelectric power generation. Water extraction from rivers during warm season can increase stream temperature while reservoir regulation may cool downstream river temperatures by releasing cool water from deep layers. Thus, it is reasonable to hypothesize that water management changes the sensitivity of the stream temperature regime to climate change when compared to unmanaged resources. The time of emergence of change refers to the point in time when observations, or model simulations, show statistically significant changes from a given baseline period, i.e. above natural variability. Here we aim to address two questions by investigating the time of emergence of changes in stream temperature in the southeastern United States: what is the sensitivity of stream temperature under regulated flow conditions to climate change and what is the contribution of water management in increasing or decreasing stream temperature sensitivity to climate change. We simulate regulated flow by using runoff from the Variable Infiltration Capacity (VIC) macroscale hydrological model as input into a large scale river routing and reservoir model MOSART-WM. The River Basin Model (RBM), a distributed stream temperature model, includes a two-layer thermal stratification module to simulate stream temperature in regulated river systems. We evaluate the timing of emergence of changes in flow and stream temperature based on climate projections from two representative concentration pathways (RCPs; RCP4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We analyze the difference in emergence of change between natural and regulated streamflow. Insights will be provided toward applications for multiple sectors of activities including electrical resources adequacy studies over the southeastern U.S.
What maintains the waters flowing in our rivers?
NASA Astrophysics Data System (ADS)
Vasconcelos, Vitor Vieira
2017-07-01
This article discusses how new contributions from hydrogeological science in the 20th and 21st centuries have allowed for a better understanding of the processes that affect the maintenance of river flows. Moreover, the way in which this knowledge has been conveyed beyond academia and has been gradually incorporated into public policy for natural resource management is also discussed. This article explains the development of several approaches used to understand the relationships among the management of aquifers, vegetation and river flows, including water balance, aquifer recharge, the piston effect, seasonal effects, and safe and sustainable yields. Additionally, the current challenges regarding the modeling of hydrological processes that integrate groundwater and surface waters are discussed. Examples of studies applied in Brazil that demonstrate these processes and stimulate thought regarding water management strategies are presented. In light of the case studies, it is possible to propose different strategies, each adapted for specific hydrogeological context to maximize aquifer recharge or base flow maintenance. Based on these strategies, the role of infiltration ponds and other artificial recharge techniques is re-evaluated in the context of the mitigation of environmental impacts on the maintenance of river flows. Proposals for the improvement of public policies regarding the payment of related environmental services to stimulate investment in aquifer recharge and the maintenance of base flow, for which the goal is to attain win-win-win situations for the environment, farmers and water users, while preventing land speculation, are discussed. Lastly, a conceptual model for the dissemination of hydrogeological knowledge in public policies is provided, and its challenges and possibilities are discussed.
Nestler, John M.; Milhouse, Robert T.; Troxel, Jay; Fritschen, Janet A.
1985-01-01
In 1974 county governments in the Atlanta vicinity realized that demands on the Chattahoochee River for water supply plus the streamflow required for water quality nearly equaled the minimum flow in the river. Increased demands for water supply in the following years could not be supplied under the then existing flow regime in the river. In response to the anticipated shortage of water, the Atlanta Regional Commission, a multicounty agency responsible for comprehensive regional planning in the Atlanta region, was contracted to prepare water demand projections to the year 2010 and identify alternatives for meeting projected water demands. The results of this study are published in an extensive final report, the Metropolitan Atlanta Area Water Resources Management Study (1981). Requests for copies should be directed to the District Engineer, Savannah District. Many of the identified alternatives to increase future water supply for the Atlanta area would result in modifications to the present flow regime within the Chattahoochee River between Buford Dam (river mile 348.3) and its confluence with Peachtree Creek (river mile 300.5). The present preferred alternative is construction of a reregulation dam at about river mile 342. The proposed reregulation dam would release a much more constant flow than the peaking flows presently released from Buford Dam (generally, a maximum release of approximately 9000 cfs or minimum release of about 550 cfs) by storing the generation releases from Buford Dam for gradual release during non-generation periods. The anticipated minimum release from the rereg dam would he approximately 1U5U cfs (based on contractual obligations to the Southeast Power Administration to supply a minimum of 11 hours of peaking power per week from Buford Dam). The average annual release from the proposed reregulation dam into the Chattahoochee River would be approximately 2000 cfs (based on USGS flow records) and the median release would he approximately 1500 cfs (value obtained from Savannah District). The proposed reregulation dam would have sufficient storage to provide some opportunity for flow management to optimize uses other than water supply and water quality. Flow modifications (and resultant water quality changes) within this reach of the Chattahoochee River to meet increased demands for water supply may have an effect on other beneficial uses of this important natural resource. In addition to supplying a significant proportion of the water supply for metropolitan Atlanta and providing for water quality, the Chattahoochee River also is used extensively for recreation and supports a valuable trout fishery. Altered flows in the channel to meet water supply needs may have an impact on river recreation and trout habitat.
NASA Astrophysics Data System (ADS)
Conallin, John; Wilson, Emma; Campbell, Josh
2018-03-01
Anthropogenic pressure on freshwater ecosystems is increasing, and often leading to unacceptable social-ecological outcomes. This is even more prevalent in intermittent river systems where many are already heavily modified, or human encroachment is increasing. Although adaptive management approaches have the potential to aid in providing the framework to consider the complexities of intermittent river systems and improve utility within the management of these systems, success has been variable. This paper looks at the application of an adaptive management pilot project within an environmental flows program in an intermittent stream (Tuppal Creek) in the Murray Darling Basin, Australia. The program focused on stakeholder involvement, participatory decision-making, and simple monitoring as the basis of an adaptive management approach. The approach found that by building trust and ownership through concentrating on inclusiveness and transparency, partnerships between government agencies and landholders were developed. This facilitated a willingness to accept greater risks and unintended consequences allowing implementation to occur.
Wetland Management Reduces Sediment and Nutrient Loading to the Upper Mississippi River
Restored riparian wetlands in the Upper Mississippi River basin have the potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh...
Water Quality Conditions in the Missouri River Mainstem System. 2009 Report
2010-09-01
Navigation Channel Reach ............................................................................. 117 6.2 Flow Regulation...118 6.2.2 Historic Flow Releases...118 6.2.3 Flow Releases for Water Quality management
Global Change Drought in the Southwest: New Management Options
NASA Astrophysics Data System (ADS)
Udall, B. H.; Overpeck, J. T.
2015-12-01
Long held worries about future runoff declines in the Colorado River under climate change are proving to be more than just theory. Fifteen years into this century flows of the Colorado are already declining due mostly to unprecedented temperatures, and as warming proceeds, declines in river flow will grow larger. Temperature-driven droughts, some lasting decades and much more severe than the current 15-year drought, will also become more commonplace if climate change continues unabated. Current projections of future water availability almost universally understate the risk of large Colorado flow reductions under business-as-usual warming. Betting on highly uncertain projections of increased precipitation to overcome even part of the flow reductions due to virtually certain warming is a poor risk management strategy. Many of the existing water policy arrangements in the Colorado River Basin will fail in the 21st century unless innovative new solutions are developed under leadership from the federal government and its basin state partners.
Environmental flows for rivers and economic compensation for irrigators.
Sisto, Nicholas P
2009-02-01
Securing flows for environmental purposes from an already fully utilized river is an impossible task--unless users are either coerced into freeing up water, or offered incentives to do so. One sensible strategy for motivating users to liberate volumes is to offer them economic compensation. The right amount for that compensation then becomes a key environmental management issue. This paper analyses a proposal to restore and maintain ecosystems on a stretch of the Río Conchos in northern Mexico, downstream from a large irrigation district that consumes nearly all local flows. We present here estimates of environmental flow requirements for these ecosystems and compute compensation figures for irrigators. These figures are derived from crop-specific irrigation water productivities we statistically estimate from a large set of historical production and irrigation data obtained from the district. This work has general implications for river ecosystem management in water-stressed basins, particularly in terms of the design of fair and effective water sharing mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping; Voisin, Nathalie
Understanding the response of river flow and estuarine hydrodynamics to climate change, land-use/land-cover change (LULC), and sea-level rise is essential to managing water resources and stress on living organisms under these changing conditions. This paper presents a modeling study using a watershed hydrology model and an estuarine hydrodynamic model, in a one-way coupling, to investigate the estuarine hydrodynamic response to sea-level rise and change in river flow due to the effect of future climate and LULC changes in the Snohomish River estuary, Washington, USA. A set of hydrodynamic variables, including salinity intrusion points, average water depth, and salinity of themore » inundated area, were used to quantify the estuarine response to river flow and sea-level rise. Model results suggest that salinity intrusion points in the Snohomish River estuary and the average salinity of the inundated areas are a nonlinear function of river flow, although the average water depth in the inundated area is approximately linear with river flow. Future climate changes will shift salinity intrusion points further upstream under low flow conditions and further downstream under high flow conditions. In contrast, under the future LULC change scenario, the salinity intrusion point will shift downstream under both low and high flow conditions, compared to present conditions. The model results also suggest that the average water depth in the inundated areas increases linearly with sea-level rise but at a slower rate, and the average salinity in the inundated areas increases linearly with sea-level rise; however, the response of salinity intrusion points in the river to sea-level rise is strongly nonlinear.« less
Zhao, Changsen; Yang, Shengtian; Liu, Junguo; Liu, Changming; Hao, Fanghua; Wang, Zhonggen; Zhang, Huitong; Song, Jinxi; Mitrovic, Simon M; Lim, Richard P
2018-05-15
The survival of aquatic biota in stream ecosystems depends on both water quantity and quality, and is particularly susceptible to degraded water quality in regulated rivers. Maintenance of environmental flows (e-flows) for aquatic biota with optimum water quantity and quality is essential for sustainable ecosystem services, especially in developing regions with insufficient stream monitoring of hydrology, water quality and aquatic biota. Few e-flow methods are available that closely link aquatic biota tolerances to pollutant concentrations in a simple and practical manner. In this paper a new method was proposed to assess e-flows that aimed to satisfy the requirements of aquatic biota for both the quantity and quality of the streamflow by linking fish tolerances to water quality criteria, or the allowable concentration of pollutants. For better operation of water projects and control of pollutants discharged into streams, this paper presented two coefficients for streamflow adjustment and pollutant control. Assessment of e-flows in the Wei River, the largest tributary of the Yellow River, shows that streamflow in dry seasons failed to meet e-flow requirements. Pollutant influx exerted a large pressure on the aquatic ecosystem, with pollutant concentrations much higher than that of the fish tolerance thresholds. We found that both flow velocity and water temperature exerted great influences on the pollutant degradation rate. Flow velocity had a much greater influence on pollutant degradation than did the standard deviation of flow velocity. This study provides new methods to closely link the tolerance of aquatic biota to water quality criteria for e-flow assessment. The recommended coefficients for streamflow adjustment and pollutant control, to dynamically regulate streamflow and control pollutant discharge, are helpful for river management and ecosystems rehabilitation. The relatively low data requirement also makes the method easy to use efficiently in developing regions, and thus this study has significant implications for managing flows in polluted and regulated rivers worldwide. Copyright © 2018. Published by Elsevier Ltd.
Vaughn, Caryn C; Atkinson, Carla L; Julian, Jason P
2015-01-01
Extreme hydro-meteorological events such as droughts are becoming more frequent, intense, and persistent. This is particularly true in the south central USA, where rapidly growing urban areas are running out of water and human-engineered water storage and management are leading to broad-scale changes in flow regimes. The Kiamichi River in southeastern Oklahoma, USA, has high fish and freshwater mussel biodiversity. However, water from this rural river is desired by multiple urban areas and other entities. Freshwater mussels are large, long-lived filter feeders that provide important ecosystem services. We ask how observed changes in mussel biomass and community composition resulting from drought-induced changes in flow regimes might lead to changes in river ecosystem services. We sampled mussel communities in this river over a 20-year period that included two severe droughts. We then used laboratory-derived physiological rates and river-wide estimates of species-specific mussel biomass to estimate three aggregate ecosystem services provided by mussels over this time period: biofiltration, nutrient recycling (nitrogen and phosphorus), and nutrient storage (nitrogen, phosphorus, and carbon). Mussel populations declined over 60%, and declines were directly linked to drought-induced changes in flow regimes. All ecosystem services declined over time and mirrored biomass losses. Mussel declines were exacerbated by human water management, which has increased the magnitude and frequency of hydrologic drought in downstream reaches of the river. Freshwater mussels are globally imperiled and declining around the world. Summed across multiple streams and rivers, mussel losses similar to those we document here could have considerable consequences for downstream water quality although lost biofiltration and nutrient retention. While we cannot control the frequency and severity of climatological droughts, water releases from reservoirs could be used to augment stream flows and prevent compounded anthropogenic stressors. PMID:25859334
Use of Iqqm For Management of A Regulated River System
NASA Astrophysics Data System (ADS)
Hameed, T.; Podger, G.; Harrold, T. I.
The Integrated Quantity-Quality Model (IQQM) is a modelling tool for the planning and management of water-sharing issues within regulated and unregulated river sys- tems. IQQM represents the major river system processes, including inflows, rainfall and evaporation, infiltration, and flow routing down river channels and floodplains. It is a water balance model that operates on a daily timestep and can represent reser- voirs, wetlands, surface water/groundwater interaction, and soil moisture deficit for irrigation areas, along with many other features of both natural and regulated systems. IQQM can be customised for any river valley, and has proven to be a useful tool for the development, evaluation, and selection of operational rules for complex river systems. The Lachlan catchment lies within Australia's largest river system, the Murray- Darling Basin. Extensive development in the Murray-Darling Basin within the last 100 years has resulted in land degradation, increased salinity, poor water quality, damage to wetlands, and decline in native fish species. In response to these issues, in 1995 the Murray-Darling Basin Commission (MDBC) imposed restrictions on growth in diver- sions (the "MDBC Cap"), and the New South Wales government has more recently applied its own restrictions (the "River Flow Objectives"). To implement the MDBC Cap and the River Flow Objectives, new operational rules were required. This presen- tation describes how IQQM was used to develop and evaluate these rules for the Lach- lan system. In particular, rules for release of environmental flows were developed and evaluated. The model helped identify the flow window that would be most beneficial to the riverine environment, the critical time of year when environmental releases should be made, and resource constraint conditions when environmental releases should not be made. This process also involved intensive consultations with stakeholders. The role of IQQM within this process was to help the stakeholders understand the inter- action of various users within the valley, and the impacts of the operational rules on them.
Simple Words and Fuzzy Zones: Early Directions for Temporary River Research in South Africa
Uys; O'Keeffe
1997-07-01
/ Although a large proportion of South Africa's rivers are nonperennial, ecological research into these systems has only recently been initiated. Consequently, we have little verified information about the ecological functioning of these rivers or knowledge of how best to manage them. High water demands in a semiarid region results in the flow of most perennial rivers being altered from permanent to temporary in sections, through impoundment, land-use changes, abstraction, etc. Conversely, sections of many temporary rivers are altered to perennial as a result of interbasin transfers or may be exploited for surface water. Effective and appropriate management of these modifications must be based on sound scientific information, which requires intensified, directed research. We anticipate that temporary river research in South Africa will, of necessity, be driven primarily by short-term collaborative efforts and secondarily by long-term ecological studies. At the outset, a simple conceptual framework is required to encourage an appreciation of current views of the spatial and temporal dynamics of nonperennial rivers and of the variability and unpredictability that characterize these systems. We adopt the view that perennial and episodic/ephemeral rivers represent either end of a continuum, separated by a suite of intermediate flow regimes. A conceptual diagram of this continuum is presented. In the absence of a functional classification for temporary rivers, a descriptive terminology has been systematically devised in an attempt to standardize definition of the different types of river regimes encountered in the country. Present terminology lacks structure and commonly accepted working definitions. KEY WORDS: Temporary rivers; Intermittent rivers; Continuum; Terminology; Classification; Ecosystem management; South Africa
Rivers and streams that do not flow permanently (herein intermittent rivers; IRs) make up a large proportion of the world's inland waters and are gaining widespread attention. We review the research on IRs from its early focus on natural history through to current application in ...
NASA Astrophysics Data System (ADS)
Marchamalo, Miguel; Bejarano, María-Dolores; García de Jalón, Diego; Martínez Marín, Rubén
2007-10-01
This study presents the application of LIDAR data to the evaluation and quantification of fluvial habitat in river systems, coupling remote sensing techniques with hydrological modeling and ecohydraulics. Fish habitat studies depend on the quality and continuity of the input topographic data. Conventional fish habitat studies are limited by the feasibility of field survey in time and budget. This limitation results in differences between the level of river management and the level of models. In order to facilitate upscaling processes from modeling to management units, meso-scale methods were developed (Maddock & Bird, 1996; Parasiewicz, 2001). LIDAR data of regulated River Cinca (Ebro Basin, Spain) were acquired in the low flow season, maximizing the recorded instream area. DTM meshes obtained from LIDAR were used as the input for hydraulic simulation for a range of flows using GUAD2D software. Velocity and depth outputs were combined with gradient data to produce maps reflecting the availability of each mesohabitat unit type for each modeled flow. Fish habitat was then estimated and quantified according to the preferences of main target species as brown trout (Salmo trutta). LIDAR data combined with hydraulic modeling allowed the analysis of fluvial habitat in long fluvial segments which would be time-consuming with traditional survey. LIDAR habitat assessment at mesoscale level avoids the problems of time efficiency and upscaling and is a recommended approach for large river basin management.
DeSimone, Leslie A.
2004-01-01
Water-supply withdrawals and wastewater disposal in the Assabet River Basin in eastern Massachusetts alter the flow and water quality in the basin. Wastewater discharges and stream-flow depletion from ground-water withdrawals adversely affect water quality in the Assabet River, especially during low-flow months (late summer) and in headwater areas. Streamflow depletion also contributes to loss of aquatic habitat in tributaries to the river. In 19972001, water-supply withdrawals averaged 9.9 million gallons per day (Mgal/d). Wastewater discharges to the Assabet River averaged 11 Mgal/d and included about 5.4 Mgal/d that originated from sources outside of the basin. The effects of current (2004) and future withdrawals and discharges on water resources in the basin were investigated in this study. Steady-state and transient ground-water-flow models were developed, by using MODFLOW-2000, to simulate flow in the surficial glacial deposits and underlying crystalline bedrock in the basin. The transient model simulated the average annual cycle at dynamic equilibrium in monthly intervals. The models were calibrated to 19972001 conditions of water withdrawals, wastewater discharges, water levels, and nonstorm streamflow (base flow plus wastewater discharges). Total flow through the simulated hydrologic system averaged 195 Mgal/d annually. Recharge from precipitation and ground-water discharge to streams were the dominant inflow and outflow, respectively. Evapotranspiration of ground water from wetlands and non-wetland areas also were important losses from the hydrologic system. Water-supply withdrawals and infiltration to sewers averaged 5 and 1.3 percent, respectively, of total annual out-flows and were larger components (12 percent in September) of the hydrologic system during low-flow months. Water budgets for individual tributary and main stem subbasins identified areas, such as the Fort Meadow Brook and the Assabet Main Stem Upper subbasins, where flows resulting from anthropo-genic activities were relatively large percentages, compared to other subbasins, (more than 20 percent in September) of total out-flows. Wastewater flows in the Assabet River accounted for 55, 32, and 20 percent of total nonstorm streamflow (base flow plus wastewater discharge) out of the Assabet Main Stem Upper, Middle, and Lower subbasins, respectively, in an average September. The ground-water-flow models were used to evaluate water-management alternatives by simulating hypothetical scenarios of altered withdrawals and discharges. A scenario that included no water management quantified nonstorm stream-flows that would result without withdrawals, discharges, septic-system return flow, or consumptive use. Tributary flows in this scenario increased in most subbasins by 2 to 44 percent relative to 19972001 conditions. The increases resulted mostly from variable combinations of decreased withdrawals and decreased infiltration to sewers. Average annual nonstorm streamflow in the Assabet River decreased slightly in this scenario, by 2 to 3 percent annually, because gains in ground-water discharge were offset by the elimination of wastewater discharges. A second scenario quantified the effects of increasing withdrawals and discharges to currently permitted levels. In this simulation, average annual tributary flows decreased in most subbasins, by less than 1 to 10 percent relative to 19972001 conditions. In the Assabet River, flows increased slightly, 1 to 5 percent annually, and the percentage of wastewater in the river increased to 69, 42, and 27 percent of total nonstorm streamflow out of the Assabet Main Stem Upper, Middle, and Lower subbasins, respectively, in an average September. A third set of scenarios quantified the effects of ground-water discharge of wastewater at four hypothetical sites, while maintaining 19972000 wastewater discharges to the Assabet River. Wastewater, discharged at a constant rate that varied among sites from 0.3 to 1
Derivation and Application of Idealized Flow Conditions in River Network Simulation
NASA Astrophysics Data System (ADS)
Afshari Tork, S.; Fekete, B. M.
2015-12-01
Stream flow information is essential for many applications across broad range of scales, e.g. global water balances, engineering design, flood forecasting, environmental management, etc. Quantitative assessment of flow dynamics of natural streams, requires detailed knowledge of all the geometrical and geophysical variables (e.g. bed-slope, bed roughness, etc.) along river reaches. Simplifying the river bed geometries could reduce both the computational burden implementing flow simulations and challenges in assembling the required data, especially for large domains. Average flow conditions expressed as empirical "at-a-station" hydraulic geometry relationships between key channel components, (i.e. water depth, top-width, flow velocity, flow area against discharge) have been studied since 60's. Recent works demonstrated that power-function as idealized riverbed geometry whose parameters are correlated to those of exponential relationship between mean water depth and top-width, are consistent with empirical "at-a-station" relations.US Geological Surveys' National Water Information System web-interface provides huge amount of river discharge and corresponding stage height data from several thousands of streamflow monitoring stations over United States accompanied by river survey summaries providing additional flow informations (width, mean velocity, cross-sectional area). We conducted a series of analyses to indentify consistent data daily monitoring and corresponding survey records that are suitable to refine our current understanding of how the "at-a-station" properties of river channels relate to channel forming characteristics (e.g. riverbed slope, flow regime, geology, etc.). The resulting ~1,200 actively operating USGS stations with over ~225,000 corresponding survery records (almost 200 survey per gauge on average) is the largest river survey database ever studied in the past.Our presentation will show our process assembling our river monitoring and survey data base and we will present our first results translating "at-a-station" relations into he hydraulic geometry of river channels based on idealized power-law riverbed geometries. We also will also present a series of application (e.g. improved flow rounting, simplyfied river surveying).
NASA Astrophysics Data System (ADS)
Dorava, Joseph M.; Milner, Alexander M.
2000-10-01
Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation.Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat.
Effect of human activities on overall trend of sedimentation in the lower Yellow River, China.
Jiongxin, Xu
2004-05-01
The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil-water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30-40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The results of this study demonstrate that, if the overuse of river water cannot be controlled, the reduction of channel sedimentation in the lower Yellow River cannot be realized through the practice of erosion and sediment control measures.
Adams, G.P.
1995-01-01
This report contains MODFLOW input and output listings for the simulation of ground-water flow in alluvium and terrace deposits associated with the Cimarron River from Freedom to Guthrie, Oklahoma. These values are to be used in conjuction with the report, 'Geohydrology of alluvium and terrace deposits of the Cimarron River from Freedom to Guthrie, Oklahoma,' by G.P. Adams and D.L. Bergman, published as U.S. Geological Survey Water-Resources Investigatons Report 95-4066. The simulation used a digital ground-water flow model and was evaluated by a management and statistical program.
NASA Astrophysics Data System (ADS)
Kuriqi, Alban; Rosário Fernandes, M.; Santos, Artur; Ferreira, M. Teresa
2017-04-01
Hydromorphological patterns changes in large rivers, result from a long history of human interventions. In this study, we evaluate the causes and effects of hydromorphological alterations in the Iberian Minho River using a planform change analysis. We performed a temporal comparison using historical maps (nineteen century) and contemporaneous maps. The studied river was divided in 2.5 km long river stretches in a total of 25 sampling units. The historical maps were initially georeferenced for the WGS84 coordinate system. We used Geographic Information System (GIS) to extract the hydromorphological features and to store and organised the spatial data. The hydromorphological features (sinuosity index, braiding intensity, river corridor and active channel width, lotic and lentic habitats) were mapped by visual interpretation of the historical and the contemporaneous maps on a scale 1:2500 by applying the same methodology. Also, we analysed certain Indicators of Hydrological Alteration (IHA) based on pre- and post-dam daily streamflow data obtained from the Spanish Water Information System (SIA). The results revealed a significant reduction in the active channel width and all sinuosity indexes representing an overall degradation of river conditions. We also noticed a drastic diminution in the number and total area of lentic habitats causing fish habitat shifts. Changes were less evident in upstream sampling units due to diverse Land Use/Land Cover (LULC) changes combine with some geological constraints. These responses were consistent with reductions in mean annual discharge, flood disturbance decrease and minimum flow increase during the summer season. This work allows to understand the evolutionary trajectory of large fluvial system over more than 100 years and to implement concrete measures for sustainable river management. Keywords: historical maps, large rivers, flow alteration, sinuosity index, lotic and lentic habitats, regulated rivers, river restoration.
Future Management and Control of the Lower Mississippi River
NASA Astrophysics Data System (ADS)
Willson, C. S.; Karadogan, E.
2009-12-01
In many ways the Mississippi River, which drains an area of over 1,245,000 square miles (covering 31 states and two Canadian provinces), is a highly engineered system due to the presence of control structures and levees. These features provide the necessary controls for flood protection and for sustaining navigation routes to a number of economically important ports. The lower portion of the River is subject to temporally dynamic forcings due to the high variability in annual flow rates (up to 700,000 cfs) and Gulf of Mexico conditions, both of which are expected to change over the coming decades as a result of climate change. Another phenomena that is having a major impact on the lower River delta is subsidence---some parts of coastal Louisiana are experiencing subsidence rates of up to 1 cm/year. As a result, the relative sea level rise rates in coastal Louisiana will be higher than many other delta systems throughout the world. A calibrated and validated two-dimensional hydrodynamic model has been developed for the lower River (from River Mile 105, around New Orleans out to the -100 m depth in the Gulf of Mexico) that includes all of the lower River passes and many of the dynamic forcings from the Gulf. This model has been used to look at the flow distribution through the various passes and to investigate the potential impact of large-scale river diversion into the adjacent wetlands. In this talk, we will discuss the framework for incorporating model results under projected sea level rise conditions as well as more extreme flow conditions on future use and management of the River. Examples will be shown depicting the impact on flow distribution through the passes and other uncontrolled sections of the lower River, salt water migration, and the effectiveness of river diversions.
Sensitivity of Regulated Flow Regimes to Climate Change in the Western United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Tian; Voisin, Nathalie; Leng, Guoyong
Water management activities or flow regulations modify water fluxes at the land surface and affect water resources in space and time. We hypothesize that flow regulations change the sensitivity of river flow to climate change with respect to unmanaged water resources. Quantifying these changes in sensitivity could help elucidate the impacts of water management at different spatiotemporal scales and inform climate adaptation decisions. In this study, we compared the emergence of significant changes in natural and regulated river flow regimes across the Western United States from simulations driven by multiple climate models and scenarios. We find that significant climate change-inducedmore » alterations in natural flow do not cascade linearly through water management activities. At the annual time scale, 50% of the Hydrologic Unit Code 4 (HUC4) sub-basins over the Western U.S. regions tend to have regulated flow regime more sensitive to the climate change than natural flow regime. Seasonality analyses show that the sensitivity varies remarkably across the seasons. We also find that the sensitivity is related to the level of water management. For 35% of the HUC4 sub-basins with the highest level of water management, the summer and winter flows tend to show a heightened sensitivity to climate change due to the complexity of joint reservoir operations. We further demonstrate that the impacts of considering water management in models are comparable to those that arises from uncertainties across climate models and emission scenarios. This prompts further climate adaptation studies research about nonlinearity effects of climate change through water management activities.« less
Management of fish populations in large rivers: a review of tools and approaches
Petts, Geoffrey E.; Imhoff, Jack G.; Manny, Bruce A.; Maher, John F. B.; Weisberg, Stephen B.
1989-01-01
In common with most branches of science, the management of riverine fish populations is characterised by reductionist and isolationist philosophies. Traditional fish management focuses on stocking and controls on fishing. This paper presents a concensus of scientists involved in the LARS workshop on the management of fish populations in large rivers. A move towards a more holistic philosophy is advocated, with fish management forming an integral part of sustainable river development. Based upon a questionnaire survey of LARS members, with wide-ranging expertise and experience from all parts of the world, lists of management tools currently in use are presented. Four categories of tools are described: flow, water-quality, habitat, and biological. The potential applications of tools for fish management in large rivers is discussed and research needs are identified. The lack of scientific evaluations of the different tools remains the major constraint to their wider application.
River flow simulation using a multilayer perceptron-firefly algorithm model
NASA Astrophysics Data System (ADS)
Darbandi, Sabereh; Pourhosseini, Fatemeh Akhoni
2018-06-01
River flow estimation using records of past time series is importance in water resources engineering and management and is required in hydrologic studies. In the past two decades, the approaches based on the artificial neural networks (ANN) were developed. River flow modeling is a non-linear process and highly affected by the inputs to the modeling. In this study, the best input combination of the models was identified using the Gamma test then MLP-ANN and hybrid multilayer perceptron (MLP-FFA) is used to forecast monthly river flow for a set of time intervals using observed data. The measurements from three gauge at Ajichay watershed, East Azerbaijani, were used to train and test the models approach for the period from January 2004 to July 2016. Calibration and validation were performed within the same period for MLP-ANN and MLP-FFA models after the preparation of the required data. Statistics, the root mean square error and determination coefficient, are used to verify outputs from MLP-ANN to MLP-FFA models. The results show that MLP-FFA model is satisfactory for monthly river flow simulation in study area.
Assessment of coarse sediment mobility in the Black Canyon of the Gunnison River, Colorado.
Dubinski, Ian M; Wohl, Ellen
2007-07-01
The Gunnison River in the Black Canyon of the Gunnison National Park (BCNP) near Montrose, Colorado is a mixed gravel and bedrock river with ephemeral side tributaries. Flow rates are controlled immediately upstream by a diversion tunnel and three reservoirs. The management of the hydraulic control structures has decreased low-frequency, high-stage flows, which are the dominant geomorphic force in bedrock channel systems. We developed a simple model to estimate the extent of sediment mobilization at a given flow in the BCNP and to evaluate changes in the extent and frequency of sediment mobilization for flow regimes before and after flow regulation in 1966. Our methodology provides a screening process for identifying and prioritizing areas in terms of sediment mobility criteria when more precise systematic field data are unavailable. The model uses the ratio between reach-averaged bed shear stress and critical shear stress to estimate when a particular grain size is mobilized for a given reach. We used aerial photography from 1992, digital elevation models, and field surveys to identify individual reaches and estimate reach-averaged hydraulic geometry. Pebble counts of talus and debris fan deposits were used to estimate regional colluvial grain-size distributions. Our results show that the frequency of flows mobilizing river bank sediment along a majority of the Gunnison River in the BCNP has significantly declined since 1966. The model results correspond well to those obtained from more detailed, site-specific field studies carried out by other investigators. Decreases in the frequency of significant sediment-mobilizing flows were more pronounced for regions within the BCNP where the channel gradient is lower. Implications of these results for management include increased risk of encroachment of vegetation on the active channel and long-term channel narrowing by colluvial deposits. It must be recognized that our methodology represents a screening of regional differences in sediment mobility. More precise estimates of hydraulic and sediment parameters would likely be required for dictating quantitative management objectives within the context of sediment mobility and sensitivity to changes in the flow regime.
A demonstration of the instream flow incremental methodology, Shenandoah River
Zappia, Humbert; Hayes, Donald C.
1998-01-01
Current and projected demands on the water resources of the Shenandoah River have increased concerns for the potential effect of these demands on the natural integrity of the Shenandoah River system. The Instream Flow Incremental Method (IFIM) process attempts to integrate concepts of water-supply planning, analytical hydraulic engineering models, and empirically derived habitat versus flow functions to address water-use and instream-flow issues and questions concerning life-stage specific effects on selected species and the general well being of aquatic biological populations.The demonstration project also sets the stage for the identification and compilation of the major instream-flow issues in the Shenandoah River Basin, development of the required multidisciplinary technical team to conduct more detailed studies, and development of basin specific habitat and flow requirements for fish species, species assemblages, and various water uses in the Shenandoah River Basin. This report presents the results of an IFIM demonstration project, conducted on the main stem Shenandoah River in Virginia, during 1996 and 1997, using the Physical Habitat Simulation System (PHABSIM) model.Output from PHABSIM is used to address the general flow requirements for water supply and recreation and habitat for selected life stages of several fish species. The model output is only a small part of the information necessary for effective decision making and management of river resources. The information by itself is usually insufficient for formulation of recommendations regarding instream-flow requirements. Additional information, for example, can be obtained by analysis of habitat time-series data, habitat duration data, and habitat bottlenecks. Alternative-flow analysis and habitat-duration curves are presented.
Salinization Sources Along the Lower Jordan River Under Draught Conditions
NASA Astrophysics Data System (ADS)
Holtzman, R.; Shavit, U.; Segal, M.; Vengosh, A.; Farber, E.; Gavrieli, I.
2003-12-01
The Lower Jordan River, once a flowing freshwater river, is suffering from an ongoing reduction of discharge and water quality. The river flows between the Sea of Galilee and the Dead Sea, an aerial distance of about 105 Km. The severe reduction is caused by an excessive exploitation of its sources and diversion of sewage and agricultural drainage into the river. The extreme low flows and low water quality threaten the natural existence of the river and its potential use for agriculture. In spite of its importance, little research has been done in the river. The objectives of the study were to measure the discharge and water composition along the river and to evaluate the main sources that control its flow and chemical characteristics. The hypothesis of the study was that interaction with subsurface flows significantly affects the river flow and chemical composition. The research is based on a detailed field study, which included flow rate measurements in the river and its tributaries, water sampling and analysis and mass balance calculations of water and solutes. A portable Acoustic Doppler Velocimeter (ADV) was used to measure velocities and bathymetry at different locations across the river sections. Due to accessibility constraints, a floating traverse construction, which enables the ADV's deployment from one bank of the river, was developed. It was found that flow rate ranges between 500-1,100 L/s in northern (upstream) sections and 300-1,650 L/s in the south. This low discharge represents a significant reduction from historical values and is lower than recent published estimations. This research represents base flows only, as the measurements were done during a period of two consecutive draught years. Calculated mass balance of water flows in the northern sections shows that the subsurface source contributes to the river around 200-670 L/s (30-80% of the river flow). Calculations of solute balance show that the subsurface flows add 20-50% of the mass of solutes (e.g. Sulfate) that flows in the river. The assumption of a hydraulic gradient that points at inflows from subsurface flows is encouraged by high water levels measured in nearby piezometers. Possible natural subsurface sources include shallow groundwater or rising of water from deep formations. The existence of adjacent thermal wells strengthens the reasonability of such water rise. Possible anthropogenic sources include return flows and effluents. The results are consistent and agree with the geochemical and isotopic analyses. It is concluded that the impact of the subsurface component on the Jordan River is significant and must be taken into consideration, for future water management schemes and implementation of the Peace Treaty between Israel and Jordan.
Flow Field Analysis of Fish Farm and Planting Area in Floodplain during Flood
NASA Astrophysics Data System (ADS)
Wu, M.; Tan, H. N.; Lo, W. C.; Tsai, C. T.
2017-12-01
Fish farms constructing and crops planting is common in floodplain in Taiwan. The physiographic soil erosion-deposition (PSED) model was applied to simulate the sediment yield, the runoff, and sediment transport rate of the river watershed corresponding to one-day rainstorms of the return periods of 25, 50, and 100 year. The variation of flow field in the river sections could be simulated by utilizing the alluvial river-movable bed two dimensional (ARMB-2D) model. The results reveal that the tendency of river discharge, sediment deposition and erosion obtained from these two models is agreeable by calibration and verification. The water flow affected by fish farms and planting areas in floodplain during flood was analyzed. Lastly, based on the simulation results obtained from the PESD and ARMB-2D models for one-day rainstorms of the return periods of 25, 50, and 100 year, the illegal fish farms and planting area with severe variations of river flow and affected he capability for flood conveyance will be referred to as the demolishing-to-be areas. We could also suggest the management strategy of application for fish farms constructing and crops planting in river areas by incorporating the ability of our model to provide information of river flow to enhance the flood conveyance.
Forecasting models for flow and total dissolved solids in Karoun river-Iran
NASA Astrophysics Data System (ADS)
Salmani, Mohammad Hassan; Salmani Jajaei, Efat
2016-04-01
Water quality is one of the most important factors contributing to a healthy life. From the water quality management point of view, TDS (total dissolved solids) is the most important factor and many water developing plans have been implemented in recognition of this factor. However, these plans have not been perfect and very successful in overcoming the poor water quality problem, so there are a good volume of related studies in the literature. We study TDS and the water flow of the Karoun river in southwest Iran. We collected the necessary time series data from the Harmaleh station located in the river. We present two Univariate Seasonal Autoregressive Integrated Movement Average (ARIMA) models to forecast TDS and water flow in this river. Then, we build up a Transfer Function (TF) model to formulate the TDS as a function of water flow volume. A performance comparison between the Seasonal ARIMA and the TF models are presented.
Andersen, Douglas C.
2016-01-01
I compared riparian cottonwood (Populus fremontii) productivity-discharge relationships in a relictual stand along the highly regulated Green River and in a naturally functioning stand along the unregulated Yampa River in semiarid northwest Colorado. I used multiple regression to model flow effects on annual basal area increment (BAI) from 1982 to 2011, after removing any autocorrelation present. Each BAI series was developed from 20 trees whose mean size (67 cm diameter at breast height [DBH]) was equivalent in the two stands. BAI was larger in the Yampa River stand except in 2 y when defoliating leaf beetles were present there. I found no evidence for a Yampa flood-magnitude threshold above which BAI declined. Flow variables explained ∼45% of residual BAI variability, with most explained by current-year maximum 90-d discharge (QM90) in the Yampa River stand and by a measure of the year-to-year change in QM90 in the Green River stand. The latter reflects a management-imposed ceiling on flood magnitude—Flaming Gorge Dam power plant capacity—infrequently exceeded during the study period. BAI in the relictual stand began to trend upward in 1992 when flows started to mimic a natural flow regime. Mature Fremont cottonwoods appear to be ecologically resilient. Their productivity along regulated rivers might be optimized using multiyear environmental flow designs.
Magnitude and frequency of low flows in the Suwannee River Water Management District, Florida
Giese, G.L.; Franklin, M.A.
1996-01-01
Low-flow frequency statistics for 20 gaging stations having at least 10 years of continuous record and 31 other stations having less than 10 years of continu ous record or a series of at least two low- flow measurements are presented for unregulated streams in the Suwannee River Water Management District in north-central Florida. Statistics for the 20 continuous-record stations included are the annual and monthly minimum consecutive-day average low- flow magnitudes for 1, 3, 7, 14, and 30 consecutive days for recurrence intervals of 2, 5, 10, 20, and, for some long-term stations, 50 years, based on records available through the 1994 climatic year.Only theannual statistics are given for the 31 other stations; these are for the 7- and 30-consecutive day periods only and for recurrence intervals of 2 and 10 years only. Annual low-flow frequency statistics range from zero for many small streams to 5,500 cubic feet per second for the annual 30- consecutive-day average flow with a recurrenceinterval of 2 years for the Suwannee River near Wilcox (station 02323500). Monthly low-flow frequency statistics range from zero for many small streams to 13,800 cubic feet per second for the minimum 30-consecutive-day average flow with a 2-year recurrence interval for the month of March for the same station. Generally, low-flow characteristics of streams in the Suwannee River Water Management District are controlled by climatic, topographic, and geologic fac tors. The carbonate Floridan aquifer system underlies, or is at the surface of, the entire District. The terrane's karstic nature results in manysinkholes and springs. In some places, springs may contribute greatly to low streamflow and the contributing areas of such springs may include areasoutside the presumed surface drainage area of the springs. In other places, water may enter sinkholes within a drainage basin, then reappear in springs downstream from a gage. Many of the smaller streams in the District go dry or have no flow forseveral months in many years. In addition to the low-flow statistics, four synoptic low-flow measurement surveys were conducted on 161 sites during 1990, 1995, and 1996. Themeasurements were made to provide "snapshots" of flow conditions of streams throughout the Suwannee River Water Management District. Magnitudes of low flows during the 1990 series of measurements were in the range associated withminimum 7-consecutive-day 50-year recurrence interval to the minimum 7-consecutive-day 20-year recurrence interval, except in Taylor and Dixie Counties, where the magnitudes ranged from the minimum 7-consecutive-day 5-year flow level to the7-consecutive-day 2-year flow level. The magnitudes were all greater than the minimum 7- consecutive-day 2-year flow level during 1995 and 1996. Observations of no flow were recorded at many of the sites for all four series of measurements.
USDA-ARS?s Scientific Manuscript database
Dissolved organic nitrogen (DON) represents a large percentage of the total nitrogen in rivers and estuaries, and can contribute to coastal eutrophication and hypoxia. This study reports on the composition and bioavailability of DON along the Caloosahatchee River (Florida), a heavily managed system ...
Williamson, Nicholas; Kobayashi, Tsuyoshi; Outhet, David; Bowling, Lee C
2018-05-01
Cyanobacterial survival following their release in water from major headwaters reservoirs was compared in five New South Wales rivers. Under low flow conditions, cyanobacterial presence disappeared rapidly with distance downstream in the Cudgegong and Hunter Rivers, whereas the other three rivers were contaminated for at least 300 km. Cyanobacterial survival is likely to be impacted by the geomorphology of each river, especially the extent of gravel riffle reaches (cells striking rocks can destroy them) and by the different turbulent flow conditions it produces within each. Flow conditions at gauging stations were used to estimate the turbulent strain rate experienced by suspended cyanobacteria. These indicate average turbulent strain rates in the Cudgegong and Hunter Rivers can be above 33 and 83 s -1 while for the Murray, Edward and Macquarie Rivers average strain rate was estimated to be less than 30 s -1 . These turbulent strain rate estimates are substantially above published thresholds of approximately 2 s -1 for impacts indicated from laboratory tests. Estimates of strain rate were correlated with changes in cyanobacterial biovolume at stations along the rivers. These measurements indicate a weak but significant negative linear relationship between average strain rate and change in cyanobacterial biomass. River management often involves releasing cold deep water with low cyanobacterial presence from these reservoirs, leading to ecological impacts from cold water pollution downstream. The pollution may be avoided if cyanobacteria die off rapidly downstream of the reservoir, allowing surface water to be released instead. However high concentrations of soluble cyanotoxins may remain even after the cyanobacterial cells have been destroyed. The geomorphology of the river (length of riffle reaches) is an important consideration for river management during cyanobacterial blooms in headwater reservoirs. Copyright © 2018 Elsevier B.V. All rights reserved.
Conceptualizing and Communicating River Restoration
NASA Astrophysics Data System (ADS)
Jacobosn, R. B.
2007-12-01
River restoration increasingly involves collaboration with stakeholders having diverse values and varying technical understanding. In cases where river restoration proceeds through collaborative processes, scientists are required to communicate complex understanding about riverine ecosystem processes to broad audiences. Of particular importance is communication of uncertainties in predictions of ecosystem responses to restoration actions, and how those uncertainties affect monitoring and evaluation strategies. I present a relatively simple conceptual model of how riverine ecosystems operate. The model, which has been used to conceptualize and communicate various river-restoration and management processes in the Lower Missouri River, emphasizes a) the interdependencies of driving regimes (for example, flow, sediment, and water quality), b) the filtering effect of management history, c) the typical hierarchical nature of information about how ecosystems operate, and d) how scientific understanding interacts with decision making. I provide an example of how the conceptual model has been used to illustrate the effects of extensive channel re-engineering of the Lower Missouri River which is intended to mitigate the effects of channelization and flow regulation on aquatic and flood-plain ecosystems. The conceptual model illustrates the logic for prioritizing investments in monitoring and evaluation, interactions among ecosystem components, tradeoffs between ecological and social-commercial benefits, and the feedback loop necessary for successful adaptive management.
Defining the ecological hydrology of Taiwan Rivers using multivariate statistical methods
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Wu, Tzu-Ching; Tsai, Wen-Ping; Herricks, Edwin E.
2009-09-01
SummaryThe identification and verification of ecohydrologic flow indicators has found new support as the importance of ecological flow regimes is recognized in modern water resources management, particularly in river restoration and reservoir management. An ecohydrologic indicator system reflecting the unique characteristics of Taiwan's water resources and hydrology has been developed, the Taiwan ecohydrological indicator system (TEIS). A major challenge for the water resources community is using the TEIS to provide environmental flow rules that improve existing water resources management. This paper examines data from the extensive network of flow monitoring stations in Taiwan using TEIS statistics to define and refine environmental flow options in Taiwan. Multivariate statistical methods were used to examine TEIS statistics for 102 stations representing the geographic and land use diversity of Taiwan. The Pearson correlation coefficient showed high multicollinearity between the TEIS statistics. Watersheds were separated into upper and lower-watershed locations. An analysis of variance indicated significant differences between upstream, more natural, and downstream, more developed, locations in the same basin with hydrologic indicator redundancy in flow change and magnitude statistics. Issues of multicollinearity were examined using a Principal Component Analysis (PCA) with the first three components related to general flow and high/low flow statistics, frequency and time statistics, and quantity statistics. These principle components would explain about 85% of the total variation. A major conclusion is that managers must be aware of differences among basins, as well as differences within basins that will require careful selection of management procedures to achieve needed flow regimes.
Debris flow occurrence and sediment persistence, Upper Colorado River Valley, CO
Grimsley, Kyle J; Rathburn, Sara L.; Friedman, Jonathan M.; Mangano, Joseph F.
2016-01-01
Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.
Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO
NASA Astrophysics Data System (ADS)
Grimsley, K. J.; Rathburn, S. L.; Friedman, J. M.; Mangano, J. F.
2016-07-01
Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.
Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.
Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F
2016-07-01
Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.
NASA Astrophysics Data System (ADS)
Brown, Rocko A.; Pasternack, Gregory B.
2008-05-01
In efforts to rehabilitate regulated rivers for ecological benefits, the flow regime has been one of the primary focal points of management strategies. However, channel engineering can impact channel geometry such that hydraulic and geomorphic responses to flow reregulation do not yield the sought for benefits. To illustrate and assess the impacts of structural channel controls and flow reregulation on channel processes and fish habitat quality in multiple life stages, a highly detailed digital elevation model was collected and analyzed for a river reach right below a dam using a suite of hydrologic, hydraulic, geomorphic, and ecological methods. Results showed that, despite flow reregulation to produce a scaled-down natural hydrograph, anthropogenic boundary controls have severely altered geomorphic processes associated with geomorphic self-sustainability and instream habitat availability in the case study. Given the similarity of this stream to many others, we concluded that the potential utility of natural flow regime reinstatement in regulated gravel-bed rivers is conditional on concomitant channel rehabilitation.
Smith, Erik A.; Sanocki, Chris A.; Lorenz, David L.; Jacobsen, Katrin E.
2017-12-27
Streamflow distribution maps for the Cannon River and St. Louis River drainage basins were developed by the U.S. Geological Survey, in cooperation with the Legislative-Citizen Commission on Minnesota Resources, to illustrate relative and cumulative streamflow distributions. The Cannon River was selected to provide baseline data to assess the effects of potential surficial sand mining, and the St. Louis River was selected to determine the effects of ongoing Mesabi Iron Range mining. Each drainage basin (Cannon, St. Louis) was subdivided into nested drainage basins: the Cannon River was subdivided into 152 nested drainage basins, and the St. Louis River was subdivided into 353 nested drainage basins. For each smaller drainage basin, the estimated volumes of groundwater discharge (as base flow) and surface runoff flowing into all surface-water features were displayed under the following conditions: (1) extreme low-flow conditions, comparable to an exceedance-probability quantile of 0.95; (2) low-flow conditions, comparable to an exceedance-probability quantile of 0.90; (3) a median condition, comparable to an exceedance-probability quantile of 0.50; and (4) a high-flow condition, comparable to an exceedance-probability quantile of 0.02.Streamflow distribution maps were developed using flow-duration curve exceedance-probability quantiles in conjunction with Soil-Water-Balance model outputs; both the flow-duration curve and Soil-Water-Balance models were built upon previously published U.S. Geological Survey reports. The selected streamflow distribution maps provide a proactive water management tool for State cooperators by illustrating flow rates during a range of hydraulic conditions. Furthermore, after the nested drainage basins are highlighted in terms of surface-water flows, the streamflows can be evaluated in the context of meeting specific ecological flows under different flow regimes and potentially assist with decisions regarding groundwater and surface-water appropriations. Presented streamflow distribution maps are foundational work intended to support the development of additional streamflow distribution maps that include statistical constraints on the selected flow conditions.
NASA Astrophysics Data System (ADS)
Sampson, D. A.
2015-12-01
The Decision Center for a Desert City (DCDC), a boundary organization, bridges science and policy (to foster knowledge-based decision making); we study how decisions are made in the face of uncertainty. Our water policy and management model for the Phoenix Metropolitan Area (hereafter "Phoenix"), termed WaterSim, represents one such bridging mechanism. We evaluated the effect of varying the length of drought on water availability for Phoenix. We examined droughts (starting in 2000) lasting 15, 25, and 50 years. We picked a 60-year window of runoff estimates from the paleo reconstruction data for the Colorado River (CO) (1121 through 1180 A.D.), and the two local rivers (1391 through 1450 A.D.), and assumed that the proportional difference in median flow between these periods and the long-term record represented an estimate of potential drought reductions on river flows. This resulted in a 12%, and 19% reduction in flows for the CO River and the Salt-Verde (SV) Rivers, respectively. WaterSim uses 30-year trace periods from the historical flow records to simulate river flow for future projections. We used each 30-year trace from the historical record (1906 to present, CO River; 1945 to present SV Rivers) , and default settings, to simulate 60 year projections of Lake Mead elevation and the accompanying Colorado River water shortages to Phoenix. Overall, elevations for Lake Mead fell below the 1st shortage sharing tier (1075 ft) in 83% of the simulations; 74% of the simulations fell below the 2nd tier (1050 ft), and 64% fell below the 3rd (1025 ft). Length of drought, however, determined the shortage tiers met. Median elevations for droughts ending in 2015, 2025, and 2050 were 1036, 1019, and 967 feet msl, respectively. We present the plausible water futures with adaptive anticipatory scenario planning for the projected reductions in surface water availability to demonstrate decision points for water conservation measures to effectively manage shortage conditions.
Denitrification in the Mississippi River network controlled by flow through river bedforms
Gomez-Velez, Jesus D.; Harvey, Judson W.; Cardenas, M. Bayani; Kiel, Brian
2015-01-01
Increasing nitrogen concentrations in the world’s major rivers have led to over-fertilization of sensitive downstream waters. Flow through channel bed and bank sediments acts to remove riverine nitrogen through microbe-mediated denitrification reactions. However, little is understood about where in the channel network this biophysical process is most efficient, why certain channels are more effective nitrogen reactors, and how management practices can enhance the removal of nitrogen in regions where water circulates through sediment and mixes with groundwater - hyporheic zones. Here we present numerical simulations of hyporheic flow and denitrification throughout the Mississippi River network using a hydrogeomorphic model. We find that vertical exchange with sediments beneath the riverbed in hyporheic zones, driven by submerged bedforms, has denitrification potential that far exceeds lateral hyporheic exchange with sediments alongside river channels, driven by river bars and meandering banks. We propose that geomorphic differences along river corridors can explain why denitrification efficiency varies between basins in the Mississippi River network. Our findings suggest that promoting the development of permeable bedforms at the streambed - and thus vertical hyporheic exchange - would be more effective at enhancing river denitrification in large river basins than promoting lateral exchange through induced channel meandering.
Ecological research and management of intermittent rivers: an ...
Rivers and streams that do not flow permanently (herein intermittent rivers; IRs) make up a large proportion of the world's inland waters and are gaining widespread attention. We review the research on IRs from its early focus on natural history through to current application in management and policy.The few early studies of the ecology of IRs were largely descriptive. Nevertheless, in the 1970s, synthesis of this sparse research complemented work on temporary standing waters to found a powerful framework for much of the subsequent research on IRs.Research on the ecology and biogeochemistry of IRs continues to fuel our understanding of resistance and resilience to drying and flooding as disturbances. Syntheses of the growing literature, including cross-continental and cross-climate comparisons, are revealing the generality and individuality of ecological and ecosystem responses to flow cessation and surface water loss. Meanwhile, increasing numbers of experiments test the causality of these responses.Much of the increased consideration of IRs in research, management and policy is driven by the observed and projected shifts in flow regimes from perennial to intermittent associated with changes in land and water use and climate, superimposed on the high incidence of natural intermittency. The need to protect and better manage IRs is prompting researchers to develop new or modified methods to monitor flow status and assess the ecological condition of these systems.
Watershed/river channel linkages: The Upper Rio Grande Basin and the Middle Rio Grande Bosque
Jeffrey C. Whitney
1999-01-01
There continues to be a great deal of interest and discussion surrounding the demands of water management and allocation and the relationship to ecological integrity of the Rio Grande riparian ecosystem. Current river management too often fails to consider the importance of natural variability of flows. What is consistently overlooked is the relationship of a stream...
NASA Astrophysics Data System (ADS)
Liu, W.; Kuo, Y. M.
2016-12-01
The Middle Route of China's South-to-North Water Transfer (MSNW) and Yangtze-Han River Water Diversion (YHWD) Projects have been operated since 2014, which may deteriorate water quality in Han River. The 11 water sampling sites distributed from the middle and down streams of Han River watershed were monitored monthly between July 2014 and December 2015. Factor analysis and cluster analysis were applied to investigate the major pollution types and main variables influencing water quality in Han River. The factor analysis distinguishes three main pollution types (agricultural nonpoint source, organic, and phosphorus point source pollution) affecting water quality of Han River. Cluster analysis classified all sampling sites into four groups and determined their pollution source for both Dry and Wet seasons. The sites located at central city receive point source pollution in both seasons. The water quality in downstream Han River (excluding central city sites) was influenced by nonpoint source pollution from Jianghan Plain. Variations of water qualities are associated with hydrological conditions varied from operations of engineering projects and seasonal variability especially in Dry season. Good water quality as Class III mainly occurred when flow rate is greater than 800 cms in Dry season. The low average flow rate below 583 cms will degrade water quality as Class V at almost all sites. Elevating the flow rate discharged from MSNW and YHWD Projects to Han River can avoid degrading water quality especially in low flow conditions and may decrease the probability of algal bloom occurrence in Han River. Increasing the flow rate from 400 cms to 700 cms in main Han River can obviously improve the water quality of Han River. The investigation of relationships between water quality and flow rate in both projects can provide management strategies of water quality for various flow conditions.
NASA Technical Reports Server (NTRS)
Schumann, H. H. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The DCS water-stage data from the USGS streamflow gaging station on the Verde River near Camp Verde furnished information sufficient for the accurate computation of daily mean streamflow rates during the first 2 months of operation. Daily mean flow rates computed from the DCS data agreed with those computed from the digital recorder data within + or - 5% during periods of stable or slowly changing flow and within + or - 10% during periods of rapidly changing high flow. The SRP was furnished near-real time DCS information on snow moisture content and streamflow rates for use in the management and operation of the multiple-use reservoir system. The SRP, by prudent water management and the use of near-real time hydrologic data furnished by microwave and ERTS DCS telemetry, was successful in anticipating the amount of flow into the Salt and Verde Rivers and in the subsequent release of water at rates that did not create flooding in metropolitan Phoenix. Only minor flooding occurred along the Gila River west of Phoenix. According to the Maricopa County Civil Defense agency, wage and salary losses of about $11,400,000 resulted from closing of roads across the Salt River in the winter and spring of 1972-73; however, the number and duration of the closing were minimized by use of DCS data.
Lanier, T.H.
1996-01-01
The 100-year flood plain was determined for Upper Three Runs, its tributaries, and the part of the Savannah River that borders the Savannah River Site. The results are provided in tabular and graphical formats. The 100-year flood-plain maps and flood profiles provide water-resource managers of the Savannah River Site with a technical basis for making flood-plain management decisions that could minimize future flood problems and provide a basis for designing and constructing drainage structures along roadways. A hydrologic analysis was made to estimate the 100-year recurrence- interval flow for Upper Three Runs and its tributaries. The analysis showed that the well-drained, sandy soils in the head waters of Upper Three Runs reduce the high flows in the stream; therefore, the South Carolina upper Coastal Plain regional-rural-regression equation does not apply for Upper Three Runs. Conse- quently, a relation was established for 100-year recurrence-interval flow and drainage area using streamflow data from U.S. Geological Survey gaging stations on Upper Three Runs. This relation was used to compute 100-year recurrence-interval flows at selected points along the stream. The regional regression equations were applicable for the tributaries to Upper Three Runs, because the soil types in the drainage basins of the tributaries resemble those normally occurring in upper Coastal Plain basins. This was verified by analysis of the flood-frequency data collected from U.S. Geological Survey gaging station 02197342 on Fourmile Branch. Cross sections were surveyed throughout each reach, and other pertinent data such as flow resistance and land-use were col- lected. The surveyed cross sections and computed 100-year recurrence-interval flows were used in a step-backwater model to compute the 100-year flood profile for Upper Three Runs and its tributaries. The profiles were used to delineate the 100-year flood plain on topographic maps. The Savannah River forms the southwestern border of the Savannah River Site. Data from previously published reports were used to delineate the 100-year flood plain for the Savannah River from the downstream site boundary at the mouth of Lower Three Runs at river mile 125 to the upstream site boundary at river mile 163.
NASA Astrophysics Data System (ADS)
Whitehead, P. G.; Crossman, J.; Jin, L.
2011-12-01
The River Thames Catchment is the major water supply system in Southern England and supplies all of London's water supply from either the River Lee (a tributary of the Thames) or the main river abstraction site at Teddington (see Figure 1) or from groundwater sources in London. There has been a measurable change in rainfall patterns over the past 250 years with reducing summer rainfall and, hence flows, over the past 40 years. In 1976, following 3 dry winters, the London Reservoirs were more or less empty and the river flow direction was reversed to ensure a supply of water for London. Recent climate change studies in the Thames catchments suggest an increasing threat to water supply and also damage to river water quality and ecology. In addition to a changing climate, population levels in London have risen in recent years and the catchment is increasingly vulnerable to land use change. Since the 1920s changes in land use have increased the levels of nitrogen and phosphorus in the catchment and this trend is predicted to be exacerbated as climate change reduces freshwater dilution. Also land use is predicted to change as agriculture becomes more intensive as farmers react to higher grain and food prices. At the same time rising water temperatures has exposed the river to the potential for toxic algal blooms, such as cyanobacteria. This doom and gloom story is being managed however using a range of policy instruments, led by central government and public and private organisations such as Thames Water and the Environment Agency. Measures such as new reservoirs, a water transfer scheme from Wales and water metering to reduce demand are all being actively pursued, as are land management measures to control diffuse pollution. In order to assess the effects of climate change on the Thames catchment a major modelling study has been undertaken. The Integrated Catchment Model (INCA) has been set up for the Thames to model flow, nitrogen, phosphorus and ecology. Climate Change simulations predict reduced flow regimes in the river system and changes to the nitrogen patterns. Nitrate is predicted to reduce in summer, due to the lower flows which generate longer water residence times and hence allow more time for denitrification processes to occur. Phosphorus levels increase, however, due to the reduced dilution of effluents with subsequent detrimental effects on ecology. The model has been used to evaluate alternative water management policies such as a new reservoir for London, the transfer of water from the River Severn into the Thames, the reduction in P discharges from Sewage Treatment Works and the control of diffuse runoff by improved land management. Thus using the models to evaluate alternative strategies is very positive contribution to policy and planning.
NASA Astrophysics Data System (ADS)
Sui, Pengzhe; Iwasaki, Akito; Ryo, Masahiro; Saavedra, Oliver; Yoshimura, Chihiro
2013-04-01
Flow conditions play an important role in sustaining biodiversity of river ecosystem. However, their relations to freshwater fishes, especially to fish population density, have not been clearly described. This study, therefore, aimed to propose a new methodology to quantitatively link habitat conditions, including flow conditions and other physical conditions, to population density of fish species. We developed a basin-scale fish distribution model by integrating the concept of habitat suitability assessment with a distributed hydrological model (DHM) in order to estimate fish population density with particular attention to flow conditions. Generalized linear model (GLM) was employed to evaluate the relationship between population density of fish species and major environmental factors. The target basin was Sagami River in central Japan, where the river reach was divided into 10 sections by estuary, confluences of tributaries, and river-crossing structures (dams, weirs). The DHM was employed to simulate river discharge from 1998 to 2005, which was used to calculate 10 flow indices including mean discharge, 25th and 75th percentile discharge, duration of low and high flows, number of floods. In addition, 5 water quality parameters and 13 other physical conditions (such as basin area, river width, mean diameter of riverbed material, and number of river-crossing structures upstream and downstream) of each river section were considered as environmental variables. In case of Sagami River, 10 habitat variables among them were then selected based on their correlations to avoid multicollinearity. Finally, the best GLM was developed for each species based on Akaike's information criterion. As results, population densities of 16 fish species in Sagami River were modelled, and correlation coefficients between observed and calculated population densities for 10 species were more than 0.70. The key habitat factors for population density varied among fish species. Minimum discharge (MID) was found to be positively correlated to 9 among 16 fish species. For duration of high and low flows (DHF and DLF), longer DHF/DLF was corresponded to lower population density for 7/6 fish species, respectively, such as Rhinogobius kurodai and Plecoglossus altivelis altivelis. Among physical habitat conditions, sinuosity index (SI, the ratio between actual river section length and straight line length) seems to be the most important parameter for fish population density in Sagami River basin, since it affects 12 out of 16 fish species, followed by mean longitudinal slope (S) and number of downstream dams (NLD). Above results demonstrated the applicability of fish distribution model to provide quantitative information on flow conditions required to maintain fish population, which enabled us to evaluate and project ecological consequences of water resource management policy, such as flood management and water withdrawal.
Geomorphic Change Induced by 100 years of Flow Alteration on the Diamond Fork River, Central Utah
NASA Astrophysics Data System (ADS)
Jones, J.; Belmont, P.; Wilcock, P. R.
2017-12-01
Changes in hydrology and sediment supply affect the form of rivers. The rate of change of fluvial form is controlled by a variety of factors, including valley confinement, sediment size, and antecedent condition. The Diamond Fork River in central Utah has been altered by trans-basin flows delivered from the Colorado River system for over a century. Beginning in 1915, water used for irrigation was delivered through a tributary, Sixth Water Creek, with daily summer flows regularly exceeding the 50 - 100 year flood. Elevated flows caused drastic geomorphic change - resulting in incision and widening of the channel, and the destruction of riparian vegetation. Beginning in 1997, the outlet for the trans-basin diversion was moved downstream on Sixth Water, bypassing a large landslide, and flows were drastically reduced in 2004 through management actions. We delineated eight distinct process domains for the Sixth Water-Diamond Fork system and examined the response of each process domain to the altered flow and sediment regimes through the analysis of aerial photographs and repeat cross-sections. We measured a variety of channel metrics, including channel width, areal extent of bars and islands, and sinuosity in ArcGIS. Results indicate that unconfined reaches that were wide and braided during the period of elevated flows have narrowed to become single threaded and meandering in response to the reduced flows. Confined reaches have experienced minor changes since the reduction in flows, suggesting that confinement is a primary control on the degree of channel response. These findings and complimentary studies will provide managers of Sixth Water and Diamond Fork with a greater understanding of the physical response of the streams, and the resulting effects on ecological communities.
NASA Astrophysics Data System (ADS)
Cartwright, I.; Hofmann, H.
2015-09-01
Understanding the location and magnitude of groundwater inflows to rivers is important for the protection of riverine ecosystems and the management of connected groundwater and surface water systems. Downstream trends in 222Rn activities and Cl concentrations in the Avon River, southeast Australia, implies that it contains alternating gaining and losing reaches. 222Rn activities of up to 3690 Bq m-3 imply that inflows are locally substantial (up to 3.1 m3 m-1 day-1). However, if it assumed that these inflows are solely from groundwater, the net groundwater inflows during low-flow periods exceed the measured increase in streamflow along the Avon River by up to 490 %. Uncertainties in the 222Rn activities of groundwater, the gas transfer coefficient, and the degree of hyporheic exchange cannot explain this discrepancy. It is proposed that a significant volume of the total calculated inflows into the Avon River represents water that exfiltrates from the river, flows through parafluvial sediments, and subsequently re-enters the river in the gaining reaches. This returning parafluvial flow has high 222Rn activities due to 222Rn emanations from the alluvial sediments. The riffle sections of the Avon River commonly have steep longitudinal gradients and may transition from losing at their upstream end to gaining at the downstream end and parafluvial flow through the sediment banks on meanders and point bars may also occur. Parafluvial flow is likely to be important in rivers with coarse-grained alluvial sediments on their floodplains and failure to quantify the input of 222Rn from parafluvial flow will result in overestimating groundwater inflows to rivers.
Sojda, Richard S.; Towler, Erin; Roberts, Mike; Rajagopalan, Balaji
2013-01-01
[1] Despite the influence of hydroclimate on river ecosystems, most efforts to date have focused on using climate information to predict streamflow for water supply. However, as water demands intensify and river systems are increasingly stressed, research is needed to explicitly integrate climate into streamflow forecasts that are relevant to river ecosystem management. To this end, we present a five step risk-based framework: (1) define risk tolerance, (2) develop a streamflow forecast model, (3) generate climate forecast ensembles, (4) estimate streamflow ensembles and associated risk, and (5) manage for climate risk. The framework is successfully demonstrated for an unregulated watershed in southwest Montana, where the combination of recent drought and water withdrawals has made it challenging to maintain flows needed for healthy fisheries. We put forth a generalized linear modeling (GLM) approach to develop a suite of tools that skillfully model decision-relevant low flow characteristics in terms of climate predictors. Probabilistic precipitation forecasts are used in conjunction with the GLMs, resulting in season-ahead prediction ensembles that provide the full risk profile. These tools are embedded in an end-to-end risk management framework that directly supports proactive fish conservation efforts. Results show that the use of forecasts can be beneficial to planning, especially in wet years, but historical precipitation forecasts are quite conservative (i.e., not very “sharp”). Synthetic forecasts show that a modest “sharpening” can strongly impact risk and improve skill. We emphasize that use in management depends on defining relevant environmental flows and risk tolerance, requiring local stakeholder involvement.
NASA Astrophysics Data System (ADS)
Bonetti, Rita M.; Reinfelds, Ivars V.; Butler, Gavin L.; Walsh, Chris T.; Broderick, Tony J.; Chisholm, Laurie A.
2016-05-01
Natural barriers such as waterfalls, cascades, rapids and riffles limit the dispersal and in-stream range of migratory fish, yet little is known of the interplay between these gradient dependent landforms, their hydraulic characteristics and flow rates that facilitate fish passage. The resurgence of dam construction in numerous river basins world-wide provides impetus to the development of robust techniques for assessment of the effects of downstream flow regime changes on natural fish passage barriers and associated consequences as to the length of rivers available to migratory species. This paper outlines a multi-scale technique for quantifying the relative magnitude of natural fish passage barriers in river systems and flow rates that facilitate passage by fish. First, a GIS-based approach is used to quantify channel gradients for the length of river or reach under investigation from a high resolution DEM, setting the magnitude of identified passage barriers in a longer context (tens to hundreds of km). Second, LiDAR, topographic and bathymetric survey-based hydrodynamic modelling is used to assess flow rates that can be regarded as facilitating passage across specific barriers identified by the river to reach scale gradient analysis. Examples of multi-scale approaches to fish passage assessment for flood-flow and low-flow passage issues are provided from the Clarence and Shoalhaven Rivers, NSW, Australia. In these river systems, passive acoustic telemetry data on actual movements and migrations by Australian bass (Macquaria novemaculeata) provide a means of validating modelled assessments of flow rates associated with successful fish passage across natural barriers. Analysis of actual fish movements across passage barriers in these river systems indicates that two dimensional hydraulic modelling can usefully quantify flow rates associated with the facilitation of fish passage across natural barriers by a majority of individual fishes for use in management decisions regarding environmental or instream flows.
NASA Astrophysics Data System (ADS)
Lwin, A.; Khaing, M. M.
2012-07-01
The Yangon river, also known as the Rangoon river, is about 40 km long (25miles), and flows from southern Myanmar as an outlet of the Irrawaddy (Ayeyarwady) river into the Ayeyarwady delta. The Yangon river drains the Pegu Mountains; both the Yangon and the Pathein rivers enter the Ayeyarwady at the delta. Fluvial geomorphology is based primarily on rivers of manageable dimensions. The emphasis is on geomorphology, sedimentology of Yangon river and techniques for their identification and management. Present techniques such as remote sensing have made it easier to investigate and interpret in details analysis of river geomorphology. In this paper, attempt has been made the complicated issues of geomorphology, sedimentation patterns and management of river system and evolution studied. The analysis was carried out for the impact of land use/ land cover (LULC) changes on stream flow patterns. The hydrologic response to intense, flood producing rainfall events bears the signatures of the geomorphic structure of the channel network and of the characteristic slope lengths defining the drainage density of the basin. The interpretation of the hydrologic response as the travel time distribution of a water particle randomly injected in a distributed manner across the landscape inspired many geomorphic insights. In 2008, Cyclone Nargis was seriously damaged to mangrove area and its biodiversity system in and around of Yangon river terraces. A combination of digital image processing techniques was employed for enhancement and classification process. It is observed from the study that middle infra red band (0.77mm - 0.86mm) is highly suitable for mapping mangroves. Two major classes of mangroves, dense and open mangroves were delineated from the digital data.
Community-based restoration of desert wetlands: the case of the Colorado River delta
Osvel Hinojosa-Huerta; Mark Briggs; Yamilett Carrillo-Guerroro; Edward P. Glenn; Miriam Lara-Flores; Martha Roman-Rodriguez
2005-01-01
Wetland areas have been drastically reduced through the Pacific Flyway and the Sonoran Desert, with severe consequences for avian populations. In the Colorado River delta, wetlands have been reduced by 80 percent due to water management practices in the Colorado River basin. However, excess flows and agricultural drainage water has restored some areas, providing...
Kupferberg, Sarah J; Palen, Wendy J; Lind, Amy J; Bobzien, Steve; Catenazzi, Alessandro; Drennan, Joe; Power, Mary E
2012-06-01
Widespread alteration of natural hydrologic patterns by large dams combined with peak demands for power and water delivery during summer months have resulted in frequent aseasonal flow pulses in rivers of western North America. Native species in these ecosystems have evolved with predictable annual flood-drought cycles; thus, their likelihood of persistence may decrease in response to disruption of the seasonal synchrony between stable low-flow conditions and reproduction. We evaluated whether altered flow regimes affected 2 native frogs in California and Oregon (U.S.A.) at 4 spatial and temporal extents. We examined changes in species distribution over approximately 50 years, current population density in 11 regulated and 16 unregulated rivers, temporal trends in abundance among populations occupying rivers with different hydrologic histories, and within-year patterns of survival relative to seasonal hydrology. The foothill yellow-legged frog (Rana boylii), which breeds only in flowing water, is more likely to be absent downstream of large dams than in free-flowing rivers, and breeding populations are on average 5 times smaller in regulated rivers than in unregulated rivers. Time series data (range = 8 - 19 years) from 5 populations of yellow-legged frogs and 2 populations of California red-legged frogs (R. draytonii) across a gradient of natural to highly artificial timing and magnitude of flooding indicate that variability of flows in spring and summer is strongly correlated with high mortality of early life stages and subsequent decreases in densities of adult females. Flow management that better mimics natural flow timing is likely to promote persistence of these species and others with similar phenology. ©2012 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Cartwright, Ian; Hofmann, Harald
2016-09-01
Understanding the location and magnitude of groundwater inflows to rivers is important for the protection of riverine ecosystems and the management of connected groundwater and surface water systems. This study utilizes 222Rn activities and Cl concentrations in the Avon River, southeast Australia, to determine the distribution of groundwater inflows and to understand the importance of parafluvial flow on the 222Rn budget. The distribution of 222Rn activities and Cl concentrations implies that the Avon River contains alternating gaining and losing reaches. The location of groundwater inflows changed as a result of major floods in 2011-2013 that caused significant movement of the floodplain sediments. The floodplain of the Avon River comprises unconsolidated coarse-grained sediments with numerous point bars and sediment banks through which significant parafluvial flow is likely. The 222Rn activities in the Avon River, which are locally up to 3690 Bq m-3, result from a combination of groundwater inflows and the input of water from the parafluvial zone that has high 222Rn activities due to 222Rn emanation from the alluvial sediments. If the high 222Rn activities were ascribed solely to groundwater inflows, the calculated net groundwater inflows would exceed the measured increase in streamflow along the river by up to 490 % at low streamflows. Uncertainties in the 222Rn activities of groundwater, the gas transfer coefficient, and the degree of hyporheic exchange cannot explain a discrepancy of this magnitude. The proposed model of parafluvial flow envisages that water enters the alluvial sediments in reaches where the river is losing and subsequently re-enters the river in the gaining reaches with flow paths of tens to hundreds of metres. Parafluvial flow is likely to be important in rivers with coarse-grained alluvial sediments on their floodplains and failure to quantify the input of 222Rn from parafluvial flow will result in overestimating groundwater inflows to rivers.
John Hickey,; Woodrow Fields,; Andrew Hautzinger,; Steven Sesnie,; Shafroth, Patrick B.; Dick Gilbert,
2016-01-01
This report details modeling to: 1) codify flow-ecology relationships for riparian species of the Bill Williams River as operational guidance for water managers, 2) test the guidance under different climate scenarios, and 3) revise the operational guidance as needed to address the effects of climate change. Model applications detailed herein include the River Analysis System (HEC-RAS) and the Ecosystem Functions Model (HEC-EFM), which was used to generate more than three million estimates of local seedling recruitment areas. Areas were aggregated and compared to determine which scenarios generated the most seedling area per unit volume of water. Scenarios that maximized seedling area were grouped into a family of curves that serve as guidance for water managers. This work has direct connections to water management decision-making and builds upon and adds to the rich history of science-based management for the Bill Williams River, Arizona, USA.
NASA Astrophysics Data System (ADS)
Yu (于松延), Songyan; Bond, Nick R.; Bunn, Stuart E.; Xu, Zongxue; Kennard, Mark J.
2018-04-01
River channel drying caused by intermittent stream flow is a widely-recognized factor shaping stream ecosystems. There is a strong need to quantify the distribution of intermittent streams across catchments to inform management. However, observational gauge networks provide only point estimates of streamflow variation. Increasingly, this limitation is being overcome through the use of spatially contiguous estimates of the terrestrial water-balance, which can also assist in estimating runoff and streamflow at large-spatial scales. Here we proposed an approach to quantifying spatial and temporal variation in monthly flow intermittency throughout river networks in eastern Australia. We aggregated gridded (5 × 5 km) monthly water-balance data with a hierarchically nested catchment dataset to simulate catchment runoff accumulation throughout river networks from 1900 to 2016. We also predicted zero flow duration for the entire river network by developing a robust predictive model relating measured zero flow duration (% months) to environmental predictor variables (based on 43 stream gauges). We then combined these datasets by using the predicted zero flow duration from the regression model to determine appropriate 'zero' flow thresholds for the modelled discharge data, which varied spatially across the catchments examined. Finally, based on modelled discharge data and identified actual zero flow thresholds, we derived summary metrics describing flow intermittency across the catchment (mean flow duration and coefficient-of-variation in flow permanence from 1900 to 2016). We also classified the relative degree of flow intermittency annually to characterise temporal variation in flow intermittency. Results showed that the degree of flow intermittency varied substantially across streams in eastern Australia, ranging from perennial streams flowing permanently (11-12 months) to strongly intermittent streams flowing 4 months or less of year. Results also showed that the temporal extent of flow intermittency varied dramatically inter-annually from 1900 to 2016, with the proportion of intermittent (weakly and strongly intermittent) streams ranging in length from 3% to nearly 100% of the river network, but there was no evidence of an increasing trend towards flow intermittency over this period. Our approach to generating spatially explicit and catchment-wide estimates of streamflow intermittency can facilitate improved ecological understanding and management of intermittent streams in Australia and around the world.
NASA Astrophysics Data System (ADS)
Campbell, J. M.; Jordan, P.; Arnscheidt, J.
2015-01-01
This study reports the use of high-resolution water quality monitoring to assess the influence of changes in land use management on total phosphorus (TP) transfers in two 5 km2 agricultural sub-catchments. Specifically, the work investigates the issue of agricultural soil P management and subsequent diffuse transfers at high river flows over a 5-year timescale. The work also investigates the phenomenon of low flow P pollution from septic tank systems (STSs) and mitigation efforts - a key concern for catchment management. Results showed an inconsistent response to soil P management over 5 years with one catchment showing a convergence to optimum P concentrations and the other an overall increase. Both catchments indicated an overall increase in P concentration in defined high flow ranges. Low flow P concentration showed little change or higher P concentrations in defined low flow ranges despite replacement of defective systems and this is possibly due to a number of confounding reasons including increased housing densities due to new-builds. The work indicates fractured responses to catchment management advice and mitigation and that the short to medium term may be an insufficient time to expect the full implementation of policies (here defined as convergence to optimum soil P concentration and mitigation of STSs) and also to gauge their effectiveness.
NASA Astrophysics Data System (ADS)
Campbell, J. M.; Jordan, P.; Arnscheidt, J.
2014-09-01
This study reports the use of high resolution water quality monitoring to assess the influence of changes in landuse management on total phosphorus (TP) transfers in two 5 km2 agricultural sub-catchments. Specifically, the work investigates the "wicked problem" of agricultural soil P management and subsequent diffuse transfers at high river flows over a five year timescale. The work also investigates the phenomenon of low flow P pollution from septic tank systems (STS) and mitigation efforts - here termed the "filthy issue" of rural catchment management. Results showed an inconsistent response to soil P management over five years with one catchment showing a convergence to optimum P concentrations and the other an overall increase. Both catchments indicated an overall increase in P concentration in defined high flow ranges. Low flow P concentration showed little change or higher P concentrations in defined low flow ranges despite replacement of defective systems and this is possibly due to a number of confounding reasons including increased housing densities due to new-builds. The work indicates fractured responses to catchment management advice and mitigation and that the short to medium term may be an insufficient time to expect the full implementation of policies (here defined as convergence to optimum soil P concentration and mitigation of STS) and also to gauge their effectiveness.
Jin, L; Whitehead, P G; Sarkar, S; Sinha, R; Futter, M N; Butterfield, D; Caesar, J; Crossman, J
2015-06-01
Anthropogenic climate change has impacted and will continue to impact the natural environment and people around the world. Increasing temperatures and altered rainfall patterns combined with socio-economic factors such as population changes, land use changes and water transfers will affect flows and nutrient fluxes in river systems. The Ganga river, one of the largest river systems in the world, supports approximately 10% global population and more than 700 cities. Changes in the Ganga river system are likely to have a significant impact on water availability, water quality, aquatic habitats and people. In order to investigate these potential changes on the flow and water quality of the Ganga river, a multi-branch version of INCA Phosphorus (INCA-P) model has been applied to the entire river system. The model is used to quantify the impacts from a changing climate, population growth, additional agricultural land, pollution control and water transfers for 2041-2060 and 2080-2099. The results provide valuable information about potential effects of different management strategies on catchment water quality.
Nadim, Farhad; Bagtzoglou, Amvrossios C; Baun, Sandrine A; Warner, Glenn S; Ogden, Fred; Jacobson, Richard A; Parasiewicz, Piotr
2007-01-01
A study was conducted to determine the effect of water withdrawals from the University of Connecticut's (Storrs) water supply wells on the fisheries habitat of the Fenton River adjacent to the well field. The study was designed to investigate the relationships between in-stream flow and selected fish habitat in the section of the Fenton River situated in the main zone of influence of the pumping field. With the aid of historical data, new data collection, and mathematical simulation modeling, the relation between the magnitude and timing of groundwater withdrawals on the stage and flow of water in the stream was derived. Fish sampling and habitat modeling were used to assess the effects of human influence on certain reaches of the Fenton River. Among the various water management scenarios studied, several are presented that would optimize water withdrawals, while minimizing adverse effects on the stream flow and in-stream habitat.
Chase, Katherine J.
2014-01-01
Major floods in 1996 and 1997 intensified public debate about the effects of human activities on the Yellowstone River. In 1999, the Yellowstone River Conservation District Council was formed to address conservation issues on the river. The Yellowstone River Conservation District Council partnered with the U.S. Army Corps of Engineers to carry out a cumulative effects study on the main stem of the Yellowstone River. The cumulative effects study is intended to provide a basis for future management decisions within the watershed. Streamflow statistics, such as flow-frequency data calculated for unregulated and regulated streamflow conditions, are a necessary component of the cumulative effects study. The U.S. Geological Survey, in cooperation with the Yellowstone River Conservation District Council and the U.S. Army Corps of Engineers, calculated low-flow frequency data and general monthly and annual statistics for unregulated and regulated streamflow conditions for the Upper Yellowstone and Bighorn Rivers for the 1928–2002 study period; these data are presented in this report. Unregulated streamflow represents flow conditions during the 1928–2002 study period if there had been no water-resources development in the Yellowstone River Basin. Regulated streamflow represents estimates of flow conditions during the 1928–2002 study period if the level of water-resources development existing in 2002 was in place during the entire study period.
Global sensitivity analysis of water age and temperature for informing salmonid disease management
NASA Astrophysics Data System (ADS)
Javaheri, Amir; Babbar-Sebens, Meghna; Alexander, Julie; Bartholomew, Jerri; Hallett, Sascha
2018-06-01
Many rivers in the Pacific Northwest region of North America are anthropogenically manipulated via dam operations, leading to system-wide impacts on hydrodynamic conditions and aquatic communities. Understanding how dam operations alter abiotic and biotic variables is important for designing management actions. For example, in the Klamath River, dam outflows could be manipulated to alter water age and temperature to reduce risk of parasite infections in salmon by diluting or altering viability of parasite spores. However, sensitivity of water age and temperature to the riverine conditions such as bathymetry can affect outcomes from dam operations. To examine this issue in detail, we conducted a global sensitivity analysis of water age and temperature to a comprehensive set of hydraulics and meteorological parameters in the Klamath River, California, where management of salmonid disease is a high priority. We applied an analysis technique, which combined Latin-hypercube and one-at-a-time sampling methods, and included simulation runs with the hydrodynamic numerical model of the Lower Klamath. We found that flow rate and bottom roughness were the two most important parameters that influence water age. Water temperature was more sensitive to inflow temperature, air temperature, solar radiation, wind speed, flow rate, and wet bulb temperature respectively. Our results are relevant for managers because they provide a framework for predicting how water within 'high infection risk' sections of the river will respond to dam water (low infection risk) input. Moreover, these data will be useful for prioritizing the use of water age (dilution) versus temperature (spore viability) under certain contexts when considering flow manipulation as a method to reduce risk of infection and disease in Klamath River salmon.
Decadal oscillations and extreme value distribution of river peak flows in the Meuse catchment
NASA Astrophysics Data System (ADS)
De Niel, Jan; Willems, Patrick
2017-04-01
In flood risk management, flood probabilities are often quantified through Generalized Pareto distributions of river peak flows. One of the main underlying assumptions is that all data points need to originate from one single underlying distribution (i.i.d. assumption). However, this hypothesis, although generally assumed to be correct for variables such as river peak flows, remains somehow questionable: flooding might indeed be caused by different hydrological and/or meteorological conditions. This study confirms these findings from previous research by showing a clear indication of the link between atmospheric conditions and flooding for the Meuse river in The Netherlands: decadal oscillations of river peak flows can (at least partially) be attributed to the occurrence of westerly weather types. The study further proposes a method to take this correlation between atmospheric conditions and river peak flows into account when calibrating an extreme value distribution for river peak flows. Rather than calibrating one single distribution to the data and potentially violating the i.i.d. assumption, weather type depending extreme value distributions are derived and composed. The study shows that, for the Meuse river in The Netherlands, such approach results in a more accurate extreme value distribution, especially with regards to extrapolations. Comparison of the proposed method with a traditional extreme value analysis approach and an alternative model-based approach for the same case study shows strong differences in the peak flow extrapolation. The design-flood for a 1,250 year return period is estimated at 4,800 m3s-1 for the proposed method, compared with 3,450 m3s-1 and 3,900 m3s-1 for the traditional method and a previous study. The methods were validated based on instrumental and documentary flood information of the past 500 years.
Modelling of bio-morphodynamics in braided rivers: applications to the Waitaki river (New Zealand)
NASA Astrophysics Data System (ADS)
Stecca, G.; Zolezzi, G.; Hicks, M.; Measures, R.; Bertoldi, W.
2016-12-01
The planform shape of rivers results from the complex interaction between flow, sediment transport and vegetation processes, and can evolve in time following a change in these controls. The braided planform of the lower Waitaki (New Zealand), for instance, is endangered by the action of artificially-introduced alien vegetation, which spread after the reduction in magnitude of floods following hydropower dam construction. These processes, by favouring the flow concentration into the main channel, would likely promote a shift towards single thread morphology if vegetation was not artificially removed within a central fairway. The purpose of this work is to address the future evolution of these river systems under different management scenarios through two-dimensional numerical modelling. The construction of a suitable model represents a task in itself, since a modelling framework coupling all the relevant processes is not straightforwardly available at present. Our starting point is the GIAMT2D numerical model, solving two-dimensional flow and bedload transport in wet/dry domains, and recently modified by the inclusion of a rule-based bank erosion model. We further develop this model by adding a vegetation module, which accounts in a simplified manner for time-evolving biomass density, and tweaks the local flow roughness, critical shear stress for sediment transport and bank erodibility accordingly. We plan to apply the model to address the decadal-scale evolution of one reach in the Waitaki river, comparing different management scenarios for vegetation control.
Flood dependency of cottonwood establishment along the Missouri River, Montana, USA
Scott, M.L.; Auble, G.T.; Friedman, J.M.
1997-01-01
Flow variability plays a central role in structuring the physical environment of riverine ecosystems. However, natural variability in flows along many rivers has been modified by water management activities. We quantified the relationship between flow and establishment of the dominant tree (plains cottonwood, Populus deltoides subsp. monilifera) along one of the least hydrologically altered alluvial reaches of the Missouri River: Coal Banks Landing to Landusky, Montana. Our purpose was to refine our understanding of how local fluvial geomorphic processes condition the relationship between flow regime and cottonwood recruitment. We determined date and elevation of tree establishment and related this information to historical peak stage and discharge over a 112-yr hydrologic record. Of the excavated trees, 72% were established in the year of a flow >1400 m3/s (recurrence interval of 9.3 yr) or in the following 2 yr. Flows of this magnitude or greater create the necessary bare, moist establishment sites at an elevation high enough to allow cottonwoods to survive subsequent floods and ice jams. Almost all cottonwoods that have survived the most recent flood (1978) were established >1.2 m above the lower limit of perennial vegetation (active channel shelf). Most younger individuals were established between 0 and 1.2 m, and are unlikely to survive over the long term. Protection of riparian cottonwood forest along this National Wild and Scenic section of the Missouri River depends upon maintaining the historical magnitude, frequency, and duration of floods > 1400 m3/s. Here, a relatively narrow valley constrains lateral channel movement that could otherwise facilitate cottonwood recruitment at lower flows. Effective management of flows to promote or maintain cottonwood recruitment requires an understanding of locally dominant fluvial geomorphic processes.
Adaptive management of flows from dams: a win-win framework for water users
Irwin, Elise R.
2013-01-01
Alabama is blessed with more than 77,000 miles of rivers and streams that carve through the terrestrial landscape of the state. When you think about it, every road you drive on crosses a river and many of our major cities are located on the bank of a river. In fact, Alabama's capital cities - Cahawba (Dallas County; 1820-1826), Tuscaloosa (Tuscaloosa County; 1826-1846), and Montgomery County; 1846-present) - were all located on major rivers. It is estimated by the U.S. Geological Survey that 10 percent of the freshwater resources in the continental United States flows through Alabama. When you look at a map of its hydrology, the state is blue!
Hydraulic complexity, larval drift, and endangered species recovery in the Upper Missouri River
NASA Astrophysics Data System (ADS)
Erwin, S. O.; Bulliner, E. A., IV; Jacobson, R. B.; Fischenich, C. J.; Braaten, P.
2016-12-01
Connectivity is recognized as an important attribute of river ecosystems. In highly fragmented rivers restoring longitudinal connectivity is often difficult or impossible. In systems where removal of dams is not viable and bypass does not address needs of target fish species, manipulation of flows to meet requirements of aquatic organisms may aid species recovery. Such is the case in the Missouri River basin, where dams and reservoirs impede fish migration and larval drift, critical life history events for many species, notably the endangered pallid sturgeon. In 2016, we conducted a large-scale dye-trace experiment in the Upper Missouri River downstream from Fort Peck Reservoir, MT. A slug injection of Rhodamine WT was tracked and measured over a 135-km reach. Direct measurements of downstream dye concentrations were used to calibrate a one-dimensional advection-dispersion model, which is being used to explore alternative reservoir operations for Fort Peck and the downstream reservoir, Lake Sakakawea. Results are used to evaluate the effects of flow regulation on dispersal of endangered sturgeon larvae. Additionally, we employ a two-dimensional hydrodynamic model to evaluate particle residence times and inform understanding of hydraulic processes that may control the shape of breakthrough curves observed from the field experiment. Lateral connectivity also has a potential role in river management and species recovery. Reservoir management can determine whether flow is contained within the channel, where dispersion is low, or laterally connected to rough floodplains which can result in high dispersion, long-tailed particle residence times, and greater opportunities for drifting larvae to transition to exogenous feeding and survive. We discuss our findings in the context of basin-wide restoration efforts and highlight the critical contributions of both large-scale field experiments and numerical modeling to inform management.
Miller, Matthew P.; Susong, David D.; Shope, Christopher L.; Heilweil, Victor M.; Stolp, Bernard J.
2014-01-01
Effective science-based management of water resources in large basins requires a qualitative understanding of hydrologic conditions and quantitative measures of the various components of the water budget, including difficult to measure components such as baseflow discharge to streams. Using widely available discharge and continuously collected specific conductance (SC) data, we adapted and applied a long established chemical hydrograph separation approach to quantify daily and representative annual baseflow discharge at fourteen streams and rivers at large spatial (> 1,000 km2 watersheds) and temporal (up to 37 years) scales in the Upper Colorado River Basin. On average, annual baseflow was 21-58% of annual stream discharge, 13-45% of discharge during snowmelt, and 40-86% of discharge during low-flow conditions. Results suggest that reservoirs may act to store baseflow discharged to the stream during snowmelt and release that baseflow during low-flow conditions, and that irrigation return flows may contribute to increases in fall baseflow in heavily irrigated watersheds. The chemical hydrograph separation approach, and associated conceptual model defined here provide a basis for the identification of land use, management, and climate effects on baseflow.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... DEPARTMENT OF STATE [Public Notice 8369] International Joint Commission: Public Comment on a... inviting the public to comment on a proposal for managing the water levels and flows in Lake Ontario and.... Lawrence River. Since 1960, the IJC has managed the flow of water at the Moses- Saunders hydropower dam...
NASA Astrophysics Data System (ADS)
Wang, C. Y.; Ho, C. C.; Chang, L. C.
2016-12-01
There are no large hydraulic structures in Qishan River cause the less human interference than other major river in Taiwan. However, the aquatic habitats still suffer disturbance from the discharge changes greatly between wet and drought season, and Jiaxian Weir and Yuemei Weir draw surplus water from Qishan River to Nanhua Reservoir and Agongdian Reservoir respectively. The weir operation rule doesn't clear define how much environmental flow should be preserved for maintaining downstream ecological environment. Hence, the study proposes a process for evaluating environmental flow under considering impact on human well-being and ecosystems sustainability. Empirical formula, hydrological, hydraulic and habitat methodologies were used to propose the environmental flow alternatives. Next, water allocation model and Habitat model were used to analysis the impact of environment flow alternatives on human well-being and ecosystems sustainability. The results show the suggested environmental flow in Qishan River is estimated by MAF10%. The environmental flow is between 8.03 10.83 cms during wet season and is between 1.07 1.44cms during wet season. The simulation results also provide the evidence from diverse aspect to help different authorities realized what they get and lose. The information can advance to reach a consensus during negotiations with different authorities and help decision maker make decisions.
Predictive techniques for river channel evolution and maintenance
Nelson, J.M.
1996-01-01
Predicting changes in alluvial channel morphology associated with anthropogenic and natural changes in flow and/or sediment supply is a critical part of the management of riverine systems. Over the past few years, advances in the understanding of the physics of sediment transport in conjunction with rapidly increasing capabilities in computational fluid dynamics have yielded now approaches to problems in river mechanics. Techniques appropriate for length scales ranging from reaches to bars and bedforms are described here. Examples of the use of these computational approaches are discussed for three cases: (1) the design of diversion scenarios that maintain channel morphology in steep cobble-bedded channels in Colorado, (2) determination of channel maintenance flows for the preservation of channel islands in the Snake River in Idaho, and (3) prediction of the temporal evolution of deposits in lateral separation zones for future assessment of the impacts of various dam release scenarios on lateral separation deposits in the Colorado River in Grand Canyon. With continued development of their scientific and technical components, the methodologies described here can provide powerful tools for the management of river environments in the future.
Effects of water-management alternatives on streamflow in the Ipswich River basin, Massachusetts
Zarriello, Philip J.
2001-01-01
Management alternatives that could help mitigate the effects of water withdrawals on streamflow in the Ipswich River Basin were evaluated by simulation with a calibrated Hydrologic Simulation Program--Fortran (HSPF) model. The effects of management alternatives on streamflow were simulated for a 35-year period (196195). Most alternatives examined increased low flows compared to the base simulation of average 1989-93 withdrawals. Only the simulation of no septic-effluent inflow, and the simulation of a 20-percent increase in withdrawals, further lowered flows or caused the river to stop flowing for longer periods of time than the simulation of average 198993 withdrawals. Simulations of reduced seasonal withdrawals by 20 percent, and by 50 percent, resulted in a modest increase in low flow in a critical habitat reach (model reach 8 near the Reading town well field); log-Pearson Type III analysis of simulated daily-mean flow indicated that under these reduced withdrawals, model reach 8 would stop flowing for a period of seven consecutive days about every other year, whereas under average 198993 withdrawals this reach would stop flowing for a seven consecutive day period almost every year. Simulations of no seasonal withdrawals, and simulations that stopped streamflow depletion when flow in model reach 19 was below 22 cubic feet per second, indicated flow would be maintained in model reach 8 at all times. Simulations indicated wastewater-return flows would augment low flow in proportion to the rate of return flow. Simulations of a 1.5 million gallons per day return flow rate indicated model reach 8 would stop flowing for a period of seven consecutive days about once every 5 years; simulated return flow rates of 1.1 million gallons per day indicated that model reach 8 would stop flowing for a period of seven consecutive days about every other year. Simulation of reduced seasonal withdrawals, combined with no septic effluent return flow, indicated only a slight increase in low flow compared to low flows simulated under average 198993 withdrawals. Simulation of reduced seasonal withdrawal, combined with 2.6 million gallons per day wastewater-return flows, provided more flow in model reach 8 than that simulated under no withdrawals.
NASA Astrophysics Data System (ADS)
Brodie, R. S.; Lawrie, K.; Somerville, P.; Hostetler, S.; Magee, J.; Tan, K. P.; Clarke, J.
2013-12-01
Multiple lines of evidence were used to develop a conceptual model for interaction between the Darling River and associated floodplain aquifers in western New South Wales, Australia. Hydrostratigraphy and groundwater salinities were mapped using airborne electromagnetics (AEM), validated by sonic-core drilling. The AEM was highly effective in mapping groundwater freshening due to river leakage in discrete zones along the river corridor. These fresh resources occurred in both the unconfined Quaternary aquifers and the underlying, largely semi-confined Pliocene aquifers. The AEM was also fundamental to mapping the Blanchetown Clay aquitard which separates these two aquifer systems. Major-ion chemistry highlighted a mixing signature between river waters and groundwaters in both the Quaternary and Pliocene aquifers. Stable isotope data indicates that recharge to the key Pliocene aquifers is episodic and linked to high-flow flood events rather than river leakage being continuous. This was also evident when groundwater chemistry was compared with river chemistry under different flow conditions. Mapping of borehole levels showed groundwater mounding near the river, emphasising the regional significance of losing river conditions for both aquifer systems. Critically, rapid and significant groundwater level responses were measured during large flood events. In the Pliocene aquifers, continuation of rising trends after the flood peak receded confirms that this is an actual recharge response rather than hydraulic loading. The flow dependency of river leakage can be explained by the presence of mud veneers and mineral precipitates along the Darling River channel bank when river flows are low. During low flow conditions these act as impediments to river leakage. During floods, high flow velocities scour these deposits, revealing lateral-accretion surfaces in the shallow scroll plain sediments. This scouring allows lateral bank recharge to the shallow aquifer. During flood recession, mud veneers are re-deposited while transient return flows from bank storage results in carbonate precipitation in river banks. Active recharge of the Pliocene aquifers requires leakage pathways through the overlying Blanchetown Clay. Neogene-to-Present tectonic modification of the alluvial sequence, including discrete fault offsets in the Blanchetown Clay, was identified in the AEM data. Mapped faults are coincident with structures mapped in LiDAR, airborne magnetics, regional gravity, and seismic data.The study highlighted the utility of AEM in mapping the critical geological controls on groundwater-surface interaction, including the previously unrecognised tectonic influences on the largely unconsolidated alluvial sequence. Flow-dependent recharge due to changing river bed conductance has implications for groundwater assessment and management. An analysis of historic river flows suggests that active recharge would only occur for about 17% of the time when flow exceeds about 9,000 ML/d. Recharge would be negligible with groundwater extraction during low-flow conditions.
Unraveling the effects of climate change and flow abstraction on an aggrading Alpine river
NASA Astrophysics Data System (ADS)
Bakker, Maarten; Costa, Anna; Adriao Silva, Tiago A.; Stutenbecker, Laura; Girardclos, Stéphanie; Loizeau, Jean-Luc; Molnar, Peter; Schlunegger, Fritz; Lane, Stuart N.
2017-04-01
Widespread temperature increase has been observed in the Swiss Alps and is most pronounced at high elevations. Alpine rivers are very susceptible to such change where large amounts of sediments are released from melting (peri)glacial environments and potentially become available for transport. These rivers are also impacted on a large scale by hydropower exploitation, where flow is commonly abstracted and transferred to a hydropower scheme. Whilst water is diverted, sediment is trapped at the intake and intermittently flushed down the river during short duration purges. Thus, these rivers are impacted upon by both climate and human forcing. In this study we quantify their relative and combined impacts upon the morphological evolution of an aggrading Alpine river. Our study focusses on the development of a sequence of braided reaches of the Borgne River (tributary of the Rhône) in south-west Switzerland. A unique dataset forms the basis for determining sediment deposition and transfer: (1) a set of high resolution Digital Elevation Models (DEMs) of the reaches was derived through applying Structure from Motion (SfM) photogrammetry to archival aerial photographs available for the period 1959-2014; (2) flow intake management data, provided by Grande Dixence SA, allowed the reconstruction of (up- and downstream) discharge and sediment supply since 1977. Subsequently we used climate data and transport capacity calculations to assess their relative impact on the system evolution over the last 25 years. Not surprisingly, considerable aggradation of the river bed (up to 5 meters) has taken place since the onset of flow abstraction in 1963: the abstraction of flow has substantially reduced sediment transport capacity whilst the sediment supply to the river was maintained. Although there was an initial response of the system to the start of abstraction in the 1960s, it was not before the onset of glacial retreat and the dry and warm years in the late 1980s and early 1990's that sediment supply increased and extensive sedimentation took place. The river reaches showed a common, synchronous development, steepening in response to altered flow sediment supply conditions. In the years thereafter sedimentation rates decreased (locally incision occurred) and the reaches showed a more phased and sequential development that propagated in the downstream direction. Besides being conditioned by variations in upstream sediment supply, sediment transfer was also affected by changes in the timing and duration of purges, associated with the management and capacity hydropower system, and the evolving river bed morphology (and local river engineering). In the Borgne River we find that despite the considerable impact of flow abstraction, it is still possible to identify a climate change signal that propagates through the system and drives river morphological response. This signal is associated with a critical climate control upon upstream sediment supply coupled with the effects of combined climate and human impact on the operation of the hydroelectric power scheme.
Denitrification in the Mississippi River network controlled by flow through river bedforms
Gomez-Velez, Jesus D.; Harvey, Judson W.; Cardenas, M. Bayani; Kiel, Brian
2015-01-01
Increasing nitrogen concentrations in the world’s major rivers have led to over-fertilization of sensitive downstream waters1, 2, 3, 4. Flow through channel bed and bank sediments acts to remove riverine nitrogen through microbe-mediated denitrification reactions5, 6, 7, 8, 9, 10. However, little is understood about where in the channel network this biophysical process is most efficient, why certain channels are more effective nitrogen reactors, and how management practices can enhance the removal of nitrogen in regions where water circulates through sediment and mixes with groundwater - hyporheic zones8, 11, 12. Here we present numerical simulations of hyporheic flow and denitrification throughout the Mississippi River network using a hydrogeomorphic model. We find that vertical exchange with sediments beneath the riverbed in hyporheic zones, driven by submerged bedforms, has denitrification potential that far exceeds lateral hyporheic exchange with sediments alongside river channels, driven by river bars and meandering banks. We propose that geomorphic differences along river corridors can explain why denitrification efficiency varies between basins in the Mississippi River network. Our findings suggest that promoting the development of permeable bedforms at the streambed - and thus vertical hyporheic exchange - would be more effective at enhancing river denitrification in large river basins than promoting lateral exchange through induced channel meandering.
Tzoraki, Ourania A; Dörflinger, Gerald; Kathijotes, Nicholas; Kontou, Artemis
2014-01-01
The water quality status of the Kouris river in Cyprus was examined in order to fulfil the requirements for ecological quality as defined by the Water Framework Directive-2000/60/EC. Nitrate concentration (mean value) was increased in the Limnatis (2.8 mg L(-1)) tributary in comparison with the Kryos (2.1 mg L(-1)) and Kouris (1.0 mg L(-1)) tributaries depicting the influence of anthropogenic activities. The total maximum daily nutrients loads (TMDLs) based on the flow duration curves approach, showed that nutrients loads exceeded threshold values (33.3-75.6% in all hydrologic condition classes in the Kouris tributary, and 65-78% in the Limnatis tributary) especially under low flow conditions. The TMDL graph is intended to guide the temporal schedule for chemical sampling in all hydrologic classes. Kouris reservoir is an oligotrophic system, strongly influenced by the river's flash-flood character but also by the implemented management practices. Kouris river outflow, which was reduced to one-tenth in the post dam period altered the wetland hydrologic network and contributed to the decrease of aquifer thickness. Continuous evaluation and update of the River Basin Management Plans will be the basis for the sustainable development of the Kouris basin.
Mapping ecosystem services in the St. Louis River estuary (presentation)
Management of ecosystems for sustainable provision of services beneficial to human communities requires reliable data about from where in the ecosystem services flow. Our objective is to map ecosystem services in the St. Louis River with the overarching EPA goal of community sust...
NASA Astrophysics Data System (ADS)
Fung, C. F.; Lopez, A.; New, M.
2009-04-01
Climate change is likely to impact on freshwater ecology, the delivery of regulatory commitments to ecological status and the management of water resources. It is becoming increasingly important for European environment agencies to use and develop methods to aid planning and abstraction licensing procedures and policies in the face of climate change and with the introduction of the Water Framework Directive. Studies have been carried out in the past to investigate the implications of climate change for biodiversity. However, predicting the future is fraught with uncertainty, an area which has not been dealt with in great depth in the past. This study has been undertaken to draw on the results of new methodologies to address the uncertainties inherent in modelling future climate and assess their usability for decision-making in water resources allocations specifically in considering interactions between flow and invertebrate communities The River Itchen was chosen as the case study catchment on the strength of having a long-term coupled ecological and flow dataset and having been an area of intensive study in the past. It is a chalk stream located in the south of England and a candidate Special Area of Conservation. It has also been designated a Special Site of Scientific Interest achieved due to the number of rare species, and the richness of the macro-invertebrate community in the river catchment. An ensemble of 246 transient simulations for future climate was obtained from ClimatePrediction.net which were then used to drive a rainfall-runoff model. In order to link the modelled river flow to ecology, the Lotic Invertebrate Flow Evaluation score has been used where the invertebrate community is linked to flow largely through sensitivity to water velocity and siltation, driven by flow variability at sites with fixed channel dimensions The large ensemble of climate scenarios and thereby flow and ecological indices allows the exploration of the risk of the river of not meeting environmental flow targets in the future. Three sets of environmental flow targets which were drawn up by the Environment Agency for England and Wales for the River Itchen were tested and show that it may be difficult to maintain a natural chalk stream invertebrate community in the River Itchen in the future. The ensemble also shows low flows regularly extending from August to December which could result in the loss of a high proportion of individuals recruited that year. This would in turn lead to diminished over-wintering populations, with potentially catastrophic consequences for the following years breeding and recruitment programme. Due to a paucity of quantitative data for the response of macroinvertebrates to multi-year droughts, to provide a richer story, a matrix has been proposed for analysing the effects on biodiversity of the river which combines both the thresholds derived previously and expert opinion on how the ecology of the River Itchen will react to climate change. The matrices also provide a more accessible way of communicating rather complex information to a wider community of decision-makers. Should large changes in flow arise in the future it is likely that some form of action will be taken to mitigate or adapt to the impacts of climate change. Maintaining the ecological status of the river throug river support, i.e. augmenting river flow by pumping from the groundwater aquifer, has also been investigated. However, by augmenting the flow, the high flows are also reduced which can be important for scouring the river bed and removing silt to the benefit of the invertebrate community. Therefore at some point further augmentation may need to be curtailed in order to maintain high flows.
Flow and form in rehabilitation of large-river ecosystems: an example from the Lower Missouri River
Jacobson, R.B.; Galat, D.L.
2006-01-01
On large, intensively engineered rivers like the Lower Missouri, the template of the physical habitat is determined by the nearly independent interaction of channel form and flow regime. We evaluated the interaction between flow and form by modeling four combinations of modern and historical channel form and modern and historical flow regimes. The analysis used shallow, slow water (shallow-water habitat, SWH, defined as depths between 0 and 1.5 m, and current velocities between 0 and 0.75 m/s) as an indicator of habitat that has been lost on many intensively engineered rivers and one that is thought to be especially important in rearing of young fishes. Two-dimensional hydrodynamic models for modern and historical channels of the Lower Missouri River at Hermann, Missouri, indicate substantial differences between the two channels in total availability and spatial characteristics of SWH. In the modern channel, SWH is maximized at extremely low flows and in overbank flows, whereas the historical channel had substantially more SWH at all discharges and SWH increased with increasing discharge. The historical channel form produced 3-7 times the SWH area of the modern channel regardless of flow regime. The effect of flow regime is evident in increased within-year SWH variability with the natural flow regime, including significant seasonal peaks of SWH associated with spring flooding. Comparison with other reaches along the Lower Missouri River indicates that a) channel form is the dominant control of the availability of habitat even in reaches where the hydrograph is more intensively altered, and b) rehabilitation projects that move toward the historical condition can be successful in increasing topographic diversity and thereby decreasing sensitivity of the availability of habitat to flow regime. The relative efficacy of managing flow and form in creating SWH is useful information toward achieving socially acceptable rehabilitation of the ecosystem in large river systems.
NASA Astrophysics Data System (ADS)
Covino, T. P.; Wegener, P.; Weiss, T.; Wohl, E.; Rhoades, C.
2017-12-01
River networks of mountain landscapes tend to be dominated by steep, valley-confined channels that have limited floodplain area and low hydrologic buffering capacity. Interspersed between the narrow segments are wide, low-gradient segments where extensive floodplains, wetlands, and riparian areas can develop. Although they tend to be limited in their frequency relative to the narrow valley segments, the low-gradient, wide portions of mountain channel networks can be particularly important to hydrologic buffering and can be sites of high nutrient retention and ecosystem productivity. Hydrologic buffering along the wide valley segments is dependent on lateral hydrologic connectivity between the river and floodplain, however these connections have been increasingly severed as a result of various land and water management practices. We evaluated the role of river-floodplain connectivity in influencing water, dissolved organic carbon (DOC), and nutrient flux in river networks of the Colorado Rockies. We found that disconnected segments with limited floodplain/riparian area had limited buffering capacity, while connected segments exhibited variable source-sink dynamics as a function of flow. Specifically, connected segments were typically a sink for water, DOC, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along connected relative to disconnected segments. Our data suggest that lateral hydrologic connectivity in wide valleys can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. While hydrologic disconnection in one river-floodplain system is unlikely to influence water resources at larger scales, the cumulative effects of widespread disconnection may be substantial. Because intact river-floodplain (i.e., connected) systems provide numerous hydrologic and ecologic benefits, understanding the dynamics and cumulative effects of disconnection is an important step toward improved water resource and ecosystem management.
NASA Astrophysics Data System (ADS)
Kasprak, A.; Buscombe, D.; Caster, J.; Grams, P. E.; Sankey, J. B.
2016-12-01
Sediment connectivity is a vital component of the eco-geomorphic function of river systems, and the pathways of sediment transfer in river valleys often shift in response to channel disturbance and development. Along the Colorado River downstream of Glen Canyon Dam (completed in 1963), flow alteration for hydropower generation has increased baseflows while reducing the magnitude of regularly-occurring floods, and vegetation has subsequently colonized many channel-margin surfaces. In this dryland, canyon-bound river system, aeolian transport has historically been a vital component of sediment connectivity, yet the relative roles of altered hydrology and vegetation on the extent of sand available for windblown transport are unknown. Here we use a fusion of high-resolution spatial datasets including channel bathymetry and bed classification derived from single- and multibeam echosounding and total station surveys, exposed sand mapping and vegetation classification from multispectral imagery, in concert with a 94 year discharge record and one-dimensional hydraulic modeling to quantify changes in sand availability along a 48 km reach of the Colorado River. We find that hydrologic alteration alone has reduced areal sand availability by approximately 15% when comparing the pre- and post-dam flow records, while vegetation encroachment has had an even greater effect. More than half of the total sand area in the study reach is located at low flow stages below 226 m3/s, meaning that small reductions in baseflow discharge have the potential to expose large quantities of sand, and we subsequently explore the relative effect of alternative flow regimes on sand exposure during the postdam period. The ability to quantify and explore the efficacy of river management strategies on large-scale sediment connectivity has the potential to inform eco-geomorphic management of the Colorado River in Grand Canyon and other regulated rivers worldwide.
NASA Astrophysics Data System (ADS)
Hofmann, Harald; Cartwright, Ian; Gilfedder, Benjamin
2013-04-01
Understanding the interaction between river water and regional groundwater has significant importance for water management and resource allocation. The dynamics of groundwater/surface water interactions also have implications for ecosystems, pollutant transport, and the quality and quantity of water supply for domestic, agriculture and recreational purposes. After general assumptions and for management purposes rivers are classified in loosing or gaining rivers. However, many streams alternate between gaining and loosing conditions on a range of temporal and spatial scales due to factors including: 1) river water levels in relation to groundwater head; 2) the relative response of the groundwater and river system to rainfall; 3) heterogeneities in alluvial sediments that can lead to alternation of areas of exfiltration and infiltration along a river stretch; and 4) differences in near river reservoirs, such parafluvial flow and bank storage. Spatial variability of groundwater discharge to rivers is rarely accounted for as it is assumed that groundwater discharge is constant over river stretches and only changes with the seasonal river water levels. Riverbank storage and parafluvial flow are generally not taken in consideration. Bank storage has short-term cycles and can contribute significantly to the total discharge, especially after flood events. In this study we used hydrogeochemistry to constrain spatial and temporal differences in gaining and loosing conditions in rivers and investigate potential sources. Environmental tracers, such as major ion chemistry, stables isotopes and Radon are useful tools to characterise these sources. Surface water and ground water samples were taken in the Avon River in the Gippsland Basin, Southwest Australia. Increasing TDS along the flow path from 70 to 250 mg/l, show that the Avon is a net gaining stream. The radon concentration along the river is variable and does not show a general increase downstream, but isolated peaks in some areas instead. Radon concentrations are in general low (under 0.5 Bq/l), but rise significantly when groundwater discharges to the river (up to 3 Bq/l). By using high resolution radon mapping with a water-air-gas-exchanger in combination with EC mapping on a boat we were able to show that groundwater discharge to the river is diffuse on river reaches of about 1 km length where it occurs. The discharge areas are along large alluvial riverbed deposits and are likely to be a mixture of local groundwater and parafluvial flow. High resolution radon mapping has only been used in coastal areas and this is the first study where the method was applied to river systems.
Dynamic flow modeling of riverine amphibian habitat with application to regulated flow management
S. Yarnell; A. Lind; J. Mount
2012-01-01
In regulated rivers, relicensing of hydropower projects can provide an opportunity to change flow regimes and reduce negative effects on sensitive aquatic biota. The volume of flow, timing and ramping rate of spring spills, and magnitude of aseasonal pulsed flows have potentially negative effects on the early life stages of amphibians, such as the Foothill yellow-...
Relations of Tualatin River water temperatures to natural and human-caused factors
Risley, John C.
1997-01-01
Aquatic research has long shown that the survival of cold-water fish, such as salmon and trout, decreases markedly as water temperatures increase above a critical threshold, particularly during sensitive life stages of the fish. In an effort to improve the overall health of aquatic ecosystems, the State of Oregon in 1996 adopted a maximum water-temperature standard of 17.8 degrees Celsius (68 degrees Fahrenheit), based on a 7-day moving average of daily maximum temperatures, for most water bodies in the State. Anthropogenic activities are not permitted to raise the temperature of a water body above this level. In the Tualatin River, a tributary of the Willamette River located in northwestern Oregon, water temperatures periodically surpass this threshold during the low-flow summer and fall months.An investigation by the U.S. Geological Survey quantified existing seasonal, diel, and spatial patterns of water temperatures in the main stem of the river, assessed the relation of water temperatures to natural climatic conditions and anthropogenic factors (such as wastewater-treatment-plant effluent and modification of riparian shading), and assessed the impact of various flow management practices on stream temperatures. Half-hourly temperature measurements were recorded at 13 monitoring sites from river mile (RM) 63.9 to RM 3.4 from May to November of 1994. Four synoptic water- temperature surveys also were conducted in the upstream and downstream vicinities of two wastewater-treatment-plant outfalls. Temperature and streamflow time-series data were used to calibrate two dynamic-flow heat-transfer models, DAFLOW-BLTM (RM 63.9-38.4) and CE-QUAL-W2 (RM 38.4-3.4). Simulations from the models provided a basis for approximating 'natural' historical temperature patterns, performing effluent and riparian-shading sensitivity analyses, and evaluating mitigation management scenarios under 1994 climatic conditions. Findings from the investigation included (1) under 'natural' conditions the temperature of the river would exceed the State standard of 17.8 degrees Celsius at many locations during the low-flow season, (2) current operation of wastewater-treatment plants increases the temperature of the river downstream of the plants under low-flow conditions, (3) river temperature is significantly affected by riparian shade variations along both the tributaries and the main stem, (4) flow releases during the low-flow season from the Henry Hagg Lake reservoir decrease the river temperature in the upper section, and (5) removal of a low diversion dam at RM 3.4 would slightly decrease temperatures below RM 10.0.
Flow controls on lowland river macrophytes: a review.
Franklin, Paul; Dunbar, Michael; Whitehead, Paul
2008-08-01
We review the current status of knowledge regarding the role that flow parameters play in controlling the macrophyte communities of temperate lowland rivers. We consider both direct and indirect effects and the interaction with other factors known to control macrophyte communities. Knowledge gaps are identified and implications for the management of river systems considered. The main factors and processes controlling the status of macrophytes in lowland rivers are velocity (hence also discharge), light, substrate, competition, nutrient status and river management practices. We suggest that whilst the characteristics of any particular macrophyte community reflect the integral effects of a combination of the factors, fundamental importance can be attributed to the role of discharge and velocity in controlling instream macrophyte colonisation, establishment and persistence. Velocity and discharge also appear to control the relative influence of some of the other controlling factors. Despite the apparent importance of velocity in determining the status of macrophyte communities in lowland rivers, relatively little is understood about the nature of the processes controlling this relationship. Quantitative knowledge is particularly lacking. Consequently, the ability to predict macrophyte abundance and distribution in rivers is still limited. This is further complicated by the likely existence of feedback effects between the growth of macrophytes and velocity. Demand for water resources increases the pressure on lowland aquatic ecosystems. Despite growing recognition of the need to allocate water for the needs of instream biota, the inability to assess the flow requirements of macrophyte communities limits the scope to achieve this. This increases the likelihood of overexploitation of the water resource as other users, whose demands are quantifiable, are prioritised.
Stewart, Jana S.; Lizhu Wang,; Infante, Dana M.; Lyons, John D.; Arthur Cooper,
2011-01-01
Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human-induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non-impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human-induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co-influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non-impoundment sections of rivers. After excluding river size and land-use influences, our results clearly demonstrate that dams have significant impacts on fish biotic-integrity and habitat-and-social-preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries.
Wang, L.; Infante, D.; Lyons, J.; Stewart, J.; Cooper, A.
2011-01-01
Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human-induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non-impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human-induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co-influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non-impoundment sections of rivers. After excluding river size and land-use influences, our results clearly demonstrate that dams have significant impacts on fish biotic-integrity and habitat-and-social-preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries. ?? 2010 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to asse...
Smart licensing and environmental flows: Modeling framework and sensitivity testing
NASA Astrophysics Data System (ADS)
Wilby, R. L.; Fenn, C. R.; Wood, P. J.; Timlett, R.; Lequesne, T.
2011-12-01
Adapting to climate change is just one among many challenges facing river managers. The response will involve balancing the long-term water demands of society with the changing needs of the environment in sustainable and cost effective ways. This paper describes a modeling framework for evaluating the sensitivity of low river flows to different configurations of abstraction licensing under both historical climate variability and expected climate change. A rainfall-runoff model is used to quantify trade-offs among environmental flow (e-flow) requirements, potential surface and groundwater abstraction volumes, and the frequency of harmful low-flow conditions. Using the River Itchen in southern England as a case study it is shown that the abstraction volume is more sensitive to uncertainty in the regional climate change projection than to the e-flow target. It is also found that "smarter" licensing arrangements (involving a mix of hands off flows and "rising block" abstraction rules) could achieve e-flow targets more frequently than conventional seasonal abstraction limits, with only modest reductions in average annual yield, even under a hotter, drier climate change scenario.
Lofrano, Giusy; Libralato, Giovanni; Acanfora, Floriana Giuseppina; Pucci, Luca; Carotenuto, Maurizio
2015-08-15
The Sarno River trend analysis during the last 60 years was traced focusing on the socio-economic and environmental issues. The river, originally worshiped as a god by Romans, is affected by an extreme level of environmental degradation, being sadly reputed as the most polluted river in Europe. This is the "not to be followed" example of the worst way a European river can be managed. Data about water, sediment, soil, biota and air contamination were collected from scientific papers, monitoring surveys, and technical reports depicting a sick river. Originally, the river was reputed as a source of livelihood, now it is considered a direct threat for human health. Wastewater can still flow through the river partially or completely untreated, waste production associated with the manufacture of metal products and leather tanning continues to suffer from the historical inadequacy of regional wastewater treatment plants (WWTPs), associated with the partial or no reuse of effluents. All efforts should be devoted to solving the lack of wastewater and waste management, the gap in land planning, improving the capacity of existing WWTPs also via the construction of new sewer sections, restoring Sarno River minimum vital-flow, keeping to a minimum uncontrolled discharges as well as supporting river contracts. The 2015 goal stated by the Water Framework Directive (2000/60/EC) is still far to be reached. The lesson has not been learnt yet. Copyright © 2015 Elsevier B.V. All rights reserved.
Environmetric data interpretation to assess the water quality of Maritsa River catchment.
Papazova, Petia; Simeonova, Pavlina
2013-01-01
Maritsa River is one of the largest rivers flowing on Bulgarian territory. The quality of its waters is of substantial importance for irrigation, industrial, recreation and domestic use. Besides, part of the river is flowing on Turkish territory and the control and management of the Maritsa catchment is of mutual interst for the neighboring countires. Thus, performing interpretation and modeling of the river water quality is a major environmetric problem. Two multivariate statstical methods (Cluster analysis/CA/and Principal components analysis/PCA/) were applied for model assessment of the water quality of Maritsa River on Bulgarian territory. The study used long-term monitoring data from 21 sampling sites characterized by 8 surface water quality indicators. The application of CA to the indicators results in 3 significant clusters showing the impact of biological, anthropogenic and eutrophication sources. For further assessment of the monitoring data, PCA was implemented, which identified, again,three latent factors confirming, in principle, the clustering output. The latent factors were conditionally named "biologic", "anthropogenic" and "eutrophication" source. Their identification coinside correctly to the location of real pollution sources along the Maritsa River catchment. The linkage of the sampling sites along the river flow by CA identified four special patterns separated by specific tracers levels: biological and anthropogenic major impact for pattern 1, euthrophication major impact for pattern 2, background levels for pattern 3 and eutrophication and agricultural major impact for pattern 4. The apportionment models of the pollution determined the contribution of each one of identified pollution factors to the total concentration of each one of the water quality parameters. Thus, a better risk management of the surface water quality is achieved both on local and national level.
Predicting regime shifts in flow of the Colorado River
Gangopadhyay, Subhrendu; McCabe, Gregory J.
2010-01-01
The effects of continued global warming on water resources are a concern for water managers and stake holders. In the western United States, where the combined climatic demand and consumptive use of water is equal to or greater than the natural supply of water for some locations, there is growing concern regarding the sustainability of future water supplies. In addition to the adverse effects of warming on water supply, another issue for water managers is accounting for, and managing, the effects of natural climatic variability, particularly persistently dry and wet periods. Analyses of paleo-reconstructions of Upper Colorado River basin (UCRB) flow demonstrate that severe sustained droughts, and persistent pluvial periods, are a recurring characteristic of hydroclimate in the Colorado River basin. Shifts between persistently dry and wet regimes (e.g., decadal to multi-decadal variability (D2M)) have important implications for water supply and water management. In this study paleo-reconstructions of UCRB flow are used to compute the risks of shifts between persistently wet and dry regimes given the length of time in a specific regime. Results indicate that low frequency variability of hydro-climatic conditions and the statistics that describe this low frequency variability can be useful to water managers by providing information about the risk of shifting from one hydrologic regime to another. To manage water resources in the future water managers will have to understand the joint hydrologic effects of natural climate variability and global warming. These joint effects may produce future hydrologic conditions that are unprecedented in both the instrumental and paleoclimatic records.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werth, D.; Chen, K. F.
2013-08-22
The ability of water managers to maintain adequate supplies in coming decades depends, in part, on future weather conditions, as climate change has the potential to alter river flows from their current values, possibly rendering them unable to meet demand. Reliable climate projections are therefore critical to predicting the future water supply for the United States. These projections cannot be provided solely by global climate models (GCMs), however, as their resolution is too coarse to resolve the small-scale climate changes that can affect hydrology, and hence water supply, at regional to local scales. A process is needed to ‘downscale’ themore » GCM results to the smaller scales and feed this into a surface hydrology model to help determine the ability of rivers to provide adequate flow to meet future needs. We apply a statistical downscaling to GCM projections of precipitation and temperature through the use of a scaling method. This technique involves the correction of the cumulative distribution functions (CDFs) of the GCM-derived temperature and precipitation results for the 20{sup th} century, and the application of the same correction to 21{sup st} century GCM projections. This is done for three meteorological stations located within the Coosa River basin in northern Georgia, and is used to calculate future river flow statistics for the upper Coosa River. Results are compared to the historical Coosa River flow upstream from Georgia Power Company’s Hammond coal-fired power plant and to flows calculated with the original, unscaled GCM results to determine the impact of potential changes in meteorology on future flows.« less
Dietsch, Benjamin J.; Godberson, Julie A.; Steele, Gregory V.
2009-01-01
The Nebraska Department of Natural Resources approved instream-flow appropriations on the Platte River to maintain fish communities, whooping crane roost habitat, and wet meadows used by several wild bird species. In the lower Platte River region, the Nebraska Game and Parks Commission owns an appropriation filed to maintain streamflow for fish communities between the Platte River confluence with the Elkhorn River and the mouth of the Platte River. Because Elkhorn River flow is an integral part of the flow in the reach addressed by this appropriation, the Upper Elkhorn and Lower Elkhorn Natural Resources Districts are involved in overall management of anthropogenic effects on the availability of surface water for instream requirements. The Physical Habitat Simulation System (PHABSIM) and other estimation methodologies were used previously to determine instream requirements for Platte River biota, which led to the filing of five water appropriations applications with the Nebraska Department of Natural Resources in 1993 by the Nebraska Game and Parks Commission. One of these requested instream-flow appropriations of 3,700 cubic feet per second was for the reach from the Elkhorn River to the mouth of the Platte River. Four appropriations were granted with modifications in 1998, by the Nebraska Department of Natural Resources. Daily streamflow data for the periods of record were summarized for 17 streamflow-gaging stations in Nebraska to evaluate streamflow characteristics, including low-flow intervals for consecutive durations of 1, 3, 7, 14, 30, 60, and 183 days. Temporal trends in selected streamflow statistics were not adjusted for variability in precipitation. Results indicated significant positive temporal trends in annual flow for the period of record at eight streamflow-gaging stations - Platte River near Duncan (06774000), Platte River at North Bend (06796000), Elkhorn River at Neligh (06798500), Logan Creek near Uehling (06799500), Maple Creek near Nickerson (06800000), Elkhorn River at Waterloo (06800500), Salt Creek at Greenwood (06803555), and Platte River at Louisville (06805500). In general, sites in the Elkhorn River Basin upstream from Norfolk showed fewer significant trends than did sites downstream from Norfolk and sites in the Platte River and Salt Creek basins, where trends in low flows also were positive. Historical Platte River streamflow records for the streamflow-gaging station at Louisville, Nebraska, were used to determine the number of days per water year (Sept. 30 to Oct. 1) when flows failed to satisfy the minimum criteria of the instream-flow appropriation prior to its filing in 1993. Before 1993, the median number of days the criteria were not satisfied was about 120 days per water year. During 1993 through 2004, daily mean flows at Louisville, Nebraska, have failed to satisfy the criteria for 638 days total (median value equals 21.5 days per year). Most of these low-flow intervals occurred in summer through early fall. For water years 1953 through 2004, of the discrete intervals when flow was less that the criteria levels, 61 percent were 3 days or greater in duration, and 38 percent were 7 days or greater in duration. The median duration of intervals of flow less than the criteria levels was 4 consecutive days during 1953 through 2004.
Sustainable water management in the southwestern United States: reality or rhetoric?
Marshall, Robert M; Robles, Marcos D; Majka, Daniel R; Haney, Jeanmarie A
2010-07-21
While freshwater sustainability is generally defined as the provisioning of water for both people and the environment, in practice it is largely focused only on supplying water to furnish human population growth. Symptomatic of this is the state of Arizona, where rapid growth outside of the metropolitan Phoenix-Tucson corridor relies on the same groundwater that supplies year-round flow in rivers. Using Arizona as a case study, we present the first study in the southwestern United States that evaluates the potential impact of future population growth and water demand on streamflow depletion across multiple watersheds. We modeled population growth and water demand through 2050 and used four scenarios to explore the potential effects of alternative growth and water management strategies on river flows. Under the base population projection, we found that rivers in seven of the 18 study watersheds could be dewatered due to municipal demand. Implementing alternative growth and water management strategies, however, could prevent four of these rivers from being dewatered. The window of opportunity to implement water management strategies is narrowing. Because impacts from groundwater extraction are cumulative and cannot be immediately reversed, proactive water management strategies should be implemented where groundwater will be used to support new municipal demand. Our approach provides a low-cost method to identify where alternative water and growth management strategies may have the most impact, and demonstrates that such strategies can maintain a continued water supply for both people and the environment.
Simulation of streamflow temperatures in the Yakima River basin, Washington, April-October 1981
Vaccaro, J.J.
1986-01-01
The effects of storage, diversion, return flow, and meteorological variables on water temperature in the Yakima River, in Washington State, were simulated, and the changes in water temperature that could be expected under four alternative-management scenarios were examined for improvement in anadromous fish environment. A streamflow routing model and Lagrangian streamflow temperature model were used to simulate water discharge and temperature in the river. The estimated model errors were 12% for daily discharge and 1.7 C for daily temperature. Sensitivity analysis of the simulation of water temperatures showed that the effect of reservoir outflow temperatures diminishes in a downstream direction. A 4 C increase in outflow temperatures results in a 1.0 C increase in mean irrigation season water temperature at Umtanum in the upper Yakima River basin, but only a 0.01C increase at Prosser in the lower basin. The influence of air temperature on water temperature increases in a downstream direction and is the dominant influence in the lower basin. A 4 C increase in air temperature over the entire basin resulted in a 2.34 C increase in river temperatures at Prosser in the lower basin and 1.46 C at Umtanum in the upper basin. Changes in wind speed and model wind-function parameters had little effect on the model predicted water temperature. Of four alternative management scenarios suggested by the U.S. Bureau of Indian Affairs and the Yakima Indian Nation, the 1981 reservoir releases maintained without diversions or return flow in the river basin produced water temperatures nearest those considered as preferable for salmon and steelhead trout habitat. The alternative management scenario for no reservoir storage and no diversions or return flows in the river basin (estimate of natural conditions) produced conditions that were the least like those considered as preferable for salmon and steelhead trout habitat. (Author 's abstract)
Application of effective discharge analysis to environmental flow decision-making
McKay, S. Kyle; Freeman, Mary C.; Covich, A.P.
2016-01-01
Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.
Application of Effective Discharge Analysis to Environmental Flow Decision-Making.
McKay, S Kyle; Freeman, Mary C; Covich, Alan P
2016-06-01
Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.
NASA Astrophysics Data System (ADS)
Klaar, Megan; Laize, Cedric; Maddock, Ian; Acreman, Mike; Tanner, Kath; Peet, Sarah
2014-05-01
A key challenge for environmental managers is the determination of environmental flows which allow a maximum yield of water resources to be taken from surface and sub-surface sources, whilst ensuring sufficient water remains in the environment to support biota and habitats. It has long been known that sensitivity to changes in water levels resulting from river and groundwater abstractions varies between rivers. Whilst assessment at the catchment scale is ideal for determining broad pressures on water resources and ecosystems, assessment of the sensitivity of reaches to changes in flow has previously been done on a site-by-site basis, often with the application of detailed but time consuming techniques (e.g. PHABSIM). While this is appropriate for a limited number of sites, it is costly in terms of money and time resources and therefore not appropriate for application at a national level required by responsible licensing authorities. To address this need, the Environment Agency (England) is developing an operational tool to predict relationships between physical habitat and flow which may be applied by field staff to rapidly determine the sensitivity of physical habitat to flow alteration for use in water resource management planning. An initial model of river sensitivity to abstraction (defined as the change in physical habitat related to changes in river discharge) was developed using site characteristics and data from 66 individual PHABSIM surveys throughout the UK (Booker & Acreman, 2008). By applying a multivariate multiple linear regression analysis to the data to define habitat availability-flow curves using resource intensity as predictor variables, the model (known as RAPHSA- Rapid Assessment of Physical Habitat Sensitivity to Abstraction) is able to take a risk-based approach to modeled certainty. Site specific information gathered using desk-based, or a variable amount of field work can be used to predict the shape of the habitat- flow curves, with the uncertainty of estimates reducing as more information is collected. Creation of generalized physical habitat- discharge relationships by the model allows environmental managers to select the desired level of confidence in the modeled results, based on environmental risk and the level of resource investment available. Hence, resources can be better directed according to the level of certainty required at each site. This model is intended to provide managers with an alternative to the existing use of either expert opinion or resource intensive site- specific investigations in determining local environmental flows. Here, we outline the potential use of this tool by the Environment Agency in routine operational and investigation- specific scenarios using case studies to illustrate its use.
Evaluation of stream flow effects on smolt survival in the Yakima River Basin, Washington, 2012-2014
Courter, Ian; Garrison, Tommy; Kock, Tobias J.; Perry, Russell W.
2015-01-01
The influence of stream flow on survival of emigrating juvenile (smolts) Pacific salmon Oncorhynchus spp. and steelhead trout O. mykiss is of key management interest. However, few studies have quantified flow effects on smolt migration survival, and available information does not indicate a consistent flow-survival relationship within the typical range of flows under management control. It is hypothesized that smolt migration and dam passage survival are positively correlated with stream flow because higher flows increase migration rates, potentially reducing exposure to predation, and reduce delays in reservoirs. However, available empirical data are somewhat equivocal concerning the influence of flow on smolt survival and the underlying mechanisms driving this relationship. Stream flow effects on survival of emigrating anadromous salmonids in the Yakima Basin have concerned water users and fisheries managers for over 20 years, and previous studies do not provide sufficient information at the resolution necessary to inform water operations, which typically occur on a small spatiotemporal scale. Using a series of controlled flow releases from 2012-2014, combined with radio telemetry, we quantified the relationship between flow and smolt survival from Roza Dam 208 km downstream to the Yakima River mouth, as well as for specific routes of passage at Roza Dam. A novel multistate mark-recapture model accounted for weekly variation in flow conditions experienced by radio-tagged fish. Groups of fish were captured and radio-tagged at Roza Dam and released at two locations, upstream at the Big Pines Campground (river kilometer [rkm] 211) and downstream in the Roza Dam tailrace (rkm 208). A total of 904 hatchery-origin yearling Chinook salmon O. tshawytscha were captured in the Roza Dam fish bypass, radio-tagged and released upstream of Roza Dam. Two hundred thirty seven fish were released in the tailrace of Roza Dam. Fish released in the tailrace of Roza Dam were tagged concurrently with fish released upstream of the dam using identical tagging methods. Tagging and release events were conducted to target a range of flow conditions indicative of flows observed during the typical migration period (March-May) for juvenile spring Chinook salmon in the Yakima River. Three, five and four separate upstream releases were conducted in 2012, 2013, and 2014 respectively, and at least 43 fish were released alive on each occasion. The release sample sizes in 2014 were much larger (~130) compared to previous years for the purpose of increasing precision of survival estimates across the range of flows tested. Migration movements of radio-tagged spring Chinook salmon smolts were monitored with an array of telemetry receiver stations (fixed sites) that extended 208 rkm downstream from the forebay of Roza Dam to the mouth of the Yakima River. Fixed monitoring sites included the forebay of Roza Dam (rkm 208), the tailrace of Roza Dam (rkm 207.9), the mouth of Wenas Creek (rkm 199.2), the mouth of the Naches River (two sites, rkm 189.4), Sunnyside Dam (two sites, rkm 169.1), Prosser Dam (rkm 77.2), and the mouth of the Yakima River (two sites, rkm2 3). This array segregated the study area into four discrete reaches in which survival of tagged fish was estimated. Aerial and underwater antennas were also used to monitor tagged fish at Roza Dam. Aerial antennas were located in the forebay, on the East gate, on the West gate, and in the tailrace of Roza Dam. Underwater antennas were located in the fish bypass, upstream of the East gate, and upstream of the West gate to collect route-specific passage data for tagged fish. Additional years of data collection and analysis could alter or improve our understanding of the influence of flow and other environmental factors on smolt survival in the Yakima River. Nevertheless, during 2012-2014, yearling hatchery Chinook salmon smolt emigration survival was significantly associated with stream flow in the
Doody, Tanya M.; Colloff, Matthew J.; Davies, Micah; Koul, Vijay; Benyon, Richard G.; Nagler, Pamela L.
2015-01-01
Water resource development and drought have altered river flow regimes, increasing average flood return intervals across floodplains in the Murray-Darling Basin, Australia, causing health declines in riparian river red gum (Eucalyptus camaldulensis) forests and woodlands. Environmental flow allocations helped to alleviate water stress during the recent Millennium Drought (1997–2010), however, quantification of the flood frequency required to support healthy E. camaldulensis communities is still needed. We quantified water requirements of E. camaldulensis for two years across a flood gradient (trees inundated at frequencies of 1:2, 1:5 and 1:10 years) at Yanga National Park, New South Wales to help inform management decision-making and design of environmental flows. Sap flow, evaporative losses and soil moisture measurements were used to determine transpiration, evapotranspiration and plant-available soil water before and after flooding. A formula was developed using plant-available soil water post-flooding and average annual rainfall, to estimate maintenance time of soil water reserves in each flood frequency zone. Results indicated that soil water reserves could sustain 1:2 and 1:5 trees for 15 months and six years, respectively. Trees regulated their transpiration rates, allowing them to persist within their flood frequency zone, and showed reduction in active sapwood area and transpiration rates when flood frequencies exceeded 1:2 years. A leaf area index of 0.5 was identified as a potential threshold indicator of severe drought stress. Our results suggest environmental water managers may have greater flexibility to adaptively manage floodplains in order to sustain E. camaldulensis forests and woodlands than has been appreciated hitherto.
The Upper San Pedro River flows intermittently north from Sonora, Mexico into southeastern Arizona and is one of the last few large unimpounded rivers in the American Southwest. The remaining perennial reaches support a desert riparian ecosystem that is a rare remnant of what ...
Multicriteria decision analysis applied to Glen Canyon Dam
Flug, M.; Seitz, H.L.H.; Scott, J.F.
2000-01-01
Conflicts in water resources exist because river-reservoir systems are managed to optimize traditional benefits (e.g., hydropower and flood control), which are historically quantified in economic terms, whereas natural and environmental resources, including in-stream and riparian resources, are more difficult or impossible to quantify in economic terms. Multicriteria decision analysis provides a quantitative approach to evaluate resources subject to river basin management alternatives. This objective quantification method includes inputs from special interest groups, the general public, and concerned individuals, as well as professionals for each resource considered in a trade-off analysis. Multicriteria decision analysis is applied to resources and flow alternatives presented in the environmental impact statement for Glen Canyon Dam on the Colorado River. A numeric rating and priority-weighting scheme is used to evaluate 29 specific natural resource attributes, grouped into seven main resource objectives, for nine flow alternatives enumerated in the environmental impact statement.
NASA Astrophysics Data System (ADS)
Akyurek, Z.; Bozoglu, B.; Girayhan, T.
2015-12-01
Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is done. MIKE21 with flexible grid is used in 2- dimensional shallow water flow modelling. 1/1000 scaled maps with the buildings for the urbanized area and 1/5000 scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of Q5 according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The effects of the available structures like bridges across the river on the flooding are presented. The upstream structural measures are studied on scenario basis. Four sub-catchments of Terme River are considered as contributing the downstream flooding. The existing circumstance of the Terme River states that the meanders of the river have a major effect on the flood situation and lead to approximately 35% reduction in the peak discharge between upstream and downstream of the river. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in at least two of the upstream catchments, estimated Q100 flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q500 without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed. Flood risk is obtained by using the flood hazard maps and water depth-damage functions plotted for a variety of building types and occupancies. The estimated mean annual hazard for the area is calculated as $340 000 and it is estimated that the upstream structural management measures can decrease the direct economic risk 11% for the 500 return period flood.
Savoie, Jennifer G.; Mullaney, John R.; Bent, Gardner C.
2017-02-21
Trends in long-term water-quality and streamflow data from six water-quality-monitoring stations within three major river basins in Massachusetts and Rhode Island that flow into Narragansett Bay and Little Narragansett Bay were evaluated for water years 1979–2015. In this study, conducted by the U.S. Geological Survey in cooperation with the Rhode Island Department of Environmental Management, the Rhode Island Water Resources Board, and the U.S. Environmental Protection Agency, water-quality and streamflow data were evaluated with a Weighted Regressions on Time, Discharge, and Season smoothing method, which removes the effects of year-to-year variation in water-quality conditions due to variations in streamflow (discharge). Trends in annual mean, annual median, annual maximum, and annual 7-day minimum flows at four continuous streamgages were evaluated by using a time-series smoothing method for water years 1979–2015.Water quality at all monitoring stations changed over the study period. Decreasing trends in flow-normalized nutrient concentrations and loads were observed during the period at most monitoring stations for total nitrogen, nitrite plus nitrate, and total phosphorus. Average flow-normalized loads for water years 1979–2015 decreased in the Blackstone River by up to 46 percent in total nitrogen, 17 percent in nitrite plus nitrate, and 69 percent in total phosphorus. The other rivers also had decreasing flow-normalized trends in nutrient concentrations and loads, except for the Pawtuxet River, which had an increasing trend in nitrite plus nitrate. Increasing trends in flow-normalized chloride concentrations and loads were observed during the study period at all of the rivers, with increases of more than 200 percent in the Blackstone River.Small increasing trends in annual mean daily streamflow were observed in 3 of the 4 rivers, with increases of 1.2 to 11 percent; however, the trends were not significant. All 4 rivers had decreases in streamflow for the annual 7-day minimums, but only 3 of the 4 rivers had decreases that were significant (34 to 54 percent). The Branch River had decreasing annual mean daily streamflow (7.5 percent) and the largest decrease in the annual 7-day minimum streamflow. The Blackstone and Pawtuxet Rivers had the largest increases in annual maximum daily flows but had decreases in the annual 7-day minimum flows.
Residence Times in Central Valley Aquifers Recharged by Dammed Rivers
NASA Astrophysics Data System (ADS)
Loustale, M.; Paukert Vankeuren, A. N.; Visser, A.
2017-12-01
Groundwater is a vital resource for California, providing between 30-60% of the state's water supply. Recent emphasis on groundwater sustainability has induced a push to characterize recharge rates and residence times for high priority aquifers, including most aquifers in California's Central Valley. Flows in almost all rivers from the western Sierra to the Central Valley are controlled by dams, altering natural flow patterns and recharge to local aquifers. In eastern Sacramento, unconfined and confined shallow aquifers (depth <300 feet) are recharged by a losing reach of the Lower American River, despite the presence of levees with slurry cut-off walls.1 Flow in the Lower American River is controlled through the operation of the Folsom and Nimbus Dams, with a minimum flow of 500 cfs. Water table elevation in wells in close proximity to the river are compared to river stage to determine the effect of river stage on groundwater recharge rates. Additionally, Tritium-3Helium dates and stable isotopes (∂18O and ∂2H) have been measured in monitoring wells 200- 2400 ft lateral distance from the river, and depths of 25 -225 feet BGS. Variation in groundwater age in the vertical and horizontal directions are used to determine groundwater flow path and velocity. These data are then used to calculate residence time of groundwater in the unconfined and confined aquifer systems for the Central Valley in eastern Sacramento. Applying groundwater age tracers can benefit future compliance metrics of the California Sustainable Groundwater Resources Act (SGMA), by quantifying river seepage rates and impacts of groundwater management on surface water resources. 1Moran et al., UCRL-TR-203258, 2004.
NASA Astrophysics Data System (ADS)
Jacobson, R. B.; Colvin, M. E.; Marmorek, D.; Randall, M.
2017-12-01
The Missouri River Recovery Program (MRRP) seeks to revise river-management strategies to avoid jeopardizing the existence of three species: pallid sturgeon (Scaphirhynchus albus), interior least tern (Sterna antillarum)), and piping plover (Charadrius melodus). Managing the river to maintain populations of the two birds (terns and plovers) is relatively straightforward: reproductive success can be modeled with some certainty as a direct, increasing function of exposed sandbar area. In contrast, the pallid sturgeon inhabits the benthic zone of a deep, turbid river and many parts of its complex life history are not directly observable. Hence, pervasive uncertainties exist about what factors are limiting population growth and what management actions may reverse population declines. These uncertainties are being addressed by the MRRP through a multi-step process. The first step was an Effects Analysis (EA), which: documented what is known and unknown about the river and the species; documented quality and quantity of existing information; used an expert-driven process to develop conceptual ecological models and to prioritize management hypotheses; and developed quantitative models linking management actions (flows, channel reconfigurations, and stocking) to population responses. The EA led to development of a science and adaptive-management plan with prioritized allocation of investment among 4 levels of effort ranging from fundamental research to full implementation. The plan includes learning from robust, hypothesis-driven effectiveness monitoring for all actions, with statistically sound experimental designs, multiple metrics, and explicit decision criteria to guide management. Finally, the science plan has been fully integrated with a new adaptive-management structure that links science to decision makers. The reinvigorated investment in science stems from the understanding that costly river-management decisions are not socially or politically supportable without better understanding of how this endangered fish will respond. While some hypotheses can be evaluated without actually implementing management actions in the river, assessing the effectiveness of other forms of habitat restoration requires in-river implementation within a rigorous experimental design.
43 CFR 418.18 - Diversions at Derby Dam.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Dam must be managed to maintain minimum terminal flow to Lahontan Reservoir or the Carson River except... achieve an average terminal flow of 20 cfs or less during times when diversions to Lahontan Reservoir are not allowed (the flows must be averaged over the total time diversions are not allowed in that...
Leigh, Catherine; Laporte, Baptiste; Bonada, Núria; Fritz, Ken; Pella, Hervé; Sauquet, Eric; Tockner, Klement; Datry, Thibault
2017-02-01
Key questions dominating contemporary ecological research and management concern interactions between biodiversity, ecosystem processes, and ecosystem services provision in the face of global change. This is particularly salient for freshwater biodiversity and in the context of river drying and flow-regime change. Rivers that stop flowing and dry, herein intermittent rivers, are globally prevalent and dynamic ecosystems on which the body of research is expanding rapidly, consistent with the era of big data. However, the data encapsulated by this work remain largely fragmented, limiting our ability to answer the key questions beyond a case-by-case basis. To this end, the Intermittent River Biodiversity Analysis and Synthesis (IRBAS; http://irbas.cesab.org) project has collated, analyzed, and synthesized data from across the world on the biodiversity and environmental characteristics of intermittent rivers. The IRBAS database integrates and provides free access to these data, contributing to the growing, and global, knowledge base on these ubiquitous and important river systems, for both theoretical and applied advancement. The IRBAS database currently houses over 2000 data samples collected from six countries across three continents, primarily describing aquatic invertebrate taxa inhabiting intermittent rivers during flowing hydrological phases. As such, there is room to expand the biogeographic and taxonomic coverage, for example, through addition of data collected during nonflowing and dry hydrological phases. We encourage contributions and provide guidance on how to contribute and access data. Ultimately, the IRBAS database serves as a portal, storage, standardization, and discovery tool, enabling collation, synthesis, and analysis of data to elucidate patterns in river biodiversity and guide management. Contribution creates high visibility for datasets, facilitating collaboration. The IRBAS database will grow in content as the study of intermittent rivers continues and data retrieval will allow for networking, meta-analyses, and testing of generalizations across multiple systems, regions, and taxa.
NASA Astrophysics Data System (ADS)
Goharian, E.; Gailey, R.; Medellin-Azuara, J.; Maples, S.; Adams, L. E.; Sandoval Solis, S.; Fogg, G. E.; Dahlke, H. E.; Harter, T.; Lund, J. R.
2016-12-01
Drought and unrelenting water demands by urban, agricultural and ecological entities present a need to manage and perhaps maximize all the major stores of water, including mountain snowpack and soil moisture, surface reservoirs, and groundwater reservoirs for the future. During drought, the over-exploitations of groundwater, which supplies up to 60% of California's agricultural water demand, has caused serious overdraft in many areas. Moreover, owing to climate change, faster and earlier snowmelt in Mediterranean climate systems such as California dictates that less water can be stored in reservoirs. If we are to substantially compensate for this loss of stored water without drastically cutting back water supply, a new era of radically increased groundwater recharge will be needed. Managed aquifer recharge (MAR) has become a common and fast-growing management option, especially in areas with high water availability variation intra- and inter-annually. Enhancing the recharge by the use of peak runoff requires integrated river basin management to improve prospects to downstream users and ecology. This study implements a quantitative approach to assess the physical and economic feasibility of MAR for American-Cosumnes River basin, CA. For this purpose, two scenarios are considered, the pre-development condition which is represented by unimpaired flows, and the other one in which available peak flow releases from Folsom reservoir derived from the CalSim II hydrologic simulation model will be employed to estimated available water for recharge. Preliminary results show peak flows during winter (Dec-Feb) and extended winter (Nov-Mar) from the American River flow can be captured within a range of 64,000 to 198,000 af/month through the Folsom South Canal for recharge. Changes in groundwater storage are estimated by using California Central Valley Groundwater-Surface Water Simulation Model (C2VSim). Results show increasing groundwater recharge benefits not only the regional groundwater storage, but also increases the groundwater storage in adjacent areas. Finally, results confirm that replenishing excess surface water during wet seasons can reduce the overdraft and help manage the groundwater in a more sustainable fashion. In addition, economic and policy implications of MAR are discussed.
Sediment regime constraints on river restoration - An example from the lower Missouri river
Jacobson, R.B.; Blevins, D.W.; Bitner, C.J.
2009-01-01
Dammed rivers are subject to changes in their flow, water-quality, and sediment regimes. Each of these changes may contribute to diminished aquatic habitat quality and quantity. Of the three factors, an altered sediment regime is a particularly unyielding challenge on many dammed rivers. The magnitude of the challenge is illustrated on the Lower Missouri River, where the largest water storage system in North America has decreased the downriver suspended-sediment load to 0.2%–17% of pre-dam loads. In response to the altered sediment regime, the Lower Missouri River channel has incised as much as 3.5 m just downstream of Gavins Point Dam, although the bed has been stable to slightly aggrading at other locations farther downstream. Effects of channel engineering and commercial dredging are superimposed on the broad-scale adjustments to the altered sediment regime.The altered sediment regime and geomorphic adjustments constrain restoration and management opportunities. Incision and aggradation limit some objectives of flow-regime management: In incising river segments, ecologically desirable reconnection of the floodplain requires discharges that are beyond operational limits, whereas in aggrading river segments, small spring pulses may inundate or saturate low-lying farmlands. Lack of sediment in the incising river segment downstream of Gavins Point Dam also limits sustainable restoration of sand-bar habitat for bird species listed under the Endangered Species Act. Creation of new shallow-water habitat for native fishes involves taking sediment out of floodplain storage and reintroducing most or all of it to the river, raising concerns about increased sediment, nutrient, and contaminant loads. Calculations indicate that effects of individual restoration projects are small relative to background loads, but cumulative effects may depend on sequence and locations of projects. An understanding of current and historical sediment fluxes, and how they vary along the river, provides a quantitative basis for defining management constraints and identifying opportunities.
Water Induced Hazard Mapping in Nepal: A Case Study of East Rapti River Basin
NASA Astrophysics Data System (ADS)
Neupane, N.
2010-12-01
This paper presents illustration on typical water induced hazard mapping of East Rapti River Basin under the DWIDP, GON. The basin covers an area of 2398 sq km. The methodology includes making of base map of water induced disaster in the basin. Landslide hazard maps were prepared by SINMAP approach. Debris flow hazard maps were prepared by considering geology, slope, and saturation. Flood hazard maps were prepared by using two approaches: HEC-RAS and Satellite Imagery Interpretation. The composite water-induced hazard maps were produced by compiling the hazards rendered by landslide, debris flow, and flood. The monsoon average rainfall in the basin is 1907 mm whereas maximum 24 hours precipitation is 456.8 mm. The peak discharge of the Rapati River in the year of 1993 at station was 1220 cu m/sec. This discharge nearly corresponds to the discharge of 100-year return period. The landslides, floods, and debris flows triggered by the heavy rain of July 1993 claimed 265 lives, affected 148516 people, and damaged 1500 houses in the basin. The field investigation and integrated GIS interpretation showed that the very high and high landslide hazard zones collectively cover 38.38% and debris flow hazard zone constitutes 6.58%. High flood hazard zone occupies 4.28% area of the watershed. Mitigation measures are recommendated according to Integrated Watershed Management Approach under which the non-structural and structural measures are proposed. The non-structural measures includes: disaster management training, formulation of evacuation system (arrangement of information plan about disaster), agriculture management practices, protection of water sources, slope protections and removal of excessive bed load from the river channel. Similarly, structural measures such as dike, spur, rehabilitation of existing preventive measures and river training at some locations are recommendated. The major factors that have contributed to induce high incidences of various types of mass movements and inundation in the basin are rock and soil properties, prolonged and high-intensity rainfall, steep topography and various anthropogenic factors.
Seasonal Dynamics of River Corridor Exchange Across the Continental United States
NASA Astrophysics Data System (ADS)
Gomez-Velez, J. D.; Harvey, J. W.; Scott, D.; Boyer, E. W.; Schmadel, N. M.
2017-12-01
River corridors store and convey mass and energy from landscapes to the ocean, altering water quality and ecosystem functioning at the local, reach, and watershed scales. As water moves through river corridors from headwaters streams to coastal estuaries, dynamic exchange between the river channel and its adjacent riparian, floodplain, and hyporheic zones, combined with ponded waters such as lakes and reservoirs, results in the emergence of hot spots and moments for biogeochemical transformations. In this work, we used the model Networks with EXchange and Subsurface Storage (NEXSS) to estimate seasonal variations in river corridor exchange fluxes and residence times along the continental United States. Using a simple routing scheme, we translate these estimates into a cumulative measure of river corridor connectivity at the watershed scale, differentiating the contributions of hyporheic zones, floodplains, and ponded waters. We find that the relative role of these exchange subsystems changes seasonally, driven by the intra-seasonal variability of discharge. In addition, we find that seasonal variations in discharge and the biogeochemical potential of hyporheic zones are out of phase. This behavior results in a significant reduction in hyporheic water quality functions during high flows and emphasizes the potential importance of reconnecting floodplains for managing water quality during seasonal high flows. Physical parameterizations of river corridor processes are critical to model and predict water quality and to sustainably manage water resources under present and future socio-economic and climatic conditions. Parsimonious models like NEXSS can play a key role in the design, implementation, and evaluation of sustainable management practices that target both water quantity and quality at the scale of the nation. This research is a product of the John Wesley Powell Center River Corridor Working Group.
Lloyd, M. Clint; Lai, Quan; Sammons, Steve; Irwin, Elise R.
2017-01-01
The stocking of fish in riverine systems to re-establish stocks for conservation and management appears limited to a few species and often occurs in reaches impacted by impoundments. Stocking of sport fish species such as centrarchids and ictalurids is often restricted to lentic environments, although stocking in lotic environments is feasible with variable success. R. L. Harris Dam on the Tallapoosa River, Alabama is the newest and uppermost dam facility on the river (operating since 1983); flows from the dam have been managed adaptively for multiple stakeholder objectives since 2005. One of the stakeholders’ primary objectives is to provide quality sport fisheries in the Tallapoosa River in the managed area below the dam. Historically, ictalurids and cyprinids dominated the river above Lake Martin. However, investigations after Harris Dam closed have detected a shift in community structure to domination by centrarchids. Flow management (termed the Green Plan) has been occurring since March 2005; however, sport fish populations as measured by recruitment of age-1 sport fishes below the dam has not responded adequately to flow management. The objectives of this research were to: (1) determine if stocking Channel Catfish Ictalurus punctatus and Redbreast Sunfish Lepomis auritus influences year-class strength; (2) estimate vital rates (i.e. growth, mortality, and recruitment) for Channel Catfish populations for use in an age-based population model; and (3) identify age-specific survivorship and fecundity rates contributing to Channel Catfish population stability. No marked Redbreast Sunfish were recaptured due to poor marking efficacy and therefore no further analysis was conducted with this species. Stocked Channel Catfish, similarly, were not recaptured, leaving reasons for non-recapture unknown. Matrix models exploring vital rates illustrated survival to age-1 for Channel Catfish to be less than 0.03% and that survival through ages 2 – 4 had equal contribution to overall population growth, indicating recruitment limitation may impact population size and stability. Results from this study indicate stock enhancement of sport fish populations below Harris Dam may not be an effective management technique at this time.
Gleason, Colin J; Smith, Laurence C
2014-04-01
Rivers provide critical water supply for many human societies and ecosystems, yet global knowledge of their flow rates is poor. We show that useful estimates of absolute river discharge (in cubic meters per second) may be derived solely from satellite images, with no ground-based or a priori information whatsoever. The approach works owing to discovery of a characteristic scaling law uniquely fundamental to natural rivers, here termed a river's at-many-stations hydraulic geometry. A first demonstration using Landsat Thematic Mapper images over three rivers in the United States, Canada, and China yields absolute discharges agreeing to within 20-30% of traditional in situ gauging station measurements and good tracking of flow changes over time. Within such accuracies, the door appears open for quantifying river resources globally with repeat imaging, both retroactively and henceforth into the future, with strong implications for water resource management, food security, ecosystem studies, flood forecasting, and geopolitics.
Modelling of vegetation-driven morphodynamics in braided rivers.
NASA Astrophysics Data System (ADS)
Stecca, Guglielmo; Fedrizzi, Davide; Hicks, Murray; Measures, Richard; Zolezzi, Guido; Bertoldi, Walter; Tal, Michal
2017-04-01
River planform results from the complex interaction between flow, sediment transport and vegetation, and can evolve following a change in these controls. The braided planform of New Zealand's Lower Waitaki River, for instance, is endangered by the action of artificially-introduced alien vegetation, which spread across the braidplain following the reduction in magnitude of floods by hydropower dam construction. This vegetation, by encouraging flow concentration into the main channel, would likely promote a shift towards a single-thread morphology if it was not artificially removed within a central fairway. The purpose of this work is to study the evolution of braided rivers such as the Waitaki under different management scenarios through two-dimensional numerical modelling. The construction of a suitable model represents a task in itself, since a modelling framework coupling all the relevant processes is not yet readily available. Our starting point is the physics-based GIAMT2D numerical model, which solves two-dimensional flow and bedload transport in wet/dry domains, and recently modified by the inclusion of a rule-based bank erosion model. We have further developed this model by adding a vegetation module, which accounts in a simplified manner for time-evolving biomass density, adjusting local flow roughness, critical shear stress for sediment transport, and bank erodibility accordingly. Our goal is to use the model to study decadal-scale evolution of a reach on the Waitaki River and predict planform characteristics under different vegetation management scenarios. Here we present the results of a preliminary application of the model to reproduce the morphodynamic evolution of a braided channel in a set of flume experiments that used alfalfa as vegetation. The experiments began with a braided morphology that spontaneoulsy formed at constant flow over a bed of bare uniform sand. The planform transitioned towards single-thread when this discharge was repeatedly cycled with periods of low flow and vegetation growth.
Simulating the Snow Water Equivalent and its changing pattern over Nepal
NASA Astrophysics Data System (ADS)
Niroula, S.; Joseph, J.; Ghosh, S.
2016-12-01
Snow fall in the Himalayan region is one of the primary sources of fresh water, which accounts around 10% of total precipitation of Nepal. Snow water is an intricate variable in terms of its global and regional estimates whose complexity is favored by spatial variability linked with rugged topography. The study is primarily focused on simulation of Snow Water Equivalent (SWE) by the use of a macroscale hydrologic model, Variable Infiltration Capacity (VIC). As whole Nepal including its Himalayas lies under the catchment of Ganga River in India, contributing at least 40% of annual discharge of Ganges, this model was run in the entire watershed that covers part of Tibet and Bangladesh as well. Meteorological inputs for 29 years (1979-2007) are drawn from ERA-INTERIM and APHRODITE dataset for horizontal resolution of 0.25 degrees. The analysis was performed to study temporal variability of SWE in the Himalayan region of Nepal. The model was calibrated by observed stream flows of the tributaries of the Gandaki River in Nepal which ultimately feeds river Ganga. Further, the simulated SWE is used to estimate stream flow in this river basin. Since Nepal has a greater snow cover accumulation in monsoon season than in winter at high altitudes, seasonality fluctuations in SWE affecting the stream flows are known. The model provided fair estimates of SWE and stream flow as per statistical analysis. Stream flows are known to be sensitive to the changes in snow water that can bring a negative impact on power generation in a country which has huge hydroelectric potential. In addition, our results on simulated SWE in second largest snow-fed catchment of the country will be helpful for reservoir management, flood forecasting and other water resource management issues. Keywords: Hydrology, Snow Water Equivalent, Variable Infiltration Capacity, Gandaki River Basin, Stream Flow
Wildhaber, Mark L.; Dey, Rima; Wikle, Christopher K.; Moran, Edward H.; Anderson, Christopher J.; Franz, Kristie J.
2015-01-01
In managing fish populations, especially at-risk species, realistic mathematical models are needed to help predict population response to potential management actions in the context of environmental conditions and changing climate while effectively incorporating the stochastic nature of real world conditions. We provide a key component of such a model for the endangered pallid sturgeon (Scaphirhynchus albus) in the form of an individual-based bioenergetics model influenced not only by temperature but also by flow. This component is based on modification of a known individual-based bioenergetics model through incorporation of: the observed ontogenetic shift in pallid sturgeon diet from marcroinvertebrates to fish; the energetic costs of swimming under flowing-water conditions; and stochasticity. We provide an assessment of how differences in environmental conditions could potentially alter pallid sturgeon growth estimates, using observed temperature and velocity from channelized portions of the Lower Missouri River mainstem. We do this using separate relationships between the proportion of maximum consumption and fork length and swimming cost standard error estimates for fish captured above and below the Kansas River in the Lower Missouri River. Critical to our matching observed growth in the field with predicted growth based on observed environmental conditions was a two-step shift in diet from macroinvertebrates to fish.
Abia, Akebe Luther King; James, Chris; Ubomba-Jaswa, Eunice; Benteke Momba, Maggy Ndombo
2017-01-01
Resuspension of sediment-borne microorganisms (including pathogens) into the water column could increase the health risk for those using river water for different purposes. In the present work, we (1) investigated the effect of sediment disturbance on microbial resuspension from riverbed sediments in laboratory flow-chambers and in the Apies River, Gauteng, South Africa; and (2) estimated flow conditions for sediment-borne microorganism entrainment/resuspension in the river. For mechanical disturbance, the top 2 cm of the sediment in flow-chambers was manually stirred. Simulating sudden discharge into the river, water (3 L) was poured within 30 s into the chambers at a 45° angle to the chamber width. In the field, sediment was disturbed by raking the riverbed and by cows crossing in the river. Water samples before and after sediment disturbance were analysed for Escherichia coli. Sediment disturbance caused an increase in water E. coli counts by up to 7.9–35.8 times original values. Using Shields criterion, river-flow of 0.15–0.69 m3/s could cause bed particle entrainment; while ~1.57–7.23 m3/s would cause resuspension. Thus, sediment disturbance in the Apies River would resuspend E. coli (and pathogens), with possible negative health implications for communities using such water. Therefore, monitoring surface water bodies should include microbial sediment quality. PMID:28295001
Abia, Akebe Luther King; James, Chris; Ubomba-Jaswa, Eunice; Benteke Momba, Maggy Ndombo
2017-03-15
Resuspension of sediment-borne microorganisms (including pathogens) into the water column could increase the health risk for those using river water for different purposes. In the present work, we (1) investigated the effect of sediment disturbance on microbial resuspension from riverbed sediments in laboratory flow-chambers and in the Apies River, Gauteng, South Africa; and (2) estimated flow conditions for sediment-borne microorganism entrainment/resuspension in the river. For mechanical disturbance, the top 2 cm of the sediment in flow-chambers was manually stirred. Simulating sudden discharge into the river, water (3 L) was poured within 30 s into the chambers at a 45° angle to the chamber width. In the field, sediment was disturbed by raking the riverbed and by cows crossing in the river. Water samples before and after sediment disturbance were analysed for Escherichia coli. Sediment disturbance caused an increase in water E. coli counts by up to 7.9-35.8 times original values. Using Shields criterion, river-flow of 0.15-0.69 m³/s could cause bed particle entrainment; while ~1.57-7.23 m³/s would cause resuspension. Thus, sediment disturbance in the Apies River would resuspend E. coli (and pathogens), with possible negative health implications for communities using such water. Therefore, monitoring surface water bodies should include microbial sediment quality.
Kinzel, Paul J.
2009-01-01
Fluvial geomorphic data were collected by the United States Geological Survey from July 2005 to June 2008 (a time period within water years 2005 to 2008) to monitor the effects of habitat enhancement activities conducted in the Platte River Whooping Crane Maintenance Trust's Uridil Property, located along the Platte River, Nebraska. The activities involved the removal of vegetation and sand from the tops of high permanent islands and the placement of the sand into the active river channel. This strategy was intended to enhance habitat for migratory water birds by lowering the elevations of the high islands, thereby eliminating a visual obstruction for roosting birds. It was also thought that the bare sand on the lowered island surfaces could serve as potential habitat for nesting water birds. Lastly, the project supplied a local source of sediment to the river to test the hypothesis that this material could contribute to the formation of lower sandbars and potential nesting sites downstream. Topographic surveys on the islands and along river transects were used to quantify the volume of removed sand and track the storage and movement of the introduced sand downstream. Sediment samples were also collected to map the spatial distribution of river bed sediment sizes before and after the management activities. While the project lowered the elevation of high islands, observations of the sand addition indicated the relatively fine-grained sand that was placed in the active river channel was rapidly transported by the flowing water. Topographic measurements made 3 months after the sand addition along transects in the area of sediment addition showed net aggradation over measurements made in 2005. In the year following the sand addition, 2007, elevated river flows from local rain events generally were accompanied by net degradation along transects within the area of sediment addition. In the spring of 2008, a large magnitude flow event of approximately 360 cubic meters per second occurred in the study reach and was accompanied by net aggradation in the managed area. These observations illustrate the high sediment transport capacity of the river channel both at lower flows, when the sand was added, and during higher flow events. This field experiment also serves as a practical example of the dynamic response of a Platte River channel to a relatively small-scale sand augmentation project directed toward enhancing in-channel habitat for avian species.
Combined Climate and Flow Abstraction Impacts on an Aggrading Alpine River
NASA Astrophysics Data System (ADS)
Bakker, M.; Costa, A.; Silva, T. A.; Stutenbecker, L.; Girardclos, S.; Loizeau, J. L.; Molnar, P.; Schlunegger, F.; Lane, S. N.
2017-12-01
Recent climatic warming and associated glacial retreat may have a large impact on sediment release and transfer in Alpine river basins. In parallel, the sediment transport capacity of many European Alpine streams is affected by hydropower exploitation, notably where flow is abstracted but the sediment supply to the headwaters is maintained at flow intakes. Here, we investigate the combined effects of climate change and flow abstraction on morphodynamics and sediment transfer in one such Alpine stream, the Borgne River, Switzerland. A unique dataset forms the basis for determining sediment deposition and transfer: (1) a set of high resolution Digital Elevation Models (DEMs) of braided river reaches is derived through applying Structure from Motion (SfM) photogrammetry to archival aerial photographs available for the period 1959-2014; (2) flow intake management data is used for the reconstruction of (up- and downstream) discharge and sediment supply since 1977. Subsequently we use bedload transport capacity calculations and climate data to assess their relative impact on the system evolution over the last 25 years. From the historical DEMs we find considerable aggradation of the river bed (up to 5 meters) since the onset of flow abstraction in 1963. Rapid and widespread aggradation however did not commence until the onset of glacier retreat in the late 1980s and the dry and notably warm years of the early 1990s. This aggradation coincided with an increase in sediment supply, although it accounts for only c. 25% of supplied material, the remainder was transferred through the studied reaches. Flow abstraction reduces transport capacity by an order of magnitude but the residual transport rates are close to sediment supply rates, which is why significant transport remains. However, the reduction in transport capacity due to direct human impacts in basin hydrology (flow abstraction) makes the system much more sensitive to changes in climate-driven hydrological variability and climate induced changes in intake management and sediment supply rates. This was exemplified by an increasingly strong climate (winter precipitation and summer temperature) influence on the delivery of glacially derived sediment.
Groover, Krishangi D.; Burgess, Matthew K.; Howle, James F.; Phillips, Steven P.
2017-02-08
Increased flows in the San Joaquin River, part of the San Joaquin River Restoration Program, are designed to help restore fish populations. However, increased seepage losses could result from these higher restoration flows, which could exacerbate existing drainage problems in neighboring agricultural lands and potentially damage crops. Channel deposits of abandoned river meanders that are hydraulically connected to the river could act as seepage conduits, allowing rapid and widespread water-table rise during restoration flows. There is a need to identify the geometry and properties of these channel deposits to assess their role in potential increased seepage effects and to evaluate management alternatives for reducing seepage. Electrical and electromagnetic surface geophysical methods have provided a reliable proxy for lithology in studies of fluvial and hyporheic systems where a sufficient electrical contrast exists between deposits of differing grain size. In this study, direct-current (DC) resistivity was used to measure subsurface resistivity to identify channel deposits and to map their subsurface geometry. The efficacy of this method was assessed by using DC resistivity surveys collected along a reach of the San Joaquin River in Merced County, California, during the summers of 2012 and 2013, in conjunction with borings and associated measurements from a hydraulic profiling tool. Modeled DC resistivity data corresponded with data from cores, hand-auger samples, a hydraulic profiling tool, and aerial photographs, confirming that DC resistivity is effective for differentiating between silt and sand deposits in this setting. Modeled DC resistivity data provided detailed two-dimensional cross-sectional resistivity profiles to a depth of about 20 meters. The distribution of high-resistivity units in these profiles was used as a proxy for identifying areas of high hydraulic conductivity. These data were used subsequently to guide the location and depth of wells installed onsite for monitoring flow in the channel deposits. Estimates of the cross-sectional area of channel deposits from DC resistivity pseudosections can provide critical input for groundwater-flow models designed to simulate river seepage and evaluate seepage-management alternatives.
Cross, Wyatt F.; Baxter, Colden V.; Donner, Kevin C.; Rosi-Marshall, Emma J.; Kennedy, Theodore A.; Hall, Robert O.; Wellard Kelly, Holly A.; Rogers, R. Scott
2011-01-01
Large dams have been constructed on rivers to meet human demands for water, electricity, navigation, and recreation. As a consequence, flow and temperature regimes have been altered, strongly affecting river food webs and ecosystem processes. Experimental high-flow dam releases, i.e., controlled floods, have been implemented on the Colorado River, USA, in an effort to reestablish pulsed flood events, redistribute sediments, improve conditions for native fishes, and increase understanding of how dam operations affect physical and biological processes. We quantified secondary production and organic matter flows in the food web below Glen Canyon dam for two years prior and one year after an experimental controlled flood in March 2008. Invertebrate biomass and secondary production declined significantly following the flood (total biomass, 55% decline; total production, 56% decline), with most of the decline driven by reductions in two nonnative invertebrate taxa, Potamopyrgus antipodarum and Gammarus lacustris. Diatoms dominated the trophic basis of invertebrate production before and after the controlled flood, and the largest organic matter flows were from diatoms to the three most productive invertebrate taxa (P. antipodarum, G. lacustris, and Tubificida). In contrast to invertebrates, production of rainbow trout (Oncorhynchus mykiss) increased substantially (194%) following the flood, despite the large decline in total secondary production of the invertebrate assemblage. This counterintuitive result is reconciled by a post-flood increase in production and drift concentrations of select invertebrate prey (i.e., Chironomidae and Simuliidae) that supported a large proportion of trout production but had relatively low secondary production. In addition, interaction strengths, measured as species impact values, were strongest between rainbow trout and these two taxa before and after the flood, demonstrating that the dominant consumer—resource interactions were not necessarily congruent with the dominant organic matter flows. Our study illustrates the value of detailed food web analysis for elucidating pathways by which dam management may alter production and strengths of species interactions in river food webs. We suggest that controlled floods may increase production of nonnative rainbow trout, and this information can be used to help guide future dam management decisions.
Sankey, Joel B.; Ralston, Barbara E.; Grams, Paul E.; Schmidt, John C.; Cagney, Laura E.
2015-01-01
Documentation of the interacting effects of river regulation and climate on riparian vegetation has typically been limited to small segments of rivers or focused on individual plant species. We examine spatiotemporal variability in riparian vegetation for the Colorado River in Grand Canyon relative to river regulation and climate, over the five decades since completion of the upstream Glen Canyon Dam in 1963. Long-term changes along this highly modified, large segment of the river provide insights for management of similar riparian ecosystems around the world. We analyze vegetation extent based on maps and imagery from eight dates between 1965 and 2009, coupled with the instantaneous hydrograph for the entire period. Analysis confirms a net increase in vegetated area since completion of the dam. Magnitude and timing of such vegetation changes are river stage-dependent. Vegetation expansion is coincident with inundation frequency changes and is unlikely to occur for time periods when inundation frequency exceeds approximately 5%. Vegetation expansion at lower zones of the riparian area is greater during the periods with lower peak and higher base flows, while vegetation at higher zones couples with precipitation patterns and decreases during drought. Short pulses of high flow, such as the controlled floods of the Colorado River in 1996, 2004, and 2008, do not keep vegetation from expanding onto bare sand habitat. Management intended to promote resilience of riparian vegetation must contend with communities that are sensitive to the interacting effects of altered flood regimes and water availability from river and precipitation.
NASA Astrophysics Data System (ADS)
Sankey, Joel B.; Ralston, Barbara E.; Grams, Paul E.; Schmidt, John C.; Cagney, Laura E.
2015-08-01
Documentation of the interacting effects of river regulation and climate on riparian vegetation has typically been limited to small segments of rivers or focused on individual plant species. We examine spatiotemporal variability in riparian vegetation for the Colorado River in Grand Canyon relative to river regulation and climate, over the five decades since completion of the upstream Glen Canyon Dam in 1963. Long-term changes along this highly modified, large segment of the river provide insights for management of similar riparian ecosystems around the world. We analyze vegetation extent based on maps and imagery from eight dates between 1965 and 2009, coupled with the instantaneous hydrograph for the entire period. Analysis confirms a net increase in vegetated area since completion of the dam. Magnitude and timing of such vegetation changes are river stage-dependent. Vegetation expansion is coincident with inundation frequency changes and is unlikely to occur for time periods when inundation frequency exceeds approximately 5%. Vegetation expansion at lower zones of the riparian area is greater during the periods with lower peak and higher base flows, while vegetation at higher zones couples with precipitation patterns and decreases during drought. Short pulses of high flow, such as the controlled floods of the Colorado River in 1996, 2004, and 2008, do not keep vegetation from expanding onto bare sand habitat. Management intended to promote resilience of riparian vegetation must contend with communities that are sensitive to the interacting effects of altered flood regimes and water availability from river and precipitation.
NASA Astrophysics Data System (ADS)
Kaplan, D. A.; Livino, A.; Arias, M. E.; Crouch, T. D.; Anderson, E.; Marques, E.; Dutka-Gianelli, J.
2017-12-01
The Amazon River watershed is the world's largest river basin and provides US$30 billion/yr in ecosystem services to local populations, national societies, and humanity at large. The Amazon is also a relatively untapped source of hydroelectricity for Latin America, and construction of >30 large hydroelectric dams and >170 small dams is currently underway. Hydropower development will have a cascade of physical, ecological, and social effects at local to global scales. While Brazil has well-defined environmental impact assessment and mitigation programs, these efforts often fail to integrate data and knowledge across disciplines, sectors, and societies throughout the dam planning process. Resulting failures of science, policy, and management have had widespread environmental, economic, and social consequences, highlighting the need for an improved theoretical and practical framework for understanding the impacts of Amazon dams and guiding improved management that respects the needs and knowledge of diverse set of stakeholders. We present a conceptual framework that links four central goals: 1) connecting research in different disciplines (interdisciplinarity); 2) incorporating new knowledge into decision making (adaptive management); 3) including perspectives and participation of non-academic participants in knowledge generation (transdisciplinarity); and 4) extending the idea of environmental flows ("how much water does a river need?") to better consider human uses and users through the concept of fluvial anthropology ("how much water does a society need?"). We use this framework to identify opportunities for improved integration strategies within the (Brazilian) hydroelectric power plant planning and implementation "lifecycle." We applied this approach to the contentious Belo Monte dam, where compliance with regulatory requirements, including monitoring for environmental flows, exemplifies the opportunity for applying adaptive management, but also highlights an urgent need for much improved communication with and participation of affected communities.
Quantifying the multiple, environmental benefits of reintroducing the Eurasian Beaver
NASA Astrophysics Data System (ADS)
Brazier, Richard; Puttock, Alan; Graham, Hugh; Anderson, Karen; Cunliffe, Andrew; Elliott, Mark
2016-04-01
Beavers are ecological engineers with an ability to modify the structure and flow of fluvial systems and create complex wetland environments with dams, ponds and canals. Consequently, beaver activity has potential for river restoration, management and the provision of multiple environmental ecosystem services including biodiversity, flood risk mitigation, water quality and sustainable drinking water provision. With the current debate surrounding the reintroduction of beavers into the United Kingdom, it is critical to monitor the impact of beavers upon the environment. We have developed and implemented a monitoring strategy to quantify the impact of reintroducing the Eurasian Beaver on multiple environmental ecosystem services and river systems at a range of scales. First, the experimental design and preliminary results will be presented from the Mid-Devon Beaver Trial, where a family of beavers has been introduced to a 3 ha enclosure situated upon a first order tributary of the River Tamar. The site was instrumented to monitor the flow rate and quality of water entering and leaving the site. Additionally, the impacts of beavers upon riparian vegetation structure, water/carbon storage were investigated. Preliminary results indicate that beaver activity, particularly the building of ponds and dams, increases water storage within the landscape and moderates the river response to rainfall. Baseflow is enhanced during dry periods and storm flow is attenuated, potentially reducing the risk of flooding downstream. Initial analysis of water quality indicates that water entering the site (running off intensively managed grasslands upslope), has higher suspended sediment loads and nitrate levels, than that leaving the site, after moving through the series of beaver ponds. These results suggest beaver activity may also act as a means by which the negative impact of diffuse water pollution from agriculture can be mitigated thus providing cleaner water in rivers downstream. Secondly, the River Otter Beaver Trial will be discussed. In 2015 Natural England granted a five year licence to monitor beavers living wild upon the River Otter, Devon. The River Otter, ca. 280 km2, is a dynamic, spatey system with downstream areas exhibiting poor ecological status, primarily due to sediment and phosphorus loading, which both impact on fish numbers. The impacts of Eurasian Beaver upon English river systems are currently poorly understood, with the outcome of this pilot study having significant implications for river restoration and management. This project, the first of its kind in England, is monitoring the impacts of beavers upon the River Otter catchment with three main scientific objectives: (1) Characterise the existing structure of the River Otter riparian zone and quantify any changes during the 2015-2019 period; (2) Quantify the impact of beaver activity on water flow at a range of scales in the Otter catchment; (3) Evaluate the impact of beaver activity on water quality. Finally, lessons learnt from these monitoring programs will be discussed in light of the need for more natural solutions to flood and diffuse pollution management. We conclude that whilst our work demonstrates multiple positive benefits of Beaver reintroduction, considerably more, scale-appropriate monitoring is required before such results could be extrapolated to landscape scales.
NASA Astrophysics Data System (ADS)
Scheibe, T. D.; Song, H. S.; Stegen, J.; Graham, E.; Bao, J.; Goldman, A.; Zhou, T.; Crump, A.; Hou, Z.; Hammond, G. E.; Chen, X.; Huang, M.; Zhang, X.; Nelson, W. C.; Garayburu-Caruso, V. A.
2017-12-01
The exchange of water between rivers and surrounding subsurface environments (hydrologic exchange flows or HEFs) is a vital aspect of river ecology and watershed function. HEFs play a key role in water quality, nutrient cycling, and ecosystem health, and they modulate water temperatures and enhance exchange of terrestrial and aquatic nutrients, which lead to elevated biogeochemical activity. However, these coupled hydrologic and microbiological processes are not well understood, particularly in the context of large managed river systems with highly variable discharge, and are poorly represented in system-scale quantitative models. Using the 75 km Hanford Reach of the Columbia River as the research domain, we apply high-resolution flow simulations supported by field observations to understand how variable river discharge interacts with hydromorphic and hydrogeologic structures to generate HEFs and distributions of subsurface residence times. We combine this understanding of hydrologic processes with microbiological activity measurements and reactive transport models to elucidate the holistic impacts of variable discharge on river corridor (surface and subsurface) ecosystems. In particular, our project seeks to develop and test new conceptual and numerical models that explicitly incorporate i) the character (chemical speciation and thermodynamics) of natural organic matter as it varies along flow paths and through mixing of groundwater and surface water, and ii) the history-dependent response of microbial communities to varying time scales of inundation associated with fluctuations in river discharge. The results of these high-resolution mechanistic models are guiding formulation and parameterization of reduced-order models applicable at reach to watershed scales. New understanding of coupled hydrology and microbiology in the river corridor will play a key role in reduction of uncertainties associated with major Earth system biogeochemical fluxes, improving predictions of environmental and human impacts on water quality and riverine ecosystems, and supporting environmentally responsible management of linked energy-water systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, Nigel W.T.
Seasonally managed wetlands in the Grasslands Basin ofCalifornia's San Joaquin Valley provide food and shelter for migratorywildfowl during winter months and sport for waterfowl hunters during theannual duck season. Surface water supply to these wetland contain saltwhich, when drained to the San Joaquin River during the annual drawdownperiod, negatively impacts downstream agricultural riparian waterdiverters. Recent environmental regulation, limiting discharges salinityto the San Joaquin River and primarily targeting agricultural non-pointsources, now addresses return flows from seasonally managed wetlands.Real-time water quality management has been advocated as a means ofmatching wetland return flows to the assimilative capacity of the SanJoaquin River. Past attemptsmore » to build environmental monitoring anddecision support systems to implement this concept have failed forreasons that are discussed in this paper. These reasons are discussed inthe context of more general challenges facing the successfulimplementation of environmental monitoring, modelling and decisionsupport systems. The paper then provides details of a current researchand development project which will ultimately provide wetland managerswith the means of matching salt exports with the available assimilativecapacity of the San Joaquin River, when fully implemented. Manipulationof the traditional wetland drawdown comes at a potential cost to thesustainability of optimal wetland moist soil plant habitat in thesewetlands - hence the project provides appropriate data and a feedback andresponse mechanism for wetland managers to balance improvements to SanJoaquin River quality with internally-generated information on the healthof the wetland resource. The author concludes the paper by arguing thatthe architecture of the current project decision support system, whencoupled with recent advances in environmental data acquisition, dataprocessing and information dissemination technology, holds significantpromise to address some of the problems described earlier in the paperthat have limited past efforts to improve Basin water qualitymanagement.« less
Zarriello, Phillip J.; Straub, David E.; Westenbroek, Stephen M.
2014-01-01
Heavy persistent rains from late February through March 2010 caused severe flooding and set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models were updated for selected reaches covering about 33 river miles in Moshassuck and Woonasquatucket River Basins from the most recent approved Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) from specified flows and boundary conditions. Reaches modeled include the main stem of the Moshassuck River and its main tributary, the West River, and three tributaries to the West River—Upper Canada Brook, Lincoln Downs Brook, and East Branch West River; and the main stem of the Woonasquatucket River. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 and incorporate new field-survey data at structures, high-resolution land-surface elevation data, and flood flows from a related study. The models were used to simulate steady-state WSEs at the 1- and 2-percent annual exceedance probability (AEP) flows, which is the estimated AEP of the 2010 flood in the Moshassuck River Basin and the Woonasquatucket River, respectively. The simulated WSEs were compared to the high-water mark (HWM) elevation data obtained in these basins in a related study following the March–April 2010 flood, which included 18 HWMs along the Moshassuck River and 45 HWMs along the Woonasquatucket River. Differences between the 2010 HWMs and the simulated 2- and 1-percent AEP WSEs from the FISs and the updated models developed in this study varied along the reach. Most differences could be attributed to the magnitude of the 2- and 1-percent AEP flows used in the FIS and updated model flows. Overall, the updated model and the FIS WSEs were not appreciably different when compared to the observed 2010 HWMs along the Woonasquatucket and Moshassuck Rivers.
River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998
Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.
2001-01-01
The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake/ reservoir and river operations including diversion of Truckee River water to the Truckee Canal for transport to the Carson River Basin. In addition to the operations and streamflow-routing modules, the modeling system is structured to allow integration of other modules, such as water-quality and precipitation-runoff modules. The USGS Truckee River Basin operations model was designed to provide simulations that allow comparison of the effects of alternative management practices or allocations on streamflow or reservoir storages in the Truckee River Basin over long periods of time. Because the model was not intended to reproduce historical streamflow or reservoir storage values, a traditional calibration that includes statistical comparisons of observed and simulated values would be problematic with this model and database. This report describes a chronology and background of decrees, agreements, and laws that affect Truckee River operational practices; the construction of the Truckee River daily operations model; the simulation of Truckee River Basin operations, both current and proposed under the draft TROA and WQSA; and suggested model improvements and limitations. The daily operations model uses Hydrological Simulation Program?FORTRAN (HSPF) to simulate flow-routing and reservoir and river operations. The operations model simulates reservoir and river operations that govern streamflow in the Truckee River from Lake Tahoe to Pyramid Lake, including diversions through the Truckee Canal to Lahontan Reservoir in the Carson River Basin. A general overview is provided of daily operations and their simulation. Supplemental information that documents the extremely complex operating rules simulated by the model is available.
Ecosystem effects of environmental flows: Modelling and experimental floods in a dryland river
Shafroth, P.B.; Wilcox, A.C.; Lytle, D.A.; Hickey, J.T.; Andersen, D.C.; Beauchamp, Vanessa B.; Hautzinger, A.; McMullen, L.E.; Warner, A.
2010-01-01
Successful environmental flow prescriptions require an accurate understanding of the linkages among flow events, geomorphic processes and biotic responses. We describe models and results from experimental flow releases associated with an environmental flow program on the Bill Williams River (BWR), Arizona, in arid to semiarid western U.S.A. Two general approaches for improving knowledge and predictions of ecological responses to environmental flows are: (1) coupling physical system models to ecological responses and (2) clarifying empirical relationships between flow and ecological responses through implementation and monitoring of experimental flow releases. We modelled the BWR physical system using: (1) a reservoir operations model to simulate reservoir releases and reservoir water levels and estimate flow through the river system under a range of scenarios, (2) one- and two-dimensional river hydraulics models to estimate stage-discharge relationships at the whole-river and local scales, respectively, and (3) a groundwater model to estimate surface- and groundwater interactions in a large, alluvial valley on the BWR where surface flow is frequently absent. An example of a coupled, hydrology-ecology model is the Ecosystems Function Model, which we used to link a one-dimensional hydraulic model with riparian tree seedling establishment requirements to produce spatially explicit predictions of seedling recruitment locations in a Geographic Information System. We also quantified the effects of small experimental floods on the differential mortality of native and exotic riparian trees, on beaver dam integrity and distribution, and on the dynamics of differentially flow-adapted benthic macroinvertebrate groups. Results of model applications and experimental flow releases are contributing to adaptive flow management on the BWR and to the development of regional environmental flow standards. General themes that emerged from our work include the importance of response thresholds, which are commonly driven by geomorphic thresholds or mediated by geomorphic processes, and the importance of spatial and temporal variation in the effects of flows on ecosystems, which can result from factors such as longitudinal complexity and ecohydrological feedbacks. ?? Published 2009.
NASA Astrophysics Data System (ADS)
Han, Jianqiao; Zhang, Wei; Yuan, Jing; Fan, Yongyang
2018-03-01
Elucidating the influence of dams on fluvial processes can benefit river protection and basin management. Based on hydrological and topographical data, we analyzed channel evolution in anabranching reaches under changing hydrological regimes influenced by the Three Gorges Dam. The main conclusions are as follows: 1) the channels of specific anabranching reaches were defined as flood trend channels or low-flow trend channels according to the distribution of their flow characteristics. The anabranching reaches were classified as T1 or T2. The former is characterized by the correspondence between the flood trend and branch channels, and the latter is characterized by the correspondence between the flood trend and main channels; 2) on the basis of the new classification, the discrepant patterns of channel evolution seen in anabranching reaches were unified into a pattern that showed flood trend channels shrinking and low-flow trend channels expanding; 3) flood abatement and the increased duration of moderate flow discharges are the main factors that affect channel adjustments in anabranching reaches after dam construction; and 4) in the next few decades, the pattern of channel evolution will remain the same as that of the Three Gorges Dam operation. That is, the morphology will fully adapt to a flow with a low coefficient of variation. Our results are of interest in the management of the Yangtze River and other rivers influenced by dams.
NASA Astrophysics Data System (ADS)
Wei, J.; Wang, G.; Liu, R.
2008-12-01
The Tarim River Basin is the longest inland river in China. Due to water scarcity, ecologically-fragile is becoming a significant constraint to sustainable development in this region. To effectively manage the limited water resources for ecological purposes and for conventional water utilization purposes, a real-time water resources allocation Decision Support System (DSS) has been developed. Based on workflows of the water resources regulations and comprehensive analysis of the efficiency and feasibility of water management strategies, the DSS includes information systems that perform data acquisition, management and visualization, and model systems that perform hydrological forecast, water demand prediction, flow routing simulation and water resources optimization of the hydrological and water utilization process. An optimization and process control strategy is employed to dynamically allocate the water resources among the different stakeholders. The competitive targets and constraints are taken into considered by multi-objective optimization and with different priorities. The DSS of the Tarim River Basin has been developed and been successfully utilized to support the water resources management of the Tarim River Basin since 2005.
Ying Ouyang; Prem B. Parajuli; Yide Li; Theodor D. Leininger; Gary Feng
2017-01-01
Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature...
Light, Helen M.; Darst, Melanie R.; Grubbs, J.W.
1995-01-01
This report describes progress and interim results of the second year of a 4-year study. The purpose of the 4-year study is to describe aquatic habitat types in the Apalachicola River floodplain and quantify the amount of habitat inundated by the river at various stages. Final results will be used to determine possible effects of altered flows on floodplain habitats and their associated fish communities. The study is being conducted by the U.S. Geological Survey in cooperation with the Northwest Florida Water Management District as part of a comprehensive study of water needs throughout two large river basins in Florida, Georgia, and Alabama. By the end of the second year, approxi- mately 80 to 90 percent of field data collection was completed. Water levels at 56 floodplain and main channel locations at study sites were read numerous times during low water and once or twice during high water. Rating curves estimating the relationship between stage at a floodplain site and flow of the Apalachicola River at Chattahoochee are presented for 3 sites in the upper river. Elevation, substrate type, and amount of vegetative structure were described at 27 cross sections representing eight different floodplain tributary types at upper, middle, and lower river study sites. A summary of substrate and structure information from all cross sections is presented. Substrate and structure characteristics of floodplain habitats inundated when river flow was at record low flow, mean annual low flow, and mean flow are described for 3 cross sections in the upper river. Digital coverage of high-altitude infra-red aerial photography was processed for use in a Geographic Information System which will be used to map aquatic habitats in the third year of the study. A summary of the literature on fish utilization of floodplain habitats is described. Eighty-one percent of the species collected in the main channel of the Apalachicola River are known to occur in floodplain habitats of eastern rivers.
Curtis, Jennifer A.; Wright, Scott A.; Minear, Justin T.; Flint, Lorraine E.
2015-01-01
The highest rates of change in the areal extents of channel and riparian features were observed during the pre‑2001 period, which was longer and relatively wetter than the post-2001 period. A series of tributary floods in 1997, 1998, and 2006 increased channel complexity and floodplain connectivity. During the post-2006 period, managed-flow releases, in the absence of tributary flooding, combined with gravel augmentation and mechanical restoration, caused localized increases in sediment supply and transport capacity that led to smaller, but measurable, increases in channel complexity and floodplain connectivity in the upper river near Lewiston Dam. Extensive pre-2001 channel widening and the muted geomorphic response of channel rehabilitation sites to post-2001 managed flows highlight the need for continued monitoring and assessment of the magnitude, duration, and timing of prescriptive flows and associated geomorphic responses.
NASA Astrophysics Data System (ADS)
Han, Jianqiao; Sun, Zhaohua; Li, Yitian; Yang, Yunping
2017-12-01
Investigation of water stages influenced by human projects provides better understanding of riverine geomorphological processes and river management. Based on hydrological data collected over 60 years, an extreme stage-extreme discharge analysis and a specific-gauge analysis were performed to research the individual and combined effects of multiple engineering projects on a long-term time series of water stages in the middle Yangtze River. Conclusions are as follows. (1) In accordance with the operation years of the Jingjiang cutoff (CF), the Gezhouba Dam (GD), and the Three Gorges Dam (TGD), the time series (1955-2012) was divided into periods of P1 (1955-1970), P2 (1971-1980), P3 (1981-2002), and P4 (2003 - 2012). Water stage changes during P1-P2, P2-P3, and P3-P4 are varied because of the differences in the types and scales of these projects. The stage decreased at Shashi and increased at Luoshan owing to the operation of the CF. Additionally, after the GD was constructed, the low-flow stage decreased in the upstream reach of Chenglingji and increased in its downstream reach, whereas the flood stage merely decreased at Yichang. Moreover, the TGD resulted in an overall decrease in low-flow stages and a limited increase in flood stages because of the differential adjustments of river geometry and resistance between the low-flow channel and flood channel. (2) Although differences existed in the scouring mechanisms between streamwise erosion associated with dams and headward erosion associated with cutoffs, particular bed textures in the gravel reach led to a similar adjustment that stage reduction at Shashi was the greatest of all stations, which caused the flow slope and sediment transport capacity to decrease in the sandy reach. (3) These engineering projects caused changes in average low-flow and flood stages that varied between Yichang (- 1.58 and - 0.08 m respectively), Shashi (- 3.54 and - 0.12 m), and Luoshan (1.15 and 0.97 m) from P1 to P4. However, less influence was observed at Hankou owing to its remote location and the short impoundment time of the TGD. (4) Potentially detrimental decreases in low-flow stages and increases in flood stages should be monitored and managed in the future. Our results are of practical significance for river management and the evaluation of the influences of large-scale anthropogenic activities on the hydrological regimes of large rivers.
NASA Astrophysics Data System (ADS)
Hughes, Francine M. R.; Barsoum, Nadia; Richards, Keith S.; Winfield, Mark; Hayes, Adrian
2000-10-01
Management of river flows has altered the pattern of flood arrival times and reduced their frequency and duration on many European floodplains. Floodplain tree species depend on floods both to provide new sites for their regeneration and to recharge water tables at various depths in the rooting zone. A reduction in floods is one factor that has led to loss of river corridor biodiversity, with early successional tree species from the Salicaceae being particularly adversely affected. Members of the Salicaceae are dioecious and it is possible that the males and females of these species have measurably different water table requirements, which might lead to spatial segregation of the sexes on a floodplain. This paper describes an investigation that was carried out into the response of male and female black poplar (Populus nigra L. subspecies betulifolia (Pursh) W. Wettst.) to different soil moisture conditions. An experiment was set up on an alluvial island in the River Great Ouse (UK) in which cuttings of male and female black poplar were grown in different sediment types with different water table levels. The experiment was carried out over two field seasons in 1997 and 1998. Results showed that females tended to prefer wetter and more nutrient-rich sites than males but that there was considerable overlap in their requirements. A complementary genetic study showed very little genetic variation in the experimental population, which may also partially explain the relatively low level of variation between the two sexes found in the study. It is suggested that some limited spatial segregation of the sexes does occur in response to soil moisture availability and that river flow management which aims to maintain or increase river corridor biodiversity may need to take this into account.
NASA Astrophysics Data System (ADS)
Scheibe, T. D.; Hou, Z.; Murray, C. J.; Perkins, W. A.; Arntzen, E.; Richmond, M. C.; Mackley, R.; Johnson, T. C.
2016-12-01
The hyporheic zone (HZ) is the sediment layer underlying a river channel within which river water and groundwater may interact, and plays a significant role in controlling energy and nutrient fluxes and biogeochemical reactions in hydrologic systems. The area of this study is the HZ along the Hanford Reach of the Columbia River in southeastern Washington State, where daily and seasonal river stage changes, hydromorphology, and heterogeneous sediment texture drive groundwater-river water exchange and associated biogeochemical processes. The recent alluvial sediments immediately underlying the river are geologically distinct from the surrounding aquifer sediments, and serve as the primary locale of mixing and reaction. In order to effectively characterize the HZ, a novel approach was used to define and map recent alluvial (riverine) facies using river bathymetric attributes (e.g., slope, aspect, and local variability) and simulated hydrodynamic attributes (e.g., shear stress, flow velocity, river depth). The riverine facies were compared with riverbed substrate texture data for confirmation and quantification of textural relationships. Multiple flow regimes representing current (managed) and historical (unmanaged) flow hydrographs were considered to evaluate hydrodynamic controls on the current riverbed grain size distributions. Hydraulic properties were then mapped at reach and local scales by linking textural information to hydraulic property measurements from piezometers. The spatial distribution and thickness of riverine facies is being further constrained by integrating 3D time-lapse electrical resistivity tomography. The mapped distributions of riverine facies and the corresponding flow, transport and biogeochemical properties are supporting the parameterization of multiscale models of hyporheic exchange between groundwater and river water and associated biogeochemical transformations.
Cross, V.A.; Foster, D.S.; Bratton, J.F.
2010-01-01
In 2006 the U.S. Geological Survey conducted a geophysical survey on the Chesapeake Bay and the Potomac River Estuary in order to test hypotheses about groundwater flow under and into Chesapeake Bay. Resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge and are contributing to eutrophication. The research carried out as part of this study was designed to help refine nutrient budgets for Chesapeake Bay by characterizing submarine groundwater flow and groundwater discharge beneath part of the bay?s mainstem and a major tributary, the Potomac River Estuary. The data collected indicate that plumes of reduced-salinity groundwater are commonly present along the shorelines of Chesapeake Bay and the Potomac River Estuary. Data also show that buried paleochannels generally do not serve as conduits for flow of groundwater from land to underneath the bay and estuary but rather may focus discharge of reduced-salinity water along their flanks, and provide routes for migration of saltwater into the sediments.
Nesting habitat use by river chubs in a hydrologically variable Appalachian tailwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peoples, Brandon K.; McManamay, Ryan A.; Orth, Donald J.
2013-07-02
Hydrologic alteration continues to affect aquatic biodiversity asknowledge of the spawning requirements of fishes, especially keystone or foundation species, becomes more critical for conservation and management. Our objectives are to quantify the spawning micro- and mesohabitat use of river chub Nocomis micropogon, a gravel mound nesting minnow, in a hydrologically regulated river in North Carolina, USA. At the microhabitat scale, substrate sizes on nests were compared with pebble counts in 1-m2 adjacent quadrats. Average depths and current velocities at nests were compared with measurements from paired transects. At the mesohabitat scale, generalised linear mixed models (GLMMs) were used to identifymore » the importance of average bed slope, average depth and percentages of rock outcrops (a measure of flow heterogeneity and velocity shelters) for predicting nest presence and abundance. To relate nesting activities to hydrologic alteration from dam operation, nest dimensions were measured before and after a scheduled discharge event approximately six times that of base flow. In addition, linear regression was used to predict changes in the use of flow refugia and overhead cover with increased fluvial distance from the dam. Microhabitats in which nests were placed had, on average, slower current velocities and shallower depths. Gravel diameters of nests were significantly smaller than substrate particles adjacent to nests. GLMMs revealed that mesohabitats with nests were shallower, had more moderate slopes and greater proportions of rock outcrops than mesohabitats without nests. Finally, the scheduled discharge event significantly flattened nests. Near the dam, nests were built in close proximity ( 2 m) to velocity shelters; this relationship diminished with distance from the dam. River chubs are spawning habitat specialists. Because multiple species rely on river chub nests for reproduction and food, the needs of this species should be considered when managing instream flows.« less
1991-02-01
Trenton to Wilmington. Here the Potomac-Raritan- Magothy aquifer system outcrops along approximately 65 miles of the Delaware River as it enters the...industrial supply, ground water from the Potomac-Raritan- Magothy aquifer system flowed to the Delaware River. As the area became populated and industrialized...Delaware River, precipitation, or other freshwater sources to prevent saltwater intrusion of the Potomac-Raritan- Magothy aquifer. Without replenishment
Missouri River Recovery Management Plan and Environmental Impact Statement
2014-04-11
Proficient in hydrologic and hydraulic engineering computer models, particularly ResSim and HEC - RAS ; working experience with large river systems including...to help study teams determine ecosystem responses to changes in the flow regime of a river or connected wetland. HEC -EFM analyses involve: 1...Description of the Model and How It Will Be Applied in the Study Approval Status HEC - RAS The function of this model is to conduct one-dimensional hydraulic
Assessing Groundwater Resources Sustainability Using Groundwater Footprint Concept
NASA Astrophysics Data System (ADS)
Charchousi, Despoina; Spanoudaki, Katerina; Papadopoulou, Maria P.
2017-04-01
Over-pumping, water table depletion and climate change impacts require effective groundwater management. The Groundwater Footprint (GWF), introduced by Gleeson et al. in 2012 expresses the area required to sustain groundwater use and groundwater dependent ecosystem services. GWF represents a water balance between aquifer inflows and outflows, focusing on environmental flow requirements. Developing the water balance, precipitation recharge and additional recharge from irrigation are considered as inflows, whereas outflows are considered the groundwater abstraction from the aquifer of interest and the quantity of groundwater that is needed to sustain ecosystem services. The parameters required for GWF calculation can be estimated through in-situ measurements, observations and models outputs. The actual groundwater abstraction is often difficult to be estimated with a high accuracy. Environmental flow requirements can be calculated through different approaches; the most accurate of which are considered the ones that focus on hydro-ecological data analysis. As the GWF is a tool recently introduced in groundwater assessment and management, only a few studies have been reported in the literature to use it as groundwater monitoring and management tool. The present study emphasizes on a case study in Southern Europe, where awareness should be raised about rivers' environmental flow. GWF concept will be applied for the first time to a pilot area in Greece, where the flow of the perennial river that crosses the area of interest is dependent on baseflow. Recharge and abstraction of the pilot area are estimated based on historical data and previous reports and a groundwater flow model is developed using Visual Modflow so as to diminish the uncertainty of the input parameters through model calibration. The groundwater quantity that should be allocated on surface water body in order to sustain satisfactory biological conditions is estimated under the assumption that surface water and groundwater contribute to the environmental flow in an equally proportion as in case of natural flow. In order to express baseflow as a percentage of natural mean flow, a precipitation-runoff model is developed. The environmental flow of the river of interest is estimated as a percentage of the river's average flow (Tennant method). Subsequently, the groundwater contribution is calculated as a percentage of the environmental flow equal to the percentage of the baseflow in the natural flow. GWF is finally compared with the actual size of the area of interest in order to assess the groundwater use and sustainability of this area.
Kock, Tobias J.; Henning, Julie A.; Liedtke, Theresa L.; Royer, Ida M.; Ekstrom, Brian K.; Rondorf, Dennis W.
2011-01-01
Formerly landlocked Coho Salmon (Oncorhynchus kisutch) juveniles (age 2) were monitored following release into the free-flowing Cowlitz River to determine if they remained in the river or resumed seaward migration. Juvenile Coho Salmon were tagged with a radio transmitter (30 fish) or Floy tag (1050 fish) and their behavior was monitored in the lower Cowlitz River. We found that 97% of the radio-tagged fish remained in the Cowlitz River beyond the juvenile outmigration period, and the number of fish dispersing downstream decreased with increasing distance from the release site. None of the tagged fish returned as spawning adults in the 2 y following release. We suspect that fish in our study failed to migrate because they exceeded a threshold in size, age, or physiological status. Tagged fish in our study primarily remained in the Cowlitz River, thus it is possible that these fish presented challenges to juvenile salmon migrating through the system either directly by predation or indirectly by competition for food or habitat. Given these findings, returning formerly landlocked Coho Salmon juveniles to the free-flowing river apparently provided no benefit to the anadromous population. These findings have management implications in locations where landlocked salmon have the potential to interact with anadromous species of concern.
Human activities and its Responses to Glacier Melt Water Over Tarim River Basin
NASA Astrophysics Data System (ADS)
He, Hai; Zhou, Shenbei; Bai, Minghao
2017-04-01
Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced the influence on water demand management. Second, water demand management factors positively relate to ecological improvement in Tarim River Basin. Third, after a further prediction on glacier melt with fuzzy neural network, it finds that the weaker adjustment influence of glacier runoff would put Tarim River Basin into a much weaker mutual-dependent relationship. The research believes that if short-term activity of society has wrongly adapted to runoff increase from faster glacier melt, it would put social development and ecological recovery of Tarim River Basin into a higher vulnerable way. Key words: Tarim River Basin, Changing Condition, Glacier Melt, mutual-dependent vulnerability
Developing New Modelling Tools for Environmental Flow Assessment in Regulated Salmon Rivers
NASA Astrophysics Data System (ADS)
Geris, Josie; Soulsby, Chris; Tetzlaff, Doerthe
2013-04-01
There is a strong political drive in Scotland to meet all electricity demands from renewable sources by 2020. In Scotland, hydropower generation has a long history and is a key component of this strategy. However, many rivers sustain freshwater communities that have both high conservation status and support economically important Atlantic salmon fisheries. Both new and existing hydropower schemes must be managed in accordance with the European Union's Water Framework Directive (WFD), which requires that all surface water bodies achieve good ecological status or maintain good ecological potential. Unfortunately, long-term river flow monitoring is sparse in the Scottish Highlands and there are limited data for defining environmental flows. The River Tay is the most heavily regulated catchment in the UK. To support hydropower generation, it has an extensive network of inter- and intra- catchment transfers, in addition to a large number of regulating reservoirs for which abstraction legislation often only requires minimum compensation flows. The Tay is also considered as one of Scotland's most important rivers for Atlantic salmon (Salmo salar), and there is considerable uncertainty as to how best change reservoir operations to improve the ecological potential of the river system. It is now usually considered that environmental flows require more than a minimum compensation flow, and instead should cover a range of hydrological flow aspects that represent ecologically relevant streamflow attributes, including magnitude, timing, duration, frequency and rate of change. For salmon, these hydrological indices are of particular interest, with requirements varying at different stages of their life cycle. To meet the WFD requirements, rationally alter current abstraction licences and provide an evidence base for regulating new hydropower schemes, advanced definitions for abstraction limits and ecologically appropriate flow releases are desirable. However, a good understanding of the natural flow variability and the hydrological impacts of the regulation is unavailable, partly because pre-regulation data of existing hydropower schemes are lacking. Here we develop a novel modelling approach for characterising natural flow regimes and defining hydrological flow indices. This allows us to quantitatively assess the impacts of hydropower to better inform environmental flow requirements for the Atlantic salmon river ecosystem. Results are presented for the River Lyon (390 km2), a regulated headwater catchment of the River Tay. The HBV hydrological rainfall-runoff model is used to simulate flows, based on calibrated parameters from regulated flow data, with the current hydropower scheme active. For this, the HBV model is adapted to be able to incorporate water transfers and regulated flows. The natural hydrological indices are derived from the simulated pre-regulation data, and compared with those of the regulated data to investigate the impact of the regulation on these at different critical times for Atlantic salmon. The sensitivity of the system to change is also investigated to explore the extent to which flow variables can be modified without major degradation to the river's ecosystem, while still maintaining viable hydropower generation. The modelling approach presented will provide the basis for assessing impacts on hydrological flow indices and informing environmental flows in regions with similar heavily regulated mountain river ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, N.W.T.; Ortega, R.; Rahilly, P.
2011-12-17
The project has provided science-based tools for the long-term management of salinity in drainage discharges from wetlands to the San Joaquin River. The results of the project are being used to develop best management practices (BMP) and a decision support system to assist wetland managers adjust the timing of salt loads delivered to the San Joaquin River during spring drawdown. Adaptive drainage management scheduling has the potential to improve environmental compliance with salinity objectives in the Lower San Joaquin River by reducing the frequency of violation of Vernalis salinity standards, especially in dry and critically dry years. The paired approachmore » to project implementation whereby adaptively managed and traditional practices were monitored in a side-by-side fashion has provided a quantitative measure of the impacts of the project on the timing of salt loading to the San Joaquin River. The most significant accomplishments of the project has been the technology transfer to wetland biologists, ditch tenders and water managers within the Grasslands Ecological Area. This “learning by doing” has build local community capacity within the Grassland Water District and California Department of Fish and Game providing these institutions with new capability to assess and effectively manage salinity within their wetlands while simultaneously providing benefits to salinity management of the San Joaquin River.« less
A decision support framework for water management in the Upper Delaware River
Bovee, Ken D.; Waddle, Terry J.; Bartholow, John; Burris, Lucy
2007-01-01
The Delaware River Basin occupies an area of 12,765 square miles, in portions of south central New York, northeast Pennsylvania, northeast Delaware, and western New Jersey (fig. 1). The river begins as two streams in the Catskill Mountains, the East and West Branches. The two tributaries flow in a southwesterly direction until they meet at Hancock, N.Y. The length of the river from the mouth of Delaware Bay to the confluence at Hancock is 331 miles. Approximately 200 miles of the river between Hancock, N.Y., and Trenton, N.J., is nontidal.
Gleason, Colin J.; Smith, Laurence C.
2014-01-01
Rivers provide critical water supply for many human societies and ecosystems, yet global knowledge of their flow rates is poor. We show that useful estimates of absolute river discharge (in cubic meters per second) may be derived solely from satellite images, with no ground-based or a priori information whatsoever. The approach works owing to discovery of a characteristic scaling law uniquely fundamental to natural rivers, here termed a river’s at-many-stations hydraulic geometry. A first demonstration using Landsat Thematic Mapper images over three rivers in the United States, Canada, and China yields absolute discharges agreeing to within 20–30% of traditional in situ gauging station measurements and good tracking of flow changes over time. Within such accuracies, the door appears open for quantifying river resources globally with repeat imaging, both retroactively and henceforth into the future, with strong implications for water resource management, food security, ecosystem studies, flood forecasting, and geopolitics. PMID:24639551
Designing ecological flows to gravely braided rivers in alpine environments
NASA Astrophysics Data System (ADS)
Egozi, R.; Ashmore, P.
2009-04-01
Designing ecological flows in gravelly braided streams requires estimating the channel forming discharge in order to maintain the braided reach physical (allocation of flow and bed load) and ecological (maintaining the habitat diversity) functions. At present, compared to single meander streams, there are fewer guiding principles for river practitioners that can be used to manage braided streams. Insight into braiding morphodynamics using braiding intensity indices allows estimation of channel forming discharge. We assess variation in braiding intensity by mapping the total number of channels (BIT) and the number of active (transporting bed load) channels (BIA) at different stages of typical diurnal melt-water hydrographs in a pro-glacial braided river, Sunwapta River, Canada. Results show that both BIA and BIT vary with flow stage but over a limited range of values. Furthermore, maximum BIT occurs below peak discharge. At this stage there is a balance between channel merging from inundation and occupation of new channels as the stage rises. This stage is the channel forming discharge because above this stage the existing braided pattern cannot discharge the volume of water without causing morphological changes (e.g., destruction of bifurcations, channel avulsion). Estimation of the channel forming discharge requires a set of braiding intensity measurements over a range of flow stages. The design of ecological flows must take into consideration flow regime characteristics rather than just the channel forming discharge magnitude.
DeSimone, Leslie A.; Walter, Donald A.; Eggleston, John R.; Nimiroski, Mark T.
2002-01-01
Ground water is the primary source of drinking water for towns in the upper Charles River Basin, an area of 105 square miles in eastern Massachusetts that is undergoing rapid growth. The stratified-glacial aquifers in the basin are high yield, but also are thin, discontinuous, and in close hydraulic connection with streams, ponds, and wetlands. Water withdrawals averaged 10.1 million gallons per day in 1989?98 and are likely to increase in response to rapid growth. These withdrawals deplete streamflow and lower pond levels. A study was conducted to develop tools for evaluating water-management alternatives at the regional scale in the basin. Geologic and hydrologic data were compiled and collected to characterize the ground- and surface-water systems. Numerical flow modeling techniques were applied to evaluate the effects of increased withdrawals and altered recharge on ground-water levels, pond levels, and stream base flow. Simulation-optimization methods also were applied to test their efficacy for management of multiple water-supply and water-resource needs. Steady-state and transient ground-water-flow models were developed using the numerical modeling code MODFLOW-2000. The models were calibrated to 1989?98 average annual conditions of water withdrawals, water levels, and stream base flow. Model recharge rates were varied spatially, by land use, surficial geology, and septic-tank return flow. Recharge was changed during model calibration by means of parameter-estimation techniques to better match the estimated average annual base flow; area-weighted rates averaged 22.5 inches per year for the basin. Water withdrawals accounted for about 7 percent of total simulated flows through the stream-aquifer system and were about equal in magnitude to model-calculated rates of ground-water evapotranspiration from wetlands and ponds in aquifer areas. Water withdrawals as percentages of total flow varied spatially and temporally within an average year; maximum values were 12 to 13 percent of total annual flow in some subbasins and of total monthly flow throughout the basin in summer and early fall. Water-management alternatives were evaluated by simulating hypothetical scenarios of increased withdrawals and altered recharge for average 1989?98 conditions with the flow models. Increased withdrawals to maximum State-permitted levels would result in withdrawals of about 15 million gallons per day, or about 50 percent more than current withdrawals. Model-calculated effects of these increased withdrawals included reductions in stream base flow that were greatest (as a percentage of total flow) in late summer and early fall. These reductions ranged from less than 5 percent to more than 60 percent of model-calculated 1989?98 base flow along reaches of the Charles River and major tributaries during low-flow periods. Reductions in base flow generally were comparable to upstream increases in withdrawals, but were slightly less than upstream withdrawals in areas where septic-system return flow was simulated. Increased withdrawals also increased the proportion of wastewater in the Charles River downstream of treatment facilities. The wastewater component increased downstream from a treatment facility in Milford from 80 percent of September base flow under 1989?98 conditions to 90 percent of base flow, and from 18 to 27 percent of September base flow downstream of a treatment facility in Medway. In another set of hypothetical scenarios, additional recharge equal to the transfer of water out of a typical subbasin by sewers was found to increase model-calculated base flows by about 12 percent of model-calculated base flows. Addition of recharge equal to that available from artificial recharge of residential rooftop runoff had smaller effects, augmenting simulated September base flow by about 3 percent. Simulation-optimization methods were applied to an area near Populatic Pond and the confluence of the Mill and Charles Rivers in Franklin,
Fulton, John W.; Wagner, Chad R.
2014-01-01
The U.S. Geological Survey (USGS), in cooperation with the Allegheny County Sanitary Authority, developed a validated two-dimensional Resource Management Associates2 (RMA2) hydrodynamic model of parts of the Allegheny, Monongahela, and Ohio Rivers (Three Rivers) to help assess the effects of combined sewer overflows (CSOs) and sanitary sewer overflows (SSOs) on the rivers. The hydrodynamic model was used to drive a water-quality model of the study area that was capable of simulating the transport and fate of fecal-indicator bacteria and chemical constituents under open-water conditions. The study area includes 14 tributary streams and parts of the Three Rivers where they enter and exit Allegheny County, an area of approximately 730 square miles (mi2). The city of Pittsburgh is near the center of the county, where the Allegheny and Monongahela Rivers join to form the headwaters of the Ohio River. The Three Rivers are regulated by a series of fixed-crest dams, gated dams, and radial (tainter) gates and serve as the receiving waters for tributary streams, CSOs, and SSOs. The RMA2 model was separated into four individual segments on the basis of the U.S. Army Corps of Engineers navigational pools in the study area (Dashields; Emsworth; Allegheny River, Pool 2; and Braddock), which were calibrated individually using measured water-surface slope, velocity, and discharge during high- and low-flow conditions. The model calibration process included the comparison of water-surface elevations at five locations and velocity profiles at more than 80 cross sections in the study area. On the basis of the calibration and validation results that included water-surface elevations and velocities, the model is a representative simulation of the Three Rivers flow patterns for discharges ranging from 4,050 to 47,400 cubic feet per second (ft3/s) on the Allegheny River, 2,550 to 40,000 ft3/s on the Monongahela River, and 10,900 to 99,000 ft3/s on the Ohio River. The Monongahela River was characterized by unsteady conditions during low and high flows, which affected the calibration range. The simulated low-flow water-surface elevations typically were within 0.2 feet (ft) of measured values, whereas the simulated high-flow water-surface elevations were typically within 0.3 ft of the measured values. The mean error between simulated and measured velocities was less than 0.07 ft/s for low-flow conditions and less than 0.17 ft/s for high-flow conditions.
NASA Astrophysics Data System (ADS)
Wohl, Ellen; Cadol, Daniel; Pfeiffer, Andrew; Jackson, Karen; Laurel, DeAnna
2018-03-01
The cumulative volume and spatial distribution of large wood (LW) along river corridors (channels and floodplains) reflect interactions between rates and volumes of LW recruitment and channel transport capacity through time. Rivers of the semiarid interior western US can have relatively low-magnitude disturbances associated with annual snowmelt or relatively high-magnitude disturbances associated with episodic rainfall runoff, especially following wildfires. We use characteristics of LW from 25 river segments in four regions of New Mexico and Colorado to analyze wood loads and spatial patterns of wood distribution in relation to disturbance regime. High-magnitude disturbances move LW onto floodplains and create longitudinally nonuniform LW distributions with aggregated (closer together than random) LW pieces and abundant LW jams in the floodplain. Sites with low-magnitude disturbances have a greater proportion of LW in the channel and much of this wood is within segregated (farther apart than random) jams. These results imply that river management, which typically focuses on LW within channels, should focus on floodplain as well as in-channel LW in rivers with high-magnitude disturbances. The results also indicate that the proportions of LW loads in channels versus floodplains can differ significantly among rivers with different disturbance regimes that are otherwise similar in terms of forest type or drainage area. This is particularly relevant to mountainous regions with elevation-related changes in flow and disturbance regime. River management that reintroduces LW to river corridors will be most effective if it incorporates the mobility and spatial distribution of LW.
Simulating Heterogeneous Infiltration and Contaminant leaching Processes at Chalk River, Ontario
NASA Astrophysics Data System (ADS)
Ali, M. A.; Ireson, A. M.; Keim, D.
2015-12-01
A study is conducted at a waste management area in Chalk River, Ontario to characterize flow and contaminant transport with the aim of contributing to improved hydrogeological risk assessment in the context of waste management. Field monitoring has been performed to gain insights into the unsaturated zone characteristics, moisture dynamics, and contaminant transport rates. The objective is to provide quantitative estimates of surface fluxes (quantification of infiltration and evaporation) and investigations of unsaturated zone processes controlling water infiltration and spatial variability in head distributions and flow rates. One particular issue is to examine the effectiveness of the clayey soil cap installed to prevent infiltration of water into the waste repository and the top sand soil cover above the clayey layer to divert the infiltrated water laterally. The spatial variability in the unsaturated zone properties and associated effects on water flow and contaminant transport observed at the site, have led to a concerted effort to develop improved model of flow and transport based on stochastic concepts. Results obtained through the unsaturated zone model investigations are combined with the hydrogeological and geochemical components and develop predictive tools to assess the long term fate of the contaminants at the waste management site.
Code of Federal Regulations, 2011 CFR
2011-10-01
... outstanding scenic, recreational, geological, biological, cultural, or historical features shall be preserved as free flowing streams. The immediate river area shall be managed to protect the natural, cultural... OF THE INTERIOR RECREATION PROGRAMS MANAGEMENT AREAS Designated National Area § 8351.0-6 Policy. (a...
Assessing river-groundwater exchange fluxes of the Wairau River, New Zealand
NASA Astrophysics Data System (ADS)
Wilson, Scott; Woehling, Thomas; Davidson, Peter
2014-05-01
Allocation limits in river-recharged aquifers have traditionally been based on static observations of river gains and losses undertaken when river flow is low. This approach to setting allocation limits does not consider the dynamic relationship between river flows and groundwater levels. Predicting groundwater availability based on a better understanding of coupled river - aquifer systems opens the possibility for dynamic groundwater allocation approaches. Numerical groundwater models are most commonly used for regional scale allocation assessments. Using these models for predicting future system states is challenging, particularly under changing management and climate scenarios. The large degree of uncertainty associated with these predictions is caused by insufficient knowledge about the heterogeneity of subsurface flow characteristics, ineffective monitoring designs, and the inability to confidently predict the spatially and temporally varying river - groundwater exchange fluxes. These uncertainties are characteristic to many coupled surface water - groundwater systems worldwide. Braided river systems, however, create additional challenges due to their highly dynamic morphological character and mobile beds which also make river flow measurements extremely difficult. This study focuses on the characterization of river - groundwater exchange fluxes along a section of the Wairau River in the Northwest of the South Island of New Zealand. The braided river recharges the Wairau Aquifer which is an important source for irrigation and municipal water requirements of the city of Blenheim. The Wairau Aquifer is hosted by the highly permeable Rapaura Formation gravels that extend to a depth of about 20 to 30 m. However, the overall thickness of the alluvial sequence forming the Wairau Plain may be up to 500 m. The landuse in the area is mainly grapes but landsurface recharge to the aquifer is considered to be considerably smaller than the recharge from the Wairau river. This study aims at the assessment of river-groundwater exchange fluxes and presents first results from data mining and analysis of river flow records, stage gaugings, groundwater head data, pumping test, and the sampling of spring flows. In addition, a methodology is presented that will allow the prediction of transient river exchange fluxes by using a Modflow model, global optimisation techniques, and techniques for quantifying predictive uncertainty which have been recently developed (Wöhling et al 2013). A long-term goal of the study is the reduction of predictive uncertainty of model predictions by optimal design of sensor networks as well as the assessment of this utility by different observation types. Preliminary results indicate that about 7 cumec from the Wairau River is recharged to the aquifer under low flow conditions. A similar volume of groundwater re-emerges as springs where groundwater is forced upwards by the confining Dillons Point Formation. References Wöhling, Th., Gosses, M.J., Leyes Pérez, M., Geiges, A., Moore, C.R., Osenbrück, K., Scott, D.M. (2013). Optimizing monitoring design to increase predictive reliability of groundwater flow models at different scales. Geophysical Research Abstracts Vol. 15, EGU2013-3981, EGU General Assembly 2013.
Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam
2015-04-01
In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.
Wagner, C.R.; Mueller, D.S.
2001-01-01
The quantification of current patterns is an essential component of a Water Quality Analysis Simulation Program (WASP) application in a riverine environment. The U.S. Geological Survey (USGS) provided a field validated two-dimensional Resource Management Associates-2 (RMA-2) hydrodynamic model capable of quantifying the steady-flowpatterns in the Ohio River extending from river mile 590 to 630 for the Ohio River Valley Water Sanitation Commission (ORSANCO) water-quality modeling efforts on that reach. Because of the hydrodynamic complexities induced by McAlpine Locks and Dam (Ohio River mile 607), the model was split into two segments: an upstream reach, which extended from the dam upstream to the upper terminus of the study reach at Ohio River mile 590; and a downstream reach, which extended from the dam downstream to a lower terminus at Ohio River mile 636. The model was calibrated to a low-flow hydraulic survey (approximately 35,000 cubic feet per second (ft3/s)) and verified with data collected during a high-flow survey (approximately 390,000 ft3/s). The model calibration and validation process included matching water-surface elevations at 10 locations and velocity profiles at 30 cross sections throughout the study reach. Based on the calibration and validation results, the model is a representative simulation of the Ohio River steady-flow patterns below discharges of approximately 400,000 ft3/s.
The Topographic Design of River Channels for Form-Process Linkages.
Brown, Rocko A; Pasternack, Gregory B; Lin, Tin
2016-04-01
Scientists and engineers design river topography for a wide variety of uses, such as experimentation, site remediation, dam mitigation, flood management, and river restoration. A recent advancement has been the notion of topographical design to yield specific fluvial mechanisms in conjunction with natural or environmental flow releases. For example, the flow convergence routing mechanism, whereby shear stress and spatially convergent flow migrate or jump from the topographic high (riffle) to the low point (pool) from low to high discharge, is thought to be a key process able to maintain undular relief in gravel bedded rivers. This paper develops an approach to creating riffle-pool topography with a form-process linkage to the flow convergence routing mechanism using an adjustable, quasi equilibrium synthetic channel model. The link from form to process is made through conceptualizing form-process relationships for riffle-pool couplets into geomorphic covariance structures (GCSs) that are then quantitatively embedded in a synthetic channel model. Herein, GCSs were used to parameterize a geometric model to create five straight, synthetic river channels with varying combinations of bed and width undulations. Shear stress and flow direction predictions from 2D hydrodynamic modeling were used to determine if scenarios recreated aspects of the flow convergence routing mechanism. Results show that the creation of riffle-pool couplets that experience flow convergence in straight channels requires GCSs with covarying bed and width undulations in their topography as supported in the literature. This shows that GCSs are a useful way to translate conceptualizations of form-process linkages into quantitative models of channel form.
Payn, Robert A.; Hall, Robert O Jr.; Kennedy, Theodore A.; Poole, Geoff C; Marshall, Lucy A.
2017-01-01
Conventional methods for estimating whole-stream metabolic rates from measured dissolved oxygen dynamics do not account for the variation in solute transport times created by dynamic flow conditions. Changes in flow at hourly time scales are common downstream of hydroelectric dams (i.e. hydropeaking), and hydrologic limitations of conventional metabolic models have resulted in a poor understanding of the controls on biological production in these highly managed river ecosystems. To overcome these limitations, we coupled a two-station metabolic model of dissolved oxygen dynamics with a hydrologic river routing model. We designed calibration and parameter estimation tools to infer values for hydrologic and metabolic parameters based on time series of water quality data, achieving the ultimate goal of estimating whole-river gross primary production and ecosystem respiration during dynamic flow conditions. Our case study data for model design and calibration were collected in the tailwater of Glen Canyon Dam (Arizona, USA), a large hydropower facility where the mean discharge was 325 m3 s 1 and the average daily coefficient of variation of flow was 0.17 (i.e. the hydropeaking index averaged from 2006 to 2016). We demonstrate the coupled model’s conceptual consistency with conventional models during steady flow conditions, and illustrate the potential bias in metabolism estimates with conventional models during unsteady flow conditions. This effort contributes an approach to solute transport modeling and parameter estimation that allows study of whole-ecosystem metabolic regimes across a more diverse range of hydrologic conditions commonly encountered in streams and rivers.
O'Donnell, T. K.; Galat, D.L.
2007-01-01
The Upper Mississippi River is characterized by a series of locks and dams, shallow impoundments, and thousands of river channelization structures that facilitate commercial navigation between Minneapolis, Minnesota, and Cairo, Illinois. Agriculture and urban development over the past 200 years have degraded water quality and increased the rate of sediment and nutrient delivery to surface waters. River enhancement has become an important management tool employed to address causes and effects of surface water degradation and river modification in the Upper Mississippi River Basin. We report information on individual river enhancement projects and contrast project densities, goals, activities, monitoring, and cost between commercially non-navigated and navigated rivers (Non-navigated and Navigated Rivers, respectively). The total number of river enhancement projects collected during this effort was 62,108. Cost of all projects reporting spending between 1972 and 2006 was about US$1.6 billion. Water quality management was the most cited project goal within the basin. Other important goals in Navigated Rivers included in-stream habitat improvement and flow modification. Most projects collected for Non-navigated Rivers and their watersheds originated from the U.S. Department of Agriculture (USDA). The U.S. Army Corps of Engineers and the USDA were important sources for projects in Navigated Rivers. Collaborative efforts between agencies that implement projects in Non-navigated and Navigated Rivers may be needed to more effectively address river impairment. However, the current state of data sources tracking river enhancement projects deters efficient and broad-scale integration. ?? Journal compilation ?? 2007 Society for Ecological Restoration International.
The Delaware River Basin Landsat-Data Collection System Experiment
NASA Technical Reports Server (NTRS)
Paulson, R. W. (Principal Investigator)
1975-01-01
The author has identified the following significant results. This experiment successfully demonstrated that standard U.S. Geological Survey field instrumentation could be easily interfaced with the LANDSAT-DCS and the data made to flow smoothly to water resources management agencies. The experiment was conducted in the Delaware River basin. A truly operational system could not be deployed.
NASA Astrophysics Data System (ADS)
Basso, Stefano; Lazzaro, Gianluca; Schirmer, Mario; Botter, Gianluca
2014-05-01
River flows withdrawals to supply small run-of-river hydropower plants have been increasing significantly in recent years - particularly in the Alpine area - as a consequence of public incentives aimed at enhancing energy production from renewable sources. This growth further raised the anthropic pressure in areas traditionally characterized by an intense exploitation of water resources, thereby triggering social conflicts among local communities, hydropower investors and public authorities. This brought to the attention of scientists and population the urgency for novel and quantitative tools for assessing the hydrologic impact of these type of plants, and trading between economic interests and ecologic concerns. In this contribution we propose an analytical framework that allows for the estimate of the streamflow availability for hydropower production and the selection of the run-of-river plant capacity, as well as the assessment of the related profitability and environmental impacts. The method highlights the key role of the streamflow variability in the design process, by showing the significance control of the coefficient of variation of daily flows on the duration of the optimal capacity of small run-of-river plants. Moreover, the analysis evidences a gap between energy and economic optimizations, which may result in the under-exploitation of the available hydropower potential at large scales. The disturbances to the natural flow regime produced between the intake and the outflow of run-of-river power plants are also estimated within the proposed framework. The altered hydrologic regime, described through the probability distribution and the correlation function of streamflows, is analytically expressed as a function of the natural regime for different management strategies. The deviations from pristine conditions of a set of hydrologic statistics are used, jointly with an economic index, to compare environmental and economic outcomes of alternative plant setups and management strategies. Benefits connected to ecosystem services provided by unimpaired riverine environments can be also included in the analysis, possibly accounting for the disruptive effect of multiple run-of-river power plants built in cascade along the same river. The application to case studies in the Alpine region shows the potential of the tool to assess different management strategies and design solution, and to evaluate local and catchment scale impacts of small run-of-river hydropower development.
1982-02-01
operational. Many times at the startup of a project, variable selection and research data formats are often tentative because of the unknown biological...previously. This flow of data is shown in Figure 1. ELPROGI also made quality control decisions; when a variable for a given observation failed a...a series MENT OF ECOLOGICAL DATA IN LARGE RIVER ECOSYSTEMS s. PERFORMING ONG. REPORT NUMBER 7. AUTNOlt.s) S. CONTRACT O GRANT N UNMSE-) Michael P
NASA Astrophysics Data System (ADS)
Ceola, Serena; Pugliese, Alessio; Castellarin, Attilio; Galeati, Giorgio
2015-04-01
Anthropogenic activities along streams and rivers are increasingly recognised to be a major concern for fluvial ecosystems. The management of water resources, by means of e.g. flow diversions and dams, for industrial, agricultural, water-supply, hydropower production and flood protection purposes induces significant changes to the natural streamflow regime of a river. Indeed, the river flow regime is known to be a major abiotic factor influencing fluvial ecosystems. An established approach aimed at preserving the behaviour and distribution of fluvial species relies on the definition of minimum streamflow requirements (i.e., environmental flows) downstream of dams and diversion structures. Such environmental flows are normally identified through methodologies that have an empirical nature and may not be representative of local ecological and hydraulic conditions. While the effect of imposing a minimum discharge release is easily predictable in terms of e.g. loss of hydropower production, the advantages in terms of species preferences are often poorly understood and seldom assessed. To analyse the interactions between flow releases and the behaviour and distribution of fluvial species (i.e., from periphyton, to benthic invertebrate and fish), one may use a habitat suitability curve, which is a fundamental tool capable of describing species preferences influenced by any generic environmental variable. The outcomes of a real case study applied to several Italian rivers, located in the Marche administrative district in Central Italy (∽10000km2), in which we quantitatively assess the effects of alternative environmental flow scenarios on the existing hydropower network and on two fish species that are quite abundant in the study area (i.e., Leuciscus cephalus cabeda and Barbus barbus plebejus), will be presented and discussed. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the derivation of optimal water resource management strategies in order to ensure both hydropower production and fluvial ecosystem protection.
NASA Astrophysics Data System (ADS)
Castellarin, A.; Ceola, S.; Pugliese, A.; Galeati, G. A.
2015-12-01
Anthropogenic activities along streams and rivers are increasingly recognized to be a major concern for fluvial ecosystems. The management of water resources, by means of e.g. flow diversions and dams, for industrial, agricultural, water-supply, hydropower production and flood protection purposes induces significant changes to the natural streamflow regime of a river. Indeed, the river flow regime is known to be a major abiotic factor influencing fluvial ecosystems. An established approach aimed at preserving the behaviour and distribution of fluvial species relies on the definition of minimum streamflow requirements (i.e., environmental flows) downstream of dams and diversion structures. Such environmental flows are normally identified through methodologies that have an empirical nature and may not be representative of local ecological and hydraulic conditions. While the effect of imposing a minimum discharge release is easily predictable in terms of e.g. loss of hydropower production, the advantages in terms of species preferences are often poorly understood and seldom assessed. To analyze the interactions between flow releases and the behaviour and distribution of fluvial species (i.e., from periphyton, to benthic invertebrate and fish), one may use a habitat suitability curve, which is a fundamental tool capable of describing species preferences influenced by any generic environmental variable. The outcomes of a real case study applied to several Italian rivers, located in the Marche administrative district in Central Italy (∽10000km2), in which we quantitatively assess the effects of alternative environmental flow scenarios on the existing hydropower network and on two fish species that are quite abundant in the study area (i.e., Leuciscus cephalus cabeda and Barbus barbus plebejus), will be presented and discussed. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the derivation of optimal water resource management strategies in order to ensure both hydropower production and fluvial ecosystem protection.
Flynn, Robert H.; Bent, Gardner C.; Lombard, Pamela J.
2016-09-02
The U.S. Geological Survey developed flood elevations in cooperation with the Federal Emergency Management Agency for a 14.3-mile reach of the Green River in Colrain, Leyden, and Greenfield, Massachusetts, to assist landowners and emergency management workers to prepare for and recover from floods. The river reach extends from the U.S. Geological Survey Green River near Colrain, MA (01170100) streamgage downstream to the confluence with the Deerfield River. A series of seven digital flood inundation maps were developed for the upper 4.4 miles of the river reach downstream from the stream. Flood discharges corresponding to the 50-, 10-, 1-, and 0.2-percent annual exceedance probabilities were computed for the reach from updated flood-frequency analyses. These peak flows and the flood flows associated with the stages of 10.2, 12.4, and 14.4 feet (ft) at the Green River streamgage were routed through a one-dimensional step-backwater hydraulic model to obtain the corresponding peak water-surface elevations and to place the Tropical Storm Irene flood of August 28, 2011 (stage 13.97 ft), into historical context. The hydraulic model was calibrated by using the current (2015) stage-discharge relation at the U.S. Geological Survey Green River near Colrain, MA (01170100) streamgage and from documented high-water marks from the Tropical Storm Irene flood, which had a flow higher than a 0.2-percent annual exceedance probability flood discharge.The hydraulic model was used to compute water-surface profiles for flood stages referenced to the streamgage and ranging from the 50-percent annual exceedance probability (bankfull flow) at 7.6 ft (439.8 ft above the North American Vertical Datum of 1988 [NAVD 88]) to 14.4 ft (446.7 ft NAVD 88), which exceeds the maximum recorded water level of 13.97 ft (Tropical Storm Irene) at the streamgage. The mapped stages of 7.6 to 14.4 ft were selected to match the stages for bankfull; the 50-, 10-, 1-, and 0.2-percent annual exceedance probabilities; incremental stages of 10.2 and 12.4 ft; and the maximum stage of the stage-discharge rating curve. The simulated water-surface profiles were combined with a geographic information system digital elevation model derived from light detection and ranging (lidar) data having a 0.5-ft vertical accuracy to create a set of flood-inundation maps.The availability of the flood-inundation maps, combined with information regarding near real-time stage from U.S. Geological Survey Green River near Colrain, MA (01170100) streamgage, can provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, and postflood recovery efforts. The flood-inundation maps are nonregulatory but provide Federal, State, and local agencies and the public with estimates of the potential extent of flooding during selected peak-flow events.
Water reuse in river basins with multiple users: A literature review
NASA Astrophysics Data System (ADS)
Simons, G. W. H. (Gijs); Bastiaanssen, W. G. M. (Wim); Immerzeel, W. W. (Walter)
2015-03-01
Unraveling the interaction between water users in a river basin is essential for sound water resources management, particularly in a context of increasing water scarcity and the need to save water. While most attention from managers and decision makers goes to allocation and withdrawals of surface water resources, reuse of non-consumed water gets only marginal attention despite the potentially significant volumes. As a consequence, claims of water saving are often grossly exaggerated. It is the purpose of this paper to explore the processes associated with water reuse in a river basin among users of varying nature and review existing methods for directly or indirectly describing non-consumed water, recoverable flow and/or water reuse. First a conceptual representation of processes surrounding water withdrawals and associated definitions is discussed, followed by a section on connectivity between individual withdrawals and the complex dynamics arising from dependencies and tradeoffs within a river basin. The current state-of-the-art in categorizing basin hydrological flows is summarized and its applicability to a water system where reuse occurs is explored. The core of the paper focuses on a selection and demonstration of existing indicators developed for assessing water reuse and its impacts. It is concluded that although several methods for analyses of water reuse and recoverable flows have been developed, a number of essential aspects of water reuse are left out of existing indicators. Moreover, a proven methodology for obtaining crucial quantitative information on recoverable flows is currently lacking. Future studies should aim at spatiotemporal tracking of the recoverable portion of water withdrawals and showing the dependency of multiple water users on such flows to water policy makers.
Kourgialas, Nektarios N; Dokou, Zoi; Karatzas, George P
2015-05-01
The purpose of this study was to create a modeling management tool for the simulation of extreme flow events under current and future climatic conditions. This tool is a combination of different components and can be applied in complex hydrogeological river basins, where frequent flood and drought phenomena occur. The first component is the statistical analysis of the available hydro-meteorological data. Specifically, principal components analysis was performed in order to quantify the importance of the hydro-meteorological parameters that affect the generation of extreme events. The second component is a prediction-forecasting artificial neural network (ANN) model that simulates, accurately and efficiently, river flow on an hourly basis. This model is based on a methodology that attempts to resolve a very difficult problem related to the accurate estimation of extreme flows. For this purpose, the available measurements (5 years of hourly data) were divided in two subsets: one for the dry and one for the wet periods of the hydrological year. This way, two ANNs were created, trained, tested and validated for a complex Mediterranean river basin in Crete, Greece. As part of the second management component a statistical downscaling tool was used for the creation of meteorological data according to the higher and lower emission climate change scenarios A2 and B1. These data are used as input in the ANN for the forecasting of river flow for the next two decades. The final component is the application of a meteorological index on the measured and forecasted precipitation and flow data, in order to assess the severity and duration of extreme events. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cooper, D.J.; Andersen, D.C.
2012-01-01
Dam releases used to create downstream flows that mimic historic floods in timing, peak magnitude and recession rate are touted as key tools for restoring riparian vegetation on large regulated rivers. We analysed a flood on the 5th-order Green River below Flaming Gorge Dam, Colorado, in a broad alluvial valley where Fremont cottonwood riparian forests have senesced and little recruitment has occurred since dam completion in 1962. The stable post dam flow regime triggered the development of novel riparian communities with dense herbaceous plant cover. We monitored cottonwood recruitment on landforms inundated by a managed flood equal in magnitude and timing to the average pre-dam flood. To understand the potential for using managed floods as a riparian restoration tool, we implemented a controlled and replicated experiment to test the effects of artificially modified ground layer vegetation on cottonwood seedling establishment. Treatments to remove herbaceous vegetation and create bare ground included herbicide application (H), ploughing (P), and herbicide plus ploughing (H+P). Treatment improved seedling establishment. Initial seedling densities on treated areas were as much as 1200% higher than on neighbouring control (C) areas, but varied over three orders of magnitude among the five locations where manipulations were replicated. Only two replicates showed the expected seedling density rank of (H+P)>P>H>C. Few seedlings established in control plots and none survived 1 year. Seedling density was strongly affected by seed rain density. Herbivory affected growth and survivorship of recruits, and few survived nine growing seasons. Our results suggest that the novel plant communities are ecologically and geomorphically resistant to change. Managed flooding alone, using flows equal to the pre-dam mean annual peak flood, is an ineffective riparian restoration tool where such ecosystem states are present and floods cannot create new habitat for seedling establishment. This problem significantly limits long-term river and riparian management options. ?? 2010 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Zhang, A.; Feng, D.; Tian, Y.; Zheng, Y.
2017-12-01
Water resource is of fundamental importance to the society and ecosystem in arid endorheic river basins, and water-use conflicts between upstream and downstream are usually significant. Heihe river basin (HRB) is the second largest endorheic river basin in china, which is featured with dry climate, intensively irrigated farmlands in oases and significant surface water-groundwater interaction. The irrigation districts in the middle HRB consume a large portion of the river flow, and the low HRB, mainly Gobi Desert, has an extremely vulnerable ecological environment. The water resources management has significantly altered the hydrological processes in HRB, and is now facing multiple challenges, including decline of groundwater table in the middle HRB, insufficient environmental flow for the lower HRB. Furthermore, future climate change adds substantial uncertainty to the water system. Thus, it is imperative to have a sustainable water resources management in HRB in order to tackle the existing challenges and future uncertainty. Climate projection form a dynamical downscaled climate change scenario shows precipitation will increase at a rate of approximately 3 millimeter per ten years and temperature will increase at a rate of approximately 0.2 centigrade degree per ten years in the following 50 years in the HRB. Based on an integrated ecohydrological model, we evaluated how the climate change and agricultural development would collaboratively impact the water resources and ecological health in the middle and lower HRB, and investigated how the water management should cope with the complex impact.
Dams and Rivers: A Primer on the Downstream Effects of Dams
Collier, Michael; Webb, Robert H.; Schmidt, John C.
1996-01-01
The U.S. Geological Survey is charged with monitoring the water and mineral resources of the United States. Beginning in 1889, the Survey established a network of water gaging stations across most of the country's rivers; some also measured sediment content of the water. Consequently, we now have valuable long-term data with which to track water supply, sediment transport, and the occurrence of floods. Many variables affect the flow of water from mountain brook to river delta. Some are short-term perturbations like summer thunderstorms. Others occur over a longer period of time, like the El Ninos that might be separated by a decade or more. We think of these variables as natural occurrences, but humans have exerted some of the most important changes -- water withdrawals for agriculture, inter-basin transfers, and especially the construction of an extensive system of dams. Dams have altered the flow of many of the Nation's rivers to meet societal needs. We expect floods to be contained. Irrigation is possible where deserts once existed. And water is released downstream not according to natural cycles but as dictated by a region's hour-by-hour needs for water or electricity. As a result, river channels below dams have changed dramatically. Depending on annual flow, flood peaks, and a river's sediment load, we might see changes such as sand building up in one channel, vegetation crowding into another, and extensive bank erosion in another. This Circular explores the emerging scientific arena of change in rivers below dams. This science tries first to understand and then anticipate changes to river beds and banks, and to riparian habitats and animal communities. To some degree, these downstream changes can be influenced by specific strategies of dam management. Scientists and resource managers have a duty to assemble this information and present it without bias to the rest of society. Society can then more intelligently choose a balance between the benefits and adverse downstream effects of dams.
Sullivan, Annett B.; Sogutlugil, I. Ertugrul; Deas, Michael L.; Rounds, Stewart A.
2014-01-01
The upper Klamath River and adjacent Lost River are interconnected basins in south-central Oregon and northern California. Both basins have impaired water quality with Total Maximum Daily Loads (TMDLs) in progress or approved. In cooperation with the Bureau of Reclamation, the U.S. Geological Survey (USGS) and Watercourse Engineering, Inc., have conducted modeling and research to inform management of these basins for multiple purposes, including agriculture, endangered species protection, wildlife refuges, and adjacent and downstream water users. A water-quality and hydrodynamic model (CE-QUAL-W2) of the Link River to Keno Dam reach of the Klamath River for 2006–09 is one of the tools used in this work. The model can simulate stage, flow, water velocity, ice cover, water temperature, specific conductance, suspended sediment, nutrients, organic matter in bed sediment and the water column, three algal groups, three macrophyte groups, dissolved oxygen, and pH. This report documents two model scenarios and a test of the existing model applied to year 2011, which had exceptional water quality. The first scenario examined the water-quality effects of recirculating Klamath Straits Drain flows into the Ady Canal, to conserve water and to decrease flows from the Klamath Straits Drain to the Klamath River. The second scenario explicitly incorporated a 2.73×106 m2 (675 acre) off-channel connected wetland into the CE-QUAL-W2 framework, with the wetland operating from May 1 through October 31. The wetland represented a managed treatment feature to decrease organic matter loads and process nutrients. Finally, the summer of 2011 showed substantially higher dissolved-oxygen concentrations in the Link-Keno reach than in other recent years, so the Link-Keno model (originally developed for 2006–09) was run with 2011 data as a test of model parameters and rates and to develop insights regarding the reasons for the improved water-quality conditions.
NASA Astrophysics Data System (ADS)
Cisneros, Felipe; Veintimilla, Jaime
2013-04-01
The main aim of this research is to create a model of Artificial Neural Networks (ANN) that allows predicting the flow in Tomebamba River both, at real time and in a certain day of year. As inputs we are using information of rainfall and flow of the stations along of the river. This information is organized in scenarios and each scenario is prepared to a specific area. The information is acquired from the hydrological stations placed in the watershed using an electronic system developed at real time and it supports any kind or brands of this type of sensors. The prediction works very good three days in advance This research includes two ANN models: Back propagation and a hybrid model between back propagation and OWO-HWO. These last two models have been tested in a preliminary research. To validate the results we are using some error indicators such as: MSE, RMSE, EF, CD and BIAS. The results of this research reached high levels of reliability and the level of error are minimal. These predictions are useful for flood and water quality control and management at City of Cuenca Ecuador
Juckem, Paul F.
2009-01-01
A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition, the model routes tributary base flow through the river network to the Rock River. The parameter-estimation code PEST was linked to the GFLOW model to select the combination of parameter values best able to match more than 8,000 water-level measurements and base-flow estimates at 9 streamgages. Results from the calibrated GFLOW model show simulated (1) ground-water-flow directions, (2) ground-water/surface-water interactions, as depicted in a map of gaining and losing river and lake sections, (3) ground-water contributing areas for selected tributary rivers, and (4) areas of relatively local ground water captured by rivers. Ground-water flow patterns are controlled primarily by river geometries, with most river sections gaining water from the ground-water-flow system; losing sections are most common on the downgradient shore of lakes and reservoirs or near major pumping centers. Ground-water contributing areas to tributary rivers generally coincide with surface watersheds; however the locations of ground-water divides are controlled by the water table, whereas surface-water divides are controlled by surface topography. Finally, areas of relatively local ground water captured by rivers generally extend upgradient from rivers but are modified by the regional flow pattern, such that these areas tend to shift toward regional ground-water divides for relatively small rivers. It is important to recognize the limitations of this regional-scale model. Heterogeneities in subsurface properties and in recharge rates are considered only at a very broad scale (miles to tens of miles). No account is taken of vertical variations in properties or pumping rates, and no provision is made to account for stacked ground-water-flow systems that have different flow patterns at different depths. Small-scale flow systems (hundreds to thousands of feet) associated with minor water bodies are not considered; as a result, the model is not currently designed for simulating site-specifi
Kinnaman, Sandra L.; Dixon, Joann F.
2009-01-01
This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2009. Potentiometric contours are based on water-level measurements collected at 625 wells during the period May 14 - May 29, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to groundwater withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Groundwater withdrawals locally have lowered the potentiometric surface. Groundwater in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.
Kinnaman, Sandra L.; Dixon, Joann F.
2007-01-01
Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2006. Potentiometric contours are based on water-level measurements collected at 571 wells during the period September 11-29, near the end of the wet season. Some contours are inferred from previouspotentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.
Kinnaman, Sandra L.; Dixon, Joann F.
2009-01-01
This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2008. Potentiometric contours are based on water-level measurements collected at 589 wells during the period September 15-25, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.
Kinnaman, Sandra L.; Dixon, Joann F.
2008-01-01
This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2007. Potentiometric contours are based on water-level measurements collected at 554 wells during the period September 15-27, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.
Hydrology of the Po River: looking for changing patterns in river discharge
NASA Astrophysics Data System (ADS)
Montanari, A.
2012-05-01
Scientists and public administrators are devoting increasing attention to the Po River, in Italy, in view of concerns related to the impact of increasing urbanisation and exploitation of water resources. A better understanding of the hydrological regime of the river is necessary to improve water resources management and flood protection. In particular, the analysis of the effects of hydrological and climatic change is crucial for planning sustainable development and economic growth. An extremely interesting issue is to inspect to what extent river flows can be naturally affected by the occurrence of long periods of water abundance or scarcity, which can be erroneously interpreted as irreversible changes due to human impact. In fact, drought and flood periods alternatively occurred in the recent past in the form of long term cycles. This paper presents advanced graphical and analytical methods to gain a better understanding of the temporal distribution of the Po River discharge. In particular, we present an analysis of river flow variability and memory properties to better understand natural patterns and in particular long term changes, which may affect the future flood risk and availability of water resources.
NASA Astrophysics Data System (ADS)
Czuba, J. A.; Barnas, C. R.; Magirl, C. S.; Voss, F. D.
2010-12-01
On Mount Rainier, Washington, the National Park Service has documented widespread aggradation of as much as 10 m since the early 20th century, of rivers draining the glaciated stratovolcano. This rapid sedimentation appears to be related to glacial retreat and also may be a function of the increased magnitude and timing of peak flows that mobilize and transport sediment. We are conducting an assessment of the Puget Lowland rivers that drain Mount Rainier, 25-100 km downstream from the park boundary, to document the geomorphic response of the downstream reaches given the widespread aggradation upstream. These downstream reaches provide critical aquatic habitat for spawning and rearing of several species of salmonids, including endangered Chinook salmon and steelhead. Fluvial sedimentation can have both deleterious and beneficial effects on aquatic habitat depending on sediment particle size, river slope and width, and river management. To date, our work shows sedimentation of as much as 2 m between 1984 and 2009 in these lowland rivers. Aggradation rates that were calculated by comparing channel change at 156 cross sections, ranged between 4.8 and 9.1 cm/yr in reaches where rivers exit the mountain front and enter the lowland. Analysis of streamflow-gaging station data from throughout the watersheds draining Mount Rainier show rapid incision and aggradation, suggesting pulses of coarse-grained bedload may be moving down the mountainous rivers as kinetic waves. Preliminary results, however, seem to indicate that the rivers in the Puget Lowland have not yet experienced significant widespread sedimentation directly related to glacial retreat. Estimating the time of arrival of mobilized alluvium is a critical need for resource managers given the potential effects of sedimentation on river flood-conveyance capacity, fish habitat, and estuarine wetlands.
Denlinger, Roger P.
2012-01-01
The eruption of Mount St. Helens in 1980 produced a debris avalanche that flowed down the upper reaches of the North Fork Toutle River in southwestern Washington, clogging this drainage with sediment. In response to continuous anomalously high sediment flux into the Toutle and Cowlitz Rivers resulting from this avalanche and associated debris flows, the U.S. Army Corps of Engineers completed a Sediment Retention Structure (SRS) on the North Fork Toutle River in May 1989. For one decade, the SRS effectively blocked most of the sediment transport down the Toutle River. In 1999, the sediment level behind the SRS reached the elevation of the spillway base. Since then, a higher percentage of sediment has been passing the SRS and increasing the flood risk in the Cowlitz River. Currently (2012), the dam is filling with sediment at a rate that cannot be sustained for its original design life, and the U.S. Army Corps of Engineers is concerned with the current ability of the SRS to manage floods. This report presents an assessment of the ability of the dam to pass large flows from three types of scenarios (it is assumed that no damage to the spillway will occur). These scenarios are (1) a failure of the debris-avalanche blockage forming Castle Lake that produces a dambreak flood, (2) a debris flow from failure of that blockage, or (3) a debris flow originating in the crater of Mount St. Helens. In each case, the flows are routed down the Toutle River and through the SRS using numerical models on a gridded domain produced from a digital elevation model constructed with existing topography and dam infrastructure. The results of these simulations show that a structurally sound spillway is capable of passing large floods without risk of overtopping the crest of the dam. In addition, large debris flows originating from Castle Lake or the crater of Mount St. Helens never reach the SRS. Instead, debris flows fill the braided channels upstream of the dam and reduce its storage capacity.
NASA Astrophysics Data System (ADS)
Wang, J.; Nathan, R.; Horne, A.
2017-12-01
Traditional approaches to characterize water-dependent ecosystem outcomes in response to flow have been based on time-averaged hydrological indicators, however there is increasing recognition for the need to characterize ecological processes that are highly dependent on the sequencing of flow conditions (i.e. floods and droughts). This study considers the representation of flow regimes when considering assessment of ecological outcomes, and in particular, the need to account for sequencing and variability of flow. We conducted two case studies - one in the largely unregulated Ovens River catchment and one in the highly regulated Murray River catchment (both located in south-eastern Australia) - to explore the importance of flow sequencing to the condition of a typical long-lived ecological asset in Australia, the River Red Gum forests. In the first, the Ovens River case study, the implications of representing climate change using different downscaling methods (annual scaling, monthly scaling, quantile mapping, and weather generator method) on the sequencing of flows and resulting ecological outcomes were considered. In the second, the Murray River catchment, sequencing within a historic drought period was considered by systematically making modest adjustments on an annual basis to the hydrological records. In both cases, the condition of River Red Gum forests was assessed using an ecological model that incorporates transitions between ecological conditions in response to sequences of required flow components. The results of both studies show the importance of considering how hydrological alterations are represented when assessing ecological outcomes. The Ovens case study showed that there is significant variation in the predicted ecological outcomes when different downscaling techniques are applied. Similarly, the analysis in the Murray case study showed that the drought as it historically occurred provided one of the best possible outcomes for River Red Gum forests when compared to other re-arrangements of flow within the same drought. These results have implications for the way we represent climate change impacts and drought risk assessments where ecological outcomes are a key management objective.
NASA Astrophysics Data System (ADS)
Jacobson, R. B.; Elliott, C. M.; Reuter, J. M.
2008-12-01
Ecological reference conditions are especially challenging for large, intensively managed rivers like the Lower Missouri. Historical information provides broad understanding of how the river has changed, but translating historical information into quantitative reference conditions remains a challenge. Historical information is less available for biological and chemical conditions than for physical conditions. For physical conditions, much of the early historical condition is documented in date-specific measurements or maps, and it is difficult to determine how representative these conditions are for a river system that was characterized historically by large floods and high channel migration rates. As an alternative to a historically defined least- disturbed condition, spatial variation within the Missouri River basin provides potential for defining a best- attainable reference condition. A possibility for the best-attainable condition for channel morphology is an unchannelized segment downstream of the lowermost dam (rkm 1298 - 1203). This segment retains multiple channels and abundant sandbars although it has a highly altered flow regime and a greatly diminished sediment supply. Conversely, downstream river segments have more natural flow regimes, but have been narrowed and simplified for navigation and bank stability. We use two computational tools to compensate for the lack of ideal reference conditions. The first is a hydrologic model that synthesizes natural and altered flow regimes based on 100 years of daily inputs to the river (daily routing model, DRM, US Army Corps of Engineers, 1998); the second tool is hydrodynamic modeling of habitat availability. The flow-regime and hydrodynamic outputs are integrated to define habitat-duration curves as the basis for reference conditions (least-disturbed flow regime and least-disturbed channel morphology). Lacking robust biological response models, we use mean residence time of water and a habitat diversity index as generic ecosystem indicators.
Alterations in freshwater inflow resulting from watershed development and water management practices have impacted salinity and water quality and led to declines in oyster populations within southwest Florida estuaries. In the Caloosahatchee Estuary, Florida watershed management ...
Characterizing Sub-Daily Flow Regimes: Implications of Hydrologic Resolution on Ecohydrology Studies
Bevelhimer, Mark S.; McManamay, Ryan A.; O'Connor, B.
2014-05-26
Natural variability in flow is a primary factor controlling geomorphic and ecological processes in riverine ecosystems. Within the hydropower industry, there is growing pressure from environmental groups and natural resource managers to change reservoir releases from daily peaking to run-of-river operations on the basis of the assumption that downstream biological communities will improve under a more natural flow regime. In this paper, we discuss the importance of assessing sub-daily flows for understanding the physical and ecological dynamics within river systems. We present a variety of metrics for characterizing sub-daily flow variation and use these metrics to evaluate general trends amongmore » streams affected by peaking hydroelectric projects, run-of-river projects and streams that are largely unaffected by flow altering activities. Univariate and multivariate techniques were used to assess similarity among different stream types on the basis of these sub-daily metrics. For comparison, similar analyses were performed using analogous metrics calculated with mean daily flow values. Our results confirm that sub-daily flow metrics reveal variation among and within streams that are not captured by daily flow statistics. Using sub-daily flow statistics, we were able to quantify the degree of difference between unaltered and peaking streams and the amount of similarity between unaltered and run-of-river streams. The sub-daily statistics were largely uncorrelated with daily statistics of similar scope. Furthermore, on short temporal scales, sub-daily statistics reveal the relatively constant nature of unaltered streamreaches and the highly variable nature of hydropower-affected streams, whereas daily statistics show just the opposite over longer temporal scales.« less
NASA Astrophysics Data System (ADS)
Trinci, G.; Harvey, G.; Henshaw, A.; Bertoldi, W.
2016-12-01
Turbulence plays a crucial role in the life cycle of river plants and animals. Turbulent flow facilitates access to food, maintenance of adequate oxygen levels, removal of wastes, locomotion and predator evasion, but can also act as a stressor, leading to dislodgement from habitats, increased energy costs, physiological damage and even mortality. Despite this, hydraulic habitat assessments for river appraisal and restoration design have largely focused on temporally and spatially averaged flow properties rather than more complex descriptors of turbulence (turbulence intensity, and the periodicity, orientation and scale of coherent flow structures) that are known to directly influence aquatic organisms. Contrasting relationships between turbulence and mean flow velocity have been reported and there is a pressing need to improve understanding of the hydraulic environment provided by mesoscale river features, such as geomorphic units (e.g. riffles, pools, steps), upon which river management and restoration often focuses. We undertook high frequency velocity surveys within three river reaches (low, medium and high gradient) using a 3-dimensional Acoustic Doppler Velocimeter, combined with detailed surveys of bed topography and visual assessments of the spatial organisation of geomorphic units. Using a combination of multivariate statistical analysis (Principal Components Analysis, Cluster Analysis and GLMs) and geostatistics (semi-variance), the paper explores the spatial organisation of key turbulence parameters across the reaches and linkages with mean flow velocity and characteristic roughness elements. The ability of `higher order' turbulence properties to distinguish between visually identified geomorphic units is also assessed. The findings provide insights into scales of variability in turbulence properties that have direct ecological relevance, helping to inform river assessment and restoration efforts.
Effects of experimental floods on riparian and aquatic ecosystems: Bill Williams River, Arizona
NASA Astrophysics Data System (ADS)
Shafroth, P. B.; Andersen, D. C.; Wilcox, A. C.; Kui, L.; Stella, J. C.
2013-12-01
Development of flow prescriptions for environmental purposes along rivers is relatively common, but implementation of these 'environmental flows' occurs infrequently. Implementation is critical for testing hypotheses relating flow regime to biotic response, which ultimately can inform adaptive flow management. We describe the development of flow prescriptions and evaluate responses of riparian vegetation, beaver dams, and associated aquatic habitat to experimental floods and intervening base flows associated with an environmental flow program on the Bill Williams River (BWR), in semiarid Arizona. First, we assessed effects of flow releases between 1993 and 2009 designed to favor the establishment and maintenance of native riparian trees (Populus and Salix) and disfavor an invasive, nonnative shrub (Tamarix spp.) downstream of Alamo Dam on the BWR. Our data are multi-scaled and include a several-decade assessment of changes to major vegetation types based on a time series of aerial photography, an assessment of species composition and abundance sampled in permanent vegetation quadrats, and targeted seedling surveys following experimental floods. Between 1993 and 2009, we observed significant increases in Populus and Salix forests and essentially no change in Tamarix. Experimental floods in 2006 and 2007 resulted in higher mortality of Tamarix seedlings than Salix. These results illustrate the potential for managing streamflow to influence riparian vegetation dynamics, including management of nonnative species. Second, we examined the role of beaver as ecosystem engineers in the BWR and linkages to flow releases between 2004 and 2013. Beaver convert lotic stream habitat to lentic through dam construction and maintenance during low flow periods, and the process is reversed when a flood or other event causes dam failure. We estimated the extent of lotic and beaver-created lentic (beaver pond) habitat along the BWR and related the likelihood of damage or destruction of beaver dams to the magnitude and duration of experimental floods. We obtained counts of beaver dams at various times from aerial photographs, aerial videography, and ground surveys. The ratio of lotic to lentic stream length was approximately 6 times greater following a large flood versus a 7 year period with no significant flood releases. Floods of different magnitudes and durations resulted in notably different levels of damage or removal of beaver dams. Finally, we sampled woody vegetation adjacent to the channel to estimate the effect of beaver herbivory, and noted high levels of mature tree mortality in one of our study reaches. Results of our previous and ongoing investigations are reported to land and water managers as part of an adaptive streamflow management process.
NASA Astrophysics Data System (ADS)
Gomez-Velez, J. D.; Harvey, J. W.
2014-12-01
Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data as well as models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically-based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). At the core of NEXSS is a characterization of the channel geometry, geomorphic features, and related hydraulic drivers based on scaling equations from the literature and readily accessible information such as river discharge, bankfull width, median grain size, sinuosity, channel slope, and regional groundwater gradients. Multi-scale hyporheic flow is computed based on combining simple but powerful analytical and numerical expressions that have been previously published. We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bedforms dominates hyporheic fluxes and turnover rates along the river corridor. Moreover, the hyporheic zone's potential for biogeochemical transformations is comparable across stream orders, but the abundance of lower-order channels results in a considerably higher cumulative effect for low-order streams. Thus, vertical exchange beneath submerged bedforms has more potential for biogeochemical transformations than lateral exchange beneath banks, although lateral exchange through meanders may be important in large rivers. These results have implications for predicting outcomes of river and basin management practices.
Hydrologic analysis of Mojave River Basin, California, using electric analog model
Hardt, W.F.
1971-01-01
The water needs of the Mojave River basin will increase because of population and industrial growth. The Mojave Water Agency is responsible for providing sufficient water of good quality for the full economic development of the area. The U.S. Geological Survey suggested an electric analog model of the basin as a predictive tool to aid management. About 1,375 square miles of the alluvial basin was simulated by a passive resistor-capacitor network. The Mojave River, the main source of recharge, was simulated by subdividing the river into 13 reaches, depending on intermittent or perennial flow and on phreatophytes. The water loss to the aquifer was based on records at five gaging stations. The aquifer system depends on river recharge to maintain the water table as most of the ground-water pumping and development is adjacent to the river. The accuracy and reliability of the model was assessed by comparing the water-level changes computed by the model for the period 1930-63 with the changes determined from field data for the same period. The model was used to predict the effects on the physical system by determining basin-wide water-level changes from 1930-2000 under different pumping rates and extremes in flow of the Mojave River. Future pumping was based on the 1960-63 rate, on an increase of 20 percent from this rate, and on population projections to 2000 in the Barstow area. For future predictions, the Mojave River was modeled as average flow based on 1931-65 records and also as high flow, 1937-46, and low flow, 1947-65. Other model runs included water-level change 1930-63 assuming aquifer depletion only and no recharge, effects of a well field pumping 10,000 acre-feet in 4 months north of Victorville and southeast of Yermo, and effects of importing 10,000, 35,000, and 50,800 acre-feet of water per year from the California Water Project into the Mojave River for conveyance downstream.
NASA Astrophysics Data System (ADS)
Chen, Y. D.; Chen, X. H.
2003-04-01
The West River, the North River and the East River, collectively called the Pearl River, have a total drainage area of 453,690 km2 in southern and southwestern China and flow into the South China Sea. The three rivers join together and form the Pearl River Delta (PRD) with an area of 26,820 km2. The crisscross river network (density: 0.68-1.07 km/km2) in the PRD is one of the most complicated deltaic drainage systems in the world. As the region experiencing the most rapid economic growth in China over the past two decades, the PRD has witnessed massive changes in both the social and the natural environment, leading to an urgent need of studying regional environmental changes caused by intensive human activities. This paper aims to summarize and illustrate a variety of human-induced hydrologic and geomorphic changes in the PRD river network and to present an analysis of the causes and effects of these changes. Findings of this study will help decision-makers to formulate river management and mitigation strategies and policies in the region. The hydrologic characteristics of the PRD river network have been altered to varying degrees in the following three main aspects. First and most importantly, stage has become higher or lower over the past several decades in an uneven manner in different parts of the delta. From the early 1950s to the 1980s, scattered and small embankments were enlarged and combined to expand land mass and reduce flood hazards in the PRD. However, reduction of water surface area and concentration of flow into major channels generally caused stage to go up slightly. Since the early 1990s, stage in the upper part of the PRD has significantly dropped down while the opposite situation has become more and more common in the central PRD where enormous flood damages have occurred. Secondly, corresponding to the stage changes, the stage-discharge relationship has been substantially modified, as evidenced by over 2 m drop of stage for the same amount of discharge. Thirdly, the ratio of flow partition into two channels at several river bifurcation points has continuously changed over the past decade. This is an excellent indication of an increasingly larger portion of river flow discharging from the West River channels into the North River delta, which was found to be a major reason making the middle part of the PRD more and more vulnerable to flooding in recent years. Closely associated with the hydrologic changes are alterations of river channel and estuarine morphologies. Such geomorphic changes primarily include noticeable or even alarmingly severe modification of river channel bed, extension of river mouth and contraction of estuary in the study region. It was found that the hydrologic and geomorphic changes that have occurred within a relatively short period of time are mainly consequences of a wide variety of human activities, coupled with influences of natural events, including (a) channel dredging of sand for construction usage, (b) combination of embankments and construction of dams, (c) channel constriction and reduction or complete loss of floodplain, (d) sea level rise, and (e) channel bed erosion by record floods. Finally, an analysis is presented to examine the effects of these changes on various issues such as flood prevention and control, river channel management and navigation, low-flow regimes and water supply, water quality and aquatic ecosystem protection in the PRD region.
NASA Astrophysics Data System (ADS)
Erwin, S. O.; Jacobson, R. B.; Fischenich, C. J.; Bulliner, E. A., IV; McDonald, R.; DeLonay, A. J.; Braaten, P.; Elliott, C. M.; Chojnacki, K.
2017-12-01
Management of the Missouri River—the longest river in the USA, with a drainage basin covering one sixth of the conterminous USA—is increasingly driven by the need to understand biophysical processes governing the dispersal of 8-mm long larval pallid sturgeon. In both the upper and lower basin, survival of larval sturgeon is thought to be a bottleneck limiting populations, but because of different physical processes at play, different modeling frameworks and resolutions are required to link management actions with population-level responses. In the upper basin, a series of impoundments reduce the length of river for the drifting larval sturgeon to complete their development. Downstream from the mainstem dams, recruitment is most likely diminished by channelization and reduced floodplain connectivity that limit the benthic habitat available for larval sturgeon to settle and initiate feeding. We present a synthesis of complementary field studies, laboratory observations, and numerical simulations that evaluate the physical processes related to larval dispersal of sturgeon in the Missouri River basin. In the upper basin, we use one-dimensional advection-dispersion models, calibrated with field experiments conducted in 2016-2017 using surrogate particles and tracers, to evaluate reservoir management alternatives. Results of field experimentation and numerical modeling show that proposed management alternatives in the upper basin may be limited by insufficient lengths of flowing river for drifting larvae to fully develop into their juvenile lifestage. In the intensively engineered lower basin, we employ higher resolution measurements and models to evaluate potential for channel reconfiguration and flow alteration to promote successful interception of drifting larvae into supportive benthic habitats for the initiation of feeding and transition to the juvenile life stage. We illustrate how refined understanding of small-scale biophysical process has been incorporated into the basin-scale management framework, thereby prompting a shift in restoration actions and design.
Landscape co-evolution and river discharge.
NASA Astrophysics Data System (ADS)
van der Velde, Ype; Temme, Arnaud
2015-04-01
Fresh water is crucial for society and ecosystems. However, our ability to secure fresh water resources under climatic and anthropogenic change is impaired by the complexity of interactions between human society, ecosystems, soils, and topography. These interactions cause landscape properties to co-evolve, continuously changing the flow paths of water through the landscape. These co-evolution driven flow path changes and their effect on river runoff are, to-date, poorly understood. In this presentation we introduce a spatially distributed landscape evolution model that incorporates growing vegetation and its effect on evapotranspiration, interception, infiltration, soil permeability, groundwater-surface water exchange and erosion. This landscape scale (10km2) model is calibrated to evolve towards well known empirical organising principles such as the Budyko curve and Hacks law under different climate conditions. To understand how positive and negative feedbacks within the model structure form complex landscape patterns of forests and peat bogs that resemble observed landscapes under humid and boreal climates, we analysed the effects of individual processes on the spatial distribution of vegetation and river peak and mean flows. Our results show that especially river peak flows and droughts decrease with increasing evolution of the landscape, which is a result that has direct implications for flood management.
Two-Dimensional Flood-Inundation Model of the Flint River at Albany, Georgia
Musser, Jonathan W.; Dyar, Thomas R.
2007-01-01
Potential flow characteristics of future flooding along a 4.8-mile reach of the Flint River in Albany, Georgia, were simulated using recent digital-elevation-model data and the U.S. Geological Survey finite-element surface-water modeling system for two-dimensional flow in the horizontal plane (FESWMS-2DH). Simulated inundated areas, in 1-foot (ft) increments, were created for water-surface altitudes at the Flint River at Albany streamgage (02352500) from 192.5-ft altitude with a flow of 123,000 cubic feet per second (ft3/s) to 179.5-ft altitude with a flow of 52,500 ft3/s. The model was calibrated to match actual floods during July 1994 and March 2005 and Federal Emergency Management Administration floodplain maps. Continuity checks of selected stream profiles indicate the area near the Oakridge Drive bridge had lower velocities than other areas of the Flint River, which contributed to a rise in the flood-surface profile. The modeled inundated areas were mapped onto monochrome orthophoto imagery for use in planning for future floods. As part of a cooperative effort, the U.S. Geological Survey, the City of Albany, and Dougherty County, Georgia, conducted this study.
Angerville, Ruth; Perrodin, Yves; Bazin, Christine; Emmanuel, Evens
2013-01-01
Discharges of Combined Sewer Overflows (CSOs) into periurban rivers present risks for the concerned aquatic ecosystems. In this work, a specific ecotoxicological risk assessment methodology has been developed as management tool to municipalities equipped with CSOs. This methodology comprises a detailed description of the spatio-temporal system involved, the choice of ecological targets to be preserved, and carrying out bioassays adapted to each compartment of the river receiving CSOs. Once formulated, this methodology was applied to a river flowing through the outskirts of the city of Lyon in France. The results obtained for the scenario studied showed a moderate risk for organisms of the water column and a major risk for organisms of the benthic and hyporheic zones of the river. The methodology enabled identifying the critical points of the spatio-temporal systems studied, and then making proposals for improving the management of CSOs. PMID:23812025
Flow and habitat effects on juvenile fish abundance in natural and altered flow regimes
Freeman, Mary C.; Bowen, Z.H.; Bovee, K.D.; Irwin, E.R.
2001-01-01
Conserving biological resources native to large river systems increasingly depends on how flow-regulated segments of these rivers are managed. Improving management will require a better understanding of linkages between river biota and temporal variability of flow and instream habitat. However, few studies have quantified responses of native fish populations to multiyear (>2 yr) patterns of hydrologic or habitat variability in flow-regulated systems. To provide these data, we quantified young-of-year (YOY) fish abundance during four years in relation to hydrologic and habitat variability in two segments of the Tallapoosa River in the southeastern United States. One segment had an unregulated flow regime, whereas the other was flow-regulated by a peak-load generating hydropower dam. We sampled fishes annually and explored how continuously recorded flow data and physical habitat simulation models (PHABSIM) for spring (April-June) and summer (July-August) preceding each sample explained fish abundances. Patterns of YOY abundance in relation to habitat availability (median area) and habitat persistence (longest period with habitat area continuously above the long-term median area) differed between unregulated and flow-regulated sites. At the unregulated site, YOY abundances were most frequently correlated with availability of shallow-slow habitat in summer (10 species) and persistence of shallow-slow and shallow-fast habitat in spring (nine species). Additionally, abundances were negatively correlated with 1-h maximum flow in summer (five species). At the flow-regulated site, YOY abundances were more frequently correlated with persistence of shallow-water habitats (four species in spring; six species in summer) than with habitat availability or magnitude of flow extremes. The associations of YOY with habitat persistence at the flow-regulated site corresponded to the effects of flow regulation on habitat patterns. Flow regulation reduced median flows during spring and summer, which resulted in median availability of shallow-water habitats comparable to the unregulated site. However, habitat persistence was severely reduced by flow fluctuations resulting from pulsed water releases for peak-load power generation. Habitat persistence, comparable to levels in the unregulated site, only occurred during summer when low rainfall or other factors occasionally curtailed power generation. As a consequence, summer-spawning species numerically dominated the fish assemblage at the flow-regulated site; five of six spring-spawning species occurring at both study sites were significantly less abundant at the flow-regulated site. Persistence of native fishes in flow-regulated systems depends, in part, on the seasonal occurrence of stable habitat conditions that facilitate reproduction and YOY survival.
Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.; Konrad, Christopher P.; Little, Rand
2010-01-01
Flow regulation, bank armoring, and floodplain alteration since the early 20th century have contributed to significant changes in the hydrologic regime and geomorphic processes of the Cedar River in Washington State. The Cedar River originates in the Cascade Range, provides drinking water to the Seattle metropolitan area, and supports several populations of anadromous salmonids. Flow regulation currently has limited influence on the magnitude, duration, and timing of high-flow events, which affect the incubation of salmonids as well as the production and maintenance of their habitat. Unlike structural changes to the channel and floodplain, flow regulation may be modified in the short-term to improve the viability of salmon populations. An understanding of the effects of flow regulation on those populations must be discerned over a range of scales from individual floods that affect the size of individual year classes to decadal high flow regime that influences the amount and quality of channel and off-channel habitat available for spawning and rearing. We present estimates of reach-scale sediment budgets and changes to channel morphology derived from historical orthoimagery, specific gage analyses at four long-term streamflow-gaging stations to quantify trends in aggradation, and hydrologic statistics of the magnitude and duration of peak streamflows. These data suggest a gradient of channel types from unconfined, sediment-rich segments to confined, sediment-poor segments that are likely to have distinct responses to high flows. Particle-size distribution data and longitudinal water surface and streambed profiles for the 56 km downstream of Chester Morse Lake measured in 2010 show the spatial extent of preferred salmonid habitat along the Cedar River. These historical and current data constitute a geomorphic framework to help assess different river management scenarios for salmonid habitat and population viability. PDF version of a presentation on changes to aquatic habitat at the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.
Freeman, Mary C.; Hagler, Megan M.; Bumpers, Phillip M.; Wheeler, Kit; Wengerd, Seth J.; Freeman, Byron J.
2017-01-01
Free-flowing river segments provide refuges for many imperiled aquatic biota that have been extirpated elsewhere in their native ranges. These biodiversity refuges are also foci of conservation concerns because species persisting within isolated habitat fragments may be particularly vulnerable to local environmental change. We have analyzed long-term (14- and 20-y) survey data to assess evidence of fish species declines in two southeastern U.S. rivers where managers and stakeholders have identified potentially detrimental impacts of current and future land uses. The Conasauga River (Georgia and Tennessee) and the Etowah River (Georgia) form free-flowing headwaters of the extensively dammed Coosa River system. These rivers are valued in part because they harbor multiple species of conservation concern, including three federally endangered and two federally threatened fishes. We used data sets comprising annual surveys for fish species at multiple, fixed sites located at river shoals to analyze occupancy dynamics and temporal changes in species richness. Our analyses incorporated repeated site-specific surveys in some years to estimate and account for incomplete species detection, and test for species-specific (rarity, mainstem-restriction) and year-specific (elevated frequencies of low- or high-flow days) covariates on occupancy dynamics. In the Conasauga River, analysis of 26 species at 13 sites showed evidence of temporal declines in colonization rates for nearly all taxa, accompanied by declining species richness. Four taxa (including one federally endangered species) had reduced occupancy across the Conasauga study sites, with three of these taxa apparently absent for at least the last 5 y of the study. In contrast, a similar fauna of 28 taxa at 10 sites in the Etowah River showed no trends in species persistence, colonization, or occupancy. None of the tested covariates showed strong effects on persistence or colonization rates in either river. Previous studies and observations identified contaminants, nutrient loading, or changes in benthic habitat as possible causes for fish species declines in the Conasauga River. Our analysis provides baseline information that could be used to assess effectiveness of future management actions in the Conasauga or Etowah rivers, and illustrates the use of dynamic occupancy models to evaluate evidence of faunal decline from time-series data.
Konrad, Christopher P.
2004-01-01
A precipitation-runoff model for the Methow River Basin was used to simulate six alternatives: (1) baseline of current flow, (2) line irrigation canals to limit seepage losses, (3) increase surface-water diversions through unlined canals for aquifer recharge, (4) convert from surface-water to ground-water resources to supply water for irrigation, and (5) reduce tree density in forested headwater catchments, and (6) natural flow. Daily streamflow from October 1, 1959, to September 30, 2001 (water years 1960?2001) was simulated. Lining irrigation canals (alternative 2) increased flows in the Chewuch, Twisp, and the Methow (upstream and at Twisp) Rivers during September because of lower diversion rates, but not in the Methow River near Pateros. Increasing diversions for aquifer recharge (alternative 3) increased streamflow from September into January, but reduced streamflow earlier in the summer. Conversion of surface-water diversions to ground-water wells (alternative 4) resulted in the largest increase in September streamflow of any alternative, but also marginally lower January flows (at most -8 percent in the 90-percent exceedence value). Forest-cover reduction (alternative 5) produced large increases in streamflow during high-flow periods in May and June and earlier onset of high flows and small increases in January streamflows. September streamflows were largely unaffected by alternative 5. Natural streamflow (alternative 6) was higher in September and lower in January than the baseline alternative.
Hydrologic characteristics of freshwater mussel habitat: novel insights from modeled flows
Drew, C. Ashton; Eddy, Michele; Kwak, Thomas J.; Cope, W. Gregory; Augspurger, Tom
2018-01-01
The ability to model freshwater stream habitat and species distributions is limited by the spatially sparse flow data available from long-term gauging stations. Flow data beyond the immediate vicinity of gauging stations would enhance our ability to explore and characterize hydrologic habitat suitability. The southeastern USA supports high aquatic biodiversity, but threats, such as landuse alteration, climate change, conflicting water-resource demands, and pollution, have led to the imperilment and legal protection of many species. The ability to distinguish suitable from unsuitable habitat conditions, including hydrologic suitability, is a key criterion for successful conservation and restoration of aquatic species. We used the example of the critically endangered Tar River Spinymussel (Parvaspina steinstansana) and associated species to demonstrate the value of modeled flow data (WaterFALL™) to generate novel insights into population structure and testable hypotheses regarding hydrologic suitability. With ordination models, we: 1) identified all catchments with potentially suitable hydrology, 2) identified 2 distinct hydrologic environments occupied by the Tar River Spinymussel, and 3) estimated greater hydrological habitat niche breadth of assumed surrogate species associates at the catchment scale. Our findings provide the first demonstrated application of complete, continuous, regional modeled hydrologic data to freshwater mussel distribution and management. This research highlights the utility of modeling and data-mining methods to facilitate further exploration and application of such modeled environmental conditions to inform aquatic species management. We conclude that such an approach can support landscape-scale management decisions that require spatial information at fine resolution (e.g., enhanced National Hydrology Dataset catchments) and broad extent (e.g., multiple river basins).
NASA Astrophysics Data System (ADS)
Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman
2017-05-01
Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jay, David A.
Long-term changes and fluctuations in river flow, water properties, tides, and sediment transport in the Columbia River and its estuary have had a profound effect on Columbia River salmonids and their habitat. Understanding the river-flow, temperature, tidal, and sediment-supply regimes of the Lower Columbia River (LCR) and how they interact with habitat is, therefore, critical to development of system management and restoration strategies. It is also useful to separate management and climate impacts on hydrologic properties and habitat. This contract, part of a larger project led by the National Oceanic and Atmospheric Administration (NOAA), consists of three work elements, onemore » with five tasks. The first work element relates to reconstruction of historic conditions in a broad sense. The second and third elements consist, respectively, of participation in project-wide integration efforts, and reporting. This report focuses on the five tasks within the historic reconstruction work element. It in part satisfies the reporting requirement, and it forms the basis for our participation in the project integration effort. The first task consists of several topics related to historic changes in river stage and tide. Within this task, the chart datum levels of 14 historic bathymetric surveys completed before definition of Columbia River Datum (CRD) were related to CRD, to enable analysis of these surveys by other project scientists. We have also modeled tidal datums and properties (lower low water or LLW, higher high water or HHW, mean water level or MWL, and greater diurnal tidal range or GDTR) as a function of river flow and tidal range at Astoria. These calculations have been carried for 10 year intervals (1940-date) for 21 stations, though most stations have data for only a few time intervals. Longer-term analyses involve the records at Astoria (1925-date) and Vancouver (1902-date). Water levels for any given river flow have decreased substantially (0.3-1.8 m, depending on river flow and tidal range), and tidal ranges have increased considerably (by a factor of 1.5 to 4 for most river-flow levels) since the 1900-1940 period at most stations, with the largest percentage changes occurring at upriver stations. These changes have been caused by a combination of changes in channel roughness, shape and alignment, changes in coastal tides, and (possibly) bed degradation. Tides are growing throughout the Northeast Pacific, and Astoria (Tongue Pt) has one of the most rapid rates of increase in tidal range in the entire Eastern Pacific, about 0.3m per century. More than half of this change appears to result from changes within the system, the rest from larger scale changes in coastal tides. Regression models of HHW have been used to estimate daily shallow water habitat (SWHA) available in a {approx}25 mile long reach of the system from Eagle Cliff to Kalama for 1925-2004 under four different scenarios (the four possible combinations of diked/undiked and observed flow/ virgin flow). More than 70% of the habitat in this reach has been lost (modern conditions vs. virgin flow with not dikes). In contrast, however, to the reach between Skamokawa and Beaver, selective dike removal (instead of a combination of dike removal and flow restoration) would suffice to increase spring SWHA. The second task consists of reconstruction of the hydrologic cycle before 1878, based on historic documents and inversion of tidal data collected before the onset of the historic flow record in 1878. We have a complete list of freshet times and peak flows for 1858-1877, and scattered freshet information for 1841-1857. Based on tidal data, we have reconstructed the annual flow cycles for 1870 and 1871; other time periods between 1854 and 1867 are under analysis. The three remaining tasks relate to post-1878 hydrologic conditions (flows, sediment supply and water temperature), and separation of the human and climate influences thereon. Estimated ob-served (sometimes routed), adjusted (corrected for reservoir manipulation) and virgin (corrected also for irrigation diversion) flows for 1878-2004 have been compiled for the Columbia River at The Dalles and Beaver, and for the Willamette River at Portland. Sediment transports for the ob-served, adjusted and virgin flows have been calculated for 1878-2004 for the Columbia River at Vancouver and Beaver, for the Willamette River at Portland, and for other west-side tributaries seaward of Vancouver. For Vancouver and Portland, it has been possible to estimate sand trans-port (including gravel), fine sediment transport and total load. Only total load can be estimated at Beaver, and only fine sediment transport can be determined for the west-side tributaries, except for the post-1980 period influenced by the 1980 eruption of Mt St. Helens. Changes in flows and sediment transport due to flow regulation, irrigation diversion, and climate have been estimated.« less
Experimental river delta size set by multiple floods and backwater hydrodynamics.
Ganti, Vamsi; Chadwick, Austin J; Hassenruck-Gudipati, Hima J; Fuller, Brian M; Lamb, Michael P
2016-05-01
River deltas worldwide are currently under threat of drowning and destruction by sea-level rise, subsidence, and oceanic storms, highlighting the need to quantify their growth processes. Deltas are built through construction of sediment lobes, and emerging theories suggest that the size of delta lobes scales with backwater hydrodynamics, but these ideas are difficult to test on natural deltas that evolve slowly. We show results of the first laboratory delta built through successive deposition of lobes that maintain a constant size. We show that the characteristic size of delta lobes emerges because of a preferential avulsion node-the location where the river course periodically and abruptly shifts-that remains fixed spatially relative to the prograding shoreline. The preferential avulsion node in our experiments is a consequence of multiple river floods and Froude-subcritical flows that produce persistent nonuniform flows and a peak in net channel deposition within the backwater zone of the coastal river. In contrast, experimental deltas without multiple floods produce flows with uniform velocities and delta lobes that lack a characteristic size. Results have broad applications to sustainable management of deltas and for decoding their stratigraphic record on Earth and Mars.
Experimental river delta size set by multiple floods and backwater hydrodynamics
Ganti, Vamsi; Chadwick, Austin J.; Hassenruck-Gudipati, Hima J.; Fuller, Brian M.; Lamb, Michael P.
2016-01-01
River deltas worldwide are currently under threat of drowning and destruction by sea-level rise, subsidence, and oceanic storms, highlighting the need to quantify their growth processes. Deltas are built through construction of sediment lobes, and emerging theories suggest that the size of delta lobes scales with backwater hydrodynamics, but these ideas are difficult to test on natural deltas that evolve slowly. We show results of the first laboratory delta built through successive deposition of lobes that maintain a constant size. We show that the characteristic size of delta lobes emerges because of a preferential avulsion node—the location where the river course periodically and abruptly shifts—that remains fixed spatially relative to the prograding shoreline. The preferential avulsion node in our experiments is a consequence of multiple river floods and Froude-subcritical flows that produce persistent nonuniform flows and a peak in net channel deposition within the backwater zone of the coastal river. In contrast, experimental deltas without multiple floods produce flows with uniform velocities and delta lobes that lack a characteristic size. Results have broad applications to sustainable management of deltas and for decoding their stratigraphic record on Earth and Mars. PMID:27386534
Tanner, Dwight Q.; Anderson, Chauncey W.
1996-01-01
Ammonia from wastewater-treatment-plant effluent, high pH values, and high temperatures present a potential for chronic ammonia toxicity in the lower reaches of the South Umpqua River; however, actual violations of standards for chronic concentrations were not detected because of diel fluctuations in pH and water temperature.
River bar vegetation mowing response in the Middle Rio Grande
Esteban Muldavin; Elizabeth Milford; Yvonne Chauvin
1999-01-01
The Bureau of Reclamation routinely mows vegetation on side bars along the Rio Grande to assist with river flow management. To address the question of how such mowing affects vegetation composition and structure, three bars in the middle Rio Grande near Albuquerque, New Mexico were selected in 1994 for an experimental mowing program. Three 50-foot-wide strips on each...
NASA Astrophysics Data System (ADS)
Ta, J.; Kelsey, R.; Howard, J.; Hall, M.; Lund, J. R.; Viers, J. H.
2014-12-01
Stream flow controls physical and ecological processes in rivers that support freshwater ecosystems and biodiversity vital for services that humans depend on. This master variable has been impaired by human activities like dam operations, water diversions, and flood control infrastructure. Furthermore, increasing water scarcity due to rising water demands and droughts has further stressed these systems, calling for the need to find better ways to identify and allocate environmental flows. In this study, a linear optimization model was developed for environmental flows in river systems that have minimal or no regulation from dam operations, but still exhibit altered flow regimes due to surface water diversions and groundwater abstraction. Flow regime requirements for California Central Valley spring-run Chinook salmon (Oncorhynchus tshawytscha) life history were used as a test case to examine how alterations to the timing and magnitude of water diversions meet environmental flow objectives while minimizing impact to local water supply. The model was then applied to Mill Creek, a tributary of the Sacramento River, in northern California, and its altered flow regime that currently impacts adult spring-run Chinook spawning and migration. The resulting optimized water diversion schedule can be used to inform water management decisions that aim to maximize benefit for the environment while meeting local water demands.
Klamath River Reconstruction: Strategies for Dealing with Uncertainty in Calibration Data
NASA Astrophysics Data System (ADS)
Woodhouse, C. A.; Malevich, S. B.; Meko, D. M.; Gangopadhyay, S.
2013-12-01
The upper Klamath Basin has been the center of conflict over competing water uses and values in recent years, exacerbated by drought conditions. Currently, water needs for irrigation, fish, and riparian environments are being addressed and plans for sharing limited water resources are being negotiated. In a number of major river basins in the western US, extended records of streamflow from tree rings have been found useful for planning by placing recent droughts in a long term context and characterizing the long-term hydrologic variability over past centuries. The focus of this research is the first reconstruction of the upper Klamath River and its potential use for management. One challenge in the reconstruction of Klamath River streamflow is the availability of high quality streamflow data for reconstruction model calibration. In the Klamath basin, a long history of diversions for irrigation along with complex wetland hydrology has made the accurate estimation of natural flows difficult. A number of sources of hydrology are available, but all show differences in magnitudes of high and low flows. While the uncertainties in the calibration streamflow data can be described and quantified, they cannot be overcome, and thus impart uncertainty to the resulting reconstruction. Thus, it is important to develop analysis strategies that highlight the most certain aspects of the reconstruction. In the case of the Klamath River records, the most robust information concerns the sequences of flow, and duration and frequency of wet and dry intervals. In the reconstruction, which extends from 1493-2010, analyses of frequency and distribution of extreme low flow years, runs of consecutive years of low flows, and the probability of transitions between wet and dry years all document long-term natural hydrologic variability, over which the impacts of climate change will be imposed. While not a perfect record of past flow, the Klamath reconstruction provides information that can be useful to management. A challenge is to convey the uncertainties, but to also highlight the information for which we have the most confidence, and why.
NASA Astrophysics Data System (ADS)
Hill, A. F.; Wilson, A. M.; Williams, M. W.
2016-12-01
The future of mountain water resources in High Asia is of high interest to water managers, development organizations and policy makers given large populations downstream reliant on snow and ice sourced river flow. Together with historical and cultural divides among ex-Soviet republics, a lack of central water management following the Soviet break-up has led to water stress as trans-boundary waters weave through and along borders. New upstream hydropower development, a thirsty downstream agricultural sector and a shrinking Aral Sea has led to increasing tension in the region. Despite these pressures and in contrast to eastern High Asia's Himalayan basins (Ganges, Brahmaputra), little attention has been given to western High Asia draining the Pamir and Tien Shan ranges (Syr Darya and Amu Darya basins) to better understand the hydrology of this vast and remote area. Difficult access and challenging terrain exacerbate challenges to working in this remote mountain region. As part of the Contributions to High Asia Runoff from Ice and Snow (CHARIS) project, we asked how does river flow source water composition change over an alpine-to-plains domain of Kyrgyzstan's Naryn River in the Syr Darya basin? In addition, what may the future hold for river flow in Central Asia given the differing responses of snow and ice to climate changes? Utilizing a Rapid Hydrologic Assessment methodology including a suite of pre-field mapping techniques we collected in situ water chemistry data at targeted, remote mountain sites over 450km of the Naryn River over an elevation gradient from glacial headwaters to the lower lying areas - places where people, hydropower and agriculture utilize water. Chemical and isotope tracers were used to separate stream flow to understand relative dependency on melt waters as the river moves downstream from glaciers and snow covered areas. This case study demonstrates a technique to acquire field data over large scales in remote regions that facilitates regional basin wide hydrologic characterization. The arid hydro-climatology of the Naryn basin also serves as an important comparison to the monsoon-dominated eastern Himalaya studies, thereby providing bookends to anticipating possible hydrologic futures across the High Asian mountain arc.
NASA Astrophysics Data System (ADS)
Denaro, Simona; Dinh, Quang; Bizzi, Simone; Bernardi, Dario; Pavan, Sara; Castelletti, Andrea; Schippa, Leonardo; Soncini-Sessa, Rodolfo
2013-04-01
Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation, and flood risk mitigation. Reservoir operations are commonly planned in order to maximize these objectives. However reservoirs strongly influence river geomorphic processes causing sediment deficit downstream, altering the flow regime, leading, often, to process of river bed incision: for instance the variations of river cross sections over few years can notably affect hydropower production, flood mitigation, water supply strategies and eco-hydrological processes of the freshwater ecosystem. The river Po (a major Italian river) has experienced severe bed incision in the last decades. For this reason infrastructure stability has been negatively affected, and capacity to derive water decreased, navigation, fishing and tourism are suffering economic damages, not to mention the impact on the environment. Our case study analyzes the management of Isola Serafini hydropower plant located on the main Po river course. The plant has a major impact to the geomorphic river processes downstream, affecting sediment supply, connectivity (stopping sediment upstream the dam) and transport capacity (altering the flow regime). Current operation policy aims at maximizing hydropower production neglecting the effects in term of geomorphic processes. A new improved policy should also consider controlling downstream river bed incision. The aim of this research is to find suitable modeling framework to identify an operating policy for Isola Serafini reservoir able to provide an optimal trade-off between these two conflicting objectives: hydropower production and river bed incision downstream. A multi-objective simulation-based optimization framework is adopted. The operating policy is parameterized as a piecewise linear function and the parameters optimized using an interactive response surface approach. Global and local response surface are comparatively assessed. Preliminary results show that a range of potentially interesting trade-off policies exist able to better control river bed incision downstream without significantly decreasing hydropower production.
NASA Astrophysics Data System (ADS)
Avisse, N.; Tilmant, A.; Zhang, H.; Talozi, S.; Muller, M. F.; Rajsekhar, D.; Yoon, J.; Gorelick, S.
2016-12-01
The Yarmouk River, the main tributary to the Jordan River, is shared but not jointly managed by three countries: Syria, Jordan and Israel. Political distrust and conflicts mean that the equitable sharing of its waters has never materialized despite the signature of bilateral agreements. This state of affairs culminated in the 90ies and led to a rapid change in the flow regime of the Yarmouk River, where both peak and base flows almost disappeared at the turn of the millennium. Jordan blames Syria for building more dams than agreed on in 1987, while Syria blames Israel for doing the same in the Golan Heights. Even though less water is available for downstream Jordan and Israel, these two countries keep exchanging water, following updated rules since the 1994 Peace Treaty. While both literature and stakeholders in the region concur that most freshwater resources are consumed in Syria, there is actually no study that tracks agricultural and storage changes, both legal and illegal, in the Yarmouk basin in relation to the flow regime. This exercise is compounded by unavailability of information on water uses due to the long-standing lack of cooperation in the region, an issue exacerbated more recently by the ongoing civil war in Syria. Using a modeling framework based on remote sensing and a multi-agent simulation model, changes in the Yarmouk River flow regime are explained for three different development stages corresponding to the years 1984, 1998 and 2014. Landsat images, coupled with the analysis of land surface temperature, made possible the distinction of rainfed and irrigated crops, as well as the estimation of reservoirs' storage. For each stage, the impact on downstream riparian countries is assessed using a simulation model of the Israel-Jordan Peace Treaty. Other scenarios are also analyzed to assess the effectiveness of alternative policy and cooperation scenarios including water demand management measures in Syria, the reoperation of illegal reservoirs and the restructuring of inter-basin water transfers.
The pallid sturgeon: Scientific investigations help understand recovery needs
DeLonay, Aaron J.
2010-01-01
Understanding of the pallid sturgeon (Scaphirhynchus albus) has increased significantly since the species was listed as endangered over two decades ago. Since 2005, scientists at the U.S. Geological Survey (USGS) Columbia Environmental Research Center (CERC) have been engaged in an interdisciplinary research program in cooperation with the U.S. Army Corps of Engineers Missouri River Recovery Program, U.S. Fish and Wildlife Service, Nebraska Game and Parks Commission, and numerous other State and Federal cooperators to provide managers and policy makers with the knowledge needed to evaluate recovery options. During that time, the USGS has worked collaboratively with river scientists and managers to develop methods, baseline information, and research approaches that are critical contributions to recovery success. The pallid sturgeon is endangered throughout the Missouri River because of insufficient reproduction and survival of early life stages. Primary management actions on the Missouri River designed to increase reproductive success and survival have focused on flow regime, channel morphology, and propagation. The CERC research strategies have, therefore, been designed to examine the linkages among flow regime, re-engineered channel morphology, and reproductive success and survival. Specific research objectives include the following: (1) understanding reproductive physiology of pallid sturgeon and relations to environmental conditions; (2) determining movement, habitat use, and reproductive behavior of pallid sturgeon; and (3) quantifying availability and dynamics of aquatic habitats needed by pallid sturgeon for all life stages.
Upper Rio Grande water operations model: A tool for enhanced system management
Gail Stockton; D. Michael Roark
1999-01-01
The Upper Rio Grande Water Operations Model (URGWOM) under development through a multi-agency effort has demonstrated capability to represent the physical river/reservoir system, to track and account for Rio Grande flows and imported San Juan flows, and to forecast flows at various points in the system. Testing of the Rio Chama portion of the water operations model was...
Sand deposition in the Colorado River in the Grand Canyon from flooding of the Little Colorado River
Wiele, S.M.; Graf, J.B.; Smith, J.D.
1996-01-01
Methods for computing the volume of sand deposited in the Colorado River in Grand Canyon National Park by floods in major tributaries and for determining redistribution of that sand by main-channel flows are required for successful management of sand-dependent riparian resources. We have derived flow, sediment transport, and bed evolution models based on a gridded topography developed from measured channel topography and used these models to compute deposition in a short reach of the river just downstream from the Little Colorado River, the largest tributary in the park. Model computations of deposition from a Little Colorado River flood in January 1993 were compared to bed changes measured at 15 cross sections. The total difference between changes in cross-sectional area due to deposition computed by the model and the measured changes was 6%. A wide reach with large areas of recirculating flow and large depressions in the main channel accumulated the most sand, whereas a reach with similar planimetric area but a long, narrow shape and relatively small areas of recirculating flow and small depressions in the main channel accumulated only about a seventh as much sand. About 32% of the total deposition was in recirculation zones, 65% was in the main channel, and 3% was deposited along the channel margin away from the recirculation zone. Overall, about 15% of the total input of sand from this Little Colorado River flood was deposited in the first 3 km below the confluence, suggesting that deposition of the flood-derived material extended for only several tens of kilometers downstream from the confluence.
Quantifying flood duration controls on chute cutoff formation in a wandering gravel-bed river
NASA Astrophysics Data System (ADS)
Sawyer, A.; Wilcox, A. C.
2014-12-01
Chute cutoffs, which occur when a bypass or "chute" channel incises across a point or braid bar, distribute water and sediment, regulate sinuosity, and create off-channel habitat in wandering gravel-bed rivers. Cutoffs have been hypothesized to occur by progressive migration preparing a bend for cutoff, after which overbank flow events provide a trigger to excavate new channels. This trigger may depend on the magnitude and duration of floods and their associated sediment fluxes. Here we investigated how overbank flow duration impacts cutoff formation in a wandering gravel-bed river. To explore this, we applied a two-dimensional hydrodynamic model to a recently reconstructed reach of the Clark Fork River in western Montana that experienced chute cutoffs during a long-duration flood event in 2011. Hydrographs exceeding bankfull and with varying durations were simulated to constrain the role of overbank flow duration on erosional work in chute cutoff channels. For each magnitude-frequency-duration combination, cumulative excess shear stress (i.e., above the threshold of sediment mobilization) was quantified for in-channel and overbank areas. Locations of shear stress divergence associated with morphological change were identified along chute pathways. Preliminary results suggest that overbank areas containing concentrated flowpaths such as swales follow cumulative excess shear stress curve patterns similar to in-channel areas. This work describes a dynamic system characteristic of wandering gravel-bed rivers in the Pacific Northwest, and has implications for understanding morphodynamic evolution, river restoration targeting off-channel habitat for fish, and geomorphic flow regime management in regulated rivers.
David, Arthur; Tournoud, Marie-George; Perrin, Jean-Louis; Rosain, David; Rodier, Claire; Salles, Christian; Bancon-Montigny, Chrystelle; Picot, Bernadette
2013-03-01
This paper analyzes how changes in hydrological conditions can affect the water quality of a temporary river that receives direct inputs of sewage effluents. Data from 12 spatial surveys of the Vène river were examined. Physico-chemical parameters, major ion, and nutrient concentrations were measured. Analyses of variance (ANOVA) and multivariate analyses were performed. ANOVA revealed significant spatial differences for conductivity and major ion but no significant spatial differences for nutrient concentrations even if higher average concentrations were observed at stations located downstream from sewage effluent discharge points. Significant temporal differences were observed among all the parameters. Karstic springs had a marked dilution effect on the direct disposal of sewage effluents. During high-flow periods, nutrient concentrations were high to moderate whereas nutrient concentrations ranged from moderate to bad at stations located downstream from the direct inputs of sewage effluents during low-flow periods. Principal component analysis showed that water quality parameters that explained the water quality of the Vène river were highly dependent on hydrological conditions. Cluster analysis showed that when the karstic springs were flowing, water quality was homogeneous all along the river, whereas when karstic springs were dry, water quality at the monitoring stations was more fragmented. These results underline the importance of considering hydrological conditions when monitoring the water quality of temporary rivers. In view of the pollution observed in the Vène river, "good water chemical status" can probably only be achieved by improving the management of sewage effluents during low-flow periods.
Characterizing spatial and temporal patterns of intermittent rivers
NASA Astrophysics Data System (ADS)
de Vries, Stefan B.; Hoeve, Jasper; Sauquet, Eric; Leigh, Catherine; Bonada, Núria; Fike, Kimberly; Dahm, Clifford; Booij, Martijn J.; Datry, Thibault
2015-04-01
Intermittent rivers (IRs) support high biodiversity due to their dynamic alternations between terrestrial and aquatic phases. They represent a large proportion of the river network. However the current knowledge on these ecosystems is limited. The international research project "Intermittent River Biodiversity Analysis and Synthesis" (IRBAS, www.irbas.fr) aims to collect and analyze data on IR biodiversity from France, Spain, North America and Australia. These activities ultimately should help in identifying relationships between flow regime components and ecological responses. The IRBAS project will provide guidelines for policy-makers and resource managers for effective water and habitat management, restoration and preservation. This work examines one of the aspects in the IRBAS project: studying the large-scale spatial distribution of IRs as well as the year-to-year variability of zero-flow events. IRs were described by two variables: the frequency of periods without flow (FREQ) per time period (months or years) and the total number of zero-flow days (DUR) in a specified time window (month or year). Daily discharge data from more than 1700 gauging stations with no significant human influence on flow were collected from France, Spain, Australia and conterminous United States. A minimum length of 30 years of data starting from 1970 was required with less than 5% of missing data. Climate data for France and Australia were also collected. A classification of perennial versus intermittent rivers was defined, with 455 stations out of the 1684 considered "intermittent", i.e. the gauging station records had, on average, at least 5 zero-flow days per year. The analysis of the subset of IRs showed that: - Greater than 50% of the IRs in the database is located in Australia, where only 35% of the stations are considered perennial. In Spain the proportion of IRs reaches 25%. The proportion of intermittent rivers in France (7%) is certainly underestimated as a consequence of the monitoring strategy, i.e. gauging stations have been primarily installed to measure perennial flows of medium size basins and most of the IRs remain ungauged. This is also true in the US where ~ 7% of the current and historical gage network is on intermittent rivers. - Intermittence of rivers demonstrates high seasonality which varies from one country to another. - Links between climate variability and intermittence are not straightforward. No relation was found between annual DUR and annual precipitation in France whereas DUR was significantly correlated with precipitation in Australia. Potential evapotranspiration was correlated with DUR for France, but not for Australia, where the results were more obscure. - No spatially coherent trends in flow intermittence were identified in Spain, France or the USA. Significant trends according to the Mann Kendall test were found in Australia and results suggest trends in yearly DUR consistent with observed changes in rainfall in Western Australia during the last few decades. The El Nino cycle is one of the possible sources of variability in intermittency patterns.
Water Management for Competing Uses: Environmental Flows in the Transboundary Rio Grande/Rio Bravo
NASA Astrophysics Data System (ADS)
Sandoval Solis, S.; McKinney, D. C.
2011-12-01
Introduction Due to high water demand, the scarcity of water, and the complexity of water allocation, environmental flows have not been considered as an integral part of the water management in the Rio Grande/Rio Bravo transboundary basin. The Big Bend reach is located between the cities of Presidio/Ojinaga to Amistad international reservoir, along the main stream (Fig. 1). Important environmental habitats such as the Big Bend National and State Park in the U.S., the Maderas del Carmen, Cañon de Santa Elena and Ocampo natural reserved areas in Mexico are ecologically threatened because of the lack of environmental water management policies. Several efforts have been undertaken by scientists, government agencies and NGOs to determine the environmental flows for this reach and water management policies that can provide these flows. Objective The objective of this research is to describe a water management policy that can conciliate environmental and human water uses in the Big Bend region. In other words, define a policy that can provide environmental flows without harming water supply for stakeholders or increasing flood risk, within legal and physical constraints of the system. Methodology First, the system was characterized identifying water users, hydraulic infrastructure, and water allocation according to state, federal and international regulations. Second, a hydrograph for environmental flows was proposed that mimics the hydrologic characteristics of the prior dam alteration. Third, a water planning model was constructed to evaluate alternative policies. Fourth, the water management is proposed to provide environmental restoration flows from Luis L. Leon reservoir. This policy considers mechanisms that reduce flooding and drought risks, while meting national and international water regulations. Results Three types of natural flow regimes are considered: (1) median flows aimed to provide the base flow in the region, (2) high flows to provide transversal connectivity between the side-banks, and (3) small floods aimed to re-widen the channel and connect the river longitudinally. The maximum annual flow for the big bend region is 941 Million m3/year. Median flows and small floods are delivered from Luis L Leon reservoir; high flows are supplied by the rest of the rivers. The proposed policy effectively met the physical and legal constraints, while reducing the flooding and drought risk in Presidio/Ojinaga.
Granato, Gregory E.; Barlow, Paul M.
2005-01-01
Transient numerical ground-water-flow simulation and optimization techniques were used to evaluate potential effects of instream-flow criteria and water-supply demands on ground-water development options and resultant streamflow depletions in the Big River Area, Rhode Island. The 35.7 square-mile (mi2) study area includes three river basins, the Big River Basin (30.9 mi2), the Carr River Basin (which drains to the Big River Basin and is 7.33 mi2 in area), the Mishnock River Basin (3.32 mi2), and a small area that drains directly to the Flat River Reservoir. The overall objective of the simulations was to determine the amount of ground water that could be withdrawn from the three basins when constrained by streamflow requirements at four locations in the study area and by maximum rates of withdrawal at 13 existing and hypothetical well sites. The instream-flow requirement for the outlet of each basin and the outfall of Lake Mishnock were the primary variables that limited the amount of ground water that could be withdrawn. A requirement to meet seasonal ground-water-demand patterns also limits the amount of ground water that could be withdrawn by up to about 50 percent of the total withdrawals without the demand-pattern constraint. Minimum water-supply demands from a public water supplier in the Mishnock River Basin, however, did not have a substantial effect on withdrawals in the Big River Basin. Hypothetical dry-period instream-flow requirements and the effects of artificial recharge also affected the amount of ground water that could be withdrawn. Results of simulations indicate that annual average ground-water withdrawal rates that range up to 16 million gallons per day (Mgal/d) can be withdrawn from the study area under simulated average hydrologic conditions depending on instream-flow criteria and water-supply demand patterns. Annual average withdrawals of 10 to 12 Mgal/d are possible for proposed demands of 3.4 Mgal/d in the Mishnock Basin, and for a constant annual instream-flow criterion of 0.5 cubic foot per second per square mile (ft3/s/mi2) at the four streamflow-constraint locations. An average withdrawal rate of 10 Mgal/d can meet estimates of future (2020) water-supply needs of surrounding communities in Rhode Island. This withdrawal rate represents about 13 percent of the average 2002 daily withdrawal from the Scituate Reservoir (76 Mgal/d), the State?s largest water supply. Average annual withdrawal rates of 6 to 7 Mgal/d are possible for more stringent instream-flow criteria that might be used during dry-period hydrologic conditions. Two example scenarios of dry-period instream-flow constraints were evaluated: first, a minimum instream flow of 0.1 cubic foot per second at any of the four constraint locations; and second, a minimum instream flow of 10 percent of the minimum monthly streamflow estimate for each streamflow-constraint location during the period 1961?2000. The State of Rhode Island is currently (2004) considering methods for establishing instream-flow criteria for streams within the State. Twelve alternative annual, seasonal, or monthly instream-flow criteria that have been or are being considered for application in southeastern New England were used as hypothetical constraints on maximum ground-water-withdrawal rates in management-model calculations. Maximum ground-water-withdrawal rates ranged from 5 to 16 Mgal/d under five alternative annual instream-flow criteria. Maximum ground-water-withdrawal rates ranged from 0 to 13.6 Mgal/d under seven alternative seasonal or monthly instream-flow criteria. The effect of ground-water withdrawals on seasonal variations in monthly average streamflows under each criterion also were compared. Evaluation of management-model results indicates that a single annual instream-flowcriterion may be sufficient to preserve seasonal variations in monthly average streamflows and meet water-supply demands in the Big River Area, because withdrawals from wells in the Big
Modeling sedimentation-filtration basins for urban watersheds using Soil and Water Assessment Tool
USDA-ARS?s Scientific Manuscript database
Sedimentation-filtration (SedFil) basins are one of the storm-water best management practices (BMPs) that are intended to mitigate water quality problems in urban creeks and rivers. A new physically based model of variably saturated flows was developed for simulating flow and sediment in SedFils wi...
Modeling and management of water in the Klamath River Basin: overcoming politics and conflicts
Flug, Marshall; Scott, John F.; Abt, Steven R.; Young-Pezeshk, Jayne; Watson, Chester C.
1998-01-01
The network flow model MODSIM, which was designed as a water quantity mass balance model for evaluating and selecting water management alternatives, has been applied to the Klamath River basin. A background of conflicting issues in the basin is presented. The complexity of water quantity model development, while satisfying the many stakeholders and involved special interest groups is discussed, as well as the efforts taken to have the technical model accepted and used, and overcome stakeholder criticism, skepticism, and mistrust of the government.
Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.
In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less
Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California
Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; ...
2014-12-17
In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less
Schlatter, Karen; Grabau, Matthew R.; Shafroth, Patrick B.; Zamora-Arroyo, Francisco
2017-01-01
Drastic alterations to river hydrology, land use change, and the spread of the nonnative shrub, tamarisk (Tamarix spp.), have led to the degradation of riparian habitat in the Colorado River Delta in Mexico. Delivery of environmental flows to promote native cottonwood (Populus spp.) and willow (Salix spp.) recruitment in human-impacted riparian systems can be unsuccessful due to flow-magnitude constraints and altered abiotic–biotic feedbacks. In 2014, an experimental pulse flow of water was delivered to the Colorado River in Mexico as part of the U.S.-Mexico binational agreement, Minute 319. We conducted a field experiment to assess the effects of vegetation removal, seed augmentation, and environmental flows, separately and in combination, on germination and first-year seedling establishment of cottonwood, willow, and tamarisk at five replicate sites along 5 river km. The relatively low-magnitude flow deliveries did not substantively restore natural fluvial processes of erosion, sediment deposition, and vegetation scour, but did provide wetted surface soils, shallow groundwater, and low soil salinity. Cottonwood and willow only established in wetted, cleared treatments, and establishment was variable in these treatments due to variable site conditions and inundation duration and timing. Wetted soils, bare surface availability, soil salinity, and seed availability were significant factors contributing to successful cottonwood and willow germination, while soil salinity and texture affected seedling persistence over the growing season. Tamarisk germinated and persisted in a wider range of environmental conditions than cottonwood and willow, including in un-cleared treatment areas. Our results suggest that site management can increase cottonwood and willow recruitment success from low-magnitude environmental flow events, an approach that can be applied in other portions of the Delta and to other human-impacted riparian systems across the world with similar ecological limitations.
A Risk-Based Ecohydrological Approach to Assessing Environmental Flow Regimes
NASA Astrophysics Data System (ADS)
Mcgregor, Glenn B.; Marshall, Jonathan C.; Lobegeiger, Jaye S.; Holloway, Dean; Menke, Norbert; Coysh, Julie
2018-03-01
For several decades there has been recognition that water resource development alters river flow regimes and impacts ecosystem values. Determining strategies to protect or restore flow regimes to achieve ecological outcomes is a focus of water policy and legislation in many parts of the world. However, consideration of existing environmental flow assessment approaches for application in Queensland identified deficiencies precluding their adoption. Firstly, in managing flows and using ecosystem condition as an indicator of effectiveness, many approaches ignore the fact that river ecosystems are subjected to threatening processes other than flow regime alteration. Secondly, many focus on providing flows for responses without considering how often they are necessary to sustain ecological values in the long-term. Finally, few consider requirements at spatial-scales relevant to the desired outcomes, with frequent focus on individual places rather than the regions supporting sustainability. Consequently, we developed a risk-based ecohydrological approach that identifies ecosystem values linked to desired ecological outcomes, is sensitive to flow alteration and uses indicators of broader ecosystem requirements. Monitoring and research is undertaken to quantify flow-dependencies and ecological modelling is used to quantify flow-related ecological responses over an historical flow period. The relative risk from different flow management scenarios can be evaluated at relevant spatial-scales. This overcomes the deficiencies identified above and provides a robust and useful foundation upon which to build the information needed to support water planning decisions. Application of the risk assessment approach is illustrated here by two case studies.
Just add water and the Colorado River still reaches the sea.
Glenn, Edward P; Flessa, Karl W; Cohen, Michael J; Nagler, Pamela L; Rowell, Kirsten; Zamora-Arroyo, Francisco
2007-07-01
A recent article in Environmental Management by All argued that flood flows in North America's Colorado River do not reach the Gulf of California because they are captured and evaporated in Laguna Salada, a below sea-level lakebed near the mouth of the river. We refute this hypothesis by showing that (1) due to its limited area, the Laguna Salada could have evaporated less than 10% of the flood flows that have occurred since 1989; (2) low flow volumes preferentially flow to the Gulf rather than Laguna Salada; (3) All's method for detecting water surface area in the Laguna Salada appears to be flawed because Landsat Thematic Mapper images of the lakebed show it to be dry when All's analyses said it was flooded; (4) direct measurements of salinity at the mouth of the river and in the Upper Gulf of California during flood flows in 1993 and 1998 confirm that flood waters reach the sea; and (5) stable oxygen isotope signatures in clam shells and fish otoliths recorded the dilution of seawater with fresh water during the 1993 and 1998 flows. Furthermore, All's conclusion that freshwater flows do not benefit the ecology of the marine zone is incorrect because the peer-reviewed literature shows that postlarval larval shrimp populations increase during floods, and the subsequent year's shrimp harvest increases. Furthermore, freshwater flows increase the nursery area for Gulf corvina (Cynoscion othonopterus), an important commercial fish that requires estuarine habitats with salinities in the range of 26-38 per thousand during its natal stages. Although flood flows are now much diminished compared to the pre-dam era, they are still important to the remnant wetland and riparian habitats of the Colorado River delta and to organisms in the intertidal and marine zone. Only a small fraction of the flood flows are evaporated in Laguna Salada.
Minimum Flows and Levels Method of the St. Johns River Water Management District, Florida, USA
NASA Astrophysics Data System (ADS)
Neubauer, Clifford P.; Hall, Greeneville B.; Lowe, Edgar F.; Robison, C. Price; Hupalo, Richard B.; Keenan, Lawrence W.
2008-12-01
The St. Johns River Water Management District (SJRWMD) has developed a minimum flows and levels (MFLs) method that has been applied to rivers, lakes, wetlands, and springs. The method is primarily focused on ecological protection to ensure systems meet or exceed minimum eco-hydrologic requirements. MFLs are not calculated from past hydrology. Information from elevation transects is typically used to determine MFLs. Multiple MFLs define a minimum hydrologic regime to ensure that high, intermediate, and low hydrologic conditions are protected. MFLs are often expressed as statistics of long-term hydrology incorporating magnitude (flow and/or level), duration (days), and return interval (years). Timing and rates of change, the two other critical hydrologic components, should be sufficiently natural. The method is an event-based, non-equilibrium approach. The method is used in a regulatory water management framework to ensure that surface and groundwater withdrawals do not cause significant harm to the water resources and ecology of the above referenced system types. MFLs are implemented with hydrologic water budget models that simulate long-term system hydrology. The method enables a priori hydrologic assessments that include the cumulative effects of water withdrawals. Additionally, the method can be used to evaluate management options for systems that may be over-allocated or for eco-hydrologic restoration projects. The method can be used outside of the SJRWMD. However, the goals, criteria, and indicators of protection used to establish MFLs are system-dependent. Development of regionally important criteria and indicators of protection may be required prior to use elsewhere.
Observations of environmental change in Grand Canyon, Arizona
Webb, Robert H.; Melis, Theodore S.; Valdez, Richard A.
2002-01-01
Few scientific data have been collected on pre-dam conditions of the Colorado River corridor through Grand Canyon National Park. Using historical diaries, interviews with pre-dam river runners (referred to as the ?Old Timers?), and historical scientific data and observations, we compiled anecdotal information on environmental change in Grand Canyon. The most significant changes are the: lowering of water temperature in the river, near-elimination of heavily sediment-laden flows, erosion of sand bars, invasion of non-native tamarisk trees, reduction in driftwood, development of marshes, increase in non-native fish at the expense of native fishes, and increase in water bird populations. In addition, few debris flows were observed before closure of Glen Canyon Dam, which might suggests that the frequency of debris flows in Grand Canyon has increased. Other possible changes include decreases in bat populations and increases in swallow and bighorn sheep populations, although the evidence is anecdotal and inconclusive. These results provide a perspective on managing the Colorado River that may allow differentiation of the effects of Glen Canyon Dam from other processes of change.
Whitehead, Paul; Bussi, Gianbattista; Hossain, Mohammed Abed; Dolk, Michaela; Das, Partho; Comber, Sean; Peters, Rebecca; Charles, Katrina J; Hope, Rob; Hossain, Md Sarwar
2018-08-01
River water quality in rapidly urbanising Asian cities threatens to damage the resource base on which human health, economic growth and poverty reduction all depend. Dhaka reflects the challenges and opportunities for balancing these dynamic and complex trade-offs which goals can be achieved through effective policy interventions. There is a serious problem of water pollution in central Dhaka, in the Turag-Tongi-Balu River system in Bangladesh with the river system being one of the most polluted in the world at the moment. A baseline survey of water chemistry and total coliforms has been undertaken and shows dissolved oxygen close to zero in the dry season, high organic loading together with extreme levels of Ammonium-N and total coliform in the water. Models have been applied to assess hydrochemical processes in the river and evaluate alternative strategies for policy and the management of the pollution issues. In particular models of flow, Nitrate-N, Ammonium-N and indicator bacteria (total coliforms) are applied to simulate water quality in the river system. Various scenarios are explored to clean up the river system, including flow augmentation and improved effluent treatment. The model results indicate that improved effluent treatment is likely to have a more significant impact on reducing Ammonium-N and total coliforms than flow augmentation, but a combined strategy would greatly reduce the pollution problems in the Turag-Tongi-Balu River System. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Skalak, K.; Benthem, A.; Hupp, C. R.; Schenk, E.; Galloway, J.; Nustad, R.
2016-12-01
We examine how historic flooding in May 2011 affected the geomorphic adjustments (incision, island loss, delta formation etc.) created by dam regulation along the approximately 120 km free flowing reach of the Upper Missouri River bounded upstream by the Garrison Dam (1953) and downstream by Lake Oahe Reservoir (1959) near the City of Bismarck, ND. The largest flood since dam regulation occurred in May 2011. Flood releases from the Garrison Dam began in May 2011 and lasted until October, peaking with a flow of more than 4200 m3/s. Channel cross-section data and aerial imagery before and after the flood were compared to historic rates of channel change to assess the relative impact of the flood on the river morphology. Results indicate that the flood caused continued loss of islands in the reach just below the dam and an increase in island area downstream. Changes in channel capacity changes varied along the Garrison Segment as a result of the flood. The thalweg, which has been stable since the mid-1970s, did not migrate. And channel morphology, as defined by a newly developed shoaling metric which quantifies the degree of channel braiding, indicates significant longitudinal variability in response to the flood. These results show that the 2011 flood exacerbates some geomorphic trends caused by the dam while reversing others. We conclude that dam management created an alternate geomorphic and related ecological stable state which does not revert towards pre-dam conditions in response to the flood of record. This suggests that more active management, which includes sediment transport as well as flow modification, is necessary to restore the river towards pre-dam conditions and help create or maintain habitat for endangered species.
Bent, Gardner C.; Lombard, Pamela J.; Dudley, Robert W.
2015-10-27
The availability of the flood-inundation maps, combined with information regarding near-real-time stage from the U.S. Geological Survey North River at Shattuckville, MA streamgage can provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, and postflood recovery efforts. The flood-inundation maps are nonregulatory, but provide Federal, State, and local agencies and the public with estimates of the potential extent of flooding during selected peak-flow events. Introduction
As stormwater and snowmelt flow across the urban landscape, countless contaminants are carried into our rivers, lakes, and estuaries. The effects of these contaminant discharges on the environment can be severe. Water quality and sediment characteristics can be degraded, threaten...
Development of seasonal flow outlook model for Ganges-Brahmaputra Basins in Bangladesh
NASA Astrophysics Data System (ADS)
Hossain, Sazzad; Haque Khan, Raihanul; Gautum, Dilip Kumar; Karmaker, Ripon; Hossain, Amirul
2016-10-01
Bangladesh is crisscrossed by the branches and tributaries of three main river systems, the Ganges, Bramaputra and Meghna (GBM). The temporal variation of water availability of those rivers has an impact on the different water usages such as irrigation, urban water supply, hydropower generation, navigation etc. Thus, seasonal flow outlook can play important role in various aspects of water management. The Flood Forecasting and Warning Center (FFWC) in Bangladesh provides short term and medium term flood forecast, and there is a wide demand from end-users about seasonal flow outlook for agricultural purposes. The objective of this study is to develop a seasonal flow outlook model in Bangladesh based on rainfall forecast. It uses European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal precipitation, temperature forecast to simulate HYDROMAD hydrological model. Present study is limited for Ganges and Brahmaputra River Basins. ARIMA correction is applied to correct the model error. The performance of the model is evaluated using coefficient of determination (R2) and Nash-Sutcliffe Efficiency (NSE). The model result shows good performance with R2 value of 0.78 and NSE of 0.61 for the Brahmaputra River Basin, and R2 value of 0.72 and NSE of 0.59 for the Ganges River Basin for the period of May to July 2015. The result of the study indicates strong potential to make seasonal outlook to be operationalized.
Trash Diverter Orientation Angle Optimization at Run-Off River Type Hydro-power Plant using CFD
NASA Astrophysics Data System (ADS)
Munisamy, Kannan M.; Kamal, Ahmad; Shuaib, Norshah Hafeez; Yusoff, Mohd. Zamri; Hasini, Hasril; Rashid, Azri Zainol; Thangaraju, Savithry K.; Hamid, Hazha
2010-06-01
Tenom Pangi Hydro Power Station in Tenom, Sabah is suffering from poor river quality with a lot of suspended trashes. This problem necessitates the need for a trash diverter to divert the trash away from the intake region. Previously, a trash diverter (called Trash Diverter I) was installed at the site but managed to survived for a short period of time due to an impact with huge log as a results of a heavy flood. In the current project, a second trash diverter structure is designed (called Trash Diverter II) with improved features compared to Trash Diverter I. The Computational Fluid Dynamics (CFD) analysis is done to evaluate the river flow interaction onto the trash diverter from the fluid flow point of view, Computational Fluids Dynamics is a numerical approach to solve fluid flow profile for different inlet conditions. In this work, the river geometry is modeled using commercial CFD code, FLUENT®. The computational model consists of Reynolds Averaged Navier-Stokes (RANS) equations coupled with other related models using the properties of the fluids under investigation. The model is validated with site-measurements done at Tenom Pangi Hydro Power Station. Different operating condition of river flow rate and weir opening is also considered. The optimum angle is determined in this simulation to further use the data for 3D simulation and structural analysis.
An Operational Short-Term Forecasting System for Regional Hydropower Management
NASA Astrophysics Data System (ADS)
Gronewold, A.; Labuhn, K. A.; Calappi, T. J.; MacNeil, A.
2017-12-01
The Niagara River is the natural outlet of Lake Erie and drains four of the five Great lakes. The river is used to move commerce and is home to both sport fishing and tourism industries. It also provides nearly 5 million kilowatts of hydropower for approximately 3.9 million homes. Due to a complex international treaty and the necessity of balancing water needs for an extensive tourism industry, the power entities operating on the river require detailed and accurate short-term river flow forecasts to maximize power output. A new forecast system is being evaluated that takes advantage of several previously independent components including the NOAA Lake Erie operational Forecast System (LEOFS), a previously developed HEC-RAS model, input from the New York Power Authority(NYPA) and Ontario Power Generation (OPG) and lateral flow forecasts for some of the tributaries provided by the NOAA Northeast River Forecast Center (NERFC). The Corps of Engineers updated the HEC-RAS model of the upper Niagara River to use the output forcing from LEOFS and a planned Grass Island Pool elevation provided by the power entities. The entire system has been integrated at the NERFC; it will be run multiple times per day with results provided to the Niagara River Control Center operators. The new model helps improve discharge forecasts by better accounting for dynamic conditions on Lake Erie. LEOFS captures seiche events on the lake that are often several meters of displacement from still water level. These seiche events translate into flow spikes that HEC-RAS routes downstream. Knowledge of the peak arrival time helps improve operational decisions at the Grass Island Pool. This poster will compare and contrast results from the existing operational flow forecast and the new integrated LEOFS/HEC-RAS forecast. This additional model will supply the Niagara River Control Center operators with multiple forecasts of flow to help improve forecasting under a wider variety of conditions.
Study of Basin Recession Characteristics and Groundwater Storage Properties
NASA Astrophysics Data System (ADS)
Yen-Bo, Chen; Cheng-Haw, Lee
2017-04-01
Stream flow and groundwater storage are freshwater resources that human live on.In this study, we discuss southern area basin recession characteristics and Kao-Ping River basin groundwater storage, and hope to supply reference to Taiwan water resource management. The first part of this study is about recession characteristics. We apply Brutsaert (2008) low flow analysis model to establish two recession data pieces sifting models, including low flow steady period model and normal condition model. Within individual event analysis, group event analysis and southern area basin recession assessment, stream flow and base flow recession characteristics are parameterized. The second part of this study is about groundwater storage. Among main basin in southern Taiwan, there are sufficient stream flow and precipitation gaging station data about Kao-Ping River basin and extensive drainage data, and data about different hydrological characteristics between upstream and downstream area. Therefore, this study focuses on Kao-Ping River basin and accesses groundwater storage properties. Taking residue of groundwater volume in dry season into consideration, we use base flow hydrograph to access periodical property of groundwater storage, in order to establish hydrological period conceptual model. With groundwater storage and precipitation accumulative linearity quantified by hydrological period conceptual model, their periodical changing and alternation trend properties in each drainage areas of Kao-Ping River basin have been estimated. Results of this study showed that the recession time of stream flow is related to initial flow rate of the recession events. The recession time index is lower when the flow is stream flow, not base flow, and the recession time index is higher in low flow steady flow period than in normal recession condition. By applying hydrological period conceptual model, groundwater storage could explicitly be analyzed and compared with precipitation, by only using stream flow data. Keywords: stream flow, base flow, recession characteristics, groundwater storage
Water Demand Management Strategies and Challenges in the Upper Colorado River Basin
NASA Astrophysics Data System (ADS)
Kuhn, R. E.
2016-12-01
Under the 1922 Colorado River Compact, the Upper Basin (Colorado, New Mexico, Utah, and Wyoming) has flow obligations at Lee Ferry to downstream states and Mexico. The Colorado River Storage Project Act (CRSPA) of 1956 led to the construction of four large storage reservoirs. These provide river regulation to allow the Upper Basin to meet its obligations. Lake Powell, the largest and most important, and Lake Mead are now operated in a coordinated manner under the 2007 Interim Guidelines. Studies show that at current demand levels and if the hydrologic conditions the Basin has experienced since the mid-1980s continue or get drier, reservoir operations, alone, may not provide the necessary water to meet the Upper Basin's obligations. Therefore, the Upper Basin states are now studying demand management strategies that will reduce consumptive uses when total system reservoir storage reaches critically low levels. Demand management has its own economic, political and technical challenges and limitations and will provide new opportunities for applied research. This presentation will discuss some of those strategies, their challenges, and the kinds of information that research could provide to inform demand management.
Season-ahead Drought Forecast Models for the Lower Colorado River Authority in Texas
NASA Astrophysics Data System (ADS)
Block, P. J.; Zimmerman, B.; Grzegorzewski, M.; Watkins, D. W., Jr.; Anderson, R.
2014-12-01
The Lower Colorado River Authority (LCRA) in Austin, Texas, manages the Highland Lakes reservoir system in Central Texas, a series of six lakes on the Lower Colorado River. This system provides water to approximately 1.1 million people in Central Texas, supplies hydropower to a 55-county area, supports rice farming along the Texas Gulf Coast, and sustains in-stream flows in the Lower Colorado River and freshwater inflows to Matagorda Bay. The current, prolonged drought conditions are severely taxing the LCRA's system, making allocation and management decisions exceptionally challenging, and affecting the ability of constituents to conduct proper planning. In this work, we further develop and evaluate season-ahead statistical streamflow and precipitation forecast models for integration into LCRA decision support models. Optimal forecast lead time, predictive skill, form, and communication are all considered.
Sherfy, Mark H.; Stucker, Jennifer H.; Anteau, Michael J.
2009-01-01
Habitat conditions are one of the most important factors determining distribution and productivity of least terns (Sternula antillarum) and piping plovers (Charadrius melodus) in the upper Missouri River system (Ziewitz and others, 1992; Kruse and others, 2002). Habitat conditions are known to change within and among seasons in response to variation in river flows, weather conditions, and management actions targeted at providing for the needs of terns and plovers. Although these principles are generally agreed upon, there is little empirical information available on the quantity and quality of tern and plover habitats in this system, particularly with reference to the major life history events that must be supported (egg laying, incubation, and brood rearing). Habitat requirements for these events are composed of two major categories: nesting and foraging habitat. In the case of piping plovers, these two requirements must occur on the same area because plover chicks are constrained to foraging near nesting sites prior to fledging (Knetter and others, 2002; Haffner, 2005). In contrast, least terns chicks are fed by the adults, allowing food procurement for broods to occur outside the immediate nesting area; however, food resources must be close enough to nesting locations to minimize foraging time. The complexity and dynamics of the upper Missouri River system introduce considerable uncertainty into how best to manage tern and plover habitats, and how best to evaluate the effectiveness of this management. An extensive program of habitat monitoring will be needed to address this complexity and support the management of least terns and piping plovers under the Missouri River Recovery Program. These needs are being addressed, in part, through a program of habitat creation and management targeted at improving quality and quantity of habitats for terns and plovers. Given the momentum of these projects and their associated costs, it is imperative that the capacity be available to quantify changes in managed habitats for least terns and piping plovers, so that management effectiveness can be evaluated. Extremely high flows and flooding of the Missouri River in 1997 created and improved vast amounts of nesting habitat for least terns and piping plovers. Since 1998, there has been an apparent loss and/or degradation of habitat throughout the river system. However, during the same timeframe reservoir water levels have declined, exposing extensive piping plover breeding habitat. For example, 64 percent of adult piping plovers using the Missouri River in 2005 were observed on reservoir habitats, and 43 percent were observed on Lake Sakakawea (Threatened and Endangered Species Section, Omaha District, U.S. Army Corps of Engineers, unpub. data, 2006). Given the vast dynamics of this river and reservoir system, systemwide monitoring of habitat is clearly needed for the U.S. Army Corps of Engineers (USACE) to employ adaptive management (with respect to river operations) to provide most optimal conditions for the maintenance of breeding habitat of least terns and piping plovers. As a result of this need, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, began work on a habitat monitoring plan in 2005 as a conceptual framework for adaptive management.
Geomorphic status of regulated rivers in the Iberian Peninsula.
Lobera, G; Besné, P; Vericat, D; López-Tarazón, J A; Tena, A; Aristi, I; Díez, J R; Ibisate, A; Larrañaga, A; Elosegi, A; Batalla, R J
2015-03-01
River regulation by dams modifies flow regimes, interrupts the transfer of sediment through channel networks, and alters downstream bed dynamics, altogether affecting channel form and processes. So far, most studies on the geomorphic impacts of dams are restricted to single rivers, or even single river stretches. In this paper we analyse the geomorphic status of 74 river sites distributed across four large basins in the Iberian Peninsula (i.e. 47 sites located downstream of dams). For this purpose, we combine field data with hydrological data available from water agencies, and analyse historical (1970) and current aerial photographs. In particular, we have developed a Geomorphic Status (GS) index that allows us to assess the physical structure of a given channel reach and its change through time. The GS encompasses a determination of changes in sedimentary units, sediment availability, bar stability and channel flow capacity. Sites are statistically grouped in four clusters based on contrasted physical and climate characteristics. Results emphasise that regulation changes river's flow regime with a generalized reduction of the magnitude and frequency of floods (thus flow competence). This, in addition to the decrease downstream sediment supply, results in the loss of active bars as they are encroached by vegetation, to the point that only reaches with little or no regulation maintain exposed sedimentary deposits. The GS of regulated river reaches is negatively correlated with magnitude of the impoundment (regulation). Heavily impacted reaches present channel stabilization and, in contrast to the hydrological response, the distance and number of tributaries do not reverse the geomorphic impact of the dams. Stabilization limits river dynamics and may contribute to the environmental degradation of the fluvial ecosystem. Overall, results describe the degree of geomorphological alteration experienced by representative Iberian rivers mostly because of regulation, challenging the successful long-term implementation of river basin management programmes. Copyright © 2014 Elsevier B.V. All rights reserved.
What if we took a global look?
NASA Astrophysics Data System (ADS)
Ouellet Dallaire, C.; Lehner, B.
2014-12-01
Freshwater resources are facing unprecedented pressures. In hope to cope with this, Environmental Hydrology, Freshwater Biology, and Fluvial Geomorphology have defined conceptual approaches such as "environmental flow requirements", "instream flow requirements" or "normative flow regime" to define appropriate flow regime to maintain a given ecological status. These advances in the fields of freshwater resources management are asking scientists to create bridges across disciplines. Holistic and multi-scales approaches are becoming more and more common in water sciences research. The intrinsic nature of river systems demands these approaches to account for the upstream-downstream link of watersheds. Before recent technological developments, large scale analyses were cumbersome and, often, the necessary data was unavailable. However, new technologies, both for information collection and computing capacity, enable a high resolution look at the global scale. For rivers around the world, this new outlook is facilitated by the hydrologically relevant geo-spatial database HydroSHEDS. This database now offers more than 24 millions of kilometers of rivers, some never mapped before, at the click of a fingertip. Large and, even, global scale assessments can now be used to compare rivers around the world. A river classification framework was developed using HydroSHEDS called GloRiC (Global River Classification). This framework advocates for holistic approach to river systems by using sub-classifications drawn from six disciplines related to river sciences: Hydrology, Physiography and climate, Geomorphology, Chemistry, Biology and Human impact. Each of these disciplines brings complementary information on the rivers that is relevant at different scales. A first version of a global river reach classification was produced at the 500m resolution. Variables used in the classification have influence on processes involved at different scales (ex. topography index vs. pH). However, all variables are computed at the same high spatial resolution. This way, we can have a global look at local phenomenon.
Low flows and reservoir management for the Durance River basin (Southern France) in the 2050s
NASA Astrophysics Data System (ADS)
Sauquet, Eric
2015-04-01
The Durance River is one of the major rivers located in the Southern part of France. Water resources are under high pressure due to significant water abstractions for human uses within and out of the natural boundaries of the river basin through an extended open channel network. Water demands are related to irrigation, hydropower, drinking water, industries and more recently water management has included water needs for recreational uses as well as for preserving ecological services. Water is crucial for all these activities and for the socio-economic development of South Eastern France. Both socio-economic development and population evolution will probably modify needs for water supply, irrigation, energy consumption, tourism, industry, etc. In addition the Durance river basin will have to face climate change and its impact on water availability that may question the sustainability of the current rules for water allocation. The research project R²D²-2050 "Risk, water Resources and sustainable Development within the Durance river basin in 2050" aims at assessing future water availability and risks of water shortage in the 2050s by taking into account changes in both climate and water management. R²D²-2050 is partially funded by the French Ministry in charge of Ecology and the Rhône-Méditerranée Water Agency. This multidisciplinary project (2010-2014) involves Irstea, Electricité de France (EDF), the University Pierre et Marie Curie (Paris), LTHE (CNRS), the Société du Canal de Provence (SCP) and the research and consultancy company ACTeon. A set of models have been developed to simulate climate at regional scale (given by 330 projections obtained by applying three downscaling methods), water resources (provided by seven rainfall-runoff models forced by a subset of 330 climate projections), water demand for agriculture and drinking water, for different sub basins of the Durance River basin upstream of Mallemort under present day and under future conditions. A model of water management similar to the tools used by Electricité De France was calibrated to simulate the behavior of the three reservoirs Serre-Ponçon, Castillon, Sainte-Croix on present-day conditions. This model simulates water releases from reservoir under constraints imposed by rule curves, ecological flows downstream to the dams and water levels in summer for recreational purposes. The results demonstrate the relatively good performance of this simplified model and its ability to represent the influence of reservoir operations on the natural hydrological river flow regime, the decision-making involved in water management and the interactions at regional scale. Four territorial socio-economic scenarios have been also elaborated with the help of stake holders to project water needs in the 2050s for the area supplied with water from the Durance River basin. This presentation will focus on the specific tools developed within the project to simulate water management and water abstractions. The main conclusions related to the risk of water shortage in the 2050s and the level of satisfaction for each water use will be also discussed.
NASA Astrophysics Data System (ADS)
Gao, Jihui; Holden, Joseph; Kirkby, Mike
2014-05-01
Changes to land cover can influence the velocity of overland flow. In headwater peatlands, saturation means that overland flow is a dominant source of runoff, particularly during heavy rainfall events. Human modifications in headwater peatlands may include removal of vegetation (e.g. by erosion processes, fire, pollution, overgrazing) or pro-active revegetation of peat with sedges such as Eriophorum or mosses such as Sphagnum. How these modifications affect the river flow, and in particular the flood peak, in headwater peatlands is a key problem for land management. In particular, the impact of the spatial distribution of land cover change (e.g. different locations and sizes of land cover change area) on river flow is not clear. In this presentation a new fully distributed version of TOPMODEL, which represents the effects of distributed land cover change on river discharge, was employed to investigate land cover change impacts in three UK upland peat catchments (Trout Beck in the North Pennines, the Wye in mid-Wales and the East Dart in southwest England). Land cover scenarios with three typical land covers (i.e. Eriophorum, Sphagnum and bare peat) having different surface roughness in upland peatlands were designed for these catchments to investigate land cover impacts on river flow through simulation runs of the distributed model. As a result of hypothesis testing three land cover principles emerged from the work as follows: Principle (1): Well vegetated buffer strips are important for reducing flow peaks. A wider bare peat strip nearer to the river channel gives a higher flow peak and reduces the delay to peak; conversely, a wider buffer strip with higher density vegetation (e.g. Sphagnum) leads to a lower peak and postpones the peak. In both cases, a narrower buffer strip surrounding upstream and downstream channels has a greater effect than a thicker buffer strip just based around the downstream river network. Principle (2): When the area of change is equal, the size of land cover change patches has no effect on river flow for patch sizes up to 40000m2. Principle (3): Bare peat on gentle slopes gives a faster flow response and higher peak value at the catchment outlet, while high density vegetation or re-vegetation on a gentle slope area has larger positive impact on peak river flow delay when compared with the same practices on steeper slopes. These simple principles should be useful to planners who wish to determine resource efficiency and optimisation for peatland protection and restoration works in headwater systems. If practitioners require further detail on impacts of specific spatial changes to land cover in a catchment then this modelling approach can be applied to new catchments of concern.
Explore the Impacts of River Flow and Water Quality on Fish Communities
NASA Astrophysics Data System (ADS)
Tsai, W. P.; Chang, F. J.; Lin, C. Y.; Hu, J. H.; Yu, C. J.; Chu, T. J.
2015-12-01
Owing to the limitation of geographical environment in Taiwan, the uneven temporal and spatial distribution of rainfall would cause significant impacts on river ecosystems. To pursue sustainable water resources development, integrity and rationality is important to water management planning. The water quality and the flow regimes of rivers are closely related to each other and affect river ecosystems simultaneously. Therefore, this study collects long-term observational heterogeneity data, which includes water quality parameters, stream flow and fish species in the Danshui River of norther Taiwan, and aims to explore the complex impacts of water quality and flow regime on fish communities in order to comprehend the situations of the eco-hydrological system in this river basin. First, this study improves the understanding of the relationship between water quality parameters, flow regime and fish species by using artificial neural networks (ANNs). The Self-organizing feature map (SOM) is an unsupervised learning process used to cluster, analyze and visualize a large number of data. The results of SOM show that nine clusters (3x3) forms the optimum map size based on the local minimum values of both quantization error (QE) and topographic error (TE). Second, the fish diversity indexes are estimated by using the Adapted network-based fuzzy inference system (ANFIS) based on key input factors determined by the Gamma Test (GT), which is a useful tool for reducing model dimension and the structure complexity of ANNs. The result reveals that the constructed models can effectively estimate fish diversity indexes and produce good estimation performance based on the 9 clusters identified by the SOM, in which RMSE is 0.18 and CE is 0.84 for the training data set while RMSE is 0.20 and CE is 0.80 for the testing data set.
East, Amy E.; Sankey, Joel B.; Fairley, Helen C.; Caster, Joshua J.; Kasprak, Alan
2017-08-29
The landscape of the Colorado River through Glen Canyon National Recreation Area formed over many thousands of years and was modified substantially after the completion of Glen Canyon Dam in 1963. Changes to river flow, sediment supply, channel base level, lateral extent of sedimentary terraces, and vegetation in the post-dam era have modified the river-corridor landscape and have altered the effects of geologic processes that continue to shape the landscape and its cultural resources. The Glen Canyon reach of the Colorado River downstream of Glen Canyon Dam hosts many archaeological sites that are prone to erosion in this changing landscape. This study uses field evaluations from 2016 and aerial photographs from 1952, 1973, 1984, and 1996 to characterize changes in potential windblown sand supply and drainage configuration that have occurred over more than six decades at 54 archaeological sites in Glen Canyon and uppermost Marble Canyon. To assess landscape change at these sites, we use two complementary geomorphic classification systems. The first evaluates the potential for aeolian (windblown) transport of river-derived sand from the active river channel to higher elevation archaeological sites. The second identifies whether rills, gullies, or arroyos (that is, overland drainages that erode the ground surface) exist at the archaeological sites as well as the geomorphic surface, and therefore the relative base level, to which those flow paths drain. Results of these assessments are intended to aid in the management of irreplaceable archaeological resources by the National Park Service and stakeholders of the Glen Canyon Dam Adaptive Management Program.
The watershed and river systems management program
Markstrom, S.L.; Frevert, D.; Leavesley, G.H.; ,
2005-01-01
The Watershed and River System Management Program (WaRSMP), a joint effort between the U.S. Geological Survey (USGS) and the U.S. Bureau of Reclamation (Reclamation), is focused on research and development of decision support systems and their application to achieve an equitable balance among diverse water resource management demands. Considerations include: (1) legal and political constraints; (2) stake holder and consensus-building; (3) sound technical knowledge; (4) flood control, consumptive use, and hydropower; (5) water transfers; (6) irrigation return flows and water quality; (7) recreation; (8) habitat for endangered species; (9) water supply and proration; (10) near-surface groundwater; and (11) water ownership, accounting, and rights. To address the interdisciplinary and multi-stake holder needs of real-time watershed management, WaRSMP has developed a decision support system toolbox. The USGS Object User Interface facilitates the coupling of Reclamation's RiverWare reservoir operations model with the USGS Modular Modeling and Precipitation Runoff Modeling Systems through a central database. This integration is accomplished through the use of Model and Data Management Interfaces. WaRSMP applications include Colorado River Main stem and Gunnison Basin, the Yakima Basin, the Middle Rio Grande Basin, the Truckee-Carson Basin, and the Umatilla Basin.
Marginal Economic Value of Streamflow: A Case Study for the Colorado River Basin
NASA Astrophysics Data System (ADS)
Brown, Thomas C.; Harding, Benjamin L.; Payton, Elizabeth A.
1990-12-01
The marginal economic value of streamflow leaving forested areas in the Colorado River Basin was estimated by determining the impact on water use of a small change in streamflow and then applying economic value estimates to the water use changes. The effect on water use of a change in streamflow was estimated with a network flow model that simulated salinity levels and the routing of flow to consumptive uses and hydroelectric dams throughout the Basin. The results show that, under current water management institutions, the marginal value of streamflow in the Colorado River Basin is largely determined by nonconsumptive water uses, principally energy production, rather than by consumptive agricultural or municipal uses. The analysis demonstrates the importance of a systems framework in estimating the marginal value of streamflow.
Curtis, Jennifer A.
2015-01-01
Dam construction, flow diversion, and legacy landuse effects reduced the transport capacity, sediment supply, channel complexity and floodplain-connectivity along the Trinity River, CA below Lewiston Dam. This study documents the geomorphic evolution of the Trinity River Restoration Program’s intensively managed 65-km long restoration reach from 1980 to 2011. The nature and extent of riparian and channel changes were assessed using a series of geomorphic feature maps constructed from ortho-rectified photography acquired at low flow conditions in 1980, 1997, 2001, 2006, 2009, and 2011. Since 1980 there has been a general conversion of riparian to channel features and expansion of the active channel area. The primary mechanism for expansion of the active channel was bank erosion from 1980 to 1997 and channel widening was well distributed longitudinally throughout the study reach. Subsequent net bar accretion from 1997 to 2001, followed by slightly higher net bar scour from 2001 to 2006, occurred primarily in the central and lower reaches of the study area. In comparison, post-2006 bank and bar changes were spatially-limited to reaches with sufficient local transport capacity or sediment supply supported by gravel augmentation, mechanical channel rehabilitation, and tributary contributions to flow and sediment supply. A series of tributary floods in 1997, 1998 and 2006 were the primary factors leading to documented increases in channel complexity and floodplain connectivity. During the post-2006 period managed flow releases, in the absence of large magnitude tributary flooding, combined with gravel augmentation and mechanical restoration caused localized increases in sediment supply and transport capacity leading to smaller but measurable increases in channel complexity and floodplain connectivity primarily in the upper river below Lewiston Dam.
NASA Technical Reports Server (NTRS)
Keith, Bruce; Ford, David N.; Horton, Radley M.
2016-01-01
The purpose of this study is to evaluate simulated fill rate scenarios for the Grand Ethiopian Renaissance Dam while taking into account plausible climate change outcomes for the Nile River Basin. The region lacks a comprehensive equitable water resource management strategy, which creates regional security concerns and future possible conflicts. We employ climate estimates from 33 general circulation models within a system dynamics model as a step in moving toward a feasible regional water resource management strategy. We find that annual reservoir fill rates of 8-15% are capable of building hydroelectric capacity in Ethiopia while concurrently ensuring a minimum level of stream flow disruption into Egypt before 2039. Insofar as climate change estimates suggest a modest average increase in stream flow into the Aswan, climate changes through 2039 are unlikely to affect the fill rate policies. However, larger fill rates will have a more detrimental effect on stream flow into the Aswan, particularly beyond a policy of 15%. While this study demonstrates that a technical solution for reservoir fill rates is feasible, the corresponding policy challenge is political. Implementation of water resource management strategies in the Nile River Basin specifically and Africa generally will necessitate a national and regional willingness to cooperate.
CREST v2.1 Refined by a Distributed Linear Reservoir Routing Scheme
NASA Astrophysics Data System (ADS)
Shen, X.; Hong, Y.; Zhang, K.; Hao, Z.; Wang, D.
2014-12-01
Hydrologic modeling is important in water resources management, and flooding disaster warning and management. Routing scheme is among the most important components of a hydrologic model. In this study, we replace the lumped LRR (linear reservoir routing) scheme used in previous versions of the distributed hydrological model, CREST (coupled routing and excess storage) by a newly proposed distributed LRR method, which is theoretically more suitable for distributed hydrological models. Consequently, we have effectively solved the problems of: 1) low values of channel flow in daily simulation, 2) discontinuous flow value along the river network during flood events and 3) irrational model parameters. The CREST model equipped with both the routing schemes have been tested in the Gan River basin. The distributed LRR scheme has been confirmed to outperform the lumped counterpart by two comparisons, hydrograph validation and visual speculation of the continuity of stream flow along the river: 1) The CREST v2.1 (version 2.1) with the implementation of the distributed LRR achieved excellent result of [NSCE(Nash coefficient), CC (correlation coefficient), bias] =[0.897, 0.947 -1.57%] while the original CREST v2.0 produced only negative NSCE, close to zero CC and large bias. 2) CREST v2.1 produced more naturally smooth river flow pattern along the river network while v2.0 simulated bumping and discontinuous discharge along the mainstream. Moreover, we further observe that by using the distributed LRR method, 1) all model parameters fell within their reasonable region after an automatic optimization; 2) CREST forced by satellite-based precipitation and PET products produces a reasonably well result, i.e., (NSCE, CC, bias) = (0.756, 0.871, -0.669%) in the case study, although there is still room to improve regarding their low spatial resolution and underestimation of the heavy rainfall events in the satellite products.
A method for characterizing late-season low-flow regime in the upper Grand Ronde River Basin, Oregon
Kelly, Valerie J.; White, Seth
2016-04-19
This report describes a method for estimating ecologically relevant low-flow metrics that quantify late‑season streamflow regime for ungaged sites in the upper Grande Ronde River Basin, Oregon. The analysis presented here focuses on sites sampled by the Columbia River Inter‑Tribal Fish Commission as part of their efforts to monitor habitat restoration to benefit spring Chinook salmon recovery in the basin. Streamflow data were provided by the U.S. Geological Survey and the Oregon Water Resources Department. Specific guidance was provided for selection of streamgages, development of probabilistic frequency distributions for annual 7-day low-flow events, and regionalization of the frequency curves based on multivariate analysis of watershed characteristics. Evaluation of the uncertainty associated with the various components of this protocol indicates that the results are reliable for the intended purpose of hydrologic classification to support ecological analysis of factors contributing to juvenile salmon success. They should not be considered suitable for more standard water-resource evaluations that require greater precision, especially those focused on management and forecasting of extreme low-flow conditions.
Nagler, Pamela L; Glenn, Edward P; Hinojosa-Huerta, Osvel; Zamora, Francisco; Howard, Keith
2008-09-01
Like other great desert rivers, the Colorado River in the United States and Mexico is highly regulated to provide water for human use. No water is officially allotted to support the natural ecosystems in the delta of the river in Mexico. However, precipitation is inherently variable in this watershed, and from 1981-2004, 15% of the mean annual flow of the Lower Colorado River has entered the riparian corridor below the last diversion point for water in Mexico. These flows include flood releases from US dams and much smaller administrative spills released back to the river from irrigators in the US and Mexico. These flows have germinated new cohorts of native cottonwood and willow trees and have established an active aquatic ecosystem in the riparian corridor in Mexico. We used ground and remote-sensing methods to determine the composition and fractional cover of the vegetation in the riparian corridor, its annual water consumption, and the sources of water that support the ecosystem. The study covered the period 2000-2004, a flood year followed by 4 dry years. The riparian corridor occupies 30,000 ha between flood control levees in Mexico. Annual evapotranspiration (ET), estimated by Moderate Resolution Imaging Spectrometer (MODIS) satellite imagery calibrated against moisture flux tower data, was about 1.1 m yr(-1) and was fairly constant throughout the study period despite a paucity of surface flows 2001-2004. Total ET averaged 3.4 x 10(8)m(3)yr(-1), about 15% of Colorado River water entering Mexico from the US Surface flows could have played only a small part in supporting these high ET losses. We conclude that the riparian ET is supported mainly by the shallow regional aquifer, derived from agricultural return flows, that approaches the surface in the riparian zone. Nevertheless, surface flows are important in germinating cohorts of native trees, in washing salts from the soil and aquifer, and in providing aquatic habitat, thereby enriching the habitat value of the riparian corridor for birds and other wildlife. Conservation and water management strategies to enhance the delta habitats are discussed in light of the findings.
Nagler, P.L.; Glenn, E.P.; Hinojosa-Huerta, O.; Zamora, F.; Howard, K. J.
2008-01-01
Like other great desert rivers, the Colorado River in the United States and Mexico is highly regulated to provide water for human use. No water is officially allotted to support the natural ecosystems in the delta of the river in Mexico. However, precipitation is inherently variable in this watershed, and from 1981-2004, 15% of the mean annual flow of the Lower Colorado River has entered the riparian corridor below the last diversion point for water in Mexico. These flows include flood releases from US dams and much smaller administrative spills released back to the river from irrigators in the US and Mexico. These flows have germinated new cohorts of native cottonwood and willow trees and have established an active aquatic ecosystem in the riparian corridor in Mexico. We used ground and remote-sensing methods to determine the composition and fractional cover of the vegetation in the riparian corridor, its annual water consumption, and the sources of water that support the ecosystem. The study covered the period 2000-2004, a flood year followed by 4 dry years. The riparian corridor occupies 30,000 ha between flood control levees in Mexico. Annual evapotranspiration (ET), estimated by Moderate Resolution Imaging Spectrometer (MODIS) satellite imagery calibrated against moisture flux tower data, was about 1.1 m yr-1 and was fairly constant throughout the study period despite a paucity of surface flows 2001-2004. Total ET averaged 3.4??108 m3 yr-1, about 15% of Colorado River water entering Mexico from the US Surface flows could have played only a small part in supporting these high ET losses. We conclude that the riparian ET is supported mainly by the shallow regional aquifer, derived from agricultural return flows, that approaches the surface in the riparian zone. Nevertheless, surface flows are important in germinating cohorts of native trees, in washing salts from the soil and aquifer, and in providing aquatic habitat, thereby enriching the habitat value of the riparian corridor for birds and other wildlife. Conservation and water management strategies to enhance the delta habitats are discussed in light of the findings. ?? 2007 Elsevier Ltd. All rights reserved.
K.M. Burnett; D.J. Miller
2007-01-01
Headwater streams differ in susceptibility to debris flows and thus in importance as wood and sediment sources for larger rivers. Identifying and appropriately managing the most susceptible headwater streams is of interest. We developed and illustrated a method to delineate alternative aquatic conservation emphasis zones (ACEZs) considering probabilities for traversal...
Munné, Antoni; Prat, Narcís
2004-11-01
The Water Framework Directive (WFD), approved at the end of 2000 by the European Union, proposes the characterization of river types through two classification systems (A and B) (Annex II of the WFD), thereby obtaining comparable reference sites and improving the management of aquatic systems. System A uses fixed categories of three parameters to classify rivers: three altitude ranges, four basin size ranges, and three geological categories. In the other hand, System B proposes to establish river types analyzing different factors considered as obligatory and optional. Here, we tested Systems A and B in the Catalan River Basin District (NE Spain). The application of System A results in 26 river types: 8 in the Pyrenees and 18 in the Iberic-Macaronesian ecoregions. This number would require the establishment of a complex management system and control of the ecological status in a relatively small river basin district. We propose a multivariant system to synthesize the environmental descriptors and to define river types using System B. We use five hydrological, seven morphological, five geological, and two climatic variables to discriminate among river types. This method results in fewer river type categories than System A but is expected to achieve the same degree of differentiation because of the large number of descriptors considered. Two levels are defined in our classification method using System B. Five "river types," defined at large scale (1:1,000,000), are mainly discriminated by annual runoff coefficient, air temperature, and discharge. This level is useful and could facilitate comparisons of results among European river basin districts. The second level defines 10 "subtypes of river management," mainly discriminated by geology in the basin and flow regime. This level is more adequate at local scale (1:250,000) and provides a useful tool for management purposes in relatively small and heterogeneous river basin districts.
A new approach to flow simulation using hybrid models
NASA Astrophysics Data System (ADS)
Solgi, Abazar; Zarei, Heidar; Nourani, Vahid; Bahmani, Ramin
2017-11-01
The necessity of flow prediction in rivers, for proper management of water resource, and the need for determining the inflow to the dam reservoir, designing efficient flood warning systems and so forth, have always led water researchers to think about models with high-speed response and low error. In the recent years, the development of Artificial Neural Networks and Wavelet theory and using the combination of models help researchers to estimate the river flow better and better. In this study, daily and monthly scales were used for simulating the flow of Gamasiyab River, Nahavand, Iran. The first simulation was done using two types of ANN and ANFIS models. Then, using wavelet theory and decomposing input signals of the used parameters, sub-signals were obtained and were fed into the ANN and ANFIS to obtain hybrid models of WANN and WANFIS. In this study, in addition to the parameters of precipitation and flow, parameters of temperature and evaporation were used to analyze their effects on the simulation. The results showed that using wavelet transform improved the performance of the models in both monthly and daily scale. However, it had a better effect on the monthly scale and the WANFIS was the best model.
Leitman, S; Pine, W E; Kiker, G
2016-08-01
The Apalachicola-Chattahoochee-Flint River basin (ACF) is a large watershed in the southeastern United States. In 2012, the basin experienced the second year of a severe drought and the third multi-year drought in the last 15 years. During severe droughts, low reservoir and river levels can cause economic and ecological impacts to the reservoir, river, and estuarine ecosystems. During drought, augmenting Apalachicola River discharge through upstream reservoir releases and demand management are intuitive and often-suggested solutions to minimizing downstream effects. We assessed whether the existing reservoir system could be operated to minimize drought impacts on downstream water users and ecosystems through flow augmentation. Our analysis finds that in extreme drought such as observed during 2012, increases in water releases from reservoir storage are insufficient to even increase Apalachicola River discharge to levels observed in the 2007 drought. This suggests that there is simply not enough water available in managed storage to offset extreme drought events. Because drought frequency and intensity is predicted to increase under a variety of climate forecasts, our results demonstrate the need for a critical assessment of how water managers will meet increasing water demands in the ACF. Key uncertainties that should be addressed include (1) identifying the factors that led to extremely low Flint River discharge in 2012, and (2) determining how water "saved" via demand management is allocated to storage or passed to downstream ecosystem needs as part of the ongoing revisions to the ACF Water Control Manual by the US Army Corps of Engineers.
NASA Astrophysics Data System (ADS)
Leitman, S.; Pine, W. E.; Kiker, G.
2016-08-01
The Apalachicola-Chattahoochee-Flint River basin (ACF) is a large watershed in the southeastern United States. In 2012, the basin experienced the second year of a severe drought and the third multi-year drought in the last 15 years. During severe droughts, low reservoir and river levels can cause economic and ecological impacts to the reservoir, river, and estuarine ecosystems. During drought, augmenting Apalachicola River discharge through upstream reservoir releases and demand management are intuitive and often-suggested solutions to minimizing downstream effects. We assessed whether the existing reservoir system could be operated to minimize drought impacts on downstream water users and ecosystems through flow augmentation. Our analysis finds that in extreme drought such as observed during 2012, increases in water releases from reservoir storage are insufficient to even increase Apalachicola River discharge to levels observed in the 2007 drought. This suggests that there is simply not enough water available in managed storage to offset extreme drought events. Because drought frequency and intensity is predicted to increase under a variety of climate forecasts, our results demonstrate the need for a critical assessment of how water managers will meet increasing water demands in the ACF. Key uncertainties that should be addressed include (1) identifying the factors that led to extremely low Flint River discharge in 2012, and (2) determining how water "saved" via demand management is allocated to storage or passed to downstream ecosystem needs as part of the ongoing revisions to the ACF Water Control Manual by the US Army Corps of Engineers.
Effect of a levee setback on aquatic resources using two-dimensional flow and bioenergetics models
Black, Robert W.; Czuba, Christiana R.; Magirl, Christopher S.; McCarthy, Sarah; Berge, Hans; Comanor, Kyle
2016-04-05
Watershed restoration is the focus of many resource managers and can include a multitude of restoration actions each with specific restoration objectives. For the White River flowing through the cities of Pacific and Sumner, Washington, a levee setback has been proposed to reconnect the river with its historical floodplain to help reduce flood risks, as well as provide increased habitat for federally listed species of salmonids. The study presented here documents the use of a modeling framework that integrates two-dimensional hydraulic modeling with process-based bioenergetics modeling for predicting how changes in flow from reconnecting the river with its floodplain affects invertebrate drift density and the net rate of energy intake of juvenile salmonids. Modeling results were calculated for flows of 25.9 and 49.3 cubic meters per second during the spring, summer, and fall. Predicted hypothetical future mean velocities and depths were significantly lower and more variable when compared to current conditions. The abundance of low energetic cost and positive growth locations for salmonids were predicted to increase significantly in the study reach following floodplain reconnection, particularly during the summer. This modeling framework presents a viable approach for evaluating the potential fisheries benefits of reconnecting a river to its historical floodplain that integrates our understanding of hydraulic, geomorphology, and organismal biology.
Bathymetric and hydraulic survey of the Matanuska River near Circle View Estates, Alaska
Conaway, Jeffrey S.
2008-01-01
An acoustic Doppler current profiler interfaced with a differentially corrected global positioning system was used to map bathymetry and multi-dimensional velocities on the Matanuska River near Circle View Estates, Alaska. Data were collected along four spur dikes and a bend in the river during a period of active bank erosion. These data were collected as part of a larger investigation into channel processes being conducted to aid land managers with development of a long-term management plan for land near the river. The banks and streambed are composed of readily erodible material and the braided channels frequently scour and migrate. Lateral channel migration has resulted in the periodic loss of properties and structures along the river for decades.For most of the survey, discharge of the Matanuska River was less than the 25th percentile of long-term streamflow. Despite this relatively low flow, measured water velocities were as high as 15 feet per second. The survey required a unique deployment of the acoustic Doppler current profiler in a tethered boat that was towed by a small inflatable raft. Data were collected along cross sections and longitudinal profiles. The bathymetric and velocity data document river conditions before the installation of an additional spur dike in 2006 and during a period of bank erosion. Data were collected along 1,700 feet of river in front of the spur dikes and along 1,500 feet of an eroding bank.Data collected at the nose of spur dikes 2, 3, and 4 were selected to quantify the flow hydraulics at the locations subject to the highest velocities. The measured velocities and flow depths were greatest at the nose of the downstream-most spur dike. The maximum point velocity at the spur dike nose was 13.3 feet per second and the maximum depth-averaged velocity was 11.6 feet per second. The maximum measured depth was 12.0 feet at the nose of spur dike 4 and velocities greater than 10 feet per second were measured to a depth of 10 feet.Data collected along an eroding bank provided details of the spatial distribution and variability in magnitude of velocities and flow depths while erosion was taking place. Erosion was concentrated in an area just downstream of the apex of a river bend. Measured velocities and flow depths were greater in the apex of the bend than in the area of maximum bank erosion. The maximum measured velocity was 12.9 feet per second at the apex and 11.2 feet per second in front of the eroding bank. The maximum measured depth was 10.2 feet at the apex and 5.2 feet in front of the eroding bank.
NASA Astrophysics Data System (ADS)
Shao, X.; Cui, B.; Zhang, Z.; Fang, Y.; Jawitz, J. W.
2016-12-01
Freshwater in a delta is often at risk of saltwater intrusion, which has been a serious issue in estuarine deltas all over the world. Salinity gradients and hydrologic connectivity in the deltas can be disturbed by saltwater intrusion, which can fluctuate frequently and locally in time and space to affect biotic processes and then to affect the distribution patterns of the riverine fishes throughout the river network. Therefore, identifying the major flow paths or locations at risk of saltwater intrusion in estuarine ecosystems is necessary for saltwater intrusion mitigation and fish species diversity conservation. In this study, we use the betweenness centrality (BC) as the weighted attribute of the river network to identify the critical confluences and detect the preferential flow paths for saltwater intrusion through the least-cost-path algorithm from graph theory approach. Moreover, we analyse the responses of the salinity and fish species diversity to the BC values of confluences calculated in the river network. Our results show that the most likely location of saltwater intrusion is not a simple gradient change from sea to land, but closely dependent on the river segments' characteristics. In addition, a significant positive correlation between the salinity and the BC values of confluences is determined in the Pearl River Delta. Changes in the BC values of confluences can produce significant variation in the fish species diversity. Therefore, the dynamics of saltwater intrusion are a growing consideration for understanding the patterns and subsequent processes driving fish community structure. Freshwater can be diverted into these major flow paths and critical confluences to improve river network management and conservation of fish species diversity under saltwater intrusion.
Mellman-Brown, Sabine; Roberts, Dave; Pugesek, Bruce H.
2008-01-01
The hydrology of the Snake River in Grand Teton National Park is partly determined by releases from Jackson Lake Dam. The dam was first built in 1908 and became part of the National Park system when GTNP was expanded to include most of Jackson Hole. Completion of the present structure of Jackson Lake Dam occurred in 1917 and resulted in an increase above the natural level of Jackson Lake of 11.9 m. The Bureau of Reclamation (BOR) manages the dam and sets discharge schedules, primarily to meet agricultural needs, and to a lesser extent the needs of recreational river use. Major changes to the hydrological regime of the Snake River include lower than natural peak releases, decrease in frequency of extreme flood events , and unusually high flows from July to September. In addition , peak releases prior to 1957 were not synchronized with spring runoff but shifted to July or early August. Changes in inundation frequencies of floodplains , inundation duration and timing of peak flows have profound effects on the extent and composition of the riparian zone.
Providing Data and Modeling to Help Manage Water Supplies
Nickles, James
2008-01-01
The Sonoma County Water Agency (SCWA) and other local water purveyors have partnered with the U.S. Geological Survey (USGS) to assess hydrologic conditions and to quan-tify the county-wide interconnections between surface water and ground water. Through this partnership, USGS scientists have completed assessments of the geohydrology and geochemistry of the Sonoma and Alexander Valley ground-water basins. Now, the USGS is constructing a detailed ground-water flow model of the Santa Rosa Plain. It will be used to help identify strategies for surface-water/ground-water management and help to ensure long-term viability of the water supply. The USGS is also working with the SCWA to help meet future demand in the face of possible new restrictions on its main source of water, the Russian River. SCWA draws water from the alluvial aquifer underlying and adjacent to the Russian River and may want to extend riverbank filtration facilities to new areas. USGS scientists are conducting research to charac-terize riverbank filtration processes and changes in water quality during reduced river flows.
Use of dissolved oxygen modeling results in the management of river quality
Rickert, D.A.
1984-01-01
In 1973, the U.S. Geological Survey initiated a study of the Willamette River, Oregon, to determine the major causes of dissolved oxygen (DO) depletion, and whether advanced treatment of municipal wastewaters was needed to achieve the DO standards. The study showed that rates of carbonaceous decay were low (kr = 0.03-0.06/day) and that point-source loadings of carbonaceous biochemical oxygen demand (BOD) accounted for less than one-third of the satisfied oxygen demand. Nitrification of industrially discharged ammonia was the dominant cause of DO depletion. The study led to the calibration and verification of a steady-state DO model which was used to examine selected scenarios of BOD loading, ammonia loading, and flow augmentation. In 1976, the modeling projections for the Willamette River were presented to resource managers. A review in 1981 indicated that the State of Oregon had instituted an effluent standard on the major discharger of ammonia, rescinded an order for all municipal wastewaters to receive advanced secondary treatment by 1980, and more fully acknowledged the need for flow augmentation during summer to attain the DO standards.
NASA Astrophysics Data System (ADS)
Czech, Wiktoria; Radecki-Pawlik, Artur; Wyżga, Bartłomiej; Hajdukiewicz, Hanna
2016-11-01
The gravel-bed Biała River, Polish Carpathians, was heavily affected by channelization and channel incision in the twentieth century. Not only were these impacts detrimental to the ecological state of the river, but they also adversely modified the conditions of floodwater retention and flood wave passage. Therefore, a few years ago an erodible corridor was delimited in two sections of the Biała to enable restoration of the river. In these sections, short, channelized reaches located in the vicinity of bridges alternate with longer, unmanaged channel reaches, which either avoided channelization or in which the channel has widened after the channelization scheme ceased to be maintained. Effects of these alternating channel morphologies on the conditions for flood flows were investigated in a study of 10 pairs of neighbouring river cross sections with constrained and freely developed morphology. Discharges of particular recurrence intervals were determined for each cross section using an empirical formula. The morphology of the cross sections together with data about channel slope and roughness of particular parts of the cross sections were used as input data to the hydraulic modelling performed with the one-dimensional steady-flow HEC-RAS software. The results indicated that freely developed cross sections, usually with multithread morphology, are typified by significantly lower water depth but larger width and cross-sectional flow area at particular discharges than single-thread, channelized cross sections. They also exhibit significantly lower average flow velocity, unit stream power, and bed shear stress. The pattern of differences in the hydraulic parameters of flood flows apparent between the two types of river cross sections varies with the discharges of different frequency, and the contrasts in hydraulic parameters between unmanaged and channelized cross sections are most pronounced at low-frequency, high-magnitude floods. However, because of the deep incision of the river, both cross section types are typified by a similar, low potential for the retention of floodwater in floodplain areas. The study indicated that even though river restoration has only begun here, it already brings beneficial effects for flood risk management, reducing flow energy and shear forces exerted on the bed and banks of the channel in unmanaged river reaches. Only within wide, unmanaged channel reaches can the flows of low-frequency, high-magnitude floods be conveyed with relatively low shear forces exerted on the channel boundary. In contrast, in channelized reaches, flow velocity and shear forces are substantially higher, inevitably causing bank erosion and channel incision.
NASA Astrophysics Data System (ADS)
Watts, Robyn J.; Kopf, R. Keller; McCasker, Nicole; Howitt, Julia A.; Conallin, John; Wooden, Ian; Baumgartner, Lee
2018-03-01
Widespread flooding in south-eastern Australia in 2010 resulted in a hypoxic (low dissolved oxygen, DO) blackwater (high dissolved carbon) event affecting 1800 kilometres of the Murray-Darling Basin. There was concern that prolonged low DO would result in death of aquatic biota. Australian federal and state governments and local stakeholders collaborated to create refuge areas by releasing water with higher DO from irrigation canals via regulating structures (known as `irrigation canal escapes') into rivers in the Edward-Wakool system. To determine if these environmental flows resulted in good environmental outcomes in rivers affected by hypoxic blackwater, we evaluated (1) water chemistry data collected before, during and after the intervention, from river reaches upstream and downstream of the three irrigation canal escapes used to deliver the environmental flows, (2) fish assemblage surveys undertaken before and after the blackwater event, and (3) reports of fish kills from fisheries officers and local citizens. The environmental flows had positive outcomes; mean DO increased by 1-2 mg L-1 for at least 40 km downstream of two escapes, and there were fewer days when DO was below the sub-lethal threshold of 4 mg L-1 and the lethal threshold of 2 mg L-1 at which fish are known to become stressed or die, respectively. There were no fish deaths in reaches receiving environmental flows, whereas fish deaths were reported elsewhere throughout the system. This study demonstrates that adaptive management of environmental flows can occur through collaboration and the timely provision of monitoring results and local knowledge.
Selecting quantitative water management measures at the river basin scale in a global change context
NASA Astrophysics Data System (ADS)
Girard, Corentin; Rinaudo, Jean-Daniel; Caballero, Yvan; Pulido-Velazquez, Manuel
2013-04-01
One of the main challenges in the implementation of the Water Framework Directive (WFD) in the European Union is the definition of programme of measures to reach the good status of the European water bodies. In areas where water scarcity is an issue, one of these challenges is the selection of water conservation and capacity expansion measures to ensure minimum environmental in-stream flow requirements. At the same time, the WFD calls for the use of economic analysis to identify the most cost-effective combination of measures at the river basin scale to achieve its objective. With this respect, hydro-economic river basin models, by integrating economics, environmental and hydrological aspects at the river basin scale in a consistent framework, represent a promising approach. This article presents a least-cost river basin optimization model (LCRBOM) that selects the combination of quantitative water management measures to meet environmental flows for future scenarios of agricultural and urban demand taken into account the impact of the climate change. The model has been implemented in a case study on a Mediterranean basin in the south of France, the Orb River basin. The water basin has been identified as in need for quantitative water management measures in order to reach the good status of its water bodies. The LCRBOM has been developed using GAMS, applying Mixed Integer Linear Programming. It is run to select the set of measures that minimizes the total annualized cost of the applied measures, while meeting the demands and minimum in-stream flow constraints. For the economic analysis, the programme of measures is composed of water conservation measures on agricultural and urban water demands. It compares them with measures mobilizing new water resources coming from groundwater, inter-basin transfers and improvement in reservoir operating rules. The total annual cost of each measure is calculated for each demand unit considering operation, maintenance and investment costs. The results show that by combining quantitative water management measures, the flow regime can be improved to better mimic the natural flow regime. However, the acceptability of the higher cost of the program of measures is not yet assessed. Other stages such as stakeholder participation and negotiation processes are as well required to design an acceptable programme of measures. For this purpose, this type of model opens the path to investigate the problems of equity issues, and measures and costs allocation among the stakeholders of the basin. Acknowledgments: The study has been partially supported by the Hérault General Council, the Languedoc-Rousillon Regional Council, the Rhône Mediterranean Corsica Water Agency and the BRGM, as well as the European Community 7th Framework Project GENESIS (n. 226536) on groundwater systems, and the Plan Nacional I+D+I 2008-2011 of the Spanish Ministry of Science and Innovation (subprojects CGL2009-13238-C02-01 and CGL2009-13238-C02-02).
Schnick, Rosalie A.; Morton, John M.; Mochalski, Jeffrey C.; Beall, Jonathan T.
1982-01-01
Extensive information is provided on techniques that can reduce or eliminate the negative impact of man's activities (particularly those related to navigation) on large river systems, with special reference to the Upper Mississippi River. These techniques should help resource managers who are concerned with such river systems to establish sound environmental programs. Discussion of each technique or group of techniques include (1) situation to be mitigated or enhanced; (2) description of technique; (3) impacts on the environment; (4) costs; and (5) evaluation for use on the Upper Mississippi River Systems. The techniques are divided into four primary categories: Bank Stabilization Techniques, Dredging and Disposal of Dredged Material, Fishery Management Techniques, and Wildlife Management Techniques. Because techniques have been grouped by function, rather than by structure, some structures are discussed in several contexts. For example, gabions are discussed for use in revetments, river training structures, and breakwaters. The measures covered under Bank Stabilization Techniques include the use of riprap revetments, other revetments, bulkheads, river training structures, breakwater structures, chemical soil stabilizers, erosion-control mattings, and filter fabrics; the planting of vegetation; the creation of islands; the creation of berms or enrichment of beaches; and the control of water level and boat traffic. The discussions of Dredging and the Disposal of Dredged Material consider dredges, dredging methods, and disposal of dredged material. The following subjects are considered under Fishery Management Techniques: fish attractors; spawning structures; nursery ponds, coves, and marshes; fish screens and barriers; fish passage; water control structures; management of water levels and flows; wing dam modification; side channel modification; aeration techniques; control of nuisance aquatic plants; and manipulated of fish populations. Wildlife Management Techniques include treatments of artificial nest structures, island creation or development, marsh creation or development, greentree reservoirs and mast management, vegetation control, water level control, and revegetation.
NASA Astrophysics Data System (ADS)
Loomis, John; McTernan, James
2014-03-01
Whitewater river kayaking and river rafting require adequate instream flows that are often adversely affected by upstream water diversions. However, there are very few studies in the USA of the economic value of instream flow to inform environmental managers. This study estimates the economic value of instream flow to non-commercial kayakers derived using a Travel Cost Method recreation demand model and Contingent Valuation Method (CVM), a type of Contingent Behavior Method (CBM). Data were obtained from a visitor survey administered along the Poudre River in Colorado. In the dichotomous choice CVM willingness to pay (WTP) question, visitors were asked if they would still visit the river if the cost of their trip was Y higher, and the level of Y was varied across the sample. The CVM yielded an estimate of WTP that was sensitive to flows ranging from 55 per person per day at 300 Cubic Feet per Second (CFS) to a maximum 97 per person per day at flows of 1900 CFS. The recreation demand model estimated a boater's number of trips per season. We found the number of trips taken was also sensitive to flow, ranging from as little as 1.63 trips at 300 CFS to a maximum number of 14 trips over the season at 1900 CFS. Thus, there is consistency between peak benefits per trip and number of trips, respectively. With an average of about 100 non-commercial boaters per day, the maximum marginal values per acre foot averages about 220. This value exceeds irrigation water values in this area of Colorado.
Natural flow regimes, nonnative fishes, and native fish persistence in arid-land river systems.
Propst, David L; Gido, Keith B; Stefferud, Jerome A
2008-07-01
Escalating demands for water have led to substantial modifications of river systems in arid regions, which coupled with the widespread invasion of nonnative organisms, have increased the vulnerability of native aquatic species to extirpation. Whereas a number of studies have evaluated the role of modified flow regimes and nonnative species on native aquatic assemblages, few have been conducted where the compounding effects of modified flow regimes and established nonnatives do not confound interpretations, particularly at spatial and temporal scales that are relevant to conservation of species at a range-wide level. By evaluating a 19-year data set across six sites in the relatively unaltered upper Gila River basin, New Mexico, USA, we tested how natural flow regimes and presence of nonnative species affected long-term stability of native fish assemblages. Overall, we found that native fish density was greatest during a wet period at the beginning of our study and declined during a dry period near the end of the study. Nonnative fishes, particularly predators, generally responded in opposite directions to these climatic cycles. Our data suggested that chronic presence of nonnative fishes, coupled with naturally low flows reduced abundance of individual species and compromised persistence of native fish assemblages. We also found that a natural flow regime alone was unlikely to ensure persistence of native fish assemblages. Rather, active management that maintains natural flow regimes while concurrently suppressing or excluding nonnative fishes from remaining native fish strongholds is critical to conservation of native fish assemblages in a system, such as the upper Gila River drainage, with comparatively little anthropogenic modification.
Floodplain Connectivity and implications for flooding and floodplain function
NASA Astrophysics Data System (ADS)
Barrow, E.
2017-12-01
Regime theory suggests that floodplains should be inundated on average once every two years to maintain form and function of both the river and the floodplain. Natural disconnection along non-alluvial reaches and where the river has moved to flow against terrace edges is to be expected, however, disconnectivity caused by river management is now affecting increasing lengths of watercourses. This study utilises aerial Lidar data to determine the relative height difference between the watercourse and adjacent valley bottoms to assess the degree of disconnectivity along main river systems across Cumbria in the UK. The results reveal that many rivers are now poorly connected to their floodplains which are now largely non-functional. Floodplain geomorphic units, although often present, are currently inactive and water table levels are reduced resulting in a loss of wetland in favour of ruderal species tolerant of drier conditions. The causes of such widespread disconnectivity may be attributed to historic dredging and straightening of these rivers and revetment and riparian tree planting has further exacerbated the problem restricting lateral activity and the subsequent development of new areas of connected floodplain. The high degree of disconnection has implications for future river management and river restoration and these are discussed.
Du, Chenggong; Li, Yunmei; Wang, Qiao; Liu, Ge; Zheng, Zhubin; Mu, Meng; Li, Yuan
2017-12-01
Knowledge of tempo-spatial dynamics of water quality and its response to river flow is important for the management of lake water quality because river discharge associated with rainstorms can be an important source of pollutants to the estuary. Total phosphorus (TP), chlorophyll a (Chl-a), and total suspended matter (TSM) are important indexes of water quality and important factors influencing eutrophication and algal blooms. In this study, remote sensing was used to monitor these indexes to investigate the effects of river discharge on the estuary of Taihu Lake by the largest inflow river which is Chendong River using a total of 136 Geostationary Ocean Color Images (GOCI). In situ datasets collected during the four cruise experiments on Taihu Lake between 2011 and 2015 were used to develop the TP, Chl-a, and TSM inversion models based on simple empirical algorithms: 154 points for TP (mg/L), 114 for Chl-a (μg/L), and 181 for TSM (mg/L). The spatial and temporal changes of the concentration of the three parameters in the Chendong River estuary were analyzed by combining the GOCI data, the flow of the Chendong River, and meteorological data throughout the year in 2014. The several key findings are as follows: (1) In summer and autumn, TP, Chl-a, and TSM contents were significantly higher than in winter and spring. TP and Chl-a have a few similar distribution characteristics. And organic suspended matter in summer was the main reason for the increase of the TSM concentration. (2) The severe surface erosion in the rivers cannot be ignored; the high erodibility is an important factor in the increase of TP and TSM concentrations in the estuary. The concentration of the water quality parameter showed exponential decay with distance from the shore. The concentration decreased slowly after 12 km and then remained essentially constant. (3) TP content in the Chendong River estuary decreased under steady flow inputs and dramatically increased when the flow became large. The increase in Chl-a content was linked to higher levels of TP and good weather conditions after the rain event. Higher flow rates mainly play a dilution role for the Chl-a concentration. Erosion of the surface soil via rainfall is a major source of TSM to the estuary. This paper firstly analyzes tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu Lake, helps to further understand the impact of river input on lake water quality, and is important for lake eutrophication.
Christiansen, Daniel E.; Haj, Adel E.; Risley, John C.
2017-10-24
The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for 12 river basins in western Iowa that drain into the Missouri River. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration periods for each basin varied depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.A geographic information system tool was used to delineate each basin and estimate initial values for model parameters based on basin physical and geographical features. A U.S. Geological Survey automatic calibration tool that uses a shuffled complex evolution algorithm was used for initial calibration, and then manual modifications were made to parameter values to complete the calibration of each basin model. The main objective of the calibration was to match daily discharge values of simulated streamflow to measured daily discharge values. The Precipitation-Runoff Modeling System model was calibrated at 42 sites located in the 12 river basins in western Iowa.The accuracy of the simulated daily streamflow values at the 42 calibration sites varied by river and by site. The models were satisfactory at 36 of the sites based on statistical results. Unsatisfactory performance at the six other sites can be attributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) limited availability and accuracy of meteorological input data. The Precipitation-Runoff Modeling System models of 12 river basins in western Iowa will provide water-resource managers with a consistent and documented method for estimating streamflow at ungaged sites and aid in environmental studies, hydraulic design, water management, and water-quality projects.
Water resources planning for rivers draining into Mobile Bay
NASA Technical Reports Server (NTRS)
April, G. C.
1976-01-01
The application of remote sensing, automatic data processing, modeling and other aerospace related technologies to hydrological engineering and water resource management are discussed for the entire river drainage system which feeds the Mobile Bay estuary. The adaptation and implementation of existing mathematical modeling methods are investigated for the purpose of describing the behavior of Mobile Bay. Of particular importance are the interactions that system variables such as river flow rate, wind direction and speed, and tidal state have on the water movement and quality within the bay system.
NASA Astrophysics Data System (ADS)
Pai, H.; Sivakumaran, K.; Villamizar, S. R.; Flanagan, J.; Guo, Q.; Harmon, T. C.
2013-12-01
Balancing ecosystem health in water-scarce, agriculturally dominated river basins remains a challenge. In dry water years, maintaining conditions for restored and sustained indigenous fish populations (a frequently used indicator for ecosystem health) is particularly challenging. Competing human demands include urban and agricultural water supplies, hydropower, and flood control. In many semi-arid regions, increasing drought intensity and frequency under future climate scenarios will combine with population increases to water scarcity. The goal of this work is to better understand how reservoir releases affect fish habitat and overall river aquatic ecosystem quality. Models integrating a diverse array of physical and biological processes and system state are used to forecast the river ecosystem response to changing drivers. We propose a distributed parameter-based Habitat Suitability Index (HSI) approach for assessing fish habitat quality. Our river ecosystem HSI maps are based on a combination of the following: (1) In situ data describing stream flow and water quality conditions; (2) Spatial observations, including surveyed cross-sections, aerial imagery and digital elevation maps (DEM) of the river and its riparian corridor; and (3) Simulated spatially distributed water depths, flow velocities, and temperatures estimated from 1D and 2D river flow and temperature models (HEC-RAS and CE-QUAL-W2, respectively). With respect to (2), image processing schemes are used to classify and map key habitat features, namely riparian edge and shallow underwater vegetation. HSI maps can be modified temporally to address specific life cycle requirements of indicator fish species. Results are presented for several reaches associated with the San Joaquin River Restoration Project, focusing on several components of the Chinook salmon life cycle. HSI maps and interpretations are presented in the context of a range of prescribed reservoir release hydrographs linked to California water year descriptors (wet, dry, critical low, etc.). Implications are discussed with respect to effective reservoir operation (requisite flow releases and temperature) and restorative actions (e.g., riparian vegetation) in the context of habitat suitability.
NASA Astrophysics Data System (ADS)
Yard, M. D.; Kennedy, T.; Yackulic, C. B.; Bennett, G. E.
2012-12-01
Irregular features common to canyon-bound regions intercept solar incidence (photosynthetic photon flux density [PPFD: μmol m-2 s-1]) and can affect ecosystem energetics. The Colorado River in Grand Canyon is topographically complex, typical of most streams and rivers in the arid southwest. Dam-regulated systems like the Colorado River have reduced sediment loads, and consequently increased water transparency relative to unimpounded rivers; however, sediment supply from tributaries and flow regulation that affects erosion and subsequent sediment transport, interact to create spatial and temporal variation in optical conditions in this river network. Solar incidence and suspended sediment loads regulate the amount of underwater light available for aquatic photosynthesis in this regulated river. Since light availability is depth dependent (Beer's law), benthic algae is often exposed to varying levels of desiccation or reduced light conditions due to daily flow regulation, additional factors that further constrain aquatic primary production. Considerable evidence suggests that the Colorado River food web is now energetically dependent on autotrophic production, an unusual condition since large river foodwebs are typically supported by allochthonous carbon synthesized and transported from terrestrial environments. We developed a mechanistic model to account for these regulating factors to predict how primary production might be affected by observed and alternative flow regimes proposed as part of ongoing adaptive management experimentation. Inputs to our model include empirical data (suspended sediment and temperature), and predictive relationships: 1) solar incidence reaching the water surface (topographic complexity), 2) suspended sediment-light extinction relationships (optical properties), 3) unsteady flow routing model (stage-depth relationship), 4) channel morphology (photosynthetic area), and 5) photosynthetic-irradiant response for dominant algae (Cladophora glomerata and associated epiphytes). Initial findings suggest that aquatic primary production varies spatially and temporally in response to natural processes occurring at varying spatial scales and that flow regulation per se has only a minor effect on primary production. All of these physical drivers combined are likely to structure the abundance, distribution, and interaction of aquatic biota found in this ecosystem.
Solute Response To Arid-Climate Managed-River Flow During Storm Events
NASA Astrophysics Data System (ADS)
McLean, B.; Shock, E.
2006-12-01
Storm pulses are widely used in unmanaged, temperate and subtropical river systems to resolve in-stream surface and subsurface flow components. Resulting catchment-scale hydrochemical mixing models yield insight into mechanisms of solute transport. Managed systems are far more complicated due to the human need for high quality water resources, which drives processes that are superimposed on most, if not all, of the unmanaged components. As an example, an increasingly large portion of the water supply for the Phoenix metropolitan area is derived from multiple surface water sources that are impounded, diverted and otherwise managed upstream from the urban core that consumes the water and produces anthropogenic impacts. During large storm events this managed system is perturbed towards natural behavior as it receives inputs from natural hydrologic pathways in addition to impervious surfaces and storm water drainage channels. Our goals in studying managed river systems during this critical transition state are to determine how the well- characterized behavior of natural systems break down as the system responds then returns to its managed state. Using storm events as perturbations we can contrast an arid managed system with the unmanaged system it approaches during the storm event. In the process, we can extract geochemical consequences specifically related to unknown urban components in the form of chemical fingerprints. The effects of river management on solute behavior were assessed by taking advantage of several anomalously heavy winter storm events in late 2004 and early 2005 using a rigorous sampling routine. Several hundred samples collected between January and October 2005 were analyzed for major ion, isotopic, and trace metal concentrations with 78 individual measurements for each sample. The data are used to resolve managed watershed processes, mechanisms of solute transport and river mixing from anthropogenic inputs. Our results show that concentrations of major solutes change slowly and are independent of discharge downstream from the dams on two major tributaries. This is indicative of reservoir release water. In addition, a third input is derived from the Colorado River via the Central Arizona Project canal system. Cross plots including concentrations of solutes such as nitrate and sulfate from downstream of the confluence indicate at least three end-member sources, as do Piper diagrams using major anion and cation data. Dynamic contributions from natural event water and urban inputs can be resolved from the slowly changing release water, and may dictate the short-term transport of pollutants during the storm-induced transition state.
Planert, Michael
2007-01-01
The Suwannee River Basin covers a total of nearly 9,950 square miles in north-central Florida and southern Georgia. In Florida, the Suwannee River Basin accounts for 4,250 square miles of north-central Florida. Evaluating the impacts of increased development in the Suwannee River Basin requires a quantitative understanding of the boundary conditions, hydrogeologic framework and hydraulic properties of the Floridan aquifer system, and the dynamics of water exchanges between the Suwannee River and its tributaries and the Floridan aquifer system. Major rivers within the Suwannee River Basin are the Suwannee, Santa Fe, Alapaha, and Withlacoochee. Four rivers west of the Suwannee River are the Aucilla, the Econfina, the Fenholloway, and the Steinhatchee; all drain to the Gulf of Mexico. Perhaps the most notable aspect of the surface-water hydrology of the study area is that large areas east of the Suwannee River are devoid of channelized, surface drainage; consequently, most of the drainage occurs through the subsurface. The ground-water flow system underlying the study area plays a critical role in the overall hydrology of this region of Florida because of the dominance of subsurface drain-age, and because ground-water flow sustains the flow of the rivers and springs. Three principal hydrogeologic units are present in the study area: the surficial aquifer system, the intermediate aquifer system, and the Floridan aquifer system. The surficial aquifer system principally consists of unconsoli-dated to poorly indurated siliciclastic deposits. The intermediate aquifer system, which contains the intermediate confining unit, lies below the surficial aquifer system (where present), and generally consists of fine-grained, uncon-solidated deposits of quartz sand, silt, and clay with interbedded limestone of Miocene age. Regionally, the intermediate aquifer system and intermediate con-fining unit act as a confining unit that restricts the exchange of water between the over-lying surficial and underlying Upper Floridan aquifers. The Upper Floridan aquifer is present throughout the study area and is extremely permeable and typically capable of transmitting large volumes of water. This high permeability largely is due to the widening of fractures and formation of conduits within the aquifer through dissolu-tion of the limestone by infiltrating water. This process has also produced numerous karst features such as springs, sinking streams, and sinkholes. A model of the Upper Floridan aquifer was created to better understand the ground-water system and to provide resource managers a tool to evaluate ground-water and surface-water interactions in the Suwannee River Basin. The model was developed to simulate a single Upper Floridan aquifer layer. Recharge datasets were developed to represent a net flux of water to the top of the aquifer or the water table during a period when the system was assumed to be under steady-state conditions (September 1990). A potentiometric-surface map representing water levels during September 1990 was prepared for the Suwannee River Water Management District (SRWMD), and the heads from those wells were used for calibration of the model. Additionally, flows at gaging sites for the Suwannee, Alapaha, Withlacoochee, Santa Fe, Fenholloway, Aucilla, Ecofina, and Steinhatchee Rivers were used during the calibration process to compare to model computed flows. Flows at seven first-magnitude springs selected by the SRWMD also were used to calibrate the model. Calibration criterion for matching potentiometric heads was to attain an absolute residual mean error of 5 percent or less of the head gradient of the system which would be about 5 feet. An absolute residual mean error of 4.79 feet was attained for final calibration. Calibration criterion for matching streamflow was based on the quality of measurements made in the field. All measurements used were rated ?good,? so the desire was for simulated values to be wi
Predicting effects of environmental change on river inflows to ...
Estuarine river watersheds provide valued ecosystem services to their surrounding communities including drinking water, fish habitat, and regulation of estuarine water quality. However, the provisioning of these services can be affected by changes in the quantity and quality of river water, such as those caused by altered landscapes or shifting temperatures or precipitation. We used the ecohydrology model, VELMA, in the Trask River watershed to simulate the effects of environmental change scenarios on estuarine river inputs to Tillamook Bay (OR) estuary. The Trask River watershed is 453 km2 and contains extensive agriculture, silviculture, urban, and wetland areas. VELMA was parameterized using existing spatial datasets of elevation, soil type, land use, air temperature, precipitation, river flow, and water quality. Simulated land use change scenarios included alterations in the distribution of the nitrogen-fixing tree species Alnus rubra, and comparisons of varying timber harvest plans. Scenarios involving spatial and temporal shifts in air temperature and precipitation trends were also simulated. Our research demonstrates the utility of ecohydrology models such as VELMA to aid in watershed management decision-making. Model outputs of river water flow, temperature, and nutrient concentrations can be used to predict effects on drinking water quality, salmonid populations, and estuarine water quality. This modeling effort is part of a larger framework of
NASA Astrophysics Data System (ADS)
Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.
2017-12-01
Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.
Engineered river flow-through to improve mine pit lake and river values.
McCullough, Cherie D; Schultze, Martin
2018-05-30
Mine pit lakes may develop at mine closure when mining voids extend below groundwater levels and fill with water. Acid and metalliferous drainage (AMD) and salinity are common problems for pit lake water quality. Contaminated pit lake waters can directly present significant risk to both surrounding and regional communities and natural environmental values and limit beneficial end use opportunities. Pit lake waters can also discharge into surface and groundwater; or directly present risks to wildlife, stock and human end users. Riverine flow-through is increasingly proposed to mitigate or remediate pit lake water contamination using catchment scale processes. This paper presents the motivation and key processes and considerations for a flow-through pit lake closure strategy. International case studies as precedent and lessons for future application are described from pit lakes that use or propose flow-through as a key component of their mine closure design. Chemical and biological processes including dilution, absorption and flocculation and sedimentation can sustainably reduce pit lake contaminant concentrations to acceptable levels for risk and enable end use opportunities to be realised. Flow-through may be a valid mine closure strategy for pit lakes with poor water quality. However, maintenance of existing riverine system values must be foremost. We further suggest that decant river water quality may, in some circumstances, be improved; notably in examples of meso-eutrophic river waters flowing through slightly acidic pit lakes. Flow-through closure strategies must be scientifically justifiable and risk-based for both lake and receptors potentially affected by surface and groundwater transport. Due to the high-uncertainty associated with this complex strategy, biotic and physico-chemical attributes of both inflow and decant river reaches as well as lake should be well monitored. Monitoring should directly feed into an adaptive management framework discussed with key stakeholders with validation of flow-through as a sustainable strategy prior to mine relinquishment. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chapuis, Margot; Dufour, Simon; Provansal, Mireille; Couvert, Bernard; de Linares, Matthieu
2015-02-01
Bedload transport and bedform mobility in large gravel-bed rivers are not easily monitored, especially during floods. Large reaches present difficulties in bed access during flows for flow measurements. Because of these logistical issues, the current knowledge about bedload transport processes and bedform mobility lacks field-based information, while this missing information would precisely match river management needs. The lack of information linking channel evolution and particle displacements is even more striking in wandering reaches. The Durance River is a large, wandering, gravel-bed river (catchment area: 14,280 km2; mean width: 240 m), located in the southern French Alps and highly impacted by flow diversion and gravel mining. In order to improve current understanding of the link between sediment transport processes and river bed morphodynamics, we set up a sediment particle survey in the channel using Radio Frequency Identification (RFID) tracking and topographic surveys (GPS RTK and scour chains) for a 4-year recurrence interval flood. By combining topographic changes before and after a flood, intraflood erosion/deposition patterns from scour chains, differential routing of tracer particles, and spatial distribution of bed shear stress through a complex reach, this paper aims to define the critical shear stress for significant sediment mobility in this setting. Gravel tracking highlights displacement patterns in agreement with bar downstream migration and transport of particles across the riffle within this single flood event. Because no velocity measurements were possible during flood, a TELEMAC three-dimensional model helped interpret particle displacements by estimating spatial distribution of shear stresses and flow directions at peak flow. Although RFID tracking in a large, wandering, gravel-bed river does have some technical limitations (burial, recovery process time-consuming), it provides useful information on sediment routing through a riffle-pool sequence.
NASA Astrophysics Data System (ADS)
Kim, Jaeyeon; Lee, Seong-Sun; Lee, Kang-Kun
2016-04-01
The interaction characteristics between groundwater and surface water was examined by using Radon-222 at Han River Environmental Research Center (HRERC) in Korea where a geothermal resource using indirect open loop ground source heat pump (GSHP) has been developed. For designing a high efficiency performance of the open loop system in shallow aquifer, the riverside area was selected for great advantage of full capacity of well. From this reason groundwater properties of the study site can be easily influenced by influx of surrounding Han River. Therefore, 12 groundwater wells were used for monitoring radon concentration and groundwater level with fluctuation of river stage from May, 2014 to Apr., 2015. The short term monitoring data showed that the radon concentration was changed in accordance with flow meter data which was reflected well by the river stage fluctuation. The spatial distribution of radon concentration from long term monitoring data was also found to be affected by water level fluctuation by nearby dam activity and seasonal effect such as heavy rainfall and groundwater pumping. The estimated residence time indicates that river flows to the study site change its direction according to the combined effect of river stage and groundwater hydrology. In the linear regression of the values, flow velocities were yielded around 0.04 to 0.25 m/day which were similar to flow meter data. These results reveal that Radon-222 can be used as an appropriate environmental tracer in examining the characteristics of interaction in consideration of fluctuating river flow on operation of GSHP in the riverside area. ACKNOWLEDGEMENT This work was supported by the research project of "Advanced Technology for Groundwater Development and Application in Riversides (Geowater+) in "Water Resources Management Program (code 11 Technology Innovation C05)" of the MOLIT and the KAIA in Korea.
NASA Astrophysics Data System (ADS)
WANG, J.
2017-12-01
In stream water quality control, the total maximum daily load (TMDL) program is very effective. However, the load duration curves (LDC) of TMDL are difficult to be established because no sufficient observed flow and pollutant data can be provided in data-scarce watersheds in which no hydrological stations or consecutively long-term hydrological data are available. Although the point sources or a non-point sources of pollutants can be clarified easily with the aid of LDC, where does the pollutant come from and to where it will be transported in the watershed cannot be traced by LDC. To seek out the best management practices (BMPs) of pollutants in a watershed, and to overcome the limitation of LDC, we proposed to develop LDC based on a distributed hydrological model of SWAT for the water quality management in data scarce river basins. In this study, firstly, the distributed hydrological model of SWAT was established with the scarce-hydrological data. Then, the long-term daily flows were generated with the established SWAT model and rainfall data from the adjacent weather station. Flow duration curves (FDC) was then developed with the aid of generated daily flows by SWAT model. Considering the goal of water quality management, LDC curves of different pollutants can be obtained based on the FDC. With the monitored water quality data and the LDC curves, the water quality problems caused by the point or non-point source pollutants in different seasons can be ascertained. Finally, the distributed hydrological model of SWAT was employed again to tracing the spatial distribution and the origination of the pollutants of coming from what kind of agricultural practices and/or other human activities. A case study was conducted in the Jian-jiang river, a tributary of Yangtze river, of Duyun city, Guizhou province. Results indicate that this kind of method can realize the water quality management based on TMDL and find out the suitable BMPs for reducing pollutant in a watershed.
Effect of climate change on environmental flow indicators in the narew basin, poland.
Piniewski, Mikołaj; Laizé, Cédric L R; Acreman, Michael C; Okruszko, Tomasz; Schneider, Christof
2014-01-01
Environmental flows-the quantity of water required to maintain a river ecosystem in its desired state-are of particular importance in areas of high natural value. Water-dependent ecosystems are exposed to the risk of climate change through altered precipitation and evaporation. Rivers in the Narew basin in northeastern Poland are known for their valuable river and wetland ecosystems, many of them in pristine or near-pristine condition. The objective of this study was to assess changes in the environmental flow regime of the Narew river system, caused by climate change, as simulated by hydrological models with different degrees of physical characterization and spatial aggregation. Two models were assessed: the river basin scale model Soil and Water Assessment Tool (SWAT) and the continental model of water availability and use WaterGAP. Future climate change scenarios were provided by two general circulation models coupled with the A2 emission scenario: IPSL-CM4 and MIROC3.2. To assess the impact of climate change on environmental flows, a method based conceptually on the "range of variability" approach was used. The results indicate that the environmental flow regime in the Narew basin is subject to climate change risk, whose magnitude and spatial variability varies with climate model and hydrological modeling scale. Most of the analyzed sites experienced moderate impacts for the Generic Environmental Flow Indicator (GEFI), the Floodplain Inundation Indicator, and the River Habitat Availability Indicator. The consistency between SWAT and WaterGAP for GEFI was medium: in 55 to 66% of analyzed sites, the models suggested the same level of impact. Hence, we suggest that state-of-the-art, high-resolution, global- or continental-scale models, such as WaterGAP, could be useful tools for water management decision-makers and wetland conservation practitioners, whereas models such as SWAT should serve as a complementary tool for more specific, smaller-scale, local assessments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
State-and-transition prototype model of riparian vegetation downstream of Glen Canyon Dam, Arizona
Ralston, Barbara E.; Starfield, Anthony M.; Black, Ronald S.; Van Lonkhuyzen, Robert A.
2014-01-01
Facing an altered riparian plant community dominated by nonnative species, resource managers are increasingly interested in understanding how to manage and promote healthy riparian habitats in which native species dominate. For regulated rivers, managing flows is one tool resource managers consider to achieve these goals. Among many factors that can influence riparian community composition, hydrology is a primary forcing variable. Frame-based models, used successfully in grassland systems, provide an opportunity for stakeholders concerned with riparian systems to evaluate potential riparian vegetation responses to alternative flows. Frame-based, state-and-transition models of riparian vegetation for reattachment bars, separation bars, and the channel margin found on the Colorado River downstream of Glen Canyon Dam were constructed using information from the literature. Frame-based models can be simple spreadsheet models (created in Microsoft® Excel) or developed further with programming languages (for example, C-sharp). The models described here include seven community states and five dam operations that cause transitions between states. Each model divides operations into growing (April–September) and non-growing seasons (October–March) and incorporates upper and lower bar models, using stage elevation as a division. The inputs (operations) can be used by stakeholders to evaluate flows that may promote dynamic riparian vegetation states, or identify those flow options that may promote less desirable states (for example, Tamarisk [Tamarix sp.] temporarily flooded shrubland). This prototype model, although simple, can still elicit discussion about operational options and vegetation response.
NASA Astrophysics Data System (ADS)
Schmitt, R. J.; Bizzi, S.; Castelletti, A.
2012-12-01
The understanding of river hydromorphological processes has been recognized in the last decades as a priority of modern catchment management, since fluvial geomorphic processes shape physical habitat, affect river infrastructures and influence freshwater ecological processes. Characterization of river hydromorphological features is commonly location specific and highly demanding in terms of field-works, resource and expertise required. Therefore, its routine application at regional or national scales, although an urgent need of catchment management, is infeasible at present. Recently available high-resolution data, such as DEM or LIDAR, opens up novel potential for basin-wide analysis of fluvial processes at limited effort and cost. Specifically, in this study we assess the feasibility of characterizing river hydromorphology from specific map derived geomorphic controls namely: channel gradient, bankfull flow, specific stream power, and degree of channel confinement. The river network, extracted from a digital elevation model and validated with available network shape-files and optical satellite imagery, available flow gauging stations and GIS processing allow producing continuous values of geomorphic drivers defined over given length segments at catchment or regional scales. This generic framework was applied to the Red River (Sông Hông) basin, the second largest basin (87,800 km2) in Vietnam. Besides its economic importance, the river since few years is experiencing severe river bed incisions due to the building of new dams in the upstream part of the catchment and sand mining in the surrounding of the capital city Hanoi. In this context, characterized by an high developing rate, current efforts to increase water productivity by infrastructure and management measures require a thorough understanding of fluvial system and, in particular, of the basin-wide river hydromorphology. The framework proposed has allowed producing high-dimensional samples of spatially distributed geomorphic drivers at catchment scale for the Red River basin. This novel dataset has been then analysed using self-organizing maps (SOM) an artificial neural network model that is capable of learning from complex, multidimensional data without specification of what the outputs should be, and of generating a nonlinear classification of visually decipherable clusters. The use of the above framework allowed to analyze the spatial distribution of geomorphic features at catchment scale, reviling patterns of similarities and dissimilarities within the catchment and allowing classification of river reaches characterized by similar geomorphic drivers and then likely (but still to be validated) fluvial processes. The paper proposes an innovative and promising technique to produce hydromorphological classifications at catchment scale opening the way towards regional or national scale hydromorphological assessments through automatic GIS and statistical procedures with moderate effort, an urgent requirement of modern catchment management.
Decision support system based on DPSIR framework for a low flow Mediterranean river basin
NASA Astrophysics Data System (ADS)
Bangash, Rubab Fatima; Kumar, Vikas; Schuhmacher, Marta
2013-04-01
The application of decision making practices are effectively enhanced by adopting a procedural approach setting out a general methodological framework within which specific methods, models and tools can be integrated. Integrated Catchment Management is a process that recognizes the river catchment as a basic organizing unit for understanding and managing ecosystem process. Decision support system becomes more complex by considering unavoidable human activities within a catchment that are motivated by multiple and often competing criteria and/or constraints. DPSIR is a causal framework for describing the interactions between society and the environment. This framework has been adopted by the European Environment Agency and the components of this model are: Driving forces, Pressures, States, Impacts and Responses. The proposed decision support system is a two step framework based on DPSIR. Considering first three component of DPSIR, Driving forces, Pressures and States, hydrological and ecosystem services models are developed. The last two components, Impact and Responses, helped to develop Bayesian Network to integrate the models. This decision support system also takes account of social, economic and environmental aspects. A small river of Catalonia (Northeastern Spain), Francoli River with a low flow (~2 m3/s) is selected for integration of catchment assessment models and to improve knowledge transfer from research to the stakeholders with a view to improve decision making process. DHI's MIKE BASIN software is used to evaluate the low-flow Francolí River with respect to the water bodies' characteristics and also to assess the impact of human activities aiming to achieve good water status for all waters to comply with the WFD's River Basin Management Plan. Based on ArcGIS, MIKE BASIN is a versatile decision support tool that provides a simple and powerful framework for managers and stakeholders to address multisectoral allocation and environmental issues in river basins. While InVEST is a spatially explicit tool, used to model and map a suite of ecosystem services caused by land cover changes or climate change impacts. Moreover, results obtained from low-flow hydrological simulation and ecosystem services models serves as useful tools to develop decision support system based on DPSIR framework by integrating models. Bayesian Networks is used as a knowledge integration and visualization tool to summarize the outcomes of hydrological and ecosystem services models at the "Response" stage of DPSIR. Bayesian Networks provide a framework for modelling the logical relationship between catchment variables and decision objectives by quantifying the strength of these relationships using conditional probabilities. Participatory nature of this framework can provide better communication of water research, particularly in the context of a perceived lack of future awareness-raising with the public that helps to develop more sustainable water management strategies. Acknowledgements The present study was financially supported by Spanish Ministry of Economy and Competitiveness for its financial support through the project SCARCE (Consolider-Ingenio 2010 CSD2009-00065). R. F. Bangash also received PhD fellowship from AGAUR (Commissioner for Universities and Research of the Department of Innovation, Universities and Enterprise of the "Generalitat de Catalunya" and the European Social Fund).
Bjerklie, David M.; Starn, J. Jeffrey; Tamayo, Claudia
2010-01-01
A precipitation runoff model for the Pomperaug River watershed, Connecticut was developed to address issues of concern including the effect of development on streamflow and groundwater recharge, and the implications of water withdrawals on streamflow. The model was parameterized using a strategy that requires a minimum of calibration and optimization by establishing basic relations between the parameter value and physical characteristics of individual hydrologic response units (HRUs) that comprise the model. The strategy was devised so that the information needed can be obtained from Geographic Information System and other general databases for Connecticut. Simulation of groundwater recharge enabled evaluation of the temporal and spatial mapping of recharge variation across the watershed and the spatial effects of changes in land cover on base flow and surface runoff. The modeling indicated that over the course of a year, groundwater provides between 60 and 70 percent of flow in the Pomperaug River; the remainder is generated by more rapid flow through the shallow subsurface and runoff from impermeable surfaces and saturated ground. Groundwater is recharged primarily during periods of low evapotranspiration in the winter, spring, and fall. The largest amount of recharge occurs in the spring in response to snowmelt. During floods, the Weekeepeemee and Nonnewaug Rivers (tributaries that form the Pomperaug River) respond rapidly with little flood peak attenuation due to flood-plain storage. In the Pomperaug River, flood-plain storage is more important in attenuating floods; abandoned quarry ponds (O&G ponds) adjacent to the river provide substantial flood storage above specific river stages when flow from the river spills over the banks and fills the ponds. Discharge from the ponds also helps to sustain low flows in the Pomperaug River. Similarly, releases from the Bronson-Lockwood reservoir sustain flow in the Nonnewaug River and tend to offset the effect of groundwater withdrawals from a well field adjacent to the river during periods of natural low flow. The model indicated that under the current zoning, future development could reduce low flows by as much as 10 percent at the 99 percent exceedance level (99 percent of flows are greater than or equal to this flow), but would not substantially increase the highest flows. Simulation of projected and hypothetical development in the watershed shows, depending on how stormwater is managed, that between 10 and 20 percent effective impervious area in an HRU results in streamflow becoming dominated by the surface-runoff component. This shift from a groundwater-dominated system would likely result in substantial changes in water quality and instream habitat characteristics of the river. Base flow to streams in the Pomperaug River watershed is reduced by both increased impervious surface and increased groundwater withdrawals. For the watershed as a whole, increasing groundwater withdrawals have the potential for causing greater overall reductions in flow compared to increased development and impervious surfaces. Additionally, on the basis of groundwater-modeling simulations, the projected increase in development across the watershed and, to a lesser extent the increase in groundwater withdrawals, will increase the number of local losing reaches experiencing dry conditions and the duration of these dry periods. The location of the losing reaches tends to be in areas near the transition from the uplands to the valley bottoms that are filled with coarse glacial stratified deposits. The simulated increase in the duration and extent of localized dry stream reaches is most sensitive to local increase in impervious surface. Conversion of land from forest or developed land cover to pasture or agricultural land increases groundwater recharge and discharge to streams, while at the same time increasing overall streamflow (the opposite effect as increased impervious surface). These resu
Balancing power production and instream flow regime for small scale hydropower
NASA Astrophysics Data System (ADS)
Perona, P.; Gorla, L.; Characklis, G. W.
2013-12-01
Flow diversion from river and torrent main stems is a common practice to feed water uses such run-of-river and mini-hydropower, irrigation, etc. Considering the worldwide increasing water demand, it becomes mandatory to take the importance of riparian ecosystems and related biodiversity into account before starting such practices. In this paper, we use a simple hydro-economic model (Perona et al., 2013, Gorla and Perona, 2013) to show that redistribution policies at diversion nodes allow for a clear bio-economic interpretation of residual flows. This model uses the Principle of Equal Marginal Utility (PEMU) as optimal water allocation rule for generating natural-like flow releases while maximizing the aggregated economic benefits of both the riparian environment and the traditional use (e.g., hydropower). We show that both static and dynamic release polices such Minimal Flow, and Proportional/Non-proportional Repartitions, respectively, can all be represented in terms of PEMU, making explicit the value of the ecosystem health underlying each policy. The related ecological and economical performances are evaluated by means of hydrological/ecological indicators. We recommend taking this method into account as a helpful tool guiding political, economical and ecological decisions when replacing the inadequate concept of Minimum Flow Requirement (MFR) with dynamic ones. References Perona, P., D. Dürrenmatt and G. Characklis (2013) Obtaining natural-like flow releases in diverted river reaches from simple riparian benefit economic models. Journal of Environmental Management, 118: 161-169, http://dx.doi.org/10.1016/j.jenvman.2013.01.010 Gorla, L. and P. Perona (2013) On quantifying ecologically sustainable flow releases in a diverted river reach. Journal of Hydrology, 489: 98- 107, http://dx.doi.org/10.1016/j.jhydrol.2013.02.043
Large transboundary watersheds: Climate, water and streams of thought
NASA Astrophysics Data System (ADS)
Pulwarty, R. S.
2001-05-01
Water is a "fugitive" resource in the sense that it flows naturally from one place to another, from one reserve to another (e.g., groundwater to surface), and from one physical state (solid, liquid and gas) to another. Thus "trans-boundary" can mean many things including: transitions from wet to arid zones, from upstream to downstream, from one country or province to the next etc. The Convention on the Protection and Use of Transboundary Watercourses and International Lakes (1992) defines "transboundary waters" to mean "any surface or ground waters which mark, cross or are located on the boundaries between two or more states". Emerging issues in water resources emanate from three categories of problems; (1) transboundary water availability; (2) transboundary groundwater allocation, management, and conservation; and (3) transboundary water quality. Transboundary fluctuations and changes in river flow can be attributed to (1) climate variations and change on several timescales, and, (2) physical and biological transformations of basin hydrology including increased storage, diversions, and landscape changes. Researchers and practitioners have identified numerous factors underlying international disputes involving river flows, including: the variability and uncertainty of supply, interdependencies among users, increasing over-allocation and rising costs, the increasing vulnerability of water quality and aquatic ecosystems to human activities, ways and means of supplying safe water facilities, and the mobilization of financial resources for water development and management. Many of these issues derive from general concerns in water resources management. How these concerns are met is strongly shaped by the choice of the spatial unit within which studies and management actions are conducted, by the way problems have been defined and changed over time, and by who benefits from defining problems in a particular way. In the following discussion the scales of human activities and interactions with large river basins are put in the context of streamflow changes on the time scales of century, decadal, seasonal and extreme events. These conditioning factors on flow variability and change are discussed in general. Three basins, the Nile, the Colorado, and the Parana-Paraguay River systems, are then selected for detailed illustration. While governing institutions that more closely correspond with the physical water system can help to assure appropriate consideration of efficiency and equity, domestic policy can pose major institutional barriers to international agreements and management across national borders. Ultimately, the main tasks in the foreseeable future will be how to share common but variable water resources in a catchment area between upstream and downstream users, between various sectors, between rural and urban areas, between preservation of functioning ecosystems and more direct tangible needs. Engaging the many dimensions of transboundary river flow requires, more than ever, the need to understand these "regions" as integrators of social, cultural, climatic, economic, and ecological histories and networks, that help to shape shared community interests and values.
NASA Astrophysics Data System (ADS)
Douglas, M. M.; Bunn, S. E.; Davies, P. M.
2005-05-01
The tropical rivers of northern Australia are internationally recognised for their high ecological and cultural values. They have largely unmodified flow regimes and are comparatively free of the impacts associated with intensive land use. However, there is growing demand for agricultural development and existing pressures, such as weeds and feral animals, threaten their ecological integrity. Using the international literature to provide a conceptual framework and drawing on limited published and unpublished data on rivers in northern Australia, we have derived five general principles about food webs and related ecosystem processes that both characterise tropical rivers of northern Australia and have important implications for their management. These are: (1) Seasonal hydrology is a strong driver of ecosystem processes and food web structure; (2) Hydrological connectivity is largely intact and underpins important terrestrial-aquatic food web subsidies; (3) River and wetland food webs are strongly dependent on algal production; (4) A few common macroconsumers species have a strong influence on benthic food webs; (5) Omnivory is widespread and food chains are short. These principles have implications for the management and protection of tropical rivers and wetlands of northern Australia and provide a framework for the formation of testable hypotheses in future research programs.
Guay, Joel R.; Harmon, Jerry G.; McPherson, Kelly R.
1998-01-01
The damage caused by the January 1997 floods along the Cosumnes River and Deer Creek generated new interest in planning and managing land use in the study area. The 1997 floodflow peak, the highest on record and considered to be a 150-year flood, caused levee failures at 24 locations. In order to provide a technical basis for floodplain management practices, the U.S. Goelogical Survey, in cooperation with the Federal Emergency Management Agency, completed a flood-inundation map of the Cosumnes River and Deer Creek drainage from Dillard Road bridge to State Highway 99. Flood frequency was estimated from streamflow records for the Cosumnes River at Michigan Bar and Deer Creek near Sloughhouse. Cross sections along a study reach, where the two rivers generally flow parallel to one another, were used with a step-backwater model (WSPRO) to estimate the water-surface profile for floods of selected recurrence intervals. A flood-inundation map was developed to show flood boundaries for the 100-year flood. Water-surface profiles were developed for the 5-, 10-, 50-, 100-, and 500-year floods.
Landscape-scale processes influence riparian plant composition along a regulated river
Palmquist, Emily C.; Ralston, Barbara; Merritt, David M.; Shafroth, Patrick B.
2018-01-01
Hierarchical frameworks are useful constructs when exploring landscape- and local-scale factors affecting patterns of vegetation in riparian areas. In drylands, which have steep environmental gradients and high habitat heterogeneity, landscape-scale variables, such as climate, can change rapidly along a river's course, affecting the relative influence of environmental variables at different scales. To assess how landscape-scale factors change the structure of riparian vegetation, we measured riparian vegetation composition along the Colorado River through Grand Canyon, determined which factors best explain observed changes, identified how richness and functional diversity vary, and described the implications of our results for river management. Cluster analysis identified three divergent floristic groups that are distributed longitudinally along the river. These groups were distributed along gradients of elevation, temperature and seasonal precipitation, but were not associated with annual precipitation or local-scale factors. Species richness and functional diversity decreased as a function of distance downstream showing that changing landscape-scale factors result in changes to ecosystem characteristics. Species composition and distribution remain closely linked to seasonal precipitation and temperature. These patterns in floristic composition in a semiarid system inform management and provide insights into potential future changes as a result of shifts in climate and changes in flow management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, N.W.T.
Seasonally managed wetlands in the Grasslands Basin on the west-side of California's San Joaquin Valley provide food and shelter for migratory wildfowl during winter months and sport for waterfowl hunters during the annual duck season. Surface water supply to these wetlands contain salt which, when drained to the San Joaquin River during the annual drawdown period, can negatively impact water quality and cause concern to downstream agricultural riparian water diverters. Recent environmental regulation, limiting discharges salinity to the San Joaquin River and primarily targeting agricultural non-point sources, now also targets return flows from seasonally managed wetlands. Real-time water quality managementmore » has been advocated as a means of continuously matching salt loads discharged from agricultural, wetland and municipal operations to the assimilative capacity of the San Joaquin River. Past attempts to build environmental monitoring and decision support systems (EDSS's) to implement this concept have enjoyed limited success for reasons that are discussed in this paper. These reasons are discussed in the context of more general challenges facing the successful implementation of a comprehensive environmental monitoring, modelling and decision support system for the San Joaquin River Basin.« less
Evaluating the effects of monthly river flow trends on Environmental Flow allocation
NASA Astrophysics Data System (ADS)
Torabi Haghighi, Ali; Klove, Bjorn
2010-05-01
The Natural river flow regime can be changed by the construction of hydraulic structures such as dams, hydropower plants, pump stations and so on. Due to the new river flow regime, some parts of water resources must be allocated to environmental flow (EF). There are more than 62 hydrological methods which have been proposed for calculating EF, although these methods don't have enough acceptability to be used in practical cases and The so other methods are preferred such as holistic,….. Most hydrological methods do not take basin physiography, climate, location of hydraulic structures, monthly river flow regime, historical trend of river (annually regime), purpose of hydraulic structures and so on, into consideration. In the present work, data from more than 180 rivers from Asia (71 rivers and 16 countries), Europe (79 Rivers and 23 countries), Americas (23 rivers and 10 countries) and Africa (12 rivers and 6 countries) were used to assess EF. The rivers were divided into 5 main groups of regular permanent rivers, semi regular permanent rivers, irregular permanent rivers, seasonal rivers and dry rivers, for each groups EF calculated by some hydrological methods and compared with the natural flow regime. The results showed that besides the amount of EF, the monthly distribution of flow is very important and should be considered in reservoir operation. In seasonal rivers and dry rivers, hydraulic structure construction can be useful for conserving aquatic ecosystems
NASA Astrophysics Data System (ADS)
Hoyle, Jo; Kilroy, Cathy; Hicks, Murray
2015-04-01
Periphyton (the algae dominated community that grows on the bed of rivers) provide a rich food source for the upper trophic levels of stream ecosystems and can also provide an important ecological service by removing dissolved nutrients and contaminants from the flow. However, in excess, periphyton can have negative effects on habitat quality, water chemistry and biodiversity, and can reduce recreation and aesthetic values. The abundance of periphyton in rivers is influenced by a number of factors, but the two key factors that can be directly influenced by human activities are flow regime and nutrient concentrations. River managers in New Zealand are required to set objectives for periphyton abundance that meet or exceed national bottom lines, and they then need to set limits on freshwater quality and quantity in their region to ensure these objectives are met. Consequently, the ability to predict periphyton abundance under different conditions is crucial for management of rivers to protect ecological and other values. Establishing quantitative relationships between periphyton abundance, hydrologic regimes and nutrient concentrations has proven to be difficult but remains an urgent priority in New Zealand. A common index for predicting periphyton abundance has been the frequency of floods greater than 3 times the median flow (FRE3), and this has been successful on a regional average but can be quite unreliable on a site-specific basis. This stems largely from our limited ability to transform flow data into ecologically meaningful physical processes that directly affect periphyton removal (e.g., drag, abrasion, bed movement). The research we will present examines whether geomorphic variables, such as frequency of bed movement, are useful co-predictors in periphyton abundance-flow-nutrient relationships. We collected data on channel topography and bed material size for 20 reaches in the Manawatu-Wanganui Region which have at least 5 years of flow, nutrient concentration and periphyton biomass data (laboratory measures of chlorophyll a and percentage cover of thin films, filaments and mats/sludge). For each reach we set up a 1-d hydraulic model and established relationships between discharge and a number of hydraulic and geomorphic variables, including the discharge required to partially and fully mobilise the bed sediment. These were then related to the flow and periphyton monitoring records to examine the strength of relationships. Relating periphyton biomass data to antecedent flow data allowed us to identify threshold flows for periphyton removal. These flows were found to be 0.9 - 9.8 times the median flow, depending on the site, with the average across sites being 3.3 times the median flow. Results also showed that general mobility of the gravelly/cobbly bed material was not required to remove periphyton but that mobility of over-passing sand (through its abrasive action) is a key control on periphyton abundance. Relationships between soluble inorganic nitrogen and periphyton abundance were found to be strong at sites where sand is mobilized infrequently but weak at sites where sand is mobilized often. Overall results indicate that integrating understanding of geomorphology, hydrology and ecology can improve prediction of periphyton abundance in New Zealand rivers.
NASA Astrophysics Data System (ADS)
Parry, Simon; Barker, Lucy; Hannaford, Jamie; Prudhomme, Christel; Smith, Katie; Svensson, Cecilia; Tanguy, Maliko
2017-04-01
Hydrological droughts of the last 50 years in the UK have been well characterised owing to a relatively dense hydrometric network. Prior to this, observed river flow data were generally limited in their spatial coverage and often subject to considerable uncertainty. Whilst qualitative records indicate the occurrence of severe droughts in the late 19th and early 20th centuries, including scenarios which may cause substantial impacts to contemporary water supply systems, existing observations are not sufficient to describe their spatio-temporal characteristics. As such, insights on drought in the UK are constrained and a range of stakeholders including water companies and regulators would benefit from a more thorough assessment of historic drought characteristics and their variability. The multi-disciplinary Historic Droughts project aims to rigorously characterise droughts in the UK to inform improved drought management and communication. Driven by rainfall and potential evapotranspiration data that have been extended using recovered records, lumped catchment hydrological models are used to reconstruct daily river flows from 1890 to 2015 for more than 200 catchments across the UK. The reconstructions are derived within a state-of-the-art modelling framework which allows a comprehensive assessment of model, structure and parameter uncertainty. Standardised and threshold-based indicators are applied to the river flow reconstructions to identify and characterise hydrological drought events. The reconstructions are most beneficial in comprehensively describing well known but poorly quantified late 19th and early 20th century droughts, placing the spatial and temporal footprint of these often extreme events within the context of modern episodes for the first time. Oscillations between drought-rich and drought-poor periods are shown not to be limited to the recent observational past, providing an increased sample size of events against which to test a range of airflow and oceanic index patterns as potential drivers of streamflow drought. The quantification of changes over time in both the mean and the variability of drought frequency, duration, severity and termination benefits from the temporal extent of the river flow reconstructions, assessing the temporal variability of drought over more prolonged timescales than previous drought trend studies. When considered alongside complimentary reconstructions of rainfall and groundwater levels, the characteristics of propagation from meteorological to hydrological drought are analysed to an extent not previously possible. The unprecedented spatio-temporal coverage of the river flow reconstructions has yielded important new insights on historic droughts in the UK. It is hoped that this more robust assessment of the historical variability of hydrological drought in the UK will underpin enhanced drought planning and management.
Relating river geomorphology to the abundance of periphyton in New Zealand rivers
NASA Astrophysics Data System (ADS)
Hoyle, Jo; Hicks, Murray; Kilroy, Cathy
2013-04-01
Aquatic plants (including both periphyton and macrophytes) are a natural component of stream and river systems. However, abundant growth of instream plants can have detrimental impacts on the values of rivers. For example, periphyton in rivers provides basal resources for food webs and provides an important ecological service by removing dissolved nutrients and contaminants from the water column. However, high abundance of periphyton can have negative effects on habitat quality, water chemistry and biodiversity, and can reduce recreation and aesthetic values. The abundance of periphyton in rivers is influenced by a number of factors, but two key factors can be directly influenced by human activities: flow regimes and nutrient concentrations. Establishing quantitative relationships between periphyton abundance and these factors has proven to be difficult but remains an urgent priority due to the need to manage the ecological impacts of water abstraction and eutrophication of rivers worldwide. This need is particularly strong in New Zealand, where there is increasing demand for water for industry, power generation and agriculture. However, we currently have limited ability to predict the effects of changes in the mid-range flow regime on the presence/absence, abundance and composition of aquatic plants. Current water allocation limits are based on simple flow statistics, such as multiples of the median flow, but these are regional averages and can be quite unreliable on a site-specific basis. This stems largely from our limited ability to transform flow data into ecologically meaningful physical processes that directly affect plants (e.g., drag, abrasion, bed movement). The research we will present examines whether geomorphic variables, such as frequency of bed movement, are useful co-predictors in periphyton abundance-flow relationships. We collected topographic survey data and bed sediment data for 20 study reaches in the Manawatu-Wanganui region of New Zealand which have at least 3 years of flow, nutrient concentration and periphyton biomass data (laboratory measures of chlorophyll a and metrics derived from visual assessments). For each reach we set up a 1-d hydraulic model and established relationships between discharge and a number of hydraulic and geomorphic variables, including the discharge required to mobilise the bed sediment. These were then related to the flow and periphyton monitoring records to examine the strength of relationships.
Adin, A; Weber, J C; Sotelo Montes, C; Vidaurre, H; Vosman, B; Smulders, M J M
2004-05-01
Peach palm ( Bactris gasipaes Kunth) is cultivated for fruit and 'heart of palm', and is an important component of agroforestry systems in the Peruvian Amazon. In this study, AFLP was used to compare genetic diversity among domesticated populations along the Paranapura and Cuiparillo rivers, which are managed by indigenous and colonist farming communities, respectively. Gene diversity was 0.2629 for the populations in indigenous communities and 0.2534 in colonist communities. Genetic differentiation among populations ( G(st)) was 0.0377-0.0416 ( P<0.01) among populations along both rivers. There was no relation between genetic differentiation and the geographical location of populations along the rivers. Since natural seed dispersal by birds and rodents is thought to occur only across relatively short distances (100-200 m), it is likely that exchange of material by farmers and commercial traders is responsible for most of the 'long-distance' (over more than 20 km) gene flow among populations along the two rivers studied. This exchange of material may be important to counteract the effects of selection as well as genetic drift in small groups of trees in farmers' fields, much as in a metapopulation, and may account for the weak genetic differentiation between the two rivers ( G(st)=0.0249, P<0.01). A comparison with samples from other landraces in Peru and Brazil showed the existence of an isolation-by-distance structure up to 3,000 km, consistent with gene flow on a regional scale, likely mediated by trade in the Amazon Basin. Results are discussed with regard to practical implications for the management of genetic resources with farming communities.
Berenbrock, Charles; Tranmer, Andrew W.
2008-01-01
A one-dimensional sediment-transport model and a multi-dimensional hydraulic and bed shear stress model were developed to investigate the hydraulic, sediment transport, and sediment mobility characteristics of the lower Coeur d?Alene River in northern Idaho. This report documents the development and calibration of those models, as well as the results of model simulations. The one-dimensional sediment-transport model (HEC-6) was developed, calibrated, and used to simulate flow hydraulics and erosion, deposition, and transport of sediment in the lower Coeur d?Alene River. The HEC-6 modeled reach, comprised of 234 cross sections, extends from Enaville, Idaho, on the North Fork of the Coeur d?Alene River and near Pinehurst, Idaho, on the South Fork of the river to near Harrison, Idaho, on the main stem of the river. Bed-sediment samples collected by previous investigators and samples collected for this study in 2005 were used in the model. Sediment discharge curves from a previous study were updated using suspended-sediment samples collected at three sites since April 2000. The HEC-6 was calibrated using river discharge and water-surface elevations measured at five U.S. Geological Survey gaging stations. The calibrated HEC-6 model allowed simulation of management alternatives to assess erosion and deposition from proposed dredging of contaminated streambed sediments in the Dudley reach. Four management alternatives were simulated with HEC-6. Before the start of simulation for these alternatives, seven cross sections in the reach near Dudley, Idaho, were deepened 20 feet?removing about 296,000 cubic yards of sediments?to simulate dredging. Management alternative 1 simulated stage-discharge conditions from 2000, and alternative 2 simulated conditions from 1997. Results from alternatives 1 and 2 indicated that about 6,500 and 12,300 cubic yards, respectively, were deposited in the dredged reach. These figures represent 2 and 4 percent, respectively, of the total volume of dredged sediments removed before the start of simulation. In alternatives 3 and 4, the incoming total sediment discharges from the South Fork of the river were decreased by one-half. Management alternative 3 simulated stage-discharge conditions from 2000, and alternative 4 simulated conditions from 1997. Reducing incoming sediment discharge from the South Fork did not affect the streambed and deposition in the Dudley and downstream reaches, probably because the distance between the South Fork and the Dudley reach is long enough for sediment supply, transport capacity, and channel geometry to be balanced before reaching the Dudley and downstream reaches. Development and calibration of a multi-dimensional hydraulic and bed shear stress model (FASTMECH) allowed simulation of water-surface elevation, depth, velocity, bed shear stress, and sediment mobility in the Dudley reach (5.3 miles). The computational grid incorporated bathymetric and Light Detection and Ranging (LIDAR) data, with a node spacing of about 2.5 meters. With the exception of the fourth FASTMECH calibration simulation, results from the FASTMECH calibration simulations indicated that flow depths, flow velocities, and bed shear stresses increased as river discharge increased. Water-surface elevations in the fourth calibration simulation were about 2 feet higher than those in the other simulations because high lake levels in Coeur d?Alene Lake caused backwater conditions. Average simulated velocities along the thalweg ranged from about 3 to 5.3 feet per second, and maximum simulated velocities ranged from 3.9 to 7 feet per second. In the dredged reach, average simulated velocity along the thalweg ranged from 3.5 to 6 feet per second. The model also simulated several back-eddies (flow reversal); the largest eddy encompassed about one-third of the river width. Average bed shear stresses increased more than 200 percent from the first to the last simulation. Simulated sediment mobility, asses
NASA Astrophysics Data System (ADS)
Jourdain, Camille; Belleudy, Philippe; Tal, Michal; Malavoi, Jean-René
2016-04-01
In natural alpine gravel bed rivers, floods and their associated bedload transport maintain channels active and free of mature woody vegetation. In managed rivers, where flood regime and sediment supply have been modified by hydroelectric infrastructures and sediment mining, river beds tend to stabilize. As a result, in the recent past, mature vegetation has established on gravel bars of many gravel bed rivers worldwide. This established vegetation increases the risk of flooding by decreasing flow velocity and increasing water levels. In addition, the associated reduction in availability of pioneer habitats characteristic of these environments typically degrades biodiversity. Managing hydrology in a way that would limit vegetation establishment on bars presents an interesting management option. In this context, our study aims at understanding the impacts of floods of varying magnitude on vegetation removal, and identifying and quantifying the underlying mechanisms. Our study site is the Isère River, a heavily managed gravel bed river flowing in the western part of the French Alps. We studied the impact of floods on sediment transport and vegetation survival at the bar scale through field monitoring from 2014 to 2015, focusing on young salicaceous vegetation (<2 yr old). Measurements were made before and after floods. Vegetation was monitored on 16m² plots through repeat photographs. Sediment transport was assessed using painted plots, scour chains, and topographic surveys. Hourly water discharge was obtained from the national gauging network. The hydraulics of monitored floods was characterized using a combination of field measurements and 2D hydraulic modeling: water levels were measured with pressure sensors and Large Scale Particle Velocimetry was used to measure flow velocities. These data were used to calibrate 2D hydrodynamic model using TELEMAC2D. At the reach scale, removal of mature vegetation was assed using a series of historical aerial photographs between 2001 and 2015. Our monitoring period covered a series of floods with recurrence intervals of 2 to 4 times per year, as well as one large flood with a 10 year return period. Only the largest flood, which triggered important bed mobility, partially removed vegetation from bars. Young vegetation removal occurred through four different mechanisms: 1) burial under a thick layer of coarse sediments (> 30cm), 2) uprooting by surface scour, 3) uprooting by a combination of surface scour and sediment deposition resulting in no net topographic change, and 4) lateral erosion of the margins of main and secondary channels. Hydraulic modeling in progress will allow us to determine shear stress and durations associated with each of the four mechanisms of vegetation removal. As for mature vegetation removal at the reach scale, preliminary results indicate that lateral erosion is by far most efficient, in years marked by important floods (return period of at least 2 years). In summary, our study thus far highlights that vegetation removal by floods from bars of the Isere River only occurs when there is important bed mobility, which in this system requires floods with a return period higher than 2 years.
Eggleston, Jack R.
2004-01-01
The upper Charles River basin, located 30 miles southwest of Boston, Massachusetts, is experiencing water shortages during the summer. Towns in the basin have instituted water-conservation programs and water-use bans to reduce summertime water use. During July through October, streamflow in the Charles River and its tributaries regularly falls below 0.50 cubic foot per second per square mile, the minimum streamflow used by the U.S. Fish and Wildlife Service as its Aquatic Base Flow standard for maintaining healthy freshwater ecosystems. To examine how human water use could be changed to mitigate these water shortages, a numerical ground-water flow model was modified and used in conjunction with response coefficients and optimization techniques. Streamflows at 10 locations on the Charles River and its tributaries were determined under various water-use scenarios and climatic conditions. A variety of engineered solutions to the water shortages were examined for their ability to increase water supplies and summertime streamflows. Results indicate that although human water use contributes to the problem of low summertime streamflows, human water use is not the only, or even the primary, cause of low flows in the basin. The lowest summertime streamflows increase by 12 percent but remain below the Aquatic Base Flow standard when all public water-supply pumpage and wastewater flows in the basin are eliminated in a simulation under average climatic conditions. Under dry climatic conditions, the same measures increase the lowest average monthly streamflow by 95 percent but do not increase it above the Aquatic Base Flow standard. The most promising water-management strategies to increase streamflows and water supplies, based on the study results, include wastewater recharge to the aquifer, altered management of pumping well schedules, regional water-supply sharing, and water conservation. In a scenario that simulated towns sharing water supplies, streamflow in the Charles River as it exits the basin increased by 18 percent during July through September and an excess water-supply capacity of 13.4 cubic feet per second, above and beyond average use, would be available to all towns in the basin. These study results could help water suppliers and regulators evaluate strategies for balancing ground-water development and streamflow reductions in the basin.
NASA Astrophysics Data System (ADS)
Tsai, Wen-Ping; Chang, Fi-John; Chang, Li-Chiu; Herricks, Edwin E.
2015-11-01
Flow regime is the key driver of the riverine ecology. This study proposes a novel hybrid methodology based on artificial intelligence (AI) techniques for quantifying riverine ecosystems requirements and delivering suitable flow regimes that sustain river and floodplain ecology through optimizing reservoir operation. This approach addresses issues to better fit riverine ecosystem requirements with existing human demands. We first explored and characterized the relationship between flow regimes and fish communities through a hybrid artificial neural network (ANN). Then the non-dominated sorting genetic algorithm II (NSGA-II) was established for river flow management over the Shihmen Reservoir in northern Taiwan. The ecosystem requirement took the form of maximizing fish diversity, which could be estimated by the hybrid ANN. The human requirement was to provide a higher satisfaction degree of water supply. The results demonstrated that the proposed methodology could offer a number of diversified alternative strategies for reservoir operation and improve reservoir operational strategies producing downstream flows that could meet both human and ecosystem needs. Applications that make this methodology attractive to water resources managers benefit from the wide spread of Pareto-front (optimal) solutions allowing decision makers to easily determine the best compromise through the trade-off between reservoir operational strategies for human and ecosystem needs.
Future climate scenarios and rainfall--runoff modelling in the Upper Gallego catchment (Spain).
Bürger, C M; Kolditz, O; Fowler, H J; Blenkinsop, S
2007-08-01
Global climate change may have large impacts on water supplies, drought or flood frequencies and magnitudes in local and regional hydrologic systems. Water authorities therefore rely on computer models for quantitative impact prediction. In this study we present kernel-based learning machine river flow models for the Upper Gallego catchment of the Ebro basin. Different learning machines were calibrated using daily gauge data. The models posed two major challenges: (1) estimation of the rainfall-runoff transfer function from the available time series is complicated by anthropogenic regulation and mountainous terrain and (2) the river flow model is weak when only climate data are used, but additional antecedent flow data seemed to lead to delayed peak flow estimation. These types of models, together with the presented downscaled climate scenarios, can be used for climate change impact assessment in the Gallego, which is important for the future management of the system.
NASA Astrophysics Data System (ADS)
Qin, Chun; Yang, Bao; Burchardt, Iris; Hu, Xiaoli; Kang, Xingcheng
2010-06-01
Past streamflow variability is of special significance in the inland river basin, i.e., the Heihe River Basin in arid northwestern China, where water shortage is a serious environmental and social problem. However, the current knowledge of issues related to regional water resources management and long-term planning and management is limited by the lack of long-term hydro-meteorological records. Here we present a 1009-year annual streamflow (August-July) reconstruction for the upstream of the Heihe River in the arid northwestern China based on a well-replicated Qilian juniper ( Sabina przewalskii Kom.) ring-width chronology. This reconstruction accounts for 46.9% of the observed instrumental streamflow variance during the period 1958-2006. Considerable multidecadal to centennial flow variations below and above the long-term average are displayed in the millennium streamflow reconstruction. These periods 1012-1053, 1104-1212, 1259-1352, 1442-1499, 1593-1739 and 1789-1884 are noteworthy for the persistence of low-level river flow, and for the fact that these low streamflow events are not found in the observed instrumental hydrological record during the recent 50 years. The 20th century witnessed intensified pluvial conditions in the upstream of the Heihe River in the arid northwestern China in the context of the last millennium. Comparison with other long-term hydrological reconstructions indicates that the intensification of the hydrological cycle in the twentieth century from different regions could be attributable to regional to large-scale temperature increase during this time. Furthermore, from a practical perspective, the streamflow reconstruction can serve as a robust database for the government to work out more scientific and more reasonable water allocation alternatives for the Heihe River Basin in arid northwestern China.
Andersen, D.C.
2005-01-01
I analyzed annual height growth and survivorship of Fremont cottonwood (Populus fremontii S. Watson) saplings on three floodplains in Colorado and Utah to assess responses to interannual variation in flow regime and summer precipitation. Mammal exclosures, supplemented with an insecticide treatment at one site, were used to assess flow regime herbivore interactions. Multiple regression analyses on data collected over 711 years indicated that growth of continuously injury-free saplings was positively related to either peak discharge or the maximum 30-day discharge but was not related to interannual decline in the late-summer river stage (ΔWMIN) or precipitation. Growth was fastest where ΔWMIN was smallest and depth to the late-summer water table moderate (≤1.5 m). Survivorship increased with ΔWMIN where the water table was at shallow depths. Herbivory reduced long-term height growth and survivorship by up to 60% and 50%, respectively. The results support the concept that flow history and environmental context determine whether a particular flow will have a net positive or negative influence on growth and survivorship and suggest that the flow regime that best promotes sapling growth and survival along managed rivers features a short spring flood pulse and constant base flow, with no interannual variation in the hydrograph. Because environmental contexts vary, interannual variation may be necessary for best overall stand performance.
NASA Astrophysics Data System (ADS)
Tilmant, A.; Beevers, L.; Muyunda, B.
2010-07-01
Large storage facilities in hydropower-dominated river basins have traditionally been designed and managed to maximize revenues from energy generation. In an attempt to mitigate the externalities downstream due to a reduction in flow fluctuation, minimum flow requirements have been imposed to reservoir operators. However, it is now recognized that a varying flow regime including flow pulses provides the best conditions for many aquatic ecosystems. This paper presents a methodology to derive a trade-off relationship between hydropower generation and ecological preservation in a system with multiple reservoirs and stochastic inflows. Instead of imposing minimum flow requirements, the method brings more flexibility to the allocation process by building upon environmental valuation studies to derive simple demand curves for environmental goods and services, which are then used in a reservoir optimization model together with the demand for energy. The objective here is not to put precise monetary values on environmental flows but to see the marginal changes in release policies should those values be considered. After selecting appropriate risk indicators for hydropower generation and ecological preservation, the trade-off curve provides a concise way of exploring the extent to which one of the objectives must be sacrificed in order to achieve more of the other. The methodology is illustrated with the Zambezi River basin where large man-made reservoirs have disrupted the hydrological regime.
Land Capability Potential Index (LCPI) and geodatabase for the Lower Missouri River Valley
Chojnacki, Kimberly A.; Struckhoff, Matthew A.; Jacobson, Robert B.
2012-01-01
The Land Capacity Potential Index (LCPI) is a coarse-scale index intended to delineate broad land-capability classes in the Lower Missouri River valley bottom from the Gavins Point Dam near Yankton, South Dakota to the mouth of the Missouri River near St. Louis, Missouri (river miles 811–0). The LCPI provides a systematic index of wetness potential and soil moisture-retention potential of the valley-bottom lands by combining the interactions among water-surface elevations, land-surface elevations, and the inherent moisture-retention capability of soils. A nine-class wetness index was generated by intersecting a digital elevation model for the valley bottom with sloping water-surface elevation planes derived from eight modeled discharges. The flow-recurrence index was then intersected with eight soil-drainage classes assigned to soils units in the digital Soil Survey Geographic (SSURGO) Database (Soil Survey Staff, 2010) to create a 72-class index of potential flow-recurrence and moisture-retention capability of Missouri River valley-bottom lands. The LCPI integrates the fundamental abiotic factors that determine long-term suitability of land for various uses, particularly those relating to vegetative communities and their associated values. Therefore, the LCPI provides a mechanism allowing planners, land managers, landowners, and other stakeholders to assess land-use capability based on the physical properties of the land, in order to guide future land-management decisions. This report documents data compilation for the LCPI in a revised and expanded, 72-class version for the Lower Missouri River valley bottom, and inclusion of additional soil attributes to allow users flexibility in exploring land capabilities.
Advances in understanding river-groundwater interactions
NASA Astrophysics Data System (ADS)
Brunner, Philip; Therrien, René; Renard, Philippe; Simmons, Craig T.; Franssen, Harrie-Jan Hendricks
2017-09-01
River-groundwater interactions are at the core of a wide range of major contemporary challenges, including the provision of high-quality drinking water in sufficient quantities, the loss of biodiversity in river ecosystems, or the management of environmental flow regimes. This paper reviews state of the art approaches in characterizing and modeling river and groundwater interactions. Our review covers a wide range of approaches, including remote sensing to characterize the streambed, emerging methods to measure exchange fluxes between rivers and groundwater, and developments in several disciplines relevant to the river-groundwater interface. We discuss approaches for automated calibration, and real-time modeling, which improve the simulation and understanding of river-groundwater interactions. Although the integration of these various approaches and disciplines is advancing, major research gaps remain to be filled to allow more complete and quantitative integration across disciplines. New possibilities for generating realistic distributions of streambed properties, in combination with more data and novel data types, have great potential to improve our understanding and predictive capabilities for river-groundwater systems, especially in combination with the integrated simulation of the river and groundwater flow as well as calibration methods. Understanding the implications of different data types and resolution, the development of highly instrumented field sites, ongoing model development, and the ultimate integration of models and data are important future research areas. These developments are required to expand our current understanding to do justice to the complexity of natural systems.
Dynamic coupling of three hydrodynamic models
NASA Astrophysics Data System (ADS)
Hartnack, J. N.; Philip, G. T.; Rungoe, M.; Smith, G.; Johann, G.; Larsen, O.; Gregersen, J.; Butts, M. B.
2008-12-01
The need for integrated modelling is evidently present within the field of flood management and flood forecasting. Engineers, modellers and managers are faced with flood problems which transcend the classical hydrodynamic fields of urban, river and coastal flooding. Historically the modeller has been faced with having to select one hydrodynamic model to cover all the aspects of the potentially complex dynamics occurring in a flooding situation. Such a single hydrodynamic model does not cover all dynamics of flood modelling equally well. Thus the ideal choice may in fact be a combination of models. Models combining two numerical/hydrodynamic models are becoming more standard, typically these models combine a 1D river model with a 2D overland flow model or alternatively a 1D sewer/collection system model with a 2D overland solver. In complex coastal/urban areas the flood dynamics may include rivers/streams, collection/storm water systems along with the overland flow. The dynamics within all three areas is of the same time scale and there is feedback in the system across the couplings. These two aspects dictate a fully dynamic three way coupling as opposed to running the models sequentially. It will be shown that the main challenges of the three way coupling are time step issues related to the difference in numerical schemes used in the three model components and numerical instabilities caused by the linking of the model components. MIKE FLOOD combines the models MIKE 11, MIKE 21 and MOUSE into one modelling framework which makes it possible to couple any combination of river, urban and overland flow fully dynamically. The MIKE FLOOD framework will be presented with an overview of the coupling possibilities. The flood modelling concept will be illustrated through real life cases in Australia and in Germany. The real life cases reflect dynamics and interactions across all three model components which are not possible to reproduce using a two-way coupling alone. The models comprise 2D inundation modelling, river networks with multiple structures (pumps, weirs, culverts), urban drainage networks as well as dam break modelling. The models were used to quantify the results of storm events or failures (dam break, pumping failures etc) coinciding with high discharge in river system and heavy rainfall. The detailed representation of the flow path through the city allowed a direct assessment of flood risk Thus it is found that the three-way coupled model is a practical and useful tool for integrated flood management.
Wiegner, T N; Edens, C J; Abaya, L M; Carlson, K M; Lyon-Colbert, A; Molloy, S L
2017-01-30
Spatial and temporal patterns of coastal microbial pollution are not well documented. Our study examined these patterns through measurements of fecal indicator bacteria (FIB), nutrients, and physiochemical parameters in Hilo Bay, Hawai'i, during high and low river flow. >40% of samples tested positive for the human-associated Bacteroides marker, with highest percentages near rivers. Other FIB were also higher near rivers, but only Clostridium perfringens concentrations were related to discharge. During storms, FIB concentrations were three times to an order of magnitude higher, and increased with decreasing salinity and water temperature, and increasing turbidity. These relationships and high spatial resolution data for these parameters were used to create Enterococcus spp. and C. perfringens maps that predicted exceedances with 64% and 95% accuracy, respectively. Mapping microbial pollution patterns and predicting exceedances is a valuable tool that can improve water quality monitoring and aid in visualizing FIB hotspots for management actions. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Andreu, J.; Capilla, J.; Sanchís, E.
1996-04-01
This paper describes a generic decision-support system (DSS) which was originally designed for the planning stage of dicision-making associated with complex river basins. Subsequently, it was expanded to incorporate modules relating to the operational stage of decision-making. Computer-assisted design modules allow any complex water-resource system to be represented in graphical form, giving access to geographically referenced databases and knowledge bases. The modelling capability includes basin simulation and optimization modules, an aquifer flow modelling module and two modules for risk assessment. The Segura and Tagus river basins have been used as case studies in the development and validation phases. The value of this DSS is demonstrated by the fact that both River Basin Agencies currently use a version for the efficient management of their water resources.
NASA Astrophysics Data System (ADS)
McCoy, Amy L.; Holmes, S. Rankin; Boisjolie, Brett A.
2018-03-01
Securing environmental flows in support of freshwater biodiversity is an evolving field of practice. An example of a large-scale program dedicated to restoring environmental flows is the Columbia Basin Water Transactions Program in the Pacific Northwest region of North America, which has been restoring flows in dewatered tributary habitats for imperiled salmon species over the past decade. This paper discusses a four-tiered flow restoration accounting framework for tracking the implementation and impacts of water transactions as an effective tool for adaptive management. The flow restoration accounting framework provides compliance and flow accounting information to monitor transaction efficacy. We review the implementation of the flow restoration accounting framework monitoring framework to demonstrate (a) the extent of water transactions that have been implemented over the past decade, (b) the volumes of restored flow in meeting flow targets for restoring habitat for anadromous fish species, and (c) an example of aquatic habitat enhancement that resulted from Columbia Basin Water Transactions Program investments. Project results show that from 2002 to 2015, the Columbia Basin Water Transactions Program has completed more than 450 water rights transactions, restoring approximately 1.59 million megaliters to date, with an additional 10.98 million megaliters of flow protected for use over the next 100 years. This has resulted in the watering of over 2414 stream kilometers within the Columbia Basin. We conclude with a discussion of the insights gained through the implementation of the flow restoration accounting framework. Understanding the approach and efficacy of a monitoring framework applied across a large river basin can be informative to emerging flow-restoration and adaptive management efforts in areas of conservation concern.
McCoy, Amy L; Holmes, S Rankin; Boisjolie, Brett A
2018-03-01
Securing environmental flows in support of freshwater biodiversity is an evolving field of practice. An example of a large-scale program dedicated to restoring environmental flows is the Columbia Basin Water Transactions Program in the Pacific Northwest region of North America, which has been restoring flows in dewatered tributary habitats for imperiled salmon species over the past decade. This paper discusses a four-tiered flow restoration accounting framework for tracking the implementation and impacts of water transactions as an effective tool for adaptive management. The flow restoration accounting framework provides compliance and flow accounting information to monitor transaction efficacy. We review the implementation of the flow restoration accounting framework monitoring framework to demonstrate (a) the extent of water transactions that have been implemented over the past decade, (b) the volumes of restored flow in meeting flow targets for restoring habitat for anadromous fish species, and (c) an example of aquatic habitat enhancement that resulted from Columbia Basin Water Transactions Program investments. Project results show that from 2002 to 2015, the Columbia Basin Water Transactions Program has completed more than 450 water rights transactions, restoring approximately 1.59 million megaliters to date, with an additional 10.98 million megaliters of flow protected for use over the next 100 years. This has resulted in the watering of over 2414 stream kilometers within the Columbia Basin. We conclude with a discussion of the insights gained through the implementation of the flow restoration accounting framework. Understanding the approach and efficacy of a monitoring framework applied across a large river basin can be informative to emerging flow-restoration and adaptive management efforts in areas of conservation concern.
NASA Astrophysics Data System (ADS)
Kupkanchanakul, Wallapa; Kwonpongsagoon, Suphaphat; Bader, Hans-Peter; Scheidegger, Ruth
2015-05-01
Rivers in developing and emerging countries often lack good water quality. Tools to assess the water quality in rivers, including identification of possible sources of pollution, are therefore of increasing importance. The aim of this study is to apply mathematical material flow and spatial land use analyses to identify and geographically locate the main nitrogen and phosphorus sources and processes in Bang Pakong Basin (BPB). Potential measures to mitigate the nitrogen and phosphorus loads to the water system can then be efficiently evaluated. The combination of these two methods reveals the overall nutrient load as well as local "hot spots." This allows possible mitigation measures to be discussed with regard to their spatial location. This approach goes beyond previous work in which mathematical material flow analysis was shown to be a useful tool to investigate sources of nutrients regardless of their location. The results show that the main sources contributing nutrients to waterways are aquaculture, such as shrimp, tilapia, catfish, and sea bass farming, as well as rice paddies along the main river. Additional sources contributing nutrients to this basin are field crops, livestock, aquaculture, households, and industry. High levels of nutrient inflows come from feeds and fertilizers through aquaculture and rice cultivation. The excess nutrients run into the waterways by direct discharge from aquaculture and runoff processes from rice paddies. Scenario analysis shows that management practices for aquaculture, rice, pig, and poultry farming are key drivers for reducing nutrients in the BPB.
Kupkanchanakul, Wallapa; Kwonpongsagoon, Suphaphat; Bader, Hans-Peter; Scheidegger, Ruth
2015-05-01
Rivers in developing and emerging countries often lack good water quality. Tools to assess the water quality in rivers, including identification of possible sources of pollution, are therefore of increasing importance. The aim of this study is to apply mathematical material flow and spatial land use analyses to identify and geographically locate the main nitrogen and phosphorus sources and processes in Bang Pakong Basin (BPB). Potential measures to mitigate the nitrogen and phosphorus loads to the water system can then be efficiently evaluated. The combination of these two methods reveals the overall nutrient load as well as local "hot spots." This allows possible mitigation measures to be discussed with regard to their spatial location. This approach goes beyond previous work in which mathematical material flow analysis was shown to be a useful tool to investigate sources of nutrients regardless of their location. The results show that the main sources contributing nutrients to waterways are aquaculture, such as shrimp, tilapia, catfish, and sea bass farming, as well as rice paddies along the main river. Additional sources contributing nutrients to this basin are field crops, livestock, aquaculture, households, and industry. High levels of nutrient inflows come from feeds and fertilizers through aquaculture and rice cultivation. The excess nutrients run into the waterways by direct discharge from aquaculture and runoff processes from rice paddies. Scenario analysis shows that management practices for aquaculture, rice, pig, and poultry farming are key drivers for reducing nutrients in the BPB.
Schramm, Harold; Richardson, William B.; Knights, Brent C.
2015-01-01
Floodplains are vital to the structure and function of river-floodplain ecosystems. Among the many ecological services provided by floodplains are nutrient cycling and seasonal habitats for fish, including spawning, nursery, foraging and wintering habitats. Connections between the river channel and floodplain habitats are essential to realize these ecological services, but spatial and temporal aspects of the connection and contemporary geomorphology must also be considered in restoration efforts. This chapter synthesizes available information to compare floodplain function and needed management strategies in two extensive reaches (upper impounded and lower free-flowing) of the Mississippi River, USA. The upper impounded reach is the 523-km reach from about Minneapolis, Minnesota to Clinton, Iowa. This reach has been impounded and channelized for navigation. Mean annual water-level fluctuation ranges from 1 to 2 m in the navigation pools in this reach. Floodplain environmental conditions that affect nitrogen cycling and fish production vary seasonally and longitudinally within and among navigation pools. Significant issues affecting ecological services include sedimentation, constrained water level fluctuations, island erosion and seasonal hypoxia. The lower free-flowing reach, the 1570-km reach from the confluence of the Ohio and Mississippi rivers to the Gulf of Mexico, has no dams and average annual fluctuations of 7 m throughout most of the reach. Despite the substantial flood pulse, floodplain inundation is often brief and may not occur annually. Significant issues affecting floodplain ecological function are the short duration and thermal asynchrony of the flood pulse, sedimentation and loss of connection between the river channel and permanent/semi-permanent floodplain water bodies due to channel incision. Needs and strategies for floodplain enhancement to increase ecological services, particularly nitrogen cycling and fish production, differ along the longitudinal gradient of the Mississippi River and provide informative contrasts to guide floodplain management. Prediction of the effects of climate change on this system will be complicated by the magnitude of the watershed that encompasses 41 % of the continental USA and multiple climatic regions.
NASA Astrophysics Data System (ADS)
Kurz, Isabelle; Coxon, Catherine; Tunney, Hubert; Ryan, Declan
2005-03-01
The loss of nutrients from agricultural land to water bodies is a serious concern in river basin management in many countries. To gain information on the contributions of agricultural grassland to the eutrophication of water bodies, this study set out to assess phosphorus (P) loss from grassland areas on poorly drained soils. A second aim was to look at the impact of grassland management practices on nutrient concentrations in overland flow. Edge-of-field measurements of overland flow quantity and of P and nitrogen (N) concentrations in overland flow were carried out at three study sites with different soil P levels. The amounts of overland flow and the P concentrations in overland flow varied considerably during events, and among sites and events. Despite this variability, there was a clear increase in P loss in overland flow from the low to the medium and high soil P sites. The inter-site variability of the P concentrations in overland flow greatly exceeded the variability of the amounts of overland flow from the different sites. Thus, P concentrations had a larger impact than the volume of overland flow on the differences in P exports from the three sites. Management practices which, at times, influenced the P and N concentrations in overland flow were grazing and N fertilisation.
Chapter 1: Hydrologic exchange flows and their ecological consequences in river corridors
Harvey, Judson
2016-01-01
The actively flowing waters of streams and rivers remain in close contact with surrounding off-channel and subsurface environments. These hydrologic linkages between relatively fast flowing channel waters, with more slowly flowing waters off-channel and in the subsurface, are collectively referred to as hydrologic exchange flows (HEFs). HEFs include surface exchange with a channel’s marginal areas and subsurface flow through the streambed (hyporheic flow), as well as storm-driven bank storage and overbank flows onto floodplains. HEFs are important, not only for storing water and attenuating flood peaks, but also for their role in influencing water conservation, water quality improvement, and related outcomes for ecological values and services of aquatic ecosystems. Biogeochemical opportunities for chemical transformations are increased by HEFs as a result of the prolonged contact between flowing waters and geochemically and microbially active surfaces of sediments and vegetation. Chemical processing is intensified and water quality is often improved by removal of excess nutrients, metals, and organic contaminants from flowing waters. HEFs also are important regulators of organic matter decomposition, nutrient recycling, and stream metabolism that helps establish a balanced and resilient aquatic food web. The shallow and protected storage zones associated with HEFs support nursery and feeding areas for aquatic organisms that sustain aquatic biological diversity. Understanding of these varied roles for HEFs has been driven by the related disciplines of stream ecology, fluvial geomorphology, surface-water hydraulics, and groundwater hydrology. A current research emphasis is on the role that HEFs play in altered flow regimes, including restoration to achieve diverse goals, such as expanding aquatic habitats and managing dissolved and suspended river loads to reduce over-fertilization of coastal waters and offset wetland loss. New integrative concepts and models are emerging (eg, hydrologic connectivity) that emphasize HEF functions in river corridors over a wide range of spatial and temporal scales.
NASA Astrophysics Data System (ADS)
Kim, Y.; Suk, H.
2011-12-01
In this study, about 2,000 deep observation wells, stream and/or river distribution, and river's density were analyzed to identify regional groundwater flow trend, based on the regional groundwater survey of four major river watersheds including Geum river, Han river, Youngsan-Seomjin river, and Nakdong river in Korea. Hydrogeologial data were collected to analyze regional groundwater flow characteristics according to geological units. Additionally, hydrological soil type data were collected to estimate direct runoff through SCS-CN method. Temperature and precipitation data were used to quantify infiltration rate. The temperature and precipitation data were also used to quantify evaporation by Thornthwaite method and to evaluate groundwater recharge, respectively. Understanding the regional groundwater characteristics requires the database of groundwater flow parameters, but most hydrogeological data include limited information such as groundwater level and well configuration. In this study, therefore, groundwater flow parameters such as hydraulic conductivities or transmissivities were estimated using observed groundwater level by inverse model, namely PEST (Non-linear Parameter ESTimation). Since groundwater modeling studies have some uncertainties in data collection, conceptualization, and model results, model calibration should be performed. The calibration may be manually performed by changing parameters step by step, or various parameters are simultaneously changed by automatic procedure using PEST program. In this study, both manual and automatic procedures were employed to calibrate and estimate hydraulic parameter distributions. In summary, regional groundwater survey data obtained from four major river watersheds and various data of hydrology, meteorology, geology, soil, and topography in Korea were used to estimate hydraulic conductivities using PEST program. Especially, in order to estimate hydraulic conductivity effectively, it is important to perform in such a way that areas of same or similar hydrogeological characteristics should be grouped into zones. Keywords: regional groundwater, database, hydraulic conductivity, PEST, Korean peninsular Acknowledgements: This work was supported by the Radioactive Waste Management of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (2011T100200152)
Subsurface flow in lowland river gravel bars
NASA Astrophysics Data System (ADS)
Bray, E. N.; Dunne, T.
2017-09-01
Geomorphic and hydraulic processes, which form gravel bars in large lowland rivers, have distinctive characteristics that control the magnitude and spatial patterns of infiltration and exfiltration between rivers and their immediate subsurface environments. We present a bedform-infiltration relation together with a set of field measurements along two reaches of the San Joaquin River, CA to illustrate the conditions required for infiltration and exfiltration of flow between a stream and its undulating bed, and a numerical model to investigate the factors that affect paths and residence times of flow through barforms at different discharges. It is shown that asymmetry of bar morphology is a first-order control on the extent and location of infiltration, which would otherwise produce equal areas of infiltration and exfiltration under the assumption of sinusoidal bedforms. Hydraulic conductivity varies by orders of magnitude due to fine sediment accumulation and downstream coarsening related to the process of bar evolution. This systematic variability not only controls the magnitude of infiltration, but also the residence time of flow through the bed. The lowest hydraulic conductivity along the reach occurred where the difference between the topographic gradient and the water-surface gradient is at a maximum and thus where infiltration would be greatest into a homogeneous bar, indicating the importance of managing sand supply to maintain the ventilation and flow through salmon spawning riffles. Numerical simulations corroborate our interpretation that infiltration patterns and rates are controlled by distinctive features of bar morphology.
Skoulikidis, Nikolaos T; Sabater, Sergi; Datry, Thibault; Morais, Manuela M; Buffagni, Andrea; Dörflinger, Gerald; Zogaris, Stamatis; Del Mar Sánchez-Montoya, Maria; Bonada, Nuria; Kalogianni, Eleni; Rosado, Joana; Vardakas, Leonidas; De Girolamo, Anna Maria; Tockner, Klement
2017-01-15
Non-perennial rivers and streams (NPRS) cover >50% of the global river network. They are particularly predominant in Mediterranean Europe as a result of dry climate conditions, climate change and land use development. Historically, both scientists and policy makers underestimated the importance of NRPS for nature and humans alike, mainly because they have been considered as systems of low ecological and economic value. During the past decades, diminishing water resources have increased the spatial and temporal extent of artificial NPRS as well as their exposure to multiple stressors, which threatening their ecological integrity, biodiversity and ecosystem services. In this paper, we provide a comprehensive overview of the structural and functional characteristics of NPRS in the European Mediterranean, and discuss gaps and problems in their management, concerning their typology, ecological assessment, legislative and policy protection, and incorporation in River Basin Management Plans. Because NPRS comprise highly unstable ecosystems, with strong and often unpredictable temporal and spatial variability - at least as far as it is possible to assess - we outline the future research needs required to better understand, manage and conserve them as highly valuable and sensitive ecosystems. Efficient collaborative activities among multidisciplinary research groups aiming to create innovative knowledge, water managers and policy makers are urgently needed in order to establish an appropriate methodological and legislative background. The incorporation of NPRS in EU-Med River Basin Management Plans in combination with the application of ecological flows is a first step towards enhancing NPRS management and conservation in order to effectively safeguard these highly valuable albeit threatened ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Woods, J.; Laattoe, T.
2016-12-01
Complex hydrological environments present management challenges where surface water-groundwater interactions involve interlinked processes at multiple scales. One example is Australia's River Murray, which flows through a semi-arid landscape with highly saline groundwater. In this region, the floodplain ecology depends on freshwater provided from the main river channel, anabranches, and floodwaters. However, in the past century access to freshwater has been further limited due to river regulation, land clearance, and irrigation. A programme to improve ecosystem health at Pike Floodplain, South Australia, is evaluating management options such as environmental watering and groundwater pumping. Due to the complicated interdependencies between processes moving water and salt within the floodplain, a series of inter-linked models were developed to assist with management decisions. The models differ by hydrological domain, scale, and dimensionality. Together they simulate surface water, the unsaturated zone, and groundwater on regional, floodplain, and local scales. Outputs from regional models provide boundary conditions for floodplain models, which in turn provide inputs for the local scale models. The results are interpreted based on (i) ecohydrological requirements for key species of tree and fish, and (ii) impacts on river salinity for downstream users. When combined, the models provide an integrated and interdiscplinary understanding of the hydrology and management of saline floodplains.
Combined Flow Abstraction and Climate Change Impacts on an Aggrading Alpine River
NASA Astrophysics Data System (ADS)
Bakker, M.; Costa, A.; Silva, T. A.; Stutenbecker, L.; Girardclos, S.; Loizeau, J.-L.; Molnar, P.; Schlunegger, F.; Lane, S. N.
2018-01-01
Recent climatic warming and associated glacial retreat may have a large impact on sediment release and transfer in Alpine river basins. Concurrently, the sediment transport capacity of many European Alpine streams is affected by hydropower exploitation, notably where flow is abstracted but the sediment supply downstream is maintained. Here, we investigate the combined effects of climate change and flow abstraction on morphodynamics and sediment transfer in the Borgne River, Switzerland. From photogrammetrically derived historical Digital Elevation Models (DEMs), we find considerable net aggradation of the braided river bed (up to 5 m) since the onset of flow abstraction in 1963. Reaches responded through bed level steepening which was strongest in the upper most reach. Widespread aggradation however did not commence until the onset of glacier retreat in the late 1980s and the dry and warm years of the early 1990s. Upstream flow intake data shows that this aggradation coincided with an increase in sediment supply, although aggradation accounts for no more than 25% of supplied material. The remainder was transferred through the studied reaches. Estimations of bed load transport capacity indicate that flow abstraction reduces transport capacity by 1-2 orders of magnitude. While residual transport rates vary with morphological evolution, they are in the same order of magnitude as the sediment supply rates, which is why significant transport remains. However, the reduction in transport capacity makes the system more sensitive to short-term (annual) changes in climate-driven hydrological variability and climate-induced changes in intake management and sediment delivery rates.
Kootenai River velocities, depth, and white sturgeon spawning site selection – A mystery unraveled?
Paragamian, V.L.; McDonald, R.; Nelson, G.J.; Barton, G.
2009-01-01
The Kootenai River white sturgeon Acipenser transmontanus population in Idaho, US and British Columbia (BC), Canada became recruitment limited shortly after Libby Dam became fully operational on the Kootenai River, Montana, USA in 1974. In the USA the species was listed under the Endangered Species Act in September of 1994. Kootenai River white sturgeon spawn within an 18-km reach in Idaho, river kilometer (rkm) 228.0–246.0. Each autumn and spring Kootenai River white sturgeon follow a ‘short two-step’ migration from the lower river and Kootenay Lake, BC, to staging reaches downstream of Bonners Ferry, Idaho. Initially, augmented spring flows for white sturgeon spawning were thought to be sufficient to recover the population. Spring discharge mitigation enhanced white sturgeon spawning but a series of research investigations determined that the white sturgeon were spawning over unsuitable incubation and rearing habitat (sand) and that survival of eggs and larvae was negligible. It was not known whether post-Libby Dam management had changed the habitat or if the white sturgeon were not returning to more suitable spawning substrates farther upstream. Fisheries and hydrology researchers made a team effort to determine if the spawning habitat had been changed by Libby Dam operations. Researchers modeled and compared velocities, sediment transport, and bathymetry with post-Libby Dam white sturgeon egg collection locations. Substrate coring studies confirmed cobbles and gravel substrates in most of the spawning locations but that they were buried under a meter or more of post-Libby Dam sediment. Analysis suggested that Kootenai River white sturgeon spawn in areas of highest available velocity and depths over a range of flows. Regardless of the discharge, the locations of accelerating velocities and maximum depth do not change and spawning locations remain consistent. Kootenai River white sturgeon are likely spawning in the same locations as pre-dam, but post-Libby Dam water management has reduced velocities and shear stress, thus sediment is now covering the cobbles and gravels. Although higher discharges will likely provide more suitable spawning and rearing conditions, this would be socially and politically unacceptable because it would bring the river elevation to or in excess of 537.66 m, which is flood stage. Thus, support should be given to habitat modifications incorporated into a management plan to restore suitable habitat and ensure better survival of eggs and larvae.
Estimating river discharge uncertainty by applying the Rating Curve Model
NASA Astrophysics Data System (ADS)
Barbetta, S.; Melone, F.; Franchini, M.; Moramarco, T.
2012-04-01
The knowledge of the flow discharge at a river site is necessary for planning and management of water resources as well as for monitoring and real-time forecasting purposes when significant flood events occur. In the hydrological practice, the operational discharge measurement in medium and large rivers is mostly based on indirect approaches by converting the observed stage into discharge values using steady-flow rating curves. However, the stage-discharge relationship can be unknown for hydrometric sections where flow velocity measurements, particularly during high floods, are not available. To overcome this issue, a simplified approach named Rating Curve Model (RCM) and proposed by Moramarco et al. (Moramarco, T., Barbetta, S., F. Melone, F. & Singh, V.P., Relating local stage and remote discharge with significant lateral inflow, J. Hydrol. Engng ASCE, 10[1], 58?69, 2005) can be conveniently used. RCM turned out able to assess, with a high level of accuracy, the discharge hydrograph at a river site where only the stage is monitored while the flow is recorded at a different section along the river, even when significant lateral flows occur. The simple structure of the model is depending on three parameters of which two can be considered characteristic of the river reach and one of the wave travel time of floods. Considering that RCM well lends itself to predict the stage-discharge relationship at a river site wherein only stages are recorded, an uncertainty analysis on river discharge estimate is of interest for the hydrological practice definitely. To this aim, the uncertainty characterizing the RCM outcomes is addressed in this work by considering two different procedures based on the Monte Carlo approach and the Generalized Likelihood Uncertainty Estimation (GLUE) method, respectively. The statistical distribution of parameters is found and a random re-sampling of parameters is done for assessing the 90% confidence interval (CI) of discharge estimates. In particular, for the latter approach the Nash-Sutcliffe coefficient is used as likelihood measure. Two equipped river reaches of the Upper-Middle Tiber River basin, central Italy, are investigated as case studies. The results provided by the selected methodologies are discussed and compared showing that all the computed CIs are satisfied in term of percentage of included observed discharges with similar percentages characterizing the bands assessed by both Monte Carlo approach and GLUE procedure.
NASA Astrophysics Data System (ADS)
Pietroń, Jan; Jarsjö, Jerker
2014-05-01
Ongoing changes in the Central Asian climate including increasing temperatures can influence the hydrological regimes of rivers and the waterborne transport of sediments. Changes in the latter, especially in combination with adverse human activities, may severely impact water quality and aquatic ecosystems. However, waterborne transport of sediments is a result of complex processes and varies considerably between, and even within, river systems. There is therefore a need to increase our general knowledge about sediment transport under changing climate conditions. The Tuul River, the case site of this study, is located in the upper part of the basin of the Selenga River that is the main tributary to Lake Baikal, a UNESCO World Heritage Site. Like many other rivers located in the steppes of Northern Mongolia, the Tuul River is characterized by a hydrological regime that is not disturbed by engineered structures such as reservoirs and dams. However, the water quality of the downstream Tuul River is increasingly affected by adverse human activities - including placer gold mining. The largest contribution to the annual river discharge occurs during the relatively warm period in May to August. Typically, there are numerous rainfall events during this period that cause considerable river flow peaks. Parallel work has furthermore shown that due to climate change, the daily variability of discharge and numbers of peak flow events in the Tuul River Basin has increased during the past 60 years. This trend is expected to continue. We here aim at increasing our understanding of future sediment transport patterns in the Tuul River, specifically considering the scenario that peak flow events may become more frequent due to climate change. We use a one-dimensional sediment transport model of the downstream reach of the river to simulate natural patterns of sediment transport for a recent hydrological year. In general, the results show that sediment transport varies considerably spatially and temporally. Peak flow events during the warm period contribute largely to the total annual transport of sediments and also to the erosion of stored bed material. These results suggest that if the number of peak flow events will increase further due to climate change, there will be a significant increase in the annual sediment load and consequently in the load of contaminants that are attached to the sediments, in particular downstream of mining sites. The present results are furthermore consistent with parallel studies on sediment transport and climate change showing that increased water discharges and frequencies of rainfall/flow events can lead to enhanced erosion processes. Furthermore, in addition to climate change effects, human activates can change sediment loads in rivers to even greater extent, as pointed out in several studies. Thus, several different challenges can be expected to face the management of Central Asian rivers such as Tuul and their ecosystems in the future.
Ma, Xiao-xue; Wang, La-chun; Liao, Ling-ling
2015-01-01
Identifying the temp-spatial distribution and sources of water pollutants is of great significance for efficient water quality management pollution control in Wenruitang River watershed, China. A total of twelve water quality parameters, including temperature, pH, dissolved oxygen (DO), total nitrogen (TN), ammonia nitrogen (NH4+ -N), electrical conductivity (EC), turbidity (Turb), nitrite-N (NO2-), nitrate-N(NO3-), phosphate-P(PO4(3-), total organic carbon (TOC) and silicate (SiO3(2-)), were analyzed from September, 2008 to October, 2009. Geographic information system(GIS) and principal component analysis(PCA) were used to determine the spatial distribution and to apportion the sources of pollutants. The results demonstrated that TN, NH4+ -N, PO4(3-) were the main pollutants during flow period, wet period, dry period, respectively, which was mainly caused by urban point sources and agricultural and rural non-point sources. In spatial terms, the order of pollution was tertiary river > secondary river > primary river, while the water quality was worse in city zones than in the suburb and wetland zone regardless of the river classification. In temporal terms, the order of pollution was dry period > wet period > flow period. Population density, land use type and water transfer affected the water quality in Wenruitang River.
IRBAS: An online database to collate, analyze, and synthesize ...
Key questions dominating contemporary ecological research and management concern interactions between biodiversity, ecosystem processes, and ecosystem services provision in the face of global change. This is particularly salient for freshwater biodiversity and in the context of river drying and flow‐regime change. Rivers that stop flowing and dry, herein intermittent rivers, are globally prevalent and dynamic ecosystems on which the body of research is expanding rapidly, consistent with the era of big data. However, the data encapsulated by this work remain largely fragmented, limiting our ability to answer the key questions beyond a case‐by‐case basis. To this end, the Intermittent River Biodiversity Analysis and Synthesis (IRBAS; http://irbas.cesab.org) project has collated, analyzed, and synthesized data from across the world on the biodiversity and environmental characteristics of intermittent rivers. The IRBAS database integrates and provides free access to these data, contributing to the growing, and global, knowledge base on these ubiquitous and important river systems, for both theoretical and applied advancement. The IRBAS database currently houses over 2000 data samples collected from six countries across three continents, primarily describing aquatic invertebrate taxa inhabiting intermittent rivers during flowing hydrological phases. As such, there is room to expand the biogeographic and taxonomic coverage, for example, through addition of data
Hydrologic data for the Obed River watershed, Tennessee
Knight, Rodney R.; Wolfe, William J.; Law, George S.
2014-01-01
The Obed River watershed drains a 520-square-mile area of the Cumberland Plateau physiographic region in the Tennessee River basin. The watershed is underlain by conglomerate, sandstone, and shale of Pennsylvanian age, which overlie Mississippian-age limestone. The larger creeks and rivers of the Obed River system have eroded gorges through the conglomerate and sandstone into the deeper shale. The largest gorges are up to 400 feet deep and are protected by the Wild and Scenic Rivers Act as part of the Obed Wild and Scenic River, which is managed by the National Park Service. The growing communities of Crossville and Crab Orchard, Tennessee, are located upstream of the gorge areas of the Obed River watershed. The cities used about 5.8 million gallons of water per day for drinking water in 2010 from Lake Holiday and Stone Lake in the Obed River watershed and Meadow Park Lake in the Caney Fork River watershed. The city of Crossville operates a wastewater treatment plant that releases an annual average of about 2.2 million gallons per day of treated effluent to the Obed River, representing as much as 10 to 40 percent of the monthly average streamflow of the Obed River near Lancing about 35 miles downstream, during summer and fall. During the past 50 years (1960–2010), several dozen tributary impoundments and more than 2,000 small farm ponds have been constructed in the Obed River watershed. Synoptic streamflow measurements indicate a tendency towards dampened high flows and slightly increased low flows as the percentage of basin area controlled by impoundments increases.
Batsaikhan, Bayartungalag; Kwon, Jang-Soon; Kim, Kyoung-Ho; Lee, Young-Joon; Lee, Jeong-Ho; Badarch, Mendbayar; Yun, Seong-Taek
2017-01-01
Although metallic mineral resources are most important in the economy of Mongolia, mining activities with improper management may result in the pollution of stream waters, posing a threat to aquatic ecosystems and humans. In this study, aiming to evaluate potential impacts of metallic mining activities on the quality of a transboundary river (Selenge) in central northern Mongolia, we performed hydrochemical investigations of rivers (Tuul, Khangal, Orkhon, Haraa, and Selenge). Hydrochemical analysis of river waters indicates that, while major dissolved ions originate from natural weathering (especially, dissolution of carbonate minerals) within watersheds, they are also influenced by mining activities. The water quality problem arising from very high turbidity is one of the major environmental concerns and is caused by suspended particles (mainly, sediment and soil particles) from diverse erosion processes, including erosion of river banks along the meandering river system, erosion of soils owing to overgrazing by livestock, and erosion by human activities, such as mining and agriculture. In particular, after passing through the Zaamar gold mining area, due to the disturbance of sediments and soils by placer gold mining, the Tuul River water becomes very turbid (up to 742 Nephelometric Turbidity Unit (NTU)). The Zaamar area is also the contamination source of the Tuul and Orkhon rivers by Al, Fe, and Mn, especially during the mining season. The hydrochemistry of the Khangal River is influenced by heavy metal (especially, Mn, Al, Cd, and As)-loaded mine drainage that originates from a huge tailing dam of the Erdenet porphyry Cu-Mo mine, as evidenced by δ 34 S values of dissolved sulfate (0.2 to 3.8 ‰). These two contaminated rivers (Tuul and Khangal) merge into the Orkhon River that flows to the Selenge River near the boundary between Mongolia and Russia and then eventually flows into Lake Baikal. Because water quality problems due to mining can be critical, mining activities in central northern Mongolia should be carefully managed to minimize the transboundary movement of aquatic contaminants (in particular, turbidity, dissolved organic carbon, Fe and Al) from mining activities.
Instream Flows Incremental Methodology :Kootenai River, Montana : Final Report 1990-2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Greg; Skaar, Don; Dalbey, Steve
2002-11-01
Regulated rivers such as the Kootenai River below Libby Dam often exhibit hydrographs and water fluctuation levels that are atypical when compared to non-regulated rivers. These flow regimes are often different conditions than those which native fish species evolved with, and can be important limiting factors in some systems. Fluctuating discharge levels can change the quantity and quality of aquatic habitat for fish. The instream flow incremental methodology (IFIM) is a tool that can help water managers evaluate different discharges in terms of their effects on available habitat for a particular fish species. The U.S. Fish and Wildlife Service developedmore » the IFIM (Bovee 1982) to quantify changes in aquatic habitat with changes in instream flow (Waite and Barnhart 1992; Baldridge and Amos 1981; Gore and Judy 1981; Irvine et al. 1987). IFIM modeling uses hydraulic computer models to relate changes in discharge to changes in the physical parameters such as water depth, current velocity and substrate particle size, within the aquatic environment. Habitat utilization curves are developed to describe the physical habitat most needed, preferred or tolerated for a selected species at various life stages (Bovee and Cochnauer 1977; Raleigh et al. 1984). Through the use of physical habitat simulation computer models, hydraulic and physical variables are simulated for differing flows, and the amount of usable habitat is predicted for the selected species and life stages. The Kootenai River IFIM project was first initiated in 1990, with the collection of habitat utilization and physical hydraulic data through 1996. The physical habitat simulation computer modeling was completed from 1996 through 2000 with the assistance from Thomas Payne and Associates. This report summarizes the results of these efforts.« less
NASA Astrophysics Data System (ADS)
Cullis, J. D.; Gillis, C.; Drummond, J. D.; Garcia, T.; Kilroy, C.; Larned, S.; Hassan, M. A.
2010-12-01
Didymosphenia geminata (didymo) was introduced into a New Zealand river in 2004, and since then has dramatically spread to cover the beds of many rivers with extremely dense and extensive mats. Successful management is hampered by the fact that much is still unknown about the factors affecting the growth of this nuisance species. We synthesized available data on the distribution of D. geminata in New Zealand rivers to determine how physical and chemical system conditions (flow, bed disturbance, nutrients, and light) affect the growth and persistence of this organism. Here we assess results from bi-weekly surveys performed over a full year on two rivers where didymo was first observed in New Zealand; the Oreti and Mararoa. We used the data to test the hypotheses that the development of thick, dense mats requires high light levels but is inversely proportional to nutrient levels, and that mat persistence is controlled by the frequency of flow events that produce bed sediment transport. Observed regrowth between disturbance events was found to be inversely correlated with nutrient availability. The seasonal availability of light did not correlate with variations in growth rate, but this did not account for specific characteristics of the different sites such as aspect, shading, flow depth and turbidity that will all impact on the amount of available light reaching the streambed. The results clearly indicate that the time-history of flow and nutrient levels is critical to evaluating the growth and persistence of D. geminata and that additional site specific information is necessary to determine the role of bed stability and the amount of available light reaching the streambed.
Wicklein, S.M.; Gain, W.S.
1999-01-01
The St. Sebastian River lies in the southern part of the Indian River basin on the east coast of Florida. Increases in freshwater discharge due to urbanization and changes in land use have reduced salinity in the St. Sebastian River and, consequently, salinity in the Indian River, affecting the commercial fishing industry. Wind, water temperature, tidal flux, freshwater discharge, and downstream salinity all affect salinity in the St. Sebastian River estuary, but freshwater discharge is the only one of these hydrologic factors which might be affected by water-management practices. A probability analysis of salinity conditions in the St. Sebastian River estuary, taking into account the effects of freshwater discharge over a period from May 1992 to March 1996, was used to determine the likelihood (probability) that salinities, as represented by daily mean specific- conductance values, will fall below a given threshold. The effects of freshwater discharge on salinities were evaluated with a simple volumetric model fitted to time series of measured specific conductance, by using nonlinear optimization techniques. Specific-conductance values for two depths at monitored sites represent stratified flow which results from differences in salt concentration between freshwater and saltwater. Layering of freshwater and saltwater is assumed, and the model is applied independently to each layer with the assumption that the water within the layer is well mixed. The model of specific conductance as a function of discharge (a salinity response model) was combined with a model of residual variation to produce a total probability model. Flow distributions and model residuals were integrated to produce a salinity distribution and determine differences in salinity probabilities as a result of changes in water-management practices. Two possible management alternatives were analyzed: stormwater detention (reducing the peak rate of discharge but not reducing the overall flow volume) and stormwater retention (reducing peak discharges without later release). Detention of freshwater discharges increased the probability of specific- conductance values falling below a given limit (20,000 microsiemens per centimeter) for all sites but one. The retention of freshwater input to the system decreased the likelihood of falling below a selected limit of specific conductance at all sites. For limits of specific conductance (1,000 microsiemens per centimeter or 20,000 microsiemens per centimeter, depending on the site), the predicted days of occurrence below a limit decreased ranging from 17 to 68 percent of the predicted days of occurrence for unregulated flow. The primary finding to be drawn from the discharge-salinity analysis is that an empirical-response model alone does not provide adequate information to assess the response of the system to changes in flow regime. Whether a given level of discharge can produce a given response on a given day is not as important as the probability of that response on a given day and over a period of many days. A deterministic model of the St. Sebastian River estuary based only on discharge would predict that retention of discharge peaks should increase the average salinity conditions in the St. Sebastian River estuary. The probabilistic model produces a very different response indicating that salinity can decrease by a power of three as discharges increase, and that random factors can predominate and control salinity until discharges increase sufficiently to flush the entire system of saltwater.
Earth Observations taken by the Expedition 17 Crew
2008-04-29
ISS017-E-005763 (29 April 2008) --- Lake Pontchartrain and the Bonnet Carre Spillway, Louisiana, are featured in this image photographed by an Expedition 17 crewmember on the International Space Station. Lake Pontchartrain, a big body of water immediately north of New Orleans, occupies the upper part of this view, with the winding course of the muddy Mississippi River snaking across the bottom of the image (flow is east, from left to right). The city of New Orleans is sandwiched between the lake and river. Heavy rain in March and April 2008 in the Mississippi's catchment area raised water levels in the river sufficiently to make the Army Corps of Engineers take action. To reduce the volume of the river where it passes through New Orleans, the Corps opened the Bonnet Carre Spillway (lower left), a major engineering structure 18 kilometers upriver from New Orleans. The spillway, a 1.6 kilometer-wide gap in the developments along the Mississippi levees, is an integral part of the river and canal system that allows Mississippi river water to flow into Lake Pontchartrain. The spillway control structure itself is visible as a thin, discontinuous, white line along the river's edge in this image. The spillway has only been opened eight times since 1937. News of the opening in April 2008 was transmitted to crewmembers aboard the International Space Station who managed to capture the immediate effect of muddy water flowing down the spillway and into Lake Pontchartrain, where it forms great brown lobes in the otherwise green water. These lobes moved slowly east along the New Orleans shoreline, where the line of the Lake Pontchartrain Causeway, the longest bridge in the U.S., can be seen, top right. Opening the spillway protects New Orleans in various ways. First, it reduces pressure on the levees, which famously collapsed at some points during the onslaught of Hurricane Katrina in 2005. Keeping water levels below critical high levels also helps the river channel to accommodate the discharge of water, and reduces both the speed of flow and cross currents in the river which can interfere with vessels navigating the river -- or even cause collisions with levees.
Why understanding the impacts of the changing environment on river basin hydrology matters in Texas?
NASA Astrophysics Data System (ADS)
Gao, H.; Zhao, G.; Lee, K.; Zhang, S.; Shen, X.; Shao, M.; Nickelson, C.
2017-12-01
The State of Texas is prone to floods and droughts—both of which are expected to become more frequent, and more intensified, under a changing climate. This has a direct negative effect on agricultural productivity, which is a major revenue source for the state. Meanwhile, with the rapid population growth and economic development, the burden to Texas water resources is exacerbated by the ever increasing demands from users. From a hydrological processes perspective, the direct consequence of the increased impervious area due to urbanization is greater surface runoff and higher flood peaks. Although many reservoirs have been built during the past several decades to regulate river flows and increase water supply, the role of these reservoirs in the context of different future climate change and urbanization scenarios needs to be explored. Furthermore, phytoplankton productivity—an important indicator of coastal ecosystem health— is significantly affected by river discharge. The objective of this presentation is to reveal the importance of understanding the impacts of climate change, urbanization, and flow regulation on Texas river flows, water resources, and coastal water quality. Using state-of-the-art modeling and remote sensing techniques, we will showcase our results over representative Texas river basins and bay areas. A few examples include modeling peak flows in the San Antonio River Basin, evaluating water supply resilience under future drought and urbanization over the Dallas metropolitan area, projecting future crop yields from Texas agricultural lands, and monitoring and forecasting Chlorophyll-a concentrations over Galveston Bay. Results from these studies are expected to provide information relevant to decision making, both with regard to water resources management and to ecosystem protection.
Neal, Colin; Jarvie, Helen P; Withers, Paul J A; Whitton, Brian A; Neal, Margaret
2010-03-01
The relationship between soluble and particulate phosphorus was examined for 9 major UK rivers including 26 major tributaries and 68 monitoring points, covering wide-ranging rural and agricultural/urban impacted systems with catchment areas varying from 1 to 6000km(2) scales. Phosphorus concentrations in Soluble Reactive (SRP), Total Dissolved (TDP), Total (TP), Dissolved Hydrolysable (DHP) and Particulate (PP) forms correlated with effluent markers (sodium and boron) and SRP was generally dominant signifying the importance of sewage sources. Low flows were particularly enriched in SRP, TDP and TP for average SRP>100microg/l indicating low effluent dilution. At particularly low average concentrations, SRP increased with flow but effluent sources were still implicated as the effluent markers (boron in particular) increased likewise. For rural areas, DHP had proportionately high concentrations and SRP+DHP concentrations could exceed environmental thresholds currently set for SRP. Given DHP has a high bioavailability the environmental implications need further consideration. PP concentrations were generally highest at high flows but PP in the suspended solids was generally at its lowest and in general PP correlated with particulate organic carbon and more so than the suspended sediment in total. Separation of pollutant inputs solely between effluent and diffuse (agriculture) components is misleading, as part of the "diffuse" term comprises effluents flushed from the catchments during high flow. Effluent sources of phosphorus supplied directly or indirectly to the river coupled with within-river interactions between water/sediment/biota largely determine pollutant levels. The study flags the fundamental need of placing direct and indirect effluent sources and contaminated storage with interchange to/from the river at the focus for remediation strategies for UK rivers in relation to eutrophication and the WFD.
Legacy Sediments in U.S. River Environments: Atrazine and Aggradation to Zinc and Zoobenthos
NASA Astrophysics Data System (ADS)
Wohl, E.
2014-12-01
Legacy sediments are those that are altered by human activities. Alterations include (i) human-caused aggradation (and subsequent erosion), such as sediment accumulating upstream from relict or contemporary dams, (ii) human-caused lack of continuing deposition that results in changing moisture and nutrient levels within existing sediments, such as on floodplains that no longer receive lateral or vertical accretion deposits because of levees, bank stabilization, and other channel engineering, and (iii) human-generated contaminants such as PCBs and pesticides that adsorb to fine sediment. Existing estimates of human alterations of river systems suggest that legacy sediments are ubiquitous. Only an estimated 2% of river miles in the United States are not affected by flow regulation that alters sediment transport, for example, and less than half of major river basins around the world are minimally altered by flow regulation. Combined with extensive but poorly documented reduction in floodplain sedimentation, as well as sediment contamination by diverse synthetic compounds, excess nutrients, and heavy metals, these national and global estimates suggest that legacy sediments now likely constitute a very abundant type of fluvial sediment. Because legacy sediments can alter river form and function for decades to centuries after the cessation of the human activity that created the legacy sediments, river management and restoration must be informed by accurate knowledge of the distribution and characteristics of legacy sediments. Geomorphologists can contribute understanding of sediment dynamics, including: the magnitude, frequency, and duration of flows that mobilize sediments with adsorbed contaminants; sites where erosion and deposition are most likely to occur under specified flow and sediment supply; residence time of sediments; and the influence of surface and subsurface water fluxes on sediment stability and geochemistry.
Flood Frequency Analysis For Partial Duration Series In Ganjiang River Basin
NASA Astrophysics Data System (ADS)
zhangli, Sun; xiufang, Zhu; yaozhong, Pan
2016-04-01
Accurate estimation of flood frequency is key to effective, nationwide flood damage abatement programs. The partial duration series (PDS) method is widely used in hydrologic studies because it considers all events above a certain threshold level as compared to the annual maximum series (AMS) method, which considers only the annual maximum value. However, the PDS has a drawback in that it is difficult to define the thresholds and maintain an independent and identical distribution of the partial duration time series; this drawback is discussed in this paper. The Ganjiang River is the seventh largest tributary of the Yangtze River, the longest river in China. The Ganjiang River covers a drainage area of 81,258 km2 at the Wanzhou hydrologic station as the basin outlet. In this work, 56 years of daily flow data (1954-2009) from the Wanzhou station were used to analyze flood frequency, and the Pearson-III model was employed as the hydrologic probability distribution. Generally, three tasks were accomplished: (1) the threshold of PDS by percentile rank of daily runoff was obtained; (2) trend analysis of the flow series was conducted using PDS; and (3) flood frequency analysis was conducted for partial duration flow series. The results showed a slight upward trend of the annual runoff in the Ganjiang River basin. The maximum flow with a 0.01 exceedance probability (corresponding to a 100-year flood peak under stationary conditions) was 20,000 m3/s, while that with a 0.1 exceedance probability was 15,000 m3/s. These results will serve as a guide to hydrological engineering planning, design, and management for policymakers and decision makers associated with hydrology.
NASA Astrophysics Data System (ADS)
Kim, J.; Johnson, L.; Cifelli, R.; Chandra, C. V.; Gochis, D.; McCreight, J. L.; Yates, D. N.; Read, L.; Flowers, T.; Cosgrove, B.
2017-12-01
NOAA National Water Center (NWC) in partnership with the National Centers for Environmental Prediction (NCEP), the National Center for Atmospheric Research (NCAR) and other academic partners have produced operational hydrologic predictions for the nation using a new National Water Model (NWM) that is based on the community WRF-Hydro modeling system since the summer of 2016 (Gochis et al., 2015). The NWM produces a variety of hydrologic analysis and prediction products, including gridded fields of soil moisture, snowpack, shallow groundwater levels, inundated area depths, evapotranspiration as well as estimates of river flow and velocity for approximately 2.7 million river reaches. Also included in the NWM are representations for more than 1,200 reservoirs which are linked into the national channel network defined by the USGS NHDPlusv2.0 hydrography dataset. Despite the unprecedented spatial and temporal coverage of the NWM, many known deficiencies exist, including the representation of lakes and reservoirs. This study addresses the implementation of a reservoir assimilation scheme through coupling of a reservoir simulation model to represent the influence of managed flows. We examine the use of the reservoir operations to dynamically update lake/reservoir storage volume states, characterize flow characteristics of river reaches flowing into and out of lakes and reservoirs, and incorporate enhanced reservoir operating rules for the reservoir model options within the NWM. Model experiments focus on a pilot reservoir domain-Lake Mendocino, CA, and its contributing watershed, the East Fork Russian River. This reservoir is modeled using United States Army Corps of Engineers (USACE) HEC-ResSim developed for application to examine forecast informed reservoir operations (FIRO) in the Russian River basin.
Simulated effects of irrigation on salinity in the Arkansas River Valley in Colorado
Goff, K.; Lewis, M.E.; Person, M.A.; Konikow, Leonard F.
1998-01-01
Agricultural irrigation has a substantial impact on water quantity and quality in the lower Arkansas River valley of southeastern Colorado. A two-dimensional flow and solute transport model was used to evaluate the potential effects of changes in irrigation on the quantity and quality of water in the alluvial aquifer and in the Arkansas River along an 17.7 km reach of the fiver. The model was calibrated to aquifer water level and dissolved solids concentration data collected throughout the 24 year study period (197195). Two categories of irrigation management were simulated with the calibrated model: (1) a decrease in ground water withdrawals for irrigation; and (2) cessation of all irrigation from ground water and surface water sources. In the modeled category of decreased irrigation from ground water pumping, there was a resulting 6.9% decrease in the average monthly ground water salinity, a 0.6% decrease in average monthly river salinity, and an 11.1% increase in ground water return flows to the river. In the modeled category of the cessation of all irrigation, average monthly ground water salinity decreased by 25%; average monthly river salinity decreased by 4.4%; and ground water return flows to the river decreased by an average of 64%. In all scenarios, simulated ground water salinity decreased relative to historical conditions for about 12 years before reaching a new dynamic equilibrium condition. Aquifer water levels were not sensitive to any of the modeled scenarios. These potential changes in salinity could result in improved water quality for irrigation purposes downstream from the affected area.
Homogenization of regional river dynamics by dams and global biodiversity implications.
Poff, N Leroy; Olden, Julian D; Merritt, David M; Pepin, David M
2007-04-03
Global biodiversity in river and riparian ecosystems is generated and maintained by geographic variation in stream processes and fluvial disturbance regimes, which largely reflect regional differences in climate and geology. Extensive construction of dams by humans has greatly dampened the seasonal and interannual streamflow variability of rivers, thereby altering natural dynamics in ecologically important flows on continental to global scales. The cumulative effects of modification to regional-scale environmental templates caused by dams is largely unexplored but of critical conservation importance. Here, we use 186 long-term streamflow records on intermediate-sized rivers across the continental United States to show that dams have homogenized the flow regimes on third- through seventh-order rivers in 16 historically distinctive hydrologic regions over the course of the 20th century. This regional homogenization occurs chiefly through modification of the magnitude and timing of ecologically critical high and low flows. For 317 undammed reference rivers, no evidence for homogenization was found, despite documented changes in regional precipitation over this period. With an estimated average density of one dam every 48 km of third- through seventh-order river channel in the United States, dams arguably have a continental scale effect of homogenizing regionally distinct environmental templates, thereby creating conditions that favor the spread of cosmopolitan, nonindigenous species at the expense of locally adapted native biota. Quantitative analyses such as ours provide the basis for conservation and management actions aimed at restoring and maintaining native biodiversity and ecosystem function and resilience for regionally distinct ecosystems at continental to global scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hong -Yi; Leung, L. Ruby; Tesfa, Teklu
A new large-scale stream temperature model has been developed within the Community Earth System Model (CESM) framework. The model is coupled with the Model for Scale Adaptive River Transport (MOSART) that represents river routing and a water management model (WM) that represents the effects of reservoir operations and water withdrawals on flow regulation. The coupled models allow the impacts of reservoir operations and withdrawals on stream temperature to be explicitly represented in a physically based and consistent way. The models have been applied to the Contiguous United States driven by observed meteorological forcing. It is shown that the model ismore » capable of reproducing stream temperature spatiotemporal variation satisfactorily by comparison against the observed streamflow from over 320 USGS stations. Including water management in the models improves the agreement between the simulated and observed streamflow at a large number of stream gauge stations. Both climate and water management are found to have important influence on the spatiotemporal patterns of stream temperature. More interestingly, it is quantitatively estimated that reservoir operation could cool down stream temperature in the summer low-flow season (August – October) by as much as 1~2oC over many places, as water management generally mitigates low flow, which has important implications to aquatic ecosystems. In conclusion, sensitivity of the simulated stream temperature to input data and reservoir operation rules used in the WM model motivates future directions to address some limitations in the current modeling framework.« less
Luo, Yi; Xu, Lin; Rysz, Michal; Wang, Yuqiu; Zhang, Hao; Alvarez, Pedro J J
2011-03-01
The occurrence and transport of 12 antibiotics (from the tetracycline, sulfonamide, quinolone, and macrolide families) was studied in a 72-km stretch of the Haihe River, China, and in six of its tributaries. Aqueous and sediment samples were analyzed by HPLC-MS/MS. Sulfonamides were detected at the highest concentrations (24-385 ng/L) and highest frequencies (76-100%). Eight of the 12 antibiotics likely originated from veterinary applications in swine farms and fishponds, and concentrations at these sources (0.12-47 μg/L) were 1-2 orders of magnitude higher than in the effluent of local wastewater treatment plants. Sulfachloropyridazine (SCP) was detected in all swine farm and fishpond samples (maximum concentration 47 μg/L), which suggests its potential usefulness to indicate livestock source pollution in the Haihe River basin. Hydrological and chemical factors that may influence antibiotic distribution in the Haihe River were considered by multiple regression analysis. River flow rate exerted the most significant effect on the first-order attenuation coefficient (K) for sulfonamides, quinolones, and macrolides, with higher flow rates resulting in higher K, probably due to dilution. For tetracyclines, sediment total organic matter and cation exchange capacity exerted a greater impact on K than flow rate, indicating that adsorption to sediments plays an important role in attenuating tetracycline migration. Overall, the predominance of sulfonamides in the Haihe River underscores the need to consider regulating their veterinary use and improving the management and treatment of associated releases.
Anthropogenic Water Uses and River Flow Regime Alterations by Dams
NASA Astrophysics Data System (ADS)
Ferrazzi, M.; Botter, G.
2017-12-01
Dams and impoundments have been designed to reconcile the systematic conflict between patterns of anthropogenic water uses and the temporal variability of river flows. Over the past seven decades, population growth and economic development led to a marked increase in the number of these water infrastructures, so that unregulated free-flowing rivers are now rare in developed countries and alterations of the hydrologic cycle at global scale have to be properly considered and characterized. Therefore, improving our understanding of the influence of dams and reservoirs on hydrologic regimes is going to play a key role in water planning and management. In this study, a physically based analytic approach is combined to extensive hydrologic data to investigate natural flow regime alterations downstream of dams in the Central-Eastern United States. These representative case studies span a wide range of different uses, including flood control, water supply and hydropower production. Our analysis reveals that the most evident effects of flood control through dams is a decrease in the intra-seasonal variability of flows, whose extent is controlled by the ratio between the storage capacity for flood control and the average incoming streamflow. Conversely, reservoirs used for water supply lead to an increase of daily streamflow variability and an enhanced inter-catchment heterogeneity. Over the last decades, the supply of fresh water required to sustain human populations has become a major concern at global scale. Accordingly, the number of reservoirs devoted to water supply increased by 50% in the US. This pattern foreshadows a possible shift in the cumulative effect of dams on river flow regimes in terms of inter-catchment homogenization and intra-annual flow variability.
Freshwater Ecosystem Services and Hydrologic Alteration in the Lower Mississippi River Basin
NASA Astrophysics Data System (ADS)
Yasarer, L.; Taylor, J.; Rigby, J.; Locke, M. A.
2017-12-01
Flowing freshwater ecosystems provide a variety of essential ecosystem services including: consumptive water for domestic, industrial, and agricultural use; transportation of goods; maintenance of aquatic biodiversity and water quality; and recreation. However, freshwater ecosystem services can oftentimes be at odds with each other. For example, the over-consumption of water for agricultural production or domestic use may alter hydrologic patterns and diminish the ability of flowing waters to sustain healthy aquatic ecosystems. In the Lower Mississippi River Basin there has been a substantial increase in groundwater-irrigated cropland acreage over the past several decades and subsequent declines in regional aquifer levels. Changes in aquifer levels potentially impact surface water hydrology throughout the region. This study tests the hypothesis that flowing water systems in lowland agricultural watersheds within the Lower Mississippi River Basin have greater hydrologic alteration compared to upland non-agricultural watersheds, particularly with declines in base flow and an increase in extreme low flows. Long-term streamflow records from USGS gauges located in predominantly agricultural and non-agricultural watersheds in Arkansas, Louisiana, Mississippi, and Tennessee were evaluated from 1969 -2016 using the Indicators of Hydrologic Alteration (IHA) software. Preliminary results from 8 non-agricultural and 5 agricultural watersheds demonstrate a substantial decline in base flow in the agricultural watersheds, which is not apparent in the non-agricultural watersheds. This exploratory study will analyze the trade-off between gains in agricultural productivity and changes in ecohydrological indicators over the last half century in diverse watersheds across the Lower Mississippi River Basin. By quantifying the changes in ecosystem services provided by flowing waters in the past, we can inform sustainable management pathways to better balance services in the future.
Milhous, Robert T.; Wondzell, Mark; Ritter, Amy
1993-01-01
The cottonwood gallery forests of the Middle Rio Grande floodplain in New Mexico provide important habitats for birds and other animals. Over the last century, these forests have changed significantly due to invasion of exotics such as salt cedar and Russian olive, which compete with native cottonwoods, and changes in water use both in the valley and upstream. To successfully germinate and establish, cottonwoods require an adequate water supply, abundant sunlight, and bare, litter-free substrate. Native cottonwoods are adapted to a natural snowmelt hydrograph characterized by spring floods in late May or early June and gradually receding streamflows throughout the remainder of the summer. The natural streamflow pattern has been significantly modified by water management in the Rio Grande basin. The modified pattern is less conducive to establishment of cottonwoods than the natural pattern. In addition, exotic species now compete with native cottonwoods, and the modified flow pattern may favor these exotics. The overall objective of this study was to investigate the possibility of enhancing cottonwood establishment and recruitment along the Middle Rio Grande through streamflow manipulation and reservoir releases. The work integrates concepts of cottonwood establishment, water resources management, and river morphology, and investigates how water management might be used to preserve and enhance cottonwood gallery forests along the river. Specific objectives of the work reported herein were to: (1) develop a technique to calculate flows that will produce channel characteristics necessary to restore and sustain cottonwood gallery forests; (2) develop a model to determine a flow pattern, or sequence of flows, that will improve the potential for cottonwood establishment and recruitment; and (3) determine if the water resources can be managed to produce the desired channel characteristics and flow pattern identified in (1) and (2).
Examining the evolution of an ancient irrigation system: the Middle Gila River Canals
NASA Astrophysics Data System (ADS)
Zhu, Tianduowa; Ertsen, Maurits
2014-05-01
Studying ancient irrigation systems reinforces to understand the co-evolution process between the society and water systems. In the prehistoric Southwest of America, the irrigation has been a crucial feature of human adaptation to the dry environment. The influences of social arrangements on irrigation managements, and implications of the irrigation organization in social developments are main issues that researchers have been exploring for a long time. The analysis of ceramics pattern and distribution has assisted to the reconstruction of prehistoric social networks. The existing study shows that, a few pottery fragments specially produced by the materials of the middle Gila River valley, were found in the Salt River valley; however, very few specialized ceramics of the Salt River valley occurred in the middle Gila River valley. It might indicate that there were trades or exchanges of potteries or raw materials from the middle Gila River valley to the Salt River valley. The most popular hypothesis of trading for the potteries is crop production. Based on this hypothesis, the ceramics trade was highly tied to the irrigation system change. Therefore, examining the changing relationship among the ceramics distribution along the middle Gila River, canals flow capacity, and available streamflows, can provide an insight into the evolutionary path among the social economy, irrigation and water environment. In this study, we reconstruct the flow capacity of canals along the middle Gila River valley. In combination with available streamflow from the middle Gila River, we can simulate how much water could be delivered to the main canals and lateral canals. Based on the variation and chronology of potteries distribution, we may identify that, the drama of the middle Gila River receiving insufficient flows for crop irrigation caused the development of ceramics exchange; or the rising of potteries exchange triggers the decline of irrigation in the study area.
Monitoring and Mapping Off-Channel Water Quality in the Willamette River, Oregon
NASA Astrophysics Data System (ADS)
Buccola, N. L.; Rounds, S. A.; Smith, C.; Anderson, C.; Jones, K.; Mangano, J.; Wallick, R.
2016-12-01
The floodplain of the Willamette River in northwestern Oregon includes remnant slower-moving sloughs, side-channels, and alcoves that provide rearing habitat and potential cool-water sources for native cold-water fish species, such as the federally threatened Chinook salmon. The mapping and characterization of the hydraulics and water sources of these off-channel areas is the first step toward protecting and restoring these resources for future generations. A primary focus of this study is to determine how flow management can increase the habitat value of these off-channel areas, especially during summer low-flow periods when water temperatures in the main channel regularly exceed lethal temperatures for salmonids. The U.S. Geological Survey, in cooperation with U.S. Army Corps of Engineers and Oregon State University, has been measuring the characteristics of off-channel water quality in the Willamette River under a variety of water levels in summer 2015-16. About 30 diverse off-channel sites within the Willamette floodplain are being monitored and compared with conditions in the main channel. Hourly water temperature, conductivity, and dissolved oxygen (DO) data are being collected at a subset of these sites. Some deep off-channel pools have substantial, consistent cool-water inflows that can dominate locally, allowing them to function as cold-water refuges for salmonids at varying mainstem Willamette flows. Other sloughs have varying characteristics due to intermittent connections to the main channel, depending on river levels. A vibrant community of algae and aquatic macrophytes often coincide with thick layers of fine sediment or organic detritus near the bed, producing low DO zones (<5 mg/L) in many slower-moving off-channel areas. We propose some preliminary hydro-geomorphic categories to better explain cool inflows as sourced from regional groundwater aquifers or localized subsurface river features. A better understanding of the processes governing the presence, location, and type of cold-water refuge areas in a large gravel bed river such as the Willamette River will help inform and guide habitat management and restoration strategies.
Campbell, Sharon G.; Bartholow, John M.; Heasley, John
2010-01-01
At the request of two offices of the U.S. Fish and Wildlife Service (FWS) located in Yreka and Arcata, Calif., we applied the Systems Impact Assessment Model (SIAM) to analyze a variety of water management concerns associated with the Federal Energy Regulatory Commission (FERC) relicensing of the Klamath hydropower projects or with ongoing management of anadromous fish stocks in the mainstem Klamath River, Oregon and California. Requested SIAM analyses include predicted effects of reservoir withdrawal elevations, use of full active storage in Copco and Iron Gate Reservoirs to augment spring flows, and predicted spawning and juvenile outmigration timing of fall Chinook salmon. In an effort to further refine the analysis of spring flow effects on predicted fall Chinook production, additional SIAM analyses were performed for predicted response to spring flow release variability from Iron Gate Dam, high and low pulse flow releases, the predicted effects of operational constraints for both Upper Klamath Lake water surface elevations, and projected flow releases specified in the Klamath Project 2006 Operations Plan (April 10, 2006). Results of SIAM simulations to determine flow and water temperature relationships indicate that up to 4 degrees C of thermal variability can be attributed to flow variations, but the effect is seasonal. Much more of thermal variability can be attributed to air temperature variations, up to 6 degrees C. Reservoirs affect the annual thermal signature by delaying spring warming by about 3 weeks and fall cooling by about 2 weeks. Multi-level release outlets on Iron Gate Dam would have limited utility; however, if releases are small (700 cfs) and a near-surface and bottom-level outlet could be blended, then water temperature may be reduced by 2-4 degrees C for a 4-week period during September. Using the full active storage in Copco and Iron Gate Reservoir, although feasible, had undesirable ramifications such as earlier spring warming, loss of hydropower production, and inability to re-fill the reservoirs without causing shortages elsewhere in the system. Altering spawning and outmigration timing may be important management objectives for the salmon fishery, but difficult to implement. SIAM predicted benefits that might occur if water temperature was cooler in fall and spring emergence was advanced; however, model simulations were based on purely arbitrary thermal reductions. Spring flow variability did indicate that juvenile fall Chinook rearing habitat was the major biological 'bottleneck' for year class success. Rearing habitat is maximal in a range between 4,500 and 5,500 cfs below Iron Gate Dam. These flow levels are not typically provided by Klamath River system operations, except in very wet years. The incremental spring flow analysis provided insight into when and how long a pulse flow should occur to provide predicted fall Chinook salmon production increases. In general, March 15th - April 30th of any year was the period for pulse flows and 4000 cfs was the target flow release that provided near-optimal juvenile rearing habitat. Again, competition for water resources in the Klamath River Basin may make implementation of pulsed flows difficult.
Using Self Potential and Multiphase Flow Modeling to Optimize Groundwater Pumping
NASA Astrophysics Data System (ADS)
Gasperikova, E.; Zhang, Y.; Hubbard, S.
2008-12-01
Numerical and field hydrological and geophysical studies have been conducted to investigate the impact of groundwater pumping on near-river hydrology for a segment of the Russian River at the Wohler Site, California, which is a riverbed filtration system managed by the Sonoma County Water Agency. Groundwater pumping near streams can cause a creation of unsaturated regions and hence reduce the pumping capacity and change the flow paths. A three-dimensional multiphase flow and transport model can be calibrated to the temperature, and water levels at monitoring wells based on known pumping rates, and the river stage. Streaming (self) potential (SP) is one of the electrokinetic processes that describes the coupled behavior of hydraulic and electrical flow within a porous medium, and is easily measured on the surface or in boreholes. Observing temporal and spatial variations in geophysical signatures provides a powerful approach for monitoring changes in the natural systems due to natural or forced (pumping) system perturbations. Geophysical and hydrological data were collected before, during and after a pumping experiment at the Wohler Site. Using this monitoring dataset, we illustrate how loose coupling between hydrogeological and geophysical (SP) processes and data can be used to calibrate the flow model and to optimize pumping schedules as needed to guide sustainable water resource development.
Peterson, R.; Jennings, Cecil A.; Peterson, J.T.
2013-01-01
Robust redhorse (Moxostoma robustum) and notchlip redhorse (M. collapsum) are two species of redhorses that reside in the lower Oconee River, Georgia. Robust redhorse is listed as a state endangered species in Georgia and North Carolina, and attempts to investigate factors affecting its reproductive success have met with limited success. Therefore, catch of robust redhorse young were combined with catch of notchlip redhorse to increase sample size. These congeners with similar spawning repertoire were assumed to respond similarly to environmental conditions. River discharge during spawning and rearing seasons may affect abundance of both redhorses in the lower Oconee River. An information-theoretic approach was used to evaluate the relative support of models relating abundance of age 0 redhorses to monthly discharge statistics that represented magnitude, timing, duration, variability and frequency of river discharge events for April through June 1995–2006. The best-approximating model indicated a negative relationship between the abundance of redhorses and mean maximum river discharge and the number of high pulses during June as well as a positive relationship with intermediate duration of low flows during April–June. This model is 9.6 times more plausible than the next best-fitting model, which revealed a negative relationship between the abundance of redhorses and mean maximum river discharge during May and the number of high pulses during June as well as a positive relationship between abundance and intermediate duration of low flows during April–June. Management implications from the results indicate low-stable flows for at least a 2-week period during spawning and rearing may increase reproductive success of robust and notchlip redhorses.
Trends and variability in the hydrological regime of the Mackenzie River Basin
NASA Astrophysics Data System (ADS)
Abdul Aziz, Omar I.; Burn, Donald H.
2006-03-01
Trends and variability in the hydrological regime were analyzed for the Mackenzie River Basin in northern Canada. The procedure utilized the Mann-Kendall non-parametric test to detect trends, the Trend Free Pre-Whitening (TFPW) approach for correcting time-series data for autocorrelation and a bootstrap resampling method to account for the cross-correlation structure of the data. A total of 19 hydrological and six meteorological variables were selected for the study. Analysis was conducted on hydrological data from a network of 54 hydrometric stations and meteorological data from a network of 10 stations. The results indicated that several hydrological variables exhibit a greater number of significant trends than are expected to occur by chance. Noteworthy were strong increasing trends over the winter month flows of December to April as well as in the annual minimum flow and weak decreasing trends in the early summer and late fall flows as well as in the annual mean flow. An earlier onset of the spring freshet is noted over the basin. The results are expected to assist water resources managers and policy makers in making better planning decisions in the Mackenzie River Basin.
NASA Astrophysics Data System (ADS)
Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.
2015-12-01
The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims Branch watershed at Savannah River Site.
NASA Astrophysics Data System (ADS)
Gleason, C. J.; Wada, Y.; Wang, J.
2017-12-01
Declining gauging infrastructure and fractious water politics have decreased available information about river flows globally, especially in international river basins. Remote sensing and water balance modelling are frequently cited as a potential solutions, but these techniques largely rely on the same in decline gauge data to constrain or parameterize discharge estimates, thus creating a circular approach to estimating discharge inapplicable to ungauged basins. To address this, we here combine a discontinued gauge, remotely sensed discharge estimates made via at-many-stations hydraulic geometry (AMHG) and Landsat data, and the PCR-GLOBWB hydrological model to estimate discharge for an ungauged time period for the Lower Nile (1978-present). Specifically, we first estimate initial discharges from 86 Landsat images and AMHG (1984-2015), and then use these flow estimates to tune the hydrologic model. Our tuning methodology is purposefully simple and can be easily applied to any model without the need for calibration/parameterization. The resulting tuned modelled hydrograph shows large improvement in flow magnitude over previous modelled hydrographs, and validation of tuned monthly model output flows against the historical gauge yields an RMSE of 343 m3/s (33.7%). By contrast, the original simulation had an order-of-magnitude flow error. This improvement is substantial but not perfect: modelled flows have a one-to two-month wet season lag and a negative bias. More sophisticated model calibration and training (e.g. data assimilation) is needed to improve upon our results, however, our results achieved by coupling physical models and remote sensing is a promising first step and proof of concept toward future modelling of ungauged flows. This is especially true as massive cloud computing via Google Earth Engine makes our method easily applicable to any basin without current gauges. Finally, we purposefully do not offer prescriptive solutions for Nile management, and rather hope that the methods demonstrated herein can prove useful to river stakeholders in managing their own water.
NASA Astrophysics Data System (ADS)
Ward, A. S.; Schmadel, N.; Wondzell, S. M.
2017-12-01
River networks are broadly recognized to expand and contract in response to hydrologic forcing. Additionally, the individual controls on river corridor dynamics of hydrologic forcing and geologic setting are well recognized. However, we currently lack tools to integrate our understanding of process dynamics in the river corridor and make predictions at the scale of river networks. In this study, we develop a perceptual model of the river corridor in mountain river networks, translate this into a reduced-complexity mechanistic model, and implement the model in a well-studied headwater catchment. We found that the river network was most sensitive to hydrologic dynamics under the lowest discharges (Qgauge < 1 L s-1). We also demonstrate a discharge-dependence on the dominant controls on network expansion, contraction, and river corridor exchange. Finally, we suggest this parsimonious model will be useful to managers of water resources who need to estimate connectivity and flow initiation location along the river corridor over broad, unstudied catchments.
Simulating Freshwater Availability under Future Climate Conditions
NASA Astrophysics Data System (ADS)
Zhao, F.; Zeng, N.; Motesharrei, S.; Gustafson, K. C.; Rivas, J.; Miralles-Wilhelm, F.; Kalnay, E.
2013-12-01
Freshwater availability is a key factor for regional development. Precipitation, evaporation, river inflow and outflow are the major terms in the estimate of regional water supply. In this study, we aim to obtain a realistic estimate for these variables from 1901 to 2100. First we calculated the ensemble mean precipitation using the 2011-2100 RCP4.5 output (re-sampled to half-degree spatial resolution) from 16 General Circulation Models (GCMs) participating the Coupled Model Intercomparison Project Phase 5 (CMIP5). The projections are then combined with the half-degree 1901-2010 Climate Research Unit (CRU) TS3.2 dataset after bias correction. We then used the combined data to drive our UMD Earth System Model (ESM), in order to generate evaporation and runoff. We also developed a River-Routing Scheme based on the idea of Taikan Oki, as part of the ESM. It is capable of calculating river inflow and outflow for any region, driven by the gridded runoff output. River direction and slope information from Global Dominant River Tracing (DRT) dataset are included in our scheme. The effects of reservoirs/dams are parameterized based on a few simple factors such as soil moisture, population density and geographic regions. Simulated river flow is validated with river gauge measurements for the world's major rivers. We have applied our river flow calculation to two data-rich watersheds in the United States: Phoenix AMA watershed and the Potomac River Basin. The results are used in our SImple WAter model (SIWA) to explore water management options.
Remote Sensing for Hydrology: Surface Water Dynamics from Three Decades of Landsat Data
NASA Astrophysics Data System (ADS)
Tulbure, M. G.; Broich, M.; Kingsford, R.; Lucas, R.; Keith, D.
2014-12-01
Surface water is a vital resource affected by changes in climate and anthropogenic factors. Knowledge of surface water dynamics provides critical information for flood and drought management. Here we focused on the on the entire Murray-Darling Basin (MDB) of Australia, a large semi-arid region with scarce water resources, high hydroclimatic variability and competing water demands, impacted by climate change, altered flow regimes and land use changes. The MDB is also an area where substantial investment in environmental water allocation of large volumes of environmental flow was made. We used Landsat TM and ETM+ time series to synoptically map the dynamic of surface water extent with an internally consistent algorithm (Tulbure and Broich, 2013) over decades (1986-2011). We used a subset of Landsat path/rows for image training in both wet and dry years. Results show high interannual variability in number and size of flooded areas, with flooded areas during the Millennium Drought (until 2009) being substantially smaller than during the excessive 2010-2011 La Nina flooding. Flooding frequency in 2006, a very dry year was lower than in 2010, the La Nina year when extensive floods occurred. More developed areas of the basin showed different inter-annual patterns from natural areas of the basin. At Barmah-Millewa, the largest river red gum forest in the world, we also mapped flooded forest and tracked changes in NDVI. Higher NDVI values were found in areas more frequently flooded. Knowledge of the spatial and temporal dynamics of flooding and the response of riparian vegetation communities to flooding is important for management of floodplain wetlands and vegetation communities and for investigating effectiveness of environmental flows and flow regimes in the MDB. Existing maps of inundated areas are linked with river flow to quantify the relationship between river flow and inundated area in the MDB. Historic flood inundation extent mapped via remote sensing can be used to quantify spatially explicit changes in surface water dynamics and vegetation communities as outcomes of management scenarios in response to water management decisions. This methodology is globally applicable and relevant to areas prone to flooding with competing water demands and can be used for mapping water availability in data scarce regions.
Dombrowsky, Ines; Almog, Ram; Becker, Nir; Feitelson, Eran; Klawitter, Simone; Lindemann, Stefan; Mutlak, Natalie
2010-05-01
The basin scale has been promoted universally as the optimal management unit that allows for the internalization of all external effects caused by multiple water uses. However, the basin scale has been put forward largely on the basis of experience in temperate zones. Hence whether the basin scale is the best scale for management in other settings remains questionable. To address these questions this paper analyzes the economic viability and the political feasibility of alternative management options in the Kidron/Wadi Nar region. The Kidron/Wadi Nar is a small basin in which wastewater from eastern Jerusalem flows through the desert to the Dead Sea. Various options for managing these wastewater flows were analyzed ex ante on the basis of both a cost benefit and a multi-criteria analysis. The paper finds that due to economies of scale, a pure basin approach is not desirable from a physical and economic perspective. Furthermore, in terms of political feasibility, it seems that the option which prompts the fewest objections from influential stakeholder groups in the two entities under the current asymmetrical political setting is not a basin solution either, but a two plant solution based on an outsourcing arrangement. These findings imply that the river basin management approach can not be considered the best management approach for the arid transboundary case at hand, and hence is not unequivocally universally applicable.
NASA Astrophysics Data System (ADS)
Dombrowsky, Ines; Almog, Ram; Becker, Nir; Feitelson, Eran; Klawitter, Simone; Lindemann, Stefan; Mutlak, Natalie
2010-05-01
The basin scale has been promoted universally as the optimal management unit that allows for the internalization of all external effects caused by multiple water uses. However, the basin scale has been put forward largely on the basis of experience in temperate zones. Hence whether the basin scale is the best scale for management in other settings remains questionable. To address these questions this paper analyzes the economic viability and the political feasibility of alternative management options in the Kidron/Wadi Nar region. The Kidron/Wadi Nar is a small basin in which wastewater from eastern Jerusalem flows through the desert to the Dead Sea. Various options for managing these wastewater flows were analyzed ex ante on the basis of both a cost benefit and a multi-criteria analysis. The paper finds that due to economies of scale, a pure basin approach is not desirable from a physical and economic perspective. Furthermore, in terms of political feasibility, it seems that the option which prompts the fewest objections from influential stakeholder groups in the two entities under the current asymmetrical political setting is not a basin solution either, but a two plant solution based on an outsourcing arrangement. These findings imply that the river basin management approach can not be considered the best management approach for the arid transboundary case at hand, and hence is not unequivocally universally applicable.
NASA Astrophysics Data System (ADS)
Wen, Li; Macdonald, Rohan; Morrison, Tim; Hameed, Tahir; Saintilan, Neil; Ling, Joanne
2013-09-01
The Macquarie Marshes is an intermittently flooded wetland complex covering nearly 200,000 ha. It is one of the largest semi-permanent wetland systems in the Murray-Darling Basin, Australia, and portions of the Marshes are listed as internationally important under the Ramsar Convention. Previous studies indicate that the Marshes have undergone accelerated ecological degradation since the 1980s. The ecological degradation is documented in declining biodiversity, encroaching of terrestrial species, colonisation of exotic species, and deterioration of floodplain forests. There is strong evidence that reduction in river flows is the principal cause of the decrease in ecological values. Although the streams are relatively well gauged and modelled, the lack of hydrological records within the Marshes hampers any attempts to quantitatively investigate the relationship between hydrological variation and ecosystem integrity. To enable a better understanding of the long-term hydrological variations within the key wetland systems, and in particular, to investigate the impacts of the different water management policies (e.g. environmental water) on wetlands, a river system model including the main wetland systems was needed. The morphological complex nature of the Marshes means that the approximation of hydrological regimes within wetlands using stream hydrographs would have been difficult and inaccurate. In this study, we built a coupled 1D/2D MIKE FLOOD floodplain hydrodynamic model based on a 1 m DEM derived from a LiDAR survey. Hydrological characteristics of key constituent wetlands such as the correlation between water level and inundation area, relationships between stream and wetlands and among wetlands were estimated using time series extracted from hydrodynamic simulations. These relationships were then introduced into the existing river hydrological model (IQQM) to represent the wetlands. The model was used in this study to simulate the daily behaviours of inflow/outflow, volume, and inundated area for key wetlands within the Marshes under natural conditions and recent water management practices for the period of July 1 1991 to June 30 2009. The results revealed that the recent water management practices have induced large changes to wetland hydrology. The most noticeable changes include the dramatic reductions in high flows (i.e. flows with less than 25% exceedence, reduction ranges from 85% to 98% of the high flow peak depending on the location), areal inundation extent (ranging from 13% to 79% depending on climatic conditions), and flow rising/falling rates (over 90% for high flows). Our analysis also highlighted that the impacts of water management practices on some of the flow variables for wetland habitats contrasted with those for instream habitats. For example, we did not find any evident alterations in the low flows (i.e. 75% exceedence) attributable to water management.
Krauss, Ken W.; Shaffer, Gary P.; Keim, Richard F.; Chambers, Jim L.; Wood, William B.; Hartley, Stephen B.
2017-06-09
The use of freshwater diversions (river reintroductions) from the Mississippi River as a restoration tool to rehabilitate Louisiana coastal wetlands has been promoted widely since the first such diversion at Caernarvon became operational in the early 1990s. To date, aside from the Bonnet Carré Spillway (which is designed and operated for flood control), there are only four operational Mississippi River freshwater diversions (two gated structures and two siphons) in coastal Louisiana, and they all target salinity intrusion, shellfish management, and (or) the enhancement of the integrity of marsh habitat. River reintroductions carry small sediment loads for various design reasons, but they can be effective in delivering freshwater to combat saltwater intrusion and increase the delivery of nutrients and suspended fine-grained sediments to receiving wetlands. River reintroductions may be an ideal restoration tool for targeting coastal swamp forest habitat; much of the area of swamp forest habitat in coastal Louisiana is undergoing saltwater intrusion, high rates of submergence, and lack of riverine flow leading to reduced concentrations of important nutrients and suspended sediments, which sustain growth and regeneration, help to aerate swamp soils, and remove toxic compounds from the rhizosphere.The State of Louisiana Coastal Protection and Restoration Authority (CPRA) has made it a priority to establish a small freshwater river diversion into a coastal swamp forest located between Baton Rouge and New Orleans, Louisiana, to reintroduce Mississippi River water to Maurepas Swamp. While a full understanding of how a coastal swamp forest will respond to new freshwater loading through a Mississippi River reintroduction is unknown, this report provides guidance based on the available literature for establishing performance measures that can be used for evaluating the effectiveness of a Mississippi River reintroduction into the forested wetlands of Maurepas Swamp (project PO-29 of the Coastal Wetlands Planning, Protection and Restoration Act) and aid in adaptive management of the project. PO-29 is a small river reintroduction in scope, and through its operation, it will provide information about the feasibility and reasonable expectations for future river reintroduction projects targeting coastal swamp forests in Louisiana.Located near Garyville, Louisiana, the Mississippi River reintroduction into Maurepas Swamp project is being designed to deliver a maximum flow of 57 cubic meters per second (m3/s) (or about 2,000 cubic feet per second [ft3/s]) directly from the river, but with a maximum flow through the outflow channel of 42 m3/s (or 1,500 ft3/s) available for at least half of the year. The river reintroduction will divert Mississippi River water through channelized flow and surface water to impact approximately 16,583 hectares (ha) of wetland habitat, much of which is swamp forest and swamp forest transitioning into marsh habitat. The Mississippi River reintroduction into Maurepas Swamp and associated outfall management features collectively should facilitate connectivity of water between the Mississippi River and the entire project area.At any given location, hydrologic connectivity should occur at intervals between twice yearly and once per decade, and hydrologic management must allow the potential for water drawdowns to foster tree regeneration every 3–13 years. The river reintroduction is also anticipated to maintain salinity in swamp forests dominated by Taxodium distichum (baldcypress) to less than 1.3 practical salinity units (psu) and maintain salinity in mixed baldcypress and Nyssa aquatica (water tupelo) swamp forests to less than 0.8 psu. The river reintroduction should promote soil surface elevation gains of 8–9 millimeters per year (mm/yr) (range, 4.9–12.1 mm/yr) to offset relative sea-level rise and keep total river water nitrate (NO3-) loading into Maurepas Swamp to about 11.25 grams (g) of nitrogen (N) per square meter per year (m-2 yr-1 ) (range, 7.1–15.4 g N m-2 yr-1) to promote near complete uptake of NO3- by the vegetation in the receiving wetlands and reduce impacts to water quality in adjacent and connected water ways (for example, Blind River) and Lake Maurepas. With these performance measures maintained over time, we further expect swamp forest stands to realize improvements in stand density index of as much as 30–45 percent of maximum values for the stand type while maintaining an overstory leaf area index of 2.0–2.9 square meters per square meter or higher as swamp forests recover from decades of low flow, saltwater intrusion, reduced nutrients, and surface elevation deficits associated with isolation from the Mississippi River.Associated with these performance measures are two major uncertainties: (1) an assumption that we can rely on existing data, literature, and modeling from coastal swamp forests to establish these performance measures and (2) an unknown time frame for evaluating these performance measures. Some performance measures can be assessed quickly, such as those associated with hydrology and nutrient uptake. Some performance measures, such as changes in soil surface elevation and forest structural integrity, could take longer to assess. Once performance measures are assessed across different time scales, however, adjustments to operations of the Mississippi River reintroduction into Maurepas Swamp can be swift. The proposed performance measures are ideal targets, mostly without specific consideration of practical, operational constraints. The measures are intended to be the basis by which adaptive management of the diversion structures can be evaluated. The measures are defined without regard to current conditions so that project success can be evaluated on net outcomes rather than specific change from existing conditions. We expect that the Mississippi River reintroduction into Maurepas Swamp will slow degradation and extend the life of the swamp for decades to centuries.