Reconstruction of Canine Mandibular Bone Defects Using a Bone Transport Reconstruction Plate
Elsalanty, Mohammed E.; Zakhary, Ibrahim; Akeel, Sara; Benson, Byron; Mulone, Timothy; Triplett, Gilbert R.; Opperman, Lynne A.
2010-01-01
Objectives Reconstruction of mandibular segmental bone defects is a challenging task. This study tests a new device used for reconstructing mandibular defects based on the principle of bone transport distraction osteogenesis. Methods Thirteen beagle dogs were divided into control and experimental groups. In all animals, a 3 cm defect was created on one side of the mandible. In eight control animals, the defect was stabilized with a reconstruction plate without further reconstruction and the animals were sacrificed two to three months after surgery. The remaining five animals were reconstructed with a bone transport reconstruction plate (BTRP), comprising a reconstruction plate with attached intraoral transport unit, and were sacrificed after one month of consolidation. Results Clinical evaluation, cone-beam CT densitometry, three-dimensional histomorphometry, and docking site histology revealed significant new bone formation within the defect in the distracted group. Conclusion The physical dimensions and architectural parameters of the new bone were comparable to the contralateral normal bone. Bone union at the docking site remains a problem. PMID:19770704
De Stavola, Luca; Fincato, Andrea; Albiero, Alberto Maria
2015-01-01
During autogenous mandibular bone harvesting, there is a risk of damage to anatomical structures, as the surgeon has no three-dimensional control of the osteotomy planes. The aim of this proof-of-principle case report is to describe a procedure for harvesting a mandibular bone block that applies a computer-guided surgery concept. A partially dentate patient who presented with two vertical defects (one in the maxilla and one in the mandible) was selected for an autogenous mandibular bone block graft. The bone block was planned using a computer-aided design process, with ideal bone osteotomy planes defined beforehand to prevent damage to anatomical structures (nerves, dental roots, etc) and to generate a surgical guide, which defined the working directions in three dimensions for the bone-cutting instrument. Bone block dimensions were planned so that both defects could be repaired. The projected bone block was 37.5 mm in length, 10 mm in height, and 5.7 mm in thickness, and it was grafted in two vertical bone augmentations: an 8 × 21-mm mandibular defect and a 6.5 × 18-mm defect in the maxilla. Supraimposition of the preoperative and postoperative computed tomographic images revealed a procedure accuracy of 0.25 mm. This computer-guided bone harvesting technique enables clinicians to obtain sufficient autogenous bone to manage multiple defects safely.
Wang, Dong; Yang, Zhuang-qun; Hu, Xiao-yi
2007-08-01
To analyze the stress and displacement distribution of 3D-FE models in three conjunctive methods of vascularized iliac bone graft for established mandibular body defects. Using computer image process technique, a series of spiral CT images were put into Ansys preprocess programe to establish three 3D-FE models of different conjunctions. The three 3D-FE models of established mandibular body defects by vascularized iliac bone graft were built up. The distribution of Von Mises stress and displacement around mandibular segment, grafted ilium, plates and screws was obtained. It may be determined successfully that the optimal conjunctive shape be the on-lay conjunction.
Carlisle, Patricia L; Guda, Teja; Silliman, David T; Lien, Wen; Hale, Robert G; Brown Baer, Pamela R
2016-02-01
To validate a critical-size mandibular bone defect model in miniature pigs. Bilateral notch defects were produced in the mandible of dentally mature miniature pigs. The right mandibular defect remained untreated while the left defect received an autograft. Bone healing was evaluated by computed tomography (CT) at 4 and 16 weeks, and by micro-CT and non-decalcified histology at 16 weeks. In both the untreated and autograft treated groups, mineralized tissue volume was reduced significantly at 4 weeks post-surgery, but was comparable to the pre-surgery levels after 16 weeks. After 16 weeks, CT analysis indicated that significantly greater bone was regenerated in the autograft treated defect than in the untreated defect (P=0.013). Regardless of the treatment, the cortical bone was superior to the defect remodeled over 16 weeks to compensate for the notch defect. The presence of considerable bone healing in both treated and untreated groups suggests that this model is inadequate as a critical-size defect. Despite healing and adaptation, the original bone geometry and quality of the pre-injured mandible was not obtained. On the other hand, this model is justified for evaluating accelerated healing and mitigating the bone remodeling response, which are both important considerations for dental implant restorations.
Wang, Xing; Xing, Helin; Zhang, Guilan; Wu, Xia; Zou, Xuan; Feng, Lin; Wang, Dongsheng; Li, Meng; Zhao, Jing; Du, Jianwei; Lv, Yan; E, Lingling; Liu, Hongchen
2016-01-01
Periodontal bone defects occur in a wide variety of clinical situations. Adult stem cell- and biomaterial-based bone tissue regeneration are a promising alternative to natural bone grafts. Recent evidence has demonstrated that two populations of adult bone marrow mesenchymal stromal cells (BMSCs) can be distinguished based on their embryonic origins. These BMSCs are not interchangeable, as bones preferentially heal using cells that share the same embryonic origin. However, the feasibility of tissue engineering using human craniofacial BMSCs was unclear. The goal of this study was to explore human craniofacial BMSC-based therapy for the treatment of localized mandibular defects using a standardized, minimally invasive procedure. The BMSCs' identity was confirmed. Scanning electron microscopy, a cell proliferation assay, and supernatant detection indicated that the nHAC/PLA provided a suitable environment for aBMSCs. Real-time PCR and electrochemiluminescence immunoassays demonstrated that osteogenic markers were upregulated by osteogenic preinduction. Moreover, in a rabbit critical-size mandibular bone defect model, total bone formation in the nHAC/PLA + aBMSCs group was significantly higher than in the nHAC/PLA group but significantly lower than in the nHAC/PLA + preinduced aBMSCs. These findings demonstrate that this engineered bone is a valid alternative for the correction of mandibular bone defects. PMID:27118977
Reconstruction of mandibular defects with autogenous bone grafts: a review of 30 cases.
Sajid, Malik Ali Hassan; Warraich, Riaz Ahmed; Abid, Hina; Ehsan-ul-Haq, Muhammad; Shah, Khurram Latif; Khan, Zafar
2011-01-01
Multitudes of options are available for reconstruction of functional and cosmetic defects of the mandible, caused by various ailments. At the present time, autogenous bone grafting is the gold standard by which all other techniques of reconstruction of the mandible can be judged. The purpose of this study was to evaluate the outcome of different osseous reconstruction options using autogenous bone grafts for mandibular reconstruction. This Interventional study was conducted at Department of Oral and Maxillofacial Surgery, King Edward Medical University/Mayo Hospital Lahore, from January 2008 to July 2009 including one year follow-up. The study was carried out on thirty patients having bony mandibular defects. They were reconstructed with the autogenous bone grafts from different graft donor sites. On post-operative visits they were evaluated for outcome variables. Success rate of autogenous bone grafts in this study was 90%. Only 10% of the cases showed poor results regarding infection, resorption and graft failure. Autogenous bone grafts, non-vascularised or vascularised, are a reliable treatment modality for the reconstruction of the bony mandibular defects with predictable functional and aesthetic outcome.
Xie, Yilin; Su, Yingying; Tang, Jianxia; Goh, Bee Tin; Saigo, Leonardo; Zhang, Chunmei; Wang, Jinsong; Khojasteh, Arash; Wang, Songlin
2017-01-01
Antibody-mediated osseous regeneration (AMOR) has been introduced by our research group as a tissue engineering approach to capture of endogenous growth factors through the application of specific monoclonal antibodies (mAbs) immobilized on a scaffold. Specifically, anti-Bone Morphogenetic Protein- (BMP-) 2 mAbs have been demonstrated to be efficacious in mediating bone repair in a number of bone defects. The present study sought to investigate the application of AMOR for repair of mandibular continuity defect in nonhuman primates. Critical-sized mandibular continuity defects were created in Macaca fascicularis locally implanted with absorbable collagen sponges (ACS) functionalized with chimeric anti-BMP-2 mAb or isotype control mAb. 2D and 3D analysis of cone beam computed tomography (CBCT) imaging demonstrated increased bone density and volume observed within mandibular continuity defects implanted with collagen scaffolds functionalized with anti-BMP-2 mAb, compared with isotype-matched control mAb. Both CBCT imaging and histologic examination demonstrated de novo bone formation that was in direct apposition to the margins of the resected bone. It is hypothesized that bone injury may be necessary for AMOR. This is evidenced by de novo bone formation adjacent to resected bone margins, which may be the source of endogenous BMPs captured by anti-BMP-2 mAb, in turn mediating bone repair. PMID:28401163
Prototyped grafting plate for reconstruction of mandibular defects.
Zhou, Libin; Wang, Peilin; Han, Haolun; Li, Baowei; Wang, Hongnan; Wang, Gang; Zhao, Jinlong; Liu, Yanpu; Wu, Wei
2014-12-01
To esthetically and functionally restore a 40-mm canine mandibular discontinuity defect using a custom-made titanium bone-grafting plate in combination with autologous iliac bone grafts. Individualized titanium bone-grafting plates were manufactured using a series of techniques, including reverse engineering, computer aided design, rapid prototyping and titanium casting. A 40-mm discontinuous defect in the right mandibular body was created in 9 hybrid dogs. The defect was restored immediately using the customized plate in combination with autologous cancellous iliac blocks. Sequential radionuclide bone imaging was performed to evaluate the bone metabolism and reconstitution of the grafts. The specimens were evaluated by biomechanical testing, 3-dimensional microcomputed tomographic scanning, and histological examination. The results revealed that the symmetry of the mandibles was reconstructed using the customized grafting plate, and the bony continuity of the mandibles was restored. By 12 weeks after the operation, the cancellous iliac grafts became a hard bone block, which was of comparable strength to native mandibles. A fibrous tissue intermediate was found between the remodelled bone graft and the titanium plate. The results indicate that the prototyped grafting plate can be used to restore mandibular discontinuous defects, and satisfactory aesthetical and functional reconstruction can be achieved. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Olesova, V N; Amkhadova, M A; Simakova, T G; Mirgazizov, M Z; Pozharitskaya, M M
2017-03-01
For evaluation of the efficiency of bone substitute, nanostructurized Gamalant-paste-FORTEPlus was placed into a mandibular defect in rats. Bone tissue reparation was evaluated after 30 days by histological methods under a microscope. Use of bone substitute in experimental mandibular defect ensured more complete and rapid restructuring of the bone tissue in comparison with the control (natural healing).
Repair of a mandibular defect with a free vascularized coccygeal vertebra transfer in a dog.
Yeh, L S; Hou, S M
1994-01-01
Bilateral mandibular defects in a male mongrel dog were repaired. On the left side, a free vascularized coccygeal bone graft that included the median caudal artery and caudal vein was used to correct the defect. On the right side, the defect was bridged with a bone plate and screws. For further immobilization, the muzzle was temporarily taped for 3 weeks and a pharyngostomy tube was used for nutritional support. The dog was able to eat dry commercial food satisfactorily within 2 months of surgery despite mild malocclusion. Radiographs taken 2 months and 18 months postoperatively showed bony union with graft hypertrophy in the left mandible, whereas the right mandibular defect showed protracted nonunion. The results indicate that vascularized coccygeal vertebra transfer provides an alternative for the management of canine mandibular defects.
Liu, Hongrui; Cui, Jian; Feng, Wei; Lv, Shengyu; Du, Juan; Sun, Jing; Han, Xiuchun; Wang, Zhenming; Lu, Xiong; Yimin; Oda, Kimimitsu; Amizuka, Norio; Li, Minqi
2015-04-01
The aim of this study was to investigate the influence of calcitriol on osteoinduction following local administration into mandibular bone defects. Calcitriol-loaded absorbable collagen membrane scaffolds were prepared using the polydopamine coating method and characterized by scanning electron microscopy. Composite scaffolds were implanted into rat mandibular bone defects in the following groups: no graft material (control), bare collagen membrane (CM group), collagen membrane bearing polydopamine coating (DOP/CM group), and collagen membrane bearing polydopamine coating absorbed with calcitriol (CAL/DOP/CM group). At 1, 2, 4 and 8weeks post-surgery, the osteogenic potential of calcitriol was examined by histological and immunohistochemical methods. Following in vivo implantation, calcitriol-loaded composite scaffolds underwent rapid degradation with pronounced replacement by new bone and induced reunion of the bone marrow cavity. Calcitriol showed strong potential in inhibiting osteoclastogenesis and promotion of osteogenic differentiation at weeks 1, and 2. Furthermore, statistical analysis revealed that the newly formed bone volume in the CAL/DOP/CM group was significantly higher than other groups at weeks 1, and 2. At weeks 4, and 8, the CAL/DOP/CM group showed more mineralized bone and uniform collagen structure. These data suggest that local administration of calcitriol is promising in promoting osteogenesis and mineralization for restoration of mandibular bone defects. Copyright © 2014 Elsevier B.V. All rights reserved.
Magnesium-enriched hydroxyapatite as bone filler in an ameloblastoma mandibular defect
Grigolato, Roberto; Pizzi, Natalia; Brotto, Maria C; Corrocher, Giovanni; Desando, Giovanna; Grigolo, Brunella
2015-01-01
The aim of this study was to evaluate the clinical performance of a magnesium-enriched hydroxyapatite biomaterial used as bone substitute in a case of mandibular ameloblastoma treated with conservative surgery. A 63 year old male patient was treated for an ameloblastoma in the anterior mandibular profile. After tissue excision, the bone defect was filled with a synthetic hydroxyapatite biomaterial enriched with magnesium ions, in order to promote bone tissue regeneration and obtain a good aesthetic result. Twenty-five months after surgery, due to ameloblastoma recurrence in an area adjacent to the previously treated one, the patient underwent to a further surgery. In that occasion the surgeon performed a biopsy in the initially treated area, in order to investigate the nature of the newly-formed tissue and to evaluate the bone regenerative potential of this biomaterial by clinical, radiographic and histological analyses. The clinical, radiographic and histological evaluations showed various characteristics of bone remodeling stage with an ongoing osteogenic formation and a good osteo-integration. In conclusion, magnesium-enriched hydroxyapatite used as bone substitute in a mandibular defect due to ameloblastoma excision showed an effective bone regeneration at 25 months follow-up, demonstrating an excellent biocompatibility and a high osteo-integration property. PMID:25784998
Kim, Sung-Jin; Kim, Jin-Wook; Choi, Tae-Hyun; Lee, Kee-Joon
2015-04-01
An impacted mandibular first molar tends to cause serious bone defects of the adjacent teeth. When choosing between the 2 typical treatment options-extraction or orthodontic relocation of the impacted tooth-the decision should be based on assessment of the prognosis. A 22-year-old man with severe mesioangulation and impaction of the mandibular first molar and a related vertical bone defect on the distal side of the second premolar was treated with extraction of the second molar and orthodontic relocation of the first molar with a retromolar miniscrew. Comprehensive orthodontic treatment involving premolar extraction was conducted. Strategic extraction of the molar and adequate orthodontic movement helped to restore the bone structure on the affected side. This case report suggests the effectiveness of restoration of bone defects by using viable periodontal tissues around the impacted tooth for the longevity of the periodontium. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Kawai, Tadashi; Suzuki, Osamu; Matsui, Keiko; Tanuma, Yuji; Takahashi, Tetsu; Kamakura, Shinji
2017-05-01
Recently it was reported that the implantation of octacalcium phosphate (OCP) and collagen composite (OCP-collagen) was effective at promoting bone healing in small bone defects after cystectomy in humans. In addition, OCP-collagen promoted bone regeneration in a critical-sized bone defect of a rodent or canine model. In this study, OCP-collagen was implanted into a human mandibular bone defect with a longer axis of approximately 40 mm, which was diagnosed as a residual cyst with apical periodontitis. The amount of OCP-collagen implanted was about five times greater than the amounts implanted in previous clinical cases. Postoperative wound healing was satisfactory and no infection or allergic reactions occurred. The OCP-collagen-treated lesion was gradually filled with radio-opaque figures, and the alveolar region occupied the whole of the bone defect 12 months after implantation. This study suggests that OCP-collagen could be a useful bone substitute material for repairing large bone defects in humans that might not heal spontaneously. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Apatite-coated Silk Fibroin Scaffolds to Healing Mandibular Border Defects in Canines
Zhao, Jun; Zhang, Zhiyuan; Wang, Shaoyi; Sun, Xiaojuan; Zhang, Xiuli; Chen, Jake; Kaplan, David L.; Jiang, Xinquan
2010-01-01
Tissue engineering has become a new approach for repairing bony defects. Highly porous osteoconductive scaffolds perform the important role for the success of bone regeneration. By biomimetic strategy, apatite-coated porous biomaterial based on silk fibroin scaffolds (SS) might provide an enhanced osteogenic environment for bone-related outcomes. To assess the effects of apatite-coated silk fibroin (mSS) biomaterials for bone healing as a tissue engineered bony scaffold, we explored a tissue engineered bony graft using mSS seeded with osteogenically induced autologous bone marrow stromal cells (bMSCs) to repair inferior mandibular border defects in a canine model. The results were compared with those treated with bMSCs/SS constructs, mSS alone, SS alone, autologous mandibular grafts and untreated blank defects. According to radiographic and histological examination, new bone formation was observed from 4 weeks post-operation, and the defect site was completely repaired after 12 months for the bMSCs/mSS group. In the bMSCs/SS group, new bone formation was observed with more residual silk scaffold remaining at the center of the defect compared with the bMSCs/mSS group. The engineered bone with bMSCs/mSS achieved satisfactory bone mineral densities (BMD) at 12 months post-operation close to those of normal mandible (p>0.05). The quantities of newly formed bone area for the bMSCs/mSS group was higher than the bMSCs/SS group (p<0.01), but no significant differences were found when compared with the autograft group (p>0.05). In contrast, bony defects remained in the center with undegraded silk fibroin scaffold and fibrous connective tissue, and new bone only formed at the periphery in the groups treated with mSS or SS alone. The results suggested apatite-coated silk fibroin scaffolds combined with bMSCs could be successfully used to repair mandibular critical size border defects and the premineralization of these porous silk fibroin protein scaffolds provided an increased osteoconductive environment for bMSCs to regenerate sufficient new bone tissue. PMID:19505603
The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds.
Ren, Tianbin; Ren, Jie; Jia, Xiaozhen; Pan, Kefeng
2005-09-15
Highly porous scaffolds of poly(lactide-co-glycolide) (PLGA) were prepared by solution-casting/salt-leaching method. The in vitro degradation behavior of PLGA scaffold was investigated by measuring the change of normalized weight, water absorption, pH, and molecular weight during degradation period. Mesenchymal stem cells (MSCs) were seeded and cultured in three-dimensional PLGA scaffolds to fabricate in vitro tissue engineering bone, which was investigated by cell morphology, cell number and deposition of mineralized matrix. The proliferation of seeded MSCs and their differentiated function were demonstrated by experimental results. To compare the reconstructive functions of different groups, mandibular defect repair of rabbit was made with PLGA/MSCs tissue engineering bone, control PLGA scaffold, and blank group without scaffold. Histopathologic methods were used to estimate the reconstructive functions. The result suggests that it is feasible to regenerate bone tissue in vitro using PLGA foams with pore size ranging from 100-250 microm as scaffolding for the transplantation of MSCs, and the PLGA/MSCs tissue engineering bone can greatly promote cell growth and have better healing functions for mandibular defect repair. The defect can be completely recuperated after 3 months with PLGA/MSCs tissue engineering bone, and the contrastive experiments show that the defects could not be repaired with blank PLGA scaffold. PLGA/MSCs tissue engineering bone has great potential as appropriate replacement for successful repair of bone defect. (c) 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2005.
[Imaging analysis of jaw defects reparation with antigen-extracted porcine cancellous bone].
Chen, Xufeng; Lu, Lihong; Feng, Zhiqiang; Yin, Zhongda; Lai, Renfa
2017-12-01
At present, most of the bone xenograft for clinical application comes from bovine. In recent years, many studies have been done on the clinical application of porcine xenograft bone. The goal of this study was to evaluate the effect of canine mandibular defects reparation with antigen-extracted porcine cancellous bone by imaging examination. Four dogs' bilateral mandibular defects were created, with one side repaired with autologous bone (set as control group) while the other side repaired with antigen-extracted porcine cancellous bone (set as experimental group). Titanium plates and titanium screws were used for fixation. Cone beam computed tomography (CBCT), computed tomography (CT), single-photon emission computed tomography (SPECT) were undertaken at week 12 and 24 postoperatively, and SPECT and CT images were fused. The results demonstrated that the remodeling of antigen-extracted porcine cancellous bone was slower than that of autologous bone, but it can still be used as scaffold for jaw defects. The results in this study provide a new choice for materials required for clinical reparation of jaw defects.
Mandibular Repair in Rats with Premineralized Silk Scaffolds and BMP-2-modified bMSCs
Jiang, Xinquan; Zhao, Jun; Wang, Shaoyi; Sun, Xiaojuan; Zhang, Xiuli; Chen, Jake; Kaplan, David L.; Zhang, Zhiyuan
2010-01-01
Premineralized silk fibroin protein scaffolds (mSS) were prepared to combine the osteoconductive properties of biological apatite with aqueous-derived silk scaffold (SS) as a composite scaffold for bone regeneration. The aim of present study was to evaluate the effect of premineralized silk scaffolds combined with bone morphogenetic protein-2 (BMP-2) modified bone marrow stromal cells (bMSCs) to repair mandibular bony defects in a rat model. bMSCs were expanded and transduced with adenovirus AdBMP-2, AdLacZ gene in vitro. These genetically modified bMSCs were then combined with premineralized silk scaffolds to form tissue engineered bone. Mandibular repairs with AdBMP-2 transduced bMSCs/mSS constructs were compared with those treated with AdLacZ transduced bMSCs/mSS constructs, native (nontransduced) bMSCs/mSS constructs and mSS alone. Eight weeks post-operation, the mandibles were explanted and evaluated by radiographic observation, micro-CT, histological analysis and immunohistochemistry. The presence of BMP-2 gene enhanced tissue engineered bone in terms of the most new bone formed and the highest local bone mineral densities (BMD) found. These results demonstrated that premineralized silk scaffold could serve as a potential substrate for bMSCs to construct tissue engineered bone for mandibular bony defects. BMP-2 gene therapy and tissue engineering techniques could be used in mandibular repair and bone regeneration. PMID:19501905
Oteri, Giacomo; Ponte, Francesco Saverio De; Pisano, Michele; Cicciù, Marco
2012-01-01
This case report presents a combination of surgical and prosthetic solutions applied to a case of oral implant rehabilitation in post-oncologic reconstructed mandible. Bone resection due to surgical treatment of large mandibular neoplasm can cause long-span defects. Currently, mandibular fibula free flap graft is widely considered as a reliable technique for restoring this kind of defect. It restores the continuity of removed segment and re-establishes the contour of the lower jaw. However, the limited height of grafted fibula does not allow the insertion of regular length implants, therefore favouring vertical distraction osteogenesis as an important treatment choice. This report presents a patient affected by extensive mandibular ameloblastoma who underwent surgical reconstruction by fibula free flap because of partial mandibular resection. Guided distraction osteoneogenesis technique was applied to grafted bone, in order to obtain adequate bone height and to realize a prosthetically guided placement of 8 fixtures. After osseointegration, the patient was rehabilitated with a full arch, screw-retained prosthetic restoration. At five-years follow up, excellent integration of grafted tissue, steady levels of bone around the fixtures and healthy peri-implant tissues were reported. PMID:22623943
Behnia, Ali; Haghighat, Abbas; Talebi, Ardeshir; Nourbakhsh, Nosrat; Heidari, Fariba
2014-01-01
AIM: To investigate the effect of stem cells from human exfoliated deciduous teeth (SHED) transplanted for bone regeneration in the dog mandibular defect. METHODS: In this prospective comparative study, SHEDs had been isolated 5 years ago from human exfoliated deciduous teeth. The undifferentiated stem cells were seeded into mandibular bone through-and-through defects of 4 dogs. Similar defects in control group were filled with cell-free collagen scaffold. After 12 wk, biopsies were taken and morphometric analysis was performed. The percentage of new bone formation and foreign body reaction were measured in each case. The data were subject to statistical analysis using the Mann-Whitney U and Kruskalwalis statistical tests. Differences at P < 0.05 was considered as significant level. RESULTS: There were no significant differences between control and SHED-seeded groups in connective tissue (P = 0.248), woven bone (P = 0.248) and compact bone (P = 0.082). There were not any side effects in transplanted SHED group such as teratoma or malignancy and abnormalities in this period. CONCLUSION: SHEDs which had been isolated and characterized 5 years ago and stored with cryopreservation banking were capable of proliferation and osteogenesis after 5 years, and no immune response was observed after three months of seeded SHEDs. PMID:25258673
Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration.
Leucht, Philipp; Kim, Jae-Beom; Amasha, Raimy; James, Aaron W; Girod, Sabine; Helms, Jill A
2008-09-01
The fetal skeleton arises from neural crest and from mesoderm. Here, we provide evidence that each lineage contributes a unique stem cell population to the regeneration of injured adult bones. Using Wnt1Cre::Z/EG mice we found that the neural crest-derived mandible heals with neural crest-derived skeletal stem cells, whereas the mesoderm-derived tibia heals with mesoderm-derived stem cells. We tested whether skeletal stem cells from each lineage were functionally interchangeable by grafting mesoderm-derived cells into mandibular defects, and vice versa. All of the grafting scenarios, except one, healed through the direct differentiation of skeletal stem cells into osteoblasts; when mesoderm-derived cells were transplanted into tibial defects they differentiated into osteoblasts but when transplanted into mandibular defects they differentiated into chondrocytes. A mismatch between the Hox gene expression status of the host and donor cells might be responsible for this aberration in bone repair. We found that initially, mandibular skeletal progenitor cells are Hox-negative but that they adopt a Hoxa11-positive profile when transplanted into a tibial defect. Conversely, tibial skeletal progenitor cells are Hox-positive and maintain this Hox status even when transplanted into a Hox-negative mandibular defect. Skeletal progenitor cells from the two lineages also show differences in osteogenic potential and proliferation, which translate into more robust in vivo bone regeneration by neural crest-derived cells. Thus, embryonic origin and Hox gene expression status distinguish neural crest-derived from mesoderm-derived skeletal progenitor cells, and both characteristics influence the process of adult bone regeneration.
Al-Fotawei, Randa; Ayoub, Ashraf F.; Heath, Neil; Naudi, Kurt B.; Tanner, K. Elizabeth; Dalby, Matthew J.; McMahon, Jeremy
2014-01-01
This study presents a comprehensive radiographic evaluation of bone regeneration within a pedicled muscle flap for the reconstruction of critical size mandibular defect. The surgical defect (20 mm×15 mm) was created in the mandible of ten experimental rabbits. The masseter muscle was adapted to fill the surgical defect, a combination of calcium sulphate/hydroxyapatite cement (CERAMENT™ |SPINE SUPPORT), BMP-7 and rabbit mesenchymal stromal cells (rMSCs) was injected inside the muscle tissue. Radiographic assessment was carried out on the day of surgery and at 4, 8, and 12 weeks postoperatively. At 12 weeks, the animals were sacrificed and cone beam computerized tomography (CBCT) scanning and micro-computed tomography (µ-CT) were carried out. Clinically, a clear layer of bone tissue was identified closely adherent to the border of the surgical defect. Sporadic radio-opaque areas within the surgical defect were detected radiographically. In comparison with the opposite non operated control side, the estimated quantitative scoring of the radio-opacity was 46.6% ±15, the mean volume of the radio-opaque areas was 63.4% ±20. Areas of a bone density higher than that of the mandibular bone (+35% ±25%) were detected at the borders of the surgical defect. The micro-CT analysis revealed thinner trabeculae of the regenerated bone with a more condensed trabecular pattern than the surrounding native bone. These findings suggest a rapid deposition rate of the mineralised tissue and an active remodelling process of the newly regenerated bone within the muscle flap. The novel surgical model of this study has potential clinical application; the assessment of bone regeneration using the presented radiolographic protocol is descriptive and comprehensive. The findings of this research confirm the remarkable potential of local muscle flaps as local bioreactors to induce bone formation for reconstruction of maxillofacial bony defects. PMID:25226170
Plakwicz, Paweł; Czochrowska, Ewa Monika; Milczarek, Anna; Zadurska, Malgorzata
2014-01-01
A retained permanent mandibular first molar caused arrested development and a defect of the alveolar bone in a 16-year-old girl. Extraction of the ankylosed tooth was immediately followed by autotransplantation of the developing maxillary third molar. At the 3-year follow-up examination the interproximal bone level at the autotransplanted molar was equal to that of the neighboring teeth. Cone beam computed tomography showed bone at the labial aspect of the transplant. The eruption of the autotransplanted tooth stimulated vertical alveolar bone development and repaired the bone defect. Additionally, there was closure of the posterior open bite that was initially present at the ankylosed molar site.
Digital design of scaffold for mandibular defect repair based on tissue engineering*
Liu, Yun-feng; Zhu, Fu-dong; Dong, Xing-tao; Peng, Wei
2011-01-01
Mandibular defect occurs more frequently in recent years, and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws. Tissue engineering, which is a hot research field of biomedical engineering, provides a new direction for mandibular defect repair. As the basis and key part of tissue engineering, scaffolds have been widely and deeply studied in regards to the basic theory, as well as the principle of biomaterial, structure, design, and fabrication method. However, little research is targeted at tissue regeneration for clinic repair operations. Since mandibular bone has a special structure, rather than uniform and regular structure in existing studies, a methodology based on tissue engineering is proposed for mandibular defect repair in this paper. Key steps regarding scaffold digital design, such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail. By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping, the feasibility and effectiveness of the proposed methodology are properly verified. More works about mechanical and biological improvements need to be done to promote its clinical application in future. PMID:21887853
Digital design of scaffold for mandibular defect repair based on tissue engineering.
Liu, Yun-feng; Zhu, Fu-dong; Dong, Xing-tao; Peng, Wei
2011-09-01
Mandibular defect occurs more frequently in recent years, and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws. Tissue engineering, which is a hot research field of biomedical engineering, provides a new direction for mandibular defect repair. As the basis and key part of tissue engineering, scaffolds have been widely and deeply studied in regards to the basic theory, as well as the principle of biomaterial, structure, design, and fabrication method. However, little research is targeted at tissue regeneration for clinic repair operations. Since mandibular bone has a special structure, rather than uniform and regular structure in existing studies, a methodology based on tissue engineering is proposed for mandibular defect repair in this paper. Key steps regarding scaffold digital design, such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail. By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping, the feasibility and effectiveness of the proposed methodology are properly verified. More works about mechanical and biological improvements need to be done to promote its clinical application in future.
Saberi, Bardia Vadiati; Nemati, Somayeh; Malekzadeh, Meisam; Javanmard, Afrooz
2017-01-01
Assessment of alveolar bone level in periodontitis is very important in determining prognosis and treatment plan. Panoramic radiography is a diagnostic tool used to screen patients. The aim of the present study was to assess the diagnostic value of digital panoramic radiography in angular bony defects with 5 mm or deeper pocket depth in mandibular molars. In this cross-sectional study, ninety angular bony defects in mandibular molars teeth with 5 mm or deeper pocket depth were selected in sixty patients with the diagnosis of chronic periodontitis. Before surgery, bone probing was performed. During the surgery, the vertical distance from cementoenamel junction to the most apical part of bony defect was measured using a Williams probe and this measurements were employed as gold standard. This distance was measured on the panoramic radiographs by a Digital Calliper and Digital Ruler. All data were compare dusing independent samples t -test and Pearson's correlation coefficient. No significant difference was found between the results of bone probing and intra-surgical measurements ( P = 0.377). The mean defect depth determined by Digital Caliper and Digital Ruler on panoramic radiographs was significantly less than surgical measurements ( P < 0.001). The correlation between bone probing and surgical measurements in determining the defect depth was strong ( r = 0.98, P < 0.001). Radiographic measurements made by Digital Ruler ( r = 0.86), comparing to Digital Caliper ( r = 0.79), showed a higher degree of correlation with surgical measurements. Based on this study, bone probing is a reliable method in vertical alveolar bone defect measurements. While the information obtained from digital panoramic radiographs should be used with caution and the ability of digital panoramic radiography in the determination of defect depth is limited.
Atrophic Mandible Fractures: Are Bone Grafts Necessary? An Update.
Castro-Núñez, Jaime; Cunningham, Larry L; Van Sickels, Joseph E
2017-11-01
The management of atrophic mandibular fractures poses a challenge because of anatomic variations and medical comorbidities associated with elderly patients. The purpose of this article is to review and update the literature regarding the management of atrophic mandible fractures using load-bearing reconstruction plates placed without bone grafts. We performed a review of the English-language literature looking for atrophic mandibular fractures with or without continuity defects and reconstruction without bone grafts. Included are 2 new patients from our institution who presented with fractures of their atrophic mandibles and had continuity defects and infections. Both patients underwent reconstruction with a combination of a reconstruction plate, recombinant human bone morphogenetic protein 2, and tricalcium phosphate. This study was approved as an "exempt study" by the Institutional Review Board at the University of Kentucky. This investigation observed the Declaration of Helsinki on medical protocol and ethics. Currently, the standard of care to manage atrophic mandibular fractures with or without a continuity defect is a combination of a reconstruction plate plus autogenous bone graft. However, there is a need for an alternative option for patients with substantial comorbidities. Bone morphogenetic proteins, with or without additional substances, appear to be a choice. In our experience, successful healing occurred in patients with a combination of a reconstruction plate, recombinant human bone morphogenetic protein 2, and tricalcium phosphate. Whereas primary reconstruction of atrophic mandibular fractures with reconstruction plates supplemented with autogenous bone graft is the standard of care, in selected cases in which multiple comorbidities may influence local and/or systemic outcomes, bone morphogenetic proteins and tricalcium phosphate can be used as a predictable alternative to autogenous grafts. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Boudrieau, Randy J
2015-05-01
To document cumulative initial experience and long-term follow-up of the use of rhBMP-2/CRM for reconstruction of large mandibular defects (≥5 cm) in dogs. Retrospective case series. Dogs (n = 5). Medical records (October 1999-April 2011) of dogs that had mandibular reconstruction for defects/resections of ≥5 cm using rhBMP-2/CRM were reviewed. Signalment, preoperative assessment/rationale for mandibular reconstruction, surgical methods, postoperative assessment of the reconstruction (evaluation of occlusion), and complications were recorded. A definitive histologic diagnosis was obtained in dogs that had mandibular resection for mass removal. Long-term complications were determined. A minimum time frame of 2-year in-hospital follow-up was required for case inclusion. Mandibular reconstruction was successfully performed in all dogs' defects where gaps of 5-9 cm were bridged. Surgical reconstruction rapidly restored cosmetic appearance and function. All dogs healed with new bone formation across the gap. New bone formation was present within the defects as early as 2 weeks after surgery based on palpation, and new bone formation bridging the gap was documented radiographically by 16 weeks. Minor complications occurred in all dogs in the early postoperative period, and included early firm swelling and gingival dehiscence in 1 dog; late plate exposure in 3 dogs; and exuberant/cystic bone formation in 2 dogs (related to concentration/formulation of rhBMP-2/CRM). Two dogs had minor long-term complications of late plate exposure and a non-vital canine tooth; the plates and the affected canine tooth were removed. Long-term in-hospital follow-up was 5.3 years (range, 2-12.5 years); further long-term telephone follow-up was 6.3 years (range, 2-12.5 years). All owners were pleased with the outcome and would repeat the surgery again under similar circumstances. The efficacy and success of this mandibular reconstruction technique, using rhBMP-2/CRM with plate fixation, was demonstrated with bridging of large mandibular defects regardless of the underlying cause, and with excellent cosmetic and functional results. Complications were common, but considered minor and easily treated. The complications encountered revealed the importance of tailoring the use of BMPs and fixation methods to this specific anatomic location and indication. © Copyright 2014 by The American College of Veterinary Surgeons.
Talaat, Wael M; Ghoneim, Mohamed M; Salah, Omar; Adly, Osama A
2018-02-23
Stem cell therapy is a revolutionary new way to stimulate mesenchymal tissue regeneration. The platelets concentrate products started with platelet-rich plasma (PRP), followed by platelet-rich fibrin (PRF), whereas concentrated growth factors (CGF) are the latest generation of the platelets concentrate products which were found in 2011. The aim of the present study was to evaluate the potential of combining autologous bone marrow concentrates and CGF for treatment of bone defects resulting from enucleation of mandibular pathologic lesions. Twenty patients (13 males and 7 females) with mandibular benign unilateral lesions were included, and divided into 2 groups. Group I consisted of 10 patients who underwent enucleation of the lesions followed by grafting of the bony defects with autologous bone marrow concentrates and CGF. Group II consisted of 10 patients who underwent enucleation of the lesions without grafting (control). Radiographic examinations were done immediately postoperative, then at 1, 3, 6, and 12 months, to evaluate the reduction in size and changes in bone density at the bony defects. Results indicated a significant increase in bone density with respect to the baseline levels in both groups (P < 0.05). The increase in bone density was significantly higher in group I compared with group II at the 6- and 12-month follow-up examinations (P < 0.05). The percent of reduction in the defects' size was significantly higher in group I compared with group II after 12 months (P = 0.00001). In conclusion, the clinical application of autologous bone marrow concentrates with CGF is a cost effective and safe biotechnology, which accelerates bone regeneration and improves the density of regenerated bone.
Kärcher, Hans; Feichtinger, Matthias
2014-12-01
Bone defects in the maxillofacial region after ablative surgery require reconstructive surgery, usually using microvascular free flaps. This paper presents a new method of reconstructing extensive defects in patients not suitable for microvascular surgery using prefabrication of a vascularised osteomuscular flap from the scapula or iliac crest bone. Three patients who were treated with this new technique are presented. Two patients (one mandibular defect and one defect in the maxillary region) received prefabricated osteomuscular flaps from the iliac crest bone using the latissimus dorsi muscle as a pedicle. One patient also presenting a mandibular defect after tumour surgery received a scapula transplant for reconstruction of the defect using the pectoralis major muscle as pedicle. In all three cases vital bone could be transplanted. The pedicle was strainless in all three cases. Minor bone loss could be seen initially only in one case. The results are stable now and one patient received dental implants for later prosthetic treatment. The presented two-step surgery provides an excellent method for reconstruction of bony defects in the maxillofacial region in patients where microvascular surgery is not possible due to reduced state of health or lack of recipient vessels. Copyright © 2010. Published by Elsevier Ltd.
Ge, Jing; Yang, Chi; Wang, Yong; Zheng, Jiawei; Hua, Hongfei; Zhu, Jun
2018-03-25
The extraction of impacted mandibular 3rd molar is highly related to bone defect distal to the adjacent 2nd molar. The aim of this study was to evaluate the effect of different grafting materials for the treatment of bone defect distal to the mandibular molar in canine model. In 12 beagle dogs, bilateral mandibular 2nd and 3rd molars were extracted and entire mesial bone of the 2nd molar extracted socket was surgically removed. Twenty-four bone defects (4 mm width and 8 mm depth) were randomly assigned to 4 groups, and grafted using 1 of the following protocols: (1) group C: no graft; (2) group Ta: autogenous bone (AB); (3) group Tb: deproteinized bovine bone mineral (DBBM) with a collagen membrane (CM); and (4) group Tab: an equal mixture of AB/DBBM + CM. Quantitative imageology analyses using micro-CT and fluorescence microscopy, as well as qualitative analyses using histological and histomorphometric evaluations, were characterized at postoperative 12 weeks. Significant differences of all variables were tested by multivariate analysis (P < .05). The defect depth was significantly lower in groups Ta, Tb, and Tab (1.70, 1.97, and 1.61 mm, respectively; mean) than in the group C (3.66 mm, P < .01, all). Compared to the sites received DBBM/CM, sites grafted with AB or AB/DBBM exhibited significant greater and faster new bone formation (P < .01). The percentage of DBBM remnants area (%) was significantly higher in group Tb than in group Tab (10.43% and 1.13%, P < .01; mean). Our data suggested grafting AB alone, DBBM/CM, or AB/DBBM/CM resulted in similar periodontal parameters in canine. Furthermore, the AB could accelerate new bone regeneration and mineralization, and promote the biodegradation of DBBM. © 2018 Wiley Periodicals, Inc.
Fan, Jiabing; Park, Hyejin; Lee, Matthew K; Bezouglaia, Olga; Fartash, Armita; Kim, Jinku; Aghaloo, Tara; Lee, Min
2014-08-01
Reconstructing segmental mandiblular defects remains a challenge in the clinic. Tissue engineering strategies provide an alternative option to resolve this problem. The objective of the present study was to determine the effects of adipose-derived stem cells (ASCs) and bone morphogenetic proteins-2 (BMP-2) in three-dimensional (3D) scaffolds on mandibular repair in a small animal model. Noggin expression levels in ASCs were downregulated by a lentiviral short hairpin RNA strategy to enhance ASC osteogenesis (ASCs(Nog-)). Chitosan (CH) and chondroitin sulfate (CS), natural polysaccharides, were fabricated into 3D porous scaffolds, which were further modified with apatite coatings for enhanced cellular responses and efficient delivery of BMP-2. The efficacy of 3D apatite-coated CH/CS scaffolds supplemented with ASCs(Nog-) and BMP-2 were evaluated in a rat critical-sized mandibular defect model. After 8 weeks postimplantation, the scaffolds treated with ASCs(Nog-) and BMP-2 significantly promoted rat mandibular regeneration as demonstrated by micro-computerized tomography, histology, and immunohistochemistry, compared with the groups treated with ASCs(Nog-) or BMP-2 alone. These results suggest that our combinatorial strategy of ASCs(Nog-)+BMP-2 in 3D apatite microenvironments can significantly promote mandibular regeneration, and these may provide a potential tissue engineering approach to repair large bony defects.
Das, Anusuya; Segar, Claire E; Hughley, Brian B; Bowers, Daniel T; Botchwey, Edward A
2013-01-01
Endogenous signals originating at the site of injury are involved in the paracrine recruitment, proliferation, and differentiation of circulating progenitor and diverse inflammatory cell types. Here, we investigate a strategy to exploit endogenous cell recruitment mechanisms to regenerate injured bone by local targeting and activation of sphingosine-1-phosphate (S1P) receptors. A mandibular defect model was selected for evaluating regeneration of bone following trauma or congenital disease. The particular challenges of mandibular reconstruction are inherent in the complex anatomy and function of the bone given that the area is highly vascularized and in close proximity to muscle. Nanofibers composed of poly(DL-lactide-co-glycolide) (PLAGA) and polycaprolactone (PCL) were used to delivery FTY720, a targeted agonist of S1P receptors 1 and 3. In vitro culture of bone progenitor cells on drug loaded constructs significantly enhanced SDF1α mediated chemotaxis of bone marrow mononuclear cells. In vivo results show that local delivery of FTY720 from composite nanofibers enhanced blood vessel ingrowth and increased recruitment of M2 alternatively activated macrophages, leading to significant osseous tissue ingrowth into critical sized defects after 12 weeks of treatment. These results demonstrate that local activation of S1P receptors is a regenerative cue resulting in recruitment of wound healing or anti-inflammatory macrophages and bone healing. Use of such small molecule therapy can provide an alternative to biological factors for the clinical treatment of critical size craniofacial defects. PMID:24064148
Das, Anusuya; Segar, Claire E; Hughley, Brian B; Bowers, Daniel T; Botchwey, Edward A
2013-12-01
Endogenous signals originating at the site of injury are involved in the paracrine recruitment, proliferation, and differentiation of circulating progenitor and diverse inflammatory cell types. Here, we investigate a strategy to exploit endogenous cell recruitment mechanisms to regenerate injured bone by local targeting and activation of sphingosine-1-phosphate (S1P) receptors. A mandibular defect model was selected for evaluating regeneration of bone following trauma or congenital disease. The particular challenges of mandibular reconstruction are inherent in the complex anatomy and function of the bone given that the area is highly vascularized and in close proximity to muscle. Nanofibers composed of poly(DL-lactide-co-glycolide) (PLAGA) and polycaprolactone (PCL) were used to delivery FTY720, a targeted agonist of S1P receptors 1 and 3. In vitro culture of bone progenitor cells on drug-loaded constructs significantly enhanced SDF1α mediated chemotaxis of bone marrow mononuclear cells. In vivo results show that local delivery of FTY720 from composite nanofibers enhanced blood vessel ingrowth and increased recruitment of M2 alternatively activated macrophages, leading to significant osseous tissue ingrowth into critical sized defects after 12 weeks of treatment. These results demonstrate that local activation of S1P receptors is a regenerative cue resulting in recruitment of wound healing or anti-inflammatory macrophages and bone healing. Use of such small molecule therapy can provide an alternative to biological factors for the clinical treatment of critical size craniofacial defects. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhou, Li-bin; Shang, Hong-tao; He, Li-sheng; Bo, Bin; Liu, Gui-cai; Liu, Yan-pu; Zhao, Jin-long
2010-09-01
To improve the reconstructive surgical outcome of a discontinuous mandibular defect, we used reverse engineering (RE), computer-aided design (CAD), and rapid prototyping (RP) technique to fabricate customized mandibular trays to precisely restore the mandibular defects. Autogenous bone grafting was also used to restore the bony continuity for occlusion rehabilitation. Six patients who had undergone block resection of the mandible underwent reconstruction using a custom titanium tray combining autogenous iliac grafts. The custom titanium tray was made using a RE/CAD/RP technique. A virtual 3-dimensional model was obtained by spiral computed tomography scanning. The opposite side of the mandible was mirrored to cover the defect area to restore excellent facial symmetry. A bone grafting tray was designed from the mirrored image and manufactured using RP processing and casting. The mandibular defects were restored using the trays in combination of autologous iliac grafting. An implant denture was made for 1 of the 6 patients at 24 weeks postoperatively for occlusion rehabilitation. The trays fabricated using this technique fit well in all 6 patients. The reconstructive procedures were easy and time saving. Satisfactory facial symmetry was restored. No severe complications occurred in the 5 patients without occlusion rehabilitation during a mean 50-month follow-up period. The reconstruction in the patient with occlusion lasted for only 1 year and failed eventually because of bone resorption and infection. Mandibular reconstruction was facilitated using the RE/CAD/RP technique. Satisfactory esthetic results were achieved. However, the rigidity of the cast tray could cause severe stress shielding to the grafts, which could lead to disuse atrophy. Therefore, some modification is needed for functional reconstruction. Copyright 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Ding, Qian; Zhang, Lei; Geraets, Wil; Wu, Wuqing; Zhou, Yongsheng; Wismeijer, Daniel; Xie, Qiufei
The present study aimed to explore the association between marginal bone loss and type of peri-implant bony defect determined using a new peri-implant bony defect classification system. A total of 110 patients with implant-supported mandibular overdentures were involved. Clinical information was collected, including gender, age, smoking habit, and the overdenture attachment system used. Peri-implant bony defect types and marginal distances (ie, distance between the marginal bone level and the top of the implant shoulder) of all sites were identified on panoramic radiographs by a single experienced observer. The associations between marginal distance and peri-implant bony defect type, gender, age, smoking habit, attachment system, and time after implantation were investigated using marginal generalized linear models and regression analysis. A total of 83 participants were included in the final sample with a total of 224 implants involving 3,124 implant sites. The mean observation time was 10.7 years. All peri-implant bony defect types except Type 5 (slit-like) were significantly related to marginal distance in all models (P < .01). Smoking and time after implantation were significantly related to marginal distance while gender, age, and the overdenture attachment system used were not. The peri-implant bony defect type, determined using the new classification system, is associated with the extent of marginal bone loss.
Hu, Yi-cheng; Liu, Xin; Shen, Ji-jia; He, Jia-cai; Chen, Qiao-er
2014-08-01
To evaluate the effects of bone marrow mesenchymal stem cells (BMSCs) combined with calcium phosphate cement (CPC) scaffold for repair of mandibular defect in Beagle dogs. BMSCs were isolated from Beagle dogs and cultured in DMEM plus 10% FBS. The induction effect was determined using alizarin red staining or alkaline phosphate staining at 14-day of culture. BMSCs were added to the CPC scaffold for animal experiments. In vivo, three critical size bone defects were surgically created in each side of the mandible. The bone defects were repaired with BMSCs-CPC (scaffolds with composite seeding cells), CPC (scaffold alone) or no materials (blank group). Two dogs were sacrificed at 4-week and 8-week after operation. Gross observation, X-ray imaging, histologic and histometric analyses were performed to evaluate the level of bone formation. Newly formed bones were detected within all defect sites after operation. The BMSCs-CPC group and CPC group showed increased bone formation compared with the blank group. The BMSCs-CPC group exhibited more bone formation and degradation of the material than the CPC group. The percentage of new bone in the BMSCs-CPC and CPC treated group were significantly higher than that in the control group (P<0.05), while the percentage of new bone in the BMSCs-CPC sites was higher than that in the CPC sites (P<0.01); the percentage of residual material in the BMSCs-CPC sites was lower than that in the CPC sites (P<0.01) 4 weeks and 8 weeks after operation. Using the theory of tissue engineering, BMSCs composite CPC compound is an effective method in promoting new bone regeneration, which has a positive influence on the bone space preservation.
Mandibular aneurysmal bone cyst in an elderly patient: Case report.
Rațiu, Cristian; Ilea, Aranka; Gal, Florin A; Ruxanda, Flavia; Boşca, Bianca A; Miclăuș, Viorel
2018-06-01
The article aims to highlight the challenge of establishing the presumptive aetiological diagnosis when unilocular or multilocular radiolucencies are identified in an elderly patient's jawbones. A mandibular cyst-like lesion was identified in a 73-year-old patient. The therapeutic decision was cyst enucleation and grafting of the bone defect. The initial presumptive diagnosis was invalidated by the histopathological examination that revealed the features characteristic for the aneurysmal bone cyst. Aneurysmal bone cyst in an elderly patient is a rare condition. © 2018 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
Periodontal Therapy in Dogs Using Bone Augmentation Products Marketed for Veterinary Use.
Angel, Molly
Periodontal disease is extremely common in companion animal practice. Patients presenting for a routine oral examination and prophylaxis may be found to have extensive periodontal disease and attachment loss. Vertical bone loss is a known sequela to periodontal disease and commonly involves the distal root of the mandibular first molar. This case report outlines two dogs presenting for oral examination and prophylaxis with general anesthesia. Both patients did not have any clinical symptoms of periodontal disease other than halitosis. Both patients were diagnosed with three-walled vertical bone loss defects of one or both mandibular first molars utilizing dental radiography as well as periodontal probing, measuring, and direct visual inspection. These defects were consistent with periodontal disease index stage 4 (>50% attachment loss). The lesions were treated with appropriate root planing and debridement. Bone augmentation products readily available and marketed for veterinary use were then utilized to fill the defects to promote both the re-establishment of normal alveolar bone height and periodontal ligament reattachment to the treated surface. Follow-up assessment and owner dedication is critical to treatment outcome. Both patients' 6 mo follow-up examinations radiographically indicated bone repair and replacement with visible periodontal ligament space.
Rare, simultaneous, multiple, and recurrent mandibular bone cysts.
Mupparapu, Muralidhar; Milles, Maano; Singer, Steven R; Rinaggio, Joseph
2008-04-01
Simple bone cysts, also referred to as traumatic bone cysts, are benign connective tissue-lined cavities occurring most commonly in young people. Most of the time, they occur as solitary radiolucencies. In the jaws, they also have been reported to occur concurrently with benign fibro-osseous lesions. The radiographic appearance of simple bone cysts could be confused with other jaw cysts and benign tumors. This case report presents a patient who had 3 separate lesions simultaneously within the mandible. The right mandibular lesion presented as a multilocular radiolucency. The 2 left mandibular lesions were periapical, with mixed radiodensities and radiographically mimicked lesions of focal or periapical cemento-osseous dysplasia. More aggressive benign lesions of the jaw were initially included in the differential diagnosis, as well. A biopsy revealed the diagnosis of simple bone cysts in all 3 locations. Minimal surgical management resulted in complete recovery of these osseous defects only to recur in 2 years on the mandibular left premolar-molar region. A new biopsy confirmed that the lesion was a recurrent simple bone cyst. Simultaneous presence of benign cemento-osseous dysplasia was also considered, as it is known to coexist with the simple bone cysts.
Mandibular reconstruction in the radiated patient: the role of osteocutaneous free tissue transfers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, M.J.; Manktelow, R.T.; Zuker, R.M.
1985-12-01
This paper discusses our experience with the second metatarsal and iliac crest osteocutaneous transfers for mandibular reconstruction. The prime indication for this type of reconstruction was for anterior mandibular defects when the patient had been previously resected. Midbody to midbody defects were reconstructed with the metatarsal and larger defects with the iliac crest. In most cases, an osteotomy was done to create a mental angle. The evaluation of speech, oral continence, and swallowing revealed good results in all patients unless lip or tongue resection compromised function. Facial contour was excellent in metatarsal reconstructions. The iliac crest cutaneous flap provided amore » generous supply of skin for both intraoral reconstruction and external skin coverage but tended to be bulky, particularly when used in the submental area. Thirty three of 36 flaps survived completely. Flap losses were due to anastomosis thrombosis (1), pedicle compression (1), and pedicle destruction during exploration for suspected carotid blowout (1). Ninety three percent of bone junctions developed a solid bony union despite the mandible having had a full therapeutic dose of preoperative radiation. Despite wound infections in 8 patients, and intraoral dehiscence with bone exposure in 12 patients, all but one of these transfers went on to good bony union without infection in the bone graft.« less
Lee, Z-Hye; Avraham, Tomer; Monaco, Casian; Patel, Ashish A; Hirsch, David L; Levine, Jamie P
2018-05-01
Mandibular defects involving the condyle represent a complex reconstructive challenge for restoring proper function of the temporomandibular joint (TMJ) because it requires precise bone graft alignment for full restoration of joint function. The use of computer-aided design and manufacturing (CAD/CAM) technology can aid in accurate reconstruction of mandibular condyle defects with a vascularized free fibula flap without the need for additional adjuncts. The purpose of this study was to analyze clinical and functional outcomes after reconstruction of mandibular condyle defects using only a free fibula graft with the help of virtual surgery techniques. A retrospective review was performed to identify all patients who underwent mandibular reconstruction with only a free fibula flap without any TMJ adjuncts after a total condylectomy. Three-dimensional modeling software was used to plan and execute reconstruction for all patients. From 2009 through 2014, 14 patients underwent reconstruction of mandibular defects involving the condyle with the aid of virtual surgery technology. The average age was 38.7 years (range, 11 to 77 yr). The average follow-up period was 2.6 years (range, 0.8 to 4.2 yr). Flap survival was 100% (N = 14). All patients reported improved facial symmetry, adequate jaw opening, and normal dental occlusion. In addition, they achieved good functional outcomes, including normal intelligible speech and the tolerance of a regular diet with solid foods. Maximal interincisal opening range for all patients was 25 to 38 mm with no lateral deviation or subjective joint pain. No patient had progressive joint hypomobility or condylar migration. One patient had ankylosis, which required release. TMJ reconstruction poses considerable challenges in bone graft alignment for full restoration of joint function. The use of CAD/CAM technology can aid in accurate reconstruction of mandibular condyle defects with a vascularized free fibula flap through precise planning and intraoperative manipulation with optimal functional outcomes. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Lafzi, Ardeshir; Shirmohammadi, Adileh; Faramarzi, Masoumeh; Jabali, Sahar; Shayan, Arman
2013-01-01
Background and aims Plasma rich in growth factors (PRGF) is a concentrated suspension of growth factors, which is used to promote periodontal tissue regeneration. The aim of this randomized, controlled, clinical trial was to evaluate of the treatment of grade II mandibular molar furcation involvement using autogenous bone graft with and without PRGF. Materials and methods In this double-blind clinical trial, thirty mandibular molars with grade II furcation involvement in 30 patients were selected. The test group received bone graft combined with PRGF, while the control group was treated with bone graft only. Clinical parameters included clinical probing depth (CPD), vertical clinical attachment level (V-CAL), horizontal clinical attachment level (H-CAL), location of gingival margin (LGM), surgically exposed horizontal probing depth of bony defect (E-HPD), vertical depth of bone crest (V-DBC), vertical depth of the base of bony defect (V-DBD), and length of the intrabony defect (LID). After six months, a re-entry surgery was performed. Data were analyzed by SPSS 14, using Kolmogorov, Mann-Whitney U, and paired t-test. Results After 6 months, both treatment methods led to significant improvement in V-CAL and H-CAL and significant decreases in CPD, E-HPD, V-DBD and LID; there was no significant difference in LGM and V-DBC in any of the treated groups compared to the baseline values. Also, none of the parameters showed significant differences between the study groups. Conclusion Although autogenous bone grafts, with or without PRGF, were successful in treating grade II furcation involvement, no differences between the study groups were observed. PMID:23486928
Biodegradable Bone Repair Materials: Synthetic Polymers and Ceramics,
1985-01-01
Beasley used PLA sutures (O.35mm In diameter) for fixation of mandibular symphyseal fractures In Hacaca mulatta 17 (rhesus) monkeys. Cutright and his...proteolipid to 50:50 poly (DL-lactide-co-glycolide) for treatment of mandibular discontinuity defects in adult dogs .3 5 Radiographic and clinical evidence...Porous TCP has been ap- *Q plied in block form with some success in mandibular discontinui- 67 ties in dogs . The bloresorption of porous TCP Is assumed to
Shanti, Rabie M; Yampolsky, Andrew; Milles, Maano; Braidy, Hani
2015-11-01
The present report describes 2 patients who underwent mandibular reconstruction after segmental mandibulectomy for benign pathology. The potential of an ultrasonic-aided biodegradable system for containment of a nonvascularized bone graft is discussed. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Pathologic mandibular fracture after biting crab shells following ramal bone graft.
Kwon, Ik Jae; Lee, Byung Ho; Eo, Mi Young; Kim, Soung Min; Lee, Jong Ho; Lee, Suk Keun
2016-10-01
The mandibular ramus is considered an appropriate choice for reconstruction of maxillofacial defects because of sufficient amounts of material and fewer donor site complications. Although bone harvesting from the mandibular ramus has many advantages, in rare cases it can result in pathologic fracture of the mandible. Here, we present a case of 59-year-old man who suffered a pathologic mandible fracture related to biting hard foods, such as crab shells, after a sinus bone lifting with ramal bone graft procedure performed 2 weeks prior. He underwent closed reduction by intermaxillary fixation with an arch bar over the course of 4 weeks. Three months later, the patients had a stable occlusion with normal mouth opening and sensation. To prevent this complication, the osteotomy should be performed in such a way that it is not too vertical during ramal bone harvesting. Furthermore, we wish to emphasize the importance of patients being instructed to avoid chewing hard foods for at least 4 weeks after ramal bone harvesting. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Radionuclide bone imaging in the evaluation of osseous allograft systems. Scientific report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, J.F.; Cagle, J.D.; Stevenson, J.S.
1975-02-01
Evaluation of the progress of osteogenic activity in mandibular bone grafts in dogs by a noninvasive, nondestructive radionuclide method is feasible. The method provides a meaningful sequential interpretation of osseous repair more sensitive than conventional radiography. It is presumed that accumulating hydroxyapatite is being labelled by the imaging agent technetium diphosphonate. The osseous allograft systems studied were comparable to or exceeded autografts in their repair activity in mandibular discontinuity defects as judged by radionuclide imaging. A lyophilized mandibular allograft segment augmented with autologous cancellous marrow was more active than autograft controls at 3 and 6 weeks and was the mostmore » active system studied. Allograft segments augmented with lyophilized crushed cortical allogeneic bone particles were equal to controls at 3 weeks and more active than controls at 6 weeks. Lyophilized crushed cortical allogeneic bone particles retained in a Millipore filter while not clinically stable at 6 weeks did show osteogenic activity equal to control autografts at this interval. (GRA)« less
Liu, Yun-feng; Xu, Liang-wei; Zhu, Hui-yong; Liu, Sean Shih-Yao
2014-05-23
The occurrence of mandibular defects caused by tumors has been continuously increasing in China in recent years. Conversely, results of the repair of mandibular defects affect the recovery of oral function and patient appearance, and the requirements for accuracy and high surgical quality must be more stringent. Digital techniques--including model reconstruction based on medical images, computer-aided design, and additive manufacturing--have been widely used in modern medicine to improve the accuracy and quality of diagnosis and surgery. However, some special software platforms and services from international companies are not always available for most of researchers and surgeons because they are expensive and time-consuming. Here, a new technical solution for guided surgery for the repair of mandibular defects is proposed, based on general popular tools in medical image processing, 3D (3 dimension) model reconstruction, digital design, and fabrication via 3D printing. First, CT (computerized tomography) images are processed to reconstruct the 3D model of the mandible and fibular bone. The defect area is then replaced by healthy contralateral bone to create the repair model. With the repair model as reference, the graft shape and cutline are designed on fibular bone, as is the guide for cutting and shaping. The physical model, fabricated via 3D printing, including surgical guide, the original model, and the repair model, can be used to preform a titanium locking plate, as well as to design and verify the surgical plan and guide. In clinics, surgeons can operate with the help of the surgical guide and preformed plate to realize the predesigned surgical plan. With sufficient communication between engineers and surgeons, an optimal surgical plan can be designed via some common software platforms but needs to be translated to the clinic. Based on customized models and tools, including three surgical guides, preformed titanium plate for fixation, and physical models of the mandible, grafts for defect repair can be cut from fibular bone, shaped with high accuracy during surgery, and fixed with a well-fitting preformed locking plate, so that the predesigned plan can be performed in the clinic and the oral function and appearance of the patient are recovered. This method requires 20% less operating time compared with conventional surgery, and the advantages in cost and convenience are significant compared with those of existing commercial services in China. This comparison between two groups of cases illustrates that, with the proposed method, the accuracy of mandibular defect repair surgery is increased significantly and is less time-consuming, and patients are satisfied with both the recovery of oral function and their appearance. Until now, more than 15 cases have been treated with the proposed methods, so their feasibility and validity have been verified.
Lohse, N; Moser, N; Backhaus, S; Annen, T; Epple, M; Schliephake, H
2015-12-28
The aim of the present study was to test the hypothesis that different amounts of vascular endothelial growth factor and bone morphogenic protein differentially affect bone formation when applied for repair of non-healing defects in the rat mandible. Porous composite PDLLA/CaCO3 carriers were fabricated as slow release carriers and loaded with rhBMP2 and rhVEGF165 in 10 different dosage combinations using gas foaming with supercritical carbon dioxide. They were implanted in non-healing defects of the mandibles of 132 adult Wistar rats with additional lateral augmentation. Bone formation was assessed both radiographically (bone volume) and by histomorphometry (bone density). The use of carriers with a ratio of delivery of VEGF/BMP between 0.7 and 1.2 was significantly related to the occurrence of significant increases in radiographic bone volume and/or histologic bone density compared to the use of carriers with a ratio of delivery of ≤ 0.5 when all intervals and all outcome parameters were considered. Moreover, simultaneous delivery at this ratio helped to "save" rhBMP2 as both bone volume and bone density after 13 weeks were reached/surpassed using half the dosage required for rhBMP2 alone. It is concluded, that the combined delivery of rhVEGF165 and rhBMP2 for repair of critical size mandibular defects can significantly enhance volume and density of bone formation over delivery of rhBMP2 alone. It appears from the present results that continuous simultaneous delivery of rhVEGF165 and rhBMP2 at a ratio of approximately 1 is favourable for the enhancement of bone formation. Copyright © 2015. Published by Elsevier B.V.
Sverzut, Cássio Edvard; Lucas, Marina Amaral; Sverzut, Alexander Tadeu; Trivellato, Alexandre Elias; Beloti, Marcio Mateus; Rosa, Adalberto Luiz; de Oliveira, Paulo Tambasco
2008-01-01
The objective of this study was to evaluate the bone repair along a mandibular body osteotomy after using a 2.0 miniplate system. Nine adult mongrel dogs were subjected to unilateral continuous defect through an osteotomy between the mandibular 3rd and 4th premolars. Two four-hole miniplates were placed in accordance with the Arbeitgeimeinschaft für Osteosynthesefragen Manual. Miniplates adapted to the alveolar processes were fixed monocortically with 6.0-mm-length titanium alloy self-tapping screws, whereas miniplates placed near the mandible bases were fixed bicortically. At 2, 6 and 12 weeks, three dogs were sacrificed per period, and the osteotomy sites were removed, divided into three thirds (Tension Third, TT; Intermediary Third, IT; Compression Third, CT) and prepared for conventional and polarized light microscopy. At 6 weeks, while the CT repaired faster and showed bone union by woven bone formation, the TT and IT exhibited a ligament-like fibrous connective tissue inserted in, and connecting, newly formed woven bone overlying the parent lamellar bone edges. At 12 weeks, bone repair took place at all thirds. Histometrically, proportions of newly formed bone did not alter at TT, IT and CT, whereas significantly enhanced bone formation was observed for the 12-week group, irrespective of the third. The results demonstrated that although the method used to stabilize the mandibular osteotomy allowed bone repair to occur, differences in the dynamics of bone healing may take place along the osteotomy site, depending on the action of tension and compression forces generated by masticatory muscles. PMID:18336526
Toward Patient Specific Long Lasting Metallic Implants for Mandibular Segmental Defects
NASA Astrophysics Data System (ADS)
Shayesteh Moghaddam, Narges
Mandibular defects may result from tumor resection, trauma, or inflammation. The goals of mandibular reconstruction surgeries are to restore mandible function and aesthetics. To this end, surgeons use a combination of bone grafts and metallic implants. These implants have drastically different mechanical properties than the surrounding bone. As a result, the stress distribution in the mandible changes after surgery. The long-term abnormal stress/strain distribution may lead to either graft failure due to bone resorption as a result of stress shielding, or hardware failure due to stress concentrations. During the healing period of six to nine months it is important that complete immobilization, bringing mandibular micro-motion down to the level of 200-500 mum during chewing, is achieved. After this period it is desired that bone undergo normal stress for long-term success of the treatment. Although current high stiffness fixation hardware accomplishes this immobilization during the healing period, the hardware continues to alter the normal stress-strain trajectory seen during chewing once the engrafted bone heals. Over the long-term, the immobilized and stress-shielded engrafted bone tends to resorb. On the other hand, hardware fracturing or/and screw loosening is observed as the stress is concentrated at certain locations on the hardware. Equally as important is the permanent loss of chewing power due to the altered stress-strain relationships. The first stage of this research is to study the problems encountered following a mandibular segmental defect reconstructive surgery. To this end, we constructed a finite element model of a healthy mandible, which includes cortical and cancellous bone, teeth (enamel and dentin components), and the periodontal ligament. Using this model, we studied a healthy adult mandible under maximum molar bite force for stress, strain, displacement, and reaction force distribution. For mandibular segmental defect reconstruction the current standard of care consists of the use of Surgical Grade 5 titanium also known as Ti-6Al-4V hardware and either a single or double fibula barrel vascularized bone graft. We expanded our model to simulate the effects of this surgery. The expanded model includes both single and double barrel fibular bone graft repair of a right M1-M3 containing section of the mandible, Ti-6Al-4V fixation hardware and screws. We found that the stiffness mismatch between the fixation hardware and the bone causes stress shielding on the host mandible and the bone graft, and stress concentration at the fixation hardware and screws. The simulations results show that while a double-barrel graft is preferred, in the long-term it does not create the optimal outcome due to the abnormal stress pattern. To improve the long-term outcome with metallic implants it is essential to recreate the normal stress pattern. To achieve this outcome we investigated the use of porous nitinol as a substitute for the currently used titanium hardware. While NiTi already has a lower stiffness than titanium, it is possible to add porosity to further reduce the stiffness to be closer to that of cortical bone. The ultimate goal is to create fixation hardware that has sufficient stiffness for immobilization while recreating the normal stress pattern in the bone. Using a finite element model of devices fabricated from Surgical Grade 5 titanium and NiTi, we have found that stiffness-tuned NiTi hardware with conventional geometries should result in recreation of normal stress-strain trajectories and better treatment outcome. Finally, to further improve the outcome, we suggest the use of a two-stage mechanism Bone Bandaid which supports both the immobilization/healing and regenerative phases of mandibular segmental defect treatment. This device is made of two materials. The stiff Ti-6Al-4V portion provides the support during the healing period and is disengaged afterwards. The second material is a NiTi wire-frame to facilitate normal stress distribution after the initial healing period. The titanium part of this fixation hardware is released following radiological verification that the surgical osteotomies have healed. The release procedure is performed under local anesthetic via a microsurgical tool. With the titanium fixation hardware no longer functional, the NiTi webbing would act as a superstructure, like a skin, to the underlying grafted cortical bone. This device facilitates stress transduction through the normal stress-strain trajectories, allows restoration of power, drives cortical bone remodeling and strengthening, provides long-term strength, and a good bone bed for dental implants. If bone chips are used, instead of single or double bone graft, the webbing is more likely to support the bone chips while they are being incorporated with the mandible. We have performed computer simulation to investigate the two stages of the operation of the device. Our FEA results indicate that the Bone Bandaid supports both the immobilization needed during healing and the distribution of stress through the engrafted bone once it has healed. (Abstract shortened by ProQuest.).
Munot, Vimal Kantilal; Nayakar, Ramesh P; Patil, Raghunath
2017-01-01
The restoration of normal function and esthetic appearance with a dental prosthesis is a major challenge in the rehabilitation of patients who have lost their teeth and surrounding bone because of surgery for oral cyst or tumor. Rehabilitation with fixed or removable prosthesis is even more challenging when the edentulous span is long and the ridge is defective. Anatomic deformities and unfavorable biomechanics encountered in the region of resection add to the misery. In such situation, a fixed-removable prosthesis allows favorable biomechanical stress distribution along with restoration of esthetics, phonetics, comfort, hygiene, and better postoperative care and maintenance. This article describes rehabilitation of two cases with mandibular defects with an attachment-retained fixed-removable hybrid prosthesis.
Deriabin, E I
1997-01-01
Exposure of rabbits with mandibular bone defects to coherent infrared radiation (IR) at a wavelength of 890 nm decreased the intensity of inflammation by accelerating the repair. The results of exposure of the injured site to noncoherent IR radiation are compatible with those of IR laser exposure.
Schouman, T; Schmitt, M; Adam, C; Dubois, G; Rouch, P
2016-06-01
The aim of this work was to assess the influence of reduction of the apparent mechanical properties of fully load-bearing porous titanium implants used in mandibular bone defects. Segmental 18mm long bone defects were created bilaterally in the lower jaws of adult ewes. One group of 6 ewes (group A) was treated with load-bearing 'rigid' (high stiffness) porous implants on the right side, and with control on the left side. A second group of 6 ewes (group B) was treated with 'flexible' porous and control implants exhibiting apparent mechanical properties ten times lower than the rigid implants. The mechanical behavior of the reconstructed hemi-mandibles was assessed by cantilever testing and bone ingrowth into the segmental defects was assessed by BV/TV measurement within the implant using micro-CT 12 weeks after implantation. A significantly higher rigidity was identified for porous implants compared with control implants at the anterior interface in group B. BV/TV of porous implants was significantly higher than that of control implants in group A. BV/TV differences were significant between porous and control implants in group B and were homogeneous along the main axis. Significantly higher BV/TV was identified in most sub-volumes of group B porous implants compared with group A. This work highlights the critical importance of the tuning of scaffolds to promote bone ingrowth with reference to the local strains occurring within the porous scaffold, which in this application was achieved using fully load-bearing low-stiffness porous titanium implants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chiu, Grace; Chang, Chris; Roberts, W Eugene
2018-03-01
A 36-year-old woman with good periodontal health sought treatment for a compensated Class II partially edentulous malocclusion associated with a steep mandibular plane (SN-MP, 45°), 9 missing teeth, a 3-mm midline discrepancy, and compromised posterior occlusal function. She had multiple carious lesions, a failing fixed prostheses in the mandibular right quadrant replacing the right first molar, and a severely atrophic edentulous ridge in the area around the mandibular left first and second molars. After restoration of the caries, the mandibular left third molar served as anchorage to correct the mandibular arch crowding. The mandibular left second premolar was retracted with a light force of 2 oz (about 28.3 cN) on the buccal and lingual surfaces to create an implant site between the premolars. Modest lateral root resorption was noted on the distal surface of the mandibular left second premolar after about 7 mm of distal translation in 7 months. Six months later, implants were placed in the mandibular left and right quadrants; the spaces were retained with the fixed appliance for 5 months and a removable retainer for 1 month. Poor cooperation resulted in relapse of the mandibular left second premolar back into the implant site, and it was necessary to reopen the space. When the mandibular left fixture was uncovered, a 3-mm deep osseous defect on the distobuccal surface was found; it was an area of relatively immature bundle bone, because the distal aspect of the space was reopened after the relapse. Subsequent bone grafting resulted in good osseous support of the implant-supported prosthesis. The relatively thin band of attached gingiva on the implant at the mandibular right first molar healed with a recessed contour that was susceptible to food impaction. A free gingival graft restored soft tissue form and function. This severe malocclusion with a discrepancy index value of 28 was treated to an excellent outcome in 38 months of interdisciplinary treatment. The Cast-Radiograph Evaluation score was 13. However, the treatment was complicated by routine relapse and implant osseous support problems. Retreatment of space opening and 2 additional surgeries were required to correct an osseous defect and an inadequate soft tissue contour. Orthodontic treatment is a viable option for creating implant sites, but fixed retention is required until the prosthesis is delivered. Bone augmentation is indicated at the time of implant placement to offset expected bone loss. Complex restorative treatment may result in routine complications that are effectively managed with interdisciplinary care. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Singh, Bijay; Sinha, Nidhi; Sharma, Rohit; Parekh, Narzi
2015-11-01
Carcinomas of the mandible may require resection of a segment of bone (continuity defect), partial removal of bone (discontinuity defect), tongue, and floor of the mouth and muscle attachments. Patients undergoing such treatment suffer from facial disfigurement, loss of muscle function, loss of neuromuscular coordination resulting in inability to masticate and swallow acceptably. Surgical reconstruction may not always be possible because of high reoccurrence rate, inability of the patient to cope with another surgery etc. The treatment of choice in non surgical cases is prosthetic rehabilitation using guiding flange prosthesis. This article describes the management of a patient who had undergone hemimandibulectomy and was not willing for a surgical reconstruction. Interim maxillary ramp prosthesis was given to the patient 15 days postoperatively followed by definitive guiding flange prosthesis for two years after which the patient was able to occlude in centric occlusal position without any aid.
Stavropoulos, Andreas; Wikesjö, Ulf M E
2010-06-01
To evaluate the influence of defect dimensions on periodontal wound healing/regeneration in intrabony defects following implantation of a deproteinized bovine bone/collagen matrix under provisions for guided tissue regeneration. Contra-lateral one-wall intrabony [6 x 6 mm (wide/deep) versus 4 x 4 mm (narrow/shallow)] periodontal defects were surgically created at the edentulated mesial aspect of the mandibular first molars in three Labradors, i.e., three defects in each category. The defects were implanted with the bovine bone/collagen matrix and covered with a collagen membrane. Histologic/histometric analysis followed an 18-month healing interval. New cementum encompassed the entire intrabony component in both wide/deep (5.6 +/- 0.5 mm) and narrow/shallow (4.2 +/- 0.1 mm) defects; bone formation amounted to 5.6 +/- 0.6 and 4.0 +/- 0.8 mm, respectively. Mineralized bone encompassed 57.5%versus 65% and the bone biomaterial 11.6%versus 13.1% of the defect space. A periodontal ligament with a width and composition similar to that of the resident periodontal ligament encompassing the entire aspect of the defects was observed. Root resorption/ankylosis was rare. Both wide/deep and narrow/shallow intrabony defects showed a substantial potential for periodontal regeneration in this pre-clinical model. The contribution of the bovine bone/collagen matrix and guided tissue regeneration to this regenerative potential is not clear.
Biosse Duplan, Martin; Komla-Ebri, Davide; Heuzé, Yann; Estibals, Valentin; Gaudas, Emilie; Kaci, Nabil; Benoist-Lasselin, Catherine; Zerah, Michel; Kramer, Ina; Kneissel, Michaela; Porta, Diana Grauss; Di Rocco, Federico; Legeai-Mallet, Laurence
2016-01-01
Activating FGFR3 mutations in human result in achondroplasia (ACH), the most frequent form of dwarfism, where cartilages are severely disturbed causing long bones, cranial base and vertebrae defects. Because mandibular development and growth rely on cartilages that guide or directly participate to the ossification process, we investigated the impact of FGFR3 mutations on mandibular shape, size and position. By using CT scan imaging of ACH children and by analyzing Fgfr3Y367C/+ mice, a model of ACH, we show that FGFR3 gain-of-function mutations lead to structural anomalies of primary (Meckel’s) and secondary (condylar) cartilages of the mandible, resulting in mandibular hypoplasia and dysmorphogenesis. These defects are likely related to a defective chondrocyte proliferation and differentiation and pan-FGFR tyrosine kinase inhibitor NVP-BGJ398 corrects Meckel’s and condylar cartilages defects ex vivo. Moreover, we show that low dose of NVP-BGJ398 improves in vivo condyle growth and corrects dysmorphologies in Fgfr3Y367C/+ mice, suggesting that postnatal treatment with NVP-BGJ398 mice might offer a new therapeutic strategy to improve mandible anomalies in ACH and others FGFR3-related disorders. PMID:27260401
Mechanical evaluation of the SLM fabricated, stiffness-matched, mandibular bone fixation plates
NASA Astrophysics Data System (ADS)
Jahadakbar, Ahmadreza; Shayesteh Moghaddam, Narges; Amerinatanzi, Amirhesam; Dean, David; Elahinia, Mohammad
2018-03-01
The standard of the care for the treatment of mandibular segmental defects is the use of Ti-6Al-4V bone fixation plates and screws to immobilize the grafted bone and the host mandible. While Ti-6Al-4V bone fixation plates provide strong immobilization during the healing period, they may disturb the stress distribution in the repaired mandible. The highly stiff Ti-6Al-4V fixation carries a great portion of the load which was previously borne by the mandible, and stress shielding may occur on the surrounding cortical bone. Based on the bone remodeling theory, stress shielding causes bone resorption in the effected region and may eventually lead to the failure of the surgical reconstruction. To address this issue, we have developed a new generation of the patient-specific, porous NiTi bone fixation plates which benefit from stiffness-matching of the adjacent bone. Using the CT scan data of the patient's defective mandible, the geometry for the required bone fixation plates is designed and the stiffness of the surrounding regions is measured. By introducing specific level and type of porosity to the bone fixation plate, its stiffness can be tuned. Finite Element simulations has verified the reduced level of stress shielding on the reconstructed mandible, in case of using the proposed bone fixation plates. Selective Lase Sintering has been used for fabrication of the porous NiTi bone fixation plates with six different levels of stiffness. Finite element simulations, and mechanical tests have been done to verify the performance of the fabricated parts resulting from our design and fabrication method.
Munot, Vimal Kantilal; Nayakar, Ramesh P.; Patil, Raghunath
2017-01-01
The restoration of normal function and esthetic appearance with a dental prosthesis is a major challenge in the rehabilitation of patients who have lost their teeth and surrounding bone because of surgery for oral cyst or tumor. Rehabilitation with fixed or removable prosthesis is even more challenging when the edentulous span is long and the ridge is defective. Anatomic deformities and unfavorable biomechanics encountered in the region of resection add to the misery. In such situation, a fixed-removable prosthesis allows favorable biomechanical stress distribution along with restoration of esthetics, phonetics, comfort, hygiene, and better postoperative care and maintenance. This article describes rehabilitation of two cases with mandibular defects with an attachment-retained fixed-removable hybrid prosthesis. PMID:29042738
The use of 3D-printed titanium mesh tray in treating complex comminuted mandibular fractures
Ma, Junli; Ma, Limin; Wang, Zhifa; Zhu, Xiongjie; Wang, Weijian
2017-01-01
Abstract Rationale: Precise bony reduction and reconstruction of optimal contour in treating comminuted mandibular fractures is very difficult using traditional techniques and devices. The aim of this report is to introduce our experiences in using virtual surgery and three-dimensional (3D) printing technique in treating this clinical challenge. Patient concerns: A 26-year-old man presented with severe trauma in the maxillofacial area due to fall from height. Diagnosis: Computed tomography images revealed middle face fractures and comminuted mandibular fracture including bilateral condyles. Interventions and outcomes: The computed tomography data was used to construct the 3D cranio-maxillofacial models; then the displaced bone fragments were virtually reduced. On the basis of the finalized model, a customized titanium mesh tray was designed and fabricated using selective laser melting technology. During the surgery, a submandibular approach was adopted to repair the mandibular fracture. The reduction and fixation were performed according to preoperative plan, the bone defects in the mental area were reconstructed with iliac bone graft. The 3D-printed mesh tray served as an intraoperative template and carrier of bone graft. The healing process was uneventful, and the patient was satisfied with the mandible contour. Lessons: Virtual surgical planning combined with 3D printing technology enables surgeon to visualize the reduction process preoperatively and guide intraoperative reduction, making the reduction less time consuming and more precise. 3D-printed titanium mesh tray can provide more satisfactory esthetic outcomes in treating complex comminuted mandibular fractures. PMID:28682875
Blood-pool SPECT in addition to bone SPECT in the viability assessment in mandibular reconstruction.
Aydogan, F; Akbay, E; Cevik, C; Kalender, E
2014-01-01
The assessment of the postoperative viability of vascularized and non-vascularized grafts used in the reconstruction of mandibular defects due to trauma and surgical reasons is a major problem in maxillofacial surgery. In the present study, we evaluated the feasibility and image quality of blood-pool SPECT, which is used for the first time in the literature here in the assessment of mandibular reconstruction, in addition to non-invasive bone scintigraphy and bone SPECT. We also evaluated whether it would be useful in clinical prediction. Micro-vascularized and non-vascularized bone grafts were used in 12 Syrian men with maxillofacial trauma. Between days 5-7 after surgery, three-phase bone scintigraphy, blood-pool SPECT and delayed bone SPECT scans were performed. After month 6, the patients were assessed by control CT scans. Of the non-vascularized grafts, one graft was reported as non-viable at week one. At month 6, graft resorption was demonstrated on the CT images. The remaining non-vascularized grafts and all of the micro-vascularized grafts were considered to be viable according to delayed bone SPECT and blood-pool SPECT images. However, only the anterior and posterior ends could be clearly assessed on delayed SPECT images, while blood-pool SPECT images allowed the clear assessment of the entire graft. The combined use of blood-pool and delayed SPECT scans could allow for better assessment of graft viability in the early period, and can provide more detailed information to clinicians about prognosis in the follow-up of patients undergoing mandibular graft reconstruction.
Kannan, Anitha Logaranjani; Bose, Buvaneshwari Birla; Muthu, Jananni; Perumalsamy, Rajapriya; Pushparajan, Saravanan; Namasivayam, Ambalavanan
2014-01-01
Context: Invasion of the bifurcation and trifurcation of the multi-rooted teeth resulting in furcation involvement is one of the serious complications of periodontitis. Aim: The purpose of the study was to evaluate the efficacy of combination therapy using anorganic bovine bone graft and resorbable guided tissue regeneration (GTR) membrane versus open flap debridement alone in the management of Grade II furcation defects in mandibular molars. Materials and Methods: The study included a total number of 20 sites in 10 patients with bilateral mandibular furcation defects, out of which 10 sites were treated as test group and 10 as control group. The test group was treated with combination therapy and the control group with open flap debridement alone. The parameters were recorded on 0 day (baseline), 90th day, and 180th day, which included vertical probing depth and horizontal probing depth of the furcation defect, clinical attachment level, and defect fill. Statistical Analysis Used: Mean and standard deviation were calculated for different variables in each study group at different time points. Mean values were compared by using Wilcoxon signed ranks test, after adjusting the P values for multiple comparison by using Bonferroni correction method. Results: Both the test and control groups showed a definitive improvement in clinical parameters, which was statistically significant. On comparison, the vertical probing depth showed significant reduction in the test group with a mean reduction of 3.1 ± 0.7 mm, when compared to the control group which showed a mean reduction of 1.5 ± 0.5 mm. The horizontal probing depth of furcation defects was also significantly reduced in the test group with a mean reduction of 2.2 ± 0.6 mm, when compared to the control group in which the mean reduction was 0.9 ± 0.3 mm. There was also significant gain in attachment level in the test group which showed a mean gain of 3.2 ± 0.6 mm, when compared to the control group which showed a gain of 1.2 ± 0.6 mm. Radiographic defect fill was found to be more in the test group with a mean gain of 2.0 ± 0.1 mm, when compared to the control group which showed a defect fill of 0.2 ± 0.1 mm. Conclusions: The results of this study demonstrated that the combined use of anorganic bovine bone graft and resorbable GTR membrane is effective than open flap debridement alone in the treatment of mandibular grade II furcation defects. PMID:25452926
Linsen, Sabine S; Oikonomou, Annina; Martini, Markus; Teschke, Marcus
2018-05-01
The purpose was to analyze mandibular kinematics and maximum voluntary bite force in patients following segmental resection of the mandible without and with reconstruction (autologous bone, alloplastic total temporomandibular joint replacement (TMJ TJR)). Subjects operated from April 2002 to August 2014 were enrolled in the study. Condylar (CRoM) and incisal (InRoM) range of motion and deflection during opening, condylar retrusion, incisal lateral excursion, mandibular rotation angle during opening, and maximum voluntary bite force were determined on the non-affected site and compared between groups. Influence of co-factors (defect size, soft tissue deficit, neck dissection, radiotherapy, occlusal contact zones (OCZ), and time) was determined. Twelve non-reconstructed and 26 reconstructed patients (13 autologous, 13 TMJ TJR) were included in the study. InRoM opening and bite force were significantly higher (P ≤ .024), and both condylar and incisal deflection during opening significantly lower (P ≤ .027) in reconstructed patients compared with non-reconstructed. Differences between the autologous and the TMJ TJR group were statistically not significant. Co-factors defect size, soft tissue deficit, and neck dissection had the greatest impact on kinematics and number of OCZs on bite force. Reconstructed patients (both autologous and TMJ TJR) have better overall function than non-reconstructed patients. Reconstruction of segmental mandibular resection has positive effects on mandibular function. TMJ TJR seems to be a suitable technique for the reconstruction of mandibular defects including the TMJ complex.
Boix, Damien; Gauthier, Olivier; Guicheux, Jérôme; Pilet, Paul; Weiss, Pierre; Grimandi, Gaël; Daculsi, Guy
2004-05-01
The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute for bone regeneration around dental implants placed into fresh extraction sockets. Third and fourth mandibular premolars were extracted from three beagle dogs and the interradicular septa were surgically reduced to induce a mesial bone defect. Thereafter, titanium implants were immediately placed. On the left side of the jaw, mesial bone defects were filled with an injectable bone substitute (IBS), obtained by combining a polymer and biphasic calcium phosphate ceramic granules. The right defects were left unfilled as controls. After 3 months of healing, specimens were prepared for histological and histomorphometric evaluations. No post-surgical complications were observed during the healing period. In all experimental conditions, histological observations revealed a lamellar bone formation in contact with the implant. Histomorphometric analysis showed that IBS triggers a significant (P<0.05) increase in terms of the number of threads in contact with bone, bone-to-implant contact, and peri-implant bone density of approximately 8.6%, 11.0%, and 14.7%, respectively. In addition, no significant difference was observed when number of threads, bone-to-implant contact, and bone density in the filled defects were compared to the no-defect sites. It is concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate significantly increases bone regeneration around immediately placed implants.
Lee, So-Hyoun; Moon, Jong-Hoon; Jeong, Chang-Mo; Bae, Eun-Bin; Park, Chung-Eun; Jeon, Gye-Rok; Lee, Jin-Ju; Jeon, Young-Chan
2017-01-01
The purpose of this study is to evaluate the effect of three-dimensional preformed titanium membrane (3D-PFTM) to enhance mechanical properties and ability of bone regeneration on the peri-implant bone defect. 3D-PFTMs by new mechanically compressive molding technology and manually shaped- (MS-) PFTMs by hand manipulation were applied in artificial peri-implant bone defect model for static compressive load test and cyclic fatigue load test. In 12 implants installed in the mandibular of three beagle dogs, six 3D-PFTMs, and six collagen membranes (CM) randomly were applied to 2.5 mm peri-implant buccal bone defect with particulate bone graft materials for guided bone regeneration (GBR). The 3D-PFTM group showed about 7.4 times higher mechanical stiffness and 5 times higher fatigue resistance than the MS-PFTM group. The levels of the new bone area (NBA, %), the bone-to-implant contact (BIC, %), distance from the new bone to the old bone (NB-OB, %), and distance from the osseointegration to the old bone (OI-OB, %) were significantly higher in the 3D-PFTM group than the CM group (p < .001). It was verified that the 3D-PFTM increased mechanical properties which were effective in supporting the space maintenance ability and stabilizing the particulate bone grafts, which led to highly efficient bone regeneration. PMID:29018818
Subramaniam, Shiva S.; Vujcich, Nathan J.; Nastri, Alf L.
2016-01-01
Summary: Vascularized free flaps have become the gold standard in reconstructing large segmental mandibular defects; however, even when bony union and soft-tissue coverage is achieved, insufficient bone stock and altered facial contour can create functional and cosmetic problems for the patient. There have been limited case reports on the use of secondary distraction osteogenesis to address these issues. The authors report a case of bilateral mandibular distraction of deep circumflex iliac artery free flaps, used for mandibular reconstruction after total mandibulectomy for treatment of osteosarcoma. Performed for reasons of retrognathia and facilitation of dental prosthetic rehabilitation, this is the first case of bilateral horizontal distraction osteogenesis of deep circumflex iliac artery free flaps reported in the literature. PMID:27257565
Dental pulp stem cells for in vivo bone regeneration: a systematic review of literature.
Morad, Golnaz; Kheiri, Lida; Khojasteh, Arash
2013-12-01
This review of literature was aimed to assess in vivo experiments which have evaluated the efficacy of dental pulp stem cells (DPSCs) for bone regeneration. An electronic search of English-language papers was conducted on PubMed database. Studies that assessed the use of DPSCs in bone regeneration in vivo were included and experiments evaluating regeneration of hard tissues other than bone were excluded. The retrieved articles were thoroughly reviewed according to the source of stem cell, cell carrier, the in vivo experimental model, defect type, method of evaluating bone regeneration, and the obtained results. Further assessment of the results was conducted by classifying the studies based on the defect type. Seventeen papers formed the basis of this systematic review. Sixteen out of 17 experiments were performed on animal models with mouse and rat being the most frequently used animal models. Seven out of 17 animal studies, contained subcutaneous pockets on back of the animal for stem cell implantation. In only one study hard tissue formation was not observed. Other types of defects used in the retrieved studies, included cranial defects and mandibular bone defects, in all of which bone formation was reported. When applied in actual bone defects, DPSCs were capable of regenerating bone. Nevertheless, a precise conclusion regarding the efficiency of DPSCs for bone regeneration is yet to be made, considering the limited number of the in vivo experiments and the heterogeneity within their methods. Copyright © 2013 Elsevier Ltd. All rights reserved.
Biosse Duplan, Martin; Komla-Ebri, Davide; Heuzé, Yann; Estibals, Valentin; Gaudas, Emilie; Kaci, Nabil; Benoist-Lasselin, Catherine; Zerah, Michel; Kramer, Ina; Kneissel, Michaela; Porta, Diana Grauss; Di Rocco, Federico; Legeai-Mallet, Laurence
2016-07-15
Activating FGFR3 mutations in human result in achondroplasia (ACH), the most frequent form of dwarfism, where cartilages are severely disturbed causing long bones, cranial base and vertebrae defects. Because mandibular development and growth rely on cartilages that guide or directly participate to the ossification process, we investigated the impact of FGFR3 mutations on mandibular shape, size and position. By using CT scan imaging of ACH children and by analyzing Fgfr3 Y367C/+ mice, a model of ACH, we show that FGFR3 gain-of-function mutations lead to structural anomalies of primary (Meckel's) and secondary (condylar) cartilages of the mandible, resulting in mandibular hypoplasia and dysmorphogenesis. These defects are likely related to a defective chondrocyte proliferation and differentiation and pan-FGFR tyrosine kinase inhibitor NVP-BGJ398 corrects Meckel's and condylar cartilages defects ex vivo. Moreover, we show that low dose of NVP-BGJ398 improves in vivo condyle growth and corrects dysmorphologies in Fgfr3 Y367C/+ mice, suggesting that postnatal treatment with NVP-BGJ398 mice might offer a new therapeutic strategy to improve mandible anomalies in ACH and others FGFR3-related disorders. © The Author 2016. Published by Oxford University Press.
1981-10-01
Intraosseous Appliance in the Treatment of Mandibular Fractures . J Oral Surg 30:344-348, 1977. 6. MELCHER, A.H. and IRVING, J.T.: The Healing...on the observed results. Investigators have prepared osseous defects in monkeys, sheep, and dogs in an attempt to study the effects of bone inducing...occur in the control animals. Sufficient bone must also be available so that the risk of fracture is mitigated. 3. The animal should allow for
2011-01-01
Objectives Reconstruction of large mandiblular defects following ablative oncologic surgery could be done by using vascularized bone transfer or, more often, primarily with simultaneous or delayed bone grafting, using load bearing reconstruction plates. Bending of these reconstruction plates is typically directed along the outer contour of the original mandible. Simultaneously or in a second operation vascularized or non-vascularized bone is fixed to the reconstruction plate. However, the prosthodontic-driven backward planning to ease bony reconstruction of the mandible in terms of dental rehabilitation using implant-retained overdentures might be an eligible solution. The purpose of this work was to develop, establish and clinically evaluate a novel 3D planning procedure for mandibular reconstruction. Materials and methods Three patients with tumors involving the mandible, which included squamous cell carcinoma in the floor of the mouth and keratocystic odontogenic tumor, were treated surgically by hemimandibulectomy. Results In primary alloplastic mandible reconstruction, shape and size of the reconstruction plate could be predefined and prebent prior to surgery. Clinical relevance This study provides modern treatment strategies for mandibular reconstruction. PMID:21968330
Maxillary reconstruction with bone transport distraction and implants after partial maxillectomy.
Castro-Núñez, Jaime; González, Marcos Daniel
2013-02-01
Maxillary and mandibular bone defects can result from injury, congenital defect, or accident, or as a consequence of surgical procedures when treating pathology or defects affecting jaw bones. The glandular odontogenic cyst is an infrequent type of odontogenic cyst that can leave a bony defect after being treated by aggressive surgical means. First described in 1987 by Padayachee and Van Wyk, it is a potentially aggressive entity, having a predisposition to recur when treated conservatively, with only 111 cases having been reported hitherto. Most reports emphasize its clinical, radiographic, and histologic features, including a few considerations on rehabilitation for these patients. The aim of this article is to present the case of a 24-year-old male patient who, in 2001, was diagnosed with a glandular odontogenic cyst and to focus on the surgical approach and rehabilitation scheme. We performed an anterior partial maxillectomy. The osseous defect was treated using bone transport distraction. Dental and occlusal rehabilitation was achieved with titanium implants over transported bone and an implant-supported overdenture. A 9-year follow-up shows no evidence of recurrence of the pathology, adequate shape and amount of bone, functional occlusal and dental rehabilitation, and patient's satisfaction. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Relative stability of deep- versus shallow-side bone levels in angular proximal infrabony defects.
Heins, P; Hartigan, M; Low, S; Chace, R
1989-01-01
The relative changes with time, in the position of the coronal margin of the mesial and distal bone of proximal, angular infrabony defects, were investigated. Tracings of the radiographs of 51 mandibular posterior sites, treated by flap curettage, with a mean post-surgical duration of 11.8 years, were measured using a digitizer pad. The group consisting of shallow-side sites (N = 51), exhibited no significant change in the bone height with time; however, there was a significant decrease in bone height in the deep-side group (N = 51). The mean area of proximal bone decreased significantly with time. The defects were divided into early (N = 25) and advanced (N = 26) angular groups, and then into deep- and shallow-side subgroups. In the early defect group, there was a significant decrease in the mean bone height of the deep-side subgroup. There were no differences in the changes of mean bone level of the remaining 3 subgroups with time. There was no correlation between changes in bone levels of adjacent mesial and distal sides of angular defects with time (r = 0.27). There was no difference between the deep- and shallow-side groups in the number of sites which gained, lost or evidenced no change in bone height. In the study population, the bone height of 73% of the deep-side, and 84% of the shallow-side sites was either unchanged or in a more coronal position.(ABSTRACT TRUNCATED AT 250 WORDS)
Implant placement after marsupialization of a dentigerous cyst.
Karamanis, S; Kitharas, T; Tsoukalas, D; Parissis, N
2006-01-01
This paper presents a case of a dentigerous cyst accompanied by a history of inflammation, resorption of the roots of the first molar and the lingual aspect of the distal root of the second molar, and devitalization of the 2 premolars. The treatment option chosen was marsupialization of the cyst, extraction of the involved teeth, endodontic treatment of both premolars, and implant insertion in the area of the first mandibular molar at a later stage. Twelve months postsurgery the area of interest was almost flattened and the radiographic examination revealed total disappearance of the radiolucency. An implant of 15 x 4 mm was inserted in the area of the first mandibular molar. Despite the excellent implant stability achieved, a thin central zone of the defect remained void of bone. After complete excision of soft tissue the defect was filled with an alloplastic bone substitute. Eight months later (20 months postsurgery), the implant was uncovered and the restorative procedure completed. The implant and the crown have been functioning sign and symptom free for 48 months. Marsupialization was preferred instead of enucleation due to (1) proximity of the cyst to the mandibular canal; (2) need for apicectomy of both premolars to gain good access for enucleation; (3) refusal of the patient to undergo a second surgery for bone harvesting; (4) lower probability for postoperative contamination; (5) need of small quantity of bone substitute; (6) easier extraction of the impacted second molar due to its coronal movement. The disadvantages of the treatment were the long healing period and the discomfort of the patient at the early stages of marsupialization. It was judged that the advantages outweighed the disadvantages in this case. We discuss the findings of other authors who support the conservative approach to jaw cysts in a young population, and the concerns that exist in the literature about the ability of osseoconductive graft materials to generate vital bone and achieve implant-to-bone contact.
Herford, Alan Scott; Cicciù, Marco
2012-01-01
Purpose: The aim of this investigation was to evaluate whether the addition of the platelet derived growth factor type BB (PDGF-BB) to a collagen matrix applied on a titanium mesh would favor healing and resorption onto the grafted bone. A histologic and radiographic study of two different groups (test and control) was performed. Designs: A surgical procedure was performed on 8 pigs to obtain 16 bilateral mandibular alveolar defects. All the defects were then reconstructed with a mixture of autogenous bovine bone using titanium mesh positioning. Two groups, with a total of 16 defects were created: The first to study collagen sponge and PDGF-BB and the second to control collagen only. The collagen matrix was positioned directly over the mesh and soft tissue was closed without tensions onto both groups without attempting to obtain primary closure. Possible exposure of the titanium mesh as well as the height and volume of the new bone was recorded. Results: New bone formation averaged about 6.68 mm in the test group studied; the control group had less regenerated bone at 4.62 mm. Conclusion: PDGF-BB addition to the collagen matrix induced a strong increase in hard and soft tissue healing and favored bone formation, reducing bone resorption even if the mesh was exposed. PMID:23833493
Lee, Jung-Seok; Park, Weon-Yeong; Cha, Jae-Kook; Jung, Ui-Won; Kim, Chang-Sung; Lee, Yong-Keun
2012-01-01
Purpose This study evaluated histologically the tissue responses to and the effects of a customized nano-hydroxyapatite (n-HA) block bone graft on periodontal regeneration in a one-wall periodontal-defect model. Methods A customized block bone for filling in the standardized periodontal defect was fabricated from prefabricated n-HA powders and a polymeric sponge. Bilateral 4×4×5 mm (buccolingual width×mesiodistal width×depth), one-wall, critical-size intrabony periodontal defects were surgically created at the mandibular second and fourth premolars of five Beagle dogs. In each dog, one defect was filled with block-type HA and the other served as a sham-surgery control. The animals were sacrificed following an 8-week healing interval for clinical and histological evaluations. Results Although the sites that received an n-HA block showed minimal bone formation, the n-HA block was maintained within the defect with its original hexahedral shape. In addition, only a limited inflammatory reaction was observed at sites that received an n-HA block, which might have been due to the high stability of the customized block bone. Conclusions In the limitation of this study, customized n-HA block could provide a space for periodontal tissue engineering, with minimal inflammation. PMID:22586523
Lee, Jung-Seok; Park, Weon-Yeong; Cha, Jae-Kook; Jung, Ui-Won; Kim, Chang-Sung; Lee, Yong-Keun; Choi, Seong-Ho
2012-04-01
This study evaluated histologically the tissue responses to and the effects of a customized nano-hydroxyapatite (n-HA) block bone graft on periodontal regeneration in a one-wall periodontal-defect model. A customized block bone for filling in the standardized periodontal defect was fabricated from prefabricated n-HA powders and a polymeric sponge. Bilateral 4×4×5 mm (buccolingual width×mesiodistal width×depth), one-wall, critical-size intrabony periodontal defects were surgically created at the mandibular second and fourth premolars of five Beagle dogs. In each dog, one defect was filled with block-type HA and the other served as a sham-surgery control. The animals were sacrificed following an 8-week healing interval for clinical and histological evaluations. Although the sites that received an n-HA block showed minimal bone formation, the n-HA block was maintained within the defect with its original hexahedral shape. In addition, only a limited inflammatory reaction was observed at sites that received an n-HA block, which might have been due to the high stability of the customized block bone. In the limitation of this study, customized n-HA block could provide a space for periodontal tissue engineering, with minimal inflammation.
Kretlow, James D.; Shi, Meng; Young, Simon; Spicer, Patrick P.; Demian, Nagi; Jansen, John A.; Wong, Mark E.; Kasper, F. Kurtis
2010-01-01
Current treatment of traumatic craniofacial injuries often involves early free tissue transfer, even if the recipient site is contaminated or lacks soft tissue coverage. There are no current tissue engineering strategies to definitively regenerate tissues in such an environment at an early time point. For a tissue engineering approach to be employed in the treatment of such injuries, a two-stage approach could potentially be used. The present study describes methods for fabrication, characterization, and processing of porous polymethylmethacrylate (PMMA) space maintainers for temporary retention of space in bony craniofacial defects. Carboxymethylcellulose hydrogels were used as a porogen. Implants with controlled porosity and pore interconnectivity were fabricated by varying the ratio of hydrogel:polymer and the amount of carboxymethylcellulose within the hydrogel. The in vivo tissue response to the implants was observed by implanting solid, low-porosity, and high-porosity implants (n = 6) within a nonhealing rabbit mandibular defect that included an oral mucosal defect to allow open communication between the oral cavity and the mandibular defect. Oral mucosal wound healing was observed after 12 weeks and was complete in 3/6 defects filled with solid PMMA implants and 5/6 defects filled with either a low- or high-porosity PMMA implant. The tissue response around and within the pores of the two formulations of porous implants tested in vivo was characterized, with the low-porosity implants surrounded by a minimal but well-formed fibrous capsule in contrast to the high-porosity implants, which were surrounded and invaded by almost exclusively inflammatory tissue. On the basis of these results, PMMA implants with limited porosity hold promise for temporary implantation and space maintenance within clean/contaminated bone defects. PMID:20524844
Ogura, I; Kaneda, T; Sasaki, Y; Buch, K; Sakai, O
2015-06-01
Temporal bone fracture after mandibular trauma is thought to be rare, and its prevalence has not been reported in the literature. The purpose of this study was to investigate the prevalence of temporal bone fractures in patients with mandibular fractures and the relationship between temporal bone fractures and the mandibular fracture location using multidetector-row computed tomography (MDCT). A prospective study was performed in 201 patients with mandibular fractures who underwent 64-MDCT scans. The mandibular fracture locations were classified as median, paramedian, angle, and condylar types. Statistical analysis for the relationship between prevalence of temporal bone fractures and mandibular fracture locations was performed using χ(2) test with Fisher's exact test. A P-value < 0.05 was considered statistically significant. The percentage of cases with temporal bone fracture was 3.0 % of all patients with mandibular fractures and 19.0 % of those with multiple mandibular fractures of paramedian and condylar type. There was a significant relationship between the incidence of temporal bone fracture and the paramedian- and condylar-type mandibular fracture (P = 0.001). Multiple mandibular fractures of paramedian and condylar type may be a stronger indicator for temporal bone fractures. This study suggests that patients with mandibular fracture, especially the paramedian and condylar type, should be examined for coexisting temporal bone fracture using MDCT.
Kim, Chang-Sung; Choi, Seong-Ho; Cho, Kyoo-Sung; Chai, Jung-Kiu; Wikesjö, Ulf M E; Kim, Chong-Kwan
2005-06-01
Autogenous bone grafts and bone biomaterials are being used as part of protocols aiming at reconstruction of periodontal defects. There is a limited biologic information on the effect of such materials on periodontal healing, in particular aberrant healing events that may prevent their general use. The objective of this study was, using histological techniques, to evaluate periodontal healing with focus on root resorption and ankylosis following implantation of autogenous bone and a coral-derived biomaterial into intra-bony defects in dogs. One-wall intra-bony periodontal defects were surgically created at the distal aspect of the second and the mesial aspect of the fourth mandibular premolars in either right or left jaw quadrants in four Beagle dogs. Each animal received particulated autogenous bone and the resorbable calcium carbonate biomaterial into discrete one-wall intra-bony defects. The mucoperiosteal flaps were positioned and sutured to their pre-surgery position. The animals were euthanized 8 weeks post-surgery when block sections of the defect sites were collected and prepared for qualitative histological analysis. There were no significant differences in periodontal healing between sites receiving autograft bone and the coral-derived biomaterial. A well-organized periodontal ligament bridging new bone and cementum regeneration was observed extending coronal to a notch prepared to delineate the apical extent of the defect. Osteoid and bone with enclosed osteocytes were formed onto the surface of both autograft and coral particles. Although small resorption pits were evident in most teeth, importantly none of the biomaterials provoked marked root resorption. Ankylosis was not observed. Particulated autogenous bone and the coral-derived biomaterial may be implanted into periodontal defects without significant healing aberrations such as root resorption and ankylosis. The histopathological evaluation suggests that the autogenous bone graft has a limited osteogenic potential as demonstrated in this study model.
Lozano-Carrascal, Naroa; Satorres-Nieto, Marta; Delgado-Ruiz, Rafael; Maté-Sánchez de Val, José Eduardo; Gehrke, Sergio Alexandre; Gargallo-Albiol, Jorge; Calvo-Guirado, José Luis
2017-01-01
The aim of the present study was to evaluate the feasibility of SEM and EDX microanalysis on evaluating the effect of porcine xenografts (MP3 ® ) supplemented with pamidronate during socket healing. Mandibular second premolars (P2) and first molars (M1) were extracted from six Beagle dogs. P2 were categorized as small defects (SD) and M1 as large defects (LD). Four random groups were created: SC (small control defects with MP3 ® ), ST (small test defects MP3 ® +pamidronate), LC (large control defects with MP3 ® ), and LT (large test defects MP3 ® +pamidronate). At four and eight weeks of healing the samples were evaluated fisically through scanning electron microscopy (SEM), and chemical element mapping was carried out by Energy dispersive X-ray spectroscopy (EDX). After four weeks of healing, SEM and EDX analysis revealed more mineralized bone in ST and LT groups compared with control groups (p<0.05). After eight weeks, Ca/P ratios were slightly higher for small defects (groups SC and ST); in SEM description, in both control and test groups, trabecular bone density was similar to the adjacent mineralized cortical bone. Within the limitations of this experimental study, SEM description and EDX elemental microanalysis have demonstrated to be useful techniques to assess bone remodelling of small and large defects. Both techniques show increased bone formation in test groups (MP3 ® modified with pamidronate) after four and eight weeks of healing. Copyright © 2016 Elsevier GmbH. All rights reserved.
Dau, Michael; Kämmerer, Peer W; Henkel, Kai-Olaf; Gerber, Thomas; Frerich, Bernhard; Gundlach, Karsten K H
2016-05-01
Healing characteristics as well as level of tissue integration and degradation of two different nanostructured hydroxyapatite bone substitute materials (BSM) in comparison with a deproteinized hydroxyapatite bovine BSM were evaluated in an in vivo animal experiment. In the posterior mandible of 18 minipigs, bilateral mono cortical critical size bone defects were created. Randomized augmentation procedures with NanoBone(®) (NHA1), Ostim(®) (NHA2) or Bio-Oss(®) (DBBM) were conducted (each material n = 12). Samples were analyzed after five (each material n = 6) and 8 months (each material n = 6). Defect healing, formation of soft tissue and bone as well as the amount of remaining respective BSM were quantified both macro- and microscopically. For NHA2, the residual bone defect after 5 weeks was significantly less compared to NHA1 or DBBM. There was no difference in residual BSM between NHA1 and DBBM, but the amount in NHA2 was significantly lower. NHA2 also showed the least amount of soft tissue and the highest amount of new bone after 5 weeks. Eight months after implantation, no significant differences in the amount of residual bone defects, in soft tissue or in bone formation were detected between the groups. Again, NHA2 showed significant less residual material than NHA1 and DBBM. We observed non-significant differences in the biological hard tissue response of NHA1 and DBBM. The water-soluble NHA2 initially induced an increased amount of new bone but was highly compressed which may have a negative effect in less stable augmentations of the jaw. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Cengiz, Murat Inanç; Kirtiloğlu, Tuğrul; Acikgoz, Gökhan; Trisi, Paolo; Wang, Hom-Lay
2012-04-01
Peri-implant mucosa is composed of 2 compartments: a marginal junctional epithelium and a zone of connective tissue attachment. Both structures consist mainly of collagen. Lathyrism is characterized by defective collagen synthesis due to inhibition of lysyl oxidase, an enzyme that is essential for interfibrillar collagen cross-linking. The lathyritic agent beta-aminoproprionitrile (β-APN) is considered a suitable agent to disrupt the connective tissue metabolism. Therefore, the purpose of this study was to assess the effect of defective connective tissue metabolism on epithelial implant interface by using β-APN created chronic lathyrism in the canine model. Two 1-year-old male dogs were included in this study. A β-APN dosage of 5 mg/0.4 mL/volume 100 g/body weight was given to the test dog for 10 months, until lathyritic symptoms developed. After this, the mandibular premolar teeth (p2, p3, p4) of both dogs were atraumatically extracted, and the investigators waited 3 months before implants were placed. In the test dog, 3 implants were placed in the left mandible, and 2 implants were placed in the right mandible. In the control dog, 2 implants were placed in the left mandibular premolar site. The dogs were sacrificed 10 months after healing. Peri-implant tissues obtained from the dogs were examined histomorphologically and histopathologically. Bone to implant contact (BIC) values and bone volumes (BV) were lower in the lathyritic group compared to the control group; however, no statistical significance was found. Significant histologic and histomorphometric changes were observed in peri-implant bone, connective tissue, and peri-implant mucosal width between test and control implants. Defective collagen metabolism such as lathyrism may negatively influence the interface between implant and surrounding soft tissue attachment.
Transient recycling of resected bone to facilitate mandibular reconstruction--a technical note.
Lee, Jing-Wei; Tsai, Shin-Sheng; Kuo, Yao-Lung
2006-10-01
Mandibular reconstruction requires considerable sculptural skills. The intriguingly complex configuration of the structure is difficult to reproduce. It is thus imperative for surgeons to seek a technique that improves the precision of the reconstruction. A 55-year-old male presented with a full thickness cancer (T4+) of his left cheek. Radical ablative surgery resulted in an extensive loss of bone and soft tissue mandating major reconstruction. The resected bony specimen was thoroughly denuded, autoclaved, and then placed back into its original site so that the mandible resumed its pre-surgical configuration. A reconstruction plate was applied to maintain structural stability, then the "recycled bone" was used as a template and replaced with a free fibular graft. The patient fared well and a follow-up panoramic radiograph demonstrated good alignment and symmetry of the reconstructed mandible. This method is a viable option for segmental mandibulectomy defect repair in selected cases. Using this technique, it is possible to restore the original bony contour expediently and accurately.
Naujokat, H; Açil, Y; Gülses, A; Birkenfeld, F; Wiltfang, J
2018-05-26
In 2016, we reported the world's first reconstruction of a mandibular discontinuity defect using a custom-made bone transplant that had been prefabricated in the gastrocolic omentum using tissue engineering strategies. However, the tissue of an engineered human neomandible has not been evaluated histologically until now. The current study assessed the long-term histological characteristics of biopsies of the neomandible 9months after transplantation. Histological analysis showed an increased amount of vital mineralized bone tissue after 10months, in comparison to biopsies obtained earlier. The engineered bone covered the surface of the bone substitute material but also grew out typical structures of cancellous bone tissue without a core of BioOss. The amount of induced bone tissue was 32% in the biopsy. In addition, the soft tissue showed an alignment of the connective tissue fibres parallel to the trabecular bone. Increasing time and mechanical forces at the mandible led to an increased amount of mineralized tissue and remodelling of the connective tissue fibres after transplantation. Further research should focus on developing advanced scaffold materials, as the outer titanium mesh cage leads to complications. Copyright © 2018 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Multi-scale osteointegration and neovascularization of biphasic calcium phosphate bone scaffolds
NASA Astrophysics Data System (ADS)
Lan, Sheeny K.
Bone grafts are utilized clinically to guide tissue regeneration. Autologous bone and allogeneic bone are the current clinical standards. However, there are significant limitations to their use. To address the need for alternatives to autograft and allograft, researchers have worked to develop synthetic grafts, also referred to as scaffolds. Despite extensive efforts in this area, a gap persists between basic research and clinical application. In particular, solutions for repairing critical size and/or load-bearing defects are lacking. The aim of this thesis work was to address two critical barriers preventing design of successful tissue engineering constructs for bone regeneration within critical size and/or load-bearing defects. Those barriers are insufficient osteointegration and slow neovascularization. In this work, the effects of scaffold microporosity, recombinant human bone morphogenetic protein-2 delivery and endothelial colony forming cell vasculogenesis were evaluated in the context of bone formation in vivo. This was accomplished to better understand the role of these factors in bone regeneration, which may translate to improvements in tissue engineering construct design. Biphasic calcium phosphate (BCP) scaffolds with controlled macro- and microporosity were implanted in porcine mandibular defects. Evaluation of the BCP scaffolds after in vivo implantation showed, for the first time, osteocytes embedded in bone within scaffold micropores (< 10 microm) as well as the most extensive bone growth into micropores to date with bone penetration throughout rods 394 microm in diameter. The result is the first truly osteointegrated bone scaffolds with integration occurring at both the macro and micro length scales, leaving no "dead space" or discontinuities of bone in the defect site. The scaffold forms a living composite upon integration with regenerating bone and this has significant implications with regard to improved scaffold mechanical properties. The presence of osteocytes within scaffold micropores is an indication of scaffold osteoinductivity because a chemotactic factor must be present to induce cell migration into pores on the order of the cell diameter. It is likely that the scaffold undergoes in vivo modifications involving formation of a biological apatite layer within scaffold micropores and possibly co-precipitation of endogenous osteoinductive proteins. To further investigate the effects of scaffold osteoinductivity, BCP scaffolds were implanted in porcine mandibular defects with rhBMP-2, which was partially sequestered in the micropores. Cell migration into osteoinductive scaffold micropores can be enhanced through the delivery of exogenous rhBMP-2 further promoting multi-scale osteointegration. Finally, endothelial colony forming cells (ECFCs) isolated from human umbilical cord blood (UCB) were evaluated in terms of their in vivo vasculogenic potential in the context of bone formation. This work was completed to determine if ECFCs could be utilized in a bone tissue engineering construct to promote neovascularization. ECFCs were combined with a BCP scaffold and rhBMP-2 and implanted subcutaneously on the abdominal wall of NOD/SCID mice. The result was formation of perfused human vessels within BCP scaffold macropores that were present at 4 weeks. The high density and persistence of human vessels at four weeks indicates that human UCB ECFCs exceed their reported in vivo vasculogenic potential when combined with rhBMP-2 and a BCP scaffold. This shows a dual role for BMP-2 in the context of bone regeneration. Collectively, the thesis demonstrates that (1) the design of synthetic bone scaffolds should include controlled multi-scale porosity to promote multi-scale osteointegration, which may significantly improve scaffold mechanical properties and (2) human umbilical cord blood-derived endothelial colony forming cells have potential for promoting neovascularization in a bone defect when combined with rhBMP-2.
Lorenz, Jonas; Al-Maawi, Sarah; Sader, Robert; Ghanaati, Shahram
2018-05-21
Autologous bone transfer is regarded as the gold standard for ridge augmentation before dental implantation, especially in severe bony defects caused by tumor resection or atrophy. In addition to the advantages of autologous bone, transplantation has several disadvantages, such as secondary operation, increased morbidity and pain. The present study reports, for the first time, a combination of a xenogeneic bone substitute (BO) with platelet-rich fibrin (PRF), which is a fully autologous blood concentrate derived from the patient's own peripheral blood by centrifugation. Solid A-PRF+TM and liquid i-PRFTM together with an individualized 3-D planned titanium mesh were used for reconstruction of a severe tumor-related bony defect within the mandible of a former head and neck cancer patient. The BO enriched with regenerative components from PRF allowed the reconstruction of the mandibular resective defect under the 3-D-mesh without autologous bone transplantation. Complete rehabilitation and restoration of the patient´s oral function were achieved. Histological analysis of extracted bone biopsies confirmed that the new bone within the augmented region originated from the residual bone. Within the limitations of the presented case, the applied concept appears to be a promising approach to increase the regenerative capacity of a bone substitute material, as well as decrease the demand for autologous bone transplantation, even in cases in which autologous bone is considered the golden standard. PRF can be considered a reliable source for increasing the biological capacities of bone substitute materials.
Investigation of bone formation using calcium phosphate glass cement in beagle dogs
Lee, Seung-Bum; Jung, Ui-Won; Choi, Youna; Jamiyandorj, Otgonbold; Kim, Chang-Sung; Lee, Yong-Keun; Chai, Jung-Kiu
2010-01-01
Purpose Among available biomaterials, bioceramics have drawn special interest due to their bioactivity and the possibility of tailoring their composition. The degradation rate and formulation of bioceramics can be altered to mimic the compositions of the mineral phase of bone. The aim of this study was to investigate the bone formation effect of amorphous calcium phosphate glass cement (CPGC) synthesized by a melting and quenching process. Methods In five male beagle dogs, 4 × 4 mm 1-wall intrabony defects were created bilaterally at the mesial or distal aspect of the mandibular second and fourth premolars. Each of the four defects was divided according to graft materials: CPGC with collagen membrane (CM), biphasic calcium phosphate (BCP) with CM, CM alone, or a surgical flap operation only. The dogs were sacrificed 8 weeks post-surgery, and block sections of the defects were collected for histologic and histometric analysis. Results There were significant differences in bone formation and cementum regeneration between the experimental and control groups. In particular, the CPGC and BCP groups showed greater bone formation than the CM and control groups. Conclusions In conclusion, CPGC was replaced rapidly with an abundant volume of new bone; CPGC also contributed slightly to regeneration of the periodontal apparatus. PMID:20607057
Hassan, Khalid S; Marei, Hesham F; Alagl, Adel S
2012-04-01
This study was designed to evaluate the use of xenograft plus a membrane as grafting material for periodontal osseous defects distal to the mandibular second molar compared with nongrafted extraction sites after removal of impacted mandibular third molars. We performed a single-blind, randomized, controlled clinical trial, and the sample comprised of subjects at high risk for the development of periodontal osseous defects distal to the second molar after third molar extraction (aged 30-35 years), pre-existing osseous defects distal to the second molar, and horizontal third molar impaction. The predictor variable was the treatment status of the second molar osseous defects. The third molar extraction sites were grafted with an anorganic xenograft plus a membrane. The other sites received a full-thickness flap and extraction of the third molar without placement of the grafting materials. The outcome variables were the change in gingival index, pocket probing depth, and clinical attachment level on the distobuccal aspect of the second molar preoperatively and at 3, 6, 9, and 12 months after surgery. Data were statistically analyzed by multivariate analysis of variance, and the statistical significance was set at P < .05. The study was composed of 28 sites that were selected by use of a split-mouth design for each patient, and this was randomly determined through a biased coin randomization. Twelve months after third molar removal, there was a statistically significant gain in the clinical attachment level and a reduction in the probing pocket depth in the grafted sites compared with the nongrafted sites (P < .001). Moreover, there was a significant difference in the alveolar bone height during the monitoring periods for the grafted sites compared with the nongrafted sites (P < .001). Grafting of osseous defects distal to mandibular second molars with an anorganic xenograft plus a membrane predictably resulted in a significant reduction in the probing pocket depth, clinical attachment level gain, and bone fill, which suggests that grafting the extraction sites with an anorganic xenograft plus a membrane could prevent periodontal disease in the future. Published by Elsevier Inc.
Esfahanian, Vahid; Farhad, Shirin; Sadighi Shamami, Mehrnaz
2014-01-01
Background and aims. Furcally-involved teeth present unique challenges to the success of periodontal therapy and influence treatment outcomes. This study aimed to assess to compare use of ADM and connective tissue membrane in class II furcation defect regeneration. Materials and methods. 10 patient with 2 bilaterally class II furcation defects in first and/or second maxilla or man-dibular molar without interproximal furcation involvement, were selected. Four weeks after initial phase of treatment, before and thorough the surgery pocket depth (PD), clinical attachment level to stent (CAL-S), free gingival margin to stent(FGM-S) , crestal bone to stent (Crest-S), horizontal defect depth to stent (HDD-S) and vertical defect depth to stent (VDD-S) and crestal bone to defect depth measured from stent margin. Thereafter, one side randomly treated using connective tissue and DFDBA (study group) and opposite side received ADM and DFDBA (control group). After 6 months, soft and hard tissue parameters measured again in re-entry. Results. Both groups presented improvements after therapies (P & 0.05). No inter-group differences were seen in PD re-duction (P = 0.275), CAL gain (P = 0.156), free gingival margin (P = 0.146), crest of the bone (P = 0.248), reduction in horizontal defects depth (P = 0.139) and reduction in vertical defects depth (P = 0.149). Conclusion. Both treatments modalities have potential of regeneration without any adverse effect on healing process. Connective tissue grafts did not have significant higher bone fill compared to that of ADM. PMID:25093054
21 CFR 872.4770 - Temporary mandibular condyle reconstruction plate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... device that is intended to stabilize mandibular bone and provide for temporary reconstruction of the... surgical procedures requiring removal of the mandibular condyle and mandibular bone. This device is not...
Coronectomy of the mandibular third molar: Respect for the inferior alveolar nerve.
Kouwenberg, A J; Stroy, L P P; Rijt, E D Vree-V D; Mensink, G; Gooris, P J J
2016-05-01
The aim of this study was to evaluate the outcomes of coronectomy as an alternative surgical procedure to complete removal of the impacted mandibular third molar in patients with a suspected close relationship between the tooth root(s) and the mandibular canal. A total of 151 patients underwent coronectomy and were followed up with clinical examinations and panoramic radiographs for a minimum of 6 months after surgery. None of the patients exhibited inferior alveolar nerve injury. Eruption of the retained root(s) was more frequent in younger patients (18-35 years). Thirty-six patients (23.8%) exhibited insufficient growth of new bone in the alveolar defect, and 11.3% required a second surgical procedure to remove the root remnant(s). Our results indicate that coronectomy can be a reliable alternative to complete removal of the impacted mandibular third molar in patients exhibiting an increased risk of damage to the inferior alveolar nerve on panoramic radiographs. Copyright © 2016. Published by Elsevier Ltd.
Rahpeyma, Amin; khajehahmadi, Saeedeh
2015-01-01
Introduction Reconstruction of oral and pharyngeal defects after pathologic resections with the same tissue is an optimal and ideal target. Islanded variety of inferiorly pedicled facial artery musculomucosal flap, in which facial artery and vein are skeletonized (referred to as inferiorly based BUMIF), is suitable for reconstruction of medium-sized mucosal defects. Presentation of cases In this article, with four cases, modifications of this flap are demonstrated in reconstruction of large intraoral and oropharyngeal defects and coverage of alveolar ridge in the mandible. Discussion In some situations, there is a need for more mucosal paddle, longer vascular pedicle and more adaptation to the recipient bed. Conclusion Relocating Stensen’s duct increases the mucosal paddle with cranial extension of superior limit while differential incision of the mucosa and buccinator muscle in mandibular vestibule extend the lower limit of this flap. Bone suture is a good complementary technique when this flap is used for coverage of mandibular alveolar ridge. Inferiorly based BUMIF with added length is indicated for oropharyngeal and contralateral mouth floor reconstructions. PMID:26218177
Bone alloplasty and rehabilitation of children with maxillo-facial tumors
NASA Astrophysics Data System (ADS)
Zhelezny, P. A.; Sadovoy, M. A.; Kirilova, I. A.; Zhelezny, S. P.; Podorozhnaya, B. T.; Zheleznaya, A. P.
2017-09-01
The clinical observations in the treatment and rehabilitation of 117 children with maxillofacial tumors are presented. Malignant tumors were observed in 4 patients, other 113 children had benign tumors and tumor mass. Different bone defects of maxilla of both sub-total perforating and small segmental cavity appeared after the removal of neoplasms. The orthopedic transplants from the laboratory of tissue preservation of Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics preserved by different methods were used for maxilla defects restoration. Frozen transplants were applied in 48 patients, "Kostma" transplants were used in 14 patients, "Deprodex"—in 28 patients, "Orgamax"—in 27 patients. Orthopedic transplants from mandibular bone were used for chin and condylar process defects restoration. The orthopedic and orthodontic rehabilitation of the patients with the use of removable and unremovable orthodontic equipment and dental implantation systems was carried out in the postoperative period. Good anatomical functional and esthetic results of rehabilitation were received in 92 patients (89.3%) on long dates by 10 years. In some people the face asymmetry, bite disturbance, reduction of masticatory function were registered.
Kalantar Motamedi, Mahmood Reza; Heidarpour, Majid; Siadat, Sara; Kalantar Motamedi, Alimohammad; Bahreman, Ali Akbar
2015-09-01
Extraction of mandibular third molars (M3s) in close proximity to the mandibular canal has some inherent risks to adjacent structures, such as neurologic damage to teeth, bone defects distal to the mandibular second molar (M2), or pathologic fractures in association with enlarged dentigerous cysts. The procedure for extrusion and subsequent extraction of high-risk M3s is called orthodontic extraction. This is a systematic review of the available approaches for orthodontic extraction of impacted mandibular M3s in close proximity to the mandibular canal and their outcomes. The PubMed, Scopus, Cochrane Central Register of Controlled Trials (CENTRAL), DOAJ, Google Scholar, OpenGrey, Iranian Science Information Database (SID), Iranmedex, and Irandoc databases were searched using specific keywords up to June 2, 2014. Studies were evaluated based on predetermined eligibility criteria, treatment approaches, and their outcomes. Thirteen articles met the inclusion criteria. A total of 123 impacted teeth were extracted by orthodontic extraction and 2 cases were complicated by transient paresthesia. Three types of biomechanical approaches were used: 1) using the posterior maxillary region as the anchor for orthodontic extrusion of lower M3s, 2) simple cantilever springs attached to the M3 buttonhole, and 3) cantilever springs tied to a bonded orthodontic bracket on the M3 plus multiple-loop spring wire for distal movement of the M3. Osteo-periodontal status of M2s also improved uneventfully. Despite the drawbacks of orthodontic extraction, removal of deeply impacted M3s using the described techniques is safe with regard to mandibular nerve injury and neurologic damage. Orthodontic extraction is recommended for extraction of impacted M3s that present a high risk of postoperative osteo-periodontal defects on the distal surface of the adjacent M2 and those associated with dentigerous cysts. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Yan, Guangqi; Wang, Xue; Tan, Xuexin; Wang, Xukai; Yang, Mingliang; Lu, Li
2013-08-01
To evaluate the directional significance of SurgiCase software in free fibula mandibular reconstruction. Between September 2010 and March 2012, 10 patients with mandibular defect underwent free fibula mandibular reconstruction. There were 7 males and 3 females, with an age range of 19-43 years (mean, 27 years). The extent of lesions was 7 cm x 5 cm to 16 cm x 8 cm. In each case, three-dimensional spiral CT scan of the maxilla, mandible, and fibula was obtained before surgery. The CT data were imported into the SurgiCase software and the virtual surgery planning was performed. After that, the mandibular rapid prototyping was made according to customized design. The reconstruction surgery was then carried out using these preoperative data. During actual surgery, the extent of mandibular defect was from 6 cm x 3 cm to 16 cm x 5 cm; the length of fibula which was used to reconstruct mandible was 6-17 cm; and the area of flap was from 6 cm x 5 cm to 16 cm x 6 cm. Preoperative data could not be applied because the intraoperative size of tumor was larger than preoperative design in 1 case of mandibular ameloblastoma, and the fibula was shaped according to the actual osteotomy location; operations were performed successfully according to preoperative design in the other 9 patients. The operation time was 5-7 hours (mean, 6 hours). Primary healing of incision was obtained, without early complications. Ten patients were followed up 1 year. At last follow-up, 8 patients were satisfactory with the appearance and 2 patients complained with unsatisfied wide facial pattern. The panoramic radiograghs showed good bone healing. The range of mouth opening was 2.5-3.5 cm. SurgiCase software can provide precise data for free fibula mandibular reconstruction during surgery. It can be applied widely in clinic.
Hematopoietic Stem Cells in Neural-crest Derived Bone Marrow.
Jiang, Nan; Chen, Mo; Yang, Guodong; Xiang, Lusai; He, Ling; Hei, Thomas K; Chotkowski, Gregory; Tarnow, Dennis P; Finkel, Myron; Ding, Lei; Zhou, Yanheng; Mao, Jeremy J
2016-12-21
Hematopoietic stem cells (HSCs) in the endosteum of mesoderm-derived appendicular bones have been extensively studied. Neural crest-derived bones differ from appendicular bones in developmental origin, mode of bone formation and pathological bone resorption. Whether neural crest-derived bones harbor HSCs is elusive. Here, we discovered HSC-like cells in postnatal murine mandible, and benchmarked them with donor-matched, mesoderm-derived femur/tibia HSCs, including clonogenic assay and long-term culture. Mandibular CD34 negative, LSK cells proliferated similarly to appendicular HSCs, and differentiated into all hematopoietic lineages. Mandibular HSCs showed a consistent deficiency in lymphoid differentiation, including significantly fewer CD229 + fractions, PreProB, ProB, PreB and B220 + slgM cells. Remarkably, mandibular HSCs reconstituted irradiated hematopoietic bone marrow in vivo, just as appendicular HSCs. Genomic profiling of osteoblasts from mandibular and femur/tibia bone marrow revealed deficiencies in several HSC niche regulators among mandibular osteoblasts including Cxcl12. Neural crest derived bone harbors HSCs that function similarly to appendicular HSCs but are deficient in the lymphoid lineage. Thus, lymphoid deficiency of mandibular HSCs may be accounted by putative niche regulating genes. HSCs in craniofacial bones have functional implications in homeostasis, osteoclastogenesis, immune functions, tumor metastasis and infections such as osteonecrosis of the jaw.
Wang, P; Wang, S; Ni, L
2009-01-01
The current paper describes a modified treatment procedure for a traumatized mandibular left second molar resulting in a crown-root fracture and root perforation with the fracture line below the gingival attachment and alveolar bone crest. After the mobile crown-root fragment was extracted, the root perforation was obturated with mineral trioxide aggregate (MTA), and the subgingival defect was directly repaired with polyacid-modified resin composites (Ionosite Baseline). A 24-month recall showed no evidence of periodontal inflammation and no adverse symptoms, and the treated tooth exhibited good healing and normal function.
Reconstruction of the mandible bone by treatment of resected bone with pasteurization.
Uehara, Masataka; Inokuchi, Tsugio; Sano, Kazuo; Sumita, Yoshinori; Tominaga, Kazuhiro; Asahina, Izumi
2012-11-01
The results of long-term follow-up for reimplantation of the mandibular bone treated with pasteurization are reported. Mandibulectomy was performed for mandibular malignancy in 3 cases. The resected bones were subsequently reimplanted after treatment with pasteurization in 3 cases to eradicate tumor cells involved in the resected bone. Although postoperative infection was observed in 2 of 3 cases, reimplantation of the resected mandibular bone treated by pasteurization was finally successful. Ten to 22 years of follow-up was carried out. Pasteurization was able to devitalize tumor cells involved in the resected bone and to preserve bone-inductive activity. Reimplantation of pasteurization could be a useful strategy for reconstruction of the mandible in patients with mandibular malignancy.
Padmanabhan, Shyam; Dommy, Ahila; Guru, Sanjeela R.; Joseph, Ajesh
2017-01-01
Aim: Periodontists frequently experience inconvenience in accurate assessment and treatment of furcation areas affected by periodontal disease. Furcation involvement (FI) most commonly affects the mandibular molars. Diagnosis of furcation-involved teeth is mainly by the assessment of probing pocket depth, clinical attachment level, furcation entrance probing, and intraoral periapical radiographs. Three-dimensional imaging has provided advantage to the clinician in assessment of bone morphology. Thus, the present study aimed to compare the diagnostic efficacy of cone-beam computed tomography (CBCT) as against direct intrasurgical measurements of furcation defects in mandibular molars. Subjects and Methods: Study population included 14 patients with 25 mandibular molar furcation sites. CBCT was performed to measure height, width, and depth of furcation defects of mandibular molars with Grade II and Grade III FI. Intrasurgical measurements of the FI were assessed during periodontal flap surgery in indicated teeth which were compared with CBCT measurements. Statistical analysis was done using paired t-test and Bland–Altman plot. Results: The CBCT versus intrasurgical furcation measurements were 2.18 ± 0.86 mm and 2.30 ± 0.89 mm for furcation height, 1.87 ± 0.52 mm and 1.84 ± 0.49 mm for furcation width, and 3.81 ± 1.37 mm and 4.05 ± 1.49 mm for furcation depth, respectively. Results showed that there was no statistical significance between the measured parameters, indicating that the two methods were statistically similar. Conclusion: Accuracy of assessment of mandibular molar FI by CBCT was comparable to that of direct surgical measurements. These findings indicate that CBCT is an excellent adjunctive diagnostic tool in periodontal treatment planning. PMID:29042732
Penetration of flomoxef into human maxillary and mandibular bones.
Igawa, H H; Sugihara, T; Yoshida, T; Kawashima, K; Ohura, T
1995-09-01
Penetration of flomoxef into the maxillary and mandibular bones was assayed clinically to provide data about its usefulness for the prevention of postoperative infection after maxillofacial surgery. Twenty-one patients undergoing maxillofacial surgery at our department were given flomoxef 2 g dissolved in 20 ml of physiological saline intravenously over 3 minutes during operation, and the serum, maxillary and mandibular concentrations were measured 1, 3, and 6 hours after injection by the band culture method using Escherichia coli 7437 as the indicator strain. The mean concentrations were 53.4, 16.1, and 2.6 micrograms/ml, respectively, in the serum, 17.6, 7.8, and 1.0 micrograms/g in maxillary bone, and 16.4, 4.2, and 0.9 micrograms/g in mandibular bone. The mean bone:serum ratios at 1, 3, and 6 hours were 33.0%, 48.2%, and 36.8%, respectively, for maxillary bone, and 30.7%, 26.2%, and 35.7% for mandibular bone. When compared with previously reported data on the bone:serum ratios in jaw of various other intravenous antibiotics, our results show that penetration of flomoxef into maxillary and mandibular bone is extremely high. As all the intramaxillary and intramandibular concentrations exceed its MIC80 values against clinical isolates of bacteria frequently isolated in cases of infection in the oral and maxillofacial region, it is apparent that one intravenous shot of flomoxef 2 g allows penetration of the drug into the maxillary and mandibular bones at effective concentrations. Flomoxef is therefore potentially useful for the prevention and treatment of infections in the oral and maxillofacial region, as it has excellent penetration into the maxillary and mandibular bones.
Gene Therapy of Bone Morphogenetic Protein for Periodontal Tissue Engineering
Jin, Q-M.; Anusaksathien, O.; Webb, S.A.; Rutherford, R.B.; Giannobile, W.V.
2009-01-01
Background The reconstruction of lost periodontal support including bone, ligament, and cementum is a major goal of therapy. Bone morphogenetic proteins (BMPs) have shown much potential in the regeneration of the periodontium. Limitations of BMP administration to periodontal lesions include need for high-dose bolus delivery, BMP transient biological activity, and low bioavailability of factors at the wound site. Gene transfer offers promise as an alternative treatment strategy to deliver BMPs to periodontal tissues. Methods This study utilized ex vivo BMP-7 gene transfer to stimulate tissue engineering of alveolar bone wounds. Syngeneic dermal fibroblasts (SDFs) were transduced ex vivo with adenoviruses encoding either green fluorescent protein (Ad-GFP or control virus), BMP-7 (Ad-BMP-7), or an antagonist of BMP bioactivity, noggin (Ad-noggin). Transduced cells were seeded onto gelatin carriers and then transplanted to large mandibular alveolar bone defects in a rat wound repair model. Results Ad-noggin treatment tended to inhibit osteogenesis as compared to the control-treated and Ad-BMP-7-treated specimens. The osseous lesions treated by Ad-BMP-7 gene delivery demonstrated rapid chrondrogenesis, with subsequent osteogenesis, cementogenesis and predictable bridging of the periodontal bone defects. Conclusion These results demonstrate the first successful evidence of periodontal tissue engineering using ex vivo gene transfer of BMPs and offers a new approach for repairing periodontal defects. PMID:12666709
Endodontic management of horizontally placed molars after gunshot injury to mandible: a case report.
Nawal, Ruchika Roongta; Sehgal, Ritu; Ansari, Irfan; Talwar, Sangeeta; Sood, Abhinav; Verma, Mahesh
2009-11-01
A 37-year-old man reported to our department with the history of gunshot injury to the mandible 15 years before. His anterior mandible had been resected earlier and bone graft was seen. Intraoral examination of lower jaw revealed 4 remaining mandibular molars. These teeth were severely rotated such that they lay horizontal with respect to the mandibular base. Preoperative Dentascan spiral computerized tomography (CT) of the patient revealed obliteration of the mesial canals of the mandibular right first molar and pear-shaped internal resorption defect in the distal canal of the same tooth. This paper reports the challenging endodontic management of a rare case of severely angulated teeth also exhibiting traumatic sequelae in both roots of the impact tooth. It also highlights the usefulness of spiral CT scan in diagnosis of traumatic sequelae such as pulp canal obliteration and internal resorption.
Queiroz, Lucas Araujo; Santamaria, Mauro; Casati, Marcio; Silverio, Karina; Nociti-Junior, Francisco; Sallum, Enilson
2015-03-01
The aim of this study is to report on the treatment of mandibular Class II furcation defects with enamel matrix protein derivative (EMD) combined with a βTCP/HA (β-tricalcium phosphate/hydroxyapatite) alloplastic material. Thirteen patients were selected. All patients were nonsmokers, systemically healthy, and diagnosed with chronic periodontitis; had not taken medications known to interfere with periodontal tissue health and healing; presented one Class II mandibular furcation defect with horizontal probing equal to or greater than 4 mm at buccal site. The clinical parameters evaluated were probing depth (PD), relative gingival margin position (RGMP), relative vertical clinical attachment level (RVCAL), and relative horizontal clinical attachment level (RHCAL). A paired Student t test was used to detect differences between the baseline and 6-month measurements, with the level of significance of .05. After 6 months, the treatment produced a statistically significant reduction in PD and a significant gain in RVCAL and RHCAL, but no observable change in RGMP. RVCAL ranged from 13.77 (± 1.31) at baseline to 12.15 (± 1.29) after 6 months, with a mean change of -1.62 ± 1.00 mm (P < .05). RHCAL ranged from 5.54 (± 0.75) to 2.92 (± 0.92), with a mean change of -2.62 ± 0.63 mm (P < .05). After 6 months, 76.92% of the patients improved their diagnosis to Class I furcation defects while 23.08% remained as Class II. The present study has shown that positive clinical results may be expected from the combined treatment of Class II furcation defects with EMD and βTCP/HA, especially considering the gain of horizontal attachment level. Despite this result, controlled clinical studies are needed to confirm our outcomes.
Seo, Mi Hyun; Eo, Mi Young; Cho, Yun Ju; Kim, Soung Min; Lee, Suk Keun
2018-03-01
This prospective study evaluated the clinical effectiveness of the new approach of partial autogenous bone chip grafts for the treatment of mandibular cystic lesions related to the inferior alveolar nerve (IAN). A total of 38 patients treated for mandibular cysts or benign tumors were included in this prospective study and subsequently divided into 3 groups depending on the bone grafting method used: cystic enucleation without a bone graft (group 1), partial bone chip graft covering the exposed IAN (group 2), and autogenous bone graft covering the entire defect (group 3). We evaluated the symptoms, clinical signs, and radiographic changes using dental panorama preoperatively, immediate postoperatively, and at 1, 3, 6, and 12 months postoperatively. Radiographic densities were compared using Adobe Photoshop CS5 (Adobe Systems Inc., San Jose, CA). Repeated measures analysis of variance was used for statistical evaluation with SPSS 22.0 (SPSS Inc, Chicago, IL), and P < 0.05 was considered statistically significant.Radiopacities were the most increased at 1 year postoperative in group 3; groups 2 and 3 did not show statistically significant differences, whereas groups 1 and 3 were statistically significant. In terms of radiographic bone healing with clinical regeneration of the exposed IAN, healing occurred in all patients, although the best healing was achieved in group 2.This autogenous partial bone chip grafting procedure to cover the exposed IAN is suggested as a new surgical protocol for the treatment of cystic lesions associated with the IAN.
Ogawa, Sachie; Watanabe, Masahiro; Kawaai, Hiroyoshi; Tada, Hitoshi; Yamazaki, Shinya
2014-01-01
It has been reported that the action of infiltration anesthesia on the jawbone is attenuated significantly by elevation of the periosteal flap with saline irrigation in clinical studies; however, the reason is unclear. Therefore, the lidocaine concentration in mandibular bone after subperiosteal infiltration anesthesia was measured under several surgical conditions. The subjects were 48 rabbits. Infiltration anesthesia by 0.5 mL of 2% lidocaine with 1 : 80,000 epinephrine (adrenaline) was injected into the right mandibular angle and left mandibular body, respectively. Under several surgical conditions (presence or absence of periosteal flap, and presence or absence of saline irrigation), both mandibular bone samples were removed at a fixed time after subperiosteal infiltration anesthesia. The lidocaine concentration in each mandibular bone sample was measured by high-performance liquid chromatography. As a result, elevation of the periosteal flap with saline irrigation significantly decreased the lidocaine concentration in the mandibular bone. It is suggested that the anesthetic in the bone was washed out by saline irrigation. Therefore, supplemental conduction and/or general anesthesia should be utilized for long operations that include elevation of the periosteal flap with saline irrigation. PMID:24932978
Carrel, Jean-Pierre; Wiskott, Anselm; Scherrer, Susanne; Durual, Stéphane
2016-12-01
Osteoflux is a three-dimensional printed calcium phosphate porous structure for oral bone augmentation. It is a mechanically stable scaffold with a well-defined interconnectivity and can be readily shaped to conform to the bone bed's morphology. An animal experiment is reported whose aim was to assess the performance and safety of the scaffold in promoting vertical growth of cortical bone in the mandible. Four three-dimensional blocks (10 mm length, 5 mm width, 5 mm height) were affixed to edentulous segments of the dog's mandible and covered by a collagen membrane. During bone bed preparation, particular attention was paid not to create defects 0.5 mm or more so that the real potential of the three-dimensional block in driving vertical bone growth can be assessed. Histomorphometric analyses were performed after 8 weeks. At 8 weeks, the three-dimensional blocks led to substantial vertical bone growth up to 4.5 mm from the bone bed. Between 0 and 1 mm in height, 44% of the surface was filled with new bone, at 1 to 3 mm it was 20% to 35%, 18% at 3 to 4, and ca. 6% beyond 4 mm. New bone was evenly distributed along in mesio-distal direction and formed a new crest contour in harmony with the natural mandibular shape. After two months of healing, the three-dimensional printed blocks conducted new bone growth above its natural bed, up to 4.5 mm in a canine mandibular model. Furthermore, the new bone was evenly distributed in height and density along the block. These results are very promising and need to be further evaluated by a complete powerful study using the same model. © 2016 Wiley Periodicals, Inc.
FENG, ZIHAO; LIU, JIAQI; SHEN, CONGCONG; LU, NANHANG; ZHANG, YONG; YANG, YANWEN; QI, FAZHI
2016-01-01
The present study aimed to investigate the properties of a promising bone scaffold for bone repair, which consisted of a novel composite of adipose-derived stem cells (ADSCs) attached to a porous β-tricalcium phosphate (β-TCP) scaffold with platelet-rich plasma (PRP). The β-TCP powder was synthesized and its composition was determined using X-ray diffraction and Fourier transform infrared spectroscopy. The surface morphology and microstructure of the fabricated porous β-TCP scaffold samples were analyzed using light and scanning electron microscopy, and their porosity and compressive strength were also evaluated. In addition, the viability of rabbit ADSCs incubated with various concentrations of the β-TCP extraction fluid was analyzed. The rate of attachment and the morphology of biotinylated ADSCs (Bio-ADSCs) on avidin-coated β-TCP (Avi-β-TCP), and untreated ADSCs on β-TCP, were compared. Furthermore, in vivo bone-forming abilities were determined following the implantation of group 1 (Bio-ADSCs/Avi-β-TCP) and group 2 (Bio-ADSCs/Avi-β-TCP/PRP) constructs using computed tomography, and histological osteocalcin (OCN) and alkaline phosphatase (ALP) expression analyses in a rabbit model of mandibulofacial defects. The β-TCP scaffold exhibited a high porosity (71.26±0.28%), suitable pore size, and good mechanical strength (7.93±0.06 MPa). Following incubation with β-TCP for 72 h, 100% of viable ADSCs remained. The avidin-biotin binding system significantly increased the initial attachment rate of Bio-ADSCs to Avi-β-TCP in the first hour (P<0.01). Following the addition of PRP, group 2 exhibited a bony-union and mandibular body shape, newly formed bone and increased expression levels of OCN and ALP in the mandibulofacial defect area, as compared with group 1 (P<0.05). The results of the present study suggested that the novel Bio-ADSCs/Avi-β-TCP/PRP composite may have potential application in bone repair and bone tissue engineering. PMID:26997987
Lahoti, Krishnakumar; Pathrabe, Anup; Gade, Jaykumar
2016-01-01
The purpose of this research was to compare stress distribution on the bone between single implant-retained and two-implant-retained mandibular overdentures using three-dimensional (3D) finite element analysis. Two 3D finite element models were designed. The first model included single implant-supported mandibular overdenture placed in the midline of the mandible while the second model included two-implant-supported mandibular overdenture placed in the intra-foramen region, retained by ball attachment of the same diameter. The bone was modeled on the D2 bone depending on the classification given by Misch. A computed tomography scan of the mandible was used to model the bone by plotting the key points on the graph and generating the identical key points on the ANSYS Software (ANSYS, Inc., USA). The implant was modeled using appropriate dimensions as provided by the manufacturer. Stresses were calculated based on the von Mises criteria. Stresses produced in the hard bone (HB) and soft bone (SB) were higher in single implant-retained mandibular overdenture while stresses produced around the denture as well as implant were higher in two-implant-retained mandibular overdenture. Within the limitations of the study, it had been seen that stresses produced were the highest on HB and SB in single implant-retained mandibular overdenture while stresses produced across the denture as well as implant were the highest in two-implant-retained mandibular overdenture.
A New Device for Alveolar Bone Transportation
Vega, Omar; Pérez, Daniel; Páramo, Viviana; Falcón, Jocelyn
2011-01-01
We present a retrospective review of a new technique for the transportation of alveolar bone using a Hyrax device modified by the principal author (O.A.V.). There were seven patients (five males and two females), including five patients with cleft palate and lip diagnosis, one patient with a high-speed gunshot wound, and one patient with facial trauma sequel due to mandibular fracture. They were all treated with an alveolar bone transportation technique (ABT) through the use of the modified Hyrax device (VEGAX). Before surgery, distraction osteogenesis of the bifocal type was performed on four patients, and the trifocal type was performed on the other three patients. However, in one case, direct dental anchorage was not used, only orthodontic appliances. In all the cases, new bone formation and gingival tissue around the defect were obtained, posterior to the alveolar distraction process; no complications were observed in any patient. In one case, two teeth involved in the disk of the ABT were extracted, due to a previous condition of periodontal disease. The alveolar bone transport with the VEGAX device is an accessible technique for almost every patient with alveolar defects due to diverse causes. In all the presented cases, predictability and success were demonstrated. PMID:22655120
Doiphode, Amol M.; Hegde, Prashanth; Mahindra, Uma; Santhosh Kumar, S. M.; Tenglikar, Pavan D.; Tripathi, Vivek
2016-01-01
Aim and Objectives: This study attempted the evaluation of the efficacy of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in alveolar defects after removal of bilateral mandibular third molars. Materials and Methods: A total of 30 patients reporting to Department of Oral and Maxillofacial Surgery and having bilateral mandibular third molar impaction in both male and female aged between 18 and 30 years were included in this study. PRF and PRP were placed in extraction site and recalled at 2nd, 4th, and 6th month postoperatively. Data were statistically analyzed using IBM SPSS software for Windows, version 19.0. IBM Corp., Armonk, NY, USA. Results: This study showed decreased probing depth in PRF group compared to PRP and control one. This signifies a better soft tissue healing of extraction sockets with PRF as compared to the PRP and the control group and increase in the bone density highlights the use of PRP and PRF certainly as a valid method in inducing hard tissue regeneration. Conclusion: This study indicates a definite improvement in the periodontal health distal to second molar after third molar surgery in cases treated with PRF as compared to the PRP group and control group. Hence, PRP and PRF can be incorporated as an adjunct to promote wound healing and osseous regeneration in mandibular third molar extraction sites. PMID:27195227
Lustosa, Romulo Maciel; Macedo, Diogo de Vasconcelos; Iwaki, Lilian Cristina Vessoni; Tolentino, Elen de Souza; Hasse, Paulo Norberto; Marson, Giordano Bruno de Oliveira; Iwaki Filho, Liogi
2015-10-01
Recombinant human morphogenetic protein (rhBMP) is a graft alternative for extensive mandibular reconstruction after tumor resections. However, the feasibility of rhBMP-2 to receive osseointegrated implants and prosthetic rehabilitation has been rarely reported. This study reports on a case of an extensive solid ameloblastoma along the mandibular body. The treatment consisted of resection followed by off-label use of rhBMP type 2 associated with bovine bone xenograft. Eleven months postoperatively, the patient was prosthetically rehabilitated with dental implants, without evidence of resorption or complications. The literature on mandibular reconstructions using rhBMP and their feasibility for future osseointegrated implant placement was also reviewed. Based on the presented case, the association between rhBMP-2 and a bovine bone xenograft could be considered a feasible option for the reconstruction and rehabilitation of large mandibular defects after tumor resection. According to the literature, the use of rhBMP as a graft material is encouraging, with good clinical outcome. However, there are no long-term studies demonstrating success and survival rates of implants placed in these grafts. Future investigations will be required to ascertain the long-term survival of implants in areas grafted with rhBMP. Also, there is a lack of information regarding the prosthetic rehabilitation of these patients. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Konopnicki, Sandra; Sharaf, Basel; Resnick, Cory; Patenaude, Adam; Pogal-Sussman, Tracy; Hwang, Kyung-Gyun; Abukawa, Harutsugi; Troulis, Maria J
2015-05-01
Deep bone penetration into implanted scaffolds remains a challenge in tissue engineering. The purpose of this study was to evaluate bone penetration depth within 3-dimensionally (3D) printed β-tricalcium phosphate (β-TCP) and polycaprolactone (PCL) scaffolds, seeded with porcine bone marrow progenitor cells (pBMPCs), and implanted early in vivo. Scaffolds were 3D printed with 50% β-TCP and 50% PCL. The pBMPCs were harvested, isolated, expanded, and differentiated into osteoblasts. Cells were seeded into the scaffolds and constructs were incubated in a rotational oxygen-permeable bioreactor system for 14 days. Six 2- × 2-cm defects were created in each mandible (N = 2 minipigs). In total, 6 constructs were placed within defects and 6 defects were used as controls (unseeded scaffolds, n = 3; empty defects, n = 3). Eight weeks after surgery, specimens were harvested and analyzed by hematoxylin and eosin (H&E), 4',6-diamidino-2-phenylindole (DAPI), and CD31 staining. Analysis included cell counts, bone penetration, and angiogenesis at the center of the specimens. All specimens (N = 12) showed bone formation similar to native bone at the periphery. Of 6 constructs, 4 exhibited bone formation in the center. Histomorphometric analysis of the H&E-stained sections showed an average of 22.1% of bone in the center of the constructs group compared with 1.87% in the unseeded scaffolds (P < .05). The 2 remaining constructs, which did not display areas of mature bone in the center, showed massive cell penetration depth by DAPI staining, with an average of 2,109 cells/0.57 mm(2) in the center compared with 1,114 cells/0.57 mm(2) in the controls (P < .05). CD31 expression was greater in the center of the constructs compared with the unseeded scaffolds (P < .05). 3D printed β-TCP and PCL scaffolds seeded with pBMPCs and implanted early into porcine mandibular defects display good bone penetration depth. Further study with a larger sample and larger bone defects should be performed before human applications. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Application of biodegradable plates for treating pediatric mandibular fractures.
An, Jingang; Jia, Pengcheng; Zhang, Yi; Gong, Xi; Han, Xiaodong; He, Yang
2015-05-01
We assessed the clinical results of a biodegradable plate system for the internal fixation of mandibular fractures in children, and observed the imaging features of fracture healing and bone changes around the biodegradable plates and screws during follow-up. We enrolled 39 patients (22 male, 17 female, average age 4 years 10 months) with different mandibular fractures. We used 2.0-mm resorbable plates to repair the fractures. Postoperative follow-up ranged from 6 months to 5 years; average follow-up was 1 year 2 months. The outcome measures identified and assessed included facial symmetry, mouth opening, occlusal relationship, infection, nonunion, malunion, and plate dehiscence. We fixed 42 fractures with 43 resorbable plates; the fracture site of one patient (aged 11 years 3 months) was fixed with two plates. Two patients developed small fistulas at the intraoral incision 2 months after surgery; the fistulas healed after 1 month without special treatment. In the other patients, the incision healed well, there was facial symmetry, mouth opening was >35 mm, and occlusion was good. Follow-up computed tomography examination data were available for 20 cases, and revealed different degrees of radiolucency indicating that osteolysis had occurred. Radiolucency was observed around the resorbable plates 1 month after the surgery. The extent and depth of the radiolucent region were obvious within 1 year of surgery. In the second year, there were obvious repairs, with the bony defect areas becoming shallower. After 2 years, the bony defect areas had almost disappeared. Biodegradable fixation devices are safe and efficient for treating pediatric mandibular fractures. Osteolysis commonly follows biodegradable fixation of pediatric mandibular fractures, and has no adverse effect on fracture healing. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
ADAM10 is essential for cranial neural crest-derived maxillofacial bone development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Yu, E-mail: tanyu2048@163.com; Fu, Runqing, E-mail: furunqing@sjtu.edu.cn; Liu, Jiaqiang, E-mail: liujqmj@163.com
Growth disorders of the craniofacial bones may lead to craniofacial deformities. The majority of maxillofacial bones are derived from cranial neural crest cells via intramembranous bone formation. Any interruption of the craniofacial skeleton development process might lead to craniofacial malformation. A disintegrin and metalloprotease (ADAM)10 plays an essential role in organ development and tissue integrity in different organs. However, little is known about its function in craniofacial bone formation. Therefore, we investigated the role of ADAM10 in the developing craniofacial skeleton, particularly during typical mandibular bone development. First, we showed that ADAM10 was expressed in a specific area of themore » craniofacial bone and that the expression pattern dynamically changed during normal mouse craniofacial development. Then, we crossed wnt1-cre transgenic mice with adam10-flox mice to generate ADAM10 conditional knockout mice. The stereomicroscopic, radiographic, and von Kossa staining results showed that conditional knockout of ADAM10 in cranial neural crest cells led to embryonic death, craniofacial dysmorphia and bone defects. Furthermore, we demonstrated that impaired mineralization could be triggered by decreased osteoblast differentiation, increased cell death. Overall, these findings show that ADAM10 plays an essential role in craniofacial bone development. -- Highlights: •We firstly reported that ADAM10 was essentially involved in maxillofacial bone development. •ADAM10 cKO mice present craniofacial dysmorphia and bone defects. •Impaired osteoblast differentiation,proliferation and apoptosis underlie the bone deformity.« less
Zhou, Wei; Zhao, Chun-Hui; Mei, Ling-Xuan
2010-06-01
To evaluate the effect of the osteoprotegerin (OPG) gene-modified autologous bone marrow stromal cells (BMSCs) on regeneration of periodontal defects, and to provide new experimental evidence to explore the gene therapy for periodontal disease. pSecTag2/B-opg was transduced into BMSCs by lipofectamine 2000. The expression of OPG protein in the BMSCs was detected by immunocytochemistry and Western blot. Inverted phase contrast microscope and scanning electron microscopy (SEM) were used to observe the morphology and proliferation of the BMSCs(OPG) on on the surface of the poly lactic-co-glycolic (PLGA). Horizontal alveolar bone defect (4 mmx4 mmx 3 mm) were surgically created in the buccal aspect of the mandibular premolar, and were randomly assigned to receive BMSCs(OPG)-PLGA (cells/material/OPG), BMSCs-PLGA (cells/material), PLGA (material), or root planning only (blank control). The animals were euthanized at 6 weeks post surgery for histological analysis. The height of new alveolar bone and cementum and the formation of new connective tissue were analyzed and compared. All data were statistically analyzed using the q test. The BMSCs transfected by human OPG gene can highly express OPG protein. SEM observations demonstrated that BMSCs(OPG) were able to proliferate and massively colonize on the scaffolds structure. After 6 weeks, the height of new alveolar bone and cementum and the formation of new connective tissue were significantly greater in the experimental group than in the control groups (P < 0.05). BMSCs(OPG)-PLGA can significantly promote the regeneration of dog's periodontal bone defects. Gene therapy utilizing OPG may offer the potential for periodontal tissue engineering applications.
Guided bone regeneration with a synthetic biodegradable membrane: a comparative study in dogs.
Jung, Ronald E; Kokovic, Vladimir; Jurisic, Milan; Yaman, Duygu; Subramani, Karthikeyan; Weber, Franz E
2011-08-01
The aim of the present study was to compare a newly developed biodegradable polylactide/polyglycolide/N-methyl-2-pyrrolidone (PLGA/NMP) membrane with a standard resorbable collagen membrane (RCM) in combination with and without the use of a bone substitute material (deproteinized bovine bone mineral [DBBM]) looking at the proposed tenting effect and bone regeneration. In five adult German sheepdogs, the mandibular premolars P2, P3, P4, and the molar M1 were bilaterally extracted creating two bony defects on each site. A total of 20 dental implants were inserted and allocated to four different treatment modalities within each dog: PLGA/NMP membrane only (Test 1), PLGA/NMP membrane with DBBM (Test 2), RCM only (negative control), and RCM with DBBM (positive control). A histomorphometric analysis was performed 12 weeks after implantation. For statistical analysis, a Friedman test and subsequently a Wilcoxon signed ranks test were applied. In four out of five PLGA/NMP membrane-treated defects, the membranes had broken into pieces without the support of DBBM. This led to a worse outcome than in the RCM group. In combination with DBBM, both membranes revealed similar amounts of area of bone regeneration and bone-to-implant contact without significant differences. On the level of the third implant thread, the PLGA/NMP membrane induced more horizontal bone formation beyond the graft than the RCM. The newly developed PLGA/NMP membrane performs equally well as the RCM when applied in combination with DBBM. Without bone substitute material, the PLGA/NMP membrane performed worse than the RCM in challenging defects, and therefore, a combination with a bone substitute material is recommended. © 2010 John Wiley & Sons A/S.
Shashmurina, V R; Chumachenko, E N; Olesova, V N; Volozhin, A I
2008-01-01
Math modelling "removable dentures-implantate-bone" with size and density of bone tissue as variables was created. It allowed to study biomechanical bases of mandibular bone tissue structures interaction with full removable dentures of different constructions and fixed on intraosseous implantates. Analysis of the received data showed that in the majority of cases it was expedient to recommend 3 bearing (abutments) system of denture making. Rest on 4 and more implantates was appropriate for patients with reduced density of spongy bone and significant mandibular bone atrophy. 2 abutment system can be used in patients with high density of spongy bone and absence of mandibular bone atrophy.
Kelsey, W Patrick; Kalmar, John R; Tatakis, Dimitris N
2009-12-01
The gingival cyst of the adult (GCA) is an uncommon developmental cyst of odontogenic origin most frequently seen near mandibular canines and premolars and is routinely treated with excisional biopsy. This article presents a case of a GCA treated with a combined regenerative approach and reviews the GCA literature with an emphasis on the clinical aspects of this lesion. A 54 year-old man presented for treatment of generalized severe chronic periodontitis. Clinical examination revealed a cystic lesion in the gingiva of the mandibular canine-premolar area. Radiographs revealed a well-defined radiolucency in the coronal one-third of the tooth roots. Surgical enucleation of the lesion revealed root exposure of the second premolar. Because of the anatomy of the lesion-associated defect, regenerative treatment, using a combination of freeze-dried bone allograft and a collagen membrane, was considered the therapeutic approach of choice. The biopsy revealed histologic features consistent with a GCA. Clinical and radiographic examinations 1 year post-surgery indicated uneventful soft tissue healing and bone fill of the initial defect. The review of the literature revealed only one other case of root exposure associated with GCA and no previous report of regenerative therapy. In rare instances, a GCA lesion may result in tooth-root exposure. In such cases, a combined regenerative treatment approach may be used to achieve resolution.
Tomco, Marek; Petrovova, Eva; Giretova, Maria; Almasiova, Viera; Holovska, Katarina; Cigankova, Viera; Jenca, Andrej; Jencova, Janka; Jenca, Andrej; Boldizar, Martin; Balazs, Kosa; Medvecky, Lubomir
2017-09-01
Bone tissue engineering combines biomaterials with biologically active factors and cells to hold promise for reconstructing craniofacial defects. In this study the biological activity of biphasic hydroxyapatite ceramics (HA; a bone substitute that is a mixture of hydroxyapatite and β-tricalcium phosphate in fixed ratios) was characterized (1) in vitro by assessing the growth of MC3T3 mouse osteoblast lineage cells, (2) in ovo by using the chick chorioallantoic membrane (CAM) assay and (3) in an in vivo pig animal model. Biocompatibility, bioactivity, bone formation and biomaterial degradation were detected microscopically and by radiology and histology. HA ceramics alone demonstrated great biocompatibility on the CAM as well as bioactivity by increased proliferation and alkaline phosphatase secretion of mouse osteoblasts. The in vivo implantation of HA ceramics with bone marrow mesenchymal stem cells (MMSCs) showed de novo intramembranous bone healing of critical-size bone defects in the right lateral side of pig mandibular bodies after 3 and 9 weeks post-implantation. Compared with the HA ceramics without MMSCs, the progress of bone formation was slower with less-developed features. This article highlights the clinical use of microporous biphasic HA ceramics despite the unusually shaped elongated micropores with a high length/width aspect ratio (up to 20) and absence of preferable macropores (>100 µm) in bone regenerative medicine.
Kaner, Doğan; Zhao, Han; Arnold, Wolfgang; Terheyden, Hendrik; Friedmann, Anton
2017-06-01
Soft tissue (ST) dehiscence with graft exposure is a frequent complication of vertical augmentation. Flap dehiscence is caused by failure to achieve tension-free primary wound closure and by the impairment of flap microcirculation due to surgical trauma. Soft tissue expansion (STE) increases ST quality and quantity prior to reconstructive surgery. We hypothesized that flap preconditioning using STE would reduce the incidence of ST complications after bone augmentation and that optimized ST healing would improve the outcome of bone regeneration. Self-filling tissue expanders were implanted in mandibular bone defects in ten beagle dogs. After expansion, alloplastic scaffolds were placed for vertical bone augmentation in STE sites and in control sites without STE pre-treatment. ST flap microcirculation was analysed using laser Doppler flowmetry. The incidence of graft exposures was evaluated after 2 weeks. Bone formation was assessed after 2 months, using histomorphometry and immunohistochemistry. Test sites showed significantly less impairment of perfusion and faster recovery of microcirculation after bone augmentation. Furthermore, no flap dehiscences occurred in STE sites. Bone regeneration was found in both groups; however, significantly greater formation of new bone was detected in test sites with preceding STE. Preconditioning using STE improved ST healing and bone formation after vertical augmentation. The combination of STE and the subsequent placement of alloplastic scaffolds may facilitate the reconstruction of severe bone defects. © 2016 The Authors. Clinical Oral Implants Research Published by John Wiley & Sons Ltd.
Ahn, Hyo-Won; Seo, Dong-Hwi; Kim, Seong-Hun; Park, Young-Guk; Chung, Kyu-Rhim; Nelson, Gerald
2016-10-01
Our aim in this study was to evaluate the effect of augmented corticotomy on the decompensation pattern of mandibular anterior teeth, alveolar bone, and surrounding periodontal tissues during presurgical orthodontic treatment. Thirty skeletal Class III adult patients were divided into 2 groups according to the application of augmented corticotomy labial to the anterior mandibular roots: experimental group (with augmented corticotomy, n = 15) and control group (without augmented corticotomy, n = 15). Lateral cephalograms and cone-beam computed tomography images were taken before orthodontic treatment and before surgery. The measurements included the inclination and position of the mandibular incisors, labial alveolar bone area, vertical alveolar bone height, root length, and alveolar bone thickness at 3 levels surrounding the mandibular central incisors, lateral incisors, and canines. The mandibular incisors were significantly proclined in both groups (P <0.001); however, the labial movement of the incisor tip was greater in the experimental group (P <0.05). Significant vertical alveolar bone loss was observed only in the control group (P <0.001). The middle and lower alveolar thicknesses and labial alveolar bone area increased in the experimental group. In the control group, the upper and middle alveolar thicknesses and labial alveolar bone area decreased significantly. There were no significant differences in dentoalveolar changes between the 3 kinds of anterior teeth in each group, except for root length in the experimental group (P <0.05). Augmented corticotomy provided a favorable decompensation pattern of the mandibular incisors, preserving the periodontal structures surrounding the mandibular anterior teeth for skeletal Class III patients. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
van Minnen, B; Nauta, J M; Vermey, A; Bos, R R M; Roodenburg, J L N
2002-04-01
Mandibular continuity defects are usually reconstructed with bone grafts. However, factors associated with the tumour and the patient can still be reasons to choose reconstruction plates. The aim of this study was to find out the results of mandibular reconstructions with stainless steel AO reconstruction plates after a long follow-up period. The records of 36 patients were reviewed for personal data and the history of disease, treatment and complications. Patients with failed reconstructions were compared with those in whom the procedure had been successful. Patients and surgeons gave their opinion on the functional and cosmetic results. The mean follow-up was 39 months (range 4-99); 4 patients were withdrawn because they developed early recurrent disease and in 17 patients the reconstruction failed. We found no significant differences between the successful and the failed group. Fourteen patients could be evaluated for functional outcome, 10 of whom were totally or satisfactorily rehabilitated. Therefore, stainless steel reconstruction plates can be used in patients when other options are inappropriate.
Regional Variation of Bone Tissue Properties at the Human Mandibular Condyle
Kim, Do-Gyoon; Jeong, Yong-Hoon; Kosel, Erin; Agnew, Amanda M.; McComb, David W.; Bodnyk, Kyle; Hart, Richard T.; Kim, Min Kyung; Han, Sang Yeun; Johnston, William M.
2015-01-01
The temporomandibular joint (TMJ) bears different types of static and dynamic loading during occlusion and mastication. As such, characteristics of mandibular condylar bone tissue play an important role in determining the mechanical stability of the TMJ under the macro-level loading. Thus, the objective of this study was to examine regional variation of the elastic, plastic, and viscoelastic mechanical properties of human mandibular condylar bone tissue using nanoindentation. Cortical and trabecular bone were dissected from mandibular condyles of human cadavers (9 males, 54 to 96 years). These specimens were scanned using microcomputed tomography to obtain bone tissue mineral distribution. Then, nanoindentation was conducted on the surface of the same specimens in hydration. Plastic hardness (H) at a peak load, viscoelastic creep (Creep/Pmax), viscosity (η), and tangent delta (tan δ) during a 30 second hold period, and elastic modulus (E) during unloading were obtained by a cycle of indentation at the same site of bone tissue. The tissue mineral and nanoindentation parameters were analyzed for the periosteal and endosteal cortex, and trabecular bone regions of the mandibular condyle. The more mineralized periosteal cortex had higher mean values of elastic modulus, plastic hardness, and viscosity but lower viscoelastic creep and tan δ than the less mineralized trabecular bone of the mandibular condyle. These characteristics of bone tissue suggest that the periosteal cortex tissue may have more effective properties to resist elastic, plastic, and viscoelastic deformation under static loading, and the trabecular bone tissue to absorb and dissipate time-dependent viscoelastic loading energy at the TMJ during static occlusion and dynamic mastication. PMID:25913634
Karlo, Christoph A; Patcas, Raphael; Kau, Thomas; Watzal, Helmut; Signorelli, Luca; Müller, Lukas; Ullrich, Oliver; Luder, Hans-Ulrich; Kellenberger, Christian J
2012-07-01
To determine the best suited sagittal MRI sequence out of a standard temporo-mandibular joint (TMJ) imaging protocol for the assessment of the cortical bone of the mandibular condyles of cadaveric specimens using micro-CT as the standard of reference. Sixteen TMJs in 8 human cadaveric heads (mean age, 81 years) were examined by MRI. Upon all sagittal sequences, two observers measured the cortical bone thickness (CBT) of the anterior, superior and posterior portions of the mandibular condyles (i.e. objective analysis), and assessed for the presence of cortical bone thinning, erosions or surface irregularities as well as subcortical bone cysts and anterior osteophytes (i.e. subjective analysis). Micro-CT of the condyles was performed to serve as the standard of reference for statistical analysis. Inter-observer agreements for objective (r = 0.83-0.99, P < 0.01) and subjective (κ = 0.67-0.88) analyses were very good. Mean CBT measurements were most accurate, and cortical bone thinning, erosions, surface irregularities and subcortical bone cysts were best depicted on the 3D fast spoiled gradient echo recalled sequence (3D FSPGR). The most reliable MRI sequence to assess the cortical bone of the mandibular condyles on sagittal imaging planes is the 3D FSPGR sequence. MRI may be used to assess the cortical bone of the TMJ. • Depiction of cortical bone is best on 3D FSPGR sequences. • MRI can assess treatment response in patients with TMJ abnormalities.
Influence of mandibular morphology on the hyoid bone in atypical deglutition: a correlational study.
Machado, Almiro J; Crespo, Agrício N
2011-11-01
evaluate the possible correlation with the radiographic position of the hyoid bone and mandibular angle in lateral radiographs of children with atypical deglutition. This was an observational study using cephalometric analysis of lateral teleradiographs for the distances of H-MP (hyoid to mandibular plane). Spearman's correlation analysis was performed with MA (mandibular angle) in two groups: the experimental group with atypical deglutition and the control group normal deglutition. Both groups included subjects in mixed dentition stage. there was a significant moderate negative correlation between MA (mandibular angle) and hyoid bone (H-MP) in the normal group (R = -0.406, p = 0.021). However, there was no significant correlation between the MA and H-MP (R = 0.029, p = 0.83) in the group with atypical deglutition. there is a moderate negative correlation between the position of the hyoid bone and mandibular angle in the group of normal swallowing and there is no correlation between variables H-MP and MA in the group of atypical swallowing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anzai, Jun, E-mail: anzai_jun@kaken.co.jp; Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871; Kitamura, Masahiro, E-mail: kitamura@dent.osaka-u.ac.jp
Research highlights: {yields} Concomitant use of FGF-2 and {beta}-TCP (an osteo-conductive scaffold) significantly promotes periodontal regeneration in the severe periodontitis model (1-wall defect model) of beagle dog. {yields} FGF-2 enhanced new bone formation via {beta}-TCP at the defects. {yields} In particular, FGF-2 dramatically regenerated new periodontal ligament and cementum formations at the defects, that is one of the most important healing outcomes during the process of periodontal regeneration. {yields} Epithelial downgrowth (undesirable wound healing) was decreased by administration of FGF-2. {yields} This manuscript indicates for the first time that concomitant use of FGF-2 and {beta}-TCP is efficacious in regenerating periodontalmore » tissue following severe destruction of the tissue by progression of periodontitis. -- Abstract: The effects of concomitant use of fibroblast growth factor-2 (FGF-2) and beta-tricalcium phosphate ({beta}-TCP) on periodontal regeneration were investigated in the beagle dog 1-wall periodontal defect model. One-wall periodontal defects were created in the mesial portion of both sides of the mandibular first molars, and 0.3% FGF-2 plus {beta}-TCP or {beta}-TCP alone was administered. Radiographic evaluation was performed at 0, 3, and 6 weeks. At 6 weeks, the periodontium with the defect site was removed and histologically analyzed. Radiographic findings showed that co-administration of FGF-2 significantly increased bone mineral contents of the defect sites compared with {beta}-TCP alone. Histologic analysis revealed that the length of the regenerated periodontal ligament, the cementum, distance to the junctional epithelium, new bone height, and area of newly formed bone were significantly increased in the FGF-2 group. No abnormal inflammatory response or ankylosis was observed in either group. These findings indicate the efficacy of concomitant use of FGF-2 and {beta}-TCP as an osteoconductive material for periodontal regeneration following severe destruction by progressive periodontitis.« less
Roles of Chondrocytes in Endochondral Bone Formation and Fracture Repair
Hinton, R.J.; Jing, Y.; Jing, J.; Feng, J.Q.
2016-01-01
The formation of the mandibular condylar cartilage (MCC) and its subchondral bone is an important but understudied topic in dental research. The current concept regarding endochondral bone formation postulates that most hypertrophic chondrocytes undergo programmed cell death prior to bone formation. Under this paradigm, the MCC and its underlying bone are thought to result from 2 closely linked but separate processes: chondrogenesis and osteogenesis. However, recent investigations using cell lineage tracing techniques have demonstrated that many, perhaps the majority, of bone cells are derived via direct transformation from chondrocytes. In this review, the authors will briefly discuss the history of this idea and describe recent studies that clearly demonstrate that the direct transformation of chondrocytes into bone cells is common in both long bone and mandibular condyle development and during bone fracture repair. The authors will also provide new evidence of a distinct difference in ossification orientation in the condylar ramus (1 ossification center) versus long bone ossification formation (2 ossification centers). Based on our recent findings and those of other laboratories, we propose a new model that contrasts the mode of bone formation in much of the mandibular ramus (chondrocyte-derived) with intramembranous bone formation of the mandibular body (non-chondrocyte-derived). PMID:27664203
Matsuura, Takashi; Tokutomi, Kentaro; Sasaki, Michiko; Katafuchi, Michitsuna; Mizumachi, Emiri; Sato, Hironobu
2014-01-01
Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.
Tokutomi, Kentaro; Sasaki, Michiko; Katafuchi, Michitsuna; Mizumachi, Emiri; Sato, Hironobu
2014-01-01
Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw. PMID:24818151
Orthodontic treatment for oral rehabilitation after multiple maxillofacial bone fractures.
Nakamura, Yoshiki; Ogino, Tomoko Kuroiwa; Hirashita, Ayao
2008-09-01
We present the orthodontic treatment of a patient with occlusal dysfunction after plastic surgery for multiple maxillofacial bone fractures caused by a traffic accident. The patient had mandibular deviation to the right because of inappropriate repositioning and fixation of the fractured bone and complete avulsion of both mandibular central incisors. The bilateral mandibular incisors, canines, and premolars were also suspected of partial avulsion or alveolar bone fracture. Several tests, including percussion and dental computed tomography, were performed on these teeth to rule out ankylosis and confirm tooth movement. Camouflage orthodontic treatment was carried out with expansion of the maxillary arch, alignment of both arches, and space closure between the mandibular lateral incisors to improve the occlusion. Good occlusion and interdigitation were obtained. Orthodontic treatment is useful for the rehabilitation of occlusal dysfunction caused by multiple maxillofacial bone fractures.
Shuker, Sabri T
2013-07-01
Interrami intraoral Kirschner wire fixation technique is presented for the reduction, stabilization, and immobilization of a pulverized and avulsed lower jaw caused by rifle fragmented bullet injuries. This indirect mandibular war injury fixation technique was tolerated by the patients and tissue more than any indirect external fixation. In addition, it is easier than open reduction using large bone plates for disrupted ballistics mandibular injury defects. An interrami intraoral fixation is appropriate for severely disrupted mandibular hard and soft tissues, and has been adapted in cases of mass casualties and limited resources. Benefits of use include limited hospital beds and fewer follow-up visits. Rifle fragmented bullet injuries need more attention for several reasons: not only because of the higher mortality and devastating nature of the injuries, but also because these injuries are responsible for an unreported type of bullet biomechanism wounding in the craniofacial region. In turn, this necessitates specialized victim management. The survival rates depend on immediate proper execution of airway, breathing, and circulation, which become more complicated as it relates to airway compromise and oropharyngeal hemorrhage resuscitation. Survival is predicated on the implementation of feasible, sensible, life-saving techniques that are applied at the appropriate time.
Esposito, Stefano Andrea; Huybrechts, Bart; Slagmolen, Pieter; Cotti, Elisabetta; Coucke, Wim; Pauwels, Ruben; Lambrechts, Paul; Jacobs, Reinhilde
2013-09-01
The routine use of high-resolution images derived from 3-dimensional cone-beam computed tomography (CBCT) datasets enables the linear measurement of lesions in the maxillary and mandibular bones on 3 planes of space. Measurements on different planes would make it possible to obtain real volumetric assessments. In this study, we tested, in vitro, the accuracy and reliability of new dedicated software developed for volumetric lesion assessment in clinical endodontics. Twenty-seven bone defects were created around the apices of 8 teeth in 1 young bovine mandible to simulate periapical lesions of different sizes and shapes. The volume of each defect was determined by taking an impression of the defect using a silicone material. The samples were scanned using an Accuitomo 170 CBCT (J. Morita Mfg Co, Kyoto, Japan), and the data were uploaded into a newly developed dedicated software tool. Two endodontists acted as independent and calibrated observers. They analyzed each bone defect for volume. The difference between the direct volumetric measurements and the measurements obtained with the CBCT images was statistically assessed using a lack-of-fit test. A correlation study was undertaken using the Pearson product-moment correlation coefficient. Intra- and interobserver agreement was also evaluated. The results showed a good fit and strong correlation between both volume measurements (ρ > 0.9) with excellent inter- and intraobserver agreement. Using this software, CBCT proved to be a reliable method in vitro for the estimation of endodontic lesion volumes in bovine jaws. Therefore, it may constitute a new, validated technique for the accurate evaluation and follow-up of apical periodontitis. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Nevins, Myron; Al Hezaimi, Khalid; Schupbach, Peter; Karimbux, Nadeem; Kim, David M
2012-07-01
This study tests the effectiveness of hydroxyapatite and collagen bone blocks of equine origin (eHAC), infused with recombinant human platelet-derived growth factor-BB (rhPDGF-BB), to augment localized posterior mandibular defects in non-human primates (Papio hamadryas). Bilateral critical-sized defects simulating severe atrophy were created at the time of the posterior teeth extraction. Test and control blocks (without growth factor) were randomly grafted into the respective sites in each non-human primate. All sites exhibited vertical ridge augmentation, with physiologic hard- and soft-tissue integration of the blocks when clinical and histologic examinations were done at 4 months after the vertical ridge augmentation procedure. There was a clear, although non-significant, tendency to increased regeneration in the test sites. As in the first two preclinical studies in this series using canines, experimental eHAC blocks infused with rhPDGF-BB proved to be a predictable and technically viable method to predictably regenerate bone and soft tissue in critical-sized defects. This investigation supplies additional evidence that eHAC blocks infused with rhPDGF-BB growth factor is a predictable and technically feasible option for vertical augmentation of severely resorbed ridges.
Mandibular reconstruction after cancer: an in-house approach to manufacturing cutting guides.
Bosc, R; Hersant, B; Carloni, R; Niddam, J; Bouhassira, J; De Kermadec, H; Bequignon, E; Wojcik, T; Julieron, M; Meningaud, J-P
2017-01-01
The restoration of mandibular bone defects after cancer can be facilitated by computer-assisted preoperative planning. The aim of this study was to assess an in-house manufacturing approach to customized cutting guides for use in the reconstruction of the mandible with osteocutaneous free flaps. A retrospective cohort study was performed, involving 18 patients who underwent mandibular reconstruction with a fibula free flap at three institutions during the period July 2012 to March 2015. A single surgeon designed and manufactured fibula and mandible cutting guides using a computer-aided design process and three-dimensional (3D) printing technology. The oncological outcomes, production parameters, and quality of the reconstructions performed for each patient were recorded. Computed tomography scans were acquired after surgery, and these were compared with the preoperative 3D models. Eighteen consecutive patients with squamous cell carcinoma underwent surgery and then reconstruction using this customized in-house surgical approach. The lengths of the fibula bone segments and the angle measurements in the simulations were similar to those of the postoperative volume rendering (P=0.61). The ease of access to 3D printing technology has enabled the computer-aided design and manufacturing of customized cutting guides for oral cancer treatment without the need for input from external laboratories. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Iskenderoglu, Nur Serife; Choi, Byung-Joon; Seo, Kyung Won; Lee, Yeon-Ji; Lee, Baek-Soo; Kim, Seong-Hun
2017-01-01
This article presents the alternative surgical treatments of both anterior protrusion by carrying out retraction on mandibular anterior fragment, meanwhile applying retraction force on maxilla anterior teeth and ectopically erupted canine with using platelet-rich fibrin (PRF). Anterior segmental osteotomy was combined with linear corticotomy under local anesthesia. The correction of right ectopic canine was achieved through 2 stages. First, dento-osseous osteotomy on palatal side was performed. Then second osteotomy with immediate manual repositioning of the canine with concomitant first premolar extraction was enhanced with PRF, which was prepared by centrifuging patient's blood, applied into buccal side of high canine during osteotomy. Mandibular retraction was accomplished by anterior segmental osteotomy. Single-tooth osteotomy is a more effective surgical method for ankylosed or ectopically erupted tooth in orthodontic treatment. It can reduce the total orthodontic treatment time and root resorption, 1 common complication. Significant improved bone formation was seen with the addition of PRF on noncritical size defects in the animal model. It is reasonable to think that PRF can promote bone regeneration. So early bone formation also can reduce the complication such as postoperative infection. As an alternative to anterior protrusion and ectopically erupted canine treatment, segmental osteotomy and corticotomy combined platelet-rich plasma can enhance orthodontic treatment outcome.
A histomorphometric analysis of the nature of the mandibular canal in the anterior molar region.
Bertl, Kristina; Heimel, Patrick; Reich, Karoline Maria; Schwarze, Uwe Yacine; Ulm, Christian
2014-01-01
Knowledge of the position and configuration of the mandibular canal is a basic requirement before implant placement in the mandible. Radiological studies suggest a positive correlation between alveolar trabecular bone quality and mandibular canal corticalization. The aim of this study was to test this assumption histomorphometrically in the anterior molar region, which is one of the most frequent places for implantation. Fifty thin ground sections (from 28 male and 22 female cadavers) of the first molar region were investigated for trabecular bone volume and thickness and the presence of a mandibular canal wall. Trabecular bone volume was significantly higher in males (p = 0.009). Further, it correlated significantly with the presence of a canal wall (rho = 0.585, p < 0.001), indicating that a reduced trabecular bone volume is associated with a reduced amount of bone surrounding the alveolar nerve. The cranial aspects of the canal wall were present at a significantly lower frequency (64.64 %) than the buccal, lingual, or caudal sides (p < 0.006). The present study demonstrated that low trabecular bone volume correlates with only a fragmentarily present mandibular canal wall. This suggests that bone surrounding the alveolar nerve is of trabecular, not cortical, origin and possibly affected by reduction of the trabecular bone. These results imply that oral surgeons should pay particular attention to implant placement in patients with low alveolar bone quality. The cranial aspects of the mandibular canal might be only fragmentarily or even completely missing. Consequently, they hardly present resistance during implant site preparation, and the risk for nerve injury, e.g., due to post-surgery hematoma, could be increased.
Tazin, I D; Sysoliatin, P G; Panov, L A; Giunter, V E
2000-01-01
Use of titanium nickelide based porous permeable implants for repair of postosteomyelitis mandibular defects is discussed. Five patients with mandibular defects of different location and extent were operated on. Surgical methods are described. A clinical example of using a porous permeable implant is offered. The implant designed as a mandible was used for repair of an extensive mandibular defect. Good immediate and remote results of operations indicate good prospects of using such implants.
A comparative investigation of bone surface after cutting with mechanical tools and Er:YAG laser.
Baek, Kyung-Won; Deibel, Waldemar; Marinov, Dilyan; Griessen, Mathias; Dard, Michel; Bruno, Alfredo; Zeilhofer, Hans-Florian; Cattin, Philippe; Juergens, Philipp
2015-07-01
Despite of the long history of medical application, laser ablation of bone tissue became successful only recently. Laser bone cutting is proven to have higher accuracy and to increase bone healing compared to conventional mechanical bone cutting. But the reason of subsequent better healing is not biologically explained yet. In this study we present our experience with an integrated miniaturized laser system mounted on a surgical lightweight robotic arm. An Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser and a piezoelectric (PZE) osteotome were used for comparison. In six grown up female Göttingen minipigs, comparative surgical interventions were done on the edentulous mandibular ridge. Our laser system was used to create different shapes of bone defects on the left side of the mandible. On the contralateral side, similar bone defects were created by PZE osteotome. Small bone samples were harvested to compare the immediate post-operative cut surface. The analysis of the cut surface of the laser osteotomy and conventional mechanical osteotomy revealed an essential difference. The scanning electron microscopy (SEM) analysis showed biologically open cut surfaces from the laser osteotomy. The samples from PZE osteotomy showed a flattened tissue structure over the cut surface, resembling the "smear layer" from tooth preparation. We concluded that our new finding with the mechanical osteotomy suggests a biological explanation to the expected difference in subsequent bone healing. Our hypothesis is that the difference of surface characteristic yields to different bleeding pattern and subsequently results in different bone healing. The analyses of bone healing will support our hypothesis. © 2015 Wiley Periodicals, Inc.
de Almeida, Marcio Rodrigues; Futagami, Cristina; Conti, Ana Cláudia de Castro Ferreira; Oltramari-Navarro, Paula Vanessa Pedron; Navarro, Ricardo de Lima
2015-01-01
OBJECTIVE: The aim of the present study was to compare dentoalveolar changes in mandibular arch, regarding transversal measures and buccal bone thickness, in patients undergoing the initial phase of orthodontic treatment with self-ligating or conventional bracket systems. METHODS: A sample of 25 patients requiring orthodontic treatment was assessed based on the bracket type. Group 1 comprised 13 patients bonded with 0.022-in self-ligating brackets (SLB). Group 2 included 12 patients bonded with 0.022-in conventional brackets (CLB). Cone-beam computed tomography (CBCT) scans and a 3D program (Dolphin) assessed changes in transversal width of buccal bone (TWBB) and buccal bone thickness (BBT) before (T1) and 7 months after treatment onset (T2). Measurements on dental casts were performed using a digital caliper. Differences between and within groups were analyzed by Student's t-test; Pearson correlation coefficient was also calculated. RESULTS: Significant mandibular expansion was observed for both groups; however, no significant differences were found between groups. There was significant decrease in mandibular buccal bone thickness and transversal width of buccal bone in both groups. There was no significant correlation between buccal bone thickness and dental arch expansion. CONCLUSIONS: There were no significant differences between self-ligating brackets and conventional brackets systems regarding mandibular arch expansion and changes in buccal bone thickness or transversal width of buccal bone. PMID:26154456
Marcián, Petr; Borák, Libor; Valášek, Jiří; Kaiser, Jozef; Florian, Zdeněk; Wolff, Jan
2014-12-18
The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant geometries and the levels of bone-to-implant contact (BIC) on the surrounding bone. Six mandibular bone segments demonstrating different grades of mandibular bone atrophy and various bone volume fractions (from 0.149 to 0.471) were imaged using a micro-CT device. The acquired bone STL models and implant (Brånemark, Straumann, Ankylos) were merged into a three-dimensional finite elements structure. The mean displacement value for all implants was 3.1 ±1.2 µm. Displacements were lower in the group with a strong BIC. The results indicated that the maximum strain values of cortical and cancellous bone increased with lower bone density. Strain distribution is the first and foremost dependent on the shape of bone and architecture of cancellous bone. The geometry of the implant, thread patterns, grade of bone atrophy and BIC all affect the displacement and micro-strain on the mandible bone. Preoperative finite element analysis could offer improved predictability in the long-term outlook of dental implant restorations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Giannobile, W V; Ryan, S; Shih, M S; Su, D L; Kaplan, P L; Chan, T C
1998-02-01
Osteogenic protein-1 (OP-1) is a member of the transforming growth factor beta superfamily and is a potent modulator of osteogenesis and bone cell differentiation. This preclinical study in dogs sought to assess the effects of OP-1 on periodontal wound healing in surgically created critical size Class III furcation defects. Eighteen male beagle dogs were subjected to the creation of bilateral mandibular 5 mm osseous defects. A split-mouth design was utilized which randomly assigned opposing quadrants to control therapy (surgery alone or collagen vehicle) or 1 of 3 ascending concentrations of OP-1 in a collagen vehicle (0.75 mg OP-1/g collagen, 2.5 mg/g, or 7.5 mg/g). Thus, 9 quadrants per test group received OP-1, 9 quadrants per control group received surgery alone, and 9 quadrants received collagen vehicle alone. Test articles were delivered by a surgeon masked to the treatment, and fluorogenic bone labels were injected at specified intervals post-treatment. Eight weeks after defect creation and OP-1 delivery, tissue blocks of the mandibulae were taken for masked histomorphometric analysis to assess parameters of periodontal regeneration (e.g., bone height, bone area, new attachment formation, and percent of defect filled with new bone). Histomorphometry revealed limited evidence of osteogenesis, cementogenesis, and new attachment formation in either vehicle or surgery-alone sites. In contrast, sites treated with all 3 concentrations of OP-1 showed pronounced stimulation of osteogenesis, regenerative cementum, and new attachment formation. Lesions treated with 7.5 mg/g of OP-1 in collagen regenerated 3.9+/-1.7 mm and 6.1+/-3.4 mm2 (mean +/-S.D.) of linear bone height and bone area, respectively. Furthermore, these differences were statistically different from both control therapies for all wound healing parameters (P < 0.0001). No significant increase in tooth root ankylosis was found among the treatment groups when compared to the surgery-alone group. We conclude that OP-1 offers promise as an attractive candidate for treating severe periodontal lesions.
Yun, Pil-Young; Kim, Young-Kyun; Jeong, Kyung-In; Park, Ju-Cheol; Choi, Yeon-Jo
2014-12-01
The purpose of these two pilot studies using animal bony defect models was to evaluate the influence of bone morphogenetic protein (BMP) and proportion of hydroxyapatite (HA)/beta-tricalcium phosphate (β-TCP) in biphasic calcium phosphate (BCP) graft on new bone formation. In this study, four kinds of synthetic osteoconductive bone materials known for bone growth scaffold, OSTEON™II(HA:β-TCP 30:70), OSTEON™III (HA:β-TCP 20:80), OSTEON™II Collagen, and OSTEON™III Collagen, were prepared as BCP graft materials. In pilot study 1, three BCP materials (OSTEON™II, OSTEON™III, and OSTEON™II Collagen) were grafted in rabbit calvarial defects after impregnating in rhBMP-2. OSTEON™II without the rhBMP-2 impregnation was included in the study as the control. The amount of new bone was examined and measured histologically at 2, 4, and 8 weeks. In pilot study 2, four BCP materials (OSTEON™II, OSTEON™III, OSTEON™II Collagen, and OSTEON™III Collagen) were grafted in beagle dog mandibular defects after soaking in the rhBMP-2. The amount of total bone and new bone were measured three-dimensionally using microCT and healing process was examined histologically at 2, 4, and 8 weeks. In pilot study 1, rhBMP-2 impregnated groups showed more new bone formation than the rhBMP-2 free group. In pilot study 2, increased new bone formation was observed in time-dependent manner after graft of BCP and BCP-collagen (OSTEON™II, OSTEON™III, OSTEON™II Collagen, and OSTEON™III Collagen) impregnated with rhBMP-2. Also, BCP with a higher proportion of HA (30% HA) showed more favorable result in new bone formation and space maintenance, especially at the 8 weeks. From the results of the pilot studies, rhBMP-2 played positive roles in new bone formation and BCP could become a scaffold candidate for rhBMP-2 impregnation to induce new bone formation. Moreover, BCP with a higher proportion of HA (30% HA) could be considered more appropriate for rhBMP-2 carrier. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Seifi, Massoud; Arayesh, Ali; Shamloo, Nafise; Hamedi, Roya
2015-01-01
Orthodontically induced inflammatory root resorption (OIIRR) is considered to be an important sequel associated with orthodontic tooth movement (OTM). OTM after Socket preservation enhances the periodontal condition before orthodontic space closure. The purpose of this study is to investigate the histologic effects of NanoBone®, a new highly nonsintered porous nano-crystalline hydroxyapatite bone on root resorption following OTM. This experimental study was conducted on four male dogs. In each dog, four defects were created at the mesial aspects of the maxillary and mandibular first premolars. The defects were filled with NanoBone®. We used the NiTi closed coil for mesial movement of the first premolar tooth. When the experimental teeth moved approximately halfway into the defects, after two months, the animals were sacrificed and we harvested the area of interest. The first premolar root and adjacent tissues were histologically evaluated. The three-way ANOVA statistical test was used for comparison. The mean root resorption in the synthetic bone substitute group was 22.87 ± 11.25×10(-4)mm(2) in the maxilla and 21.41 ± 11.25×10(-4)mm(2) in the mandible. Statistically, there was no significant difference compared to the control group (p>0.05). The use of a substitution graft in the nano particle has some positive effects in accessing healthy periodontal tissue following orthodontic procedures without significant influence on root resorption (RR). Histological evaluation in the present study showed osteoblastic activity and remodeling environment of nanoparticles in NanoBone®.
Seifi, Massoud; Arayesh, Ali; Shamloo, Nafise; Hamedi, Roya
2015-01-01
Objective Orthodontically induced inflammatory root resorption (OIIRR) is considered to be an important sequel associated with orthodontic tooth movement (OTM). OTM after Socket preservation enhances the periodontal condition before orthodontic space closure. The purpose of this study is to investigate the histologic effects of NanoBone®, a new highly nonsintered porous nano-crystalline hydroxyapatite bone on root resorption following OTM. Materials and Methods This experimental study was conducted on four male dogs. In each dog, four defects were created at the mesial aspects of the maxillary and mandibular first premolars. The defects were filled with NanoBone®. We used the NiTi closed coil for mesial movement of the first premolar tooth. When the experimental teeth moved approximately halfway into the defects, after two months, the animals were sacrificed and we harvested the area of interest. The first premolar root and adjacent tissues were histologically evaluated. The three-way ANOVA statistical test was used for comparison. Results The mean root resorption in the synthetic bone substitute group was 22.87 ± 11.25×10-4mm2 in the maxilla and 21.41 ± 11.25×10-4mm2 in the mandible. Statistically, there was no significant difference compared to the control group (p>0.05). Conclusion The use of a substitution graft in the nano particle has some positive effects in accessing healthy periodontal tissue following orthodontic procedures without significant influence on root resorption (RR). Histological evaluation in the present study showed osteoblastic activity and remodeling environment of nanoparticles in NanoBone®. PMID:25685742
Mandibular trabecular bone as fracture indicator in 80-year-old men and women.
Hassani-Nejad, Azar; Ahlqwist, Margareta; Hakeberg, Magnus; Jonasson, Grethe
2013-12-01
The objective of the present study was to compare assessments of the mandibular bone as fracture risk indicators for 277 men and women. The mandibular trabecular bone was evaluated in periapical radiographs, using a visual index, as dense, mixed dense and sparse, or sparse. Bone texture was analysed using a computer-based method in which the number of transitions from trabeculae to intertrabecular spaces was calculated. The sum of the sizes and intensities of the spaces between the trabeculae was calculated using Jaw-X software. Women had a statistically significantly greater number of fractures and a higher frequency of sparse mandibular bone. The OR for having suffered a fracture with visually sparse trabecular bone was highest for the male group (OR = 5.55) and lowest for the female group (OR = 3.35). For bone texture as an indicator of previous fracture, the OR was significant for the female group (OR = 2.61) but not for the male group, whereas the Jaw-X calculations did not differentiate between fractured and non-fractured groups. In conclusion, all bone-quality assessments showed that women had a higher incidence of sparse trabecular bone than did men. Only the methods of visual assessment and trabecular texture were significantly correlated with previous bone fractures. © 2013 Eur J Oral Sci.
Guiselini, Monalisa Jacob; Deana, Alessandro Melo; de Fátima Teixeira da Silva, Daniela; Koshoji, Nelson Hideyoshi; Mesquita-Ferrari, Raquel Agnelli; do Vale, Katia Llanos; Mascaro, Marcelo Betti; de Moraes, Simone Aleksandra; Bussadori, Sandra Kalil; Fernandes, Kristianne Porta Santos
2017-06-01
Bone tissue anatomy, density and porosity vary among subjects in different phases of life and even within areas of a single specimen. The optical characteristics of changes in bone tissue are analyzed based on these properties. Photobiomodulation has been used to improve bone healing after surgery or fractures. Thus, knowledge on light propagation is of considerable importance to the obtainment of successful clinical outcomes. This study determines light penetration and distribution in human maxillary and mandibular bones in three different regions (anterior, middle, and posterior). A HeNe laser (633nm) irradiated maxillary and mandibular bones in the cervical-apical direction. The light propagation and scattering pattern were acquired and the grey level of the images was analyzed. Three-dimensional plots of the intensity profile and attenuation profiles were created. Differences in optical properties were found between the mandibular and maxillary bones. The maxilla attenuated more light than the mandible at all sites, leading to a shallower penetration depth. Our results provide initial information on the behavior of the propagation of red laser on alveolar bone using an optical method. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jahadakbar, Ahmadreza
Mandibular reconstruction surgery is a part of treatment for cancer, tumor, and all the cases that involve segmental defects. One of the most common approaches for the reconstruction surgery is to resect the segmental defect and use a double barrel fibula graft to fill the resected region and recover the mandible's normal functions, such as chewing. The grafted bone is connected to the host mandible, using the standard of the care Ti-6Al-4V fixation plates. The fixation plates are available in the form of prefabricated plates and also patient-specific plates in the market. Due to the high stiffness of the Ti-6Al-4V plates in comparison with the mandible bone and the grafted bone, the loading distribution on the whole reconstructed mandible will be different from a healthy mandible. The high stiffness fixation hardware carries a great portion of the loading and causes stress shielding on the grafted bone and the surrounding host bone. Based on the bone remodeling theory, the stress shielding on the cortical bone causes bone resorption and may lead to implant failure. A solution to reduce the risk of implant failure is to use a low stiffness biocompatible material for the mandibular fixation plates. We have proposed the use of stiffness-matched, porous NiTi fixation plates either in the form of patient-specific or prefabricated, instead of the standard of the care Ti-6Al-4V plates. NiTi is a biocompatible material that has a low stiffness in comparison with Ti-6Al-4V and also benefits from the superelastic feature. Superelasticity, which can also be found in bone tissues, allows the material to recover large strains (up to 8%) and increases the shock absorption. In this thesis, we have evaluated the use of proposed fixation hardware by comparing it with a healthy mandible and a reconstructed mandible using the standard method. To this end, first different models including a healthy mandible, a reconstructed mandible using patient-specific Ti-6Al-4V fixation hardware, a reconstructed mandible using stiffness-match patient-specific hardware, and several prefabricated fixation plates were prepared. After verification of the models, the cases of reconstructed mandibles were used to simulate different periods, including during healing, and post-healing periods. Also, different loading conditions including highest bite force on the first molar tooth, rest condition, and also highest bite force on a dental implant right in the grafted bone were simulated. Also, the theory of applying pretention to the fixation plates was evaluated using the finite element method. We also designed and evaluated a set of prefabricated fixation kits with various stiffness option. After all these finite element simulations and having the CAD files of the porous fixation plates, the possibility of fabrication of the proposed hardware, in both forms of patient-specific, and prefabricated plates was evaluated using selective laser melting.
Roles of FGFR3 during morphogenesis of Meckel's cartilage and mandibular bones
Havens, Bruce A.; Velonis, Dimitris; Kronenberg, Mark S.; Lichtler, Alex C.; Oliver, Bonnie; Mina, Mina
2008-01-01
To address the functions of FGFR2 and FGFR3 signaling during mandibular skeletogenesis, we over-expressed in the developing chick mandible, replication-competent retroviruses carrying truncated FGFR2c or FGFR3c that function as dominant negative receptors (RCAS-dnFGFR2 and RCAS-dnFGFR3). Injection of RCAS-dnFGFR3 between HH15−20 led to reduced proliferation, increased apoptosis, and decreased differentiation of chondroblasts in Meckel's cartilage. These changes resulted in the formation of a hypoplastic mandibular process and truncated Meckel's cartilage. This treatment also affected the proliferation and survival of osteoprogenitor cells in osteogenic condensations, leading to the absence of five mandibular bones on the injected side. Injection of RCAS-dnFGFR2 between HH15−20 or RCAS-dnFGFR3 at HH26 did not affect the morphogenesis of Meckel's cartilage but resulted in truncations of the mandibular bones. RCAS-dnFGFR3 affected the proliferation and survival of the cells within the periosteum and osteoblasts. Together these results demonstrate that FGFR3 signaling is required for the elongation of Meckel's cartilage and FGFR2 and FGFR3 have roles during intramembranous ossification of mandibular bones. PMID:18339367
Zhang, Yongqiang; Li, Yongfeng; Gao, Qi; Shao, Bo; Xiao, Jianrui; Zhou, Hong; Niu, Qiang; Shen, Mingming; Liu, Baolin; Hu, Kaijin; Kong, Liang
2014-07-01
This study aimed to compare the variation of cancellous bones at four skeletal sites: lumbar vertebra, femoral neck, mandibular angle and rib in ovariectomized sheep. Sixteen adult sheep were randomly divided into two groups: eight sheep were ovariectomized served as experimental group; the other eight untreated sheep were served as control group. Bone mineral density was assessed by dual-energy X-ray absorptiometry on lumbar vertebrae at baseline and twelve months after ovariectomy. After 12 months, lumbar vertebrae L3 and L4, femoral necks, mandibular angles and the fourth ribs were harvested for micro-CT scanning, histological analysis and biomechanical test. The results showed that bone mineral density of lumbar vertebra decreased significantly in twelfth month (p<0.05). The results of micro-CT showed that the bone volume/total volume decreased by 45.6%, 36.1% 21.3% and 18.7% in lumbar vertebrae, femoral necks, mandibular angles and ribs in experimental group (p<0.05) respectively. The trabecular number showed the same downtrend (p<0.05). Histological analysis showed trabecular area/tissue area decreased by 32.1%, 23.2% and 20.7% in lumbar vertebrae, femoral necks and mandibular angles respectively (p<0.05), but no significant difference in ribs. Specimens elastic modulus from lumbar vertebra, femoral neck and mandibular angle were 952±76MPa (628±70MPa), 961±173MPa (610±72MPa) and 595±60MPa (444±31MPa) in control group (experimental group) respectively. These datum indicated that the sensibility of cancellous bones to oestrogen deficiency in ovariectomized sheep was site-specific on a pattern as follows: lumbar vertebra, femoral neck, mandibular angle and rib. Copyright © 2014 Elsevier Ltd. All rights reserved.
Similarities and Differences between Porcine Mandibular and Limb Bone Marrow Mesenchymal Stem Cells
Lloyd, Brandon; Tee, Boon Ching; Headley, Colwyn; Emam, Hany; Mallery, Susan; Sun, Zongyang
2017-01-01
Objective Research has shown promise of using bone marrow mesenchymal stem cells (BMSCs) for craniofacial bone regeneration; yet little is known about the differences of BMSCs from limb and craniofacial bones. This study compared pig mandibular and tibia BMSCs for their in vitro proliferation, osteogenic differentiation properties and gene expression. Design Bone marrow was aspirated from the tibia and mandible of 3–4 month-old pigs (n=4), followed by BMSC isolation, culture-expansion and characterization by flow cytometry. Proliferation rates were assessed using population doubling times. Osteogenic differentiation was evaluated by alkaline phosphatase activity. Affymetrix porcine microarray was used to compare gene expressions of tibial and mandibular BMSCs, followed by real-time RT-PCR evaluation of certain genes. Results Our results showed that BMSCs from both locations expressed MSC markers but not hematopoietic markers. The proliferation and osteogenic differentiation potential of mandibular BMSCs were significantly stronger than those of tibial BMSCs. Microarray analysis identified 404 highly abundant genes, out of which 334 genes were matched between the two locations and annotated into the same functional groups including osteogenesis and angiogenesis, while 70 genes were mismatched and annotated into different functional groups. In addition, 48 genes were differentially expressed by at least 1.5-fold difference between the two locations, including higher expression of cranial neural crest-related gene BMP-4 in mandibular BMSCs, which was confirmed by real-time RT-PCR. Conclusions Altogether, these data indicate that despite strong similarities in gene expression between mandibular and tibial BMSCs, mandibular BMSCs express some genes differently than tibial BMSCs and have a phenotypic profile that may make them advantageous for craniofacial bone regeneration. PMID:28135571
Deshpande, Sagar S; Gallagher, Katherine K; Donneys, Alexis; Tchanque-Fossuo, Catherine N; Sarhaddi, Deniz; Nelson, Noah S; Chepeha, Douglas B; Buchman, Steven R
2013-07-01
Descriptions of mandibular distraction osteogenesis for tissue replacement after oncologic resection or for defects caused by osteoradionecrosis have been limited. Previous work demonstrated radiation decreases union formation, cellularity and mineral density in mandibular distraction osteogenesis. The authors posit that intermittent systemic administration of parathyroid hormone will serve as a stimulant to cellular function, reversing radiation-induced damage and enhancing bone regeneration. Twenty male Lewis rats were randomly assigned to three groups: group 1 (radiation and distraction osteogenesis, n = 7) and group 2 (radiation, distraction osteogenesis, and parathyroid hormone, n = 5) received a human-equivalent dose of 35 Gy of radiation (human bioequivalent, 70 Gy) fractionated over 5 days. All groups, including group 3 (distraction osteogenesis, n = 8), underwent a left unilateral mandibular osteotomy with bilateral external fixator placement. Distraction osteogenesis was performed at a rate of 0.3 mm every 12 hours to reach a gap of 5.1 mm. Group 2 was injected with parathyroid hormone (60 µg/kg) subcutaneously daily for 3 weeks after the start of distraction osteogenesis. On postoperative day 40, all left hemimandibles were harvested. Biomechanical response parameters were generated. Statistical significance was considered at p ≤ 0.05. Parathyroid hormone-treated mandibles had significantly higher failure load and higher yield than did untreated mandibles. However, these values were still significantly lower than those of nonirradiated mandibles. The authors have successfully demonstrated the therapeutic efficacy of parathyroid hormone to stimulate and enhance bone regeneration in their irradiated murine mandibular model of distraction osteogenesis. Anabolic regimens of parathyroid hormone, a U.S. Food and Drug Administration-approved drug on formulary, significantly improve outcomes in a model of postoncologic craniofacial reconstruction.
Deshpande, Sagar S.; Gallagher, Katherine K.; Donneys, Alexis; Tchanque-Fossuo, Catherine N.; Sarhaddi, Deniz; Nelson, Noah S.; Chepeha, Douglas B.; Buchman, Steven R.
2015-01-01
Objective Descriptions of mandibular distraction osteogenesis for tissue replacement after oncologic resection or for defects caused by osteoradionecrosis have been limited. Previous work demonstrated radiation decreases union formation, cellularity and mineral density in mandibular distraction osteogenesis. The authors posit that intermittent systemic administration of parathyroid hormone will serve as a stimulant to cellular function, reversing radiation-induced damage and enhancing bone regeneration. Methods Twenty male Lewis rats were randomly assigned to three groups: group 1 (radiation and distraction osteogenesis, n = 7) and group 2 (radiation, distraction osteogenesis, and parathyroid hormone, n = 5) received a human-equivalent dose of 35 Gy of radiation (human bioequivalent, 70 Gy) fractionated over 5 days. All groups, including group 3 (distraction osteogenesis, n = 8), underwent a left unilateral mandibular osteotomy with bilateral external fixator placement. Distraction osteogenesis was performed at a rate of 0.3 mm every 12 hours to reach a gap of 5.1 mm. Group 2 was injected with parathyroid hormone (60 μg/kg) subcutaneously daily for 3 weeks after the start of distraction osteogenesis. On postoperative day 40, all left hemimandibles were harvested. Biomechanical response parameters were generated. Statistical significance was considered at p ≤ 0.05. Results Parathyroid hormone–treated mandibles had significantly higher failure load and higher yield than did untreated mandibles. However, these values were still significantly lower than those of nonirradiated mandibles. Conclusions The authors have successfully demonstrated the therapeutic efficacy of parathyroid hormone to stimulate and enhance bone regeneration in their irradiated murine mandibular model of distraction osteogenesis. Anabolic regimens of parathyroid hormone, a U.S. Food and Drug Administration–approved drug on formulary, significantly improve outcomes in a model of postoncologic craniofacial reconstruction. PMID:23806959
Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold.
Liu, Zeping; Yin, Xing; Ye, Qingsong; He, Wulin; Ge, Mengke; Zhou, Xiaofu; Hu, Jing; Zou, Shujuan
2016-07-01
Re-establishing compromised periodontium to its original structure, properties and function is demanding, but also challenging, for successful orthodontic treatment. In this study, the periodontal regeneration capability of collagen-hydroxyapatite scaffolds, seeded with bone marrow stem cells, was investigated in a canine labial alveolar bone defect model. Bone marrow stem cells were isolated, expanded and characterized. Porous collagen-hydroxyapatite scaffold and cross-linked collagen-hydroxyapatite scaffold were prepared. Attachment, migration, proliferation and morphology of bone marrow stem cells, co-cultured with porous collagen-hydroxyapatite or cross-linked collagen-hydroxyapatite, were evaluated in vitro. The periodontal regeneration capability of collagen-hydroxyapatite scaffold with or without bone marrow stem cells was tested in six beagle dogs, with each dog carrying one sham-operated site as healthy control, and three labial alveolar bone defects untreated to allow natural healing, treated with bone marrow stem cells - collagen-hydroxyapatite scaffold implant or collagen-hydroxyapatite scaffold implant, respectively. Animals were euthanized at 3 and 6 months (3 animals per group) after implantation and the resected maxillary and mandibular segments were examined using micro-computed tomography scan, H&E staining, Masson's staining and histometric evaluation. Bone marrow stem cells were successfully isolated and demonstrated self-renewal and multi-potency in vitro. The porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite had average pore sizes of 415 ± 20 µm and 203 ± 18 µm and porosity of 69 ± 0.5% and 50 ± 0.2%, respectively. The attachment, proliferation and migration of bone marrow stem cells were satisfactory on both porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite scaffolds. Implantation of bone marrow stem cells - collagen-hydroxyapatite or collagen-hydroxyapatite scaffold in beagle dogs with experimental periodontal defects resulted in significantly enhanced periodontal regeneration characterized by formation of new bone, periodontal ligament and cementum, compared with the untreated defects, as evidenced by histological and micro-computed tomography examinations. The prepared collagen-hydroxyapatite scaffolds possess favorable bio-compatibility. The bone marrow stem cells - collagen-hydroxyapatite and collagen-hydroxyapatite scaffold - induced periodontal regeneration, with no aberrant events complicating the regenerative process. Further research is necessary to improve the bone marrow stem cells behavior in collagen-hydroxyapatite scaffolds after implantation. © The Author(s) 2016.
Cementoblast Delivery for Periodontal Tissue Engineering
Zhao, Ming; Jin, Qiming; Berry, Janice E.; Nociti, Francisco H.; Giannobile, William V.; Somerman, Martha J.
2008-01-01
Background Predictable periodontal regeneration following periodontal disease is a major goal of therapy. The objective of this proof of concept investigation was to evaluate the ability of cementoblasts and dental follicle cells to promote periodontal regeneration in a rodent periodontal fenestration model. Methods The buccal aspect of the distal root of the first mandibular molar was denuded of its periodontal ligament (PDL), cementum, and superficial dentin through a bony window created bilaterally in 12 athymic rats. Treated defects were divided into three groups: 1) carrier alone (PLGA polymer sponges), 2) carrier + follicle cells, and 3) carrier + cementoblasts. Cultured murine primary follicle cells and immortalized cementoblasts were delivered to the defects via biodegradable PLGA polymer sponges, and mandibulae were retrieved 3 weeks and 6 weeks post-surgery for histological evaluation. In situ hybridization, for gene expression of bone sialoprotein (BSP) and osteocalcin (OCN), and histomorphometric analysis were further done on 3-week specimens. Results Three weeks after surgery, histology of defects treated with carrier alone indicated PLGA particles, fibrous tissue, and newly formed bone scattered within the defect area. Defects treated with carrier + follicle cells had a similar appearance, but with less formation of bone. In contrast, in defects treated with carrier + cementoblasts, mineralized tissues were noted at the healing site with extension toward the root surface, PDL region, and laterally beyond the buccal plate envelope of bone. No PDL-bone fibrous attachment was observed in any of the groups at this point. In situ hybridization showed that the mineralized tissue formed by cementoblasts gave strong signals for both BSP and OCN genes, confirming its nature as cementum or bone. The changes noted at 3 weeks were also observed at 6 weeks. Cementoblast-treated and carrier alone-treated defects exhibited complete bone bridging and PDL formation, whereas follicle cell-treated defects showed minimal evidence of osteogenesis. No new cementum was formed along the root surface in the above two groups. Cementoblast-treated defects were filled with trabeculated mineralized tissue similar to, but more mature, than that seen at 3 weeks. Furthermore, the PDL region was maintained with well-organized collagen fibers connecting the adjacent bone to a thin layer of cementum-like tissue observed on the root surface. Neoplastic changes were observed at the superficial portions of the implants in two of the 6-week cementoblast-treated specimens, possibly due in part to the SV40-transformed nature of the implanted cell line. Conclusions This pilot study demonstrates that cementoblasts have a marked ability to induce mineralization in periodontal wounds when delivered via polymer sponges, while implanted dental follicle cells seem to inhibit periodontal healing. These results confirm the selective behaviors of different cell types in vivo and support the role of cementoblasts as a tool to better understand periodontal regeneration and cementogenesis. PMID:15025227
Heinemann, Friedhelm; Hasan, Istabrak; Kunert-Keil, Christiane; Götz, Werner; Gedrange, Tomas; Spassov, Alexander; Schweppe, Janine; Gredes, Tomasz
2012-03-20
Over the past decade, coinciding with the appearance of a number of new ultrasonic surgical devices, there has been a marked increase in interest in the use of ultrasound in oral surgery and implantology as alternative osteotomy method. The aim of this study was the comparison of the effect of osteotomies performed using ultrasonic surgery (Piezosurgery(®)), sonic surgery SONICflex(®) and the conventional bur method on the heat generation within the bone underneath the osteotomy and light-microscopy observations of the bone at different cutting positions in porcine mandibular segments. It was found that the average heat generated by SONICflex(®) sonic device was close to that by conventional rotary bur (1.54-2.29°C), whereas Piezosurgery(®) showed a high generated heat up to 18.17°C. Histological investigations of the bone matrix adjacent to the defect radius showed intact osteocytes with all three instruments and similar wide damage diameter at the bottom region. SONICflex(®) showed smooth cutting surfaces with minimal damage in the upper defect zone. Finally, presented results showed that sonic surgery performed with SONICflex(®) is an alternative osteotomy method and can be used as an alternative to the conventional bur method. Copyright © 2011 Elsevier GmbH. All rights reserved.
Tissue Engineered Bone Using Polycaprolactone Scaffolds Made by Selective Laser Sintering
2005-01-01
temporo - mandibular joint (TMJ) pose many challenges for bone tissue engineering. Adverse reactions to alloplastic, non- biological materials result in...producing a prototype mandibular condyle scaffold based on an actual pig condyle. INTRODUCTION Repair and reconstruction of complex joints such as the...computed tomography (CT) data with a designed porous architecture to build a complex scaffold that mimics a mandibular condyle. Results show that
Schwarz, Daniel A.; Arman, Krikor G.; Kakwan, Mehreen S.; Jamali, Ameen M.; Elmeligy, Ayman A.; Buchman, Steven R.
2015-01-01
Background The authors’ goal was to ascertain regenerate bone-healing metrics using quantitative histomorphometry at a single consolidation period. Methods Rats underwent either mandibular distraction osteogenesis (n=7) or partially reduced fractures (n=7); their contralateral mandibles were used as controls (n=11). External fixators were secured and unilateral osteotomies performed, followed by either mandibular distraction osteogenesis (4 days’ latency, then 0.3 mm every 12 hours for 8 days; 5.1 mm) or partially reduced fractures (fixed immediately postoperatively; 2.1 mm); both groups underwent 4 weeks of consolidation. After tissue processing, bone volume/tissue volume ratio, osteoid volume/tissue volume ratio, and osteocyte count per high-power field were analyzed by means of quantitative histomorphometry. Results Contralateral mandibles had statistically greater bone volume/tissue volume ratio and osteocyte count per high-power field compared with both mandibular distraction osteogenesis and partially reduced fractures by almost 50 percent, whereas osteoid volume/tissue volume ratio was statistically greater in both mandibular distraction osteogenesis specimens and partially reduced fractures compared with contralateral mandibles. No statistical difference in bone volume/tissue volume ratio, osteoid volume/tissue volume ratio, or osteocyte count per high-power field was found between mandibular distraction osteogenesis specimens and partially reduced fractures. Conclusions The authors’ findings demonstrate significantly decreased bone quantity and maturity in mandibular distraction osteogenesis specimens and partially reduced fractures compared with contralateral mandibles using the clinically analogous protocols. If these results are extrapolated clinically, treatment strategies may require modification to ensure reliable, predictable, and improved outcomes. PMID:20463629
Fractal analysis of mandibular trabecular bone: optimal tile sizes for the tile counting method.
Huh, Kyung-Hoe; Baik, Jee-Seon; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Lee, Sun-Bok; Lee, Seung-Pyo
2011-06-01
This study was performed to determine the optimal tile size for the fractal dimension of the mandibular trabecular bone using a tile counting method. Digital intraoral radiographic images were obtained at the mandibular angle, molar, premolar, and incisor regions of 29 human dry mandibles. After preprocessing, the parameters representing morphometric characteristics of the trabecular bone were calculated. The fractal dimensions of the processed images were analyzed in various tile sizes by the tile counting method. The optimal range of tile size was 0.132 mm to 0.396 mm for the fractal dimension using the tile counting method. The sizes were closely related to the morphometric parameters. The fractal dimension of mandibular trabecular bone, as calculated with the tile counting method, can be best characterized with a range of tile sizes from 0.132 to 0.396 mm.
Fractal analysis of mandibular trabecular bone: optimal tile sizes for the tile counting method
Huh, Kyung-Hoe; Baik, Jee-Seon; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Lee, Sun-Bok; Lee, Seung-Pyo
2011-01-01
Purpose This study was performed to determine the optimal tile size for the fractal dimension of the mandibular trabecular bone using a tile counting method. Materials and Methods Digital intraoral radiographic images were obtained at the mandibular angle, molar, premolar, and incisor regions of 29 human dry mandibles. After preprocessing, the parameters representing morphometric characteristics of the trabecular bone were calculated. The fractal dimensions of the processed images were analyzed in various tile sizes by the tile counting method. Results The optimal range of tile size was 0.132 mm to 0.396 mm for the fractal dimension using the tile counting method. The sizes were closely related to the morphometric parameters. Conclusion The fractal dimension of mandibular trabecular bone, as calculated with the tile counting method, can be best characterized with a range of tile sizes from 0.132 to 0.396 mm. PMID:21977478
Periodontal regeneration around natural teeth.
Garrett, S
1996-11-01
1. Evidence is conclusive (Table 2) that periodontal regeneration in humans is possible following the use of bone grafts, guided tissue regeneration procedures, both without and in combination with bone grafts, and root demineralization procedures. 2. Clinically guided tissue regeneration procedures have demonstrated significant positive clinical change beyond that achieved with debridement alone in treating mandibular and maxillary (buccal only) Class II furcations. Similar data exist for intraosseous defects. Evidence suggests that the use of bone grafts or GTR procedures produce equal clinical benefit in treating intraosseous defects. Further research is necessary to evaluate GTR procedures compared to, or combined with, bone grafts in treating intraosseous defects. 3. Although there are some data suggesting hopeful results in Class II furcations, the clinical advantage of procedures combining present regenerative techniques remains to be demonstrated. Additional randomized controlled trials with sufficient power are needed to demonstrate the potential usefulness of these techniques. 4. Outcomes following regenerative attempts remain somewhat variable with differences in results between studies and individual subjects. Some of this variability is likely patient related in terms of compliance with plaque control and maintenance procedures, as well as personal habits; e.g., smoking. Variations in the defects selected for study may also affect predictability of outcomes along with other factors. 5. There is evidence to suggest that present regenerative techniques lead to significant amounts of regeneration at localized sites on specific teeth. However, if complete regeneration is to become a reality, additional stimuli to enhance the regenerative process are likely needed. Perhaps this will be accomplished in the future, with combined procedures that include appropriate polypeptide growth factors or tissue factors to provide additional stimulus.
Zang, Sheng-Qi; Kang, Shuai; Hu, Xin; Wang, Meng; Wang, Xin-Wen; Zhou, Tao; Wang, Qin-Tao
2017-01-01
Background: Regenerative techniques help promote the formation of new attachment and bone filling in periodontal defects. However, the dimensions of intraosseous defects are a key determinant of periodontal regeneration outcomes. In this study, we evaluated the efficacy of use of anorganic bovine bone (ABB) graft in combination with collagen membrane (CM), to facilitate healing of noncontained (1-wall) and contained (3-wall) critical size periodontal defects. Methods: The study began on March 2013, and was completed on May 2014. One-wall (7 mm × 4 mm) and 3-wall (5 mm × 4 mm) intrabony periodontal defects were surgically created bilaterally in the mandibular third premolars and first molars in eight beagles. The defects were treated with ABB in combination with CM (ABB + CM group) or open flap debridement (OFD group). The animals were euthanized at 8-week postsurgery for histological analysis. Two independent Student's t-tests (1-wall [ABB + CM] vs. 1-wall [OFD] and 3-wall [ABB + CM] vs. 3-wall [OFD]) were used to assess between-group differences. Results: The mean new bone height in both 1- and 3-wall intrabony defects in the ABB + CM group was significantly greater than that in the OFD group (1-wall: 4.99 ± 0.70 mm vs. 3.01 ± 0.37 mm, P < 0.05; 3-wall: 3.11 ± 0.59 mm vs. 2.08 ± 0.24 mm, P < 0.05). The mean new cementum in 1-wall intrabony defects in the ABB + CM group was significantly greater than that in their counterparts in the OFD group (5.08 ± 0.68 mm vs. 1.16 ± 0.38 mm; P < 0.05). Likewise, only the 1-wall intrabony defect model showed a significant difference with respect to junctional epithelium between ABB + CM and OFD groups (0.67 ± 0.23 mm vs. 1.12 ± 0.28 mm, P < 0.05). Conclusions: One-wall intrabony defects treated with ABB and CM did not show less periodontal regeneration than that in 3-wall intrabony defect. The noncontained 1-wall intrabony defect might be a more discriminative defect model for further research into periodontal regeneration. PMID:28218223
Tricho-Dento-Osseous Syndrome: Diagnosis and Dental Management
Al-Batayneh, Ola B.
2012-01-01
Tricho-dento-osseous (TDO) syndrome is a rare, autosomal dominant disorder principally characterised by curly hair at infancy, severe enamel hypomineralization and hypoplasia and taurodontism of teeth, sclerotic bone, and other defects. Diagnostic criteria are based on the generalized enamel defects, severe taurodontism especially of the mandibular first permanent molars, an autosomal dominant mode of inheritance, and at least one of the other features (i.e., nail defects, bone sclerosis, and curly, kinky or wavy hair present at a young age that may straighten out later). Confusion with amelogenesis imperfecta is common; however, taurodontism is not a constant feature of any of the types of amelogenesis imperfecta. Management of TDO requires a team approach, proper documentation, and a long-term treatment and follow-up plan. The aim of treatment is to prevent problems such as sensitivity, caries, dental abscesses, and loss of occlusal vertical dimension through attrition of hypoplastic tooth structure. Another aim is to restore function of the dentition and enhance the esthetics and self-esteem of the patient. This paper proposes treatment approaches that include preventive, restorative, endodontic, prosthetic, and surgical options to management. In addition, it sheds light on the difficulties faced during dental treatment of such cases. PMID:22969805
[Odontogenic and nonodontogenic jaw cysts: experience in 25 cases].
Ağir, Hakan; Sen, Cenk; Işil, Eda; Unal, Ciğdem; Ustündağ, Emre; Keskin, Gürkan
2008-01-01
We retrospectively evaluated the patients with jaw cysts treated at our center. The study included 25 patients (14 males, 11 females; mean age 33+/-19 years; range 7 to 69 years) who underwent surgery for odontogenic or nonodontogenic jaw cysts. The most common presentation was a swelling in the jaw with or without dental problems. Involvement was in the mandible in 18 patients, and in the maxilla in seven patients. The lesions consisted of eight radicular, six dentigerous, two nasoalveolar, two globulomaxillary cysts, and three keratocysts. Four patients had gingival, nasopalatine, residual, and median mandibular cysts, respectively. Marsupialization, curettage, extensive burring, enucleation, or marginal resection were performed depending on pre- and intraoperative findings. The defects were repaired with a corticocancellous iliac bone block graft in three patients and cancellous iliac bone chips in five patients. During a mean follow-up of 14 months (range 12 to 46 months), recurrence was seen in only one patient with a keratocyst. A good preoperative assessment, complete removal of the cystic lesion, and close radiographic follow-up are essential for a successful outcome in jaw cysts. In selected cases, reconstruction of the defects with autogenous corticocancellous iliac bone graft yields highly satisfactory results.
Scaffold Translation: Barriers Between Concept and Clinic
Murphy, William L.
2011-01-01
Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. PMID:21902613
Reconstruction of acquired oromandibular defects.
Fernandes, Rui P; Yetzer, Jacob G
2013-05-01
Acquired defects of the mandible resulting from trauma, infection, osteoradionecrosis, and ablative surgery of the oral cavity and lower face are particularly debilitating. Familiarity with mandibular and cervical anatomy is crucial in achieving mandibular reconstruction. The surgeon must evaluate which components of the hard and soft tissue are missing in selecting a method of reconstruction. Complexity of mandibular reconstruction ranges from simple rigid internal fixation to microvascular free tissue transfer, depending on defect- and patient-related factors. Modern techniques for microvascular tissue transfer provide a wide array of reconstructive options that can be tailored to patients' specific needs. Copyright © 2013 Elsevier Inc. All rights reserved.
Sykaras, N; Triplett, R G; Nunn, M E; Iacopino, A M; Opperman, L A
2001-08-01
Recombinant human bone morphogenetic protein-2 (rhBMP-2) induced bone regeneration and osseointegration was evaluated in bony defects created within the hollow chamber of endosseous dental implants in 14 foxhound dogs. Bilateral extractions of mandibular premolars were performed and surgical implantation of 104 hollow cylinder implants followed after 8 weeks of healing. Experimental implants had their hollow chamber filled with 20 microg of rhBMP-2 delivered with a bovine collagen carrier, whereas the control implants had their apical chamber left empty. Dogs were followed for 2, 4, 8 and 12 weeks. Histomorphometric evaluation and immunohistochemical analysis were performed. Minimal bone was regenerated at 2 weeks for both groups. At 4 weeks, bone fill averaged 23.48% for the rhBMP-2 and 5.98% for the control group (P<0.05). At 8 weeks, mean bone fill was 20.94% and 7.75% for the rhBMP-2 and the controls, respectively (P<0.05). At 12 weeks, mean bone fill was 31.39% and 24.31% for the rhBMP-2 and control implants, respectively (P>0.05). Bone-implant contact (BIC) increased for both groups over time and at 8 weeks the rhBMP-2 BIC value was 18.65% and for the control 7.22% (P<0.05). At 12 weeks, the BIC was 43.78% and 21.05% for the rhBMP-2 and the control group, respectively (P<0.05). Immunohistochemical staining for type II collagen was positive only for parts of the collagen carrier and formation of cartilaginous intermediate was not observed in any of the specimens. The results suggest that, in confined defects adjacent to dental implants, rhBMP-2 can induce bone regeneration in close apposition to the implant surface.
Ma, Bingkui; Sampson, Wayne; Wilson, David; Wiebkin, Ole; Fazzalari, Nicola
2002-07-01
Forward mandibular displacement in animal models is associated with faster and/or redirected condylar growth. Here the effect of forward displacement induced with an intraoral appliance on modelling/remodelling of the mandibular condyle was investigated in eight, 4-month-old, castrated male Merino sheep, randomly allocated to experimental and control groups (n=4 in each group). The study period was 15 weeks, during that time, (1). calcein, (2). tetracycline, and (3). alizarin red S fluorochromes were given to all animals from day 1. Midsagittal sections of the temporomandibular joints were selected for analysis. Dynamic variables of bone formation, static indices of bone-forming and -resorbing activity, and structural indices of trabecular bone were estimated histomorphometrically. The sampling site was divided into two regions for analysis: (a). a 'subchondral region' (2 and 3 labels only), believed to be the bone newly formed during the experimental period; (b). a 'central region' (labelled by all three fluorochromes), believed to be the bone that existed before the experiment. Regional differences in adaptive response were found. In the experimental group, the bone-volume fraction (BV/TV) of the subchondral regions had decreased, although the specific bone-surface and bone-formation rates had increased. This low BV/TV was associated with decreased trabecular thickness and increased trabecular separation. In the central condylar region of the experimental group, BV/TV was unchanged, but an increased osteoid surface was apparent when the eroded surface was taken into consideration. These adaptive condylar responses to forward mandibular displacement appeared to be the result of increased osteoblastic activity. Further studies are recommended to examine why the subchondral and central regions responded differently.
Corrêa, M G; Gomes Campos, M L; Marques, M R; Ambrosano, G M B; Casati, M Z; Nociti, F H; Sallum, E A
2016-02-01
Alcohol intake may interfere with bone metabolism; however, there is a lack of information about the outcomes of regenerative approaches in the presence of alcohol intake. Enamel matrix derivative (EMD) has been used in periodontal regenerative procedures resulting in improvement of clinical parameters. Thus, the aim of this histomorphometric study is to evaluate the healing of periodontal defects after treatment with EMD under the influence of alcohol intake. Twenty Wistar rats were randomly assigned to two groups: G1 = alcohol intake (n = 10) and G2 = non-exposed to alcohol intake (n = 10). Thirty days after initiation of alcohol intake, fenestration defects were created at the buccal aspect of the first mandibular molar of all animals from both groups. After the surgeries, the defects of each animal were randomly assigned to two subgroups: non-treated control and treated with EMD. The animals were killed 21 d later. G1 showed less defect fill for non-treated controls. Bone density (BD) and new cementum formation were lower for G1 when compared to G2, for EMD-treated and non-treated sites. EMD treatment resulted in greater BD and new cementum formation in both groups and defect fill was not significantly different between groups in the EMD-treated sites. The number of tartrate-resistant acid phosphatase-positive osteoclasts was significantly higher in G1 when compared to G2 and in EMD-treated sites of both groups. Alcohol intake may produce a significant detrimental effect on BD and new cementum formation, even in sites treated with EMD. A limited positive effect may be expected after EMD treatment under this condition. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[Assessment tools in early detection of osteoporosis in dentistry].
Knezović Zlatarić, Dubravka; Pandurić, Josip; Korsić, Mirko; Dodig, Damir
2007-03-01
Osteoporosis, one of the major skeletal diseases in older age, is characterised by low bone mass and microarchitectural deterioration with a resulting increase in bone fragility and hence susceptibility to fracture. In this review we analyse the systemic and local factors associated with oral bone mass loss. Systemic factors most often correlated with the oral bone mass loss include osteoporosis, renal diseases, hormonal disorders, diet and the impact of different drugs on the bony structure. Chronic periodontal disease, early loss of teeth or the effect of inadequate prosthodontic appliance on the residual ridge are the local factors associated with mandibular bone loss. Different assessment tools for the assessment of mandibular oral bone loss have been proposed, such as DXA absorptiometry, quantitative computed tomography, intraoral microdensitometry, SCORE index and the assessment of the thickness and quality of the mandibular inferior cortical border. Qualitative and quantitative assessment of the mandibular bony structure is of great importance in all fields of dentistry - from periodontology to endodontics and prosthodontics, especially in dental implantology. It is important to make the correct indication prior to dental implant therapy, and taking into account the systemic and local factors mentioned above, assess both the actual quality and quantity of the mandible.
Shahidi, Shoaleh; Zamiri, Barbad; Abolvardi, Masoud; Akhlaghian, Marzieh; Paknahad, Maryam
2018-06-01
Accurate measurement of the available bone height is an essential step in the pre-surgical phase of dental implantation. Panoramic radiography is a unique technique in the pre-surgical phase of dental implantations because of its low cost, relatively low-dose, and availability. This article aimed to assess the reliability of dental panoramic radiographs in the accurate measurement of the vertical bone height with respect to the horizontal location of the alveolar crest. 132 cone-beam computed tomography (CBCT) of the edentulous mandibular molar area and dental panoramic radiograph of 508 patients were selected. Exclusion criteria were bone abnormalities and detectable ideal information on each modality. The alveolar ridge morphology was categorized into 7 types according to the relative horizontal location of the alveolar crest to the mandibular canal based on CBCT findings. The available bone height (ABH) was defined as the distance between the upper border of the mandibular canal and alveolar crest. One oral radiologist and one oral surgeon measured the available bone height twice on each modality with a 7-dayinterval. We found a significant correlation between dental panoramic radiographs and cone-beam computed tomography values (ICC=0.992, p < 0.001). A positive correlation between the horizontal distance of the alveolar crest to the mandibular canal and measured differences between two radiographic modalities had been found (r=0.755, p < 0.001). For each single unit of increase in the horizontal distance of the alveolar crest to the mandibular canal, dental panoramic radiographs showed 0.87 unit of overestimation ( p < 0.001). Dental panoramic radiographs can be employed safely in the pre-surgical phase of dental implantation in posterior alveolus of mandible, especially in routine and simple cases.
NASA Astrophysics Data System (ADS)
Marchadier, A.; Vidal, C.; Ordureau, S.; Lédée, R.; Léger, C.; Young, M.; Goldberg, M.
2011-03-01
Research on bone and teeth mineralization in animal models is critical for understanding human pathologies. Genetically modified mice represent highly valuable models for the study of osteo/dentinogenesis defects and osteoporosis. Current investigations on mice dental and skeletal phenotype use destructive and time consuming methods such as histology and scanning microscopy. Micro-CT imaging is quicker and provides high resolution qualitative phenotypic description. However reliable quantification of mineralization processes in mouse bone and teeth are still lacking. We have established novel CT imaging-based software for accurate qualitative and quantitative analysis of mouse mandibular bone and molars. Data were obtained from mandibles of mice lacking the Fibromodulin gene which is involved in mineralization processes. Mandibles were imaged with a micro-CT originally devoted to industrial applications (Viscom, X8060 NDT). 3D advanced visualization was performed using the VoxBox software (UsefulProgress) with ray casting algorithms. Comparison between control and defective mice mandibles was made by applying the same transfer function for each 3D data, thus allowing to detect shape, colour and density discrepencies. The 2D images of transverse slices of mandible and teeth were similar and even more accurate than those obtained with scanning electron microscopy. Image processing of the molars allowed the 3D reconstruction of the pulp chamber, providing a unique tool for the quantitative evaluation of dentinogenesis. This new method is highly powerful for the study of oro-facial mineralizations defects in mice models, complementary and even competitive to current histological and scanning microscopy appoaches.
Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds.
Temple, Joshua P; Hutton, Daphne L; Hung, Ben P; Huri, Pinar Yilgor; Cook, Colin A; Kondragunta, Renu; Jia, Xiaofeng; Grayson, Warren L
2014-12-01
The treatment of large craniomaxillofacial bone defects is clinically challenging due to the limited availability of transplantable autologous bone grafts and the complex geometry of the bones. The ability to regenerate new bone tissues that faithfully replicate the anatomy would revolutionize treatment options. Advances in the field of bone tissue engineering over the past few decades offer promising new treatment alternatives using biocompatible scaffold materials and autologous cells. This approach combined with recent advances in three-dimensional (3D) printing technologies may soon allow the generation of large, bioartificial bone grafts with custom, patient-specific architecture. In this study, we use a custom-built 3D printer to develop anatomically shaped polycaprolactone (PCL) scaffolds with varying internal porosities. These scaffolds are assessed for their ability to support induction of human adipose-derived stem cells (hASCs) to form vasculature and bone, two essential components of functional bone tissue. The development of functional tissues is assessed in vitro and in vivo. Finally, we demonstrate the ability to print large mandibular and maxillary bone scaffolds that replicate fine details extracted from patient's computed tomography scans. The findings of this study illustrate the capabilities and potential of 3D printed scaffolds to be used for engineering autologous, anatomically shaped, vascularized bone grafts. © 2014 Wiley Periodicals, Inc.
Mineral trioxide aggregate repair of a perforating internal resorption in a mandibular molar.
Meire, Maarten; De Moor, Roeland
2008-02-01
Internal resorption is a rare condition in permanent teeth that poses difficulties for treatment. The challenge is complicated further if the resorption extends beyond the confines of the root. This article describes treatment of a perforating internal resorption in the mesial root of a second lower molar, with adjacent destruction of the alveolar bone. After cleaning the root canal space and the resorption lacuna by mechanical instrumentation, irrigation, and interim calcium hydroxide dressing, the defect was filled with mineral trioxide aggregate, and the canals were obturated conventionally with gutta percha and epoxy resin sealer. At a 2-year follow-up examination, no clinical abnormalities were found, and complete resolution of the alveolar bone lesion and establishment of a new periodontal ligament were observed.
Seo, Yu-Jin; Lin, Lu; Kim, Seong-Hun; Chung, Kyu-Rhim; Nelson, Gerald
2016-01-01
This case report presents the camouflage treatment that successfully improved the facial profile of a patient with a skeletal Class III malocclusion using bone-borne rapid maxillary expansion and mandibular anterior subapical osteotomy. The patient was an 18-year-old woman with chief complaints of crooked teeth and a protruded jaw. Camouflage treatment was chosen because she rejected orthognathic surgery under general anesthesia. A hybrid type of bone-borne rapid maxillary expander with palatal mini-implants was used to correct the transverse discrepancy, and a mandibular anterior subapical osteotomy was conducted to achieve proper overjet with normal incisal inclination and to improve her lip and chin profile. As a result, a Class I occlusion with a favorable inclination of the anterior teeth and a good esthetic profile was achieved with no adverse effects. Therefore, the hybrid type of bone-borne rapid maxillary expander and a mandibular anterior subapical osteotomy can be considered effective camouflage treatment of a skeletal Class III malocclusion, providing improved inclination of the dentition and lip profile. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Ripamonti, U; Crooks, J; Petit, J C; Rueger, D C
2001-08-01
Native and recombinant human bone morphogenetic/osteogenic proteins (BMPs/ OPs) singly initiate bone induction in vivo. The finding of synchronous but spatially different BMPs/OPs expression during periodontal tissue morphogenesis suggests novel therapeutic approaches using morphogen combinations based on recapitulation of embryonic development. Twelve furcation defects prepared in the first and second mandibular molars of three adult baboons (Papio ursinus) were used to assess whether qualitative histological aspects of periodontal tissue regeneration could be enhanced and tissue morphogenesis modified by combined or single applications of recombinant hOP-1 and hBMP-2. Doses of BMPs/OPs were 100 microg of each protein per 1 g of insoluble collagenous bone matrix as carrier. Approximately 200 mg of carrier matrix was used per furcation defect. Undecalcified sections cut for histological analysis 60 d after healing of hOP-1-treated specimens showed substantial cementogenesis with scattered remnants of the collagenous carrier. hBMP-2 applied alone induced greater amounts of mineralized bone and osteoid when compared to hOP-1 alone or to combined morphogen applications. Combined applications of hOP-1 and hBMP-2 did not enhance alveolar bone regeneration or new attachment formation over and above the single applications of the morphogens. The results of this study, which is the first to attempt to address the structure-activity relationship amongst BMP/OP family members, indicate that tissue morphogenesis induced by hOP-1 and hBMP-2 is qualitatively different when the morphogens are applied singly, with hOP-1 inducing substantial cementogenesis. hBMP-2 treated defects, on the other hand, showed limited cementum formation but a temporal enhancement of alveolar bone regeneration and remodelling. The demonstration of therapeutic mosaicism in periodontal regeneration will require extensive testing of ratios and doses of recombinant morphogen combinations for optimal tissue engineering in clinical contexts.
Lattanzi, Wanda; Parrilla, Claudio; Fetoni, Annarita; Logroscino, Giandomenico; Straface, Giuseppe; Pecorini, Giovanni; Stigliano, Egidio; Tampieri, Anna; Bedini, Rossella; Pecci, Raffaella; Michetti, Fabrizio; Gambotto, Andrea; Robbins, Paul D.; Pola, Enrico
2012-01-01
Local gene transfer of the human LIM Mineralization Protein (LMP), a novel intracellular positive regulator of the osteoblast differentiation program, can induce efficient bone formation in rodents. In order to develop a clinically relevant gene therapy approach to facilitate bone healing, we have used primary dermal fibroblasts transduced ex vivo with Ad.LMP3 and seeded on an hydroxyapatite/collagen matrix prior to autologous implantation. Here we demonstrate that genetically modified autologous dermal fibroblasts expressing Ad.LMP-3 are able to induce ectopic bone formation following implantation of the matrix into the mouse triceps and paravertebral muscles. Moreover, implantation of the Ad.LMP-3-modified dermal fibroblasts into a rat mandibular bone critical size defect model results in efficient healing as determined by X-ray, histology and three dimensional micro computed tomography (3DμCT). These results demonstrate the effectiveness of the non-secreted intracellular osteogenic factor LMP-3, in inducing bone formation in vivo. Moreover, the utilization of autologous dermal fibroblasts implanted on a biomaterial represents a promising approach for possible future clinical applications aimed at inducing new bone formation. PMID:18633445
[The para-clinic investigation of temporo-mandibular joint changes in patients with acromegaly].
Morăraşu, C; Burlui, V; Olaru, C; Boza, C; Bortă, C; Morăraşu, G; Brînză, M
2001-01-01
The Acromegaly is an endocrinological disease determined by the hypersecretion of STH in a certain period of the body evolution and it causes the hypertrophy of bones in general and of mandible and cranio-facial bones, determining a disorder due to this development of bones, associated with troubles in the activity of muscles and of the phospho-calcium metabolism. This study was made on a group of 33 acromegaly patients. Their temporo-mandibular joint was investigated by ortopantomography, tomography, computer tomography and scintigraphy. All of these exams shows the changes in temporo-mandibular joint due to the cells hyperactivity determined by the hypersecretion of STH.
Luo, Danmei; Rong, Qiguo; Chen, Quan
2017-09-01
Reconstruction of segmental defects in the mandible remains a challenge for maxillofacial surgery. The use of porous scaffolds is a potential method for repairing these defects. Now, additive manufacturing techniques provide a solution for the fabrication of porous scaffolds with specific geometrical shapes and complex structures. The goal of this study was to design and optimize a three-dimensional tetrahedral titanium scaffold for the reconstruction of mandibular defects. With a fixed strut diameter of 0.45mm and a mean cell size of 2.2mm, a tetrahedral structural porous scaffold was designed for a simulated anatomical defect derived from computed tomography (CT) data of a human mandible. An optimization method based on the concept of uniform stress was performed on the initial scaffold to realize a minimal-weight design. Geometric and mechanical comparisons between the initial and optimized scaffold show that the optimized scaffold exhibits a larger porosity, 81.90%, as well as a more homogeneous stress distribution. These results demonstrate that tetrahedral structural titanium scaffolds are feasible structures for repairing mandibular defects, and that the proposed optimization scheme has the ability to produce superior scaffolds for mandibular reconstruction with better stability, higher porosity, and less weight. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Khojasteh, Arash; Fahimipour, Farahnaz; Jafarian, Mohammad; Sharifi, Davoud; Jahangir, Shahrbanoo; Khayyatan, Fahimeh; Baghaban Eslaminejad, Mohamadreza
2017-10-01
We sought to assess the effects of coculturing mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) in the repair of dog mandible bone defects. The cells were delivered in β-tricalcium phosphate scaffolds coated with poly lactic co-glycolic acid microspheres that gradually release vascular endothelial growth factor (VEGF). The complete scaffold and five partial scaffolds were implanted in bilateral mandibular body defects in eight beagles. The scaffolds were examined histologically and morphometrically 8 weeks after implantation. Histologic staining of the decalcified scaffolds demonstrated that bone formation was greatest in the VEGF/MSC scaffold (63.42 ± 1.67), followed by the VEGF/MSC/EPC (47.8 ± 1.87) and MSC/EPC (45.21 ± 1.6) scaffolds, the MSC scaffold (34.59 ± 1.49), the VEGF scaffold (20.03 ± 1.29), and the untreated scaffold (7.24 ± 0.08). Hence, the rate of new bone regeneration was highest in scaffolds containing MSC, either mixed with EPC or incorporating VEGF. Adding both EPC and VEGF with the MSC was not necessary. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1767-1777, 2017. © 2016 Wiley Periodicals, Inc.
Surgical modalities in gunshot wounds of the face.
Firat, Cemal; Geyik, Yilmaz
2013-07-01
Maxillofacial traumas caused by gunshot wounds may cause quite varied defects. The objective of this study was to evaluate the reconstruction methods in 12 patients with gunshot wound-related mandibular and maxillofacial bony and soft tissue defects. Twelve patients who were operated on for maxillofacial gunshot wounds at our clinic between 2002 and 2012 were included in the study. Seven patients were wounded in a suicide attempt, and 5 were wounded as a result of an accident or in assaults. Two patients underwent reconstruction using free fibula osteocutaneous flap, 4 patients received the free radial forearm osteocutaneous flap, 2 patients received costal bone graft, and 3 patients received iliac bone grafts. Satisfactory functional and aesthetic outcomes were achieved in cases where staged secondary reconstruction, balloon treatment, and consecutive fat and steroid injections into the depressed scar areas were applied. In conclusion, the basic goal in maxillofacial reconstruction is the functional and aesthetic reconstruction of the contours. Because it is not easy to get perfect results with only 1 clinical approach or 1 method, the proper timing and reconstruction method should be selected.
Biomechanical implications of cortical elastic properties of the macaque mandible.
Dechow, Paul C; Panagiotopoulou, Olga; Gharpure, Poorva
2017-10-01
Knowledge of the variation in the elastic properties of mandibular cortical bone is essential for modeling bone function. Our aim was to characterize the elastic properties of rhesus macaque mandibular cortical bone and compare these to the elastic properties from mandibles of dentate humans and baboons. Thirty cylindrical samples were harvested from each of six adult female rhesus monkey mandibles. Assuming orthotropy, axes of maximum stiffness in the plane of the cortical plate were derived from ultrasound velocity measurements. Further velocity measurements with longitudinal and transverse ultrasonic transducers along with measurements of bone density were used to compute three-dimensional cortical elastic properties using equations based on Hooke's law. Results showed regional variations in the elastic properties of macaque mandibular cortical bone that have both similarities and differences with that of humans and baboons. So far, the biological and structural basis of these differences is poorly understood. Copyright © 2017 Elsevier GmbH. All rights reserved.
Bone structure of the temporo-mandibular joint in the individuals aged 18-25.
Parafiniuk, M; Gutsch-Trepka, A; Trepka, S; Sycz, K; Wolski, S; Parafiniuk, W
1998-01-01
Osteohistometric studies were performed in 15 female and 15 male cadavers aged 18-25. Condyloid process and right and left acetabulum of the temporo-mandibular joint have been studied. Density has been investigated using monitor screen linked with microscope (magnification 80x). Density in the spongy part of the condyloid process was 26.67-26.77%; in the subchondrial layer--72.13-72.72%, and in the acetabular wall 75.03-75.91%. Microscopic structure of the bones of the temporo-mandibular joint revealed no differences when compared with images of compact and cancellous bone shown in the histology textbooks. Sex and the side of the body had no influence on microscopic image and proportional bone density. Isles of chondrocytes in the trabeculae of the spongy structure of the condyloid process were found in 4 cases and isles of the condensed bone resembling the compact pattern in 7 cases.
Scaffold translation: barriers between concept and clinic.
Hollister, Scott J; Murphy, William L
2011-12-01
Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. © Mary Ann Liebert, Inc.
Development of a Drilling Simulator for Dental Implant Surgery.
Kinoshita, Hideaki; Nagahata, Masahiro; Takano, Naoki; Takemoto, Shinji; Matsunaga, Satoru; Abe, Shinichi; Yoshinari, Masao; Kawada, Eiji
2016-01-01
The aim of this study was to develop and evaluate a dental implant surgery simulator that allows learners to experience the drilling forces necessary to perform an osteotomy in the posterior mandibular bone. The simulator contains a force-sensing device that receives input and counteracts this force, which is felt as resistance by the user. The device consists of an actuator, a load cell, and a control unit. A mandibular bone model was fabricated in which the predicted forces necessary to drill the cortical and trabecular bone were determined via micro CT image-based 3D finite element analysis. The simulator was evaluated by five dentists from the Department of Implantology at Tokyo Dental College. The ability of the evaluators to distinguish the drilling resistance through different regions of the mandibular bone was investigated. Of the five dentists, four sensed the change in resistance when the drill perforated the upper cortical bone. All five dentists were able to detect when the drill made contact with lingual cortical bone and when the lingual bone was perforated. This project successfully developed a dental implant surgery simulator that allows users to experience the forces necessary to drill through types of bone encountered during osteotomy. Furthermore, the researchers were able to build a device by which excessive drilling simulates a situation in which the lingual cortical bone is perforated--a situation that could lead to negative repercussions in a clinical setting. The simulator was found to be useful to train users to recognize the differences in resistance when drilling through the mandibular bone.
ADAM10 is essential for cranial neural crest-derived maxillofacial bone development.
Tan, Yu; Fu, Runqing; Liu, Jiaqiang; Wu, Yong; Wang, Bo; Jiang, Ning; Nie, Ping; Cao, Haifeng; Yang, Zhi; Fang, Bing
2016-07-08
Growth disorders of the craniofacial bones may lead to craniofacial deformities. The majority of maxillofacial bones are derived from cranial neural crest cells via intramembranous bone formation. Any interruption of the craniofacial skeleton development process might lead to craniofacial malformation. A disintegrin and metalloprotease (ADAM)10 plays an essential role in organ development and tissue integrity in different organs. However, little is known about its function in craniofacial bone formation. Therefore, we investigated the role of ADAM10 in the developing craniofacial skeleton, particularly during typical mandibular bone development. First, we showed that ADAM10 was expressed in a specific area of the craniofacial bone and that the expression pattern dynamically changed during normal mouse craniofacial development. Then, we crossed wnt1-cre transgenic mice with adam10-flox mice to generate ADAM10 conditional knockout mice. The stereomicroscopic, radiographic, and von Kossa staining results showed that conditional knockout of ADAM10 in cranial neural crest cells led to embryonic death, craniofacial dysmorphia and bone defects. Furthermore, we demonstrated that impaired mineralization could be triggered by decreased osteoblast differentiation, increased cell death. Overall, these findings show that ADAM10 plays an essential role in craniofacial bone development. Copyright © 2016 Elsevier Inc. All rights reserved.
Shokry, Mohamed; Aboelsaad, Nayer
2016-01-01
The purpose of this study was to test the effect of the surgical removal of impacted mandibular third molars using piezosurgery versus the conventional surgical technique on postoperative sequelae and bone healing. Material and Methods. This study was carried out as a randomized controlled clinical trial: split mouth design. Twenty patients with bilateral mandibular third molar mesioangular impaction class II position B indicated for surgical extraction were treated randomly using either the piezosurgery or the conventional bur technique on each site. Duration of the procedure, postoperative edema, trismus, pain, healing, and bone density and quantity were evaluated up to 6 months postoperatively. Results. Test and control sites were compared using paired t-test. There was statistical significance in reduction of pain and swelling in test sites, where the time of the procedure was statistically increased in test site. For bone quantity and quality, statistical difference was found where test site showed better results. Conclusion. Piezosurgery technique improves quality of patient's life in form of decrease of postoperative pain, trismus, and swelling. Furthermore, it enhances bone quality within the extraction socket and bone quantity along the distal aspect of the mandibular second molar. PMID:27597866
Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J
2004-03-01
Since edentate subjects have a reduced masticatory function, it can be expected that the morphology of the cancellous bone of their mandibular condyles has changed according to the altered mechanical environment. In the present study, the morphology of cylindrical cancellous bone specimens of the mandibular condyles of edentate subjects (n = 25) was compared with that of dentate subjects (n = 24) by means of micro-computed tomography and by the application of Archimedes' principle. Stiffness and strength were determined by destructive mechanical testing. Compared with dentate subjects, it appeared that, in edentate subjects, the bone was less dense and the trabecular structure was less plate-like. The regression models of stiffness and strength built from bone volume fraction and the trabecular orientation relative to the axis of the specimen were similar for both dentate and edentate subjects. This indicates that, under reduced mechanical load, the fundamental relationship between bone morphology and mechanical properties does not change.
Orthodontic and orthopedic treatment for a growing patient with Tessier number 0 cleft
Park, Yoon-Hee; Chung, Jee Hyeok; Kim, Sukwha; Choi, Jin-Young
2018-01-01
The purpose of this case report was to introduce the concept of orthodontic and orthopedic treatment for a growing patient with Tessier number 0 cleft. A 5-year-old boy patient with Tessier number 0 cleft presented congenitally missing maxillary central incisors (MXCI), a bony defect at the premaxilla, a constricted maxillary arch, an anterior openbite, and maxillary hypoplasia. His treatment was divided into three stages: management of the bony defect at the premaxilla and the congenitally missing MXCIs using a fan-type expansion plate, iliac bone grafting, and eruption guidance of the maxillary lateral incisors into the graft area for substitution of MXCIs; management of the maxillary hypoplasia using sequential facemask therapy with conventional and skeletal anchorage; and management of the remaining occlusal problems using fixed orthodontic treatment. The total treatment duration was 15 years and 10 months. Class I canine and Class II molar relationships and normal overbite and overjet were achieved at the end of treatment. Although the long-term use of facemask therapy resulted in significant protraction of the retrusive maxilla, the patient exhibited Class III profile because of continued mandibular growth. However, the treatment result was well maintained after 2 years of retention. The findings from this case suggest that interdisciplinary and customized approaches are mandatory for successful management of maxillary hypoplasia, bony defect, and dental problems in Tessier number 0 cleft. Moreover, considering the potential of orthognathic surgery or distraction osteogenesis, meticulous monitoring of mandibular growth until growth completion is important. PMID:29564221
Hoefert, Sebastian; Taier, Roberto
2018-05-01
To evaluate the biomechanical performance of a commercially available bridging plate (2.4) as well as screws and bone simulating the reconstruction of hemimandibular defects and to indicate alternatives of reinforcement to prevent plate fractures either by strength or fatigue. Two common hemimandibular defects are investigated using computed finite element analysis (FEA) approach. Simplified and refined computational models are developed for the geometry of the screw. Conditions of non-locking and locking plate-screw interfaces are considered. Static loads of 120 N are applied. Von Mises stresses and fatigue are calculated. As reinforcement, a second complete or partial plate is placed onto the original plate. Results demonstrate that reconstruction plates are often subjected to excessive stress that may lead to fracture either by strength or by fatigue. An attached complete or partial second plate is able to reduce stress in the plate, in screws and bone so that stress remains below the allowable limit of the materials. A simplified technique of attaching a whole or sectioned second plate onto the original plate can reduce the stress calculated and may reduce the frequency of plate fractures for the patient's comfort, security and financial savings. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Zheng, Lei; Lv, Xiaoming; Zhang, Jie; Liu, Shuming; Zhang, Jianguo; Zhang, Yi
2018-04-01
This study evaluated the computer-aided approach to the reconstruction of mandibular defects using a vascularized iliac-crest flap. From December 2015 to October 2016, 14 patients (8 men and 6 women) 18 to 64 years old (median age, 29 yr) were treated at the Peking University School and Stomatology Hospital (Beijing, China). Biopsy specimens from all patients were subjected to histologic examination before segmental mandibulectomy. Computer-based surgical techniques, including virtual surgical planning, computer-aided design and manufacturing, rapid prototyping, and intraoperative navigation, were used to restore the anatomic continuity and configuration of the mandible using a vascularized iliac-crest flap. Two transverse dimensions and 1 anteroposterior (A-P) dimension were evaluated based on the virtual plan and postoperative computed tomogram. Lines from condylar head to condylar head and from gonial angle to gonial angle were defined as the transverse dimensions. A perpendicular line drawn from the mandibular midline to the center point on the condylar head to condylar head measurement was defined as the A-P dimension. Complications were evaluated during follow-up. The flap success rate was 92.9% (13 of 14), with 1 flap failure. After the operation, there were no other serious complications in 13 of the 14 patients, who exhibited a good mandibular configuration with good occlusion. Furthermore, the height of bone graft was sufficient for implants. Healing of the recipient and donor sites with no serious complication was uneventful. The average surgical errors in the A-P dimension and transverse dimensions were 1.8 ± 1.0 mm (range, 0.2 to 3.7 mm), 2.2 ± 1.1 mm (range, 0.9 to 5.0 mm), and 2.6 ± 1.6 mm (range, 0.3 to 7.2 mm), respectively. The use of these digital techniques was found to be a viable option for reconstruction of mandibular defects, but the results should be interpreted cautiously because of the small number of patients and the relatively short follow-up. Copyright © 2017. Published by Elsevier Inc.
Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images
NASA Astrophysics Data System (ADS)
Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki
2014-04-01
Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.
Seok, Hyun; Kim, Seong-Gon; Kim, Min-Keun; Jang, Insan; Ahn, Janghoon
2018-12-01
The objective of this study was to evaluate the influence of masticatory muscle injection of botulinum toxin type A (BTX-A) on the growth of the mandibular bone in vivo. Eleven Sprague-Dawley rats were used, and BTX-A ( n = 6) or saline ( n = 5) was injected at 13 days of age. All injections were given to the right masseter muscle, and the BTX-A dose was 0.5 units. All of the rats were euthanized at 60 days of age. The skulls of the rats were separated and fixed with 10% formalin for micro-computed tomography (micro-CT) analysis. The anthropometric analysis found that the ramus heights and bigonial widths of the BTX-A-injected group were significantly smaller than those of the saline-injected group ( P < 0.05), and the mandibular plane angle of the BTX-A-injected group was significantly greater than in the saline-injected group ( P < 0.001). In the BTX-A-injected group, the ramus heights II and III and the mandibular plane angles I and II showed significant differences between the injected and non-injected sides ( P < 0.05). The BTX-A-injected side of the mandible in the masseter group showed significantly lower mandibular bone growth compared with the non-injected side. BTX-A injection into the masseter muscle influences mandibular bone growth.
Casey, M B; Pearson, G R; Perkins, J D; Tremaine, W H
2015-09-01
The most prevalent type of equine dental pulpitis due to apical infection is not associated with coronal fractures or periodontal disease. The pathogenesis of this type of pulpitis is not fully understood. Computed tomography (CT) is increasingly used to investigate equine dental disorders. However, gross, tomographic and histopathological changes in equine dental pulpitis have not been compared previously. To compare gross, CT and histological appearances of sectioned mandibular cheek teeth extracted from horses with clinical signs of pulpitis without coronal fractures or periodontal disease. To contribute to understanding the pathogenesis of equine dental pulpitis. Descriptive study using diseased and healthy teeth. Mandibular cheek teeth extracted from horses with clinical signs of pulpitis (cases), and from cadavers with no history of dental disease (controls), were compared using CT in the transverse plane at 1 mm intervals. Teeth were then sectioned transversely, photographed and processed for histopathological examination. Tomographs were compared with corresponding gross and histological sections. Cement, dentine and bone had similar ranges of attenuation (550-2000 Hounsfield Units, HU) in tomographs but could be differentiated from pulp (-400 to 500 HU) and enamel (> 2500 HU). Twelve discrete dental lesions were identified grossly, 10 of which were characterised histologically. Reactive and reparative dentinogenesis and extensive pulpar mineralisation, previously undescribed, were identified. Pulpar oedema, neutrophilic inflammation, cement and enamel defects, and reactive cemental deposition were also observed. The CT and pathological findings corresponded well where there was mineralised tissue deposited, defects in mineralised tissue, or food material in the pulpar area. Pulpar and dentinal necrosis and cement destruction, evident grossly and histologically, did not correspond to CT changes. Computed tomography is useful for identifying deposition and defects of mineralised material but less useful for identifying inflammation and tissue destruction. The equine dentine-pulp complex responds to insult with reactive and reparative changes. © 2014 EVJ Ltd.
Nie, Ping; Zhu, Min; Lu, Xiao-Feng; Fang, Bing
2013-05-01
Severe obstructive sleep apnea syndrome (OSAS) threatens patients' lives. To solve ventilation problem, snoring, and avoid another orthognathic surgery for mandibular advancement, bone-anchored rapid maxillary expansion and bilateral interoral mandibular distraction osteogenesis were tried on a 20-year-old Chinese male patient with severe skeletal class II malocclusion and OSAS.The patient had polysomnography (apnea-hypopnea index 54.2), body mass index measurement (19.7 kg/m), and cephalometry before the treatment. Bone-anchored rapid maxillary expansion was performed for the correction of maxillary transverse and minor sagittal deficiency and the improvement of nasal airflow by decreasing nasal resistance. Bilateral interoral mandibular distraction osteogenesis was operated to lengthen the small, retruded mandible by 15 mm. Orthodontic treatment after the maxillary expansion and mandibular distraction osteogenesis can help obtain stable occlusion.The Epworth Sleepiness Scale, a questionnaire for temporomandibular joint, cephalometric analysis, polysomnography, acoustic rhinometry, and multislice spiral computed tomography were performed to evaluate changes from the treatment. All the results showed that the patient had a significantly alleviated OSAS. In addition, an acceptable occlusion was also obtained.
Malara, Piotr; Fischer, Agnieszka; Malara, Beata
2016-01-01
The elemental composition of bones and teeth can allow exposure to heavy metals in the environment to be estimated. The aim of this study was to determine whether impacted mandibular teeth and the surrounding bones can be used as biomonitoring media to assess exposure to heavy metals. The research materials were 67 impacted lower third molars and samples of the cortical bone removed when the wisdom teeth were surgically extracted. The samples were from people living in two areas with different environmental concentrations of heavy metals. The cadmium, chromium, copper, iron, lead, manganese, and zinc concentrations in the samples were determined by atomic absorption spectrometry with flame atomization. The cadmium and lead concentrations in the impacted third molars and the bones surrounding the teeth were significantly higher for people living in the relatively polluted Ruda Slaska region than for people living in Bielsko-Biala region. Significantly higher chromium, copper, manganese, and zinc concentrations were found in the bones surrounding the impacted teeth from people living in Ruda Slaska than in the bones surrounding the impacted teeth from people living in Bielsko-Biala. The cadmium concentrations in impacted teeth and the surrounding bones were significantly positively correlated. The results indicated that impacted mandibular teeth and the surrounding mandibular bones may reflect the exposure of people to cadmium and lead in the environment. This conclusion, however, must be verified in future research projects designed to exclude the possibility of additional dietary, occupational, and other types of exposure to heavy metals.
Quantitation of mandibular ramus volume as a source of bone grafting.
Verdugo, Fernando; Simonian, Krikor; Smith McDonald, Roberto; Nowzari, Hessam
2009-10-01
When alveolar atrophy impairs dental implant placement, ridge augmentation using mandibular ramus graft may be considered. In live patients, however, an accurate calculation of the amount of bone that can be safely harvested from the ramus has not been reported. The use of a software program to perform these calculations can aid in preventing surgical complications. The aim of the present study was to intra-surgically quantify the volume of the ramus bone graft that can be safely harvested in live patients, and compare it to presurgical computerized tomographic calculations. The AutoCAD software program quantified ramus bone graft in 40 consecutive patients from computerized tomographies. Direct intra-surgical measurements were recorded thereafter and compared to software data (n = 10). In these 10 patients, the bone volume was also measured at the recipient sites 6 months post-sinus augmentation. The mandibular second and third molar areas provided the thickest cortical graft averaging 2.8 +/- 0.6 mm. The thinnest bone was immediately posterior to the third molar (1.9 +/- 0.3 mm). The volume of ramus bone graft measured by AutoCAD averaged 0.8 mL (standard deviation [SD] 0.2 mL, range: 0.4-1.2 mL). The volume of bone graft measured intra-surgically averaged 2.5 mL (SD 0.4 mL, range: 1.8-3.0 mL). The difference between the two measurement methods was significant (p < 0.001). The bone volume measured 6 months post-sinus augmentation averaged 2.2 mL (SD 0.4 mL, range: 1.6-2.8 mL) with a mean loss of 0.3 mL in volume. The mandibular second molar area provided the thickest cortical graft. A cortical plate of 2.8 mm in average at combined second and third molar areas provided 2.5 mL particulated volume. The use of a design software program can improve surgical treatment planning prior to ramus bone grafting. The AutoCAD software program did not overestimate the volume of bone that can be safely harvested from the mandibular ramus.
Vierra, Matthew; Mau, Lian Ping; Huynh-Ba, Guy; Schoolfield, John; Cochran, David L
2016-01-01
To evaluate guided bone regeneration outcomes in defects protected with an in situ formed polyethylene glycol (PEG) hydrogel membrane as compared to a non-cross-linked collagen membrane (CM). Four mandibular alveolar ridge defects were created in eight hound dogs. Regenerative procedures were randomly allocated to one of four groups consisting of freeze-dried bone allograft, which is referred to in this study as freeze-dried bone xenograft (FDBX) + PEG, autogenous bone (AB) + PEG, AB + CM, and AB alone. After 8 weeks, titanium dental implants were placed into augmented sites. After 8 weeks of allowed time for osseointegration, the animals were sacrificed to harvest block specimens for bone-to-implant contact (BIC) and ridge width histomorphometric analysis. Polyethylene glycol membranes had an exposure rate of 50% as compared to 12.5% for sites grafted with CM. Regenerative outcomes with respect to implant placement were least favorable for FDBX + PEG which had implants placed in 37.5% of augmented sites compared to 100% implant placement for all other groups. No statistically significant differences were noted between groups for ridge width measurements in implant and non-implant histologic sections (P > 0.05). Buccal BIC (%) values between treatment groups also failed to reach statistical significant difference (FDBX + PEG [60.2 ± 9.4]; AB + PEG [58.8 ± 8.5]; AB + CM [57.9 ± 12.8]; AB [61.0 ± 10.2]). When used in conjunction with FDBX, PEG had unpredictable bone formation and in most cases negatively impacted future implant placement. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kim, Young-Taek; Wikesjö, Ulf M E; Jung, Ui-Won; Lee, Jung-Seok; Kim, Tae-Gyun; Kim, Chong-Kwan
2013-06-01
The objective of this study is to compare a candidate β-tricalcium phosphate (β-TCP) carrier technology with the absorbable collagen sponge (ACS) benchmark to support recombinant human growth/differentiation factor-5 (rhGDF-5)-stimulated periodontal wound healing/regeneration. Routine, bilateral, critical-size (5-mm), 1-wall, intrabony periodontal defects were surgically created in the mandibular premolar region in 10 beagle dogs. Five animals received rhGDF-5/β-TCP and five animals received rhGDF-5/ACS, with a total of 20 μg rhGDF-5 per defect. The animals were euthanized for histologic and histometric analyses at 8 weeks postsurgery. Both rhGDF-5/ACS and rhGDF-5/β-TCP stimulated the formation of functionally oriented periodontal ligament, cellular mixed fiber cementum, and woven/lamellar bone. Bone regeneration (height and area) was significantly greater for the rhGDF-5/β-TCP construct than for the rhGDF-5/ACS (3.26 ± 0.30 mm versus 2.22 ± 0.82 mm, P <0.01; and 10.45 ± 2.26 mm(2) versus 5.62 ± 2.39 mm(2), P <0.01, respectively). Cementum formation ranged from 3.83 ± 0.73 mm to 3.03 ± 1.18 mm without significant differences between groups. Root resorption/ankylosis was not observed. The β-TCP carrier technology significantly enhanced rhGDF-5-stimulated bone formation compared with the ACS benchmark in this discriminating periodontal defect model. The structural integrity of the β-TCP carrier, preventing compression while providing a framework for bone ingrowth, may account for the observed results.
Shahidi, Shoaleh; Zamiri, Barbad; Abolvardi, Masoud; Akhlaghian, Marzieh; Paknahad, Maryam
2018-01-01
Statement of the Problem: Accurate measurement of the available bone height is an essential step in the pre-surgical phase of dental implantation. Panoramic radiography is a unique technique in the pre-surgical phase of dental implantations because of its low cost, relatively low-dose, and availability. Purpose: This article aimed to assess the reliability of dental panoramic radiographs in the accurate measurement of the vertical bone height with respect to the horizontal location of the alveolar crest. Materials and Method: 132 cone-beam computed tomography (CBCT) of the edentulous mandibular molar area and dental panoramic radiograph of 508 patients were selected. Exclusion criteria were bone abnormalities and detectable ideal information on each modality. The alveolar ridge morphology was categorized into 7 types according to the relative horizontal location of the alveolar crest to the mandibular canal based on CBCT findings. The available bone height (ABH) was defined as the distance between the upper border of the mandibular canal and alveolar crest. One oral radiologist and one oral surgeon measured the available bone height twice on each modality with a 7-dayinterval. Results: We found a significant correlation between dental panoramic radiographs and cone-beam computed tomography values (ICC=0.992, p< 0.001). A positive correlation between the horizontal distance of the alveolar crest to the mandibular canal and measured differences between two radiographic modalities had been found (r=0.755, p< 0.001). For each single unit of increase in the horizontal distance of the alveolar crest to the mandibular canal, dental panoramic radiographs showed 0.87 unit of overestimation (p< 0.001). Conclusion: Dental panoramic radiographs can be employed safely in the pre-surgical phase of dental implantation in posterior alveolus of mandible, especially in routine and simple cases. PMID:29854881
Peripheral giant cell granuloma of the mandibular condyle presenting as a preauricular mass.
Ozcan, Cengiz; Apaydin, F Demir; Görür, Kemal; Apa, Duygu Düşmez
2005-03-01
Preauricular mass is a common symptom for patients presenting to the otorhinolaryngologist with parotid disease. Some rare extraparotid lesions, originating from the temporomandibular joint and the mandible itself, also share the same localization and therefore are to be taken into consideration for the differential diagnosis with parotid lesions. Giant cell granuloma (GCG) was first described by Jaffe in 1953. Peripheral GCG (PGCG) is an exophytic soft tissue lesion originating from the periodontal ligament and periosteum. It is located only within the oral cavity. Central GCG (CGCG) is an uncommon benign fibro-osseous lesion generally presenting as an expansible mass with cortical bone defect. It is generally located in the mandible. The brown tumor of hyperparathyroidism and giant cell tumor must be ruled out because of the microscopic similarities of these lesions. The first case of PGCG of the mandible condyle is presented, and attention is drawn to mandibular diseases for the differential diagnosis of the preauricular mass.
Nackaerts, Olivia; Gijbels, Frieda; Sanna, Anna-Maria; Jacobs, Reinhilde
2008-03-01
The aim was to explore the relation between radiographic bone quality on panoramic radiographs and relative alveolar bone level. Digital panoramic radiographs of 94 female patients were analysed (mean age, 44.5; range, 35-74). Radiographic density of the alveolar bone in the premolar region was determined using Agfa Musica software. Alveolar bone level and bone quality index (BQI) were also assessed. Relationships between bone density and BQI on one hand and the relative loss of alveolar bone level on the other were assessed. Mandibular bone density and loss of alveolar bone level were weakly but significantly negatively correlated for the lower premolar area (r = -.27). The BQI did not show a statistically significant relation to alveolar bone level. Radiographic mandibular bone density on panoramic radiographs shows a weak but significant relation to alveolar bone level, with more periodontal breakdown for less dense alveolar bone.
Open reduction and internal fixation of mandibular fracture in an 11-month-old infant: a case report
Kim, Tae-Wan; Seo, Eun-Woo
2013-01-01
Mandibular fractures in infants are rare. This case report describes management of a mandibular fracture in an 11-month-old infant using a microplate and screws with open reduction. The surgical treatment was successful. Because the bone fragments were displaced and only the primary incisors had erupted, conservative treatment, such as an acrylic splint and circummandibular wiring, was not recommended. Nine weeks after surgery, the microplate was removed. The results showed complete clinical and radiological bone healing with normal eruption of deciduous teeth. PMID:24471024
Titanium Mesh Shaping and Fixation for the Treatment of Comminuted Mandibular Fractures.
Dai, Jiewen; Shen, Guofang; Yuan, Hao; Zhang, Wenbin; Shen, Shunyao; Shi, Jun
2016-02-01
Treating comminuted mandibular fractures remains a challenge. In this study, we used titanium mesh to treat comminuted mandibular fractures. Nine patients with traumatically comminuted mandibular fractures who received open reduction and internal stable fixation with titanium mesh were retrospectively reviewed. Open reduction-internal stable fixation was performed 7 to 10 days after primary debridement of the facial trauma. After the fractured mandible and the displaced fragments were reduced, the titanium mesh was reshaped according to the morphology of the mandible, and the reduced bone fragments were fixed with the reshaped titanium mesh and screws. Then, the surgical effects were evaluated during routine follow-up. Most of the displaced fragments were preserved and exhibited a favorable shaping ability in restoring the morphology of the mandible during surgery. No intraoperative complications were encountered. In addition, all patients were infection free, with no obvious resorption in the fixed fragments after surgery. The mandible also exhibited favorable morphology and offered sufficient bone mass for dental implantation or a denture prosthesis. We conclude that titanium mesh shaping and fixation can effectively treat comminuted mandibular fractures with little bone fragment loss, little soft tissue exposure, a low infection rate, and favorable mandibular morphology. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Das, Anusuya; Fishero, Brian A; Christophel, J Jared; Li, Ching-Ju; Kohli, Nikita; Lin, Yong; Dighe, Abhijit S; Cui, Quanjun
2016-04-01
We have previously shown that the combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 6 (BMP-6) induces significantly more bone formation than that induced by the delivery of any single factor or a combination of any two factors. We now determine whether the exogenous addition of VEGF and BMP-6 is sufficient for bone healing when MSCs are not provided. Poly(lactic-co-glycolic acid) (PLAGA) microsphere-based three-dimensional scaffolds (P) were fabricated by thermal sintering of PLAGA microspheres. The scaffolds were chemically cross-linked with 200 ng recombinant human VEGF (P(VEGF)) or BMP-6 (P(BMP-6)) or both (P(VEGF+BMP-6)) by the EDC-NHS-MES method. Release of the proteins from the scaffolds was detected for 21 days in vitro which confirmed their comparable potential to supply the proteins in vivo. The scaffolds were delivered to a critical-sized mandibular defect created in 32 Sprague Dawley rats. Significant bone regeneration was observed only in rats with P(VEGF+BMP-6) scaffolds at weeks 2, 8 and 12 as revealed by micro-computer tomography. Vascular ingrowth was higher in the P(VEGF+BMP-6) group as seen by microfil imaging than in other groups. Trichrome staining revealed that a soft callus formed in P(VEGF), P(BMP-6) and P(VEGF+BMP-6) but not in P. MSCs isolated from rat femurs displayed expression of the bone-specific marker osteocalcin when cultured with P(VEGF), P(BMP-6), or P(VEGF+BMP-6) but not with P. Robust mineralization and increased alkaline phosphatase gene expression were seen in rat MSCs when cultured on P(VEGF+BMP-6) but not on P, P(VEGF), or P(BMP-6). Thus, unlike the delivery of VEGF or BMP-6 alone, the combined delivery of VEGF and BMP-6 to the bone defect significantly enhanced bone repair through the enhancement of angiogenesis and the differentiation of endogenously recruited MSCs into the bone repair site.
Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips
Moro, Alessandro; Foresta, Enrico; Falchi, Marco; De Angelis, Paolo; D'Amato, Giuseppe; Pelo, Sandro
2017-01-01
The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation. PMID:28246596
Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips.
Moro, Alessandro; Gasparini, Giulio; Foresta, Enrico; Saponaro, Gianmarco; Falchi, Marco; Cardarelli, Lorenzo; De Angelis, Paolo; Forcione, Mario; Garagiola, Umberto; D'Amato, Giuseppe; Pelo, Sandro
2017-01-01
The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation.
Does the titanium plate fixation of symphyseal fracture affect mandibular growth?
Bayram, Burak; Yilmaz, Alev Cetinsahin; Ersoz, Esra; Uckan, Sina
2012-11-01
The effect of metallic fixation on growth is a major concern in children and is not yet clear. The aim of this study was to evaluate the effect of metallic fixation of mandibular symphyseal fracture on mandibular growth.Eighteen 90-day-old growing white New Zealand rabbits weighing 1.6 to 2.5 kg were included in this study and divided into 2 groups of 9 subjects. In the experimental group, animals underwent mandibular osteotomy, simulating a symphyseal fracture on the midline of mandibular symphysis. The bone segments were fixed with microplates and microscrews (1.6 mm).In the control group, the same surgical incision without performing symphyseal osteotomy was conducted, and 2 screws were inserted on each side of the symphyseal midline.Digital cephalometric and submentovertex radiographs were taken before the operation and at postoperative 6 months for each animal in 2 groups, and cephalometric measurements were performed. The distance between the centers of the head of 2 screws measured at the end of surgery in the control group was compared with measurements at 6 months after surgery. Obtained data were statistically analyzed.There is no statistically significant difference between the 2 groups for growth amount of both sides of the mandible. Difference of ANS-Id (the most anterior points of nasal bone, the most anterior point on the alveolar bone between the lower incisors) and Cd-Id (the uppermost and most distal point of the mandibular condyle, the most anterior point on the alveolar bone between the lower incisors) values of the 2 groups is not statistically significant (P > 0.05).The distance between the 2 screws at the first application significantly increased at the postoperative sixth month (P < 0.05). Metallic fixation of mandibular symphyseal fracture does not affect the vertical and sagittal mandibular growth in growing rabbits.
Correlations between physical properties of jawbone and dental implant initial stability.
Seong, Wook-Jin; Kim, Uk-Kyu; Swift, James Q; Hodges, James S; Ko, Ching-Chang
2009-05-01
There is confusion in the literature about how physical properties of bone vary between maxillary and mandibular regions and which physical properties affect initial implant stability. The purpose of this study was to determine correlations between physical properties of bone and initial implant stability, and to determine how physical properties and initial stability vary among regions of jawbone. Four pairs of edentulous maxillae and mandibles were retrieved from fresh human cadavers. Six implants per pair were placed in different anatomical regions (maxillary anterior, right and left maxillary posterior, mandibular anterior, right and left mandibular posterior). Immediately after surgery, initial implant stability was measured with a resonance frequency device and a tapping device. Implant surgeries and initial stability measurements were performed within 72 hours of death. Elastic modulus (EM) and hardness were measured using nano-indentation. Composite apparent density (cAD) was measured using Archimedes' principle. Bone-implant contact percentage and cortical bone thickness were recorded histomorphometrically. Mixed linear models and univariate-correlation analyses were used (alpha=.05). Generally, mandibular bone had higher initial implant stability and physical properties than maxillary bone. Initial implant stability was higher in the anterior region than in the posterior. EM was higher in the posterior region than in the anterior; the reverse was true for cAD. Of the properties evaluated, cAD had the highest correlation with initial implant stability (r=0.82). Both physical properties of bone and initial implant stability differed between regions of jawbone.
Repair of experimental plaque-induced periodontal disease in dogs.
Shoukry, M; Ben Ali, L; Abdel Naby, M; Soliman, A
2007-09-01
Forty mongrel dogs were used in this study for induction of periodontal disease by placing subgingival silk ligatures affecting maxillary and mandibular premolar teeth during a 12-month period. Experimental premolar teeth received monthly clinical, radiographic, and histometric/pathologic assessments. The results demonstrated significant increases in scores and values of periodontal disease parameters associated with variable degrees of alveolar bone loss. The experimental maxillary premolar teeth exhibited more severe and rapid rates of periodontal disease compared with mandibular premolar teeth. Histometric analysis showed significant reduction in free and attached gingiva of the experimental teeth. Histopathological examination of buccolingual sections from experimental premolar teeth showed the presence of rete pegs within the sulcular epithelium with acanthosis and erosive changes, widening of the periodontal ligament, and alveolar bone resorption. Various methods for periodontal repair were studied in 194 experimental premolar teeth exhibiting different degrees of periodontal disease. The treatment plan comprised non-surgical (teeth scaling, root planing, and oral hygiene) and surgical methods (closed gingival curettage, modified Widman flap, and reconstructive surgery using autogenous bone marrow graft and canine amniotic membrane). The initial non-surgical treatment resulted in a periodontal recovery rate of 37.6% and was found effective for treatment of early periodontal disease based on resolution of gingivitis and reduction of periodontal probing depths. Surgical treatment by closed gingival curettage to eliminate the diseased pocket lining resulted in a recovery rate of 48.8% and proved effective in substantially reducing deep periodontal pockets. Open root planing following flap elevation resulted in a recovery rate of 85.4% and was effective for deep and refractory periodontal pockets. Autogenous bone graft implantation combined with canine amniotic membrane as a biodegradable membrane was used in 18 premolar teeth and failed to improve advanced furcation defects in most teeth.
Noh, Kwantae; Choi, Woo-Jin
2013-01-01
Traumatic defects are mostly accompanied by hard and soft tissue loss. This report describes the surgical and prosthetic treatment of a patient with post-traumatic mandibular defect. A split-thickness skin graft was performed prior to implant placement and prefabricated acrylic stent was placed to hold the graft in place. The esthetic and functional demands of the patient were fulfilled by implant-supported screw-retained fixed prosthesis using CAD-CAM technology. PMID:23508120
Hirahara, Naohisa; Kaneda, Takashi; Muraoka, Hirotaka; Fukuda, Taiga; Ito, Kotaro; Kawashima, Yusuke
2017-04-01
The purpose of this study was to determine the characteristic magnetic resonance imaging (MRI) findings indicating bone and soft tissue involvement in patients with rheumatoid arthritis (RA) of the temporomandibular joints (TMJs). Twenty-one patients with RA and TMJ pain who underwent MRI examination of the TMJs at the authors' hospital from August 2006 to December 2014 were included in this study. Twenty-two patients with normal TMJs who underwent MRI examination at the authors' hospital from November to December 2014 were included as controls. MRI findings were compared between the 2 groups. MRI findings of RA in the TMJ included 1) abnormal disc position (95.2%), 2) abnormal disc morphology (83.3%), 3) joint effusion (30.9%), 4) osseous changes in the mandibular condyle (83.3%), 5) synovial proliferation (pannus; 85.7%), 6) erosion of the articular eminence and glenoid fossa (9.52%), 7) deformity of the articular eminence and glenoid fossa (16.6%), 8) abnormal bone marrow signal in the mandibular condyle (83.3%), and 9) swelling of lymph nodes in the parotid glands (78.5%). The abnormal bone marrow signal and pannus in the mandibular condyle and lymph node swelling in the parotid glands were markedly more common in patients with RA than in controls. MRI findings of RA of the TMJs were characterized by bone and soft tissue involvement, including abnormal bone marrow signal of the mandibular condyle, pannus, and swelling of lymph nodes in the parotid glands. These characteristic MRI findings could be useful in detecting RA in the TMJ in a clinical situation. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu
2016-01-01
Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814
Torres, Sandra R.; Chen, Curtis S. K.; Leroux, Brian G.; Lee, Peggy P.; Hollender, Lars G.; Lloid, Michelle; Drew, Shane Patrick; Schubert, Mark M.
2015-01-01
Objective To detect dimensional changes in the mandibular cortical bone associated with bisphosphonate (BP) use and to correlate the measurements of the cortical bone with the cumulative dose of BP therapy. Methods Mandibular inferior cortical bone thickness (MICBT) was measured under the mental foramen from panoramic radiographs of subjects using BP with and without bisphosphonate related osteonecrosis of the jaws (BRONJ) and controls. Results The highest mean MICBT was observed in BRONJ subjects 6.81 (± 1.35 mm), when compared to subjects using BP 5.44 (± 1.09 mm) and controls 4.79 (± 0.85 mm; p<0.01). The mean MICBT of BRONJ subjects was significantly higher than that of subjects using BP without BRONJ. There was a correlation between MICBT and cumulative dose of zolendronate. Conclusion The MICBT on panoramic radiograph is a potentially useful tool for the detection of dimensional changes associated with BP therapy. PMID:25864820
Jonasson, Grethe; Billhult, Annika
2013-09-01
To compare three mandibular trabeculation evaluation methods, clinical variables, and osteoporosis as fracture predictors in women. One hundred and thirty-six female dental patients (35-94 years) answered a questionnaire in 1996 and 2011. Using intra-oral radiographs from 1996, five methods were compared as fracture predictors: (1) mandibular bone structure evaluated with a visual radiographic index, (2) bone texture, (3) size and number of intertrabecular spaces calculated with Jaw-X software, (4) fracture probability calculated with a fracture risk assessment tool (FRAX), and (5) osteoporosis diagnosis based on dual-energy-X-ray absorptiometry. Differences were assessed with the Mann-Whitney test and relative risk calculated. Previous fracture, gluco-corticoid medication, and bone texture were significant indicators of future and total (previous plus future) fracture. Osteoporosis diagnosis, sparse trabeculation, Jaw-X, and FRAX were significant predictors of total but not future fracture. Clinical and oral bone variables may identify individuals at greatest risk of fracture. Copyright © 2013 Elsevier Inc. All rights reserved.
Dutta, Shubha Ranjan; Singh, Purnima; Passi, Deepak; Patter, Pradeep
2015-09-01
To evaluate the efficacy of autologous platelet rich plasma (PRP) in regeneration of bone and to assess clinical compatibility of the material in mandibular third molar extraction socket. To compare the healing of mandibular third molar extraction wounds with and without PRP. Group A consists of the 30 patients where PRP will be placed in the extraction socket before closure of the socket. Group B consists of 30 patients who will be the control group where the extraction sockets will be closed without any intra socket medicaments. The patients would be allocated to the groups randomly. Soft tissue healing was better in study site compared to control site. The result of the study shows rapid bone regeneration in the extraction socket treated with PRP when compared with the socket without PRP. Evaluation for bone blending and trabecular bone formation started earlier in PRP site compared to control, non PRP site. Also there was less postoperative discomfort on the PRP treated side. Autologous PRP is biocompatible and has significant improved soft tissue healing, bone regeneration and increase in bone density in extraction sockets.
Mandelaris, George A; Spagnoli, Daniel B; Rosenfeld, Alan L; McKee, James; Lu, Mei
2015-01-01
This case report describes a tissue-engineered reconstruction with recombinant human bone morphogenetic protein 2/acellular collagen sponge (rhBMP-2/ ACS) + cancellous allograft and space maintenance via Medpor Contain mesh in the treatment of a patient requiring maxillary and mandibular horizontal ridge augmentation to enable implant placement. The patient underwent a previously unsuccessful corticocancellous bone graft at these sites. Multiple and contiguous sites in the maxilla and in the mandibular anterior, demonstrating advanced lateral ridge deficiencies, were managed using a tissue engineering approach as an alternative to autogenous bone harvesting. Four maxillary and three mandibular implants were placed 9 and 10 months, respectively, after tissue engineering reconstruction, and all were functioning successfully after 24 months of follow-up. Histomorphometric analysis of a bone core obtained at the time of the maxillary implant placement demonstrated a mean of 76.1% new vital bone formation, 22.2% marrow/cells, and 1.7% residual graft tissue. Tissue engineering for lateral ridge augmentation with combination therapy requires further research to determine predictability and limitations.
Ge, Jing; Yang, Chi; Zheng, Jia-Wei; He, Dong-Mei; Zheng, Ling-Yan; Hu, Ying-Kai
2014-11-01
Piezosurgery has been used widely in oral and maxillofacial surgery, but there has been no report systematically describing an osteotomy method with piezosurgery for complicated mandibular third molar removal. The aim of this study was to introduce 4 osteotomy methods using piezosurgery and evaluate their effects. A retrospective study was conducted of patients with a complicated impacted mandibular third molar requiring extraction. The predictor variable was the extraction technique. Four osteotomy methods using piezosurgery were tested according to different impaction types: method 1 involved complete bone removal; method 2 involved segmental bone removal; method 3 involved bone removal combined with tooth splitting; and method 4 involved block bone removal. Outcome variables were success rate, operative time, major complications (including nerve injury, mandible fracture, severe hematoma, or severe edema), and serious pyogenic infection. Data were analyzed using descriptive statistics. The study was composed of 55 patients with 74 complicated impacted mandibular third molars. All impacted mandibular third molars were removed successfully. The average surgical time was 15 minutes (range, 8 to 26 minutes). Thirty-eight molars (51.4%) were extracted by method 1, 18 molars (24.3%) by method 2, 12 molars (16.2%) by method 3, and 6 molars (8.1%) by method 4. Two cases (2.7%) developed postoperative infections and recovered within 1 week using drainage and antibiotic administration. The 4 osteotomy methods with piezosurgery provide effective ways of removing complicated impacted mandibular third molars. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Intermittent parathyroid hormone administration improves periodontal healing in rats.
Vasconcelos, Daniel Fernando Pereira; Marques, Marcelo Rocha; Benatti, Bruno Braga; Barros, Silvana Pereira; Nociti, Francisco Humberto; Novaes, Pedro Duarte
2014-05-01
Intermittent administration of parathyroid hormone (PTH) promotes new bone formation in patients with osteoporosis and bone fractures. It was shown previously that PTH also reduces periodontitis-related bone loss. The aim of this study is to evaluate the effect of treatment with PTH on periodontal healing in rats. Fenestration defects were created at the buccal surface of the distal root of the mandibular first molars, and both periodontal ligament (PDL) and cementum were removed. Animals were then assigned to two groups (eight animals per group): group 1: control, placebo administration; and group 2: test, human PTH (hPTH) 1-34 administration at a concentration of 40 μg/kg. For both groups, the animals were injected every 2 days, and the animals were sacrificed at 14 and 21 days after surgery. Specimens were harvested and processed for routine decalcified histologic sections. The following parameters were assessed: 1) remaining bone defect extension (RBDE); 2) newly formed bone density (NFBD); 3) total callus area (TCA); 4) osteoclast number (ON) in the callus region; and 5) newly formed dental cementum-like tissue (NFC). Birefringence of root PDL reattachment was also evaluated. Birefringence analysis showed root PDL reattachment for both groups 21 days after treatment. Intermittent hPTH 1-34 administration decreased RBDE (P <0.01) and increased NFBD (P <0.01), TCA (P <0.01), area of NFC (P <0.01), and ON in the callus region (P <0.01). Within the limits of the present study, intermittent administration of hPTH 1-34 led to an enhanced periodontal healing process compared with non-treated animals.
Guan, Xingmin; Xiong, Meiping; Zeng, Feiyue; Xu, Bin; Yang, Lingdi; Guo, Han; Niu, Jialin; Zhang, Jian; Chen, Chenxin; Pei, Jia; Huang, Hua; Yuan, Guangyin
2014-12-10
To diminish incongruity between bone regeneration and biodegradation of implant magnesium alloy applied for mandibular bone repair, a brushite coating was deposited on a matrix of a Mg-Nd-Zn-Zr (hereafter, denoted as JDBM) alloy to control the degradation rate of the implant and enhance osteogenesis of the mandible bone. Both in vitro and in vivo evaluations were carried out in the present work. Viability and adhesion assays of rabbit bone marrow mesenchyal stem cells (rBM-MSCs) were applied to determine the biocompatibility of a brushite-coated JDBM alloy. Osteogenic gene expression was characterized by quantitative real-time polymerase chain reaction (RT-PCR). Brushite-coated JDBM screws were implanted into mandible bones of rabbits for 1, 4, and 7 months, respectively, using 316L stainless steel screws as a control group. In vivo biodegradation rate was determined by synchrotron radiation X-ray microtomography, and osteogenesis was observed and evaluated using Van Gieson's picric acid-fuchsin. Both the naked JDBM and brushite-coated JDBM samples revealed adequate biosafety and biocompatibility as bone repair substitutes. In vitro results showed that brushite-coated JDBM considerably induced osteogenic differentiation of rBM-MSCs. And in vivo experiments indicated that brushite-coated JDBM screws presented advantages in osteoconductivity and osteogenesis of mandible bone of rabbits. Degradation rate was suppressed at a lower level at the initial stage of implantation when new bone tissue formed. Brushite, which can enhance oeteogenesis and partly control the degradation rate of an implant, is an appropriate coating for JDBM alloys used for mandibular repair. The Mg-Nd-Zn-Zr alloy with brushite coating possesses great potential for clinical applications for mandibular repair.
Abe, Shinichi
With regard to oral cavity, it is known that jaw bone morphology greatly changes with tooth loss. Therefore, it is necessary to consider the muscles attached to the jaw bone and the surrounding vessels and nerves, in connection with the jaw bone morphology after tooth loss. As an example, the height of the mandibular bone decreases to the position of the mylohyoid line after tooth loss. By this marked morphological change in the alveolar area, the lingual nerve and the lingual artery branches running in the sublingual area on the mandibular inner surface becomes located in the area almost the same as the alveolar crest.
Comparison of Bone Grafts From Various Donor Sites in Human Bone Specimens.
Kamal, Mohammad; Gremse, Felix; Rosenhain, Stefanie; Bartella, Alexander K; Hölzle, Frank; Kessler, Peter; Lethaus, Bernd
2018-05-14
The objective of the current study was to compare the three-dimensional (3D) morphometric microstructure in human cadaveric bone specimens taken from various commonly utilized donor sites for autogenous bone grafting. Autogenous bone grafts can be harvested from various anatomic sites and express heterogeneous bone quality with a specific 3D microstructure for each site. The long-term structural integrity and susceptibility to resorption of the graft depend on the selected donor bone. Micro-computed tomography generates high-resolution datasets of bone structures and calcifications making this modality versatile for microarchitecture analysis and quantification of the bone. Six bone specimens, 10 mm in length, where anatomically possible, were obtained from various anatomical sites from 10 human dentate cadavers (4 men, 6 women, mean age 69.5 years). Specimens were scanned using a micro-computed tomography device and volumetrically reconstructed. A virtual cylindrical inclusion was reconstructed to analyze the bone mineral density and structural morphometric analysis using bone indices: relative bone volume, surface density, trabecular thicknesses, and trabecular separation. Calvarial bone specimens showed the highest mineral density, followed by the chin, then mandibular ramus then the tibia, whereas iliac crest and maxillary tuberosity had lower bone mineral densities. The pairwise comparison revealed statistically significant differences in the bone mineral density and relative bone volume index in the calvaria, mandibular ramus, mandibular symphysis groups when compared with those in the iliac crest and maxillary tuberosity, suggesting higher bone quality in the former groups than in the latter; tibial specimens expressed variable results.
Nagaveni, N B; Kumari, K Nandini; Poornima, P; Reddy, V V Subba
2015-01-01
Treatment of an endo-perio lesion involving a non-vital young permanent tooth is a highly challenging task to Pediatric Dentists. There is a quest for the newer biological approach to management of these lesions as traditional methods have various disadvantages. Recently, platelet-rich fibrin (PRF), a second-generation platelet concentrate, is rich in growth factors have been used in the periodontal regeneration procedure. The purpose of this paper is to describe the efficacy of PRF in the treatment of a deep intra bony defect associated with an endo-perio lesion in an immature right mandibular first premolar of 12-year-old female patient. A freshly prepared autologous PRF membrane was placed in the bony defect following debridement. Clinical and radiographic follow-up were performed at regular intervals that revealed absence of pain, gain in clinical attachment level, reduction in probing depth, and excellent bone regeneration indicating successful outcome.
Effects of erbium,chromium:YSGG laser irradiation on canine mandibular bone.
Kimura, Y; Yu, D G; Fujita, A; Yamashita, A; Murakami, Y; Matsumoto, K
2001-09-01
Only relatively few reports have described the morphological effects on bone produced by erbium,chromium: yttrium,scandium,gallium,garnet (Er,Cr:YSGG) laser irradiation, and none has investigated the atomic changes or estimated the temperature increases involved. The objectives of this study were to investigate the morphological, atomic, and temperature changes in irradiated areas during and after laser irradiation, and to evaluate the cutting effect on canine mandibular bone in vitro. Two canine mandibular bones were cut into 3 to 5 cm pieces and irradiated by an Er,Cr:YSGG laser utilizing a water-air spray at 5 W and 8 Hz for 10 or 30 seconds. During and after laser irradiation, temperature increases in the irradiated areas were measured by thermography. The samples were then observed by stereoscopy and scanning electron microscopy to determine morphological changes and by energy dispersive x-ray spectroscopy to evaluate atomic alterations. Regular holes or grooves having sharp edges and smooth walls were produced, but no melting or carbonization was observed. The maximum temperature increase was an average 12.6 degrees C for 30-second irradiation. The continuous time of a temperature increase of more than 10 degrees C was consistently less than 10 seconds. An atomic analytical examination revealed that the calcium:phosphorus ratio was not significantly changed between the lased and unlased areas (P>0.0 1). These results showed that the Er,Cr:YSGG laser cuts canine mandibular bone effectively without burning, melting, or altering the calcium:phosphorus ratio of the irradiated bone.
Simon, Maciej J K; Beil, Frank Timo; Riedel, Christoph; Lau, Grace; Tomsia, Antoni; Zimmermann, Elizabeth A; Koehne, Till; Ueblacker, Peter; Rüther, Wolfgang; Pogoda, Pia; Ignatius, Anita; Amling, Michael; Oheim, Ralf
2016-12-01
Health risks due to chronic exposure to highly fluoridated groundwater could be underestimated because fluoride might not only influence the teeth in an aesthetic manner but also seems to led to dentoalveolar structure changes. Therefore, we studied the tooth and alveolar bone structures of Dorper sheep chronically exposed to very highly fluoridated and low calcium groundwater in the Kalahari Desert in comparison to controls consuming groundwater with low fluoride and normal calcium levels within the World Health Organization (WHO) recommended range. Two flocks of Dorper ewes in Namibia were studied. Chemical analyses of water, blood and urine were performed. Mineralized tissue investigations included radiography, HR-pQCT analyses, histomorphometry, energy-dispersive X-ray spectroscopy and X-ray diffraction-analyses. Fluoride levels were significantly elevated in water, blood and urine samples in the Kalahari group compared to the low fluoride control samples. In addition to high fluoride, low calcium levels were detected in the Kalahari water. Tooth height and mandibular bone quality were significantly decreased in sheep, exposed to very high levels of fluoride and low levels of calcium in drinking water. Particularly, bone volume and cortical thickness of the mandibular bone were significantly reduced in these sheep. The current study suggests that chronic environmental fluoride exposure with levels above the recommended limits in combination with low calcium uptake can cause significant attrition of teeth and a significant impaired mandibular bone quality. In the presence of high fluoride and low calcium-associated dental changes, deterioration of the mandibular bone and a potential alveolar bone loss needs to be considered regardless whether other signs of systemic skeletal fluorosis are observed or not.
NASA Technical Reports Server (NTRS)
Simmons, D. J.; Parvin, C.; Smith, K. C.; France, P.; Kazarian, L.
1986-01-01
The rates of bone formation and mineralization in the mandibular cortex of juvenile Rhesus monkeys exposed to immobilization/rotopositioning are evaluated. The monkeys were restrained in a supine position and rotated 90 deg every 30 minutes through a full 360 deg for 14 days. The microscopic distribution of mineral densities in osteonal bone and the porosity of cortical bone are studied using microradiographs, and osteon closure rates are assessed using tetracycline labeling; normal distributions of osteons of different mineral density and cortical bone porosity values are observed. It is concluded that 14 days of immobilization/rotopositioning did not cause abnormal changes in osteon mineralization, cortical porosity, and osteon closure rates.
Jazayeri, Hossein E; Tahriri, Mohammadreza; Razavi, Mehdi; Khoshroo, Kimia; Fahimipour, Farahnaz; Dashtimoghadam, Erfan; Almeida, Luis; Tayebi, Lobat
2017-01-01
Tissue regeneration is rapidly evolving to treat anomalies in the entire human body. The production of biodegradable, customizable scaffolds to achieve this clinical aim is dependent on the interdisciplinary collaboration among clinicians, bioengineers and materials scientists. While bone grafts and varying reconstructive procedures have been traditionally used for maxillofacial defects, the goal of this review is to provide insight on all materials involved in the progressing utilization of the tissue engineering approach to yield successful treatment outcomes for both hard and soft tissues. In vitro and in vivo studies that have demonstrated the restoration of bone and cartilage tissue with different scaffold material types, stem cells and growth factors show promise in regenerative treatment interventions for maxillofacial defects. The repair of the temporomandibular joint (TMJ) disc and mandibular bone were discussed extensively in the report, supported by evidence of regeneration of the same tissue types in different medical capacities. Furthermore, in addition to the thorough explanation of polymeric, ceramic, and composite scaffolds, this review includes the application of biodegradable metallic scaffolds for regeneration of hard tissue. The purpose of compiling all the relevant information in this review is to lay the foundation for future investigation in materials used in scaffold synthesis in the realm of oral and maxillofacial surgery. Copyright © 2016 Elsevier B.V. All rights reserved.
Fixation Release and the Bone Bandaid: A New Bone Fixation Device Paradigm
Shayesteh Moghaddam, Narges; Jahadakbar, Ahmadreza; Amerinatanzi, Amirhesam; Skoracki, Roman; Miller, Michael; Dean, David; Elahinia, Mohammad
2017-01-01
The current gold standard of care for mandibular segmental defeat reconstruction is the use of Ti-6Al-4V immobilization hardware and fibular double barrel graft. This method is often successful immediately at restoring mandible function, however the highly stiff fixation hardware causes stress shielding of the grafted bone and stress concentration in the fixation device over time which can lead to fixation device failure and revision surgery. The purpose of reconstructive surgery could be to create normal stress trajectories in the mandible following engraftment. We investigate the use of a two stage mechanism which separates the immobilization/healing and regenerative phases of mandibular segmental defect treatment. The device includes the use of a very stiff, Ti-6Al-4V, releasable mechanism which assures bone healing. Therefore it could be released once the reconstructed boney tissue and any of its ligamentous attachments have completely healed. Underneath the released Ti-6Al-4V plate would be a pre-loaded nitinol (NiTi) wire-frame apparatus that facilitates the normal stress-strain trajectory through the engrafted bone after the graft is healed in place and the Ti-6Al-4V fixation device has been released. Due to the use of NiTi wires forming a netting that connects vascularized bone and possibly bone chips, bone grafts are also more likely to be incorporate rather than to resorb. We first evaluated a healthy adult mandible during normal mastication to obtain the normal stress-strain distribution. Then, we developed the finite element (FE) model of the mandibular reconstruction (in the M1-3 region) with the proposed fixation device during the healing (locked state) and post-healing (released state) periods. To recreate normal stress trajectory in the reconstructed mandible, we applied the Response Surface Methodology (RMS) to optimize the Bone Bandaid geometry (i.e., wire diameters and location). The results demonstrate that the proposed mechanism immobilizes the grafted bone in the locked state properly since the maximum resultant gap (21.54 micron) between the graft and host mandible surfaces are in the safe region (less than 300 micron). By considering the von Mises criteria for failure, FE analysis together with experimental studies (i.e., compressive and tensile testing on the inferior and superior fixation devices, respectively) confirm that the proposed fixation devices do not fail, showing safety factor of at least 10.3. Based on the Response Surface Methodology (RSM) technique, the optimal parameter values for the wires are achieved (0.65 mm and 1 mm for the superior and inferior wires, respectively) and the required level of preload on each wire are calculated (369.8 N and 229 N for the inferior and superior wires, respectively). The FE results for stress distribution on the reconstructed mandible during the released state closely match that of a healthy mandible. PMID:28952484
Durmuş, Kasım; Turgut, Nergiz Hacer; Doğan, Mehtap; Tuncer, Ersin; Özer, Hatice; Altuntaş, Emine Elif; Akyol, Melih
2017-10-01
Mandibular fractures are the most common facial fractures. They can be treated by conservative techniques or by surgery. The authors hypothesized that the application of a single local dose of strontium chloride would accelerate the healing of subcondylar mandibular fractures, shorten the recovery time and prevent complications. The aim of the present pilot study was to evaluate the effects of a single local dose of strontium chloride on the healing of subcondylar mandibular fractures in rats. This randomized experimental study was carried out on 24 male Wistar albino rats. The rats were randomly divided into 3 groups: experimental group 1, receiving 3% strontium chloride; experimental group 2, receiving 5% strontium chloride; and the control group. A full thickness surgical osteotomy was created in the subcondylar area. A single dose of strontium solution (0.3 cc/site) was administered locally by injection on the bone surfaces of the fracture line created. Nothing was administered to the control group. The mandibles were dissected on postoperative day 21. The fractured hemimandibles were submitted to histopathological examination. The median bone fracture healing score was 9 (range: 7-9) in experimental group 1; 8 (range: 7-10) in experimental group 2; and 7.50 (range: 7-8) in the control group. When the groups were compared in terms of bone healing scores, there was a statistically significant difference between experimental group 1 and the control group (p < 0.05). This study is the first to show that local strontium may have positive effects on the healing of subcondylar mandibular fractures. In the authors' opinion, 3% strontium was beneficial for accelerating facial skeleton consolidation and bone regeneration in rat subcondylar mandibular fractures. This treatment procedure may be combined with closed fracture treatment or a conservative approach.
Novelli, Giorgio; Sconza, Cristiano; Ardito, Emanuela; Bozzetti, Alberto
2012-01-01
The management of atrophic mandibular fractures in edentulous patients represents an insidious issue for the maxillofacial surgeon due to the biological and biomechanical conditions that are unfavorable for fracture fixation and bone healing. The purpose of this study was to evaluate the results of the treatment of atrophic mandibular fractures and to compare the outcomes of different plating systems used for stabilization. We selected a study group of 16 patients with fractures of completely edentulous atrophic mandibles who were treated in our department between 2004 and 2010. All patients were surgically treated by open reduction and internal rigid fixation using 2.0-mm large-profile locking and 2.4-mm locking bone plates. All patients achieved a complete fracture healing and fast functional recovery of mandibular movements without intraoperative or postoperative surgical complications. The results of our study demonstrated the efficacy of this type of treatment in association with a low postoperative complication rate, a reduction in the recovery time, and the possibility to have an immediately functional rehabilitation. There were very similar results using each of the two bone plating methods considered: no case had hardware failure or nonunion of the fracture. The 2.0-mm large locking plate is thinner, exposes through the soft tissues less frequently, and is much easier to shape and adapt to the mandibular anatomy. However, the 2.4-mm locking plate system still represents the reference hardware in the condition of severe bone atrophy. PMID:23730420
NASA Astrophysics Data System (ADS)
Horiba, Kazuki; Muramatsu, Chisako; Hayashi, Tatsuro; Fukui, Tatsumasa; Hara, Takeshi; Katsumata, Akitoshi; Fujita, Hiroshi
2015-03-01
Findings on dental panoramic radiographs (DPRs) have shown that mandibular cortical index (MCI) based on the morphology of mandibular inferior cortex was significantly correlated with osteoporosis. MCI on DPRs can be categorized into one of three groups and has the high potential for identifying patients with osteoporosis. However, most DPRs are used only for diagnosing dental conditions by dentists in their routine clinical work. Moreover, MCI is not generally quantified but assessed subjectively. In this study, we investigated a computer-aided diagnosis (CAD) system that automatically classifies mandibular cortical bone for detection of osteoporotic patients at early stage. First, an inferior border of mandibular bone was detected by use of an active contour method. Second, regions of interest including the cortical bone are extracted and analyzed for its thickness and roughness. Finally, support vector machine (SVM) differentiate cases into three MCI categories by features including the thickness and roughness. Ninety eight DPRs were used to evaluate our proposed scheme. The number of cases classified to Class I, II, and III by a dental radiologist are 56, 25 and 17 cases, respectively. Experimental result based on the leave-one-out cross-validation evaluation showed that the sensitivities for the classes I, II, and III were 94.6%, 57.7% and 94.1%, respectively. Distribution of the groups in the feature space indicates a possibility of MCI quantification by the proposed method. Therefore, our scheme has a potential in identifying osteoporotic patients at an early stage.
Watson, Tom Anthony; Arthurs, Owen John; Muthialu, Nagarajan; Calder, Alistair Duncan
2014-02-01
Cerebro-costo-mandibular syndrome (CCMS) describes a triad of mandibular hypoplasia, brain dysfunction and posterior rib defects ("rib gaps"). We present the CT imaging for a 2-year-old girl with CCMS that highlights the rib gap defects and shows absent transverse processes with abnormal fusion of the ribs directly to the vertebral bodies. We argue that this is likely to relate to abnormal lateral sclerotome development in embryology, with the failure of normal costo-vertebral junctions compounding impaired thoracic function. The case also highlights the use of CT for specific indications in skeletal dysplasia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, D.R.; Ossoff, R.H.; Pecaro, B.
1981-01-01
The problem of mandibular reconstruction has been approached using many surgical techniques. This article studies one such approach--reconstruction using full-thickness clavicle pedicled on the sternocleidomastoid muscle. Five patients with stage II and stage III carcinoma of the anterior part of the floor of the mouth were treated with mandibular resection and neck dissection. The resulting defects were immediately reconstructed with the clavicle-sternocleidomastoid muscle technique. The patients were observed from one to three years and were examined postoperatively with technetium Tc 99m medronate scans, which demonstrated the grafts to be viable. The technique proved reliable in a limited clinical trial.
Functional and morphological correlates of mandibular symphyseal form in a living human sample.
Holton, Nathan E; Franciscus, Robert G; Ravosa, Matthew J; Southard, Thomas E
2014-03-01
Variation in recent human mandibular form is often thought to reflect differences in masticatory behavior associated with variation in food preparation and subsistence strategies. Nevertheless, while mandibular variation in some human comparisons appear to reflect differences in functional loading, other comparisons indicate that this relationship is not universal. This suggests that morphological variation in the mandible is influenced by other factors that may obscure the effects of loading on mandibular form. It is likely that highly strained mandibular regions, including the corpus, are influenced by well-established patterns of lower facial skeletal integration. As such, it is unclear to what degree mandibular form reflects localized stresses incurred during mastication vs. a larger set of correlated features that may influence bone distribution patterns. In this study, we examine the relationship between mandibular symphyseal bone distribution (i.e., second moments of area, cortical bone area) and masticatory force production (i.e., in vivo maximal bite force magnitude and estimated symphyseal bending forces) along with lower facial shape variation in a sample of n = 20 living human male subjects. Our results indicate that while some aspects of symphyseal form (e.g., wishboning resistance) are significantly correlated with estimates of symphyseal bending force magnitude, others (i.e., vertical bending resistance) are more closely tied to variation in lower facial shape. This suggests that while the symphysis reflects variation in some variables related to functional loading, the complex and multifactorial influences on symphyseal form underscores the importance of exercising caution when inferring function from the mandible especially in narrow taxonomic comparisons. Copyright © 2013 Wiley Periodicals, Inc.
Gerard, David A; Carlson, Eric R; Gotcher, Jack E; Pickett, David O
2014-01-01
This study was conducted with 2 purposes. The first was to determine the effect of a single dose of zoledronic acid (ZA) on the healing of a tooth extraction socket in dogs. The second was to determine if placement of recombinant human bone morphogenetic protein-2 (rhBMP-2)/absorbable collagen sponge (ACS) - INFUSE, (Medtronic, Memphis, TN) into these extraction sockets would inhibit the inhibition on bone healing and remodeling by ZA. Nine adult female beagle dogs (2 to 3 yr old) were placed into 3 groups of 3 dogs each. Group I received 15 mL of sterile saline intravenously; group II received 2.5 mg of ZA intravenously; and group III received 5 mg of ZA intravenously. Forty-five days after treatment, all dogs underwent extraction of noncontiguous right and left mandibular first molars and second premolars. In group I, the right mandibular extraction sockets had nothing placed in them, whereas the left mandibular sockets had only ACS placed in them. In groups II and III, the right mandibular sockets had rhBMP-2/ACS placed in them, whereas the left mandibular sockets had only ACS placed. All extraction sockets were surgically closed. Tetracycline was given intravenously 5 and 12 days later, and all animals were euthanized 15 days after tooth extraction. The extraction sockets and rib and femur samples were harvested immediately after euthanasia, processed, and studied microscopically. A single dose of ZA significantly inhibited healing and bone remodeling in the area of the tooth extractions. The combination of rhBMP-2/ACS appeared to over-ride some of the bone remodeling inhibition of the ZA and increased bone fill in the extraction sites, and remodeling activity in the area was noted. The effects of rhBMP-2/ACS were confined to the area of the extraction sockets because bone activity at distant sites was not influenced. A single dose of ZA administered intravenously inhibits early healing of tooth extraction sockets and bone remodeling in this animal model. The combination of rhBMP-2/ACS significantly increased bone fill and bone remodeling in these areas, negating much of the effect of the ZA. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Beta-catenin-dependent Wnt signaling in mandibular bone regeneration.
Leucht, Philipp; Kim, Jae-Beom; Helms, Jill A
2008-02-01
Osteoblasts are derived from two distinct embryonic lineages: cranial neural crest, and mesoderm. Both populations of cells are capable of forming bone and cartilage during fetal development and during adult bone repair, but whether they use equivalent molecular pathways to achieve osteoblast differentiation is unknown. We addressed this question in the context of cranial repair and focused on the role of Wnt signaling in mandibular skeletal healing. Transgenic Wnt reporter mice were used to pinpoint Wnt-responsive cells in the injury callus, and in situ hybridization was used to identify some of the Wnt ligands expressed by cells during the repair process. A gene transfer technique was employed to abrogate Wnt signaling during mandibular healing, and we found that reparative intramembranous ossification requires a functional Wnt pathway. Finally, we evaluated how constitutive activation of the Wnt pathway, caused by mutation of the LRP5 receptor, affected bone repair in the mandible. Taken together, these data underscore the functional requirement for Wnt signaling in cranial skeletal healing.
Cerebro-costo-mandibular syndrome: Report of two cases.
Abdalla, Wael; Panigrahy, Ashok; Bartoletti, Stefano C
2011-01-01
Cerebro-costo-mandibular syndrome (CCMS) is a rare syndrome that includes a constellation of mandibular hypoplasia and posterior rib defects as its basic features. Additional features can include hearing loss, tracheal cartilage abnormalities, scoliosis, elbow hypoplasia, and spina bifida. Here we report two cases of CCMS and discuss the reported long-term outcome of the disease.
Feng, Lifang; Liu, Xiaohan; Cao, Hongjuan; Qin, Limei; Hou, Wentao; Wu, Lin
2018-05-21
Low-intensity pulsed ultrasound (LIPUS) combined with porous scaffolds can be used as a new therapy to treat bone defect repair. The aim of this study was to evaluate the effects of 1 and 3.2 MHz LIPUS on osteogenesis on porous Ti64 alloy scaffolds for both in vitro and in vivo studies. Scaffolds were randomly divided into the high-frequency ultrasound group, low-frequency ultrasound group, and control group. Mouse pre-osteoblast cells were cultured with porous Ti-6Al-4V scaffolds in vitro to evaluate cell proliferation and differentiation. In addition, scaffolds were implanted into rabbit mandibular defects in vivo. The effects of LIPUS on bone regeneration were evaluated by observing the micro-computed tomography (micro-CT), toluidine blue staining, and von Kossa staining. The results revealed no significant difference in the cell counting kit-8 values between the ultrasound groups and control groups (P > .05). Compared with the control group, ultrasound promoted alkaline phosphatase activity and osteocalcin levels of the cells on the scaffolds (P < .05), but there was no significant difference between the two frequencies. In addition, histomorphologic analyses revealed that the volume and amount of new bone formation increased and that bone maturity improved in the ultrasound groups compared with the control group, but no significant difference was noted between the two frequencies. Under the present experimental conditions, LIPUS promoted osteoblast differentiation and promoted bone maturity on porous Ti64 scaffolds. No significant differences were noted between the two frequencies. © 2018 by the American Institute of Ultrasound in Medicine.
Nabavizadeh, Ali; Weishampel, David B
2016-10-01
The characteristic predentary bone in ornithischian dinosaurs is a unique, unpaired element located at the midline of the mandibular symphysis. Although traditionally thought to only be a plant "nipping" bone, the true functional significance of this bone among feeding mechanisms of ornithischian dinosaurs is poorly known. Recent studies of a select few ornithischian genera have suggested rotation of the mandibular corpora around their long axes relative to their midline joint articulation with the predentary bone. This study aims to re-evaluate these hypotheses as well as provide in-depth qualitative comparative descriptions of predentary bone morphology in ornithischian genera throughout all subclades, including heterodontosaurids, thyreophorans, ornithopods, and marginocephalians. Descriptions evaluate overall shape of the predentary, its articular surfaces contacting the rostral ends of the dentaries, and the morphology of the rostral extent of the dentaries and their midline symphysis. Functionally relevant morphologies in each predentary morphotype are accentuated for further speculation of feeding mechanisms. Three predentary morphotypes are described throughout ornithischian subclades and each plays a unique role in feeding adaptations. Most notably, the predentary likely evolved as a midline axial point of the mandibular symphysis for simultaneous variable movement or rotation of the mandibular corpora in many, but not all, taxa. This simultaneous movement of the hemimandibles would have aided in feeding on both sides of the jaw at once. The function of the predentary as well as other jaw adaptations is discussed for genera throughout all subclades, focusing on both general shape and joint morphology. Anat Rec, 299:1358-1388, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Ramaglia, Luca; Toti, Paolo; Sbordone, Carolina; Guidetti, Franco; Martuscelli, Ranieri; Sbordone, Ludovico
2015-05-01
The purpose of this study was to determine the existence of correlations between marginal peri-implant linear bone loss and the angulation of implants in maxillary and mandibular augmented areas over the course of a 2-year survey. Dependent variables described the sample of the present retrospective chart review. By using three-dimensional radiographs, input variables, describing the implant angulation (buccal-lingual angle [φ] and mesial-distal angle [θ]) were measured; outcome variables described survival rate and marginal bone resorption (MBR) around dental implants in autogenous grafts (10 maxillae and 14 mandibles). Pairwise comparisons and linear correlation coefficient were computed. The peri-implant MBR in maxillary buccal and palatal areas appeared less intensive in the presence of an increased angulation of an implant towards the palatal side. Minor MBR was recorded around mandibular dental implants positioned at a right angle and slightly angulated towards the mesial. Resorption in buccal areas may be less intensive as the angulation of placed implants increases towards the palatal area in the maxilla, whereas for the mandible, a greater inclination towards the lingual area could be negative. In the mandibular group, when the implant was slightly angulated in the direction of the distal area, bone resorption seemed to be more marked in the buccal area. In the planning of dental implant placement in reconstructed alveolar bone with autograft, the extremely unfavourable resorption at the buccal aspect should be considered; this marginal bone loss seemed to be very sensitive to the angulation of the dental implant.
Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J
2003-05-01
To investigate the influence of decreased mechanical loading on the density and mechanical properties of the cancellous bone of the human mandibular condyle. Destructive compressive mechanical tests were performed on cancellous bone specimens.Background. Reduced masticatory function in edentate people leads to a reduction of forces acting on the mandible. As bone reacts to its mechanical environment a change in its material properties can be expected. Cylindrical bone specimens were obtained from dentate and edentate embalmed cadavers. Mechanical parameters were determined in the axial and in the transverse directions. Subsequently, density parameters were determined according to a method based on Archimedes' principle. The apparent density and volume fraction of the bone were about 18% lower in the edentate group; no age-related effect on density was found. The decrease of bone in the edentate group was associated with a lower stiffness and strength (about 22% and 28%, respectively). The ultimate strain, however, did not differ between the two groups. Both groups had similar mechanical anisotropy; in axial loading the bone was stiffer and stronger than in transverse loading. Reduced mechanical load had affected the density and herewith the mechanical properties of condylar cancellous bone, but not its anisotropy. The change in material properties of the cancellous bone after loss of teeth indicate that the mandibular condyle is sensitive for changes in its mechanical environment. Therefore, changes in mechanical loading of the condyle have to be accounted for in surgical procedures of the mandible.
Masticatory efficiency after rehabilitation of acquired maxillary and mandibular defects
Vijayaraghavan, N. Vasantha; Ramesh, Ganesh; Thareja, Amit; Patil, Seema
2015-01-01
The effect of oral cancer with its therapeutic intervention involves significant facial and functional disabilities. It is customary to rehabilitate these patients by surgical or prosthetic means. Studies have been done to assess mastication and other functions after rehabilitation. A review of these studies for assessing masticatory function has been done under separate sections for maxillary and mandibular defects. Different masticatory tests are mentioned. Further scope for research has been highlighted. PMID:26392731
Natu, Subodh Shankar; Ali, Iqbal; Alam, Sarwar; Giri, Kolli Yada; Agarwal, Anshita; Kulkarni, Vrishali Ajit
2014-01-01
Limb lengthening by distraction osteogenesis was first described in 1905. The technique did not gain wide acceptance until Gavril Ilizarov identified the physiologic and mechanical factors governing successful regeneration of bone formation. Distraction osteogenesis is a new variation of more traditional orthognathic surgical procedure for the correction of dentofacial deformities. It is most commonly used for the correction of more severe deformities and syndromes of both the maxilla and the mandible and can also be used in children at ages previously untreatable. The basic technique includes surgical fracture of deformed bone, insertion of device, 5-7 days rest, and gradual separation of bony segments by subsequent activation at the rate of 1 mm per day, followed by an 8-12 weeks consolidation phase. This allows surgeons, the lengthening and reshaping of deformed bone. The aim of this paper is to review the principle, technical considerations, applications and limitations of distraction osteogenesis. The application of osteodistraction offers novel solutions for surgical-orthodontic management of developmental anomalies of the craniofacial skeleton as bone may be molded into different shapes along with the soft tissue component gradually thereby resulting in less relapse. PMID:24688555
Corrêa, Mônica G; Gomes Campos, Mirella L; Marques, Marcelo Rocha; Bovi Ambrosano, Glaucia Maria; Casati, Marcio Z; Nociti, Francisco H; Sallum, Enilson A
2014-07-01
Psychologic stress and clinical hypercortisolism have been related to direct effects on bone metabolism. However, there is a lack of information regarding the outcomes of regenerative approaches under the influence of chronic stress (CS). Enamel matrix derivative (EMD) has been used in periodontal regenerative procedures, resulting in improvement of clinical parameters. Thus, the aim of this histomorphometric study is to evaluate the healing of periodontal defects after treatment with EMD under the influence of CS in the rat model. Twenty Wistar rats were randomly assigned to two groups; G1: CS (restraint stress for 12 hours/day) (n = 10), and G2: not exposed to CS (n = 10). Fifteen days after initiation of CS, fenestration defects were created at the buccal aspect of the first mandibular molar of all animals from both groups. After the surgeries, the defects of each animal were randomly assigned to two subgroups: non-treated control and treated with EMD. The animals were euthanized 21 days later. G1 showed less bone density (BD) compared to G2. EMD provided an increased defect fill (DF) in G1 and higher BD and new cementum formation (NCF) in both groups. The number of tartrate-resistant acid phosphatase-positive osteoclasts was significantly higher in G1 when compared to G2 and in EMD-treated sites of both groups. CS may produce a significant detrimental effect on BD. EMD may provide greater DF compared to non-treated control in the presence of CS and increased BD and NCF in the presence or absence of CS.
Zeltner, Marco; Flückiger, Laura B; Hämmerle, Christoph H F; Hüsler, Jürg; Benic, Goran I
2016-08-01
To test whether the mandibular retromolar region renders different results from the chin region with respect to the amount of bone available for the harvesting of block grafts. Sixty cone beam computed tomography (CBCT) scans of mandibles of adult patients without pathologic findings in the chin and retromolar region were included. According to the number of mandibular teeth, 20 CBCT data sets were allocated to each of the following groups: group M1: dentition 36-46; group M2: dentition 37-47; and group M3: dentition 38-48. For the potential donor sites in the chin and the retromolar regions, the volume (VChin , VRetro ), the length (LChin , LRetro ), the height (HChin , HRetro ) and the width (HChin , HRetro ) were assessed using a computer software. Moreover, the chin was examined for the presence and the localization of the mandibular incisive canal. To compare the donor sites in the chin and in the retromolar regions, the quotients VRetro /VChin , LRetro /LChin , HRetro /HChin and WRetro /WChin were calculated and tested using the Wilcoxon signed-rank test or the sign test. The mean bone volume VChin measured 3.5 ± 1.3 cm(3) (SD), whereas the overall VRetro amounted to 1.8 ± 1.1 cm(3) (SD). VRetro amounted to 2.6 ± 1.4 cm(3) (SD) in the group M1, 1.8 ± 0.5 cm(3) in the group M2 and 1.0 ± 0.4 cm(3) in the group M3. For the group M1, VRetro /VChin measured 82 ± 39% (P = 0.036). VRetro /VChin reached 57 ± 20% in the group M2 and 32 ± 12% in the group M3 (P < 0.001). The mandibular incisive canal was detected in 97% of the CBCT scans. The distance between the mandibular incisive canal and the apices of the central incisors measured 10.5 ± 3.5 mm. The amount of bone available for the harvesting of cortico-cancellous blocks in the chin region was superior in comparison with the mandibular retromolar region. In the absence of the second and the third molars, the amount of bone harvestable in the retromolar region reached approximately 80% of the bone volume available in the chin region. In the majority of the cases, the mandibular incisive canal was detected within the donor site in the chin region. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
New method for maximum mobilization of temporalis muscle flap.
Masic, Tarik; Babajic, Emina; Dervisevic, Almir; Hassouba, Mahmoud
2012-01-01
Pedicled temporalis muscle flap presenting a good flap for closing large craniofacial defects. Careful surgeons usually do not mobilize temporalis muscle flap enough to make appropriate use, fully closure, especially if defect exceeds the median line. Temporalis flap was used in 16 patients, ages ranged between 12 and 76. In all cases defect reconstruction was done by useing new method of extending standard temporal muscle flap. During surgical procedure it is very important to keep periosteal elevator in close contact with the bone. Then, there is no risk for pedicle injury. After vascular pedicle is identified elevating temporal muscle has to be continued by releasing the muscle insertion from the coronoid process. By this way, flap length and arc of rotation is increased. The flap remained viable in all instances. Most of the patients experienced no perioperative complications. There was no major complications or mortality as a result of performed procedures. With this division, flap length was increased at least 2 cm wich is enough for covering defects crossing the midline. Instead of using bilateral temporalis muscle flaps for defect closure, unilateral is sufficient. With this extension of the pedicle length now rotation point is not at the level of the zygomatic arch but lower part mandibular neck.
Yoon, Hyung-In
2016-10-01
This report is to present the treatment procedure and clinical considerations of prosthodontic management of a patient who had undergone a partial mandibulectomy and fibular free flap surgery. A 59-year-old man with a squamous cell carcinoma received a partial mandibular resection. Microsurgical reconstruction with a fibular free flap surgery and implant-supported zirconia-fixed prosthesis produced by computer-aided manufacturing led to successful results for the oral rehabilitation of mandibular defects. The implant-supported zirconia-fixed prosthesis can be recommended for use in patients with mandibulectomy and fibular free flaps. Close cooperation between the surgeon and the prosthodontist is mandatory for the satisfaction of the patient.
Matzen, Louise Hauge; Schropp, Lars; Spin-Neto, Rubens; Wenzel, Ann
2017-11-01
The aim of the study was to identify risk factors for pathoses related to mandibular third molars observed in cone beam computed tomography. Cone beam computed tomography volumes of 410 mandibular third molars were assessed by 3 observers, according to the angulation and position of the third molar in relation to the second molar. In addition, pathoses (marginal bone loss, resorption of the second molar, increased follicular space and lingual bone perforation) were assessed. Logistic regression analyses were used to test whether the angulation and position of the third molar were risk factors for pathoses. On average, 41% of second molars had resorption; mesioangulated (odds ratio [OR] 11-107; P < .001) and horizontally positioned (OR 13-120; P < .001) third molars located cervically at the second molar (OR 2-3; P < .027) significantly increased the risk. On average, 49% of second molars had marginal bone loss; mesioangulated (OR 16-85; P < .001) and horizontally positioned (OR 61-573; P < .001) third molars increased the risk. For the third molar, an increased follicular space was seen in 25% of cases; distal (OR 5-9; P < .001) and vertical positions (OR 5; P < .002) increased the risk. Lingual bone perforation was not related to a specific angulation. Specific angulations of the mandibular third molar are risk factors for marginal bone loss and resorption of the second molar. Copyright © 2017 Elsevier Inc. All rights reserved.
Shan, Xiao-Feng; Li, Ru-Huang; Lu, Xu-Guang; Cai, Zhi-Gang; Zhang, Jie; Zhang, Jian-Guo
2015-03-01
Fibular osteoseptocutaneous flap has been widely used for unilateral mandibular reconstruction. However, reports about the effects of fibular osteoseptocutaneous flap for the reconstruction of bilateral mandibular defects are limited. In this study, we used free vascularized fibular flaps to successfully manage bilateral mandibular osteoradionecrosis(ORN) in 5 patients. Functional aspects were evaluated during the reconstruction process. All 5 patients had bilateral refractory ORN of the mandible and underwent radical resection between 2003 and 2011. The reconstruction surgery was performed in 2 stages using 2 free fibular flaps in 3 patients. In the other 2 patients, reconstruction was performed in a single stage using 2 separate flaps prepared from a single fibula. All patients had a healthy mandibular symphysis and meniscus of the temporomandibular joint, and these structures were preserved during the reconstruction.Of the 10 defects involving the mandible sides, 9 were successfully reconstructed. One microvascular composite flap failed because of radiation injury to the arterial endothelium at the recipient site. After the treatments, all patients had good esthetic and functional outcomes. Preoperative clinical features such as trismus and dysphagia were also markedly improved. Our surgical method may be an effective alternative for the clinical management of advanced bilateral mandibular ORN.
Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones.
Ignjatović, Nenad; Ajduković, Zorica; Savić, Vojin; Najman, Stevo; Mihailović, Dragan; Vasiljević, Perica; Stojanović, Zoran; Uskoković, Vuk; Uskoković, Dragan
2013-02-01
Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of 6 months after the implantation of the material containing different amounts of cobalt, ranging from 5 to 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study.
Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones
Ignjatović, Nenad; Ajduković, Zorica; Savić, Vojin; Najman, Stevo; Mihailović, Dragan; Vasiljević, Perica; Stojanović, Zoran; Uskoković, Vuk; Uskoković, Dragan
2012-01-01
Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of six months after the implantation of the material containing different amounts of cobalt, ranging from 5 – 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study. PMID:23090835
Osteogenesis Imperfecta Diagnosed from Mandibular and Lower Limb Fractures: A Case Report.
Kobayashi, Yoshikazu; Satoh, Koji; Mizutani, Hideki
2016-06-01
Osteogenesis imperfecta (OI) is a congenital disease characterized by bone fragility and low bone mass. Despite the variety of its manifestation and severity, facial fractures occur very infrequently. Here, we report a case of an infant diagnosed with OI after mandibular and lower limb fractures. A boy aged 1 year and 3 months was brought to his neighboring hospital with a complaint of facial injury. He was transferred to our hospital to undergo operation 3 days later. Computed tomography images revealed multiple mandibular fractures including complete fracture in the symphysis and dislocated condylar fracture on the right side. Open reduction and internal fixation with absorbable implants was performed 7 days after injury. He fractured his right lower limb 2 months later. He was diagnosed with OI type IA by an orthopedist. He will be administered bone-modifying agents if he suffers from frequent fractures.
Schendel, Stephen A; Hazan-Molina, Hagai; Aizenbud, Dror
2014-04-01
Dentofacial deformities are traditionally treated by maxillary and mandibular osteotomies conducted separately or simultaneously. Recently, distraction osteogenesis has become an irreplaceable part of the surgical armamentarium, for its ability to induce new bone formation between the surfaces of bone segments that are gradually separated by incremental traction, along with a simultaneous expansion of the surrounding soft-tissue envelope. The aim of this article is to describe a combined surgical technique consisting of simultaneous maxillary Le Fort I advancement and mandibular surgical repositioning by means of bilateral sagittal split osteotomy with a curvilinear distractor based on a preliminary computerized presurgical prediction.
Moon, I S; Chai, J K; Cho, K S; Wikesjö, U M; Kim, C K
1996-10-01
This study evaluates periodontal repair and biomaterial reaction following implantation of a polyglactin mesh with or without porous resorbable calcium carbonate (RCC) or porous replamineform hydroxyapatite (RHA) in conjunction with reconstructive surgery. Ligature- and surgically-induced interproximal periodontal defects of left and right mandibular premolar teeth in 7 dogs were used. Bilaterally, mesial defects of the 2nd, 3rd and 4th premolar teeth were treated with polyglactin mesh, polyglactin mesh and RHA, or polyglactin mesh and RCC, respectively. The polyglactin mesh, shaped according to the contour of the defect, was adapted to the experimental teeth; its coronal margin positioned immediately apical to the cemento-enamel junction. Gingival flap margins were adapted and sutured to cover the polyglactin mesh completely. Clinical healing was generally uneventful. The dogs were sacrificed to provide block sections for histologic evaluation at 1, 3, 6, 12, 26, 32 and 56 weeks following wound closure. Generally, cementum regeneration was observed beginning at week 6 in all groups. Bone regeneration was observed from week 3 in polyglactin mesh-treated groups, and from week 6 in polyglactin mesh+RCC or polyglactin mesh+RHA treated groups. Bone regeneration appeared enhanced in polyglactin mesh+RCC or polyglactin mesh+RHA treated defects at week 12 and 26, with little difference between the three experimental conditions at week 56. Polyglactin mesh degradation was observed at week 3 and appeared complete at week 12. The RHA did not appear to resorb, while the RCC was gradually replaced by bone from week 3. Within limitations of the study conditions, periodontal regeneration was observed following implantation of a polyglactin mesh with or without RCC or RHA in conjunction with reconstructive surgery. As a conclusion, there seems to be no significant difference in periodontal regeneration after 12 months of healing between the group treated with the membrane only, and the group treated with the membrane and the bone substitution material. Changes in connective fiber orientation over the 1st 12 weeks of healing may suggest that "fibrous encapsulation" observed in earlier studies may only represent a transient stage in periodontal regeneration.
[Temporo-mandibular joint. Morpho-functional considerations].
Scutariu, M D; Indrei, Anca
2004-01-01
The temporo-mandibular joint is distinguished from most other synovial joints of the body by two features: 1. the two jointed components carry teeth whose position and occlusion introduce a very strong influence on the movements of the temporo-mandibular joint and 2. its articular surfaces are not covered by hyaline cartilage, but by a dense, fibrous tissue. This paper describes the parts of the temporo-mandibular joint: the articular surfaces (the condylar process of the mandible and the glenoid part of the temporal bone), the fibrocartilaginous disc which is interposed between the mandibular and the temporal surface, the fibrous capsule of the temporo-mandibular joint and the ligaments of this joint. All these parts present a very strong adaptation at the important functions of the temporo-mandibular joint.
Cellular and Matrix Response of the Mandibular Condylar Cartilage to Botulinum Toxin
Dutra, Eliane H.; O’ Brien, Mara H.; Lima, Alexandro; Kalajzic, Zana; Tadinada, Aditya; Nanda, Ravindra; Yadav, Sumit
2016-01-01
Objectives To evaluate the cellular and matrix effects of botulinum toxin type A (Botox) on mandibular condylar cartilage (MCC) and subchondral bone. Materials and Methods Botox (0.3 unit) was injected into the right masseter of 5-week-old transgenic mice (Col10a1-RFPcherry) at day 1. Left side masseter was used as intra-animal control. The following bone labels were intraperitoneally injected: calcein at day 7, alizarin red at day 14 and calcein at day 21. In addition, EdU was injected 48 and 24 hours before sacrifice. Mice were sacrificed 30 days after Botox injection. Experimental and control side mandibles were dissected and examined by x-ray imaging and micro-CT. Subsequently, MCC along with the subchondral bone was sectioned and stained with tartrate resistant acid phosphatase (TRAP), EdU, TUNEL, alkaline phosphatase, toluidine blue and safranin O. In addition, we performed immunohistochemistry for pSMAD and VEGF. Results Bone volume fraction, tissue density and trabecular thickness were significantly decreased on the right side of the subchondral bone and mineralized cartilage (Botox was injected) when compared to the left side. There was no significant difference in the mandibular length and condylar head length; however, the condylar width was significantly decreased after Botox injection. Our histology showed decreased numbers of Col10a1 expressing cells, decreased cell proliferation and increased cell apoptosis in the subchondral bone and mandibular condylar cartilage, decreased TRAP activity and mineralization of Botox injected side cartilage and subchondral bone. Furthermore, we observed reduced proteoglycan and glycosaminoglycan distribution and decreased expression of pSMAD 1/5/8 and VEGF in the MCC of the Botox injected side in comparison to control side. Conclusion Injection of Botox in masseter muscle leads to decreased mineralization and matrix deposition, reduced chondrocyte proliferation and differentiation and increased cell apoptosis in the MCC and subchondral bone. PMID:27723812
An Alternative Method of Intermaxillary Fixation for Simple Pediatric Mandible Fractures.
Farber, Scott J; Nguyen, Dennis C; Harvey, Alan A; Patel, Kamlesh B
2016-03-01
Mandibular fractures represent a substantial portion of facial fractures in the pediatric population. Pediatric mandibles differ from their adult counterparts in the presence of mixed dentition. Avoidance of injury to developing tooth follicles is critical. Simple mandibular fractures can be treated with intermaxillary fixation (IMF) using arch bars or bone screws. This report describes an alternative to these methods using silk sutures and an algorithm to assist in treating simple mandibular fractures in the pediatric population. A retrospective chart review was performed and the records of 1 surgeon were examined. Pediatric patients who underwent treatment for a mandibular fracture in the operating room from 2011 to 2015 were identified using Common Procedural Terminology codes. Data collected included age, gender, type of fracture, type of treatment used, duration of fixation, and presence of complications. Five patients with a mean age of 6.8 years at presentation were identified. Fracture types were unilateral fractures of the condylar neck (n = 3), bilateral fractures of the condylar head (n = 1), and a unilateral fracture of the condylar head with an associated parasymphyseal fracture (n = 1). IMF was performed in 4 patients using silk sutures, and bone screw fixation was performed in the other patient. No post-treatment complications or malocclusion were reported. Average duration of IMF was 18.5 days. An algorithm is presented to assist in the treatment of pediatric mandibular fractures. Silk suture fixation is a viable and safe alternative to arch bars or bone screws for routine mandibular fractures. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Momin, M A; Matsumoto, K; Ejima, K; Asaumi, R; Kawai, T; Arai, Y; Honda, K; Yosue, T
2013-05-01
To determine the width and morphology of the mandible in the impacted third molar region, and to identify the location of the mandibular canal prior to planning impacted third molar operations. Cone beam computed tomography (CBCT) data of 87 mandibular third molars from 62 Japanese patients were analyzed in this study. The width of the lingual cortical bone and apex-canal distance were measured from cross-sectional images in which the cortical bone was thinnest at the lingual side in the third molar region. Images were used for measuring the space (distance between the inner border of the lingual cortical bone and outer surface of the third molar root), apex-canal distance (distance from the root of the third molar tooth to the superior border of the inferior alveolar canal) and the cortical bone (width between the inner and outer borders of the lingual cortical bone). The means of the space, apex-canal distance and lingual cortical width were 0.31, 1.99, and 0.68 mm, respectively. Impacted third molar teeth (types A-C) were observed at the following frequencies: type A (angular) 37 %; type B (horizontal), 42 %; type C (vertical), 21 %. The morphology of the mandible at the third molar region (types D-F) was observed as: type D (round), 49 %; type E (lingual extended), 18 %; and type F (lingual concave), 32 %. The width and morphology of the mandible with impacted teeth and the location of the mandibular canal at the third molar region could be clearly determined using cross-sectional CBCT images.
NASA Astrophysics Data System (ADS)
Raad, Bahram; Shayesteh Moghaddam, Narges; Elahinia, Mohammad
2016-04-01
The aim of this article is to investigate the effect of two different fixation hardware materials on bone remodeling after a mandibular reconstruction surgery and to restore the mandible's function, healthy appearance, mastication, swallowing, breathing, and speech. The hypothesis is that using fixation hardware with stiffness close to that of the surrounding bone will result in a more successful healing process in the mandible bone. The finite element model includes the material properties and forces of the cancellous bone, cortical bone, ligaments, muscles, and teeth. The reconstruction surgery is modeled by including the fixation hardware and the grafted bone. In the sectioned mandible, to best mimic the geometry of the mandible, two single barrel grafts are placed at the top of each other to form a double barrel graft set. Two different materials were used as the mandibular fixation parts, stiff Ti-6Al-4V, and porous superelastic Nickel-Titanium (NiTi) alloys. A comparison of these two alloys demonstrates that using porous NiTi alloy as the fixation part results in a faster healing pace. Furthermore, the density distribution in the mandibular bone after the healing process is more similar to the normal mandible density distribution. The simulations results indicate that the porous superelastic NiTi fixation hardware transfers and distributes the existing forces on the mandible bone more favorably. The probability of stress shielding and/or stress concentration decrease. This type of fixation hardware, therefore, is more appropriate for mandible bone reconstruction surgery. These predictions are in agreement with the clinical observations.
Haresh, Ajmera Deepal; Pradeep, Singh; Song, Jinlin; Wang, Chao; Fan, Yubo
2018-05-11
The aim of commencing treatment in younger age is to rectify the developing dento-alveolar, skeletal and muscular imbalances. With growing dependence on arch development and expansion, the pendulum is oscillating more towards the non-extraction treatment lately, in resolving constriction and crowding issues. Since, a limited number of attempts have been made for mandibular expansion, this study aimes to evaluate the effect of different modes and sites of loading on the expansion of preadolescent mandible using biomechanics. To address the research purpose, a total of 9 Finite Element models were simulated. Biomechanical response of the mandibular bone and dentition was analyzed under different loading conditions including site and mode, using the simulated FE models. The values of displacement envisaged by the FE models, predict hybrid mode to offer substantial expansion of the mandibular bone as compared to tooth borne and bone borne. In addition, biomechanical effect of site II on mandibular expansion in terms of displacement on X-axis, was significant. In conclusion, the results of our study suggest hybrid mode at site II to be better option for true bony expansion in preadolescent mandible.
Lee, Jung-Seok; Wikesjö, Ulf M E; Jung, Ui-Won; Choi, Seong-Ho; Pippig, Susanne; Siedler, Michael; Kim, Chong-Kwan
2010-04-01
Recombinant human growth/differentiation factor-5 (rhGDF-5) is being evaluated as a candidate therapy in support of periodontal regeneration. The objective of this study was to evaluate periodontal wound healing/regeneration following the application of rhGDF-5 on a particulate beta-tricalcium phosphate (beta-TCP) carrier using an established defect model. Bilateral 4 x 5 mm (width x depth), one-wall, critical-size, intrabony periodontal defects were surgically created at the mandibular second and fourth pre-molar teeth in 15 Beagle dogs. Unilateral defects in five animals received rhGDF-5/beta-TCP (Scil Technology GmbH); five animals received beta-TCP solo; and five animals served as sham-surgery controls. Contralateral sites received treatments reported elsewhere. The animals were sacrificed following an 8-week healing interval for histological examination. Clinical healing was generally uneventful. Sites implanted with rhGDF-5/beta-TCP exhibited greater enhanced cementum and bone formation compared with beta-TCP and sham-surgery controls; cementum regeneration averaged (+/- SD) 3.83 +/- 0.73 versus 1.65 +/- 0.82 and 2.48 +/- 1.28 mm for the controls (p<0.05). Corresponding values for bone regeneration height averaged 3.26 +/- 0.30 versus 1.70 +/- 0.66 and 1.68 +/- 0.49 mm (p<0.05), and bone area 10.45 +/- 2.26 versus 6.31 +/- 2.41 and 3.00 +/- 1.97 mm(2) (p<0.05). Cementum regeneration included cellular/acellular cementum with or without a functionally oriented periodontal ligament. A non-specific connective tissue attachment was evident in the sham-surgery control. Controls exhibited mostly woven bone with primary osteons, whereas rhGDF-5/beta-TCP sites showed a noticeable extent of lamellar bone. Sites receiving rhGDF-5/beta-TCP or beta-TCP showed some residual beta-TCP granules apparently undergoing biodegradation without obvious differences between the sites. Sites receiving beta-TCP alone commonly showed residual beta-TCP granules sequestered in the connective tissue or fibrovascular marrow. rhGDF-5/beta-TCP has a greater potential to support the regeneration of the periodontal attachment. Long-term studies are necessary to confirm the uneventful maturation of the regenerated tissues.
Dos Santos Silva, Weuler; Silveira, Rubens Jorge; de Araujo Andrade, Michelle Gouveia Benicio; Franco, Ademir; Silva, Rhonan Ferreira
2017-01-01
The present study reports a case of late mandibular fracture due to third molar extraction and highlights the inherent clinical, ethical and legal aspects related to this surgical complication. A female patient underwent surgical procedure for the extraction of the mandibular right third molar. Two days after the surgery the patient reported pain and altered occlusion in the right side of the mandible. After clinical and radiographic re-examination, the diagnosis of late mandibular fracture was established. A second surgery, under general anaesthesia, was performed for the fixation of the mandibular bone. The fractured parts were reduced and fixed with locking plate systems and 2 mm screws following load-sharing principles. The masticatory function showed optimal performance within 7 and 21 days after the surgery. Complete bone healing was observed within 1 year of follow-up. For satisfactory surgical outcomes, adequate surgical planning and techniques must be performed. Signed informed consents explaining the risks and benefits of the treatment must be used to avoid ethical and legal disputes in dentistry.
Kinumatsu, Takashi; Umehara, Kazuhiro; Nagano, Kyosuke; Saito, Atsushi
2014-01-01
We report a patient with severe chronic periodontitis requiring regenerative periodontal surgery and different types of prosthesis in the maxillary and mandibular regions. The patient was a 57-year-old woman who presented with the chief complaint of occlusal pain. An initial clinical examination revealed that 73% of sites had a probing depth of ≥4 mm, and 60% of sites exhibiting bleeding on probing. Radiographic examination revealed vertical bone defects in the molar region and widening of the periodontal ligament space around teeth #17 and 24. Initial periodontal therapy was implemented based on a clinical diagnosis of severe chronic periodontitis. Surgical periodontal therapy was subsequently performed at selected sites. Periodontal regenerative therapy using enamel matrix derivative was performed on #14, 15, and 35-37. Tunnel preparation was performed on #46 as it had a 2-wall vertical bony defect and Degree 3 furcation involvement. Other sites with residual periodontal pockets were treated by modified Widman flap surgery. After a re-evaluation, functional rehabilitation was implemented with a removable maxillary partial denture and a fixed mandibular bridge. No further deterioration was observed in the periodontal condition of most of the teeth during a 2-year period of supportive periodontal therapy (SPT). The patient is currently still undergoing SPT and some minor problems remain. However, the results suggest that treatment and subsequent maintenance for severe periodontitis with traumatic occlusion can be successful as long as the appropriate periodontal and prosthodontic treatment is planned and careful SPT carried out.
Lateralization Technique and Inferior Alveolar Nerve Transposition
Sanches, Marco Antonio; Ramalho, Gabriel Cardoso; Manzi, Marcello Roberto
2016-01-01
Bone resorption of the posterior mandible can result in diminished bone edge and, therefore, the installation of implants in these regions becomes a challenge, especially in the presence of the mandibular canal and its contents, the inferior alveolar nerve. Several treatment alternatives are suggested: the use of short implants, guided bone regeneration, appositional bone grafting, distraction osteogenesis, inclined implants tangential to the mandibular canal, and the lateralization of the inferior alveolar nerve. The aim was to elucidate the success rate of implants in the lateralization technique and in inferior alveolar nerve transposition and to determine the most effective sensory test. We conclude that the success rate is linked to the possibility of installing implants with long bicortical anchor which favors primary stability and biomechanics. PMID:27433360
Rahimi-Nedjat, Roman K; Sagheb, Keyvan; Jacobs, Collin; Walter, Christian
2016-10-01
Fractures of the mandible, especially the mandibular angle, are one of the most frequent types of injuries of the facial skeleton. In many cases, a retained third molar can be found in the line of the fracture. However, it remains unclear whether a relationship between third molars and mandibular angle fractures exists. Patients with isolated or combined fractures of the lower jaw between January 2001 and December 2007 were analyzed retrospectively. Electronic health records were investigated regarding the types of mandibular fractures, and panoramic radiographs were reviewed concerning the existence of third molars. In addition, a systematic review was performed to compare the findings of this study with existing data. Six hundred and thirty-two patients were treated for mandibular fractures within the time frame. Two hundred and sixty-seven had a mandibular angle fracture. In 461 patients, panoramic radiographs were available, of which 45.6% did not have a third molar. About 3.8% were edentulous. There is a significant relationship between the existence of unerupted third molars and the occurrence of mandibular angle fractures (P < 0.001). No correlation exists for erupted third molars. Fractures of the mandibular angle are more likely to appear in patients with retained third molars which might be due to the reduced bone mass. Once the wisdom teeth have erupted, the bone structure is more solid and more resistant to external forces and the development of fractures. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mandibular bone changes in 24 years and skeletal fracture prediction.
Jonasson, G; Sundh, V; Hakeberg, M; Hassani-Nejad, A; Lissner, L; Ahlqwist, M
2013-03-01
The objectives of the investigation were to describe changes in mandibular bone structure with aging and to compare the usefulness of cortical and trabecular bone for fracture prediction. From 1968 to 1993, 1,003 women were examined. With the help of panoramic radiographs, cortex thickness was measured and cortex was categorized as: normal, moderately, or severely eroded. The trabeculation was assessed as sparse, mixed, or dense. Visually, the mandibular compact and trabecular bone transformed gradually during the 24 years. The compact bone became more porous, the intertrabecular spaces increased, and the radiographic image of the trabeculae seemed less mineralized. Cortex thickness increased up to the age of 50 and decreased significantly thereafter. At all examinations, the sparse trabeculation group had more fractures (71-78 %) than the non-sparse group (27-31 %), whereas the severely eroded compact group showed more fractures than the less eroded groups only in 1992/1993, 24 years later. Sparse trabecular pattern was associated with future fractures both in perimenopausal and older women (relative risk (RR), 1.47-4.37) and cortical erosion in older women (RR, 1.35-1.55). RR for future fracture associated with a severely eroded cortex increased to 4.98 for cohort 1930 in 1992/1993. RR for future fracture associated with sparse trabeculation increased to 11.43 for cohort 1922 in 1992/1993. Dental radiographs contain enough information to identify women most at risk of future fracture. When observing sparse mandibular trabeculation, dentists can identify 40-69 % of women at risk for future fractures, depending on participant age at examination.
Takano, H; Takahashi, T; Nakata, A; Nogami, S; Yusa, K; Kuwajima, S; Yamazaki, M; Fukuda, M
2016-05-01
The aim of this study was to investigate the bone resorption effect of the mediators delivered in joint cavity of patients with mandibular condyle fractures by detecting osteoclast markers using cellular biochemistry methods, and by analysing bone resorption activities via inducing osteoclast differentiation of the infiltrated cells from arthrocentesis. Sixteen joints in 10 patients with mandibular condyle fractures were evaluated. The control group consisted of synovial fluid (SF) samples from seven joints of four volunteers who had no clinical signs or symptoms involving the temporomandibular joint (TMJ) or disc displacement. We collected SF cells from all patients during therapeutic arthrocentesis. The infiltrating cells from TMJ SF were cultured, differentiated into tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and examined bone resorption activities. We also investigated factors related to osteoclast induction of SF, using ELISA procedures. Osteoclast-like cells were induced from the SF cells obtained from all patients with condylar fractures. These multinucleated giant cells were positive for TRAP and actin, and had the ability to absorb dentin slices. The levels of macrophage colony-stimulating factor (M-CSF), prostaglandin E2 (PGE2), soluble form of receptor activator of nuclear factor kappa-B ligand (sRANKL) and osteoprotegerin (OPG), in SF samples from the patients, were significantly higher than in the controls. These findings indicate that bone resorption activities in SF from patients with mandibular condyle fractures were upregulated and may participate in the pathogenesis and wound healing. © 2016 The Authors. Journal of Oral Rehabilitation Published by John Wiley & Sons Ltd.
Uribe, S; Rojas, LA; Rosas, CF
2013-01-01
The objective of this review is to evaluate the diagnostic accuracy of imaging methods for detection of mandibular bone tissue invasion by squamous cell carcinoma (SCC). A systematic review was carried out of studies in MEDLINE, SciELO and ScienceDirect, published between 1960 and 2012, in English, Spanish or German, which compared detection of mandibular bone tissue invasion via different imaging tests against a histopathology reference standard. Sensitivity and specificity data were extracted from each study. The outcome measure was diagnostic accuracy. We found 338 articles, of which 5 fulfilled the inclusion criteria. Tests included were: CT (four articles), MRI (four articles), panoramic radiography (one article), positron emission tomography (PET)/CT (one article) and cone beam CT (CBCT) (one article). The quality of articles was low to moderate and the evidence showed that all tests have a high diagnostic accuracy for detection of mandibular bone tissue invasion by SCC, with sensitivity values of 94% (MRI), 91% (CBCT), 83% (CT) and 55% (panoramic radiography), and specificity values of 100% (CT, MRI, CBCT), 97% (PET/CT) and 91.7% (panoramic radiography). Available evidence is scarce and of only low to moderate quality. However, it is consistently shown that current imaging methods give a moderate to high diagnostic accuracy for the detection of mandibular bone tissue invasion by SCC. Recommendations are given for improving the quality of future reports, in particular provision of a detailed description of the patients' conditions, the imaging instrument and both imaging and histopathological invasion criteria. PMID:23420854
Zhang, Kai; Wang, Xing; Zhang, Wei; Zhao, Ji-zhi; Dong, Hui
2012-04-01
To investigate the effect of the traditional Chinese medicine Yunan Baiyao on the socket healing of impacted mandibular third molar extraction. A total of 200 patients requiring extractions of impacted mandibular wisdom teeth were randomized into the treatment group and the control group in a double-blinded manner, and Yunan Baiyao capsules or placebo capsules (2 g/d) were orally administered for 28 days after the operation. Dental quantitative CT scan was performed, and the volume and density of new bone at the extraction site were measured two month after operation. A total of 188 patients completed the study. No adverse events related to the medication occurred. The volume of new bone was (477.39 ± 166.47) mm(3) in the treatment group and (442.65 ± 143.58) mm(3) in the control group, which was not significantly different between the two groups. The density of new bone was (296.90 ± 37.94) mg/cm(3) in the treatment group and (298.54 ± 40.21) mg/cm(3) in the control group, which was not significantly different between the two groups. The number of the teeth root, the impacted conditions, whether or not retainning the alveolar septum, suturing soft tissues of the extraction site and blood clot formation within 1 week after operation were significantly correlated with the volume of new bone. Yunnan Baiyao capsules has no effect on the volume and density of new bone at the extraction site two months after operation following extractions of impacted mandibular third molars.
Alteration of functional loads after tongue volume reduction.
Ye, W; Duan, Y Z; Liu, Z J
2013-11-01
An earlier study revealed that the patterns of biomechanical loads on bones around the tongue altered significantly right after tongue volume reduction surgery. The current study was to examine whether these alterations persist or vanish over time post-surgery. Five sibling pairs of 12-week-old Yucatan minipigs were used. For each pair, one had surgery reducing tongue volume by about 15% (reduction) while the other had same incisions without tissue removal (sham). All animals were raised for 4 weeks after surgery. Three rosette strain gauges were placed on the bone surfaces of pre-maxilla (PM), mandibular incisor (MI), and mandibular molar (MM); two single-element gauges were placed across the pre-maxilla-maxillar suture (PMS) and mandibular symphysis (MSP), and two pressure transducers were placed on the bone surfaces of hard palate (PAL) and mandibular body (MAN). These bone strains and pressures were recorded during natural mastication. Overall amount of all loads increased significantly as compared to those in previous study in all animals. Instead of decreased loads in reduction animals as seen in that study, shear strains at PM, MI, and MM, tensile strains at PMS, and pressure at MAN were significantly higher in reduction than sham animals. Compared to the sham, strain dominance shifted at PM, MI, and MM and orientation of tensile strain altered at MI in reduction animals. A healed volume-reduced tongue may change loading regime significantly by elevating loading and altering strain-dominant pattern and orientation on its surrounding structures, and these changes are more remarkable in mandibular than maxillary sites. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Grover, Manita; Vaidyanathan, Anand Kumar; Veeravalli, Padmanabhan Thallam
2014-05-01
The aim of this study was to assess the use of single implant-supported, magnet-retained mandibular overdentures to improve the oral health-related quality of life (OHRQoL) and masticatory performance of patients wearing conventional complete dentures. The study also aimed at comparing the OHRQoL, masticatory performance, and crestal bone loss with two different types of overdenture prosthesis. Ten completely edentulous patients with atrophic mandibular residual alveolar ridges and having difficulty coping with technically adequate mandibular dentures were selected for implant-supported overdentures (ISOD). To assess the success of the implant fixture clinically, a crossover study design was followed, and the patients were divided into two groups. Group A received ISOD with conventional complete dental arch, and group B received ISOD with a shortened dental arch for the first 3 months and vice versa for the next 3 months. The OHRQoL was measured with the OHIP-49 questionnaire, and masticatory performance was assessed with the sieve method using peanuts as test food. Peri-apical radiographs were taken to evaluate the crestal bone loss. A significant improvement was seen both subjectively and objectively when conventional complete dentures were modified to implant-supported prosthesis. When comparing the implant overdenture prosthesis, patients were more satisfied with conventional arch than with the shortened dental arch. In the first 3 months following implant placement, less bone loss was seen with the shortened dental arch overdenture (P < 0.05). Single implant-supported, magnet-retained mandibular overdentures significantly improve the OHRQoL of completely edentulous patients. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Kathirvelu, D; Anburajan, M
2014-09-01
The aim of this study is to extract cortical and trabecular features of the mandible and to develop a novel combinational model of mandibular cortical thickness, trabecular bone area and age in order to predict low bone mineral density or osteoporosis from a dental panoramic radiograph. The study involved 64 south Indian women (age = 52.5 ± 12.7 years) categorised into two groups (normal and low bone mineral density) based on total femur bone mineral density. The dental panoramic radiographs were obtained by a digital scanner, and measurement of total bone mineral density at the right femur was performed by a dual-energy X-ray absorptiometry scanner. The mandibular cortical thickness and panoramic mandibular index were measured bilaterally, and the mean values were considered. The region of interest of 128 × 128 pixels around the mental foramen region was manually cropped and subjected to pre-processing, normalisation and average threshold-based segmentation to determine trabecular bone area. Multiple linear regression analyses of cortical and trabecular measures along with age were performed to develop a combinational model to classify subjects as normal and low bone mineral density. The proposed approach demonstrated strong correlation (r = 0.76; p < 0.01) against the total bone mineral density and resulted in accuracy, sensitivity and positive predictive values of 0.84, 0.92 and 0.85, respectively; the receiver operating characteristic outcomes disclosed that the area under the curve was 0.89.Our results suggest that the proposed combinational model could be useful to diagnose subjects with low bone mineral density. © IMechE 2014.
Monnier, Yan; Broome, Martin; Betz, Michael; Bouferrache, Kahina; Ozsahin, Mahmut; Jaques, Bertrand
2011-05-01
Mandibular osteoradionecrosis (ORN) is a serious complication of radiotherapy (RT) in head and neck cancer patients. The aim of this study was to analyze the incidence of and risk factors for mandibular ORN in squamous cell carcinoma (SCC) of the oral cavity and oropharynx. Case series with chart review. University tertiary care center for head and neck oncology. Seventy-three patients treated for stage I to IV SCC of the oral cavity and oropharynx between 2000 and 2007, with a minimum follow-up of 2 years, were included in the study. Treatment modalities included both RT with curative intent and adjuvant RT following tumor surgery. The log-rank test and Cox model were used for univariate and multivariate analyses. The incidence of mandibular ORN was 40% at 5 years. Using univariate analysis, the following risk factors were identified: oral cavity tumors (P < .01), bone invasion (P < .02), any surgery prior to RT (P < .04), and bone surgery (P < .0001). By multivariate analysis, mandibular surgery proved to be the most important risk factor and the only one reaching statistical significance (P < .0002). Mandibular ORN is a frequent long-term complication of RT for oral cavity and oropharynx cancers. Mandibular surgery before irradiation is the only independent risk factor. These aspects must be considered when planning treatment for these tumors.
Dimensional Changes of Fresh Sockets With Reactive Soft Tissue Preservation: A Cone Beam CT Study.
Crespi, Roberto; Capparé, Paolo; Crespi, Giovanni; Gastaldi, Giorgio; Gherlone, Enrico Felice
2017-06-01
The aim of this study was to assess dimensional changes of the fresh sockets grafted with collagen sheets and maintenance of reactive soft tissue, using cone beam computed tomography (CBCT). Tooth extractions were performed with maximum preservation of the alveolar housing, reactive soft tissue was left into the sockets and collagen sheets filled bone defects. Cone beam computed tomography were performed before and 3 months after extractions. One hundred forty-five teeth, 60 monoradiculars and 85 molars, were extracted. In total, 269 alveoli were evaluated. In Group A, not statistically significant differences were found between monoradiculars, whereas statistically significant differences (P < 0.05) were found between molars, both for mesial and distal alveoli. In Group B, not statistically significant differences were found between maxillary and mandibular bone changes values (P > 0.05) for all types of teeth. This study reported an atraumatic tooth extraction, reactive soft tissue left in situ, and grafted collagen sponge may be helpful to reduce fresh socket collapse after extraction procedures.
Two implants for all edentulous mandibles.
Wright, P S
2006-04-22
Complete dentures have always been a poor substitute for natural teeth. Mandibular complete dentures frequently cause pain and discomfort, accelerated residual bone resorption, while failing to restore effective chewing. The provision of two implants to stabilise the mandibular complete denture can result in significant improvements.
Cornelius, Carl-Peter; Smolka, Wenko; Giessler, Goetz A; Wilde, Frank; Probst, Florian A
2015-06-01
Preoperative planning of mandibular reconstruction has moved from mechanical simulation by dental model casts or stereolithographic models into an almost completely virtual environment. CAD/CAM applications allow a high level of accuracy by providing a custom template-assisted contouring approach for bone flaps. However, the clinical accuracy of CAD reconstruction is limited by the use of prebent reconstruction plates, an analogue step in an otherwise digital workstream. In this paper the integration of computerized, numerically-controlled (CNC) milled, patient-specific mandibular plates (PSMP) within the virtual workflow of computer-assisted mandibular free fibula flap reconstruction is illustrated in a clinical case. Intraoperatively, the bone segments as well as the plate arms showed a very good fit. Postoperative CT imaging demonstrated close approximation of the PSMP and fibular segments, and good alignment of native mandible and fibular segments and intersegmentally. Over a follow-up period of 12 months, there was an uneventful course of healing with good bony consolidation. The virtual design and automated fabrication of patient-specific mandibular reconstruction plates provide the missing link in the virtual workflow of computer-assisted mandibular free fibula flap reconstruction. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Chou, Yu-Hsiang; Du, Je-Kang; Chou, Szu-Ting; Hu, Kai-Fang; Tsai, Chi-Cheng; Ho, Kun-Yen; Wu, Yi-Min; Ho, Ya-Ping
2013-02-01
Periodontal disease often results in severely bony defects around the teeth and leads to eventual extraction. Remaining bone morphology often compromises ideally restoration-driven positions and deteriorates the success rates for dental implants. The present investigation illustrates the clinical outcome of immediately installing an implant following orthodontic forced eruption and atraumatic extraction. The subject of this study is a 40-year-old Asian female with a right mandibular first molar that had a deep probing depth on the mesial side and mobility. Via the aid of radiographic examination, the tooth that had an angular bony defect and apical lesion was diagnosed as having deep caries and chronic periodontitis with a poor prognosis. After consultation with the patient, we developed a treatment plan incorporating a forced eruption with immediate implantation, intended to augment the alveolar bone volume and increase the width of keratinized gingivae, in a nonsurgical manner. Following 12 months of orthodontic treatment, the tooth was successfully moved occlusally in conjunction with an 8 mm vertical interdental bone augmentation. Because of sufficient volume of bone and satisfactory gingival dimensions, the implant showed adequate initial stability in the correct position to facilitate physiological and aesthetic prerequisites. After 6 months of osteointegration, a customized impression coping was utilized to transfer the established emergence profile to a definitive cast for the fabrication of a customized abutment. The final prosthesis was made using a customized metal abutment and ceramometal crown. In the face of difficult clinical challenges, meticulous inspection and a comprehensive treatment plan were crucial. Interdisciplinary treatment through the careful integration of multiple specialists suggests the possibility of optimal results with high predictability. © 2011 Wiley Periodicals, Inc.
Site Specific Effects of Zoledronic Acid during Tibial and Mandibular Fracture Repair
Yu, Yan Yiu; Lieu, Shirley; Hu, Diane; Miclau, Theodore; Colnot, Céline
2012-01-01
Numerous factors can affect skeletal regeneration, including the extent of bone injury, mechanical loading, inflammation and exogenous molecules. Bisphosphonates are anticatabolic agents that have been widely used to treat a variety of metabolic bone diseases. Zoledronate (ZA), a nitrogen-containing bisphosphonate (N-BP), is the most potent bisphosphonate among the clinically approved bisphosphonates. Cases of bisphosphonate-induced osteonecrosis of the jaw have been reported in patients receiving long term N-BP treatment. Yet, osteonecrosis does not occur in long bones. The aim of this study was to compare the effects of zoledronate on long bone and cranial bone regeneration using a previously established model of non-stabilized tibial fractures and a new model of mandibular fracture repair. Contrary to tibial fractures, which heal mainly through endochondral ossification, mandibular fractures healed via endochondral and intramembranous ossification with a lesser degree of endochondral ossification compared to tibial fractures. In the tibia, ZA reduced callus and cartilage formation during the early stages of repair. In parallel, we found a delay in cartilage hypertrophy and a decrease in angiogenesis during the soft callus phase of repair. During later stages of repair, ZA delayed callus, cartilage and bone remodeling. In the mandible, ZA delayed callus, cartilage and bone remodeling in correlation with a decrease in osteoclast number during the soft and hard callus phases of repair. These results reveal a more profound impact of ZA on cartilage and bone remodeling in the mandible compared to the tibia. This may predispose mandible bone to adverse effects of ZA in disease conditions. These results also imply that therapeutic effects of ZA may need to be optimized using time and dose-specific treatments in cranial versus long bones. PMID:22359627
Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J
2003-09-01
As several morphological parameters of cancellous bone express more or less the same architectural measure, we applied principal components analysis to group these measures and correlated these to the mechanical properties. Cylindrical specimens (n = 24) were obtained in different orientations from embalmed mandibular condyles; the angle of the first principal direction and the axis of the specimen, expressing the orientation of the trabeculae, ranged from 10 degrees to 87 degrees. Morphological parameters were determined by a method based on Archimedes' principle and by micro-CT scanning, and the mechanical properties were obtained by mechanical testing. The principal components analysis was used to obtain a set of independent components to describe the morphology. This set was entered into linear regression analyses for explaining the variance in mechanical properties. The principal components analysis revealed four components: amount of bone, number of trabeculae, trabecular orientation, and miscellaneous. They accounted for about 90% of the variance in the morphological variables. The component loadings indicated that a higher amount of bone was primarily associated with more plate-like trabeculae, and not with more or thicker trabeculae. The trabecular orientation was most determinative (about 50%) in explaining stiffness, strength, and failure energy. The amount of bone was second most determinative and increased the explained variance to about 72%. These results suggest that trabecular orientation and amount of bone are important in explaining the anisotropic mechanical properties of the cancellous bone of the mandibular condyle.
Uprighting of severely impacted mandibular second molars: a case report.
Fujita, Tadashi; Shirakura, Maya; Hayashi, Hidetaka; Tsuka, Yuji; Fujii, Eri; Tanne, Kazuo
2012-11-01
The incidence of mandibular first and second molar impaction is increasing but still recorded as rare. Treatment methods involving uprighting, extraction, or autologous tooth transplantation have been described. The present study describes the uprighting of 3 impacted mandibular second molars presenting with eruptive disorders. The application of limited and appropriate orthodontic therapy completed treatment in 11 months, 5 months, and 2 years and 3 months, respectively. Although no absolute anchorage in the form of miniscrews was required, no significant anchorage demands were considered necessary. Although the third molar tooth germs were identified and preserved in each case, no adverse influence on the uprighting of the second molars was encountered. The favourable molar repositioning results were likely due to the youth of the 3 patients as the third molars were in early development and bone remodelling was marked. Furthermore, no problems related to anchorage or alveolar bone loss were identified after treatment. The results indicated the benefits of limited orthodontic treatment and early intervention for the uprighting of impacted mandibular second molars.
Ge, Jing; Zheng, Jia-Wei; Yang, Chi; Qian, Wen-Tao
2016-01-01
Selecting either buccal or lingual approach for the mandibular third molar surgical extraction has been an intense debate for years. The aim of this observational retrospective study was to classify the molar based on the proximity to the external cortical bone, and analyze the position of inferior alveolar canal (IAC) of each type. Cone-beam CT (CBCT) data of 110 deeply impacted mandibular third molars from 91 consecutive patients were analyzed. A new classification based on the mean deduction value (MD) of buccal-lingual alveolar bone thickness was proposed: MD≥1 mm was classified as buccal position, 1 mm>MD>−1 mm was classified as central position, MD≤−1 mm was classified as lingual position. The study samples were distributed as: buccal position (1.8%) in 2 subjects, central position (10.9%) in 12 and lingual position (87.3%) in 96. Ninety-six molars (87.3%) contacted the IAC. The buccal and inferior IAC course were the most common types in impacted third molar, especially in lingually positioned ones. Our study suggested that amongst deeply impacted mandibular third molars, lingual position occupies the largest proportion, followed by the central, and then the buccal type. PMID:26759181
Liu, Jingyin; Pan, Shaoxia; Dong, Jing; Mo, Zhongjun; Fan, Yubo; Feng, Hailan
2013-03-01
The aim of this study was to evaluate strain distribution in peri-implant bone, stress in the abutments and denture stability of mandibular overdentures anchored by different numbers of implants under different loading conditions, through three-dimensional finite element analysis (3D FEA). Four 3D finite element models of mandibular overdentures were established, using between one and four Straumann implants with Locator attachments. Three types of load were applied to the overdenture in each model: 100N vertical and inclined loads on the left first molar and a 100N vertical load on the lower incisors. The biomechanical behaviours of peri-implant bone, implants, abutments and overdentures were recorded. Under vertical load on the lower incisors, the single-implant overdenture rotated over the implant from side to side, and no obvious increase of strain was found in peri-implant bone. Under the same loading conditions, the two-implant-retained overdenture showed more apparent rotation around the fulcrum line passing through the two implants, and the maximum equivalent stress in the abutments was higher than in the other models. In the three-implant-supported overdenture, no strain concentration was found in cortical bone around the middle implant under three loading conditions. Single-implant-retained mandibular overdentures do not show damaging strain concentration in the bone around the only implant and may be a cost-effective treatment option for edentulous patients. A third implant can be placed between the original two when patients rehabilitated by two-implant overdentures report constant and obvious denture rotation around the fulcrum line. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bucur, A; Dincă, O; Totan, C; Ghită, V
2007-01-01
The optimal reconstruction of the mandible and of the temporo-mandibular joint after mandibular hemi-resection with disarticulation is still controversial in literature. This paperwork presents our experience on four cases in the reconstruction of the mandible together with the inferior arthroplasty of the temporo-mandibular joint, after the resection of extended benign tumors of the mandible, based on fibular free vascularized grafts having attached a Stryker titanium condylar prosthesis reconstructing the inferior segment of the temporo-mandibular joint. Our results for the this technique were excellent, with a functional rehabilitation very close to normal. After reviewing the various techniques and their arguments in literature, with accent on the TMJ reconstruction, we consider this method to be optimal for the reconstruction of mandibular defects in patients with neoplastic conditions.
NASA Astrophysics Data System (ADS)
Rafini, F.; Priaminiarti, M.; Sukardi, I.; Lessang, R.
2017-08-01
The healing of periodontal splinting can be detected both with clinical and radiographic examination. In this study, the alveolar bone was evaluated by radiographic digital periapical analysis. Periodontal tooth splinting is periodontal support therapy used to prevent periodontal injury during repair and regeneration of periodontal therapy. Radiographic digital periapical analysis of alveolar bone in the mandibular anterior region with chronic periodontitis and 2/3 cervical bone loss after three months of periodontal splinting. Eighty four proximal site (43 mesial and 41 distal) from 16 patients with chronic periodontitis and treated with spinting were examined by taking periapical digital radiographic at day 1 and 91. The bone loss, bone density and utility of lamina dura were evaluated. The statistical analysis after three months evaluation using T-test for bone loss, Wilcoxon sign rank test for bone density and utility lamina dura showed no significantly differences (p<0.05) (p=0.44, 0.256 and 0.059). No radiographic change in bone loss, bone density and utility of lamina dura from chronic periodontitis with 2/3 alveolar bone loss after three months splinting.
Gurunluoglu, Raffi; Glasgow, Mark; Williams, Susan A; Gurunluoglu, Aslin; Antrobus, Jarod; Eusterman, Vincent
2012-10-01
Reconstruction of total full-thickness lower lip defects combined with extensive composite mandibular defects particularly in the setting of close-range high-energy ballistic injury presents a formidable challenge for the reconstructive plastic surgeon. While the fibular flap has been widely accepted for its usefulness in the reconstruction of composite mandibular defects, to date, there is no definitive widely established method of total lower lip reconstruction. The article presents authors' approach using innervated gracilis muscle flap for total lower lip reconstruction in the setting of high-energy gunshot injuries to the face. Three patients underwent composite mandibular defect reconstruction using fibular osteocutaneous flap and functional lower lip reconstruction using innervated gracilis muscle flap. Lip lining was reconstructed using the skin paddle of the fibular flap. The external surface of the gracilis muscle was skin-grafted. Facial artery myomucosal flap provided vermilion reconstruction in two patients. All fibular (n=3) and gracilis flap transfers (n=3) were viable. An electromyographic study at 1 year postoperatively demonstrated successful re-innervation of the gracilis muscle. Starting at about 10 weeks postoperatively, patients exhibited voluntary lip movements and oral competence. In addition, all patients achieved near-normal speech, evidence of recovered protective sensitivity and satisfactory appearance. The mean follow-up was 16.1 months. Our preliminary report in three patients demonstrated that innervated gracilis muscle transfer combined with fibular flap provides a successful reconstruction of extensive composite mandibular and total lower lip defects resulting from gunshot injuries to the face. Oral continence was achieved by combination of regained tonicity and voluntary movement of the gracilis muscle following re-innervation and assistance of the cheek muscles on the gracilis muscle. The described technique was reliable and the results were promising. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Cohen, D. J.; Cheng, A.; Kahn, A.; Aviram, M.; Whitehead, A. J.; Hyzy, S. L.; Clohessy, R. M.; Boyan, B. D.; Schwartz, Z.
2016-01-01
Custom devices supporting bone regeneration and implant placement are needed for edentulous patients with large mandibular deficiencies where endosteal implantation is not possible. We developed a novel subperiosteal titanium-aluminum-vanadium bone onlay device produced by additive manufacturing (AM) and post-fabrication osteogenic micro-/nano-scale surface texture modification. Human osteoblasts produced osteogenic and angiogenic factors when grown on laser-sintered nano-/micro-textured surfaces compared to smooth surfaces. Surface-processed constructs caused higher bone-to-implant contact, vertical bone growth into disk pores (microCT and histomorphometry), and mechanical pull-out force at 5 and 10 w on rat calvaria compared to non surface-modified constructs, even when pre-treating the bone to stimulate osteogenesis. Surface-modified wrap-implants placed around rabbit tibias osseointegrated by 6 w. Finally, patient-specific constructs designed to support dental implants produced via AM and surface-processing were implanted on edentulous mandibular bone. 3 and 8 month post-operative images showed new bone formation and osseointegration of the device and indicated stability of the dental implants. PMID:26854193
Cohen, D J; Cheng, A; Kahn, A; Aviram, M; Whitehead, A J; Hyzy, S L; Clohessy, R M; Boyan, B D; Schwartz, Z
2016-02-08
Custom devices supporting bone regeneration and implant placement are needed for edentulous patients with large mandibular deficiencies where endosteal implantation is not possible. We developed a novel subperiosteal titanium-aluminum-vanadium bone onlay device produced by additive manufacturing (AM) and post-fabrication osteogenic micro-/nano-scale surface texture modification. Human osteoblasts produced osteogenic and angiogenic factors when grown on laser-sintered nano-/micro-textured surfaces compared to smooth surfaces. Surface-processed constructs caused higher bone-to-implant contact, vertical bone growth into disk pores (microCT and histomorphometry), and mechanical pull-out force at 5 and 10 w on rat calvaria compared to non surface-modified constructs, even when pre-treating the bone to stimulate osteogenesis. Surface-modified wrap-implants placed around rabbit tibias osseointegrated by 6 w. Finally, patient-specific constructs designed to support dental implants produced via AM and surface-processing were implanted on edentulous mandibular bone. 3 and 8 month post-operative images showed new bone formation and osseointegration of the device and indicated stability of the dental implants.
Santosh Kumar, B B; Aruna, D R; Gowda, Vinayak S; Galagali, Sushama R; Prashanthy, R; Navaneetha, H
2013-09-01
Recently, there has been interest in non-mammalian collagen sources such as fish collagen in periodontal regeneration. In the present study, collagen barrier membrane of fish origin was assessed in the treatment of periodontal intrabony defects. Ten systemically healthy chronic periodontitis patients having a paired osseous defect in the mandibular posterior teeth were selected and randomly assigned to receive a collagen membrane (test) or open flap debridement (control) in a split mouth design. Clinical parameters such as Plaque index, Gingival bleeding index, Probing pocket depth, Relative attachment level, and Recession were recorded at baseline, 3, 6, and at 9 months, while radiographic evaluation was done to assess alveolar crestal bone level and percentage of defect fill at 6 and 9 months using autoCAD 2007 software. Student's t test (two-tailed, dependent) was used to find the significance of study parameters on continuous scale. Significance was set at 5% level of significance. Wilcoxon signed rank test was used to find the significance of percentage change of defect fill. The comparison between the two groups did not show any statistically significant differences in the parameters assessed (P > 0.05) but, within each group, clinical parameters showed statistically significant differences from baseline to 9 months (P < 0.05). Within the limits of the study, it can be inferred that no significant differences were found either by using collagen membrane of fish origin or open flap debridement in the treatment of periodontal intrabony defects.
Suaid, Fabricia Ferreira; Ribeiro, Fernanda Vieira; Rodrigues, Thaisângela L; Silvério, Karina Gonzales; Carvalho, Marcelo Diniz; Nociti, Francisco Humberto; Casati, Marcio Zaffalon; Sallum, Enilson Antônio
2011-05-01
The goal of this study was to histologically investigate the use of periodontal ligament cells (PDL cells) in tissue engineering to regenerate class II furcation defects. PDL cells were obtained from the mandibular tooth extracted from each dog (seven), cultured in vitro and phenotypically characterized with regard to their biological properties. Following, bilateral class II furcation lesions were created at maxillary 3rd premolars and were randomly assigned to the test group [PDL cells+guided tissue regeneration (GTR)] or the control group (GTR). After 3 months, the animals were euthanized to evaluate the histometric parameters. In vitro, PDL cells were able to promote mineral nodule formation and to express bone sialoprotein, type I collagen and alkaline phosphatase. Histometrically, data analysis demonstrated that the cell-treated group presented a superior length of new cementum (6.00 ± 1.50 and 8.08 ± 1.08 mm), a greater extension of periodontal regeneration (3.94 ± 1.20 and 7.28 ± 1.00 mm), a lower formation of connective tissue/epithelium (2.15 ± 1.92 and 0.60 ± 0.99 mm), a larger area of new bone (7.01 ± 0.61 and 9.02 ± 2.30 mm(2)) and a smaller area of connective tissue/epithelium (5.90 ± 1.67 and 4.22 ± 0.95 mm(2)), when compared with control group. PDL cells in association with GTR may significantly promote periodontal regeneration in class II furcation defects in dog. © 2011 John Wiley & Sons A/S.
Freire-Maia, B; Machado, V deC; Valerio, C S; Custódio, A L N; Manzi, F R; Junqueira, J L C
2017-03-01
The aim of this study was to compare the accuracy of linear measurements of the distance between the mandibular cortical bone and the mandibular canal using 64-detector multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT). It was sought to evaluate the reliability of these examinations in detecting the mandibular canal for use in bilateral sagittal split osteotomy (BSSO) planning. Eight dry human mandibles were studied. Three sites, corresponding to the lingula, the angle, and the body of the mandible, were selected. After the CT scans had been obtained, the mandibles were sectioned and the bone segments measured to obtain the actual measurements. On analysis, no statistically significant difference was found between the measurements obtained through MSCT and CBCT, or when comparing the measurements from these scans with the actual measurements. It is concluded that the images obtained by CT scan, both 64-detector multi-slice and cone beam, can be used to obtain accurate linear measurements to locate the mandibular canal for preoperative planning of BSSO. The ability to correctly locate the mandibular canal during BSSO will reduce the occurrence of neurosensory disturbances in the postoperative period. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Li, Deqiang; Li, Ming; Liu, Peilai; Zhang, Yuankai; Lu, Jianxi; Li, Jianmin
2014-11-01
Repair of bone defects, particularly critical-sized bone defects, is a considerable challenge in orthopaedics. Tissue-engineered bones provide an effective approach. However, previous studies mainly focused on the repair of bone defects in small animals. For better clinical application, repairing critical-sized bone defects in large animals must be studied. This study investigated the effect of a tissue-engineered bone for repairing critical-sized bone defect in sheep. A tissue-engineered bone was constructed by culturing bone marrow mesenchymal-stem-cell-derived osteoblast cells seeded in a porous β-tricalcium phosphate ceramic (β-TCP) scaffold in a perfusion bioreactor. A critical-sized bone defect in sheep was repaired with the tissue-engineered bone. At the eighth and 16th week after the implantation of the tissue-engineered bone, X-ray examination and histological analysis were performed to evaluate the defect. The bone defect with only the β-TCP scaffold served as the control. X-ray showed that the bone defect was successfully repaired 16 weeks after implantation of the tissue-engineered bone; histological sections showed that a sufficient volume of new bones formed in β-TCP 16 weeks after implantation. Eight and 16 weeks after implantation, the volume of new bones that formed in the tissue-engineered bone group was more than that in the β-TCP scaffold group (P < 0.05). Tissue-engineered bone improved osteogenesis in vivo and enhanced the ability to repair critical-sized bone defects in large animals.
Felice, Pietro; Pellegrino, Gerardo; Checchi, Luigi; Pistilli, Roberto; Esposito, Marco
2010-12-01
To evaluate whether 7-mm-long implants could be an alternative to longer implants placed in vertically augmented posterior mandibles. Sixty patients with posterior mandibular edentulism with 7-8 mm bone height above the mandibular canal were randomized to either vertical augmentation with anorganic bovine bone blocks and delayed 5-month placement of ≥10 mm implants or to receive 7-mm-long implants. Four months after implant placement, provisional prostheses were delivered, replaced after 4 months, by definitive prostheses. The outcome measures were prosthesis and implant failures, any complications and peri-implant marginal bone levels. All patients were followed to 1 year after loading. One patient dropped out from the short implant group. In two augmented mandibles, there was not sufficient bone to place 10-mm-long implants possibly because the blocks had broken apart during insertion. One prosthesis could not be placed when planned in the 7 mm group vs. three prostheses in the augmented group, because of early failure of one implant in each patient. Four complications (wound dehiscence) occurred during graft healing in the augmented group vs. none in the 7 mm group. No complications occurred after implant placement. These differences were not statistically significant. One year after loading, patients of both groups lost an average of 1 mm of peri-implant bone. There no statistically significant differences in bone loss between groups. When residual bone height over the mandibular canal is between 7 and 8 mm, 7 mm short implants might be a preferable choice than vertical augmentation, reducing the chair time, expenses and morbidity. These 1-year preliminary results need to be confirmed by follow-up of at least 5 years. © 2010 John Wiley & Sons A/S.
Changes in jawbones of male patients with chronic renal failure on digital panoramic radiographs.
Dagistan, Saadettin; Miloglu, Ozkan; Caglayan, Fatma
2016-01-01
To compare the existence of gonial cortical bone thickness, antegonial index, mandibular canal bone resorption and gonial angle values and pathologies like ground-glass appearance in jawbones and brown tumor in male patients undergoing dialysis due to chronic renal failure and men from the healthy control group on panoramic radiographs. Panoramic radiographs were taken from 80 male individuals in total (40 normal and 40 dialysis patients). Values obtained from the right and left sides of the mandible were summed and their means were calculated. Gonial cortical thickness, antegonial index and gonial angle values were assessed with the Student's t-test, mandibular canal wall resorption with the Chi-square test, and pathologies such as ground-glass appearance and Brown tumor as "available" or "not available." Statistically significant differences were observed among the antegonial index (P < 0.001), gonial cortical bone thickness (P < 0.001), and gonial angle (P < 0.001) values of study and control groups. Besides, mandibular canal wall resorption (P < 0.001) was also statistically significant. In the study group, pathologies with ground-glass appearance were encountered in mandible, but no radiographic findings were observed similar to brown tumor. Compared to the control group, decreases were found in gonial cortical bone thicknesses, antegonial index values, mandibular canal wall resorption, and gonial angle values of the patients receiving dialysis treatment due to chronic renal failure. Although it is not statistically significant, pathology with ground-glass appearance was detected in a patient, but no pathologies like brown tumor were observed. These findings from patients with chronic renal failure must be evaluated in panoramic radiography.
Patel, Sandeep; Kubavat, Ajay; Ruparelia, Brijesh; Agarwal, Arvind; Panda, Anup
2012-01-01
The aim of periodontal surgery is complete regeneration. The present study was designed to evaluate and compare clinically soft tissue changes in form of probing pocket depth, gingival shrinkage, attachment level and hard tissue changes in form of horizontal and vertical bone level using resorbable membranes. Twelve subjects with bilateral class 2 furcation defects were selected. After initial phase one treatment, open debridement was performed in control site while freezedried dura mater allograft was used in experimental site. Soft and hard tissue parameters were registered intrasurgically. Nine months reentry ensured better understanding and evaluation of the final outcome of the study. Guided tissue regeneration is a predictable treatment modality for class 2 furcation defect. There was statistically significant reduction in pocket depth as compared to control (p < 0.01). There is statistically significant increase in periodontal attachment level within control and experimental sites showed better results (p < 0.01). For hard tissue parameter, significant defect fill resulted in experimental group, while in control group, less significant defect fill was found in horizontal direction and nonsignificant defect fill was found in vertical direction. The results showed statistically significant improvement in soft and hard tissue parameters and less gingival shrinkage in experimental sites compared to control site. The use of FDDMA in furcation defects helps us to achieve predictable results. This cross-linked collagen membrane has better handling properties and ease of procurement as well as economic viability making it a logical material to be used in regenerative surgeries.
Ciuluvică, R; Grădinaru, S; Popescu, M; Piticescu, RM; Cergan, R
2015-01-01
Introduction: This study was meant to test a new type of bone graft on an animal model. This material was a nanostructured hydroxyapatite. Materials and Methods: the study was conducted according to Ethic Committee Regulation on animal model (Oryctolagus cuniculus – rabbit) between August and November 2014, at “Carol Davila” University of Medicine and Pharmacy, Bucharest. The animals were tested by using a CT at the level of the mandible before and after using the nanostructured hydroxyapatite. Results: The animals were CT scanned at 1, 2 and respectively 3 months, noticing a growth of the mandibular bone density. After 3 months, a bone density equal with the density of the healthy bone was noticed. Conclusions: The use of the bone graft could be a viable alternative to available materials. The advantage was that bone recovery had a density similar to the density of the healthy bone and the cost of production was low because it was made out of Calcium azotate and monobasic ammonium phosphate. PMID:25914749
Boix, D; Weiss, P; Gauthier, O; Guicheux, J; Bouler, J-M; Pilet, P; Daculsi, G; Grimandi, G
2006-11-01
The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute on the prevention of alveolar ridge resorption after tooth extraction. Maxillary and mandibular premolars were extracted from 3 Beagle dogs with preservation of alveolar bone. Thereafter, distal sockets were filled with an injectable bone substitute (IBS), obtained by combining a polymer solution and granules of a biphasic calcium phosphate (BCP) ceramic. As a control, the mesial sockets were left unfilled. After a 3 months healing period, specimens were removed and prepared for histomorphometric evaluation with image analysis. Histomorphometric study allowed to measure the mean and the maximal heights of alveolar crest modifications. Results always showed an alveolar bone resorption in unfilled sockets. Resorption in filled maxillary sites was significantly lower than in control sites. Interestingly, an alveolar ridge augmentation was measured in mandibular filled sockets including 30% of newly-formed bone. It was concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate can significantly increase alveolar ridge preservation after tooth extraction.
Cehreli, Murat Cavit; Uysal, Serdar; Akca, Kivanc
2010-06-01
Documentation of early loading of mandibular overdentures supported by different implant systems is scarce. This study aimed to compare the biologic and prosthetic outcome of mandibular overdentures supported by unsplinted early-loaded one- and two-stage oral implants after 5 years of function. Twenty-eight consecutive patients were screened following an inclusion and exclusion criteria, and randomly allocated to treatment groups. Ball-retained mandibular overdentures were fabricated on two unsplinted Straumann (Institut Straumann AG, Basel, Switzerland) and Brånemark (Nobel Biocare AB, Göteborg, Sweden) dental implants and subjected to an early-loading protocol. During the 5-year period, prosthetic complications were recorded. At 5-years of function, plaque, peri-implant inflammation, bleeding, and calculus index scores were recorded, and standard periapical radiographs were obtained from each implant for measurement of marginal bone loss. All implants survived during the observation period. The peri-implant inflammation, bleeding, and calculus index scores around Straumann and Brånemark implants were similar (p > .05). The marginal bone loss around Brånemark implants (1.21 +/- 0.1) was higher than Straumann implants (0.73 +/- 0.06) at 5 years of function (p = .002). Kaplan-Meier tests revealed that 1- and 5-year survival of overdentures on Straumann and Brånemark implants were similar (p = .85). Wear of the ball abutment in the Brånemark group was higher than in the Straumann group (p < .05). Complications regarding the retainer and the need for occlusal adjustments were higher in the Straumann group (p < .05). Chi-square test revealed that the frequency of retightening of the retainer was higher in the Straumann group than in the Brånemark group (p < .05). Mandibular overdentures supported by unsplinted early-loaded Straumann and Brånemark implants lead to similar peri-implant soft tissue and prosthetic outcomes, although higher marginal bone loss could be observed around Brånemark implants after 5 years.
[Progress of Masquelet technique to repair bone defect].
Yin, Qudong; Sun, Zhenzhong; Gu, Sanjun
2013-10-01
To summarize the progress of Masquelet technique to repair bone defect. The recent literature concerning the application of Masquelet technique to repair bone defect was extensively reviewed and summarized. Masquelet technique involves a two-step procedure. First, bone cement is used to fill the bone defect after a thorough debridement, and an induced membrane structure surrounding the spacer formed; then the bone cement is removed after 6-8 weeks, and rich cancellous bone is implanted into the induced membrane. Massive cortical bone defect is repaired by new bone forming and consolidation. Experiments show that the induced membrane has vascular system and is also rich in vascular endothelial growth factor, transforming growth factor beta1, bone morphogenetic protein 2, and bone progenitor cells, so it has osteoinductive property; satisfactory results have been achieved in clinical application of almost all parts of defects, various types of bone defect and massive defect up to 25 cm long. Compared with other repair methods, Masquelet technique has the advantages of reliable effect, easy to operate, few complications, low requirements for recipient site, and wide application. Masquelet technique is an effective method to repair bone defect and is suitable for various types of bone defect, especially for bone defects caused by infection and tumor resection.
Healing of rabbit calvarial critical-sized defects using autogenous bone grafts and fibrin glue.
Lappalainen, Olli-Pekka; Korpi, Riikka; Haapea, Marianne; Korpi, Jarkko; Ylikontiola, Leena P; Kallio-Pulkkinen, Soili; Serlo, Willy S; Lehenkari, Petri; Sándor, George K
2015-04-01
This study aimed to evaluate ossification of cranial bone defects comparing the healing of a single piece of autogenous calvarial bone representing a bone flap as in cranioplasty compared to particulated bone slurry with and without fibrin glue to represent bone collected during cranioplasty. These defect-filling materials were then compared to empty control cranial defects. Ten White New Zealand adult male rabbits had bilateral critical-sized calvarial defects which were left either unfilled as control defects or filled with a single full-thickness piece of autogenous bone, particulated bone, or particulated bone combined with fibrin glue. The defects were left to heal for 6 weeks postoperatively before termination. CT scans of the calvarial specimens were performed. Histomorphometric assessment of hematoxylin-eosin- and Masson trichrome-stained specimens was used to analyze the proportion of new bone and fibrous tissue in the calvarial defects. There was a statistically significant difference in both bone and soft tissue present in all the autogenous bone-grafted defect sites compared to the empty negative control defects. These findings were supported by CT scan findings. While fibrin glue combined with the particulated bone seemed to delay ossification, the healing was more complete compared to empty control non-grafted defects. Autogenous bone grafts in various forms such as solid bone flaps or particulated bone treated with fibrin glue were associated with bone healing which was superior to the empty control defects.
Terheyden, H; Mühlendyck, C; Feldmann, H; Ludwig, K; Härle, F
1999-02-01
Besides rigid fixation, lag screws have distinct advantages compared with plates in appropriate indications in mandibular fractures. However, in current lag screw systems, the relatively small area of the screw head has to transfer the tensile force which can exceed 1000 N in the symphysis, to the thin cortical bone plate. Countersinking, which is obligatory in most systems, will weaken the cortical plate. Finite element analysis (FEA) revealed that load in this situation can exceed the normal tensile strength of metal and bone. Consequently, a new washer was constructed which both increased the supporting surface and did not require countersinking. The washer is self adapting (SAW) to the cortical plate in a defined position, forming a ball and socket joint with the screw head. Using the FEA model, a ten-fold reduction in load on bone and metal was observed with the new washer. In a miniature pig mandibular symphysis fracture model, the clinical applicability and a favourable histological reaction were demonstrated, compared with conventional lag screw designs.
Mohanty, Sujata; Dabas, Jitender; Gupta, Rekha
2015-01-01
Transport distraction is nowadays gaining enormous popularity and is becoming a promising option for reconstruction of mandibular defects. However, the vast number of distraction device designs create huge confusion in the clinician's mind to choose the right one. Considering these complex and costly designs, the authors decided to find a simplified way of combining a modified conventional reconstruction plate and monofocal distraction device that can act as a transport distraction device for bridging of bony defects. A case performed by this technique and device has been presented along with the description of device design.
Verket, Anders; Lyngstadaas, Ståle P; Rønold, Hans J; Wohlfahrt, Johan C
2014-02-01
This study investigated osseointegration of dental implants inserted in healed extraction sockets preserved with porous titanium granules (PTG). Three adult female minipigs (Gøttingen minipig; Ellegaard A/S, Dalmose, Denmark) had the mandibular teeth P2, P3 and P4 extracted. The extraction sockets were preserved with metallic PTG (Tigran PTG; Tigran Technologies AB, Malmö, Sweden) n = 12, heat oxidized white porous titanium granules (WPTG) (Tigran PTG White) n = 12 or left empty (sham) n = 6. All sites were covered with collagen membranes (Bio-Gide; Geistlich Pharma, Wolhausen, Switzerland) and allowed 11 weeks of healing before implants (Straumann Bone Level; Straumann, Basel, Switzerland) were inserted. The temperature was measured during preparation of the osteotomies. Resonance frequency analysis (RFA, Osstell; Osstell AB, Gothenburg, Sweden) was performed at implant insertion and at termination. After 6 weeks of submerged implant healing, the pigs were euthanized and jaw segments were excised for microCT and histological analyses. In the temperature and RFA analyses no significant differences were recorded between the test groups. The microCT analysis demonstrated an average bone volume of 61.7% for the PTG group compared to 50.3% for the WPTG group (P = 0.03) and 57.1% for the sham group. Histomorphometry demonstrated an average bone-to-implant contact of 68.2% for the PTG group compared to 36.6% for the WPTG group and 60.9% for the sham group (n.s). Eight out of ten implants demonstrated apical osseous defects in the WPTG group, but similar defects were observed in all groups. PTG preserved extraction sockets demonstrate a similar outcome as the sham control group for all analyses suggesting that this material potentially can be used for extraction socket preservation prior to implant installment. Apical osseous defects were however observed in all groups including the sham group, and a single cause could not be determined. © 2012 John Wiley & Sons A/S.
Stability of biodegradable implants in treatment of mandibular fractures.
Yerit, Kaan C; Hainich, Sibylle; Turhani, Dritan; Klug, Clemens; Wittwer, Gert; Ockher, Michael; Ploder, Oliver; Undt, Gerhard; Baumann, Arnulf; Ewers, Rolf
2005-06-01
Biodegradable implants have not been used on a large scale for internal fixation of mandibular fractures because of presumed inferior mechanical properties. This prospective clinical trial was designed to elucidate the stability and biocompatibility of self-reinforced poly-L/D-lactide plates and screws used to stabilize a variety of mandible fractures by open reduction and internal fixation. Sixty-six consecutive patients (22 female, 44 male; mean age, 23.9 years) with a total of 89 fractures at various sites of the mandible were included in the study. Stability of plates and screws and bone healing were observed by clinical and radiographic assessment. Intermaxillary fixation was applied in eight patients with concomitant condylar fractures for 2 to 3 weeks. The self-reinforcement technique provided sufficient mechanical stability of the implants for primary healing of these high-load mandibular bone areas. Postoperative complications were transient and limited to wound dehiscence and localized wound infection (two patients). In some patients, hypesthesia (three patients) or slight pain (10 patients) was reported at the 1-year recall examination, but implant-related serious adverse tissue reactions were not observed during the follow-up (mean, 24.4 months; range 6.4 to 44.3 months). On the basis of these preliminary results, the authors conclude that biodegradable self-reinforced implants show efficient stability during initial bone healing and promise a high potential for successful use in osteofixation of mandibular fractures.
Treatment of Class II malocclusion with mandibular skeletal anchorage.
Cakir, Ezgi; Malkoç, Siddik; Kirtay, Mustafa
2017-06-01
The aim of this case report was to present the dentofacial changes obtained with bone anchorage in a Class II patient with moderate to severe crowding. A boy, aged 14.5 years, with a dolichofacial type, convex profile, and skeletal and dental Class II relationships was examined. After evaluation, functional treatment with bone anchorage and 4 first premolar extractions was decided as the treatment approach. Miniplates were placed on the buccal shelves of the mandibular third molars. The hook of the anchor was revealed from the first molar level. After surgery, the 4 first premolars were extracted to retract the protrusive mandibular incisors. The maxillary and mandibular first molars were banded, and a lip bumper was inserted to apply elastics and to help distalize the maxillary first molars. Orthodontic forces of 300 to 500 g were applied immediately after placement, originating from the miniscrews to the hooks of the appliance to advance the mandible. After 20 months of treatment, the patient had a dental and skeletal Class I relationship, the mandible was advanced, the maxilla was restrained, and overjet was decreased. The combination of a bone anchor, Class II elastics, and an inner bow is a promising alternative to functional treatment, along with extractions, in Class II patients. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Prefabricated fibula free flap with dental implants for mandibular reconstruction.
Pauchet, D; Pigot, J-L; Chabolle, F; Bach, C-A
2018-03-02
Free fibula transplant is routinely used for mandibular reconstruction in head and neck cancer. Dental rehabilitation, the objective of mandibular reconstruction, requires the use of dental implants as supports for fixed or removable dentures. Positioning of fibular bone grafts and implants determines implant osseointegration and the possibilities of dental rehabilitation. Prefabrication of a fibula free flap with dental implants prior to harvesting as a free flap can promote implant osseointegration. The position of the implants must then be precisely planned. Virtual surgery and computer-assisted design and prefabrication techniques are used to plan the reconstruction and then reproduce this planning by means of tailored fibula and mandible cutting guides, thereby ensuring correct positioning of fibular bone fragments and implants. The prefabricated fibula free flap technique requires two surgical procedures (prefabrication and flap transfer) and precise preoperative planning. Prefabricated fibula free flap with dental implants, by improving the quality of osseointegration of the implants before flap transfer, extends the possibilities of prosthetic rehabilitation in complex secondary mandibular reconstructions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Alves-Pereira, Daniela; Valmaseda-Castellón, Eduard; Laskin, Daniel M.; Berini-Aytés, Leonardo; Gay-Escoda, Cosme
2013-01-01
Objectives: The purpose of this study was to determine the incidence and clinical symptoms associated with sharp mandibular bone irregularities (SMBI) after lower third molar extraction and to identify possible risk factors for this complication. Study Design: A mixed study design was used. A retrospective cohort study of 1432 lower third molar extractions was done to determine the incidence of SMBI and a retrospective case-control study was done to determine potential demographic and etiologic factors by comparing those patients with postoperative SMBI with controls. Results: Twelve SMBI were found (0.84%). Age was the most important risk factor for this complication. The operated side and the presence of an associated radiolucent image were also significantly related to the development of mandibular bone irregularities. The depth of impaction of the tooth might also be an important factor since erupted or nearly erupted third molars were more frequent in the SMBI group. Conclusions: SMBI are a rare postoperative complication after lower third molar removal. Older patients having left side lower third molars removed are more likely to develop this problem. The treatment should be the removal of the irregularity when the patient is symptomatic. Key words:Third molar, postoperative complication, bone irregularities, age. PMID:23524429
Joshi, Samir; Kshirsagar, Rajesh; Mishra, Akshay; Shah, Rahul
2015-01-01
To evaluate the efficacy of open reduction and semirigid internal fixation in the management of displaced pediatric mandibular fractures. Ten patients with displaced mandibular fractures treated with 1.5 mm four holed titanium mini-plate and 4 mm screws which were removed within four month after surgery. All cases showed satisfactory bone healing without any growth disturbance. Open reduction and rigid internal fixation (ORIF) with 1.5 mm titanium mini- plates and 4 mm screws is a reliable and safe method in treatment of displaced paediatric mandibular fractures.
An alternative method in mandibular fracture treatment: bone graft use instead of a plate.
Alagöz, Murat Sahin; Uysal, Ahmet Cagri; Sensoz, Omer
2008-03-01
In the treatment of the mandibular fractures, one of the main principles is to use the least amount of foreign material. We present an alternative technique that the bone grafts harvested from the fracture borders or from the iliac crest were used instead of plates and the fixation was done with screws. In the study including 24 mandible fractures, the bone grafts harvested from the fracture borders were used in the 10 favorable fractures and the bone grafts harvested from the iliac crest were used in the 14 unfavorable fractures. In the combined mandible fractures, four fractures were fixated with titanium plates and the other side with the bone graft. The patients, who were followed up for 12 to 20 months, were evaluated with macroscopic occlusion, panoramic graphs, and three-dimensional computerized tomographs. The advantage of this technique of fixation with the autogenous tissue is reduced infection rates and reduced operation costs. In the pediatric patients, the second session operation of plate removal is not necessary.
Elastic properties and apparent density of human edentulous maxilla and mandible
Seong, Wook-Jin; Kim, Uk-Kyu; Swift, James Q.; Heo, Young-Cheul; Hodges, James S.; Ko, Ching-Chang
2009-01-01
The aim of this study aim was to determine whether elastic properties and apparent density of bone differ in different anatomical regions of the maxilla and mandible. Additional analyses assessed how elastic properties and apparent density were related. Four pairs of edentulous maxilla and mandibles were retrieved from fresh human cadavers. Bone samples from four anatomical regions (maxillary anterior, maxillary posterior, mandibular anterior, mandibular posterior) were obtained. Elastic modulus (EM) and hardness (H) were measured using the nano-indentation technique. Bone samples containing cortical and trabecular bone were used to measure composite apparent density (cAD) using Archimedes’ principle. Statistical analyses used repeated measures ANOVA and Pearson correlations. Bone physical properties differed between regions of the maxilla and mandible. Generally, mandible had higher physical property measurements than maxilla. EM and H were higher in posterior than in anterior regions; the reverse was true for cAD. Posterior maxillary cAD was significantly lower than that in the three other regions. PMID:19647417
Elastic properties and apparent density of human edentulous maxilla and mandible.
Seong, W-J; Kim, U-K; Swift, J Q; Heo, Y-C; Hodges, J S; Ko, C-C
2009-10-01
The aim of this study was to determine whether elastic properties and apparent density of bone differ in different anatomical regions of the maxilla and mandible. Additional analyses assessed how elastic properties and apparent density were related. Four pairs of edentulous maxilla and mandibles were retrieved from fresh human cadavers. Bone samples from four anatomical regions (maxillary anterior, maxillary posterior, mandibular anterior, mandibular posterior) were obtained. Elastic modulus (EM) and hardness (H) were measured using the nano-indentation technique. Bone samples containing cortical and trabecular bone were used to measure composite apparent density (cAD) using Archimedes' principle. Statistical analyses used repeated measures ANOVA and Pearson correlations. Bone physical properties differed between regions of the maxilla and mandible. Generally, mandible had higher physical property measurements than maxilla. EM and H were higher in posterior than in anterior regions; the reverse was true for cAD. Posterior maxillary cAD was significantly lower than that in the three other regions.
Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic.
Giesen, E B; Ding, M; Dalstra, M; van Eijden, T M
2001-06-01
The objective of the present study was (1) to test the hypothesis that the elastic and failure properties of the cancellous bone of the mandibular condyle depend on the loading direction, and (2) to relate these properties to bone density parameters. Uniaxial compression tests were performed on cylindrical specimens (n=47) obtained from the condyles of 24 embalmed cadavers. Two loading directions were examined, i.e., a direction coinciding with the predominant orientation of the plate-like trabeculae (axial loading) and a direction perpendicular to the plate-like trabeculae (transverse loading). Archimedes' principle was applied to determine bone density parameters. The cancellous bone was in axial loading 3.4 times stiffer and 2.8 times stronger upon failure than in transverse loading. High coefficients of correlation were found among the various mechanical properties and between them and the apparent density and volume fraction. The anisotropic mechanical properties can possibly be considered as a mechanical adaptation to the loading of the condyle in vivo.
Is bone transplantation the gold standard for repair of alveolar bone defects?
Raposo-Amaral, Cassio Eduardo; Bueno, Daniela Franco; Almeida, Ana Beatriz; Jorgetti, Vanda; Costa, Cristiane Cabral; Gouveia, Cecília Helena; Vulcano, Luiz Carlos; Fanganiello, Roberto D; Passos-Bueno, Maria Rita; Alonso, Nivaldo
2014-01-01
New strategies to fulfill craniofacial bone defects have gained attention in recent years due to the morbidity of autologous bone graft harvesting. We aimed to evaluate the in vivo efficacy of bone tissue engineering strategy using mesenchymal stem cells associated with two matrices (bovine bone mineral and α-tricalcium phosphate), compared to an autologous bone transfer. A total of 28 adult, male, non-immunosuppressed Wistar rats underwent a critical-sized osseous defect of 5 mm diameter in the alveolar region. Animals were divided into five groups. Group 1 (n = 7) defects were repaired with autogenous bone grafts; Group 2 (n = 5) defects were repaired with bovine bone mineral free of cells; Group 3 (n = 5) defects were repaired with bovine bone mineral loaded with mesenchymal stem cells; Group 4 (n = 5) defects were repaired with α-tricalcium phosphate free of cells; and Group 5 (n = 6) defects were repaired with α-tricalcium phosphate loaded with mesenchymal stem cells. Groups 2-5 were compared to Group 1, the reference group. Healing response was evaluated by histomorphometry and computerized tomography. Histomorphometrically, Group 1 showed 60.27% ± 16.13% of bone in the defect. Groups 2 and 3 showed 23.02% ± 8.6% (p = 0.01) and 38.35% ± 19.59% (p = 0.06) of bone in the defect, respectively. Groups 4 and 5 showed 51.48% ± 11.7% (p = 0.30) and 61.80% ± 2.14% (p = 0.88) of bone in the defect, respectively. Animals whose bone defects were repaired with α-tricalcium phosphate and mesenchymal stem cells presented the highest bone volume filling the defects; both were not statistically different from autogenous bone.
Elders with implant overdentures: a 22-year clinical report.
Alsabeeha, Nabeel H M
2012-09-01
To report on the long-term survival and prosthodontic maintenance of two edentulous adults with mandibular overdentures supported by hydroxyapatite (HA)-coated implants. Mandibular implant overdentures are a successful treatment option with positive impact on the quality of life of elderly edentulous adults. Long-term survival of the implants requires continued rigorous prosthodontic maintenance. Two elderly edentulous adults with mandibular overdentures supported by 2 HA-coated implants were presented for prosthodontic rehabilitation after 22 years of placement. The implants were osseo-integrated and surviving at presentation based on accepted criteria. The mandibular implant overdentures suffered recurrent loss of retention and stability. Prosthodontic treatment involving the replacement of defective attachment systems and construction of new sets of mandibular implant overdentures opposing complete maxillary dentures is presented. The long-term survival of mandibular 2-implant overdentures requires continued prosthodontic maintenance. A conservative approach in the rehabilitation of two older edentulous adults with mandibular 2-implant overdentures was described including proper selection of attachment systems. © 2012 The Gerodontology Society and John Wiley & Sons A/S.
Scheiner, Stefan; Komlev, Vladimir S.; Gurin, Alexey N.; Hellmich, Christian
2016-01-01
We here explore for the very first time how an advanced multiscale mathematical modeling approach may support the design of a provenly successful tissue engineering concept for mandibular bone. The latter employs double-porous, potentially cracked, single millimeter-sized granules packed into an overall conglomerate-type scaffold material, which is then gradually penetrated and partially replaced by newly grown bone tissue. During this process, the newly developing scaffold-bone compound needs to attain the stiffness of mandibular bone under normal physiological conditions. In this context, the question arises how the compound stiffness is driven by the key design parameters of the tissue engineering system: macroporosity, crack density, as well as scaffold resorption/bone formation rates. We here tackle this question by combining the latest state-of-the-art mathematical modeling techniques in the field of multiscale micromechanics, into an unprecedented suite of highly efficient, semi-analytically defined computation steps resolving several levels of hierarchical organization, from the millimeter- down to the nanometer-scale. This includes several types of homogenization schemes, namely such for porous polycrystals with elongated solid elements, for cracked matrix-inclusion composites, as well as for assemblies of coated spherical compounds. Together with the experimentally known stiffnesses of hydroxyapatite crystals and mandibular bone tissue, the new mathematical model suggests that early stiffness recovery (i.e., within several weeks) requires total avoidance of microcracks in the hydroxyapatite scaffolds, while mid-term stiffness recovery (i.e., within several months) is additionally promoted by provision of small granule sizes, in combination with high bone formation and low scaffold resorption rates. PMID:27708584
Alvarez-Arenal, Angel; Gonzalez-Gonzalez, Ignacio; deLlanos-Lanchares, Hector; Brizuela-Velasco, Aritza; Dds, Elena Martin-Fernandez; Ellacuria-Echebarria, Joseba
2017-12-01
The aim of this study was to evaluate and compare the bone stress around implants in mandibular 2-implant overdentures depending on the implant location and different loading conditions. Four 3-dimensional finite element models simulating a mandibular 2-implant overdenture and a Locator attachment system were designed. The implants were located at the lateral incisor, canine, second premolar, and crossed-implant levels. A 150 N unilateral and bilateral vertical load of different location was applied, as was 40 N when combined with midline load. Data for von Mises stress were produced numerically, color coded, and compared between the models for peri-implant bone and loading conditions. With unilateral loading, in all 4 models much higher peri-implant bone stress values were recorded on the load side compared with the no-load side, while with bilateral occlusal loading, the stress distribution was similar on both sides. In all models, the posterior unilateral load showed the highest stress, which decreased as the load was applied more mesially. In general, the best biomechanical environment in the peri-implant bone was found in the model with implants at premolar level. In the crossed-implant model, the load side greatly altered the biomechanical environment. Overall, the overdenture with implants at second premolar level should be the chosen design, regardless of where the load is applied. The occlusal loading application site influences the bone stress around the implant. Bilateral occlusal loading distributes the peri-implant bone stress symmetrically, while unilateral loading increases it greatly on the load side, no matter where the implants are located.
Multidisciplinary approach to an asymmetric traumatic occlusion: a case report.
Pinho, T; Coutinho-Alves, C; Neves, M
2013-01-01
The case of a 47-year-old female patient with an asymmetric traumatic occlusion, great alveolar destruction in the mandibular left central incisor, gingival recession with attachment loss and lack o fkeratinized tissue more accentuated in the crossbite teeth is described. This situation was caused by the traumatic position of the teeth, aggravated by a forced asymmetric anterior position of the mandible and aggravated by mandibular movements. After the extraction of the left central mandibular incisor, keratinized tissue reconstruction and alveolar bone regeneration were performed to obtain enough bone to move the adjacent teeth in this direction and allow the correct placement of an implant at the end of orthodontic treatment. The orthodontic treatment achieved general stable occlusal contacts and esthetic results that were finalized with a definitive prosthetic treatment. This interdisciplinary management was important to solve in the present case the seriously compromised function and esthetics that would never be achieved without this combination.
Peng, Weihai; Zheng, Wei; Shi, Kai; Wang, Wangshu; Shao, Ying; Zhang, Duo
2015-11-09
Internal fixation of bone fractures using biodegradable poly(L-lactic-acid) (PLLA)-based materials has attracted the attention of many researchers. In the present study, 36 male beagle dogs were randomly assigned to two groups: PLLA/PLLA-gHA (PLLA-grafted hydroxyapatite) group and PLLA group. PLLA/PLLA-gHA and PLLA plates were embedded in the muscular bags of the erector spinae and also implanted to fix mandibular bone fractures in respective groups. At 1, 2, 3, 6, 9, and 12 months postoperatively, the PLLA/PLLA-gHA and PLLA plates were evaluated by adsorption and degradation tests, and the mandibles were examined through radiographic analysis, biomechanical testing, and histological analysis. The PLLA/PLLA-gHA plates were non-transparent and showed a creamy white color, and the PLLA plates were transparent and faint yellow in color. At all time points following surgery, adsorption and degradation of the PLLA/PLLA-gHA plates were significantly less than those of the PLLA plates, and the lateral and longitudinal bending strengths of the surgically treated mandibles of the beagle dogs in the PLLA/PLLA-gHA group were significantly greater than those of the PLLA group and reached almost the value of intact mandibles at 12 months postoperatively. Additionally, relatively rapid bone healing was observed in the PLLA/PLLA-gHA group with the formation of new lamellar bone tissues at 12 months after the surgery. The PLLA/PLLA-gHA nano-composite can be employed as a biodegradable material for internal fixation of mandibular bone fractures.
Mandibular body fracture repair with wire-reinforced interdental composite splint in small dogs.
Guzu, Michel; Hennet, Philippe R
2017-11-01
To report the outcome of mandibular body fractures treated with a wire-reinforced interdental composite splint (WRICS) in small breed dogs. Retrospective case series. Client-owned small breed dogs (n = 24). Medical records (1998-2012) of small breed dogs (<10 kg) with mandibular body fractures treated by WRICS were reviewed for signalment, history, type of fracture, treatment, and clinical and radiological follow-up. The angle of the fracture line (ANG) was measured on dental radiographs. A mandibular injury severity score (MISS) and a dental injury score (DIS) were evaluated as potential prognostic factors. Fractures most commonly involved P4-M1 (56%), and healed in a mean time of 2.37 ± 0.7 months. Healing was slower (P = .012) if teeth were present in the fracture line and required extraction, hemisection, or root canal therapy prior to WRICS placement (2.39 ± 0.7 months) than if no dental treatment was required (1.46 ± 0.8 months). Contrary to the MISS, the DIS was associated with longer time to bone healing (P = .001; r = .63) and risk of complications (P = .004). Bone healing time was decreased (P = .003; r = .61) with increasing fracture angles. WRICS can be considered to treat mandibular body fractures in small breed dogs if the fracture is not severely comminuted, and if at least the canine and first molar tooth can be used for anchorage. More severe lesions, such as those with teeth in the fracture line and a shorter fracture surface, are associated with prolonged bone healing. © 2017 The American College of Veterinary Surgeons.
Increased mandibular condylar growth in mice with estrogen receptor beta deficiency.
Kamiya, Yosuke; Chen, Jing; Xu, Manshan; Utreja, Achint; Choi, Thomas; Drissi, Hicham; Wadhwa, Sunil
2013-05-01
Temporomandibular joint (TMJ) disorders predominantly afflict women of childbearing age, suggesting a role for female hormones in the disease process. In long bones, estrogen acting via estrogen receptor beta (ERβ) inhibits axial skeletal growth in female mice. However, the role of ERβ in the mandibular condyle is largely unknown. We hypothesize that female ERβ-deficient mice will have increased mandibular condylar growth compared to wild-type (WT) female mice. This study examined female 7-day-old, 49-day-old, and 120-day-old WT and ERβ knockout (KO) mice. There was a significant increase in mandibular condylar cartilage thickness as a result of an increased number of cells, in the 49-day-old and 120-day-old female ERβ KO compared with WT controls. Analysis in 49-day-old female ERβ KO mice revealed a significant increase in collagen type X, parathyroid hormone-related protein (Pthrp), and osteoprotegerin gene expression and a significant decrease in receptor activator for nuclear factor κ B ligand (Rankl) and Indian hedgehog (Ihh) gene expression, compared with WT controls. Subchondral bone analysis revealed a significant increase in total condylar volume and a decrease in the number of osteoclasts in the 49-day-old ERβ KO compared with WT female mice. There was no difference in cell proliferation in condylar cartilage between the genotypes. However, there were differences in the expression of proteins that regulate the cell cycle; we found a decrease in the expression of Tieg1 and p57 in the mandibular condylar cartilage from ERβ KO mice compared with WT mice. Taken together, our results suggest that ERβ deficiency increases condylar growth in female mice by inhibiting the turnover of fibrocartilage. Copyright © 2013 American Society for Bone and Mineral Research.
Papay, F A; Morales, L; Ahmed, O F; Neth, D; Reger, S; Zins, J
1996-09-01
Demineralized bone allografts in the repair of calvarial defects are compared with other common bone fillers. This study uses a video-digitizing radiographic analysis of calvarial defect ossification to determine calcification of bone defects and its relation to postoperative clinical examination and regional controls. The postoperative clinical results at 3 months demonstrated that bony healing was greatest in bur holes filled with demineralized bone and hydroxyapatite. Radiographic analysis demonstrated calcification of demineralized bone-filled defects compared to bone wax- and Gelfoam-filled regions. Hydroxyapatite granules are radiographically dense, thus not allowing accurate measurement of true bone healing. The results suggest that demineralized bone and hydroxyapatite provide better structural support via bone healing to defined calvarial defects than do Gelfoam and bone wax.
Radiomorphometric indices of mandibular bones in an 18th century population.
Ivanišević Malčić, Ana; Matijević, Jurica; Vodanović, Marin; Knezović Zlatarić, Dubravka; Prpić Mehičić, Goranka; Jukić, Silvana
2015-05-01
To estimate four radiomorphometric indices of mandibular bones in an 18th century population sample, and possibly associate the findings with bone mass loss related to sex, age, nutritional habits and pathologies reflecting on the bone. Thirty-six sculls (31 males, 5 females), recovered from the crypt of Požega Cathedral in Croatia were analyzed. Age estimation was based on tooth wear, and Eichner class was determined according to the number of occlusal supporting zones. The parameters in recording analogue orthopantomographs were set to constant current of 16 mA, exposure time of 14.1s, and voltage between 62-78 kV. Films were processed in an automatic dark chamber processor for 12 min, and digitized at 8-bit, 300 dpi. The thickness of the mandibular cortex was assessed below the mental foramen (MI), at antegonion (AI), at gonion (GI). Qualitative mandibular cortical index (MCI) was assessed. Average values of MI, AI and GI were 3.97 ± 0.94 mm, 2.98 ± 0.56 mm, and 1.99 ± 0.55 mm, respectively. Statistically significant differences between males and females were found for AI right (p=0.014), GI left (p=0.010) and GI average (p=0.006), and were in all cases higher in males. There were no statistically significant differences between age groups for either index (p>0.05). Considering Eichner classification the differences were not significant for MI (p=0.422), AI (p=0.516), and GI (p=0.443), but in Eichner classes II, MCI was significantly higher (p=0.02). The obtained data does not suggest generalized malnutrition or calcium, phosphorus and vitamin D deprivation in the historic population studied. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huang, W; Hasegawa, T; Imai, Y; Takeda, D; Akashi, M; Komori, T
2015-07-01
We previously demonstrated that human mandibular fracture haematoma-derived cells (MHCs) play an important role in mandibular fracture healing and that low-intensity pulsed ultrasound (LIPUS) accelerates this effect by stimulating various osteogenic cytokines. In the present study, we investigated how LIPUS affects the expression of bone morphogenetic proteins (BMPs), which are also known to have the ability to induce bone formation. MHCs were isolated from human mandibular fracture haematomas and the cells were divided into two groups: a LIPUS (+) group and a LIPUS (-) group, both of which were cultured in osteogenic medium. LIPUS was applied to the LIPUS (+) group 20 min a day for 4, 8, 14, and 20 days (1.5 MHz, 30 mW/cm(2)). Real-time PCR and immunofluorescence studies were carried out to determine the expression of BMP-2, 4, and 7. Compared to the LIPUS (-) group, gene expression levels were significantly increased in the LIPUS (+) group for BMP-2 on day 20 (67.38 ± 26.59 vs. 11.52 ± 3.42, P < 0.001), for BMP-4 on days 14 (45.12 ± 11.06 vs. 9.20 ± 2.88, P = 0.045) and 20 (40.96 ± 24.81 vs. 3.22 ± 1.53, P = 0.035), and for BMP-7 on day 8 (48.11 ± 35.36 vs. 7.03 ± 3.96, P = 0.034). These findings suggest that BMP-2, 4, and 7 may be mediated by LIPUS therapy during the bone repair process. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Karamesinis, Konstantinos; Basdra, Efthimia K
2018-05-01
Jaw discrepancies and malrelations affect a large proportion of the general population and their treatment is of utmost significance for individuals' health and quality of life. The aim of their therapy is the modification of aberrant jaw development mainly by targeting the growth potential of the mandibular condyle through its cartilage, and the architectural shape of alveolar bone through a suture type of structure, the periodontal ligament. This targeted treatment is achieved via external mechanical force application by using a wide variety of intraoral and extraoral appliances. Condylar cartilage and sutures exhibit a remarkable plasticity due to the mechano-responsiveness of the chondrocytes and the multipotent mesenchymal cells of the sutures. The tissues respond biologically and adapt to mechanical force application by a variety of signaling pathways and a final interplay between the proliferative activity and the differentiation status of the cells involved. These targeted therapeutic functional alterations within temporo-mandibular joint ultimately result in the enhancement or restriction of mandibular growth, while within the periodontal ligament lead to bone remodeling and change of its architectural structure. Depending on the form of the malrelation presented, the above treatment approaches, in conjunction or separately, lead to the total correction of jaw discrepancies and the achievement of facial harmony and function. Overall, the treatment of craniofacial and jaw anomalies can be seen as an interplay of mechanical forces and adaptations occurring within temporo-mandibular joint and alveolar bone. The aim of the present review is to present up-to-date knowledge on the mechano-biology behind jaw growth modification and alveolar bone remodeling. Furthermore, future molecular targeted therapeutic strategies are discussed aiming at the improvement of mechanically-driven chondrogenesis and osteogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Fracture patterns in the maxillofacial region: a four-year retrospective study
2015-01-01
Objectives The facial bones are the most noticeable area in the human body, and facial injuries can cause significant functional, aesthetic, and psychological complications. Continuous study of the patterns of facial bone fractures and changes in trends is helpful in the prevention and treatment of maxillofacial fractures. The purpose of the current clinico-statistical study is to investigate the pattern of facial fractures over a 4-year period. Materials and Methods A retrospective analysis of 1,824 fracture sites was carried out in 1,284 patients admitted to SMG-SNU Boramae Medical Center for facial bone fracture from January 2010 to December 2013. We evaluated the distributions of age/gender/season, fracture site, cause of injury, duration from injury to treatment, hospitalization period, and postoperative complications. Results The ratio of men to women was 3.2:1. Most fractures occurred in individuals aged between teens to 40s and were most prevalent at the middle and end of the month. Fractures occurred in the nasal bone (65.0%), orbital wall (29.2%), maxillary wall (15.3%), zygomatic arch (13.2%), zygomaticomaxillary complex (9.8%), mandibular symphysis (6.5%), mandibular angle (5.9%), mandibular condyle (4.9%), and mandibular body (1.9%). The most common etiologies were fall (32.5%) and assault (26.0%). The average duration of injury to treatment was 6 days, and the average hospitalization period was 5 days. Eighteen postoperative complications were observed in 17 patients, mainly infection and malocclusion in the mandible. Conclusion This study reflects the tendency for trauma in the Seoul metropolitan region because it analyzes all facial fracture patients who visited our hospital regardless of the specific department. Distinctively, in this study, midfacial fractures had a much higher incidence than mandible fractures. PMID:26734557
Shibata, S.; Sakamoto, Y.; Baba, O.; Qin, C.; Murakami, G.; Cho, B.H.
2013-01-01
Immunohistochemical localization of collagen types I, II, and X, aggrecan, versican, dentin matrix protein (DMP)-1, martix extracellular phosphoprotein (MEPE) were performed for Meckel’s cartilage, cranial base cartilage, and mandibular condylar cartilage in human midterm fetuses; staining patterns within the condylar cartilage were compared to those within other cartilaginous structures. Mandibular condylar cartilage contained aggrecan; it also had more type I collagen and a thicker hypertrophic cell layer than the other two types of cartilage; these three characteristics are similar to those of the secondary cartilage of rodents. MEPE immunoreactivity was first evident in the cartilage matrix of all types of cartilage in the human fetuses and in Meckel’s cartilage of mice and rats. MEPE immunoreactivity was enhanced in the deep layer of the hypertrophic cell layer and in the cartilaginous core of the bone trabeculae in the primary spongiosa. These results indicated that MEPE is a component of cartilage matrix and may be involved in cartilage mineralization. DMP-1 immunoreactivity first became evident in human bone lacunae walls and canaliculi; this pattern of expression was comparable to the pattern seen in rodents. In addition, chondroid bone was evident in the mandibular (glenoid) fossa of the temporal bone, and it had aggrecan, collagen types I and X, MEPE, and DMP-1 immunoreactivity; these findings indicated that chondroid bone in this region has phenotypic expression indicative of both hypertrophic chondrocytes and osteocytes. PMID:24441192
Sun, Zongyang; Tee, Boon Ching; Kennedy, Kelly S.; Kennedy, Patrick M.; Kim, Do-Gyoon; Mallery, Susan R.; Fields, Henry W.
2013-01-01
Purpose Bone regeneration through distraction osteogenesis (DO) is promising but remarkably slow. To accelerate it, autologous mesenchymal stem cells have been directly injected to the distraction site in a few recent studies. Compared to direct injection, a scaffold-based method can provide earlier cell delivery with potentially better controlled cell distribution and retention. This pilot project investigated a scaffold-based cell-delivery approach in a porcine mandibular DO model. Materials and Methods Eleven adolescent domestic pigs were used for two major sets of studies. The in-vitro set established methodologies to: aspirate bone marrow from the tibia; isolate, characterize and expand bone marrow-derived mesenchymal stem cells (BM-MSCs); enhance BM-MSC osteogenic differentiation using FGF-2; and confirm cell integration with a gelatin-based Gelfoam scaffold. The in-vivo set transplanted autologous stem cells into the mandibular distraction sites using Gelfoam scaffolds; completed a standard DO-course and assessed bone regeneration by macroscopic, radiographic and histological methods. Repeated-measure ANOVAs and t-tests were used for statistical analyses. Results From aspirated bone marrow, multi-potent, heterogeneous BM-MSCs purified from hematopoietic stem cell contamination were obtained. FGF-2 significantly enhanced pig BM-MSC osteogenic differentiation and proliferation, with 5 ng/ml determined as the optimal dosage. Pig BM-MSCs integrated readily with Gelfoam and maintained viability and proliferative ability. After integration with Gelfoam scaffolds, 2.4–5.8×107 autologous BM-MSCs (undifferentiated or differentiated) were transplanted to each experimental DO site. Among 8 evaluable DO sites included in the final analyses, the experimental DO sites demonstrated less interfragmentary mobility, more advanced gap obliteration, higher mineral content and faster mineral apposition than the control sites, and all transplanted scaffolds were completely degraded. Conclusion It is technically feasible and biologically sound to deliver autologous BM-MSCs to the distraction site immediately after osteotomy using a Gelfoam scaffold to enhance mandibular DO. PMID:24040314
Bozzini, Clarisa; Champin, Graciela; Alippi, Rosa M; Bozzini, Carlos E
2015-04-01
Long-term glucocorticoid administration to growing rats induces osteopenia and alterations in the biomechanical behavior of the bone. This study was performed to estimate the effects of dexamethasone (DTX), a synthetic steroid with predominant glucocorticoid activity, on the biomechanical properties of the mandible of rats during the growth phase, as assessed by bending test and peripheral quantitative computed tomographic (pQCT) analysis. The data obtained by the two methods will provide more precise information when analyzed together than separately. Female rats aged 23 d (n=7) received 500μg.kg-1 per day of DXT for 4 weeks. At the end of the treatment period, their body weight and body length were 51.3% and 20.6% lower, respectively, than controls. Hemimandible weight and area (an index of mandibular size) were 27.3% and 9.7% lower, respectively. The right hemimandible of each animal was subjected to a mechanical 3-point bending test. Significant weakening of the bone, as shown by a correlative impairment of strength and stiffness, was observed in experimental rats. Bone density and cross-sectional area were measured by pQCT. Cross-sectional, cortical and trabecular areas were reduced by 20% to 30% in the DTX group, as were other cortical parameters, including the bone density, mineral content and cross-sectional moment of inertia. The "bone strength index" (BSI, the product of the pQCT-assessed xCSMI and vCtBMD) was 56% lower in treated rats, which compares well with the 54% and 52% reduction observed in mandibular strength and stiffness determined through the bending test. Data suggest that the corticosteroid exerts a combined, negative action on bone geometry (mass and architecture) and volumetric bone mineral density of cortical bone, which would express independent effects on both cellular (material quality) and tissue (cross-sectional design) levels of biological organization of the skeleton in the species.
Farrow, E S; Boulanger, T; Wojcik, T; Lemaire, A-S; Raoul, G; Julieron, M
2016-11-01
Preoperative evaluation of the bone for invasion by oral cavity squamous cell carcinoma remains challenging. The aim of our study was to compare the accuracy of MRI and CT in detecting mandibular invasion by oral squamous cell carcinoma of the oral cavity, with histologic results as the reference standard, and to assess the influence on surgical management and post-operative course. Patients who were clinically suspected of having bone invasion from oral cavity carcinoma were retrospectively included. A single senior radiologist reviewed MRI images and CT-scans, independently, for the presence or absence of mandibular invasion. The different surgical procedures were compared in terms of length of hospital stay and occurrence of surgical complications. Histological mandibular invasion occurred in 9 of 35 patients (25.7%). None of the preoperative imaging tests failed to detect bone invasion which resulted in a sensitivity of 100% for both MRI and CT. CT had slightly higher specificity than MRI (61.9% and 57.1% respectively) in predicting bone invasion, but no statistically significant difference was found (P=0.32). Specificity of CT and MRI was higher in the edentulous group (75% and 625% respectively) than in the dentate group (53.8% both), although no statistically significant difference was found. The length of hospital stay was increased in the segmental resection group (25±14.5 days) compared to the marginal resection group (13±4.6 days; P=0.004) and to the hemimandibulectomy group (15±7.2 days; P=0.014). Occurrence of post-operative complications, across all categories, was increased in the segmental resection group (70%, n=7/10; P=0.006) compared to the marginal resection group (8.3%, n=1/12) and to the hemimandibulectomy group (23.1%, n=3/13; P=0.04). MRI and CT being equivalent in detecting mandibular invasion, we suggest MRI as single imaging technique in the preoperative assessment of oral cavity SCC. Specificity could be increased if combined with PET/CT, in order to reduce the number of unnecessary mandibular interruptions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Sumarroca, Anna; Rodríguez-Bauzà, Elena; Vega, Carmen; Fernández, Manuel; Masià, Jaume; Quer, Miquel; León, Xavier
2015-01-01
The facial artery musculomucosal (FAMM) flap is a good option for covering small and medium-sized defects in the oral cavity because of its similar tissue characteristics and easy implementation. We reviewed our results using this flap between 2006 and 2014. A total of 20 patients were included and 25 FAMM flaps were performed, 16 right (64%) and 9 left (36%) flaps. Five patients had simultaneous bilateral reconstructions. The indications for flap surgery were reconstruction after resection of tumours in the floor of the mouth (8 cases, 40%), tumours in other sites of the oral cavity (4 cases, 20%), mandibular osteoradionecrosis (4 cases, 20%), oroantral fistula (3 cases, 15%) and postoperative ankyloglossia (one case, 5%). Reconstruction was successful in 92% of cases (n=23). Total flap necrosis occurred in one case and dehiscence with exposure of bone in another. Oral function and ingestion were satisfactory in all patients. The facial artery musculomucosal flap is reliable and versatile for reconstruction of small and medium-sized intraoral defects. It allows functional reconstruction of the oral cavity with a low risk of complications. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.
Understanding the Basis of Auriculocondylar Syndrome: Insights From Human and Mouse Genetic Studies
Clouthier, David E.; Passos Bueno, Maria Rita; Tavares, Andre L.P.; Lyonnet, Stanislas; Amiel, Jeanne; Gordon, Christopher T.
2014-01-01
Among human birth defect syndromes, malformations affecting the face are perhaps the most striking due to cultural and psychological expectations of facial shape. One such syndrome is auriculocondylar syndrome (ACS), in which patients present with defects in ear and mandible development. Affected structures arise from cranial neural crest cells, a population of cells in the embryo that reside in the pharyngeal arches and give rise to most of the bone, cartilage and connective tissue of the face. Recent studies have found that most cases of ACS arise from defects in signaling molecules associated with the endothelin signaling pathway. Disruption of this signaling pathway in both mouse and zebrafish results in loss of identity of neural crest cells of the mandibular portion of the first pharyngeal arch and the subsequent repatterning of these cells, leading to homeosis of lower jaw structures into more maxillary-like structures. These findings illustrate the importance of endothelin signaling in normal human craniofacial development and illustrate how clinical and basic science approaches can coalesce to improve our understanding of the genetic basis of human birth syndromes. Further, understanding the genetic basis for ACS that lies outside of known endothelin signaling components may help elucidate unknown aspects critical to the establishment of neural crest cell patterning during facial morphogenesis. PMID:24123988
The effect of oral ipriflavone on the rat mandible during growth.
Maki, Kenshi; Nishida, Ikuko; Kimura, Mitsutaka
2005-02-01
Different types of ipriflavone (IF) have been reported to be effective when used as a remedy for bone loss due to osteoporosis. However, no information is available regarding the relationship between IF and jaw bone structure. The aim of this study was to examine the effect of IF on rat mandibles during the growth stage. Thirty-two 5-week-old Wistar male rats were divided into four groups. The control group was fed a standard diet, group A received a low calcium diet (calcium content 30 per cent of the standard diet) for 6 weeks, and the other two groups were fed a low calcium diet for 3 weeks and then a standard diet without IF (group B) or with IF (group C) for 3 weeks. In addition, distilled water was provided for all groups. The effects of IF on mandibular size and bone mineral content were investigated, using lateral cephalometric analysis and peripheral quantitative computed tomography (pQCT). For mandibular length, the control group showed a significantly higher value than groups A and B (P < 0.01, P < 0.05, respectively), while group C demonstrated a significantly higher value than group A (P < 0.01). In addition, the control group and group C showed significantly higher values for mandibular ramus height than group A (P < 0.01). However, bone mineral density in trabecular bone was significantly higher in the control group than in the other groups (P < 0.01) and bone mineral density in cortical bone was significantly higher in the control group than groups A, B and C (P < 0.01, P < 0.01, P < 0.05, respectively). Bone mineral density in both trabecular and cortical bone was significantly higher in group C than in groups A and B (P < 0.01, P < 0.05, respectively). These results indicate that complete recovery from calcium deficiency to the level of the control group may not be attainable, even though IF enhances calcium absorption to act on bone cells and promote bone construction. The importance of calcium intake in the early stages of development was confirmed. These findings also suggest an effect of IF on jaw bone structure.
Li, De-Qiang; Li, Ming; Liu, Pei-Lai; Zhang, Yuan-Kai; Lu, Jian-Xi; Li, Jian-Min
2014-10-01
Vascularization of tissue-engineered bones is critical to achieving satisfactory repair of bone defects. The authors investigated the use of prevascularized tissue-engineered bone for repairing bone defects. The new bone was greater in the prevascularized group than in the non-vascularized group, indicating that prevascularized tissue-engineered bone improves the repair of bone defects. [Orthopedics. 2014; 37(10):685-690.]. Copyright 2014, SLACK Incorporated.
[Bone graft reconstruction for posterior mandibular segment using the formwork technique].
Pascual, D; Roig, R; Chossegros, C
2014-04-01
Pre-implant bone graft in posterior mandibular segments is difficult because of masticatory and lingual mechanical constraints, because of the limited bone vascularization, and because of the difficulty to cover it with the mucosa. The formwork technique is especially well adapted to this topography. The recipient site is abraded with a drill. Grooves are created to receive and stabilize the grafts. The bone grafts were harvested from the ramus. The thinned cortices are assembled in a formwork and synthesized by mini-plates. The gaps are filled by bone powder collected during bone harvesting. The bone volume reconstructed with the formwork technique allows anchoring implants more than 8mm long. The proximity of the inferior alveolar nerve does not contra indicate this technique. The formwork size and its positioning on the alveolar crest can be adapted to prosthetic requirements by using osteosynthesis plates. The lateral implant walls are supported by the formwork cortices; the implant apex is anchored on the native alveolar crest. The primary stability of implants is high, and the torque is important. The ramus harvesting decreases operative risks. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Gene therapy improves dental manifestations in hypophosphatasia model mice.
Okawa, R; Iijima, O; Kishino, M; Okawa, H; Toyosawa, S; Sugano-Tajima, H; Shimada, T; Okada, T; Ozono, K; Ooshima, T; Nakano, K
2017-06-01
Hypophosphatasia is a rare inherited skeletal disorder characterized by defective bone mineralization and deficiency of tissue non-specific alkaline phosphatase (TNSALP) activity. The disease is caused by mutations in the liver/bone/kidney alkaline phosphatase gene (ALPL) encoding TNSALP. Early exfoliation of primary teeth owing to disturbed cementum formation, periodontal ligament weakness and alveolar bone resorption are major complications encountered in oral findings, and discovery of early loss of primary teeth in a dental examination often leads to early diagnosis of hypophosphatasia. Although there are no known fundamental treatments or effective dental approaches to prevent early exfoliation of primary teeth in affected patients, several possible treatments have recently been described, including gene therapy. Gene therapy has also been applied to TNSALP knockout mice (Alpl -/- ), which phenocopy the infantile form of hypophosphatasia, and improved their systemic condition. In the present study, we investigated whether gene therapy improved the dental condition of Alpl -/- mice. Following sublethal irradiation (4 Gy) at the age of 2 d, Alpl -/- mice underwent gene therapy using bone marrow cells transduced with a lentiviral vector expressing a bone-targeted form of TNSALP injected into the jugular vein (n = 3). Wild-type (Alpl +/+ ), heterozygous mice (Alpl +/- ) and Alpl -/- mice were analyzed at 9 d of age (n = 3 of each), while Alpl +/+ mice and treated or untreated Alpl -/- mice were analyzed at 1 mo of age (n = 3 of each), and Alpl +/- mice and Alpl -/- mice with gene therapy were analyzed at 3 mo of age (n = 3 of each). A single mandibular hemi-section obtained at 1 mo of age was analyzed using a small animal computed tomography machine to assess alveolar bone formation. Other mandibular hemi-sections obtained at 9 d, 1 mo and 3 mo of age were subjected to hematoxylin and eosin staining and immunohistochemical analysis of osteopontin, a marker of cementum. Immunohistochemical analysis of osteopontin, a marker of acellular cementum, revealed that Alpl -/- mice displayed impaired formation of cementum and alveolar bone, similar to the human dental phenotype. Cementum formation was clearly present in Alpl -/- mice that underwent gene therapy, but did not recover to the same level as that in wild-type (Alpl +/+ ) mice. Micro-computed tomography examination showed that gene therapy improved alveolar bone mineral density in Alpl -/- mice to a similar level to that in Alpl +/+ mice. Our results suggest that gene therapy can improve the general condition of Alpl -/- mice, and induce significant alveolar bone formation and moderate improvement of cementum formation, which may contribute to inhibition of early spontaneous tooth exfoliation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Computer-assisted individual osteotomy design for mandibular reconstruction
NASA Astrophysics Data System (ADS)
Zeilhofer, Hans-Florian U.; Sader, Robert; Horch, Hans-Henning; Wunderlich, Arthur P.; Kirsten, Rainer; Gerhardt, H. C. P.
1994-04-01
The complex structure and functional capacity of the mandible places high demands on the design for mandibular reconstructions for graft or transplant purposes. When using the crista iliac as a basis for grafts to bridge large defects, the graft is empirically shaped by the operator according to this experience, whereby it is often necessary to dissect and reconstruct it numerous times. A 3-D computer tomogram of the lower jaw and ilium is carried out on patients undergoing a planned mandible reconstruction. The 3-D CT data are processed in a workstation using a medical image analysis system. The ala of the ilium is superimposed over the region of the lower jaw which is to be replaced. This enables a coincidence of the structure of the lower jaw and the structure of the ilium crest to be formed to within an accuracy of one voxel - despite the complex three dimensional structure and distortions in all three spatial planes. In accordance with the computer simulation, the applicably shaped ilium crest is placed on the individually calculated donor site and transplanted in the resected section of the lower jaw. An exact reconstruction of the lower jaw bone is made possible using computer assisted individual osteotomy design, resulting in complete restoration regarding shape and functionality.
Zufía, Juan; Abella, Francesc; Trebol, Ivan; Gómez-Meda, Ramón
2017-09-01
Tooth replacement often leads to inadequate vertical volume in the recipient site bone when a tooth has been extracted because of a vertical root fracture (VRF). This case report presents the autotransplantation of a mandibular third molar (tooth #32) with the attached buccal cortical plate to replace a mandibular second molar (tooth #31) diagnosed with a VRF. After extraction of tooth #31, the recipient socket was prepared based on the size measured in advance with cone-beam computed tomographic imaging. The precise and calculated osteotomy of the cortical bone of tooth #32 allowed for the exact placement of the donor tooth in the position of tooth #31. The total extraoral time was only 25 minutes. The block was fixed to the recipient socket with an osteosynthesis screw and splinted with a double resin wire for 8 weeks. At the 6-month follow-up, the screw was removed, and the stability of the tooth and the regeneration obtained throughout the vestibular area were confirmed. At the 2-year follow-up, the transplanted tooth was asymptomatic and maintained a normal bone level. Advantages of autotransplantation over dental implants include maintenance of proprioception, possible orthodontic movements, and a relatively low cost. This case report demonstrates that an autotransplantation of a third molar attached to its buccal cortical plate is a viable option to replace teeth with a VRF. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein
Foster, B.L.; Ao, M.; Willoughby, C.; Soenjaya, Y.; Holm, E.; Lukashova, L.; Tran, A. B.; Wimer, H.F.; Zerfas, P.M.; Nociti, F.H.; Kantovitz, K.R.; Quan, B.D.; Sone, E.D.; Goldberg, H.A.; Somerman, M.J.
2015-01-01
Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp−/− mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp−/− mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp−/− mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp−/− mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified in endochondral ossification in the cranial base, and craniofacial morphology was unaffected in Bsp−/− mice. These analyses confirm a critical role for BSP in processes of cementogenesis and intramembranous ossification of craniofacial bone, whereas endochondral ossification in the cranial base was minimally affected and dentinogenesis was normal in Bsp−/− molar teeth. Dissimilar effects of loss of BSP on mineralization of dental and craniofacial tissues suggest local differences in the role of BSP and/or yet to be defined interactions with site-specific factors. PMID:25963390
Chen, Rui; Zhang, Han-Qing; Huang, Zi-Xian; Li, Shi-Hao; Zhang, Da-Ming; Huang, Zhi-Quan
2018-03-07
Osteoradionecrosis of the mandible is a late radiation-induced complication, which is a major concern in survivors of head and neck cancer. In this study, we present a case of a patient with nasopharyngeal carcinoma who developed extensive bilateral osteoradionecrosis of the ascending ramus of the mandible. After preoperative virtual surgical planning, the obtained data were used to fabricate patient-specific cutting templates. The bilateral mandibular defects were reconstructed using 2 separate flaps prepared from a single fibula. Both defects were successfully reconstructed, and satisfactory aesthetic and functional results were achieved. Bilateral mandibular osteoradionecrosis can be managed with virtual surgical planning, and the defects can be reconstructed using 2 separate flaps prepared from a single fibula. Copyright © 2018 Elsevier Inc. All rights reserved.
Hall, Deborah J; Turner, Thomas M; Urban, Robert M
2018-04-16
CaSO 4 /CaPO 4 -TCP bone graft substitute has been shown to be effective for treatment of bone lesion defects, but its mechanical, histological, and radiographic characteristics have not been studied in direct comparison with a conventional treatment such as cancellous allograft bone. Thirteen canines had a critical-size axial defect created bilaterally into the proximal humerus. CaSO 4 /CaPO 4 -TCP bone graft substitute (PRO-DENSE™, Wright Medical Technology) was injected into the defect in one humerus, and an equal volume of freeze-dried cancellous allograft bone chips was placed in the contralateral defect. The area fraction of new bone, residual graft, and fibrous tissue and the compressive strength and elastic modulus of bone within the defects were determined after 6, 13, or 26 weeks and correlated with radiographic changes. The data were analyzed using Friedman and Mann-Whitney tests. There was more bone in defects treated with the CaSO 4 /CaPO 4 -TCP bone graft substitute compared to defects treated with cancellous bone allograft at all three time points, and the difference at 13 weeks was significant (p = 0.025). The new bone was significantly stronger and stiffer in defects treated with the CaSO 4 /CaPO 4 -TCP bone graft substitute compared to defects treated with cancellous bone allograft at 13 (p = 0.046) and 26 weeks (p = 0.025). At 26 weeks, all defects treated with CaSO 4 /CaPO 4 -TCP bone graft substitute demonstrated complete healing with new bone, whereas healing was incomplete in all defects treated with cancellous allograft chips. The CaSO 4 /CaPO 4 -TCP bone graft substitute could provide faster and significantly stronger healing of bone lesions compared to the conventional treatment using freeze-dried cancellous allograft bone. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.
Lopez, Maria de Almeida; Olate, Sergio; Lanata-Flores, Antonio; Pozzer, Leandro; Cavalieri-Pereira, Lucas; Cantín, Mario; Vásquez, Bélgica; de Albergaria-Barbosa, José
2013-01-01
The aim of this research was to determine the bone formation capacity in fenestration defects associated with dental implants using absorbable and non-absorbable membranes. Six dogs were used in the study. In both tibias of each animal 3 implants were installed, and around these 5 mm circular defects were created. The defects were covered with absorbable membranes (experimental group 1), non-absorbable membranes (experimental group 2), and the third defect was not covered (control group). At 3 and 8 weeks post-surgery, the animals were euthanized and the membranes with the bone tissue around the implants were processed for histological analysis. The statistical analysis was conducted with Tukey’s test, considering statistical significance when p<0.1. Adequate bone repair was observed in the membrane-covered defects. At 3 weeks, organization of the tissue, bone formation from the periphery of the defect and the absence of inflammatory infiltrate were observed in both experimental groups, but the defect covered with absorbable membrane presented statistically greater bone formation. At 8 weeks, both membrane-covered defects showed adequate bone formation without significant differences, although they did in fact present differences with the control defect in both periods (p>0.1). In the defects without membrane, continuous connective tissue invasions and bone repair deficiency were observed. There were no significant differences in the characteristics and volume of the neoformed bone in the defects around the implants covered by the different membranes, whereas the control defects produced significantly less bone. The use of biological membranes contributes to bone formation in three-wall defects. PMID:24228090
Xie, Huanxin; Ji, Ye; Tian, Qi; Wang, Xintao; Zhang, Nan; Zhang, Yicai; Xu, Jun; Wang, Nanxiang; Yan, Jinglong
2017-11-01
To explore the effects of autogenous bone particle/titanium fiber composites on repairing segmental bone defects in rabbits. A model of bilateral radial bone defect was established in 36 New Zealand white rabbits which were randomly divided into 3 groups according to filling materials used for bilaterally defect treatment: in group C, 9 animal bone defect areas were prepared into simple bilateral radius bone defect (empty sham) as the control group; 27 rabbits were used in groups ABP and ABP-Ti. In group ABP, left defects were simply implanted with autogenous bone particles; meanwhile, group ABP-Ti animals had right defects implanted with autogenous bone particle/titanium fiber composites. Animals were sacrificed at 4, 8, and 12 weeks, respectively, after operation. Micro-CT showed that group C could not complete bone regeneration. Bone volume to tissue volume values in group ABP-Ti were better than group ABP. From histology and histomorphometry Groups ABP and ABP-Ti achieved bone repair, the bone formation of group ABP-Ti was better. The mechanical strength of group ABP-Ti was superior to that of other groups. These results confirmed the effectiveness of autologous bone particle/titanium fiber composites for promoting bone regeneration and mechanical strength.
Jacobsen, Hans-Christian; Wahnschaff, Falko; Trenkle, Thomas; Sieg, Peter; Hakim, Samer G
2016-01-01
Bony reconstruction of jaw defects using the free fibular flap and dental rehabilitation mostly requires insertion of dental implants within the transferred fibula bone. The aim of this paper was to discuss results of the implant stability with data on the possible benefit for the patient's quality of life after such treatment. For clinical outcome of implants, we evaluated 26 patients with a total number of 94 dental implants after a follow-up period of 12 to 132 months. A group of 38 patients who underwent mandibular reconstruction with free fibular flap could be included in the life-quality study. Evaluation included 23 patients with and 15 patients without implant-borne restoration. The quality of life was assessed using the standard QLQ C-30 questionnaire and the H&N35 module of the European Organisation for Research and Treatment of Cancer (EORTC). Of implants, 94.7 % were stable at the time of investigation and could be used for prosthesis. Patients with dental implants reported improvement of life quality along with better scores in most function and symptom scales; however, only values for global health status (QL2), absence of dyspnea (DY) and absence of feeding tube (HNFE) were significantly better than in the control group. Dental implant insertion in fibula grafts along with implant-borne restoration is a proven concept and might lead to improved quality of life following ablative surgery of the jaw. The effect on the quality of life is not as predictable as on the implant stability. Patients with bony defects of the jaw require bony reconstruction. This allows further masticatory rehabilitation using dental implants and might lead to improved quality of life.
Early versus delayed loading of mandibular implant-supported overdentures: 5-year results.
Turkyilmaz, Ilser; Tözüm, Tolga F; Tumer, Celal
2010-05-01
Because of poor retention of complete removable dentures for edentulous patients, implant-supported mandibular overdentures have lately become a popular alternative for them. The aims of this prospective study were to evaluate treatment outcomes of mandibular overdentures supported by two unsplinted early-loaded implants and compare these results with those for delayed-loaded implants. A total of 26 edentulous patients were treated with two unsplinted implants supporting a mandibular overdenture. All implants were placed in the canine regions of each mandible according to the one-stage surgical protocol. There were two groups: test group, in which the overdenture was connected 1 week after surgery, and control group, in which the overdenture was connected 3 months after surgery. Standardized clinical and radiographic parameters were recorded at surgery, and after 3, 6, 12, and 18 months, and 2, 3, 4, and 5 years. No implants were lost, and 0.93 +/- 0.3 mm marginal bone resorption was noted for all implants after 5 years. Clinical implant stability measurements, clinical peri-implant parameters, and marginal bone resorptions showed no statistically significant differences between the two groups over 5 years. The results of this prospective clinical study suggest that there is no significant difference in the clinical and radiographic state of patients treated with implant supported mandibular overdentures loaded either 1 week or 3 months after surgery.
Grohmann, Isabella; Raith, Stefan; Mücke, Thomas; Stimmer, Herbert; Rohleder, Nils; Kesting, Marco R; Hölzle, Frank; Steiner, Timm
2015-10-01
Advantages and disadavantages of the three most commonly-used bone grafts for mandibular reconstruction are widely known, but biomechanical experimental studies are rare. We have done loading tests on cadaveric mandibles reconstructed with fibular, iliac crest, and scapular grafts using 3 different osteosynthesis systems to detect and compare their primary stability. Loading tests were done on mandibles with grafts from the fibula and iliac crest and published previously. A 4.5cm paramedian L-type defect was reconstructed with scapula using 2 monocortical non-locking plates, 2 monocortical locking plates, or a single bicortical locking plate/fracture gap in 18 human cadaveric mandibles. These were loaded on to the "Mandibulator" test bench and the movement of fragments in 3 dimensions was assessed and quantified by a PONTOS® optical measurement system. Comparison of the osteosynthesis groups showed that the miniplate was significantly superior to the 6-hole TriLock® plate for both fibular and iliac crest grafts. The fibular graft gave greater stability than the iliac crest and scapular grafts for all 3 osteosynthesis systems. All bony specimens offered sufficient resistance to mechanical stress within the recognised range of biting forces after mandibular reconstruction, independently of the choice of bone graft and osteosynthesis system used. Anatomical and surgical advantages need to be taken into account when choosing a graft. Stability can be maximised with a fibular graft, and further optimised by enlarging the binding area by using the "double barrel" method. Computer simulated experiments could segregate factors that biased results, such as morphological differences among cadavers. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Computer-Aided Process Planning for the Layered Fabrication of Porous Scaffold Matrices
NASA Astrophysics Data System (ADS)
Starly, Binil
Rapid Prototyping (RP) technology promises to have a tremendous impact on the design and fabrication of porous tissue replacement structures for applications in tissue engineering and regenerative medicine. The layer-by-layer fabrication technology enables the design of patient-specific medical implants and complex structures for diseased tissue replacement strategies. Combined with advancements in imaging modalities and bio-modeling software, physicians can engage themselves in advanced solutions for craniofacial and mandibular reconstruction. For example, prior to the advancement of RP technologies, solid titanium parts used as implants for mandibular reconstruction were fashioned out of molding or CNC-based machining processes (Fig. 3.1). Titanium implants built using this process are often heavy, leading to increased patient discomfort. In addition, the Young's modulus of titanium is almost five times that of healthy cortical bone resulting in stress shielding effects [1,2]. With the advent of CAD/CAM-based tools, the virtual reconstruction of the implants has resulted in significant design improvements. The new generation of implants can be porous, enabling the in-growth of healthy bone tissue for additional implant fixation and stabilization. Newer implants would conform to the external shape of the defect site that is intended to be filled in. More importantly, the effective elastic modulus of the implant can be designed to match that of surrounding tissue. Ideally, the weight of the implant can be designed to equal the weight of the tissue that is being replaced resulting in increased patient comfort. Currently, such porous structures for reconstruction can only be fabricated using RP-based metal fabrication technologies such as Electron Beam Melting (EBM), Selective Laser Sintering (SLS®), and 3D™ Printing processes.
Study on clinical application of nano-hydroxyapatite bone in bone defect repair.
Zhu, Weimin; Wang, Daping; Xiong, Jianyi; Liu, Jianquan; You, Wei; Huang, Jianghong; Duan, Li; Chen, Jielin; Zeng, Yanjun
2015-01-01
To study the clinical effect of bone defect treated with nano-hydroxyapatite(Nano-HA) artificial bone. From September 2009 to June 2012, 27 cases of bone defect were analyzed retrospectively. The position of bone defect included humerus, radius, ulna, femur, tibia and calcaneus. The range of bone defect was from 0.3 × 1.0 cm to 3 × 6.5 cm. Among them, there were 22 cases with fractures and 5 cases with tumors. All patients were treated with Nano-HA artificial bone. The ability of bone defect repair was evaluated by X-ray exams performed preoperatively and postoperatively. HSS scores were adopted for final evaluation at the latest follow-up. The patients were followed up from 11 to 26 months (average of 18.5 months). No general side effects occurred. X-ray photo showed an integrity interface between Nano-HA and bone. Primary healing was obtained in all cases without any complication. The Nano-HA artificial bone had a good biocompatibility and could be an ideal artificial bone in the reconstruction of bone defect.
Cafiero, C; Annibali, S; Gherlone, E; Grassi, F R; Gualini, F; Magliano, A; Romeo, E; Tonelli, P; Lang, N P; Salvi, G E
2008-05-01
To assess the clinical and radiographic outcomes of immediate transmucosal placement of implants into molar extraction sockets. Twelve-month multicenter prospective cohort study. Following molar extraction, tapered implants with an endosseous diameter of 4.8 mm and a shoulder diameter of 6.5 mm were immediately placed into the sockets. Molars with evidence of acute periapical pathology were excluded. After implant placement and achievement of primary stability, flaps were repositioned and sutured allowing a non-submerged, transmucosal healing. Peri-implant marginal defects were treated according to the principles of guided bone regeneration (GBR) by means of deproteinized bovine bone mineral particles in conjunction with a bioresrobable collagen membrane. Standardized radiographs were obtained at baseline and 12 months thereafter. Changes in depth and width of the distance from the implant shoulder (IS) and from the alveolar crest (AC) to the bottom of the defect (BD) were assessed. Eighty-two patients (42 males and 40 females) were enrolled and followed for 12 months. They contributed with 82 tapered implants. Extraction sites displayed sufficient residual bone volume to allow primary stability of all implants. Sixty-four percent of the implants were placed in the areas of 36 and 46. GBR was used in conjunction with the placement of all implants. No post-surgical complications were observed. All implants healed uneventfully yielding a survival rate of 100% and healthy soft tissue conditions after 12 months. Radiographically, statistically significant changes (P<0.0001) in mesial and distal crestal bone levels were observed from baseline to the 12-month follow-up. The findings of this 12-month prospective cohort study showed that immediate transmucosal implant placement represented a predictable treatment option for the replacement of mandibular and maxillary molars lost due to reasons other than periodontitis including vertical root fractures, endodontic failures and caries.
Tai, Kiyoshi; Hotokezaka, Hitoshi; Park, Jae Hyun; Tai, Hisako; Miyajima, Kuniaki; Choi, Matthew; Kai, Lisa M; Mishima, Katsuaki
2010-09-01
The purpose of this study was to evaluate the efficacy of the Schwarz appliance with a new method of superimposing detailed cone-beam computed tomography (CBCT) images. The subjects were 28 patients with Angle Class I molar relationships and crowding; they were randomly divided into 2 groups: 14 expanded and 14 nonexpanded patients. Three-dimensional Rugle CBCT software (Medic Engineering, Kyoto, Japan) was used to measure 10 reference points before treatment (T0) and during the retention period of approximately 9 months after 6 to 12 months of expansion (T1). Cephalometric and cast measurements were used to evaluate the treatments in both groups. Also, the mandibular widths of both groups were measured along an axial plane at 2 levels below the cementoenamel junction from a CBCT scan. Differences between the 2 groups at T0 and T1 were analyzed by using the Mann-Whitney U test. The dental arch (including tooth root apices) had expanded; however, alveolar bone expansion was only up to 2 mm below the cementoenamel junction. There was a statistically significant (P <0.05) difference between the groups in terms of crown, cementoenamel junction, root, and upper alveolar process. However, no significant (P >0.05) differences were observed in the interwidths of the mandibular body, zygomatic bones, condylar heads, or mandibular antegonial notches. In the mandibular cast measurements, arch crowding and arch perimeter showed statistically significant changes in the expanded group. The buccal mandibular width and lingual mandibular width values had significant changes as measured from a point 2 mm below the cementoenamel junction. The findings suggest that the Schwarz appliance primarily affected the dentoalveolar complex, but it had little effect on either the mandibular body or any associated structures. In addition, the molar center of rotation was observed to be below the root apex. 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Jiang, Xin; Xue, Yang; Zhou, Hongzhi; Li, Shouhong; Zhang, Zongmin; Hou, Rui; Ding, Yuxiang; Hu, Kaijin
2015-10-01
Reference genes are commonly used as a reliable approach to normalize the results of quantitative polymerase chain reaction (qPCR), and to reduce errors in the relative quantification of gene expression. Suitable reference genes belonging to numerous functional classes have been identified for various types of species and tissue. However, little is currently known regarding the most suitable reference genes for bone, specifically for the sheep mandibular condyle. Sheep are important for the study of human bone diseases, particularly for temporomandibular diseases. The present study aimed to identify a set of reference genes suitable for the normalization of qPCR data from the mandibular condyle of sheep. A total of 12 reference genes belonging to various functional classes were selected, and the expression stability of the reference genes was determined in both the normal and fractured area of the sheep mandibular condyle. RefFinder, which integrates the following currently available computational algorithms: geNorm, NormFinder, BestKeeper, and the comparative ΔCt method, was used to compare and rank the candidate reference genes. The results obtained from the four methods demonstrated a similar trend: RPL19, ACTB, and PGK1 were the most stably expressed reference genes in the sheep mandibular condyle. As determined by RefFinder comprehensive analysis, the results of the present study suggested that RPL19 is the most suitable reference gene for studies associated with the sheep mandibular condyle. In addition, ACTB and PGK1 may be considered suitable alternatives.
Inman, Kimberly E.; Purcell, Patricia; Kume, Tsutomu; Trainor, Paul A.
2013-01-01
Syngnathia (bony fusion of the upper and lower jaw) is a rare human congenital condition, with fewer than sixty cases reported in the literature. Syngnathia typically presents as part of a complex syndrome comprising widespread oral and maxillofacial anomalies, but it can also occur in isolation. Most cartilage, bone, and connective tissue of the head and face is derived from neural crest cells. Hence, congenital craniofacial anomalies are often attributed to defects in neural crest cell formation, survival, migration, or differentiation. The etiology and pathogenesis of syngnathia however remains unknown. Here, we report that Foxc1 null embryos display bony syngnathia together with defects in maxillary and mandibular structures, and agenesis of the temporomandibular joint (TMJ). In the absence of Foxc1, neural crest cell derived osteogenic patterning is affected, as osteoblasts develop ectopically in the maxillary prominence and fuse with the dentary bone. Furthermore, we observed that the craniofacial musculature is also perturbed in Foxc1 null mice, which highlights the complex tissue interactions required for proper jaw development. We present evidence that Foxc1 and Fgf8 genetically interact and that Fgf8 dosage is associated with variation in the syngnathic phenotype. Together our data demonstrates that Foxc1 – Fgf8 signaling regulates mammalian jaw patterning and provides a mechanistic basis for the pathogenesis of syngnathia. Furthermore, our work provides a framework for understanding jaw patterning and the etiology of other congenital craniofacial anomalies, including temporomandibular joint agenesis. PMID:24385915
Rabbit Calvarial Defect Model for Customized 3D-Printed Bone Grafts.
Lee, Kang-Gon; Lee, Kang-Sik; Kang, Yu-Jeoung; Hwang, Jong-Hyun; Lee, Se-Hwan; Park, Sang-Hyug; Park, Yongdoo; Cho, Young-Sam; Lee, Bu-Kyu
2018-05-01
Bone graft materials are commonly used to regenerate various bone defects, but their application is often limited because of the complex defect shape in various clinical conditions. Hence, customized bone grafts using three-dimensional (3D) printing techniques have been developed. However, conventional simple bone defect models are limited for evaluating the benefits and manufacturing accuracy of 3D-printed customized bone grafts. Thus, the aim of the present study was to develop a complex-shaped bone defect model. We designed an 8-shaped bony defect that consists of two simple circles attached to the rabbit calvarium. To determine the critical-sized defect (CSD) of the 8-shaped defects, 5.6- and 7-mm-diameter trephine burs were tested, and the 7-mm-diameter bur could successfully create a CSD, which was easily reproducible on the rabbit calvarium. The rate of new bone formation was 28.65% ± 8.63% at 16 weeks following creation of the defect. To confirm its efficacy for clinical use, the 8-shaped defect was created on a rabbit calvarium and 3D computed tomography (CT) was performed. A stereolithography file was produced using the CT data, and a 3D-printed polycaprolactone graft was fabricated. Using our 8-shaped defect model, we were able to modify the tolerances of the bone graft and calvarial defect to fabricate a more precise bone graft. Customized characteristics of the bone graft were then used to improve the accuracy of the bone graft. In addition, we confirmed the fitting ability of the 3D-printed graft during implantation of the graft. Our 8-shaped defect model on the rabbit calvarium using a 7.0-mm trephine bur may be a useful CSD model for evaluating 3D-printed graft materials.
Elsyad, Moustafa Abdou; Khirallah, Ahmed Samir
2016-11-01
Circumferential marginal bone around 2 splinted and nonsplinted immediately loaded implants in the edentulous mandible has not been previously investigated. The purpose of this randomized controlled clinical trial was to assess circumferential bone loss around splinted and nonsplinted immediately loaded implants retaining mandibular overdentures, using cone beam computed tomography (CBCT). Thirty participants with complete edentulism were allocated to 2 groups and received 2 implants in the canine region of the mandible. Implants were either left nonsplinted (with ball attachment [BA]) or splinted (with bar attachment [RA]). Mandibular overdentures were connected to the implants 1 week later. CBCT was used to evaluate vertical bone loss (VBL) and horizontal bone loss (HBLo) bone loss at the distal (D), buccal (B), mesial (M), and lingual (L) sites of each implant upon overdenture insertion (baseline, T0), 1 year (T1) and 3 years (T3) after insertion. Repeated measures ANOVA was used for statistical analysis (α=.05). No significant difference in the survival rate (93.3% for BA and 100% for RA) was found between groups (P=.156). VBL and HBLo increased significantly at T3 compared with T1 for both groups (P<.005). After 3 years, VBL were 1.36 ±0.57 mm and 1.0 ±0.44 mm and HBLo were 0.88 ±0.48 mm for BA and 0.77 ±0.53 mm for RA. At T1 and T3, BA had more significant VBL than RA (P<.001), while HBLo did not differ significantly between groups. For both groups, a significant difference was found in VBL and HBLo between implant sites (P<.001). The B site recorded the highest VBL, and the L site recorded the lowest VBL. The M and D sites recorded the highest HBLo, and the B and L sites recorded the lowest HBLo. Two nonsplinted immediately loaded implants retaining mandibular overdentures were associated with significantly higher vertical and horizontal circumferential bone loss than those associated with splinted implants after a follow-up of 3 years. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Görmez, Ulaş; Kürkcü, Mehmet; E Benlidayi, Mehmet; Ulubayram, Kezban; Sertdemir, Yaşar; Dağlioğlu, Kenan
2015-03-01
The aim of this experimental study was to evaluate the effect of bovine lactoferrin (bLF)-loaded gelatin microspheres (GM) used in combination with anorganic bovine bone on bone regeneration in surgically created bone defects around tooth implants. Twenty-four uniform bone defects were created in the frontal bone via an extraoral approach in 12 domestic pigs. Twenty-four implants were placed at the center of the defects. In eight animals one of these defects was filled with 0.3 mL anorganic bovine bone while the other was left empty. In four animals, all defects were filled with 3 mg/defect bLF-loaded GM and anorganic bovine bone. All the defects were covered with collagen membranes. All animals were sacrificed after 10 weeks of healing, and the implants with the surrounding bone defects were removed en bloc. Undecalcified sections were prepared for histomorphometric analysis. The mean total area of hard tissue was 26.9 ± 6.0% in the empty defect group, 31.8 ± 8.4% in the graft group, and 47.6 ± 5.0% in the lactoferrin group (P < 0.001). The mean area of newly formed bone was 26.9 ± 6.0% in the empty defect group, 22.4 ± 8.2% in the graft group, and 46.1 ± 5.1% in the lactoferrin group (P < 0.001). The mean residual graft area was 9.4 ± 3.2% in the graft group and 1.5 ± 0.6% in the lactoferrin group (P < 0.001). The mean proportion of bone-implant contact in the defect region was 21.9 ± 8.4% in the empty defect group, 26.9 ± 10.1% in the graft group and 29.9 ± 10.3% in the lactoferrin group (P = 0.143). These data indicate that a combination of 3 mg bLF-loaded GM and bovine-derived HA promotes bone regeneration in defects around implants.
Zacchetti, Giovanna; Rizzoli, René
2014-01-01
Rapid bone defect filling with normal bone is a challenge in orthopaedics and dentistry. Strontium ranelate (SrRan) has been shown to in vitro decrease bone resorption and increase bone formation, and represents a potential agent with the capacity to accelerate bone defect filling. In this study, bone tibial defects of 2.5 mm in diameter were created in 6-month-old female rats orally fed SrRan (625 mg/kg/d; 5/7 days) or vehicle for 4, 8, or 12 weeks (10 rats per group per time point) from the time of surgery. Tibias were removed. Micro-architecture was determined by micro-computed tomography (µCT) and material level properties by nanoindentation analysis. µCT analysis showed that SrRan administration significantly improved microarchitecture of trabecular bone growing into the defect after 8 and 12 weeks of treatment compared to vehicle. SrRan treatment also accelerated the growth of cortical bone over the defect, but with different kinetics compared to trabecular bone, as the effects were already significant after 4 weeks. Nanoindentation analysis demonstrated that SrRan treatment significantly increased material level properties of both trabecular bone and cortical bone filling the defect compared to vehicle. SrRan accelerates the filling of bone defect by improving cortical and trabecular bone microarchitecture both quantitatively and qualitatively. PMID:25243150
Mu, S; Tee, B C; Emam, H; Zhou, Y; Sun, Z
2018-04-06
Impaired bone formation of the buccal alveolar plate after tooth extraction during adolescence increases the difficulty of future implant restoration. This study was undertaken to assess the feasibility and efficacy of transplanting autogenous scaffold-free culture-expanded mesenchymal stem cell (MSC) sheets to the buccal alveolar bone surface to stimulate local bone growth. Mandibular bone marrow was aspirated from 3-month-old pigs (n = 5), from which MSCs were isolated and culture expanded. Triple-layer MSC sheets were then fabricated using temperature-responsive tissue culture plates. One month after bone marrow aspirations, the same pigs underwent bilateral extraction of mandibular primary molars, immediately followed by transplantation of 3 autogenous triple-layer MSC sheets on to the subperiosteal buccal alveolar surface of 1 randomly chosen side. The contralateral side (control) underwent the same periosteal reflection surgery without receiving MSC sheet transplantation. Six weeks later, the animals were killed and specimens from both sides were immediately harvested for radiographic and histological analysis. Buccal alveolar bone thickness, tissue mineral density (TMD), mineral apposition and bone volume fraction (BV/TV) were quantified and compared between the MSC sheet and control sides using paired t-tests. Triple-layer MSC sheets were reliably fabricated and the majority of cells remained vital before transplantation. The thickness of buccal bone tended to increase with MSC sheet transplantation (P = .18), with 4 of 5 animals showing an average of 1.82 ± 0.73 mm thicker bone on the MSC sheet side than the control side. After being normalized by the TMD of intracortical bone, the TMD of surface cortical bone was 0.5-fold higher on the MSC sheet side than the control side (P < .05). Likewise, the BV/TV measurements of the buccal surface region were also 0.4-fold higher on the MSC sheet side than the control side (P < .05) after being normalized by measurements from the intracortical region. Mineral apposition measurements were not different between the 2 sides. Mandibular marrow-derived MSCs can be fabricated into cell sheets and autogenous transplantation of MSC sheets onto the subperiosteal buccal alveolar bone surface at the tooth-extraction site may increase local bone density. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
de Almeida, Erika Oliveira; Rocha, Eduardo Passos; Assunção, Wirley Gonçalves; Júnior, Amílcar Chagas Freitas; Anchieta, Rodolfo Bruniera
2011-01-01
To evaluate stress distribution in different horizontal mandibular arch formats restored by protocol-type prostheses using three-dimensional finite element analysis (3D-FEA). A representative model (M) of a completely edentulous mandible restored with a prefabricated bar using four interforaminal implants was created using SolidWorks 2010 software (Inovart, São Paulo, Brazil) and analyzed by Ansys Workbench 10.0 (Swanson Analysis Inc., Houston, PA) to obtain the stress fields. Three mandibular arch sizes were considered for analysis, regular (M), small (MS), and large (ML). Three unilateral posterior loads (L) (150 N) were used: perpendicular to the prefabricated bar (L1); 30° oblique in a buccolingual direction (L2); 30° oblique in a lingual-buccal direction (L3). The maximum and minimum principal stresses (σ(max), σ(min)), the equivalent von Mises (σ(vM)), and the maximum principal strain (σ(max) ) were obtained for type I (M.I) and type II (M.II) cortical bones. Tensile stress was more evident than compression stress in type I and II bone; however, type II bone showed lower stress values. The L2 condition showed highest values for all parameters (σ(vM), σ(max), σ(min), ɛ(max)). The σ(vM) was highest for the large and small mandibular arches. The large arch model had a higher influence on σ(max) values than did the other formats, mainly for type I bone. Vertical and buccolingual loads showed considerable influence on both σ(max) and σ(min) stresses. © 2010 by The American College of Prosthodontists.
Bilateral mandibular angle fractures: clinical considerations.
Boffano, Paolo; Roccia, Fabio
2010-03-01
The mandibular angle is a frequent site of fracture. It is a weak zone that is more exposed to fractures than other areas of the mandibular bone. The presence of incompletely erupted third molars is associated with a further increased risk of angle fractures. Our objective was to evaluate and discuss the surgical outcomes of a group of patients with bilateral mandibular angle fractures.In our study, patients with bilateral mandibular angle fractures surgically treated from January 1, 2001, to June 30, 2009, at the Division of Maxillofacial Surgery of the University of Turin were retrospectively analyzed. A combined transbuccal and intraoral approach or an intraoral approach only was adopted.Eight patients (7 men and 1 woman) underwent surgery for bilateral mandibular angle fractures. Good to satisfactory reduction of the fractures was obtained with both surgical techniques. Good to fair restored occlusion was observed postoperatively in all patients.Successful treatment of bilateral mandibular angle fractures may be achieved via different techniques. Superficially impacted third molars seem to be associated with an increased risk of angle fractures. Bilateral angle fractures are an ideal model to study the biomechanical pathogenesis of angle fractures.
Sato, Hidemasa; Kawamura, Akira; Yamaguchi, Masaru; Kasai, Kazutaka
2005-12-01
The purposes of this study were to investigate bone mineral density as a part of bone construction in human skulls and to examine the relationship between dentofacial morphology and masticatory function by using computed tomography (CT) findings. Changes in bone mineral density in the mandible because of loss of masticatory function were tested in rats by experimentally producing an environment that inhibited mastication by the molars. Data for the human study were obtained from 27 modern male Japanese skulls (mean age, 28 years) from the University of Tokyo. Cortical bone thickness (CBT) and CT value (CV) were measured by each CT scan of the first and molars. For the animal study, a metal cap was inserted between the maxillary and mandibular incisors to prevent the molars from biting in 6-week-old male Wistar rats. The rats were killed after 2, 4, or 6 weeks, and bone mineral density was measured in cancellous and cortical bone equivalent to the first molar region by using peripheral quantitative computed tomography. In the human skull study, significant negative correlations were observed between CV in the regions of the buccal side of the second molar and the angle between the Frankfort horizontal and mandibular planes. Significant negative correlations were also observed between the gonial angle and CV in the buccal and basal sides. In the animal study, cancellous bone mineral density began to decline 4 weeks after the start of the experiment in the masticatory hypofunction group compared with the control group. By week 6, cancellous bone density had declined by 11.6% on the buccal side, 16.7% on the lingual side, 12.3% at the bifurcation of the root, and 38.1% at the root apex. Cortical bone density declined by 8% to 12% on the lingual side. The results support our hypothesis that a functional adaptive response by the mandible to mechanical stress resulting from mastication occurs not only in the muscle insertion area, but also in mandibular alveolar bone in the molar region.
Yamamoto, Masaya; Hokugo, Akishige; Takahashi, Yoshitake; Nakano, Takayoshi; Hiraoka, Masahiro; Tabata, Yasuhiko
2015-07-01
The objective of this study is to evaluate the feasibility of gelatin sponges incorporating β-tricalcium phosphate (β-TCP) granules (gelatin/β-TCP sponges) to enhance bone regeneration at a segmental ulnar defect of rabbits with X-ray irradiation. After X-ray irradiation of the ulnar bone, segmental critical-sized defects of 20-mm length were created, and bone morphogenetic protein-2 (BMP-2)-releasing gelatin/β-TCP sponges with or without autologous bone marrow were applied to the defects to evaluate bone regeneration. Both gelatin/β-TCP sponges containing autologous bone marrow and BMP-2-releasing sponges enhanced bone regeneration at the ulna defect to a significantly greater extent than the empty sponges (control). However, in the X-ray-irradiated bone, the bone regeneration either by autologous bone marrow or BMP-2 was inhibited. When combined with autologous bone marrow, the BMP-2 exhibited significantly high osteoinductivity, irrespective of the X-ray irradiation. The bone mineral content at the ulna defect was similar to that of the intact bone. It is concluded that the combination of bone marrow with the BMP-2-releasing gelatin/β-TCP sponge is a promising technique to induce bone regeneration at segmental bone defects after X-ray irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Morphological assessment of the mandibular canal trajectory in edentate subjects.
Nimigean, Victor; Sîrbu, Valentin Daniel; Nimigean, Vanda Roxana; Bădiţă, Daniela Gabriela; Poll, Alexandru; Moraru, Simona Andreea; Păun, Diana Loreta
2018-01-01
The mandibular canal and its content represent the vital structure, which can complicate dentoalveolar surgical procedures in the posterior region of the mandible. The purpose of the present study was to determine the path the mandibular canal takes in relation to the horizontal and the vertical anatomical reference planes in edentate subjects, in order to minimize the risk of affecting its neurovascular content during various oral surgery procedures. Morphometric evaluations were performed on 12 dried fully edentulous human mandibles and on cone-beam computed tomography (CBCT) cross-sectional images of the mandible, from 20 patients with either partial or complete edentulism. Both methods were utilized, in three target areas (corresponding to the second premolar, to the first molar and to the second molar regions), in order to measure the distance between the mandibular canal and the following reference points: (i) the lateral (buccal) surface of the mandible (MC-BS distance); (ii) the medial (lingual) surface of the mandible (MC-LS distance); (iii) the alveolar surface of the mandible (MC-AS distance). The results were statistically processed in Stata MP/13 software package using analysis of variance (ANOVA) test. The mandibular canal crossed the trabecular bone from the posterior towards the anterior, and from the lingual towards the buccal, reaching the premolar region, distal to the mental foramen, where it was located in the centre of the trabecular bone, main topographic pattern encountered in 27 (84.37%) of the cases. In five (15.63%) of the cases, in the premolar region, the mandibular canal was located near the buccal cortical plate. The mandibular canal descended from the second molar region towards the premolar region, main topographic pattern found in 28 (87.5%) of the cases. In four (12.5%) cases, the mandibular canal had a descending trajectory in the molar regions and it took a slightly ascending course in the premolar region. According to the results, the second molar region represents the highest risk area in the accidental injury to the content of the mandibular canal, during various oral surgery procedures.
Backward distraction osteogenesis in a patient with severe mandibular micrognathia.
Mitsukawa, Nobuyuki; Morishita, Tadashi; Saiga, Atsuomi; Akita, Shinsuke; Kubota, Yoshitaka; Satoh, Kaneshige
2013-09-01
Maxillary skeletal prognathism can involve severe mandibular micrognathia with marked mandibular retrognathism or hypoplasia. For patients with such a condition, a conventional treatment is mandibular advancement by sagittal split ramus osteotomy (SSRO). This procedure has problems such as insufficient advancement, instability of jaw position, and postoperative relapse. Thus, in recent years, mandibular distraction osteogenesis has been used in some patients. Mandibular distraction has many advantages, but an ideal occlusion is difficult to achieve using this procedure. That is, 3-dimensional control cannot be attained using an internal device that is unidirectional. This report describes a case of severe mandibular micrognathia in a 14-year-old girl treated using backward distraction osteogenesis. This procedure was first reported by Ishii et al (Jpn J Jaw Deform 2004; 14:49) and involves a combination of SSRO and ramus distraction osteogenesis. In the present study, intermaxillary fixation in centric occlusion was performed after osteotomy, and proximal bone segments were distracted in a posterosuperior direction. This procedure is a superior surgical technique that avoids the drawbacks of SSRO and conventional mandibular distraction. However, it applies a large load to the temporomandibular joints and requires thorough management. Thus, careful evaluation needs to be made of the indication for backward distraction osteogenesis.
Incisor malalignment and the risk of periodontal disease progression.
Alsulaiman, Ahmed A; Kaye, Elizabeth; Jones, Judith; Cabral, Howard; Leone, Cataldo; Will, Leslie; Garcia, Raul
2018-04-01
The objective of this study was to investigate the association between incisor crowding, irregularity, and periodontal disease progression in the anterior teeth. Data collected over 35 years from men enrolled in the Veterans Affairs Dental Longitudinal Study included information concerning pocket depth and alveolar bone loss. Plaster casts of the maxillary (n = 400) and mandibular (n = 408) arches were available for baseline measurements. Periodontal disease in the anterior teeth was defined as per arch sum of pathologic pocket depth and sum of teeth with any alveolar bone loss in the anterior sextants. Incisor malalignment status was defined by the anterior tooth size-arch length discrepancy index and Little's Irregularity Index. Adjusted mixed effects linear models computed the beta (β) estimates and 95% confidence intervals (95% CI) of the amounts of change in periodontal disease outcomes by the level of malalignment. In the anterior maxillary arch, crowding and spacing were significantly associated with an increased per-arch sum of pathologic pocket depth (β, 0.70 mm; 95% CI, 0.20-1.21, and β, 0.49 mm; 95% CI, 0.06-0.91, respectively). In the anterior mandibular arch, incisor crowding and irregularity were significantly associated with an increased per-arch sum of pathologic pocket depth (mild crowding: β, 0.47 mm; 95% CI, 0.01-0.93; severe irregularity: β, 0.94 mm; 95% CI, 0.50-1.38), and the sum number of teeth with alveolar bone loss (mild and moderate-to-severe crowding: β, 0.45 teeth; 95% CI, 0.08-0.82; and β, 0.45 teeth; 95% CI, 0.13-0.83, respectively; moderate irregularity: β, 0.34 teeth; 95% CI, 0.06-0.62). Certain incisor malalignment traits (ie, maxillary incisor crowding, maxillary incisor spacing, mandibular incisor mild crowding, mandibular incisor moderate-to-severe crowding, mandibular incisor moderate irregularity, and mandibular incisor severe irregularity) are associated with significant periodontal disease progression. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Restoration of small bone defects at craniotomy using autologous bone dust and fibrin glue.
Matsumoto, K; Kohmura, E; Kato, A; Hayakawa, T
1998-10-01
Bone gaps or burr holes often result in small but undesirable scalp or skin depressions after craniotomy. Whereas a number of reports have discussed cranioplasties to avoid large bone defects, little has been written about the problem of small bone defects which, despite their minor size, could result in bothersome cosmetic problems. This study was designed to assess a simple method to repair burr hole defects and bridge bone gaps with autologous bone dust and fibrin glue. Bone dust was collected when burr holes were created or craniectomy was performed. After replacement of the bone flap, the burr holes or bone gap were filled with a mixture of bone dust and fibrin glue. The mixture of bone dust and fibrin glue was easily shaped to fit bone defects, resulting in favorable cosmetic outcomes 1 to 5 years after operation.
Chen, Bin; Pei, Guo-xian; Wang, Ke; Jin, Dan; Wei, Kuan-hai; Ren, Gao-hong
2003-02-01
To study whether tissue engineered bone can repair the large segment bone defect of large animal or not. To observe what character the fascia flap played during the osteanagenesis and revascularization process of tissue engineered bone. 9 Chinese goats were made 2 cm left tibia diaphyseal defect. The repairing effect of the defects was evaluated by ECT, X-ray and histology. 27 goats were divided into three groups: group of CHAP, the defect was filled with coral hydroxyapatite (CHAP); group of tissue engineered bone, the defect was filled with CHAP + bone marrow stroma cells (BMSc); group of fascia flap, the defect was filled with CHAP + BMSc + fascia flap. After finished culturing and inducing the BMSc, CHAP of group of tissue engineered bone and of fascia flap was combined with it. Making fascia flap, different materials as described above were then implanted separately into the defects. Radionuclide bone imaging was used to monitor the revascularization of the implants at 2, 4, 8 weeks after operation. X-ray examination, optical density index of X-ray film, V-G staining of tissue slice of the implants were used at 4, 8, 12 weeks after operation, and the biomechanical character of the specimens were tested at 12 weeks post operation. In the first study, the defect showed no bone regeneration phenomenon. 2 cm tibia defect was an ideal animal model. In the second study, group of CHAP manifested a little trace of bone regeneration, as to group of tissue engineered bone, the defect was almost repaired totally. In group of fascia flap, with the assistance of fascia flap which gave more chance to making implants to get more nutrient, the repair was quite complete. The model of 2 cm caprine tibia diaphyseal defect cannot be repaired by goat itself and can satisfy the tissue engineering's demands. Tissue engineered bone had good ability to repair large segment tibia defect of goat. Fascia flap can accelerate the revascularization process of tissue engineered bone. And by this way, it augment the ability of tissue engineered bone to repair the large bone defect of goat.
[Prefabrication of bone transplants].
Jagodzinski, M; Kokemüller, H; Jehn, P; Vogt, P; Gellrich, N-C; Krettek, C
2015-03-01
Prefabrication of bone transplants is a promising option for large defects of the long bones, especially if there is compromised vascularization of the defect. This is especially true for postinfection bone defects and other types of atrophic nonunion. The generation of a foreign body membrane (Masquelet's technique) has been investigated in order to ameliorate the response of the host tissue surrounding the defect. In an experimental animal study, a blood vessel within a bone construct could be used to generate customized, vascularized osteogenic constructs that can be used to treat large bone defects in the future.
Tarsitano, A; Ciocca, L; Cipriani, R; Scotti, R; Marchetti, C
2015-06-01
Free fibula flap is routinely used for mandibular reconstructions. For contouring the flap, multiple osteotomies should be shaped to reproduce the native mandibular contour. The bone segments should be fixed using a reconstructive plate. This plate is usually manually bent by the surgeon during surgery. This method is efficient, but during reconstruction it is complicated to reproduce the complex 3D conformation of the mandible and recreate a normal morphology with a mandibular profile as similar as possible to the original; any aberration in its structural alignment may lead to aesthetic and function alterations due to malocclusion or temporomandibular disorders. In order to achieve better morphological and functional outcomes, we have performed a customised flap harvest using cutting guides. This study demonstrates how we have performed customised mandibular reconstruction using CAD-CAM fibular cutting guides in 20 patients undergoing oncological segmental resection.
Reconstruction of the mandible and the maxilla: the evolution of surgical technique.
Genden, Eric M
2010-01-01
The upper and lower jaws play an essential role in mastication, articulation, and cosmetic form. The mandible provides support for tongue position and elevation of the larynx during swallowing, while the maxilla provides support for the nasal structures as well as an opposing structure to the mandible during mastication. The evolution of mandibular and maxillary reconstruction dates back to the early 19th century. Before the introduction of free tissue transfer, a variety of local flaps, regional flaps, and prosthetics were introduced, yet each was met with eventual failure. Since the introduction of free tissue transfer, mandibular and maxillary reconstruction has become as much of an art as it has a science. Whether the mandibular or the palatomaxillary defects are a result of trauma, congenital deformity, or tumor extirpation, the resultant effect often disrupts both form and function. With these considerations taken together, jaw reconstruction is a unique undertaking in which the artistic reconstruction of the facial skeleton is met with the science of reestablishing the mechanics of mastication. The site, size, and associated soft-tissue defects represent the 3 most important factors in determining the impact of a given defect on function and aesthetics. There is also an inherent difference between defects that are sustained in a controlled fashion, such as during cancer ablation, and those that result from trauma. The consideration of these complexities in jaw reconstruction is reflected in the wide variety of approaches and techniques that have evolved over the past century.
Hruschka, Veronika; Tangl, Stefan; Ryabenkova, Yulia; Heimel, Patrick; Barnewitz, Dirk; Möbus, Günter; Keibl, Claudia; Ferguson, James; Quadros, Paulo; Miller, Cheryl; Goodchild, Rebecca; Austin, Wayne; Redl, Heinz; Nau, Thomas
2017-01-01
Nanocrystalline hydroxyapatite (HA) has good biocompatibility and the potential to support bone formation. It represents a promising alternative to autologous bone grafting, which is considered the current gold standard for the treatment of low weight bearing bone defects. The purpose of this study was to compare three bone substitute pastes of different HA content and particle size with autologous bone and empty defects, at two time points (6 and 12 months) in an ovine scapula drillhole model using micro-CT, histology and histomorphometry evaluation. The nHA-LC (38% HA content) paste supported bone formation with a high defect bridging-rate. Compared to nHA-LC, Ostim® (35% HA content) showed less and smaller particle agglomerates but also a reduced defect bridging-rate due to its fast degradation The highly concentrated nHA-HC paste (48% HA content) formed oversized particle agglomerates which supported the defect bridging but left little space for bone formation in the defect site. Interestingly, the gold standard treatment of the defect site with autologous bone tissue did not improve bone formation or defect bridging compared to the empty control. We concluded that the material resorption and bone formation was highly impacted by the particle-specific agglomeration behaviour in this study. PMID:28233833
JENABIAN, Niloofar; HAGHANIFAR, Sina; MABOUDI, Avideh; BIJANI, Ali
2013-01-01
Objective Treatment of furcation defects are thought to be challenging. The purpose of this study was to evaluate the clinical and radiographic parameters of Bio-Gen with Biocollagen compared with Bio-Gen with connective tissue in the treatment of Class II furcation defects. Material and Methods In this clinical trial, 24 patients with Class II furcation defect on a buccal or lingual mandibular molar were recruited. After oral hygiene instruction, scaling and root planing and achievement of acceptable plaque control, the patients were randomly chosen to receive either connective tissue and Bio-Gen (case group) or Biocollagen and Bio-Gen (control group). The following parameters were recorded before the first and re-entry surgery (six months later): vertical clinical attachment level (VCAL), gingival index (GI), plaque index (PI), horizontal probing depth (HPD), vertical probing depth (VPD), gingival recession (GR), furcation vertical component (FVC), furcation to alveolar crest (FAC), fornix to base of defect (FBD), and furcation horizontal component (FHC) were calculated at the time of first surgery and during re-entry. A digital periapical radiograph was taken in parallel before first surgery and re-entry. The radiographs were then analyzed by digital subtraction. The differences with p value <0.05 were considered significant. Results Only the mean changes of FAC, FHC, mean of FHC, FBD in re-entry revealed statistically significant differences between the two groups. HPD, VPD, FBD, FAC, and FHC showed statistically significant differences after 6 months in the case group. However, in the control group, statistically significant differences were found in GR and HPD. We did not observe any significant difference in radiographic changes among the two groups. Conclusion The results of this trial indicate that better clinical outcomes can be obtained with connective tissue grafts in combination with bone material compared with a resorbable barrier with bone material. The differences in radiographic changes between the two groups, however, were not statistically significant. PMID:24212988
Shirakata, Yoshinori; Taniyama, Katsuyoshi; Yoshimoto, Takehiko; Miyamoto, Motoharu; Takeuchi, Naoshi; Matsuyama, Takashi; Noguchi, Kazuyuki
2010-04-01
The aim of the present study was to evaluate the effect of a basic fibroblast growth factor (bFGF) candidate treatment on periodontal healing in two-wall intrabony defects in dogs. Two-wall intrabony defects (5 x 5 x 5 mm) were created surgically on the distal and mesial sides of bilateral mandibular second and fourth premolars in four Beagle dogs. bFGF, enamel matrix derivative (EMD) and platelet-derived growth factor with beta-tricalcium phosphate (PDGF/beta-TCP) treatments, and sham-surgery (OFD) were rotated among the four defects in each animal, EMD and PDGF/beta-TCP serving as benchmark controls. The animals were euthanized for radiographic and histologic evaluation at 8 weeks. Bone formation was significantly greater in the bFGF group (4.11 +/- 0.77 mm) than in the EMD (3.32 +/- 0.71 mm; p<0.05) and OFD (3.09 +/- 0.52 mm; p<0.01) groups. The EMD (4.59 +/- 1.19 mm) and PDGF/beta-TCP (4.66 +/- 0.7 mm) groups exhibited significantly greater cementum regeneration with periodontal ligament-like tissue than the OFD group (2.96 +/- 0.69 mm; p<0.01). No significant differences were observed between the bFGF and the PDGF/beta-TCP groups in any of the histometric parameters. The candidate bFGF treatment supported periodontal regeneration comparable with that of established benchmarks: EMD and PDGF/beta-TCP.
Juvenile Swine Surgical Alveolar Cleft Model to Test Novel Autologous Stem Cell Therapies
Caballero, Montserrat; Morse, Justin C.; Halevi, Alexandra E.; Emodi, Omri; Pharaon, Michael R.; Wood, Jeyhan S.
2015-01-01
Reconstruction of craniofacial congenital bone defects has historically relied on autologous bone grafts. Engineered bone using mesenchymal stem cells from the umbilical cord on electrospun nanomicrofiber scaffolds offers an alternative to current treatments. This preclinical study presents the development of a juvenile swine model with a surgically created maxillary cleft defect for future testing of tissue-engineered implants for bone generation. Five-week-old pigs (n=6) underwent surgically created maxillary (alveolar) defects to determine critical-sized defect and the quality of treatment outcomes with rib, iliac crest cancellous bone, and tissue-engineered scaffolds. Pigs were sacrificed at 1 month. Computed tomography scans were obtained at days 0 and 30, at the time of euthanasia. Histological evaluation was performed on newly formed bone within the surgical defect. A 1 cm surgically created defect healed with no treatment, the 2 cm defect did not heal. A subsequently created 1.7 cm defect, physiologically similar to a congenitally occurring alveolar cleft in humans, from the central incisor to the canine, similarly did not heal. Rib graft treatment did not incorporate into adjacent normal bone; cancellous bone and the tissue-engineered graft healed the critical-sized defect. This work establishes a juvenile swine alveolar cleft model with critical-sized defect approaching 1.7 cm. Both cancellous bone and tissue engineered graft generated bridging bone formation in the surgically created alveolar cleft defect. PMID:25837453
Huffer, William E; Benedict, James J; Turner, A S; Briest, Arne; Rettenmaier, Robert; Springer, Marco; Walboomers, X F
2007-08-01
COLLOSS and COLLOSS E are osteoinductive bone void fillers consisting of bone collagen and noncollagenous proteins from bovine and equine bone, respectively. The aim of this study was to compare COLLOSS, COLLOSS E, iliac bone autograft, sintered beta tricalcium phosphate (beta-TCP; OSSAPLAST), and COLLOSS E plus OSSAPLAST. Materials were placed for 4, 8, or 24 weeks in 5-mm cortical bone defects in sheep long bones. Histological sections in a plane perpendicular to the long axis of the bone were used to measure the total repair area (original defect plus callus) and the area of bone within the total repair area. The incidence of defect union was also evaluated. At 4 and 8 weeks, defects treated with COLLOSS and COLLOSS E with or without OSSAPLAST had total repair and bone areas equivalent to autograft, and larger than OSSAPLAST-treated defects. At 8 weeks, the incidence of defect union was higher in defects treated with autograft or COLLOSS E plus OSSAPLAST than in untreated defects. At 24 weeks, the incidence of union was 100% in all treatment groups and 0% in untreated defects. The incidence of union was related to the degree of remodeling between 8 and 24 weeks. This was greater in all treated than nontreated defects. In conclusion, COLLOSS and COLLOSS E were equivalent to each other and to autograft, and superior to beta-TCP, in this study model.
Shibata, Shunichi; Baba, Otto; Oda, Tsuyoshi; Yokohama-Tamaki, Tamaki; Qin, Chunlin; Butler, William T; Sakakura, Yasunori; Takano, Yoshiro
2008-03-01
Previous studies indicate that hypertrophic chondrocytes can transdifferentiate or dedifferentiate and redifferentiate into bone cells during the endochondral bone formation. Mandibular condyle in aged c-src-deficient mice has incremental line-like striations consisting of cartilaginous and non-cartilaginous layers, and the former contains intact hypertrophic chondrocytes in uneroded lacunae. The purpose of this study is to determine the phenotype changes of uneroded hypertrophic chondrocytes. Immunohistochemical and ultrastructural examinations of the pericellular matrix of hypertrophic chondrocytes in the upper, middle, and lower regions of the mandibular condyle were conducted in aged c-src-deficient mice, using several antibodies of cartilage/bone marker proteins. Co-localisation of aggrecan, type I collagen, and dentin matrix protein-1 (DMP-1) or matrix extracellular phosphoprotein (MEPE) was detected in the pericellular matrix of the middle region. Ultrastructurally, granular substances in the pericellular matrix of the middle region were the remains of upper region chondrocytes, which were mixed with thick collagen fibrils. In the lower region, the width of the pericellular matrix and the amount of collagen fibrils were increased. Versican, type I collagen, DMP-1, and MEPE were detected in the osteocyte lacunae. Additionally, DMP-1 and MEPE were detected in the pericellular matrix of uneroded hypertrophic chondrocytes located in the lower, peripheral region of the mandibular condyle in younger c-src-deficient mice, but not in the aged wild-type mice. These results indicate that long-term survived, uneroded hypertrophic chondrocytes, at least in a part, acquire osteocytic characteristics.
Co-occurence of florid cemento-osseous dysplasia and simple bone cyst: a case report.
Rao, Kumuda Arvind; Shetty, Shishir Ram; Babu, Subhas G; Castelino, Renita Lorina
2011-01-01
The purpose of this report is to present a rare case of co-occurrence of florid cemento-osseous dysplasia with simple bone cyst in a middle aged Asian woman. Most of the reported cases are isolated cases of simple bone cyst or florid cemento-osseous dysplasia, but co-occurrence of these two entities is extremely rare. The authors report a 41 year old female patient with co-occurrence of mandibular florid cemento-osseous dysplasia with simple bone cyst. A thorough clinical and radiological examination was carried out. It was diagnosed mandibular cyst with possible co-occurrence of florid cemento-osseous dysplasia. Surgical exploration of the multilocular lesion was applied. Since, the patient was symptomatic at the time of presentation utmost caution was taken during the surgical procedure as florid cemento-osseous dysplasia is associated with hypo-vascularity of the affected bone. Based on histopathological, as well as supporting clinico-radiological findings a confirmative diagnosis of florid cemento-osseous dysplasia co-occurring with simple bone cyst was made. Patient was followed-up for a period of six months and was reported to be asymptomatic. Timely diagnosis and well planned treatment is important to obtain a good prognosis when a rare co-occurrence of two or more bone lesions affects the jaws.
Liptak, Julius M; Thatcher, Graham P; Bray, Jonathan P
2017-04-15
CASE DESCRIPTION A 12-year-old neutered male domestic shorthair cat had been treated for a mass arising from the lingual aspect of the caudal right mandibular body. Cytoreductive surgery of the mass had been performed twice over a 2-year period, but the mass recurred following both surgeries. The mass was diagnosed as an osteosarcoma, and the cat was referred for further evaluation and treatment. CLINICAL FINDINGS Clinical findings were unremarkable, except for a 2-cm-diameter mass arising from the lingual aspect of the right mandible and mild anemia and lymphopenia. Pre- and postcontrast CT scans of the head, neck, and thorax were performed, revealing that the osteosarcoma was confined to the caudal right mandibular body, with no evidence of lymph node or pulmonary metastasis. TREATMENT AND OUTCOME The stereolithographic files of the CT scan of the head were sent for computer-aided design and manufacture of a customized 3-D-printed titanium prosthesis. Segmental mandibulectomy was performed, and the mandibular defect was reconstructed in a single stage with the 3-D-printed titanium prosthesis. The cat had 1 minor postoperative complication but had no signs of eating difficulties at any point after surgery. The cat was alive and disease free 14 months postoperatively. CLINICAL RELEVANCE Reconstruction of the mandible of a cat following mandibulectomy was possible with computer-aided design and manufacture of a customized 3-D-printed titanium prosthesis. Cats have a high rate of complications following mandibulectomy, and these initial findings suggested that mandibular reconstruction may reduce the risk of these complications and result in a better functional outcome.
Buie, Helen R; Bosma, Nick A; Downey, Charlene M; Jirik, Frank R; Boyd, Steven K
2013-11-01
Bone defects can occur in various forms and present challenges to performing a standard micro-CT evaluation of bone quality because most measures are suited to homogeneous structures rather than ones with spatially focal abnormalities. Such defects are commonly associated with pain and fragility. Research involving bone defects requires quantitative approaches to be developed if micro-CT is to be employed. In this study, we demonstrate that measures of inter-microarchitectural bone spacing are sensitive to the presence of focal defects in the proximal tibia of two distinctly different mouse models: a burr-hole model for fracture healing research, and a model of osteolytic bone metastases. In these models, the cortical and trabecular bone compartments were both affected by the defect and were, therefore, evaluated as a single unit to avoid splitting the defects into multiple analysis regions. The burr-hole defect increased mean spacing (Sp) by 27.6%, spacing standard deviation (SpSD) by 113%, and maximum spacing (Spmax) by 72.8%. Regression modeling revealed SpSD (β=0.974, p<0.0001) to be a significant predictor of the defect volume (R(2)=0.949) and Spmax (β=0.712, p<0.0001) and SpSD (β=0.271, p=0.022) to be significant predictors of the defect diameter (R(2)=0.954). In the mice with osteolytic bone metastases, spacing parameters followed similar patterns of change as reflected by other imaging technologies, specifically bioluminescence data which is indicative of tumor burden. These data highlight the sensitivity of spacing measurements to bone architectural abnormalities from 3D micro-CT data and provide a tool for quantitative evaluation of defects within a bone. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Guillier, D; Moris, V; See, L-A; Girodon, M; Wajszczak, B-L; Zwetyenga, N
2017-02-01
Total prosthetic replacement of the temporo-mandibular joint (TMJ) has become a common procedure, but it is usually limited to the TMJ itself. We report about one case of complex prosthetic joint reconstruction extending to the neighbouring bony structures. A 57-year-old patient, operated several times for a cranio-facial fibrous dysplasia, presented with a recurring TMJ ankylosis and a complexe latero-facial bone loss on the right side. We performed a reconstruction procedure including the TMJ, the zygomatic arch and the malar bone by mean of custom made composite prosthesis (chrome-cobalt-molybdenum-titanium and polyethylene). Five years postoperatively, mouth opening, nutrition, pain and oral hygiene were significantly improved. Nowadays technical possibilities allow for complex facial alloplastic reconstructions with good medium term results. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Mesnard, Michel; Ramos, Antonio; Ballu, Alex; Morlier, Julien; Cid, M; Simoes, J A
2011-04-01
Prosthetic materials and bone present quite different mechanical properties. Consequently, mandible reconstruction with metallic materials (or a mandible condyle implant) modifies the physiologic behavior of the mandible (stress, strain patterns, and condyle displacements). The changing of bone strain distribution results in an adaptation of the temporomandibular joint, including articular contacts. Using a validated finite element model, the natural mandible strains and condyle displacements were evaluated. Modifications of strains and displacements were then assessed for 2 different temporomandibular joint implants. Because materials and geometry play important key roles, mechanical properties of cortical bone were taken into account in models used in finite element analysis. The finite element model allowed verification of the worst loading configuration of the mandibular condyle. Replacing the natural condyle by 1 of the 2 tested implants, the results also show the importance of the implant geometry concerning biomechanical mandibular behavior. The implant geometry and stiffness influenced mainly strain distribution. The different forces applied to the mandible by the elevator muscles, teeth, and joint loads indicate that the finite element model is a relevant tool to optimize implant geometry or, in a subsequent study, to choose a more suitable distribution of the screws. Bone screws (number and position) have a significant influence on mandibular behavior and on implant stress pattern. Stress concentration and implant fracture must be avoided. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Poort, Lucas J; Postma, Alida A; Stadler, Annika A R; Böckmann, Roland A; Hoebers, Frank J; Kessler, Peter A W H
2017-05-01
Radiotherapy in the head and neck can induce several radiologically detectable changes in bone, osteoradionecrosis (ORN) among them. The purpose is to investigate radiological changes in mandibular bone after irradiation with various doses with and without surgery and to determine imaging characteristics of radiotherapy and ORN in an animal model. Sixteen Göttingen minipigs were divided into groups and were irradiated with two fractions with equivalent doses of 0, 25, 50 and 70 Gray. Thirteen weeks after irradiation, left mandibular teeth were removed and dental implants were placed. CT-scans and MR-imaging were made before irradiation and twenty-six weeks after. Alterations in the bony structures were recorded on CT-scan and MR-imaging and scored by two head-neck radiologists. Increased signal changes on MR-imaging were associated with higher radiation doses. Two animals developed ORN clinically. Radiologically mixed signal intensities on T2-SPIR were seen. On CT-scans cortical destruction was found in three animals. Based on imaging, three animals were diagnosed with ORN. Irradiation of minipig mandibles with various doses induced damages of the mandibular bone. Imaging with CT-scan and MR-imaging showed signal and structural changes that can be interpreted as prolonged and insufficient repair of radiation induced bone damages. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Comparative study of manufacturing condyle implant using rapid prototyping and CNC machining
NASA Astrophysics Data System (ADS)
Bojanampati, S.; Karthikeyan, R.; Islam, MD; Venugopal, S.
2018-04-01
Injuries to the cranio-maxillofacial area caused by road traffic accidents (RTAs), fall from heights, birth defects, metabolic disorders and tumors affect a rising number of patients in the United Arab Emirates (UAE), and require maxillofacial surgery. Mandibular reconstruction poses a specific challenge in both functionality and aesthetics, and involves replacement of the damaged bone by a custom made implant. Due to material, design cycle time and manufacturing process time, such implants are in many instances not affordable to patients. In this paper, the feasibility of designing and manufacturing low-cost, custom made condyle implant is assessed using two different approaches, consisting of rapid prototyping and three-axis computer numerically controlled (CNC) machining. Two candidate rapid prototyping techniques are considered, namely fused deposition modeling (FDM) and three-dimensional printing followed by sand casting The feasibility of the proposed manufacturing processes is evaluated based on manufacturing time, cost, quality, and reliability.
Indian hedgehog roles in post-natal TMJ development and organization.
Ochiai, T; Shibukawa, Y; Nagayama, M; Mundy, C; Yasuda, T; Okabe, T; Shimono, K; Kanyama, M; Hasegawa, H; Maeda, Y; Lanske, B; Pacifici, M; Koyama, E
2010-04-01
Indian hedgehog (Ihh) is essential for embryonic mandibular condylar growth and disc primordium formation. To determine whether it regulates those processes during post-natal life, we ablated Ihh in cartilage of neonatal mice and assessed the consequences on temporomandibular joint (TMJ) growth and organization over age. Ihh deficiency caused condylar disorganization and growth retardation and reduced polymorphic cell layer proliferation. Expression of Sox9, Runx2, and Osterix was low, as was that of collagen II, collagen I, and aggrecan, thus altering the fibrocartilaginous nature of the condyle. Though a disc formed, it exhibited morphological defects, partial fusion with the glenoid bone surface, reduced synovial cavity space, and, unexpectedly, higher lubricin expression. Analysis of the data shows, for the first time, that continuous Ihh action is required for completion of post-natal TMJ growth and organization. Lubricin overexpression in mutants may represent a compensatory response to sustain TMJ movement and function.
Lei, R; Zhang, K; Liu, K; Shao, X; Ding, Z; Wang, F; Hong, Y; Zhu, M; Li, H; Li, H
2016-01-01
The Pierre Robin Sequence (PRS), consisting of cleft palate, glossoptosis and micrognathia, is a common human birth defect. However, how this abnormality occurs remains largely unknown. Here we report that neural crest cell (NCC)-specific knockout of transferrin receptor (Tfrc), a well known transferrin transporter protein, caused micrognathia, cleft palate, severe respiratory distress and inability to suckle in mice, which highly resemble human PRS. Histological and anatomical analysis revealed that the cleft palate is due to the failure of palatal shelves elevation that resulted from a retarded extension of Meckel's cartilage. Interestingly, Tfrc deletion dramatically suppressed both transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in cranial NCCs-derived mandibular tissues, suggesting that Tfrc may act as a facilitator of these two signaling pathways during craniofacial morphogenesis. Together, our study uncovers an unknown function of Tfrc in craniofacial development and provides novel insight into the etiology of PRS. PMID:27362800
Noel, Kenson E; Mardirossian, George; Schneider, Lawrence
2007-05-01
Kaposi's sarcoma (KS) is a common mucocutaneous manifestation of acquired immunodeficiency syndrome (AIDS). Primary bone lesions have been reported but are rare. A 38-year-old African-American male who was human immunodeficiency virus (HIV)-positive appeared for the evaluation of an asymptomatic well-defined radiolucency of the mandibular midline discovered on routine radiographic examination. The adjacent central incisors were asymptomatic, nonmobile, and vital. The overlying mucosa and cortical plate were intact. Excision of the lesion revealed a fleshy, pink-red soft tissue mass with a uniform consistency. Histological examination showed a malignant spindle cell neoplasm containing numerous extravasated erythrocytes. The tumor cells exhibited positive immunohistochemical staining for CD31, CD34, and human herpesvirus 8. One year after surgical procedure, the surgical defect showed radiographic evidence of repair and there was no sign of recurrent tumor. This case represents the fourth reported instance of primary intraosseous involvement of the jaws with KS.
Plendl, Johanna; Hünigen, Hana; Richardson, Kenneth C.; Gemeinhardt, Ole; Niehues, Stefan M.
2017-01-01
This study reports morphometric and age-related data of the mandibular canal and the alveolar ridge of the Göttingen Minipig to avoid complications during in vivo testing of endosseus dental implants and to compare these data with the human anatomy. Using 3D computed tomography, six parameters of the mandibular canal as well as the alveolar bone height and the alveolar ridge width were measured in Göttingen Minipigs aged 12, 17 and 21 months. Our null hypothesis assumes that the age and the body mass have an influence on the parameters measured. The study found that the volume, length and depth of the mandibular canal all increase with age. The width of the canal does not change significantly with age. The body mass does not have an influence on any of the measured parameters. The increase in canal volume appears to be due to loss of deep spongy bone in the posterior premolar and molar regions. This reduces the available space for dental implantations, negatively affecting implant stability and potentially the integrity of the inferior alveolar neurovascular bundle. Dynamic anatomical changes occur until 21 months. On ethical grounds, using minipigs younger than 21 months in experimental implant dentistry is inadvisable. Paradoxically the measurements of the 12 months old pigs indicate a closer alignment of their mandibular anatomy to that of humans suggesting that they may be better models for implant studies. Given the variability in mandibular canal dimensions in similar age cohorts, the use of imaging techniques is essential for the selection of individual minipigs for dental prosthetic interventions and thus higher success rates. PMID:28910382
Mangano, Francesco G; Caprioglio, Alberto; Levrini, Luca; Farronato, Davide; Zecca, Piero A; Mangano, Carlo
2015-02-01
Only a few studies have dealt with immediately loaded, unsplinted mini-implants supporting ball attachment-retained mandibular overdentures (ODs). The aim of this study is to evaluate treatment outcomes of ball attachment-retained mandibular ODs supported by one-piece, unsplinted, immediately loaded, direct metal laser sintering (DMLS) mini-implants. Over a 4-year period (2009 to 2012), all patients referred to the Dental Clinic, University of Varese, and to a private practice for treatment with mandibular ODs were considered for inclusion in this study. Each patient received three or four DMLS mini-implants. Immediately after implant placement, a mandibular OD was connected to the implants. At each annual follow-up session, clinical and radiographic parameters were assessed, including the following outcome measures: 1) implant failures; 2) peri-implant marginal bone loss; and 3) complications. Statistical analysis was conducted using a life-table analysis. A total of 231 one-piece DMLS mini-implants were inserted in 62 patients. After 4 years of loading, six implants failed, giving an overall cumulative survival rate of 96.9%. The mean distance between the implant shoulder and the first visible bone-to-implant contact was 0.38 ± 0.25 and 0.62 ± 0.20 mm at the 1- and 4-year follow-up examinations, respectively. An incidence of 6.0% of biologic complications was reported; prosthetic complications were more frequent (12.9%). Within the limits of this study, it can be concluded that the immediate loading of one-piece, unsplinted, DMLS titanium mini-implants by means of ball attachment-supported mandibular ODs is a successful treatment procedure. Long-term follow-up studies are needed to confirm these results.
Regeneration of subcutaneous tissue-engineered mandibular condyle in nude mice.
Wang, Feiyu; Hu, Yihui; He, Dongmei; Zhou, Guangdong; Yang, Xiujuan; Ellis, Edward
2017-06-01
To explore the feasibility of regenerating mandibular condyles based on cartilage cell sheet with cell bone-phase scaffold compared with cell-biphasic scaffolds. Tissue-engineered mandibular condyles were regenerated by the following: 1) cartilage cell sheet + bone-phase scaffold (PCL/HA) seeded with bone marrow stem cells (BMSCs) from minipigs (cell sheet group), and 2) cartilage phase scaffold (PGA/PLA) seeded with auricular chondrocytes + bone-phase scaffold seeded with BMSCs from minipigs (biphasic scaffold group). They were implanted subcutaneously in nude mice after being cultured in vitro for different periods of time. After 12 weeks, the mice were sacrificed, and the specimens were harvested and evaluated based on gross appearance and histopathologic observations with hematoxylin and eosin, safranin O-fast green and immumohistochemical staining for collagen I and II. The histopathologic assessment score of condylar cartilage and bone density were compared between the 2 groups using SPSS 17.0 software. The 2 groups' specimens all formed mature cartilage-like tissues with numerous chondrocytes, typical cartilage lacuna and abundant cartilage-specific extracellular matrix. The regenerated cartilage was instant, continuous, homogeneous and avascular. In the biphasic scaffold group, there were still a few residual PGA fibers in the cartilage layer. The cartilage and bone interface was established in the 2 groups, and the microchannels of the bone-phase scaffolds were filled with bone tissue. The score of cartilage regeneration in the cell sheet group was a little higher than that in the biphasic scaffold group, but the difference was not significant (p > 0.05). There was no significant difference in bone tissue formation between the 2 groups (p > 0.05). Both the cartilage cell sheet group and the biphasic scaffold group of nude mice underwent regeneration of condyle-shaped osteochondral composite. Without residual PGA fibers, the cell sheet group might have less chance of immunological rejection compared to biphasic scaffold group. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Zellner, Johannes; Grechenig, Stephan; Pfeifer, Christian G; Krutsch, Werner; Koch, Matthias; Welsch, Goetz; Scherl, Madeleine; Seitz, Johannes; Zeman, Florian; Nerlich, Michael; Angele, Peter
2017-11-01
Large osteochondral defects of the knee are a challenge for regenerative treatment. While matrix-guided autologous chondrocyte transplantation (MACT) represents a successful treatment for chondral defects, the treatment potential in combination with bone grafting by cancellous bone or bone block augmentation for large and deep osteochondral defects has not been evaluated. To evaluate 1- to 3-year clinical outcomes and radiological results on magnetic resonance imaging (MRI) after the treatment of large osteochondral defects of the knee with bone augmentation and MACT. Special emphasis is placed on different methods of bone grafting (cancellous bone grafting or bone block augmentation). Case series; Level of evidence, 4. Fifty-one patients were included. Five patients were lost to follow-up. This left 46 patients (mean age, 28.2 years) with a median follow-up time of 2 years. The 46 patients had 47 deep, large osteochondral defects of the knee joint (1 patient with bilateral defects; mean defect size, 6.7 cm 2 ). The origin of the osteochondral defects was osteochondritis dissecans (n = 34), osteonecrosis (n = 8), or subchondral cysts (n = 5). Depending on the depth, all defects were treated by cancellous bone grafting (defect depth ≤10 mm; n = 16) or bone block augmentation (defect depth >10 mm; n = 31) combined with MACT. Clinical outcomes were followed at 3 months, 6 months, 1 year, 2 years, and 3 years and evaluated using the International Knee Documentation Committee (IKDC) score and Cincinnati score. A magnetic resonance imaging (MRI) evaluation was performed at 1 and 2 years, and the magnetic resonance observation of cartilage repair tissue (MOCART) score with additional specific subchondral bone parameters (bone regeneration, bone signal quality, osteophytes, sclerotic areas, and edema) was analyzed. The clinical outcome scores revealed a significant increase at follow-up (6 months to 3 years) compared with the preclinical results. The median IKDC score increased from 42.6 preoperatively to 75.3 at 1 year, 79.7 at 2 years, and 84.3 at 3 years. The median Cincinnati score significantly increased from 39.8 preoperatively to 72.0 at 1 year, 78.0 at 2 years, and 80.3 at 3 years. The MRI evaluation revealed a MOCART score of 82.6 at 1 year without a deterioration at the later follow-up time point. Especially, the subchondral bone analysis showed successful regeneration. All bone blocks and cancellous bone grafts were integrated in the bony defects, and no chondrocyte transplant failure could be detected throughout the follow-up. Large and deep osteochondral defects of the knee joint can be treated successfully with bone augmentation and MACT. The treatment of shallow bony defects with cancellous bone grafting and deep bony defects with bone block augmentation shows promising results.
Zhao, Lin; Zhao, Junli; Yu, Jiajia; Sun, Rui; Zhang, Xiaofeng; Hu, Shuhua
2017-04-01
The aim of the study was to evaluate the efficacy of tissue-engineered periosteum (TEP) in repairing allogenic bone defects in the long term. TEP was biofabricated with osteoinduced rabbit bone marrow mesenchymal stem cells and porcine small intestinal submucosa (SIS). A total of 24 critical sized defects were created bilaterally in radii of 12 New Zealand White rabbits. TEP/SIS was implanted into the defect site. Bone defect repair was evaluated with radiographic and histological examination at 4, 8 and 12 weeks. Bone defects were structurally reconstructed in the TEP group with mature cortical bone and medullary canals, however this was not observed in the SIS group at 12 weeks. The TEP approach can effectively restore allogenic critical sized defects, and achieve maturity of long-bone structure in 12 weeks in rabbit models.
Zeng, Ni; van Leeuwen, Anne C; Grijpma, Dirk W; Bos, Ruud R M; Kuijer, Roel
2017-02-01
The use of ceramic materials in repair of bone defects is limited to non-load-bearing sites. We tested poly(trimethylene carbonate) (PTMC) combined with β-tricalcium phosphate or biphasic calcium phosphate particles for reconstruction of cranial defects. PTMC-calcium phosphate composite matrices were implanted in cranial defects in sheep for 3 and 9 months. Micro-computed tomography quantification and histological observation were performed for analysis. No differences were found in new bone formation among the defects left unfilled, filled with PTMC scaffolds, or filled with either kind of PTMC-calcium phosphate composite scaffolds. Porous β-TCP scaffolds as control led to a larger amount of newly formed bone in the defects than all other materials. Histology revealed abundant new bone formation in the defects filled with porous β-TCP scaffolds. New bone formation was limited in defects filled with PTMC scaffolds or different PTMC-calcium phosphate matrices. PTMC matrices were degraded uneventfully. New bone formation within the defects followed an orderly pattern. PTMC did not interfere with bone regeneration in sheep cranial defects and is suitable as a polymer matrix for incorporating calcium phosphate particles. Increasing the content of calcium phosphate particles in the composite matrices may enhance the beneficial effects of the particles on new bone formation. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Thor, Andreas; Palmquist, Anders; Hirsch, Jan-Michaél; Rännar, Lars-Erik; Dérand, Per; Omar, Omar
2016-10-01
There is limited information on the biological status of bone regenerated with microvascular fibula flap combined with biomaterials. This paper describes the clinical, histological, ultrastructural, and molecular picture of bone regenerated with patient-customized plate, used for mandibular reconstruction in combination with microvascular osteomyocutaneous fibula flap. The plate was virtually planned and additively manufactured using electron beam melting. This plate was retrieved from the patient after 33 months. Microcomputed tomography, backscattered-scanning electron microscopy, histology, and quantitative-polymerase chain reaction were employed to evaluate the regenerated bone and the flap bone associated with the retrieved plate. At retrieval, the posterior two-thirds of the plate were in close adaptation with the underlying flap, whereas soft tissue was observed between the native mandible and the anterior one-third. The histological and structural analyses showed new bone regeneration, ingrowth, and osseointegration of the posterior two-thirds. The histological observations were supported by the gene expression analysis showing higher expression of bone formation and remodeling genes under the posterior two-thirds compared with the anterior one-third of the plate. The observation of osteocytes in the flap indicated its viability. The present data endorse the suitability of the customized, additively manufactured plate for the vascularized fibula mandibular reconstruction. Furthermore, the combination of the analytical techniques provides possibilities to deduce the structural and molecular characteristics of bone regenerated using this procedure.
Chen, Yubin; Miao, Yingyun; Xu, Chuan; Zhang, Gang; Lei, Tao; Tan, Yinghui
2010-04-19
To study wound ballistics of the mandibular angle, a combined hexahedral-tetrahedral finite element (FE) model of the pig mandible was developed to simulate ballistic impact. An experimental study was carried out by measuring impact load parameters from 14 fresh pig mandibles that were shot at the mandibular angle by a standard 7.62 mm M43 bullet. FE analysis was executed through the LS-DYNA code under impact loads similar to those obtained from the experimental study. The resulting residual velocity, the transferred energy from the bullet to the mandible, and the surface area of the entrance wound had no statistical differences between the FE simulation and the experimental study. However, the mean surface area of the exit wounds in the experimental study was significantly larger than that in the simulation. According to the FE analysis, the stress concentrated zones were mainly located at the region of impact, condylar neck, coronoid process and mandibular body. The simulation results also indicated that trabecular bone had less stress concentration and a lower speed of stress propagation compared with cortical bone. The FE model is appropriate and conforms to the basic principles of wound ballistics. This modeling system will be helpful for further investigations of the biomechanical mechanisms of wound ballistics. Copyright 2009 Elsevier Ltd. All rights reserved.
Investigations Into Age-related Changes in the Human Mandible.
Parr, Nicolette M; Passalacqua, Nicholas V; Skorpinski, Katie
2017-11-01
While changes in mandibular shape over time are not widely recognized by skeletal biologists, mandibular remodeling and associated changes in gross morphology may result from a number of causes related to mechanical stress such as antemortem tooth loss, changes in bite force, or alterations of masticatory performance. This study investigated the relationship between age-related changes and antemortem tooth loss in adult humans via dry bone measurements. This study examined 10 standard mandibular measurements as well as individual antemortem tooth loss scores using the Eichner Index from a total of 319 female and male individuals with ages ranging from 16 to 99 years. Results indicate that few mandibular measurements exhibited age-related changes, and most were affected by antemortem tooth loss. © 2017 American Academy of Forensic Sciences.
Ross, Callum F; Iriarte-Diaz, Jose; Reed, David A; Stewart, Thomas A; Taylor, Andrea B
2016-09-01
It has been hypothesized that mandibular corpus morphology of primates is related to the material properties of the foods that they chew. However, chewing foods with different material properties is accompanied by low levels of variation in mandibular strain patterns in macaques. We hypothesized that if variation in primate mandible form reflects adaptations to feeding on foods with different material and geometric properties, then this variation will be driven primarily by differences in oral food processing behavior rather than differences in chewing per se. To test this hypothesis, we recorded in vivo bone strain data from the lateral and medial surfaces of the mandibular corpus during complete feeding sequences in three adult male Sapajus as they fed on foods with a range of sizes and material properties. We assessed whether variation in mandibular corpus strain regimes is associated with variation in feeding behaviors and/or chewing on different foods, and we quantified the relative variation in mandibular corpus strain regimes associated with chewing on foods of different material properties versus a range of oral food processing behaviors (incisor, premolar, and molar biting; pulling on incisors; mastication). Feeding behavior had a significant effect on mandibular corpus strain regimes, as did chewing side and the cycle number in a feeding sequence. However, food type had weaker effects and usually only through interaction effects with chewing side and/or cycle type. Strain regimes varied most across different chew sides, then across different behaviors, and lastly between mastication cycles on different foods. Strain magnitudes associated with premolar, molar, and incisor biting were larger than those recorded during mastication. These data suggest that intra- and inter-specific variation in mandible morphology is a trade-off between performance requirements of different oral food processing behaviors and of variation in chewing side, with direct effects of food type being less important. Copyright © 2016 Elsevier Ltd. All rights reserved.
Müller, Rainer; Höhlein, Andreas; Wolf, Annette; Markwardt, Jutta; Schulz, Matthias C; Range, Ursula; Reitemeier, Bernd
2013-01-01
Ablative surgery of oropharyngeal tumors frequently leads to defects in the speech organs, resulting in impairment of speech up to the point of unintelligibility. The aim of the present study was the assessment of selected parameters of speech with and without resection prostheses. The speech sounds of 22 patients suffering from maxillary and mandibular defects were recorded using a digital audio tape (DAT) recorder with and without resection prostheses. Evaluation of the resonance and the production of the sounds /s/, /sch/, and /ch/ was performed by 2 experienced speech therapists. Additionally, the patients completed a non-standardized questionnaire containing a linguistic self-assessment. After prosthesis supply, the number of patients with rhinophonia aperta decreased from 7 to 2 while the number of patients with intelligible speech increased from 2 to 20. Correct production of the sounds /s/, /sch/, and /ch/ increased from 2 to 13 patients. A significant improvement of the evaluated parameters could be observed only in patients with maxillary defects. The linguistic self-assessment showed a higher satisfaction in patients with maxillary defects. In patients with maxillary defects due to ablative tumor surgery, an increase in speech performance and intelligibility is possible by supplying resection prostheses. © 2013 S. Karger GmbH, Freiburg.
Shaarawy, Mohammed A; Aboelross, Ehab M
2013-06-01
This study was carried out to evaluate the effect of varying implant position in immediately loaded implant-supported mandibular overdentures on peri-implant bone density, muscle activity, and patient satisfaction. Fourteen completely edentulous patients were selected for the study. After complete denture construction, patients were divided into 2 equal groups. Four dental implants were installed bilaterally in the interforaminal region in the first group, while in the second group, 4 dental implants were inserted bilaterally: 2 in the interforaminal region and 2 in the first molar area. Immediately after suturing, telescopic abutments were screwed to the implants, and the retaining caps were picked up into the fitting surface of the lower denture, which was delivered to the patient. Patients were recalled for radiographic bone density evaluation just after denture delivery and then at 3, 6, and 12 months thereafter. Muscle activities of masseter and temporalis muscles as well as patient satisfaction were also evaluated. The results of the study showed a high success rate approximating 98.2% of the immediately loaded implants. The electromyographic (EMG) records of both muscles in group 1 were significantly higher during chewing hard food after 3 months compared with group 2 (P < .05). Bone density changes were comparable in the 2 groups except at the end of the follow-up period, when group 2 showed a significant increase in peri-implant bone density values of the posteriorly placed implants compared with group 1 (P < .05). From the results of this study, it may be concluded that wide distribution of immediately loaded implants used for supporting mandibular overdentures through posterior placement beyond the interforaminal area results in a favorable response in terms of increased peri-implant bone density as well as decreased EMG activity of masseter and temporalis muscles.
Dorotheou, Domna; Farsadaki, Vassiliki; Bochaton-Piallat, Marie-Luce; Giannopoulou, Catherine; Halazonetis, Thanos D.; Kiliaridis, Stavros
2017-01-01
Tooth eruption, the process by which teeth emerge from within the alveolar bone into the oral cavity, is poorly understood. The post-emergent phase of tooth eruption continues throughout life, in particular, if teeth are not opposed by antagonists. The aim of the present study was to better understand the molecular processes underlying post-emergent tooth eruption. Toward this goal, we removed the crowns of the maxillary molars on one side of the mouth of 14 young rats and examined gene expression patterns in the periodontal ligaments (PDLs) of the ipsilateral and contralateral mandibular molars, 3 and 15 days later. Nine untreated rats served as controls. Expression of six genes, Adamts18, Ostn, P4ha3, Panx3, Pth1r, and Tnmd, was upregulated in unopposed molars relative to molars with antagonists. These genes function in osteoblast differentiation and proliferation, cell adhesion and collagen metabolism. Proliferation of PDL cells also increased following loss of the antagonist teeth. Interestingly, mutations in PTH1R have been linked to defects in the post-emergent phase of tooth eruption in humans. We conclude that post-emergent eruption of unopposed teeth is associated with gene expression patterns conducive to alveolar bone formation and PDL remodeling. PMID:28239357
Ocular Features of Cerebro-Costo-Mandibular Syndrome.
Hameed, Zoya; Taylor, Simon; Lindfield, Dan
2018-01-01
Cerebro-costo-mandibular syndrome (CCMS) is a rare hereditary disorder characterized by micrognathia, posterior rib gaps, and secondary developmental delay. Patients often require ventilation and feeding support throughout life. We describe the first reported ophthalmic findings of CCMS and propose that defects in choroidal permeability lead to chronic macular edema and refractory aqueous misdirection syndrome. Here we discuss the medical and surgical management concerns of recurrent angle closure and raised intraocular pressure in a CCMS patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppley, B.L.; Connolly, D.T.; Winkelmann, T.
1991-07-01
A study was undertaken to evaluate the potential utility of basic fibroblast growth factor in the induction of angiogenesis and osseous healing in bone previously exposed to high doses of irradiation. Thirty New Zealand rabbits were evaluated by introducing basic fibroblast growth factor into irradiated mandibular resection sites either prior to or simultaneous with reconstruction by corticocancellous autografts harvested from the ilium. The fate of the free bone grafts was then evaluated at 90 days postoperatively by microangiographic, histologic, and fluorochrome bone-labeling techniques. Sequestration, necrosis, and failure to heal to recipient osseous margins was observed both clinically and histologically inmore » all nontreated irradiated graft sites as well as those receiving simultaneous angiogenic stimulation at the time of graft placement. No fluorescent activity was seen in these graft groups. In the recipient sites pretreated with basic fibroblast growth factor prior to placement of the graft, healing and reestablishment of mandibular contour occurred in nearly 50 percent of the animals. Active bone formation was evident at cortical margins adjacent to the recipient sites but was absent in the more central cancellous regions of the grafts.« less
Wong, Raymond C W; Tideman, Henk; Merkx, Matthias A W; Jansen, John; Goh, Suk Ming
2012-12-01
Problems with loosening of the modules for the modular endoprosthesis were encountered in animal studies for mandibular body replacement. We performed a finite element analysis to look at the stress distribution and areas of stress concentration in a human sized mandible. Variations were made to the stem and defect length to look at how the forces changed. The hypothesis was: (1) reconstruction with a modular endoprosthesis did not lead to areas of stress concentration beyond the material strength of cortical bone and titanium alloy; (2) changes in dimensions of the endoprosthesis did not cause a corresponding linear increase to the stresses. The endoprosthesis was modelled to create a male, female part with stems and a connection screw (Case I). The stem length was halved (Case II) and defect length doubled (Case III). Geometric data of a human sized mandible were obtained, a continuity defect created digitally at the right molar area and the models combined. Boundary conditions were set and the model loaded to get a bite force of 300 N at the incisor region. An intact mandible was used as a control. The right side of the reconstructed mandible became less rigid and flexed more. The highest stresses were within the endoprosthesis at two areas of stress concentration: (1) shear stress at the superior surface of the stems close to the junction of the stem and the module body; (2) compressive stresses at the bottom bevel of the dove-tailed connection. The stress distribution for Case I and II did not differ much except for the magnitude which was slightly higher for Case II. There was a tendency for outward bending at the module connection for Case III which potentially might cause loosening of the module connection. Displacements of the mandible were less than 1 mm throughout. The endoprosthesis with its present dimensions would be expected to perform adequately at a bite force of 300 N. An increase in defect length caused a tendency for bending at the stem and the module connection. With a decrease in stem length, there were little differences except a slight increase in magnitude. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Suska, Felicia; Kjeller, Göran; Tarnow, Peter; Hryha, Eduard; Nyborg, Lars; Snis, Anders; Palmquist, Anders
2016-08-01
In the field of maxillofacial reconstruction, additive manufacturing technologies, specifically electron beam melting (EBM), offer clinicians the potential for patient-customized design of jaw prostheses, which match both load-bearing and esthetic demands. The technique allows an innovative, functional design, combining integrated porous regions for bone ingrowth and secondary biological fixation with solid load-bearing regions ensuring the biomechanical performance. A patient-specific mandibular prosthesis manufactured using EBM was successfully used to reconstruct a patient's mandibular defect after en bloc resection. Over a 9-month follow-up period, the patient had no complications. A short operating time, good esthetic outcome, and high level of patient satisfaction as measured by quality-of-life questionnaires-the European Organisation for Research and Treatment of Cancer QLQ-C30 (30-item quality-of-life core questionnaire) and H&N35 (head and neck cancer module)-were reported for this case. Individually planned and designed EBM-produced prostheses may be suggested as a possible future alternative to fibular grafts or other reconstructive methods. However, the role of porosity, the role of geometry, and the optimal combination of solid and porous parts, as well as surface properties in relation to soft tissues, should be carefully evaluated in long-term clinical trials. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Goulart, Douglas Rangel; Kemmoku, Daniel Takanori; Noritomi, Pedro Yoshito
2015-01-01
ABSTRACT Objectives The aim of the present study was to develop a plate to treat mandibular angle fractures using the finite element method and mechanical testing. Material and Methods A three-dimensional model of a fractured mandible was generated using Rhinoceros 4.0 software. The models were exported to ANSYS®, in which a static application of displacement (3 mm) was performed in the first molar region. Three groups were assessed according to the method of internal fixation (2 mm system): two non-locking plates; two locking plates and a new design locking plate. The computational model was transferred to an in vitro experiment with polyurethane mandibles. Each group contained five samples and was subjected to a linear loading test in a universal testing machine. Results A balanced distribution of stress was associated with the new plate design. This plate modified the mechanical behavior of the fractured region, with less displacement between the fractured segments. In the mechanical test, the group with two locking plates exhibited greater resistance to the 3 mm displacement, with a statistically significant difference when compared with the new plate group (ANOVA, P = 0.016). Conclusions The new plate exhibited a more balanced distribution of stress. However, the group with two locking plates exhibited greater mechanical resistance. PMID:26539287
Cerebro-costo-mandibular syndrome: Clinical, radiological, and genetic findings.
Tooley, Madeleine; Lynch, Danielle; Bernier, Francois; Parboosingh, Jillian; Bhoj, Elizabeth; Zackai, Elaine; Calder, Alistair; Itasaki, Nobue; Wakeling, Emma; Scott, Richard; Lees, Melissa; Clayton-Smith, Jill; Blyth, Moira; Morton, Jenny; Shears, Debbie; Kini, Usha; Homfray, Tessa; Clarke, Angus; Barnicoat, Angela; Wallis, Colin; Hewitson, Rebecca; Offiah, Amaka; Saunders, Michael; Langton-Hewer, Simon; Hilliard, Tom; Davis, Peter; Smithson, Sarah
2016-05-01
Cerebro-Costo-Mandibular syndrome (CCMS) is a rare autosomal dominant condition comprising branchial arch-derivative malformations with striking rib-gaps. Affected patients often have respiratory difficulties, associated with upper airway obstruction, reduced thoracic capacity, and scoliosis. We describe a series of 12 sporadic and 4 familial patients including 13 infants/children and 3 adults. Severe micrognathia and reduced numbers of ribs with gaps are consistent findings. Cleft palate, feeding difficulties, respiratory distress, tracheostomy requirement, and scoliosis are common. Additional malformations such as horseshoe kidney, hypospadias, and septal heart defect may occur. Microcephaly and significant developmental delay are present in a small minority of patients. Key radiological findings are of a narrow thorax, multiple posterior rib gaps and abnormal costo-transverse articulation. A novel finding in 2 patients is bilateral accessory ossicles arising from the hyoid bone. Recently, specific mutations in SNRPB, which encodes components of the major spliceosome, have been found to cause CCMS. These mutations cluster in an alternatively spliced regulatory exon and result in altered SNRPB expression. DNA was available from 14 patients and SNRPB mutations were identified in 12 (4 previously reported). Eleven had recurrent mutations previously described in patients with CCMS and one had a novel mutation in the alternative exon. These results confirm the specificity of SNRPB mutations in CCMS and provide further evidence for the role of spliceosomal proteins in craniofacial and thoracic development. © 2016 Wiley Periodicals, Inc.
Sieira Gil, Ramón; Pagés, Carles Martí; Díez, Eloy García; Llames, Sara; Fuertes, Ada Ferrer; Vilagran, Jesús Lopez
2015-01-01
Many types of soft tissue grafts have been used for grafting or prelaminating bone flaps for intraoral lining reconstruction. The best results are achieved when prelaminating free flaps with mucosal grafts. We suggest a new approach to obtain keratinized mucosa over a fibula flap using full-thickness, engineered, autologous oral mucosa. We report on a pilot study for grafting fibula flaps for mandibular and maxilla reconstruction with full-thickness tissue-engineered autologous oral mucosa. We describe 2 different techniques: prelaminating the fibula flap and second-stage grafting of the fibula after mandibular reconstruction. Preparation of the full-thickness tissue-engineered oral mucosa is also described. The clinical outcome of the tissue-engineered intraoral lining reconstruction and response after implant placement are reported. A peri-implant granulation tissue response was not observed when prelaminating the fibula, and little response was observed when intraoral grafting was performed. Tissue engineering represents an alternative method by which to obtain sufficient autologous tissue for reconstructing mucosal oral defects. The full-thickness engineered autologous oral mucosa offers definite advantages in terms of reconstruction planning, donor site morbidity, and quality of the intraoral soft tissue reconstruction, thereby restoring native tissue and avoiding peri-implant tissue complications. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
A subperiosteal maxillary implant causing severe osteolysis.
Maï, Nguyen Tan; Jean-Baptiste, Caruhel; Hossein, Khonsari Roman
2018-06-22
Subperiosteal implant denture therapy was initially introduced in 1942 in Sweden and was then used worldwide for the treatment of fully edentulous maxillary or mandibular arches with advanced bone atrophy. Most authors describe decent success rates for mandibular subperiosteal implants in cases with major bone atrophy but follow-up studies for maxillary subperiosteal implants are not available. Here, we report a case of severe maxillary osteolysis secondary to the placement of a subperiosteal in-house implant. Subperiosteal implants are rarely used today but patients still carrying these devices with severe complications can be challenging to manage. New technical advances, including the use of surgical planification and additive manufacturing, may lead to a new interest in subperiosteal implants. Copyright © 2018. Published by Elsevier Masson SAS.
Hong, Paul; Boyd, Daniel; Beyea, Steven D; Bezuhly, Michael
2013-07-01
One of the major disadvantages of mandibular distraction osteogenesis (MDO) is the prolonged time required for consolidation of the regenerate bone. The objective of the present study is to perform a contemporary review of various adjuvant therapies to enhance bone consolidation in MDO. A PubMed search for articles related to MDO, along with the references of those articles, was performed. Inclusion and exclusion criteria were applied to all experimental studies assessing adjuvant therapies to enhance bone consolidation. A total of 1414 titles and abstracts were initially reviewed; 61 studies were included for full review. Many studies involved growth factors, hormones, pharmacological agents, gene therapy, and stem cells. Other adjuvant therapies included mechanical stimulation, laser therapy, and hyperbaric oxygen. Majority of the studies demonstrated positive bone healing effects and thus adjuvant therapies remain a viable strategy to enhance and hasten the consolidation period. Although most studies have demonstrated promising results, many questions still remain, such as optimal amount, timing, and delivery methods required to stimulate the most favorable bone regeneration. As well, further studies comparing various adjuvant therapies and documentation of long-term adverse effects are required prior to clinical application. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
2015-01-01
The healing of bone defects is a challenge for both tissue engineering and modern orthopaedics. This problem has been addressed through the study of scaffold constructs combined with mechanoregulatory theories, disregarding the influence of chemical factors and their respective delivery devices. Of the chemical factors involved in the bone healing process, bone morphogenetic protein-2 (BMP-2) has been identified as one of the most powerful osteoinductive proteins. The aim of this work is to develop and validate a mechano-chemical regulatory model to study the effect of BMP-2 on the healing of large bone defects in silico. We first collected a range of quantitative experimental data from the literature concerning the effects of BMP-2 on cellular activity, specifically proliferation, migration, differentiation, maturation and extracellular matrix production. These data were then used to define a model governed by mechano-chemical stimuli to simulate the healing of large bone defects under the following conditions: natural healing, an empty hydrogel implanted in the defect and a hydrogel soaked with BMP-2 implanted in the defect. For the latter condition, successful defect healing was predicted, in agreement with previous in vivo experiments. Further in vivo comparisons showed the potential of the model, which accurately predicted bone tissue formation during healing, bone tissue distribution across the defect and the quantity of bone inside the defect. The proposed mechano-chemical model also estimated the effect of BMP-2 on cells and the evolution of healing in large bone defects. This novel in silico tool provides valuable insight for bone tissue regeneration strategies. PMID:26043112
Clinical importance of median mandibular flexure in oral rehabilitation: a review.
Sivaraman, K; Chopra, A; Venkatesh, S B
2016-03-01
The mandible has a property to flex inwards around the mandibular symphysis with change in shape and decrease in mandibular arch width during opening and protrusion of the mandible. The mandibular deformation may range from a few micrometres to more than 1 mm. The movement occurs because of the contraction of lateral pterygoid muscles that pulls mandibular condyles medially and causes a sagittal movement of the posterior segments. This movement of mandible can have a profound influence on prognosis and treatment outcome for various restorative, endodontics, fixed, removable and implant-related prosthesis. The review unfolds the causes, importance and clinical implications of median mandibular flexure in oral rehabilitation. This review also highlights the appropriate preventive measures and techniques that should be adopted by clinicians to minimise the effect of flexural movement of the jaw during oral rehabilitation. This would not only help clinicians to achieve a good prosthesis with accurate fit and longevity but also maintain the health of the surrounding periodontal or periimplant gingival tissues and bone. © 2015 John Wiley & Sons Ltd.
Huang, Guofeng; Liu, Guojun; Zhang, Feng; Gao, Jianting; Wang, Jiangze; Chen, Qi; Wu, Benwen; Ding, Zhenqi; Cai, Taoyi
2017-01-01
Under physiological conditions bone defects often occur at mechanical load bearing sites and bone substitutes used for regeneration should be similarly subjected to mechanical loading stress. In this study, we investigated whether a novel heel-strike like mechanical loading method can be used as a complementary therapy to promote bone regeneration following bone substitute grafting. To test this, three groups of rabbits with segmental bone defects in the tibia were implanted with bovine deproteinized cancellous bone scaffold (DCBS), with one group also receiving heel-strike like mechanical loading generated by a rap stress stimulator. From weeks 4-12 post-operation X-ray and micro-CT scanning showed that rabbits receiving combination therapy had significantly more callus at the bone defect. Moreover, bone defects in the combination group were completely replaced with new bone at week 12, while the DCBS implantation alone group healed only partially and rabbits receiving neither DCBS nor mechanical loading developed only small calluses throughout the observation period. Analysis of micro-CT scanning results demonstrated that new bone density in the combination group was significantly higher than the DCBS only group at weeks 4 and 12 ( p <0.05). H&E staining results also indicated a significantly higher percentage of new bone in the bone defect area and a lower percentage of residual scaffold in the combination group compared to the DCBS only group ( p <0.05). Thus, this heel-strike like mechanical loading method appears to accelerate bone regeneration following substitute implantation by restoring a local mechanical loading environment in segmental bone defects.
Schwarz, Frank; Herten, Monika; Sager, Martin; Bieling, Katrin; Sculean, Anton; Becker, Jürgen
2007-04-01
The aim of the present study was to evaluate and compare naturally occuring and ligature-induced peri-implantitis bone defects in humans and dogs. Twenty-four partially and fully edentulous patients undergoing peri-implant bone augmentation procedures due to advanced peri-implant infections were included in this study (n=40 implants). Furthermore, peri-implantitis was induced by ligature placement and plaque accumulation in five beagle dogs for three months following implant insertion (n=15 implants). The ligatures were removed when about 30% of the initial bone was lost. During open flap surgery, configuration and defect characteristics of the peri-implant bone loss were recorded in both humans and dogs. Open flap surgery generally revealed two different classes of peri-implant bone defects. While Class I defects featured well-defined intrabony components, Class II defects were characterized by consistent horizontal bone loss. The allocation of intrabony components of Class I defects regarding the implant body allowed a subdivision of five different configurations (Classes Ia-e). In particular, human defects were most frequently Class Ie (55.3%), followed by Ib (15.8%), Ic (13.3%), Id (10.2%), and Ia (5.4%). Similarly, bone defects in dogs were also most frequently Class Ie (86.6%), while merely two out of 15 defects were Classes Ia and Ic (6.7%, respectively). Within the limits of the present study, it might be concluded that configurations and sizes of ligature-induced peri-implantitis bone defects in dogs seemed to resemble naturally occurring lesions in humans.
Quantitation of mandibular symphysis volume as a source of bone grafting.
Verdugo, Fernando; Simonian, Krikor; Smith McDonald, Roberto; Nowzari, Hessam
2010-06-01
Autogenous intramembranous bone graft present several advantages such as minimal resorption and high concentration of bone morphogenetic proteins. A method for measuring the amount of bone that can be harvested from the symphysis area has not been reported in real patients. The aim of the present study was to intrasurgically quantitate the volume of the symphysis bone graft that can be safely harvested in live patients and compare it with AutoCAD (version 16.0, Autodesk, Inc., San Rafael, CA, USA) tomographic calculations. AutoCAD software program quantitated symphysis bone graft in 40 patients using computerized tomographies. Direct intrasurgical measurements were recorded thereafter and compared with AutoCAD data. The bone volume was measured at the recipient sites of a subgroup of 10 patients, 6 months post sinus augmentation. The volume of bone graft measured by AutoCAD averaged 1.4 mL (SD 0.6 mL, range: 0.5-2.7 mL). The volume of bone graft measured intrasurgically averaged 2.3 mL (SD 0.4 mL, range 1.7-2.8 mL). The statistical difference between the two measurement methods was significant. The bone volume measured at the recipient sites 6 months post sinus augmentation averaged 1.9 mL (SD 0.3 mL, range 1.3-2.6 mL) with a mean loss of 0.4 mL. AutoCAD did not overestimate the volume of bone that can be safely harvested from the mandibular symphysis. The use of the design software program may improve surgical treatment planning prior to sinus augmentation.
Stem cells rejuvenate radiation-impaired vasculogenesis in murine distraction osteogenesis.
Deshpande, Sagar S; Gallagher, Kathleen K; Donneys, Alexis; Nelson, Noah S; Guys, Nicholas P; Felice, Peter A; Page, Erin E; Sun, Hongli; Krebsbach, Paul H; Buchman, Steven R
2015-03-01
Radiotherapy is known to be detrimental to bone and soft-tissue repair. Bone marrow stromal cells have been shown to enhance bone regeneration during distraction osteogenesis following radiation therapy. The authors posit that transplanted bone marrow stromal cells will significantly augment the mandibular vascularity devastated by radiation therapy. Nineteen male Lewis rats were split randomly into three groups: distraction osteogenesis only (n = 5), radiation therapy plus distraction osteogenesis (n = 7), and radiation therapy plus distraction osteogenesis with intraoperative placement of 2 million bone marrow stromal cells (n = 7). A mandibular osteotomy was performed, and an external fixator device was installed. From postoperative days 4 through 12, rats underwent a gradual 5.1-mm distraction followed by a 28-day consolidation period. On postoperative day 40, Microfil was perfused into the vasculature and imaging commenced. Vascular radiomorphometric values were calculated for regions of interest. An analysis of variance with post hoc Tukey or Games-Howell tests was used, dependent on data homogeneity. Stereologic analysis indicated significant remediation in vasculature in the bone marrow stromal cell group compared with the radiation therapy/distraction osteogenesis group. Each of five metrics idicated significant improvements from radiation therapy/distraction osteogenesis to the bone marrow stromal cell group, with no difference between the bone marrow stromal cell group and the distraction osteogenesis group. Bone marrow stromal cells used together with distraction osteogenesis can rejuvenate radiation-impaired vasculogenesis in the mandible, reversing radiation therapy-induced isotropy and creating a robust vascular network. Bone marrow stromal cells may offer clinicians an alternative reconstructive modality that could improve the lifestyle of patients with hypovascular bone.
Nakamura, T
1992-07-01
The possibility of repairing the defect of the pars interarticularis (pars defect) with Bone Morphogenetic Protein (BMP) and fibrin glue was studied. The pars defect established in the 5th lumbar vertebra of Wistar rat was treated with surgical implantation of a composite consisting of BMP, fibrin glue and autologous cancellous bone. At 3, 6, 9 and 12 weeks after implantation, the osteoinductive activity in the pars defect was observed histologically and compared with that of other composite implants such as BMP with fibrin glue, autologous cancellous bone alone and autologous cancellous bone with fibrin glue. Although perfect bone fusion was not obtained with any of the composites employed, a significant increase in bone formation was seen in a composite of BMP, fibrin glue and autologous cancellous bone (p less than 0.01) as compared with that seen in the others. Consequently, implantation of BMP and fibrin glue combined with some biomaterials which support osteo-induction of BMP and stabilize the pars defect might be successfully applied to repair the pars defect.
Ma, J; Jiang, J H
2018-02-18
To evaluate the difference of features of alveolar bone support under lower anterior teeth between high-angle adults with skeletal class II malocclusions and high-angle adults presenting skeletal class III malocclusions by using cone-beam computed tomography (CBCT). Patients who had taken the images of CBCT were selected from the Peking University School and Hospital of Stomatology between October 2015 and August 2017. The CBCT archives from 62 high-angle adult cases without orthodontic treatment were divided into two groups based on their sagittal jaw relationships: skeletal class II and skeletal class III. vertical bone level (VBL), alveolar bone area (ABA), and the width of alveolar bone were measured respectively at the 2 mm, 4 mm, 6 mm below the cemento-enamel junction (CEJ) level and at the apical level. After that, independent samples t-tests were conducted for statistical comparisons. The ABA of the mandibular alveolar bone in the area of lower anterior teeth was significantly thinner in the patients of skeletal class III than those of skeletal class II, especially in terms of the apical ABA, total ABA on the labial and lingual sides and the ABA at 6 mm below CEJ level on the lingual side (P<0.05). The thickness of the alveolar bone of mandibular anterior teeth was significantly thinner in the subjects of skeletal class III than those of skeletal class II, especially regarding the apical level on the labial and lingual side and at the level of 4 mm, 6 mm below CEJ level on the lingual side (P<0.05). The ABA and the thickness of the alveolar bone of mandibular anterior teeth were significantly thinner in the group of skeletal class III adult patients with high-angle when compared with the sample of high-angle skeletal class II adult cases. We recommend orthodontists to be more cautious in treatment of high-angle skeletal class III patients, especially pay attention to control the torque of lower anterior teeth during forward and backward movement, in case that the apical root might be absorbed or fenestration happen in the area of lower anterior teeth.
Pieri, Francesco; Forlivesi, Caterina; Caselli, Ernesto; Corinaldesi, Giuseppe
2017-04-01
Evidence concerning predictability of narrow-diameter implants (NDIs) (<3.3 mm) to restore partially edentulous posterior maxillary and mandibular areas is limited. The aim of this study is to compare the 5-year outcomes of NDIs (3.0 mm) and standard-diameter implants (SDIs) (4.0 to 4.5 mm) supporting fixed partial dentures (FPDs) in posterior mandibular and maxillary jaws. All patients treated with at least two adjacent NDIs or SDIs according to available bone thickness and with a minimum follow-up of 5 years after placement were invited to undergo a clinical and radiologic examination. Outcome measures were implant and FPD failures, biologic and prosthetic complications, and marginal bone loss. A total of 107 out of 127 patients attended the examination: 49 (113 implants) of the NDI group, and 58 (126 implants) of the SDI group. Two NDIs failed in one patient versus four SDIs in four patients (P = 0.37). One FPD failed in the NDI group versus two FPDs in the SDI group (P >0.99). Nine biologic complications occurred in the NDI group and twelve in the SDI group (P = 0.81). Twelve prosthetic complications occurred in the NDI group and only two in the SDI group (P = 0.001). Peri-implant marginal bone loss at 5 years was 0.95 ± 0.84 mm for the NDI group and 1.2 ± 0.86 mm for the SDI group (P = 0.06). Five-year data indicate that FPD treatment in posterior mandibular and maxillary jaws with NDIs was as reliable as with SDIs, although NDIs showed a higher risk of prosthetic complications.
De Clerck, Hugo; Nguyen, Tung; de Paula, Leonardo Koerich; Cevidanes, Lucia
2013-01-01
Introduction Conventional treatment for young Class III patients involves extraoral devices designed to either protract the maxilla or restrain mandibular growth. The use of skeletal anchorage offers a promising alternative to obtain orthopedic results with fewer dental compensations. Our aim was to evaluate 3-dimensional changes in the mandibles and the glenoid fossae of Class III patients treated with bone-anchored maxillary protraction. Methods Twenty-five consecutive skeletal Class III patients between the ages of 9 and 13 years (mean age, 11.10 ± 1.1 year) were treated with Class III intermaxillary elastics and bilateral miniplates (2 in the infrazygomatic crests of the maxilla and 2 in the anterior mandible). The patients had cone-beam computed tomography images taken before initial loading and at the end of active treatment. Three-dimensional models were generated from these images, registered on the anterior cranial base, and analyzed by using color maps. Results Posterior displacement of the mandible at the end of treatment was observed in all subjects (posterior ramus: mean, 2.74 ± 1.36 mm; condyles: mean, 2.07 ± 1.16 mm; chin: mean, −0.13 ± 2.89 mm). Remodeling of the glenoid fossa at the anterior eminence (mean, 1.38 ± 1.03 mm) and bone resorption at the posterior wall (mean, −1.34 ± 0.6 mm) were observed in most patients. Conclusions This new treatment approach offers a promising alternative to restrain mandibular growth for Class III patients with a component of mandibular prognathism or to compensate for maxillary deficiency in patients with hypoplasia of the midface. Future studies with long-term follow-up and comparisons with facemask and chincup therapies are needed to better understand the treatment effects. PMID:22748987
Roberts, W Eugene; Viecilli, Rodrigo F; Chang, Chris; Katona, Thomas R; Paydar, Nasser H
2015-12-01
In the absence of adequate animal or in-vitro models, the biomechanics of human malocclusion must be studied indirectly. Finite element analysis (FEA) is emerging as a clinical technology to assist in diagnosis, treatment planning, and retrospective analysis. The hypothesis tested is that instantaneous FEA can retrospectively simulate long-term mandibular arch retraction and occlusal plane rotation for the correction of a skeletal Class III malocclusion. Seventeen published case reports were selected of patients treated with statically determinate mechanics using posterior mandible or infrazygomatic crest bone screw anchorage to retract the mandibular arch. Two-dimensional measurements were made for incisor and molar movements, mandibular arch rotation, and retraction relative to the maxillary arch. A patient with cone-beam computed tomography imaging was selected for a retrospective FEA. The mean age for the sample was 23.3 ± 3.3 years; there were 7 men and 10 women. Mean incisor movements were 3.35 ± 1.55 mm of retraction and 2.18 ± 2.51 mm of extrusion. Corresponding molar movements were retractions of 4.85 ± 1.78 mm and intrusions of 0.85 ± 2.22 mm. Retraction of the mandibular arch relative to the maxillary arch was 4.88 ± 1.41 mm. Mean posterior rotation of the mandibular arch was -5.76° ± 4.77° (counterclockwise). The mean treatment time (n = 16) was 36.2 ± 15.3 months. Bone screws in the posterior mandibular region were more efficient for intruding molars and decreasing the vertical dimension of the occlusion to close an open bite. The full-cusp, skeletal Class III patient selected for FEA was treated to an American Board of Orthodontics Cast-Radiograph Evaluation score of 24 points in about 36 months by en-masse retraction and posterior rotation of the mandibular arch: the bilateral load on the mandibular segment was about 200 cN. The mandibular arch was retracted by about 5 mm, posterior rotation was about 16.5°, and molar intrusion was about 3 mm. There was a 4° decrease in the mandibular plane angle to close the skeletal open bite. Retrospective sequential iterations (FEA animation) simulated the clinical response, as documented with longitudinal cephalometrics. The level of periodontal ligament stress was relatively uniform (<5 kPa) for all teeth in the mandibular arch segment. En-masse retraction of the mandibular arch is efficient for conservatively treating a skeletal Class III malocclusion. Posterior mandibular anchorage causes intrusion of the molars to close the vertical dimension of the occlusion and the mandibular plane angle. Instantaneous FEA as modeled here could be used to reasonably predict the clinical results of an applied load. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Winkler, T.; Sass, F. A.; Schmidt-Bleek, K.
2018-01-01
Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration. Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 2018;7:232–243. DOI: 10.1302/2046-3758.73.BJR-2017-0270.R1.
Hatakeyama, Ichiro; Takahashi, Yukinobu; Omura, Ken
2014-01-01
Alveolar bone resorption generally occurs during healing after tooth extraction. This study aimed to evaluate the effects of platelet-poor plasma (PPP), platelet-rich plasma (PRP), and platelet-rich fibrin (PRF) on healing in a ridge-augmentation model of the canine socket with dehiscence of the buccal wall. The third mandibular premolars of 12 beagle dogs were extracted and a 3 mm buccal dehiscence from the alveolar crest to the buccal wall of the extraction socket was created. These sockets were then divided into four groups on the basis of the material used to fill the sockets: PPP, PRP, PRF, and control (no graft material) groups. Results were evaluated at 4 and 8 weeks after surgery. The ultrastructural morphology and constructs of each blood product were studied by a scanning electron microscope (SEM) or calculating concentrations of platelets, fibrinogen, platelet-derived growth factor, and transforming growth factor-β. A total of five microcomputed tomography images of specimens were selected for measurement, and the area occupied by the newly formed bone as well as the horizontal bone width were measured. Moreover, decalcified tissue specimens from each defect were analyzed histologically. The median area of new bone at 4 and 8 weeks and median horizontal bone width at 8 weeks were the highest in the PPP group. However, bone maturation in the PRF and the PRP groups was more progressed than that in the PPP and control groups. By SEM findings, the PRF group showed a more highly condensed fibrin fiber network that was regularly arranged when compared with the PPP and PRP groups. The growth factors released from platelets in PRP indicated higher concentrations than that in PRF. Under more severe conditions for bone formation, as in this experiment, the growth factors released from platelets had a negative effect on bone formation. This study showed that PPP is an effective material for the preservation of sockets with buccal dehiscence. PMID:24098948
Hatakeyama, Ichiro; Marukawa, Eriko; Takahashi, Yukinobu; Omura, Ken
2014-02-01
Alveolar bone resorption generally occurs during healing after tooth extraction. This study aimed to evaluate the effects of platelet-poor plasma (PPP), platelet-rich plasma (PRP), and platelet-rich fibrin (PRF) on healing in a ridge-augmentation model of the canine socket with dehiscence of the buccal wall. The third mandibular premolars of 12 beagle dogs were extracted and a 3 mm buccal dehiscence from the alveolar crest to the buccal wall of the extraction socket was created. These sockets were then divided into four groups on the basis of the material used to fill the sockets: PPP, PRP, PRF, and control (no graft material) groups. Results were evaluated at 4 and 8 weeks after surgery. The ultrastructural morphology and constructs of each blood product were studied by a scanning electron microscope (SEM) or calculating concentrations of platelets, fibrinogen, platelet-derived growth factor, and transforming growth factor-β. A total of five microcomputed tomography images of specimens were selected for measurement, and the area occupied by the newly formed bone as well as the horizontal bone width were measured. Moreover, decalcified tissue specimens from each defect were analyzed histologically. The median area of new bone at 4 and 8 weeks and median horizontal bone width at 8 weeks were the highest in the PPP group. However, bone maturation in the PRF and the PRP groups was more progressed than that in the PPP and control groups. By SEM findings, the PRF group showed a more highly condensed fibrin fiber network that was regularly arranged when compared with the PPP and PRP groups. The growth factors released from platelets in PRP indicated higher concentrations than that in PRF. Under more severe conditions for bone formation, as in this experiment, the growth factors released from platelets had a negative effect on bone formation. This study showed that PPP is an effective material for the preservation of sockets with buccal dehiscence.
Characterization of periodontal structures of enamelin-null mice.
Chan, Hsun-Liang; Giannobile, William V; Eber, Robert M; Simmer, James P; Hu, Jan C
2014-01-01
Enamelin-null (ENAM(-/-)) mice have no enamel. When characterizing ENAM(-/-) mice, alveolar bone height reduction was observed, and it was hypothesized that enamel defects combined with diet are associated with the periodontal changes of ENAM(-/-)mice. The aim of the present study is to compare the dimension of interradicular bone of ENAM(-/-) (knock-out [KO]) with wild-type (WT) mice, maintained on hard (HC) or soft (SC) chow. A total of 100 animals divided into four groups were studied at 3, 8, and 24 weeks of age: 1) KO/HC; 2) KO/SC; 3) WT/HC; and 4) WT/SC. Microcomputed tomography was performed, and the following measurements were made between mandibular first (M1) and second (M2) molars: relative alveolar bone height (RBH), crestal bone width (CBW), bone volume (BV), bone mineral content (BMC), and bone mineral density (BMD). The position of M1 and M2 in relation to the inferior border of the mandible was also determined at 24 weeks. All variables were analyzed by one-way analysis of variance and Dunnett test for pairwise comparisons. Morphologic analyses were conducted on hematoxylin and eosin-stained sections. Radiographically, the enamel layer was absent in ENAM(-/-) mice. Interproximal open contacts were observed exclusively in ENAM(-/-) mice, and the prevalence decreased over time, suggesting that a shifting of tooth position had occurred. Additionally, in the two ENAM(-/-) groups, RBH was significantly lower at 8 and 24 weeks (P <0.02); CBW, BV, and BMC were significantly less (P <0.05) at 24 weeks. No differences in BMD were found among the four groups. The molars migrated to a more coronal position in ENAM(-/-) mice and mice on HC. Histologic findings were consistent with radiographic observations. After eruption, the junctional epithelium was less organized in ENAM(-/-) mice. The interdental bone density was not affected in the absence of enamelin, but its volume was, which is likely a consequence of alternations in tooth position.
Self-fitting shape memory polymer foam inducing bone regeneration: A rabbit femoral defect study.
Xie, Ruiqi; Hu, Jinlian; Hoffmann, Oskar; Zhang, Yuanchi; Ng, Frankie; Qin, Tingwu; Guo, Xia
2018-04-01
Although tissue engineering has been attracted greatly for healing of critical-sized bone defects, great efforts for improvement are still being made in scaffold design. In particular, bone regeneration would be enhanced if a scaffold precisely matches the contour of bone defects, especially if it could be implanted into the human body conveniently and safely. In this study, polyurethane/hydroxyapatite-based shape memory polymer (SMP) foam was fabricated as a scaffold substrate to facilitate bone regeneration. The minimally invasive delivery and the self-fitting behavior of the SMP foam were systematically evaluated to demonstrate its feasibility in the treatment of bone defects in vivo. Results showed that the SMP foam could be conveniently implanted into bone defects with a compact shape. Subsequently, it self-matched the boundary of bone defects upon shape-recovery activation in vivo. Micro-computed tomography determined that bone ingrowth initiated at the periphery of the SMP foam with a constant decrease towards the inside. Successful vascularization and bone remodeling were also demonstrated by histological analysis. Thus, our results indicate that the SMP foam demonstrated great potential for bone regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of simvastatin versus low level laser therapy (LLLT) on bone regeneration in rabbit's tibia
NASA Astrophysics Data System (ADS)
Gheith, Mostafa E.; Khairy, Maggie A.
2014-02-01
Simvastatin is a cholesterol lowering drug which proved effective on promoting bone healing. Recently low level laser therapy (LLLT) proved its effect as a biostimulator promoting bone regeneration. This study aims to compare the effect of both Simvastatin versus low level laser on bone healing in surgically created bone defects in rabbit's tibia. Material and methods: The study included 12 New Zealand white rabbits. Three successive 3mm defects were created in rabbits tibia first defect was left as control, second defect was filled with Simvastatin while the third defect was acted on with Low Level Laser (optical fiber 320micrometer). Rabbits were sacrificed after 48 hours, 1 week and 2 weeks intervals. Histopathology was conducted on the three defects Results: The histopathologic studies showed that the bony defects treated with the Low Level Laser showed superior healing patterns and bone regeneration than those treated with Simvastatin. While the control defect showed the least healing pattern.
Cavalcanti, Samantha Cristine Santos X B; Corrêa, Luciana; Mello, Suzana Beatriz Veríssimo; Luz, João Gualberto C
2014-10-01
Methotrexate (MTX) is an anti-metabolite used in rheumatology and oncology. High doses are indicated for oncological treatment, whereas low doses are indicated for chronic inflammatory diseases. This study evaluated the effect of two MTX treatment schedules on the bone healing of the temporomandibular joint fracture in rats. Seventy-five adult male Wistar rats were used to generate an experimental unilateral medially rotated condylar fracture model that allows an evaluation of bone healing and the articular structures. The animals were subdivided into three groups that each received one of the following treatments intraperitoneally: saline (1 mL/week), low-dose MTX (3 mg/kg/week) and high-dose MTX (30 mg/kg). The histological study comprised fracture site and temporomandibular joint evaluations and bone neoformation was evaluated by histomorphometric analysis. A biochemical parameter of bone formation was also assessed. When compared with saline, high-dose MTX delayed bone fracture repairs. In this latter group, after 90 days, the histological analysis revealed atrophy of the fibrocartilage and the presence of fibrous tissue in the joint space. The histomorphometric analysis revealed diminished bone neoformation. The alkaline phosphatase levels also decreased after MTX treatment. It was concluded that high-dose MTX impaired mandibular condyle repair and induced degenerative articular changes. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Di Stefano, Danilo Alessio; Arosio, Paolo; Piattelli, Adriano; Perrotti, Vittoria; Iezzi, Giovanna
2015-02-01
Bone density at implant placement site is a key factor to obtain the primary stability of the fixture, which, in turn, is a prognostic factor for osseointegration and long-term success of an implant supported rehabilitation. Recently, an implant motor with a bone density measurement probe has been introduced. The aim of the present study was to test the objectiveness of the bone densities registered by the implant motor regardless of the operator performing them. A total of 3704 bone density measurements, performed by means of the implant motor, were registered by 39 operators at different implant sites during routine activity. Bone density measurements were grouped according to their distribution across the jaws. Specifically, four different areas were distinguished: a pre-antral (between teeth from first right maxillary premolar to first left maxillary premolar) and a sub-antral (more distally) zone in the maxilla, and an interforaminal (between and including teeth from first left mandibular premolar to first right mandibular premolar) and a retroforaminal (more distally) zone in the lower one. A statistical comparison was performed to check the inter-operators variability of the collected data. The device produced consistent and operator-independent bone density values at each tooth position, showing a reliable bone-density measurement. The implant motor demonstrated to be a helpful tool to properly plan implant placement and loading irrespective of the operator using it.
Tunio, Ahmed; Jalila, Abu; Goh, Yong Meng; Shameha-Intan; Shanthi, Ganabadi
2015-06-01
Fracture and bone segment loss are major clinical problems in birds. Achieving bone formation and clinical union in a fracture case is important for the survival of the bird. To evaluate the efficacy of bone grafts for defect healing in birds, 2 different bone grafts were investigated in the healing of a bone defect in 24 healthy pigeons ( Columba livia ). In each bird, a 1-cm critical size defect (CSD) was created in the left ulna, and the fracture was stabilized with external skeletal fixation (ESF). A graft of hydroxyapatite (HA) alone (n = 12 birds) or demineralized bone matrix (DBM) combined with HA (n = 12 birds) was implanted in the CSD. The CSD healing was evaluated at 3 endpoints: 3, 6, and 12 weeks after surgery. Four birds were euthanatized at each endpoint from each treatment group, and bone graft healing in the ulna CSD was evaluated by histologic examination. The CSD and graft implants were evaluated for quality of union, cortex development, and bone graft incorporation. Results showed no graft rejection in any bird, and all birds had connective tissue formation in the defect because of the bone graft application. These results suggest that bone defect healing can be achieved by a combination of osteoinductive and osteoconductive bone graft materials for clinical union and new bone regeneration in birds. The combination of DBM and HA resulted in a better quality bone graft (P < .05) than did HA alone, but there was no significant differences in cortex development or bone graft incorporation at 3, 6, or 12 weeks. From the results of this study, we conclude that HA bone grafts, alone or in combination with DBM, with external skeletal fixation is suitable and safe for bone defect and fracture treatment in pigeons.
A case of Sotos syndrome treated with distraction osteogenesis in maxilla and mandible.
Takano, Masayuki; Kasahara, Kiyohiro; Ogawa, Chiharu; Katada, Hidenori; Sueishi, Kenji
2012-01-01
Sotos syndrome is inherited in an autosomal-dominant manner and is characterized by increased birth weight, excessive growth, advanced bone age, and distinctive facial features, including dolichocephaly, hypertelorism, and a prominent mandible. We treated a jaw deformity due to Sotos syndrome consisting of malocclusion due to a narrow maxillary dental arch and mandibular retrusion from hypoplasia of the rami. The patient was a 17-year-old man. Malocclusion due to a narrow maxillary dental arch and mandibular retrusion was diagnosed. Rapid maxillary expansion with Lines corticotomy and mandibular advancement with distraction osteogenesis were performed. The maxilla was expanded laterally a total of 3 mm and the mandible prolonged 12 mm in the posterior area of the mandibular body. Subsequently, orthodontic treatment was continued. At present, 5 years after surgery, occlusion remains good and stable.
Primary xanthoma of the mandible
de Moraes Ramos-Perez, FM; de Pádua, JM; Silva-Sousa, YTC; de Almeida, OP; da Cruz Perez, DE
2011-01-01
Bone xanthomas are rare and are usually are associated with endocrine or metabolic diseases, mainly lipid disorders. In the absence of systemic diseases, the lesion is called a primary xanthoma. Primary mandibular xanthomas are extremely rare. The aim of this report is to describe the clinical and radiographic findings of a primary mandibular xanthoma, discussing the epidemiological features, pathogenesis and differential diagnosis. A 25-year-old man was referred for evaluation of a left mandibular lesion detected in a routine radiographic exam. Radiographically, there was a diffuse, unilocular and radiolucent lesion, with irregular margins located adjacent to the surface from the distal root of the left mandibular third molar. The lesion was excised under local anaesthesia. Microscopically, there were several cells with a foamy and granular cytoplasm and central small, round nuclei, similar to xanthomatous macrophages. No lipid disorders were diagnosed. According to these features, the diagnosis of primary mandibular xanthoma was established. In conclusion, xanthomas of the jaws are rare and all seem to be primary and occur exclusively in the mandible. PMID:21831981
Toro, Corrado; Robiony, Massimo; Costa, Fabio; Zerman, Nicoletta; Politi, Massimo
2007-01-15
Functional and aesthetic mandibular reconstruction after ablative tumor surgery continues to be a challenge even after the introduction of microvascular bone transfer. Complex microvascular reconstruction of the resection site requires accurate preoperative planning. In the recent past, bone graft and fixation plates had to be reshaped during the operation by trial and error, often a time-consuming procedure. This paper outlines the possibilities and advantages of the clinical application of anatomical facsimile models in the preoperative planning of complex mandibular reconstructions after tumor resections. From 2003 to 2005, in the Department of Maxillofacial Surgery of the University of Udine, a protocol was applied with the preoperative realization of stereolithographic models for all the patients who underwent mandibular reconstruction with microvascular flaps. 24 stereolithographic models were realized prior to surgery before emimandibulectomy or segmental mandibulectomy. The titanium plates to be used for fixation were chosen and bent on the model preoperatively. The geometrical information of the virtual mandibular resections and of the stereolithographic models were used to choose the ideal flap and to contour the flap into an ideal neomandible when it was still pedicled before harvesting. Good functional and aesthetic results were achieved. The surgical time was decreased on average by about 1.5 hours compared to the same surgical kind of procedures performed, in the same institution by the same surgical team, without the aforesaid protocol of planning. Producing virtual and stereolithographic models, and using them for preoperative planning substantially reduces operative time and difficulty of the operation during microvascular reconstruction of the mandible.
Morphometric study of mandibular ramus related to sagittal ramus split osteotomy and osteosynthesis.
Vinicius de Oliveira, Marcelo; de Moraes, Paulo Hemerson; Olate, Sergio; Alonso, Maria Beatriz C; Watanabe, Plauto Christopher Aranha; Haiter-Neto, Francisco; de Albergaria-Barbosa, José Ricardo
2012-09-01
The objective of this study was to quantify the cortical bone thickness of the mandibular ramus to determine conditions related to sagittal split ramus osteotomy and placement of screws. The patient sample comprised 44 subjects of ages ranging from 46 to 52 years (mean age, 49 years). The cone-beam computed tomography was performed and realized 3 cuts in the third molar area (section A), 5 mm posterior (section B), and 5 mm posterior to the latter (section C). Measurement in the cortical areas of the superior and inferior levels related to mandibular canal and measurement related to the total width of the mandible was executed. Intraclass correlation coefficient with P < 0.05 was used. The result showed that the buccal and lingual cortical zone did not present statistical differences, and the minor value was 1.5 mm for each one. There were no differences in the superior and inferior cortical bone, and the total width of the mandible was between 15.9 and 8.5 mm in the anterior area, between 17.4 and 12.8 mm in the middle area, and between 18 and 8.8 mm in the posterior area. The distance superiorly to the mandibular canal presented a minimal SD with a mean of 8.5 mm in the anterior region, 10.6 mm for the middle region, and 12.5 mm in the posterior region. In conclusion, the cortical thickness of the mandibular ramus in the adult population is particularly strong and offers a good anchorage for screw insertion in sagittal split ramus osteotomy.
Pombo Castro, María; Luaces Rey, Ramón; Arenaz Búa, Jorge; Santana-Mora, Urbano; López-Cedrún Cembranos, José Luís
2013-10-01
Oral manifestations in ectodermal dysplasia include oligodontia, alveolar ridges hypoplasia, and others. Due to the special conditions in terms of unhealthy teeth and lack of bone, implant-supported rehabilitation seems to offer the most satisfactory outcome. A 27-year-old male diagnosed with ectodermal dysplasia was referred to our department for oral rehabilitation. Oral manifestations included oligodontia, maxillary and mandibular atrophy, mandibular alveolar ridge with knife-edge morphology, and conical teeth. Treatment planning consisted of a Le Fort I osteotomy with interpositional grafts, bilateral sinus lift, and placement of maxillary and mandibular inlay and onlay corticocancellous grafts, using autologous iliac crest bone. In the second surgery, all remaining teeth were removed and 11 endosteal implants were placed. Six months after implant placement, a bimaxillary fixed implant-supported prosthesis was delivered, maintaining a satisfactory esthetic and functional result after a 2-year follow-up. The use of combined preprosthetic techniques allows the placement of endosteal implants and a fixed implant-supported prosthesis in patients with oligodontia and ectodermal dysplasia, providing an esthetic and functional oral rehabilitation.
Arat Bilhan, Selda; Bilhan, Hakan; Bozdag, Ergun; Sunbuloglu, Emin; Baykasoglu, Cengiz; Kutay, Omer
2013-02-01
The main goal of this study was to compare the stress distribution of mandibular overdentures (OVD) with different numbers of supporting implants and single versus splinted attachment types. Four different biting situations were simulated for the 2-, 3-, and 4-implant retentive anchor as well as bar attachment OVDs on a formalin-fixed cadaver mandible, and strains were recorded under vertical loading of 100 N. The calculated von Mises values from measured strains in all measurement sites and loading conditions for nonsplinted attachments (retentive anchor) were higher than splinted (bar) attachments. It may be concluded that in cases with low quality and quantity of bone, the increase in number of implants and the use of a splinted attachment should be preferred to reduce forces emerging around the implants during function. The use of 2 single attachments in cases with good bone quality and ideal size implants still seems to be a safe and sufficient solution for the treatment of mandibular edentulism with OVDs.
Actinomycotic osteomyelitis of the mandible: an unusual case.
Figueiredo, Leonardo Morais Godoy; Trindade, Soraya Castro; Sarmento, Viviane Almeida; de Oliveira, Thaís Feitosa Leitão; Muniz, Wilson Rodrigo; Valente, Rômulo Oliveira de Hollanda
2013-12-01
Actinomycotic osteomyelitis is an infection in soft tissues and/or bones, being associated with trauma or a previous nonspecific infection. This article presents an unusual case of mandibular osteomyelitis caused by Actinomyces. A 19-year-old male patient was referred for endodontic treatment of the lower right first molar about 16 months ago and removal of lower right third molar approximately 3 years before. The panoramic radiography showed change in bone density in the region of ill-defined mandibular angle boundaries, and the computed tomography (CT) showed mixed density image in the mandibular angle, with discreet expansion of cortical vestibular and lingual. Biopsy was performed, and content was aspirated in small quantity and purulent tissue fragments were sent to anatomical-pathological examination. The collected purulent secretion was colored for cytopathologic study, which showed infection by Actinomyces. In this case, the causative agent was Actinomyces, which makes it even more unusual. The origin of the microorganism has not been clearly established; however, the diagnosis allowed long-term treatment with antibiotics, which has resulted in the resolution of the case.
Dutta, Shubha Ranjan; Passi, Deepak; Singh, Purnima; Sharma, Sarang; Singh, Mahinder; Srivastava, Dhirendra
2016-01-01
The purpose of this study was to compare the efficacy of platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and hydroxyapatite (HA) for reduction of pain and swelling, absence of dry socket, soft tissue healing, and bone regeneration after mandibular third molar extraction in human patients. Forty patients requiring extraction of mandibular third molars were randomly grouped as control, PRP, PRF, and HA-treated. The patients were assessed for postoperative pain, swelling, dry socket, and soft tissue healing on the 3 rd , 7 th , and 14 th day of postoperative periods depending on the standard methods. Radiological assessment of the extraction site was done at 1, 2, and 6 months interval to compare the change in bone density in the sockets in control and treated patients. Pain and swelling were less on PRP and PRF site when compared to HA and control site. PRP and PRF site showed better soft tissue healing when compared to HA and control site. Radiographic assessment showed comparatively lesser bone density values in PRP, PRF, and control site at 1, 2, and 6 months than HA site. Our study showed that PRP and PRF are better graft materials than HA regarding pain, swelling, dry socket, and soft tissue healing. Bone regeneration is induced promptly by HA as compared to other graft materials. However, a more elaborate study with a larger number of clinical cases is very much essential to be more conclusive regarding the efficacy of the graft materials.
Huang, Hairong; Wismeijer, Daniel; Shao, Xianhong; Wu, Gang
2016-01-01
Objectives The objective of this study is to mathematically evaluate the influence of multiple factors on implant stability quotient values in clinical practice. Patients and methods Resonance frequency analysis was performed at T1 (measured immediately at the time of implant placement) and at T2 (measured before dental restoration) in 177 patients (329 implants). Using a multivariate linear regression model, we analyzed the influence of the following eleven candidate factors: sex, age, maxillary/mandibular location, bone type, immediate/delayed implantation, bone grafting (presence or absence), insertion torque, I-/II-stage healing pattern, implant diameter, implant length, and T1–T2 time interval. Results The following factors were identified to significantly influence the implant stability quotient (ISQ) values at T1: insertion torque, bone grafting, I-/II-stage healing pattern, immediate/delayed implantation, maxillary/mandibular location, implant diameter, and sex. In contrast, the ISQ values at T2 were significantly influenced only by three factors: implant diameter, T1–T2 time interval, and insertion torque. Conclusion Among the eleven candidate factors, seven key factors were found to influence the T1-ISQ values, while only three key factors influenced the T2-ISQ values. Both T1 and T2-ISQ values were found to be influenced by implant diameter and insertion torque. T1 was influenced specifically by the sex of the patient, the location (maxillary or mandibular), the implantation mode (immediate/delayed implantation), the healing stage, and the absence or presence of bone graft materials. PMID:27785040
Dutta, Shubha Ranjan; Passi, Deepak; Singh, Purnima; Sharma, Sarang; Singh, Mahinder; Srivastava, Dhirendra
2016-01-01
Aim: The purpose of this study was to compare the efficacy of platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and hydroxyapatite (HA) for reduction of pain and swelling, absence of dry socket, soft tissue healing, and bone regeneration after mandibular third molar extraction in human patients. Materials and Methods: Forty patients requiring extraction of mandibular third molars were randomly grouped as control, PRP, PRF, and HA-treated. The patients were assessed for postoperative pain, swelling, dry socket, and soft tissue healing on the 3rd, 7th, and 14th day of postoperative periods depending on the standard methods. Radiological assessment of the extraction site was done at 1, 2, and 6 months interval to compare the change in bone density in the sockets in control and treated patients. Results: Pain and swelling were less on PRP and PRF site when compared to HA and control site. PRP and PRF site showed better soft tissue healing when compared to HA and control site. Radiographic assessment showed comparatively lesser bone density values in PRP, PRF, and control site at 1, 2, and 6 months than HA site. Conclusion: Our study showed that PRP and PRF are better graft materials than HA regarding pain, swelling, dry socket, and soft tissue healing. Bone regeneration is induced promptly by HA as compared to other graft materials. However, a more elaborate study with a larger number of clinical cases is very much essential to be more conclusive regarding the efficacy of the graft materials. PMID:28163478
Lavrador, Catarina; Mascarenhas, Ramiro; Coelho, Paulo; Brites, Cláudia; Pereira, Alfredo; Gogolewski, Sylwester
2016-03-01
Bone substitutes have been a critical issue as the natural source can seldom provide enough bone to support full healing. No bone substitute complies with all necessary functions and characteristics that an autograft does. Polyurethane sponges have been used as a surgical alternative to cancellous bone grafts for critical bone defect donor sites. Critical bone defects were created on the tibial tuberosity and iliac crest using an ovine model. In group I (control-untreated), no bone regeneration was observed in any animal. In group II (defects left empty but covered with a microporous polymeric membrane), the new bone bridged the top ends in all animals. In groups III and IV, bone defects were implanted with polyurethane scaffolds modified with biologically active compounds, and bone regeneration was more efficient than in group II. In groups III and IV there were higher values of bone regeneration specific parameters used for evaluation (P < 0.05) although the comparison between these groups was not possible. The results obtained in this study suggest that biodegradable polyurethane substitutes modified with biologically active substances may offer an alternative to bone graft, reducing donor site morbidity associated with autogenous cancellous bone harvesting.
Long bone reconstruction using multilevel lengthening of bone defect fragments.
Borzunov, Dmitry Y
2012-08-01
This paper presents experimental findings to substantiate the use of multilevel bone fragment lengthening for managing extensive long bone defects caused by diverse aetiologies and shows its clinical introduction which could provide a solution for the problem of reducing the total treatment time. Both experimental and clinical multilevel lengthening to bridge bone defect gaps was performed with the use of the Ilizarov method only. The experimental findings and clinical outcomes showed that multilevel defect fragment lengthening could provide sufficient bone formation and reduction of the total osteosynthesis time in one stage as compared to traditional Ilizarov bone transport. The method of multilevel regeneration enabled management of critical-size defects that measured on average 13.5 ± 0.7 cm in 78 patients. The experimental and clinical results proved the efficiency of the Ilizarov non-free multilevel bone plasty that can be recommended for practical use.
Tchanque-Fossuo, Catherine N; Donneys, Alexis; Sarhaddi, Deniz; Poushanchi, Behdod; Deshpande, Sagar S; Weiss, Daniela M; Buchman, Steven R
2013-11-01
Pathologic fractures (Fx) of the mandibles are severely debilitating consequences of radiation (XRT) in the treatment of craniofacial malignancy. We have previously demonstrated Amifostine's effect (AMF) in the remediation of radiation-induced cellular damage. We posit that AMF prophylaxis will preserve bone strength and drastically reverse radiotherapy-induced non-union in a murine mandibular model of pathologic fracture repair. Twenty-nine rats were randomized into 3 groups: Fx, XRT/Fx, and AMF/XRT/Fx. A fractionated human equivalent dose of radiation was delivered to the left hemimandibles of XRT/Fx and AMF/XRT/Fx. AMF/XRT/Fx was pre-treated with AMF. All groups underwent left mandibular osteotomy with external fixation and setting of a 2.1mm fracture gap post-operatively. Utilizing micro-computed tomography and biomechanical testing, the healed fracture was evaluated for strength. All radiomorphometrics and biomechanical properties were significantly diminished in XRT/Fx compared to both Fx and AMF/XRT/Fx. No difference was demonstrated between Fx and AMF/XRT/Fx in both outcomes. Our investigation establishes the significant and substantial capability of AMF prophylaxis to preserve and enhance bone union, quality and strength in the setting of human equivalent radiotherapy. Such novel discoveries establish the true potential to utilize pharmacotherapy to prevent and improve the treatment outcomes of radiation-induced late pathologic fractures. © 2013.
Tchanque-Fossuo, Catherine N.; Donneys, Alexis; Sarhaddi, Deniz; Poushanchi, Behdod; Deshpande, Sagar S.; Weiss, Daniela M.
2013-01-01
Background Pathologic fractures (Fx) of the mandibles are severely debilitating consequences of radiation (XRT) in the treatment of craniofacial malignancy. We have previously demonstrated Amifostine’s effect (AMF) in the remediation of radiation-induced cellular damage. We posit that AMF prophylaxis will preserve bone strength and drastically reverse radiotherapy-induced non-union in a murine mandibular model of pathologic fracture repair. Materials and Methods Twenty-nine rats were randomized into 3 groups: Fx, XRT/Fx, and AMF/XRT/Fx. A fractionated human equivalent dose of radiation was delivered to the left hemimandibles of XRT/Fx and AMF/XRT/Fx. AMF/XRT/Fx was pre-treated with AMF. All groups underwent left mandibular osteotomy with external fixation and setting of a 2.1mm fracture gap post-operatively. Utilizing micro-computed tomography and biomechanical testing, the healed fracture was evaluated for strength. Results All radiomorphometrics and biomechanical properties were significantly diminished in XRT/Fx compared to both Fx and AMF/XRT/Fx. No difference was demonstrated between Fx and AMF/XRT/Fx in both outcomes. Conclusion Our investigation establishes the significant and substantial capability of AMF prophylaxis to preserve and enhance bone union, quality and strength in the setting of human equivalent radiotherapy. Such novel discoveries establish the true potential to utilize pharmacotherapy to prevent and improve the treatment outcomes of radiation-induced late pathologic fractures. PMID:23860272
Glenoid fossa responses to mandibular lateral shift in growing rats.
Liu, Chang; Kaneko, Sawa; Soma, Kunimichi
2007-07-01
To evaluate the morphological and histological responses of the glenoid fossa to mandibular lateral shift in growing rats. A resin plate was placed on the upper incisors of 4-week-old rats in the experimental groups to displace the mandible to the left during closure. The rats were killed after 2, 4, 8, and 12 weeks. The morphometric measurements were performed on dry skulls, and tissue blocks were processed for periodic acid and Schiff's reagent (PAS) staining to examine the new bone formation. Gross measurements showed asymmetry in both the position and size of the fossae between the two sides after 4 weeks of lateral shift. The glenoid fossa on the ipsilateral side was repositioned relatively backward, outward and upward compared with the contralateral side and control group, whereas the fossa on the contralateral side was relocated relatively forward and downward compared with the control group. The length of the fossa was smaller on the ipsilateral side than on contralateral side and control group. At 2 weeks, the amount of newly formed bone in the posterior region of the fossa was higher in the experimental group than the control group. It is suggested that the mandibular lateral shift causes asymmetry in the position and size of the glenoid fossa and that this phenomenon can be related to different bilateral directional new bone formation in the posterior region.
Third-molar extraction with ultrasound bone surgery: a case-control study.
Mozzati, Marco; Gallesio, Giorgia; Russo, Andrea; Staiti, Giorgio; Mortellaro, Carmen
2014-05-01
The aim of this case-control study was to evaluate the postoperative period and healing between 2 surgical methods (traditional and ultrasound bone surgery) that are used for mandibular third-molar extraction. Fifteen patients with impaction of both of the lower third molars and indications for their extractions were used in this study. Bilateral-mandibular third-molar extractions were performed at the same surgical time: traditional surgery with burrs was used on 1 side (control site), and ultrasound surgery was used on the other side (test [T] site). After surgery, the patients were examined at 7 and 14 days and at 1 and 3 months to evaluate tissue healing. The following was assessed at every follow-up: pain, trismus, swelling, and alveolar bone level. The study included 15 patients, and 30 mandibular third-molar extractions were performed. We found only 1 postoperative complication: 1 patient had alveolitis in the control site. Complete recoveries without any complications were reported in all of the patients at the T sites. Complete recoveries without any complication were reported in all patients at the T sites. The only disadvantage of the piezoelectric technique was the length of operation time, which was increased by approximately 8 minutes; however, this effect was offset by reducing the morbidity. Our preliminary study showed that Piezosurgery is an excellent tool for reducing the risk of complications and improving the postoperative period.
Mandibular bone remodeling under a choline-deficient diet: a histomorphometric study in rats.
Gorustovich, Alejandro A; Espósito, María A; Guglielmotti, María B; Giglio, Máximo J
2003-06-01
A deficiency of lipotropic factors in the rat induces renal, hepatic, and/or hematic damage. The aim of the present study was to evaluate the effect of a choline-deficient diet and refeeding on mandibular bone remodeling. Fifty Wistar rats were divided into 5 groups: group 1 (G1): control diet for 15 days; group 2 (G2): choline-deficient diet for 15 days; group 3 (G3): control diet for 30 days; group 4 (G4): choline-deficient diet for 30 days; and group 5 (G5): choline-deficient diet for 15 days and control diet for 15 days. All animals were sacrificed by ether overdose. The mandibles were resected, radiographed, decalcified, processed, and embedded in paraffin. Bucco-lingually oriented sections were obtained at the level of the interradicular bone of the medial roots of the left first molar, and stained with hematoxylin and eosin (H & E). Bone tissue density and bone remodeling were determined histomorphometrically. Body weight, food intake, hematocrit, and hemoglobinemia were also recorded. Microscopic observation revealed that osteogenesis was lower in rats fed a choline-deficient diet, at both 15 and 30 days, and that this decrease did not revert with a control diet. Histomorphometric evaluation showed 37% and 27% reduction in bone tissue density at 15 and 30 days, respectively, and a 30% decrease in bone formation at 30 days, compared to controls. In this experimental model, a choline-deficient diet led to altered bone remodeling as observed by a marked reduction in osteogenesis.
Ma, Li; Mattheos, Nikos; Sun, Yan; Liu, Xi Ling; Yip Chui, Ying; Lang, Niklaus Peter
2015-08-01
The aim of the present study was to evaluate and compare the wound-healing process following osteotomies performed with either conventional rotary burs or piezoelectric surgery in a rabbit model. Two types of osteotomy window defects of the nasal cavities were prepared on the nasal bone of 16 adult New Zealand white rabbits with either a conventional rotary bur or piezo surgery. The defects were covered with a resorbable membrane. Four animals were killed at 1, 2, 3, and 5 weeks after the surgical procedure, respectively. Histological and morphometric evaluations were performed to assess the volumetric density of various tissue components: the blood clot, vascularized structures, provisional matrix, osteoid, mineralized bone, bone debris, residual tissue, and old bone. Significantly more bone debris was found at 1 week in the conventionally-prepared defects compared to the piezo surgically-prepared defects. At 2 and 3 weeks, a newly-formed hard tissue bridge, mainly composed of woven bone, was seen; however, no statistically-significant differences were observed. At 5 weeks, the defects were completely filled with newly-formed bone. The defects prepared by piezo surgery showed a significantly decreased proportion of bone debris at 1 week, compared to conventional rotary bur defect. © 2014 Wiley Publishing Asia Pty Ltd.
Reliability of CBCT as an assessment tool for mandibular molars furcation defects
NASA Astrophysics Data System (ADS)
Marinescu, Adrian George; Boariu, Marius; Rusu, Darian; Stratul, Stefan-Ioan; Ogodescu, Alexandru
2014-01-01
Introduction. In numerous clinical situations it is not possible to have an exact clinical evaluation of the furcation defects. Recently the use of CBCT in periodontology has led to an increased precision in diagnostic. Aim. To determine the accuracy of CBCT as diagnostic tool of the furcation defects. Material and method. 19 patients with generalised advanced chronic periodontitis were included in this study, presenting a total of 25 lower molars with different degrees of furcation defects. Clinical and digital measurements (in mm) were performed on all the molars involved. The data obtained has been compared and statistically analysed. Results. The analysis of primary data has demonstrated that all the furcation grade II and III defects were revealed using the CBCT technique. Regarding the incipient defects (grade I Hamp < 3mm), the dimensions measured on CBCT images were slightly bigger. The results have shown that 84% of the defects detected by CBCT have been confirmed by clinical measurements. These data are similar to those revealed by other studies1. Conclusions. The use of CBCT technique in evaluation and diagnosis of human mandibular furcation defects can provide many important information regarding the size and aspect of the interradicular defect, efficiently and noninvasively. CBCT technique is used more effectively in detection of advanced furcation degree compared to incipient ones. However, the CBCT examination cannot replace, at least in this stage of development, the clinical measurements, especially the intraoperative ones, which are considered to represent the „golden standard" in this domain.
An experimental study on the application of radionuclide imaging in repair of the bone defect
Zhu, Weimin; Wang, Daping; Zhang, Xiaojun; Lu, Wei; Liu, Jianquan; Peng, Liangquan; Li, Hao; Han, Yun; Zeng, Yanjun
2011-01-01
The aim of our study was to validate the effect of radionuclide imaging in early monitoring of the bone’s reconstruction, the animal model of bone defect was made on the rabbits repaired with HA artificial bone. The ability of bone defect repair was evaluated by using radionuclide bone imaging at 2, 4, 8 and 12 weeks postoperatively. The results indicate that the experimental group stimulated more bone formation than that of the control group. The differences of the bone reconstruction ability were statistically significant (p<0.05). The nano-HA artificial has good bone conduction, and it can be used for the treatment of bone defects. Radionuclide imaging may be an effective and first choice method for the early monitoring of the bone’s reconstruction. PMID:21875418
3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer
NASA Astrophysics Data System (ADS)
Ma, Hongshi; Li, Tao; Huan, Zhiguang; Zhang, Meng; Yang, Zezheng; Wang, Jinwu; Chang, Jiang; Wu, Chengtie
2018-04-01
The challenges in bone tumor therapy are how to repair the large bone defects induced by surgery and kill all possible residual tumor cells. Compared to cancellous bone defect regeneration, cortical bone defect regeneration has a higher demand for bone substitute materials. To the best of our knowledge, there are currently few bifunctional biomaterials with an ultra-high strength for both tumor therapy and cortical bone regeneration. Here, we designed Fe-CaSiO3 composite scaffolds (30CS) via 3D printing technique. First, the 30CS composite scaffolds possessed a high compressive strength that provided sufficient mechanical support in bone cortical defects; second, synergistic photothermal and ROS therapies achieved an enhanced tumor therapeutic effect in vitro and in vivo. Finally, the presence of CaSiO3 in the composite scaffolds improved the degradation performance, stimulated the proliferation and differentiation of rBMSCs, and further promoted bone formation in vivo. Such 30CS scaffolds with a high compressive strength can function as versatile and efficient biomaterials for the future regeneration of cortical bone defects and the treatment of bone cancer.
[How to make your own custom cutting guides for both mandibular and fibular stair step osteotomies?
Rem, K; Bosc, R; De Kermadec, H; Hersant, B; Meningaud, J-P
2017-12-01
Using tailored cutting guides for osteocutaneous free fibula flap in complex mandibular reconstruction after cancer resection surgery constitutes a substantial improvement. Autonomously conceiving and manufacturing the cutting guides within a plastic surgery department with computer-aided design (CAD) and three-dimensional (3D) printing allows planning more complex osteotomies, such as stair-step osteotomies, in order to achieve more stable internal fixations. For the past three years, we have been producing by ourselves patient-tailored cutting guides using CAD and 3D printing. Osteotomies were virtually planned, making the cutting lines more complex in order to optimize the internal fixation stability. We also printed reconstructed mandible templates and shaped the reconstruction plates on them. We recorded data including manufacturing techniques and surgical outcomes. Eleven consecutive patients were operated on for an oral cavity cancer. For each patient, we planned the fibular and mandibular stair-step osteotomies and we produced tailored cutting guides. In all patients, we achieved to get immediately stable internal fixations and in 10 patients, a complete bone consolidation after 6 months. Autonomously manufacturing surgical cutting guides for mandibular reconstruction by free fibula flap is a significant improvement, regarding ergonomics and precision. Planning stair-step osteotomies to perform complementary internal fixation increases contact surface and congruence between the bone segments, thus improving the reconstructed mandible stability. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Aquilina, Peter; Parr, William C.H.; Chamoli, Uphar; Wroe, Stephen; Clausen, Philip
2014-01-01
The most stable pattern of internal fixation for mandibular condyle fractures is an area of ongoing discussion. This study investigates the stability of three patterns of plate fixation using readily available, commercially pure titanium implants. Finite element models of a simulated mandibular condyle fracture were constructed. The completed models were heterogeneous in bone material properties, contained approximately 1.2 million elements and incorporated simulated jaw adducting musculature. Models were run assuming linear elasticity and isotropic material properties for bone. No human subjects were involved in this investigation. The stability of the simulated condylar fracture reduced with the different implant configurations, and the von Mises stresses of a 1.5-mm X-shaped plate, a 1.5-mm rectangular plate, and a 1.5-mm square plate (all Synthes (Synthes GmbH, Zuchwil, Switzerland) were compared. The 1.5-mm X plate was the most stable of the three 1.5-mm profile plate configurations examined and had comparable mechanical performance to a single 2.0-mm straight four-hole plate. This study does not support the use of rectangular or square plate patterns in the open reduction and internal fixation of mandibular condyle fractures. It does provide some support for the use of a 1.5-mm X plate to reduce condylar fractures in selected clinical cases. PMID:25136411
Cerebro-costo-mandibular Syndrome
McNicholl, B.; Egan-Mitchell, B.; Murray, J. P.; Doyle, J. F.; Kennedy, J. D.; Crome, L.
1970-01-01
Three sibs with a hitherto unreported syndrome are described, the main features being mental handicap, palatal defects, micrognathia, and severe costovertebral defects, involving segmentation of most ribs and fusion of their dorsal ends to the vertebral bodies. In addition one infant had hypoplasia of an elbow together with defects of sacrum and coccyx; she and one other sib had minor dental defects. The syndrome is potentially lethal in the neonatal period; one of the sibs has survived. The inheritance is probably autosomal recessive. ImagesFIG. 1FIG. 2FIG. 3FIG. 4 PMID:5427859
Prognosis of a mandibular incisor with apical and periodontal lesion: an 18-month follow-up.
Yilmaz, Burak; Er, Serkan; Sonbay, Burcin Hilal
2009-01-01
Oral habits that are performed daily, can be a factor in the progression of periodontal and/or endodontic diseases. The purpose of this clinical report was to describe the treatment of a wide periodontal lesion and 18-month follow-up of a 13-year-old male patient's permanent mandibular central incisor that was traumatized due to chronic pencil biting. The lesion was curreted surgically while the compromised mandibular central incisor was endodontically and periodontally treated. The interdisciplinary approach showed a successful clinical outcome, as the survival of the infected tooth and the recovery of the soft tissues and the alveolar bone could have been achieved.
Bilateral Mandibular Paramolars
Dhull, Rachita Singh; Panda, Swagatika; Acharya, Sonu; Yadav, Shweta; Mohanty, Gatha
2014-01-01
ABSTRACT Supernumerary tooth is a developmental anomaly and has been argued to arise from multiple etiologies. These teeth may remain embedded in the alveolar bone or can erupt into the oral cavity. They can cause a variety of complications in the developing dentition. Supernumerary teeth can present in various forms and in any region of the mandible or maxilla, but have a predisposition for the anterior maxilla. Here is the presentation of a case of unusual location of supernumerary teeth located in between mandibular first and second molar region bilaterally. How to cite this article: Dhull KS, Dhull RS, Panda S, Acharya S, Yadav S, Mohanty G. Bilateral Mandibular Paramolars. Int J Clin Pediatr Dent 2014;7(1):40-42. PMID:25206236
Bilateral mandibular paramolars.
Dhull, Kanika Singh; Dhull, Rachita Singh; Panda, Swagatika; Acharya, Sonu; Yadav, Shweta; Mohanty, Gatha
2014-01-01
Supernumerary tooth is a developmental anomaly and has been argued to arise from multiple etiologies. These teeth may remain embedded in the alveolar bone or can erupt into the oral cavity. They can cause a variety of complications in the develo-ping dentition. Supernumerary teeth can present in various forms and in any region of the mandible or maxilla, but have a predisposition for the anterior maxilla. Here is the presentation of a case of unusual location of supernumerary teeth located in between mandibular first and second molar region bilaterally. How to cite this article: Dhull KS, Dhull RS, Panda S, Acharya S, Yadav S, Mohanty G. Bilateral Mandibular Paramolars. Int J Clin Pediatr Dent 2014;7(1):40-42.
Pediatric mandibular fractures.
Thaller, S R; Mabourakh, S
1991-06-01
In spite of curiosity, facial fractures, particularly mandibular fractures, in the pediatric age group embrace only a modest proportion of facial fractures that occur within the general population. Several large series report an overall incidence of approximately 1% of all facial bone fractures. A considerable volume of literature has been generated describing the pattern of injury and treatment modalities for pediatric facial bone fractures. At our institution, which is an extremely busy university-based regional trauma center, we have witnessed a persistent escalation in the number of patients requiring repair of their facial bone fractures. During the period of January 1989 through January 1990, we treated a total of 204 patients for repair of mandible fractures. An analysis of the records of this group revealed only 3 patients who were younger than 4 years of age and 2 additional patients younger than 8 years. There were another 10 patients 17 years and younger, for a total incidence of 0.08%. Additionally, we found that within this seemingly small group, there was a surprisingly high incidence of severe, associated injuries.
Liu, Yun-Feng; Fan, Ying-Ying; Dong, Hui-Yue; Zhang, Jian-Xing
2017-12-01
The method used in biomechanical modeling for finite element method (FEM) analysis needs to deliver accurate results. There are currently two solutions used in FEM modeling for biomedical model of human bone from computerized tomography (CT) images: one is based on a triangular mesh and the other is based on the parametric surface model and is more popular in practice. The outline and modeling procedures for the two solutions are compared and analyzed. Using a mandibular bone as an example, several key modeling steps are then discussed in detail, and the FEM calculation was conducted. Numerical calculation results based on the models derived from the two methods, including stress, strain, and displacement, are compared and evaluated in relation to accuracy and validity. Moreover, a comprehensive comparison of the two solutions is listed. The parametric surface based method is more helpful when using powerful design tools in computer-aided design (CAD) software, but the triangular mesh based method is more robust and efficient.
Faustov, L A; Nedel'ko, N A; Morozova, M V
2001-01-01
Morphological reactions in tissue adjacent to mandibular angular fracture were studied in guinea pigs treated with sodium succinate and laser magnetotherapy. Due to succinate therapy the exudative component of inflammation was less expressed in comparison with the control, macrophagal reaction and neoangiogenesis were activated, the volume of damaged muscle tissue and the incidence of suppurations decreased. The number of osteoblasts increased and new bone structures acquired a lamellar pattern earlier than in the control. Sodium succinate therapy in combination with laser magnetotherapy had a more pronounced positive effect as regards activation of macrophagal reaction and neoangiogenesis and a decrease in the area of fibrosclerotic changes in the zone of damaged muscles, where newly formed myosymplasts differentiated into myotubes and even in muscle fibers. Suppuration of the wound was prevented. Bone tissue in the fracture zone formed without preliminary formation of cartilaginous tissue, which resulted in more rapid osteogenesis (lamellar bone growth in the fracture zone).
Han, Xiang-Yong; Fu, Yuan-Fei; Zhang, Fu-Qiang
2007-02-01
Bone defects in oral and maxillofacial region was a common problem. To repair the defect, bone grafts including autograft, allograft and artificial bone graft were used in clinic despite of their disadvantages. Nowadays, bone tissue engineering has become a commonly used method to repair bone defect. This paper reviewed the application of beta-TCP, collagen and beta-TCP/collagen composite in bone tissue engineering. It was concluded that beta-TCP/collagen composite was a promising materials in bone tissue engineering.
NASA Astrophysics Data System (ADS)
Fangel, Renan; Sérgio Bossini, Paulo; Cláudia Renno, Ana; Araki Ribeiro, Daniel; Chenwei Wang, Charles; Luri Toma, Renata; Okino Nonaka, Keico; Driusso, Patrícia; Antonio Parizotto, Nivaldo; Oishi, Jorge
2011-07-01
We investigate the effects of a novel bioactive material (Biosilicate®) and low-level laser therapy (LLLT), at 60 J/cm2, on bone-fracture consolidation in osteoporotic rats. Forty female Wistar rats are submitted to the ovariectomy, to induce osteopenia. Eight weeks after the ovariectomy, the animals are randomly divided into four groups, with 10 animals each: bone defect control group; bone defect filled with Biosilicate group; bone defect irradiated with laser at 60 J/cm2 group; bone defect filled with Biosilicate and irradiated with LLLT, at 60 J/cm2 group. Laser irradiation is initiated immediately after surgery and performed every 48 h for 14 days. Histopathological analysis points out that bone defects are predominantly filled with the biomaterial in specimens treated with Biosilicate. In the 60-J/cm2 laser plus Biosilicate group, the biomaterial fills all bone defects, which also contained woven bone and granulation tissue. Also, the biomechanical properties are increased in the animals treated with Biosilicate associated to lasertherapy. Our results indicate that laser therapy improves bone repair process in contact with Biosilicate as a result of increasing bone formation as well as indentation biomechanical properties.
Xing, Junchao; Jin, Huiyong; Hou, Tianyong; Chang, Zhengqi; Luo, Fei; Wang, Pinpin; Li, Zhiqiang; Xie, Zhao; Xu, Jianzhong
2014-12-01
To understand the cellular mechanism underlying bone defect healing in the context of tissue engineering, a reliable, reproducible, and standardized load-bearing large segmental bone defect model in small animals is indispensable. The aim of this study was to establish and evaluate a bilateral femoral defect model in mice. Donor mouse bone marrow mesenchymal stem cells (mBMSCs) were obtained from six mice (FVB/N) and incorporated into partially demineralized bone matrix scaffolds to construct tissue-engineered bones. In total, 36 GFP(+) mice were used for modeling. Titanium fixation plates with locking steel wires were attached to the femurs for stabilization, and 2-mm-long segmental bone defects were created in the bilateral femoral midshafts. The defects in the left and right femurs were transplanted with tissue-engineered bones and control scaffolds, respectively. The healing process was monitored by x-ray radiography, microcomputed tomography, and histology. The capacity of the transplanted mBMSCs to recruit host CD31(+) cells was investigated by immunofluorescence and real-time polymerase chain reaction. Postoperatively, no complication was observed, except that two mice died of unknown causes. Stable fixation of femurs and implants with full load bearing was achieved in all animals. The process of bone defect repair was significantly accelerated due to the introduction of mBMSCs. Moreover, the transplanted mBMSCs attracted more host CD31(+) endothelial progenitors into the grafts. The present study established a feasible, reproducible, and clinically relevant bilateral femoral large segmental bone defect mouse model. This model is potentially suitable for basic research in the field of bone tissue engineering. Copyright © 2014 Elsevier Inc. All rights reserved.
Gurgel, Bruno César de Vasconcelos; Gonçalves, Patrícia Furtado; Pimentel, Suzana Peres; Nociti, Francisco Humberto; Sallum, Enilson Antonio; Sallum, Antonio Wilson; Casati, Marcio Zaffalon
2008-07-01
The aim of the present study was to histometrically evaluate bone healing in the absence of bone defects and in the presence of surgically created bone defects treated by guided bone regeneration at oxidized and turned implant surfaces. Three months after dental extractions, standardized buccal dehiscence defects (height: 5 mm; width: 4 mm) were surgically created following implant site preparation in the mandible of 10 dogs. Oxidized-surface implants (OSI) and turned-surface implants (TSI) were inserted bilaterally, and the bone defects were treated by guided bone regeneration. After 3 months of healing, the animals were sacrificed, blocks were dissected, and undecalcified sections were obtained and processed for histometric analysis. The percentage of bone-to-implant contact (BIC) and bone density (BD) was evaluated inside the threads on the buccal (regenerated bone) and lingual sides (pristine bone) of the implants. Data were evaluated using two-way analysis of variance (P <0.05). New bone formation could be observed in OSI and TSI in the region of the defect creation. The BIC values observed in OSI for pristine and regenerated bone were 57.03% +/- 21.86% and 40.86% +/- 22.73%, respectively. TSI showed lower values of BIC in pristine bone (37.39% +/- 23.33%) and regenerated bone (3.52% +/- 4.87%). The differences between OSI and TSI were statistically significant. BD evaluation showed no statistically significant differences between OSI and TSI in pristine and regenerated bone. The oxidized implant surface promoted a higher level of BIC than the turned implant surface at pristine and regenerated bone.
Ripamonti, Ugo; Parak, Ruqayya; Klar, Roland M; Dickens, Caroline; Dix-Peek, Thérèse; Duarte, Raquel
2016-10-01
The momentum to compose this Leading Opinion on the synergistic induction of bone formation suddenly arose when a simple question was formulated during a discussion session on how to boost the often limited induction of bone formation seen in clinical contexts. Re-examination of morphological and molecular data available on the rapid induction of bone formation by the recombinant human transforming growth factor-β3 (hTGF-β3) shows that hTGF-β3 replicates the synergistic induction of bone formation as invocated by binary applications of hOP-1:hTGF-β1 at 20:1 by weight when implanted in heterotopic sites of the rectus abdominis muscle of the Chacma baboon, Papio ursinus. The rapid induction of bone formation in primates by hTGF-β3 may stem from bursts of cladistic evolution, now redundant in lower animal species but still activated in primates by relatively high doses of hTGF-β3. Contrary to rodents, lagomorphs and canines, the three mammalian TGF-β isoforms induce rapid and substantial bone formation when implanted in heterotopic rectus abdominis muscle sites of P. ursinus, with unprecedented regeneration of full thickness mandibular defects with rapid mineralization and corticalization. Provocatively, thus providing potential molecular and biological rationales for the apparent redundancy of osteogenic molecular signals in primates, binary applications of recombinant human osteogenic protein-1 (hOP-1) with low doses of hTGF-β1 and -β3, synergize to induce massive ossicles in heterotopic rectus abdominis, orthotopic calvarial and mandibular sites of P. ursinus. The synergistic binary application of homologous but molecularly different soluble molecular signals has indicated that per force several secreted molecular signals are required singly, synchronously and synergistically to induce optimal osteogenesis. The morphological hallmark of the synergistic induction of bone formation is the rapid differentiation of large osteoid seams enveloping haematopoietic bone marrow that forms by day 15 in heterotopic rectus abdominis sites. Synergistic binary applications also induce the morphogenesis of rudimentary embryonic growth plates indicating that the "memory" of developmental events in embryo can be redeployed postnatally by the application of morphogen combinations. Synergistic binary applications or single relatively high doses of hTGF-β3 have shown that hTGF-β3 induces bone by expressing a variety of inductive morphogenetic proteins that result in the rapid induction of bone formation. Tissue induction thus invocated singly by hTGF-β3 recapitulates the synergistic induction of bone formation by binary applications of hTGF-β1 and -β3 isoforms with hOP-1. Both synergistic strategies result in the rapid induction and expansion of the transformed mesenchymal tissue into large corticalized heterotopic ossicles with osteoblast-like cell differentiation at the periphery of the implanted reconstituted specimens with "tissue transfiguration" in vivo. Molecularly, the rapid induction of bone formation by binary applications of hOP-1 and hTGF-β3 or by hTGF-β3 applied singly resides in the up-regulation of selected genes involved in tissue induction and morphogenesis, Osteocalcin, RUNX-2, OP-1, TGF-β1 and -β3 with however the noted lack of TGF-β2 up-regulation. Copyright © 2016. Published by Elsevier Ltd.
[Progressive bone elongation of the maxillo-facial area: mandibular distraction].
Sancho, M A; Parri, F J; Rivera, A; Grande, C; Sarget, R; Casal, C; Morales, L
2000-10-01
Thanks to the distraction osteogenesis technique, it is nowadays possible to create new bone in the facial area. Between january 1997 and march 1999 we have performed 20 such procedures, from which 15 were mandibular. We present our experience in 10 patients with this new technique, 5 unilateral and 5 bilateral. Those were 7 boys and 3 girls, aged 2 to 14 years, affected with hemifacial microsomia, Goldenhar syndrome: 3; retrognatism with severe malocclusion: 4; facial assimetry due temporomandibular joint abnormalities: 2; and facial assimetry: 1. The proposed elongation was achieved in all cases. There was not only a skeletal improvement, but also growth and remodeling of the facial soft tissues. Distraction osteogenesis is the early treatment of the mandibulofacial deformities and offers a great deal of advantages to the growing patient.
Wang, Hom-Lay; Sabalys, Gintautas
2010-01-01
ABSTRACT Objectives It is critical to determine the location and configuration of the mandibular canal and related vital structures during the implant treatment. The purpose of the present study was to review the literature concerning the mandibular canal and inferior alveolar neurovascular bundle anatomical variations related to the implant surgery. Material and Methods Literature was selected through the search of PubMed, Embase and Cochrane electronic databases. The keywords used for search were mandibular canal, inferior alveolar nerve, and inferior alveolar neurovascular bundle. The search was restricted to English language articles, published from 1973 to November 2009. Additionally, a manual search in the major anatomy, dental implant, prosthetic and periodontal journals and books were performed. Results In total, 46 literature sources were obtained and morphological aspects and variations of the anatomy related to implant treatment in posterior mandible were presented as two entities: intraosseous mandibular canal and associated inferior alveolar neurovascular bundle. Conclusions A review of morphological aspects and variations of the anatomy related to mandibular canal and mandibular vital structures are very important especially in implant therapy since inferior alveolar neurovascular bundle exists in different locations and possesses many variations. Individual, gender, age, race, assessing technique used and degree of edentulous alveolar bone atrophy largely influence these variations. It suggests that osteotomies in implant dentistry should not be developed in the posterior mandible until the position of the mandibular canal is established. PMID:24421958
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnoshtein, F.; Buchwald, M.
1994-09-01
Fanconi anemia (FA) is an autosomal recessive disorder characterized by a variety of congenital and skeletal malformations, progressive pancytopanenia and predisposition to malignancies. FA cells display chromosomal instability and hypersensitivity to DNA-damaging agents. Both the human and the corresponding murine cDNAs have been cloned in our lab. Here we describe the expression of Facc during mouse development, using mRNA in situ hybridization. Our aim is to obtain clues on the possible function of the Facc gene product during development that may help elucidate basic defect(s) in FA. In addition, knowledge of the exact pattern of Facc expression will assist inmore » interpreting the phenotypes of mutant mice, currently being developed. In embryos the gene is diffusely expressed over the entire embryo, with higher hybridization levels in the mesenchyme and in both upper and lower extremities. Specific expression of Facc is seen in the perichondrium and marrow of long bones of hind limbs/hip; long bones of front limbs/shoulder region; developing digits of front and hind paws; and ribs. The signal is also detected in the following regions: cranial/frontal; facial/periorbital and maxillary/mandibular, hair follicles, diaphragm and lung. In addition, generalized Facc expression is seen during these embryonic stages. The pattern of Facc expression is consistent with the known skeletal abnormalities in FA patients, which include radial ray deformities, metacarpal hypoplasia, and abnormalities of lower limbs, ribs, head and face. The signal in the lung is consistent with the lung lobe absence and abnormal pulmonary drainage that have been detected in some FA patients. The sloped forehead and microcephaly in FA patients may have some association with the signal seen in the frontal region of the mouse cranium. Taken together, our results suggest that Facc is directly involved in the development of various embryonic tissues, particularly bone.« less
Duan, Yuanyuan; Chandran, Ravi; Cherry, Denise
The purpose of this study was to create three-dimensional composite models of quad zygomatic implant-supported maxillary prostheses with a variety of alveolar bone defects around implant sites, and to investigate the stress distribution in the surrounding bone using the finite element analysis (FEA) method. Three-dimensional models of titanium zygomatic implants, maxillary prostheses, and human skulls were created and assembled using Mimics based on microcomputed tomography and cone beam computed tomography images. A variety of additional bone defects were created at the locations of four zygomatic implants to simulate multiple clinical scenarios. The volume meshes were created and exported into FEA software. Material properties were assigned respectively for all the structures, and von Mises stress data were collected and plotted in the postprocessing module. The maximum stress in the surrounding bone was located in the crestal bone around zygomatic implants. The maximum stress in the prostheses was located at the angled area of the implant-abutment connection. The model with anterior defects had a higher peak stress value than the model with posterior defects. All the models with additional bone defects had higher maximum stress values than the control model without additional bone loss. Additional alveolar bone loss has a negative influence on the stress concentration in the surrounding bone of quad zygomatic implant-supported prostheses. More care should be taken if these additional bone defects are at the sites of anterior zygomatic implants.
New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.
Kubasiewicz-Ross, Paweł; Hadzik, Jakub; Seeliger, Julia; Kozak, Karol; Jurczyszyn, Kamil; Gerber, Hanna; Dominiak, Marzena; Kunert-Keil, Christiane
2017-09-01
Many types of bone substitute materials are available on the market. Researchers are refining new bone substitutes to make them comparable to autologous grafting materials in treatment of bone defects. The purpose of the study was to evaluate the osseoconductive potential and bone defect regeneration in rat calvaria bone defects treated with new synthetic nano-hydroxyapatite. The study was performed on 30 rats divided into 5 equal groups. New preproduction of experimental nano-hydroxyapatite material by NanoSynHap (Poznań, Poland) was tested and compared with commercially available materials. Five mm critical size defects were created and filled with the following bone grafting materials: 1) Geistlich Bio-Oss ® ; 2) nano-hydroxyapatite+β-TCP; 3) nano-hydroxyapatite; 4) nano-hydroxyapatite+collagen membrane. The last group served as controls without any augmentation. Bone samples from calvaria were harvested for histological and micro-ct evaluation after 8 weeks. New bone formation was observed in all groups. Histomorphometric analysis revealed an amount of regenerated bone between 34.2 and 44.4% in treated bone defects, whereas only 13.0% regenerated bone was found in controls. Interestingly, in group 3, no significant particles of the nano-HA material were found. In contrast, residual bone substitute material could be detected in all other test groups. Micro-CT study confirmed the results of the histological examinations. The new nano-hydroxyapatite provides comparable results to other grafts in the field of bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.
Bozzini, Carlos E; Champin, Graciela M; Alippi, Rosa M; Bozzini, Clarisa
2013-04-01
The present study describes the effects of feeding growing rats with diets containing increasing concentrations of wheat gluten (a low quality protein, G) on both the morphometrical and the biomechanical properties of the mandible. Female rats were fed one of six diets containing different concentrations (5-30%) of G between the 30th and 90th days of life. Control rats were fed a diet containing 20% casein (C), which allows a normal growth and development of the bone. Mandibular growth was estimated directly on excised and cleaned bones by taking measurements between anatomical points. Mechanical properties of the right hemimandibles were determined by using a three-point bending mechanical test to obtain a load/deformation curve and estimate the structural properties of the bone. Bone material properties were calculated from structural and geometric properties. The left hemimandibles were ashed and the ash weight obtained. Calcium content was determined by atomic energy absorption. Results were summarised as means±SEM. Comparisons between parameters were performed by ANOVA and post-test. None of the G-fed groups could achieve a normal growth performance as compared to the C-fed control group. Like body size, age-related increments in mandibular weight, length, height and area (index of mandibular size) were negatively affected by the G diets, as was the posterior part of the bone (posterior to molar III). The cross-sectional geometry of the mandible (cross-sectional area and rectangular moment of inertia) as well as its structural properties (yielding load, fracture load, and stiffness) were also severely affected by the G diets. However, material properties (Young's modulus and maximum elastic stress) and calcium concentration in ashes and the degree of mineralisation were unaffected. The differences in strength and stiffness between treated and control rats seemed to be the result of an induced loss of gain in bone growth and mass, in the absence of changes in the quality of the bone mineralised material. Copyright © 2012 Elsevier Ltd. All rights reserved.
Locally Produced BDNF Promotes Sclerotic Change in Alveolar Bone after Nerve Injury
Ida-Yonemochi, Hiroko; Yamada, Yurie; Yoshikawa, Hiroyuki
2017-01-01
Brain-derived neurotrophic factor (BDNF), which is released due to nerve injury, is known to promote the natural healing of injured nerves. It is often observed that damage of mandibular canal induces local sclerotic changes in alveolar bone. We reported that peripheral nerve injury promotes the local production of BDNF; therefore, it was possible to hypothesize that peripheral nerve injury affects sclerotic changes in the alveolar bone. This study aimed to evaluate the effect of BDNF on osteogenesis using in vitro osteoblast-lineage cell culture and an in vivo rat osteotomy model. MC3T3-E1 cells were cultured with BDNF and were examined for cell proliferative activity, chemotaxis and mRNA expression levels of osteoblast differentiation markers. For in vivo study, inferior alveolar nerve (IAN) injury experiments and mandibular cortical osteotomy were performed using a rat model. In the osteotomy model, exogenous BDNF was applied to bone surfaces after corticotomy of the mandible, and we morphologically analyzed the new bone formation. As a result, mRNA expression of osteoblast differentiation marker, osteocalcin, was significantly increased by BDNF, although cell proliferation and migration were not affected. In the in vivo study, osteopontin-positive new bone formation was significantly accelerated in the BDNF-grafted groups, and active bone remodeling, involving trkB-positive osteoblasts and osteocytes, continued after 28 days. In conclusion, BDNF stimulated the differentiation of MC3T3-E1 cells and it promoted new bone formation and maturation. These results suggested that local BDNF produced by peripheral nerve injury contributes to accelerating sclerotic changes in the alveolar bone. PMID:28072837
Miceli, Ana Lucia Carpi; Pereira, Livia Costa; Torres, Thiago da Silva; Calasans-Maia, Mônica Diuana; Louro, Rafael Seabra
2017-12-01
Autogenous bone grafts are the gold standard for reconstruction of atrophic jaws, pseudoarthroses, alveolar clefts, orthognathic surgery, mandibular discontinuity, and augmentation of sinus maxillary. Bone graft can be harvested from iliac bone, calvarium, tibial bone, rib, and intraoral bone. Proximal tibia is a common donor site with few reported problems compared with other sites. The aim of this study was to evaluate the use of proximal tibia as a donor area for maxillofacial reconstructions, focusing on quantifying the volume of cancellous graft harvested by a lateral approach and to assess the complications of this technique. In a retrospective study, we collected data from 31 patients, 18 women and 13 men (mean age: 36 years, range: 19-64), who were referred to the Department of Oral and Maxillofacial Surgery at the Servidores do Estado Federal Hospital. Patients were treated for sequelae of orthognathic surgery, jaw fracture, nonunion, malunion, pathology, and augmentation of bone volume to oral implant. The technique of choice was lateral access of proximal tibia metaphysis for graft removal from Gerdy tubercle under general anesthesia. The mean volume of bone harvested was 13.0 ± 3.7 mL (ranged: 8-23 mL). Only five patients (16%) had minor complications, which included superficial infection, pain, suture dehiscence, and unwanted scar. However, none of these complications decreases the result and resolved completely. We conclude that proximal tibia metaphysis for harvesting cancellous bone graft provides sufficient volume for procedures in oral and maxillofacial surgery with minimal postoperative morbidity.
Management of missiles injuries of the facial skeleton: primary, intermediate, and secondary phases.
Kummoona, Raja
2010-07-01
This study included 235 patients with missile injuries of the facial skeleton, who were treated in the Maxillofacial Unit of the Hospital of Specialized Surgery in Medical City, Baghdad, Iraq, during a period of 4 years of war, since Iraq became the international battlefield for terrorism. There were 195 men and 40 women, with ages ranging from 1 to 70 years (mean, 39.5 years); all patients had severe facial injuries and posttraumatic missile deformities, including 27 patients with orbital injuries. This study also evaluates the management of the immediate, intermediate, and secondary phases.Deformities of the facial skeleton as a complication of missile injuries were classified into the following cases: 95 patients (40.43%) had bone loss, 72 patients (30.64%) had soft-tissue loss, 33 patients (14.05%) had orbital injuries, and 35 patients (14.90%) had other deformities of scar contracture, fistula, and sinus formation.The bony defects of the mandible were reconstructed by both bone chips carried by osteomesh tray harvested from the iliac crest in 24 patients and by block of corticocancellous bone graft from the iliac crest in 38 patients for reconstruction of the mandible, 4 cases for maxillary reconstruction, and 4 cases of orbital floor defect. K-wire was used in 23 cases for holding missing segments of the mandible. Soft-tissue reconstruction of the face was done in 72 cases, local flaps were used in 30 cases, regional flaps including lateral cervical flap in 10 cases, and cervicofacial flaps in 11 cases. The orbit was reconstructed by bone graft, lyophilized dura, and silastic implant. Low-velocity bullet injury to the frontal part of the head was treated by coronal flap, as an access in 6 cases required craniotomy and dura was reconstructed by galea or temporalis muscle. Scar contracture was treated by scar revision, and sinus tract was excised at the same time of scar revision. Primary phase required an urgent airway management, controlling an active bleeding by surgical intervention; most entrance and exit wounds as well as retained missile were located in the cheek, chin, and mandibular body. Few cases were reported of mortality due to complication related to head injuries.
Shah, Rupal Jaydip; Lagdive, Sanjay Balaji; Saini, Shraddha Lalit; Verma, Vishal Bipinbihari; Shah, Satyaprakash Ranjit
2017-01-01
Mandibular resections compromise the balance and symmetry of mandibular functions. Since centuries there has been advent of various prosthetic treatment modalities to improve the masticatory efficiency. Swing lock dentures, a treatment facet with high degree of clinical effectiveness, yet gradually fading into oblivion due to its design complexities, has been resurrected by retaining its indigenous concept of reciprocation, and consolidating aesthetics with introduction of newer breed of aesthetic material (Thermoplastic Acetal resin).
Campolongo, Martin G; Cabras, Marco; Bava, Luca; Arduino, Paolo G; Carbone, Mario
2018-06-01
To present a case of early diagnosis mandibular Paget's disease of bone (PDB), recognised by a general dentist. PDB is responsible of rapid bone resorption and disorganised bone formation. The patient was a 72-year-old female patient complaining of dental malposition and blatant prognathism. Clinicians should consider PDB in differential diagnosis for an elderly patient undergoing unexplained alteration in face profile and occlusion. © 2018 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
Zhang, Yumin; Wang, Jianru; Wang, Jue; Niu, Xiaojun; Liu, Jianchun; Gao, Lan; Zhai, Xiaoyan; Chu, Kaibo
2015-12-01
Bone substitutes are used in wide range of orthopaedic application. An ideal bone substitute should exhibit superior osteoinductive and osteoconductive properties. Neither bio-derived materials nor synthetic materials can meet the needs of an ideal bone substitute. Preparation of composite materials is a promising way to improve properties of biomaterial. In this study, the porous poly lactic acid (PLA)/demineralized bone matrix (DBM) composite biomaterials prepared by supercritical CO2 technique were implanted to repair rabbit radius segmental bone defect. By comparing with PLA and bone autograft, the X-ray result and histological analysis showed the repair effect of PLA/DBM porous composite materials is significantly better than that of the PLA group and the blank control group, and is similar to autologous bone. The PLA/DBM can promote the healing of bone defects and can be used as a kind of ideal alternative materials to repair bone defects.
Oporto V, Gonzalo H; Fuentes, Ramón; Borie, Eduardo; del Sol, Mariano; Orsi, Iara Augusta; Engelke, Wilfried
2014-01-01
Regeneration of resorbed edentulous sites can be induced by bone grafts from the subject himself and/or by the use of biomaterials. At present, there has been an extensive search for biomaterials that are evaluated by artificially creating one or more critical defects. The aim of this work was to clinically and radiographically analyze bone formation by the use of some biomaterials in artificially created defects in the parietal bone of rabbits. Six rabbits were used, creating defects of 8 mm in diameter in parietal bones. One defect was maintained with coagulum only, and in others, freeze-dried bone allograft (FDBA), autologous bone, and a combination of autologous bone with FDBA respectively, were added. Animals were sacrificed at 15-90 days with 2 weeks interval each, and calvaria were analyzed macroscopically, measuring by digital caliper the lack of filling at the surface of defects, identifying limits at anteroposterior and coronal view, realizing a digital photograph register of their external surfaces. This was subsequently evaluated radiographically by occlusal film radiography used to quantify its density through software. In conclusion, autologous bone showed the best behavior, clinically as well as radiographically. However, FDBA is a good option as an alternative to autologous bone as its behavior was slightly lower over time. The combination of autologous bone and FDBA in the same defect showed results considerably inferior to grafts used separately. Low radiopacity and clear limits were observed through time for the control coagulum filled defect. PMID:25126163
Kilinç, Yeliz; Erkmen, Erkan; Kurt, Ahmet
2016-01-01
In this study, the biomechanical behavior of different fixation methods used to fix the mandibular anterior segment following various amounts of superior repositioning was evaluated by using Finite Element Analysis (FEA). The three-dimensional finite element models representing 3 and 5 mm superior repositioning were generated. The gap in between segments was assumed to be filled by block bone allograft and resignated to be in perfect contact with the mandible and segmented bone. Six different finite element models with 2 distinct mobilization rate including 3 different fixation configurations, double right L (DRL), double left L (DLL), or double I (DI) miniplates with monocortical screws, correspondingly were created. A comparative evaluation has been made under vertical, horizontal and oblique loads. The von Mises and principal maximum stress (Pmax) values were calculated by finite element solver programme. The first part of our ongoing Finite Element Analysis research has been addressed to the mechanical behavior of the same fixation configurations in nongrafted models. In comparison with the findings of the first part of the study, it was concluded that bone graft offers superior mechanical stability without any limitation of mobilization and less stress on the fixative appliances as well as in the bone.
Khan, Wasim S; Rayan, Faizal; Dhinsa, Baljinder S; Marsh, David
2012-01-01
The management of large bone defects due to trauma, degenerative disease, congenital deformities, and tumor resection remains a complex issue for the orthopaedic reconstructive surgeons. The requirement is for an ideal bone replacement which is osteoconductive, osteoinductive, and osteogenic. Autologous bone grafts are still considered the gold standard for reconstruction of bone defects, but donor site morbidity and size limitations are major concern. The use of bioartificial bone tissues may help to overcome these problems. The reconstruction of large volume defects remains a challenge despite the success of reconstruction of small-to-moderate-sized bone defects using engineered bone tissues. The aim of this paper is to understand the principles of tissue engineering of bone and its clinical applications in reconstructive surgery.
Khan, Wasim S.; Rayan, Faizal; Dhinsa, Baljinder S.; Marsh, David
2012-01-01
The management of large bone defects due to trauma, degenerative disease, congenital deformities, and tumor resection remains a complex issue for the orthopaedic reconstructive surgeons. The requirement is for an ideal bone replacement which is osteoconductive, osteoinductive, and osteogenic. Autologous bone grafts are still considered the gold standard for reconstruction of bone defects, but donor site morbidity and size limitations are major concern. The use of bioartificial bone tissues may help to overcome these problems. The reconstruction of large volume defects remains a challenge despite the success of reconstruction of small-to-moderate-sized bone defects using engineered bone tissues. The aim of this paper is to understand the principles of tissue engineering of bone and its clinical applications in reconstructive surgery. PMID:25098363
Choo, Tina; Marino, Victor; Bartold, P Mark
2013-02-01
The aim of this investigation was to examine the effect of a combination of purified recombinant human platelet-derived growth factor (rhPDGF-BB) mixed with a synthetic beta-tricalcium phosphate (β-TCP) on bone healing around dental implants with critical size circumferential defects. Three critical size circumferential defects were prepared in the ilium of six sheep. Three dental implants were placed into the centre of each defect and the 3.25 mm circumferential gap was filled with (a) blood clot alone; (b) β-TCP; (c) rhPDGF-BB (0.3 mg/ml) with β-TCP. All the defects in each group were covered with a Bio-Gide(®) resorbable barrier membrane. The sheep were sacrificed at 2 and 4 weeks and histological and histomorphometric analyses were performed to determine the percentage of new mineralized bone formation and residual β-TCP graft particles in the defects. Defects filled with rhPDGF-BB/β-TCP showed the highest rate of bone formation after 2 and 4 weeks with limited degradation of the β-TCP particles over 4 weeks. Defects filled with β-TCP showed the least bone fill after 2 and 4 weeks, and faster degradation of the β-TCP particles over 4 weeks compared with defects filled with rhPDGF-BB/β-TCP. Percentage of new mineralized bone was comparable in defects to blood clot alone and β-TCP after 4 weeks of healing, but there was a collapse in the defect area in defects with blood clot alone. In comparison, the space was maintained when β-TCP was used in defects at 4 weeks. Defects which had β-TCP alone showed an inhibition in bone healing at 2 and 4 weeks; however, the combination of rhPDGF-BB with β-TCP enhanced bone regeneration in these peri-implant bone defects at the same time intervals. © 2011 John Wiley & Sons A/S.
Liu, Yun-Feng; Fan, Ying-Ying; Jiang, Xian-Feng; Baur, Dale A
2017-11-15
The purpose of this study was to design a customized fixation plate for mandibular angle fracture using topological optimization based on the biomechanical properties of the two conventional fixation systems, and compare the results of stress, strain and displacement distributions calculated by finite element analysis (FEA). A three-dimensional (3D) virtual mandible was reconstructed from CT images with a mimic angle fracture and a 1 mm gap between two bone segments, and then a FEA model, including volume mesh with inhomogeneous bone material properties, three loading conditions and constraints (muscles and condyles), was created to design a customized plate using topological optimization method, then the shape of the plate was referenced from the stress concentrated area on an initial part created from thickened bone surface for optimal calculation, and then the plate was formulated as "V" pattern according to dimensions of standard mini-plate finally. To compare the biomechanical behavior of the "V" plate and other conventional mini-plates for angle fracture fixation, two conventional fixation systems were used: type A, one standard mini-plate, and type B, two standard mini-plates, and the stress, strain and displacement distributions within the three fixation systems were compared and discussed. The stress, strain and displacement distributions to the angle fractured mandible with three different fixation modalities were collected, respectively, and the maximum stress for each model emerged at the mandibular ramus or screw holes. Under the same loading conditions, the maximum stress on the customized fixation system decreased 74.3, 75.6 and 70.6% compared to type A, and 34.9, 34.1, and 39.6% compared to type B. All maximum von Mises stresses of mandible were well below the allowable stress of human bone, as well as maximum principal strain. And the displacement diagram of bony segments indicated the effect of treatment with different fixation systems. The customized fixation system with topological optimized structure has good biomechanical behavior for mandibular angle fracture because the stress, strain and displacement within the plate could be reduced significantly comparing to conventional "one mini-plate" or "two mini-plates" systems. The design methodology for customized fixation system could be used for other fractures in mandible or other bones to acquire better mechanical behavior of the system and improve stable environment for bone healing. And together with SLM, the customized plate with optimal structure could be designed and fabricated rapidly to satisfy the urgent time requirements for treatment.
Tomić, S; Krajcinović, O; Blagojević, Z; Apostolović, M; Lalosević, V
2006-01-01
We analyzed 30 patients with infected diaphyseal defect of femur, which have been treated by lengthening one of the bone fragments with Ilizarov apparatus. The mean length of the bone defect was 6 cm. Substitution of the defect, bone healing and elimination of the infection was achieved in 27 patients. The mean time of apparatus fixation was 10 months. According to Palley scoring system, 10 patients had excellent functional results.
Liang, Weiqiang; Yao, Yuanyuan; Huang, Zixian; Chen, Yuhong; Ji, Chenyang; Zhang, Jinming
2016-07-01
The purpose of this study was to evaluate the clinical application of individual craniofacial bone fabrications using computer-assisted design (CAD)-computer-assisted manufacturing technology for the reconstruction of craniofacial bone defects. A total of 8 patients diagnosed with craniofacial bone defects were enrolled in this study between May 2007 and August 2010. After computed tomography scans were obtained, the patients were fitted with artificial bone that was created using CAD software, rapid prototyping technology, and epoxy-methyl acrylate resin and hydroxyapatite materials. The fabrication was fixed to the defect area with titanium screws, and soft tissue defects were repaired if necessary. The fabrications were precisely fixed to the defect areas, and all wounds healed well without any serious complications except for 1 case with intraoral incision dehiscence, which required further treatment. Postoperative curative effects were retrospectively observed after 6 to 48 months, acceptable anatomic and cosmetic outcomes were obtained, and no rejections or other complications occurred. The use of CAD-computer-assisted manufacturing technology-assisted epoxy-methyl acrylate resin and hydroxyapatite composite artificial bone to treat patients with craniofacial bone defects could enable the precise reconstruction of these defects and obtain good anatomic and cosmetic outcomes. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Potential Therapeutic Use of Relaxin in Healing Cranial Bone Defects
2016-08-01
successful production of chimeric mice after irradiation and GFP+ bone marrow transplantation; reproducible implementation of uniform cranial lesions of ~1.5...cranial defect model in chimeric mice transplanted with GFP+ bone marrow. We follow defect closure by three dimensional microcomputed tomography (µCT...histolomorphometry and immunohistochemistry, respectively. 2. Keywords GFP+ chimeric mice, cranial defect closure, relaxin, angiogenesis
[Reconstruction of tangential and circular infected bone defects].
Schmidt, H G; Neikes, M; Zimmer, W
1987-12-01
In the treatment of bone infections the reconstruction and rehabilitation of bone defects is a problem that often requires treatment secondary to curative treatment of the infection. For the reconstruction of smaller and more extensive defects we used predominantly (92.7%) autogenous (autologous) untreated spongiosa and in only 7% of the cases allogenic (homologous) spongiosa from an organ bank, this being added if necessary. Recently the additionally introduced vascularized bone chip has become a useful extension of the therapy concept. The problems and complications of defect reconstruction are demonstrated for 705 cases of bone infection with 472 defects of different sizes, based on a comprehensive classification with defect calculation. Surgical technical approach and special aspects of after-treatment are described, as well as the results for every group of cases. We achieved stability and freedom from infection in a total of 93.7% of the patients. As was to be expected, the problems grow with the size of the defect. Particularly problematic are joint infections with adjacent extensive circular defect.
Oryan, Ahmad; Alidadi, Soodeh; Bigham-Sadegh, Amin; Moshiri, Ali
2016-10-01
Gelatin and chitosan are natural polymers that have extensively been used in tissue engineering applications. The present study aimed to evaluate the effectiveness of chitosan and gelatin or combination of the two biopolymers (chitosan-gelatin) as bone scaffold on bone regeneration process in an experimentally induced critical sized radial bone defect model in rats. Fifty radial bone defects were bilaterally created in 25 Wistar rats. The defects were randomly filled with chitosan, gelatin and chitosan-gelatin and autograft or left empty without any treatment (n = 10 in each group). The animals were examined by radiology and clinical evaluation before euthanasia. After 8 weeks, the rats were euthanized and their harvested healing bone samples were evaluated by radiology, CT-scan, biomechanical testing, gross pathology, histopathology, histomorphometry and scanning electron microscopy. Gelatin was biocompatible and biodegradable in vivo and showed superior biodegradation and biocompatibility when compared with chitosan and chitosan-gelatin scaffolds. Implantation of both the gelatin and chitosan-gelatin scaffolds in bone defects significantly increased new bone formation and mechanical properties compared with the untreated defects (P < 0.05). Combination of the gelatin and chitosan considerably increased structural and functional properties of the healing bones when compared to chitosan scaffold (P < 0.05). However, no significant differences were observed between the gelatin and gelatin-chitosan groups in these regards (P > 0.05). In conclusion, application of the gelatin alone or its combination with chitosan had beneficial effects on bone regeneration and could be considered as good options for bone tissue engineering strategies. However, chitosan alone was not able to promote considerable new bone formation in the experimentally induced critical-size radial bone defects.
Tominari, Tsukasa; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Miyaura, Chisato; Inada, Masaki
2015-01-01
Epigallocatechin gallate (EGCG), a major polyphenol in green tea, possesses antioxidant properties and regulates various cell functions. Here, we examined the function of EGCG in inflammatory bone resorption. In calvarial organ cultures, lipopolysaccharide (LPS)-induced bone resorption was clearly suppressed by EGCG. In osteoblasts, EGCG suppressed the LPS-induced expression of COX-2 and mPGES-1 mRNAs, as well as prostaglandin E2 production, and also suppressed RANKL expression, which is essential for osteoclast differentiation. LPS-induced bone resorption of mandibular alveolar bones was attenuated by EGCG in vitro, and the loss of mouse alveolar bone mass was inhibited by the catechin in vivo.
Orthodontic treatment combined with autotransplantation after removal of ameloblastoma.
Lim, Won Hee; Chun, Youn Sic
2009-03-01
This article describes the use of indirect skeletal anchorage and autotransplantation in a patient who had an ameloblastoma removed. The mandibular left second and third molars were also extracted. Autogenous bone was grafted after surgical removal of the ameloblastoma, and the mandibular right third permanent molar was transplanted into the extraction space. Orthodontic treatment included a miniscrew to bring the transplanted tooth into good occlusion. Four years after treatment, the patient continued to show good results, with no recurrence of the ameloblastoma.
ECM Inspired Coating of Embroidered 3D Scaffolds Enhances Calvaria Bone Regeneration
Rentsch, C.; Rentsch, B.; Heinemann, S.; Bernhardt, R.; Bischoff, B.; Förster, Y.; Scharnweber, D.; Rammelt, S.
2014-01-01
Resorbable polymeric implants and surface coatings are an emerging technology to treat bone defects and increase bone formation. This approach is of special interest in anatomical regions like the calvaria since adults lose the capacity to heal large calvarial defects. The present study assesses the potential of extracellular matrix inspired, embroidered polycaprolactone-co-lactide (PCL) scaffolds for the treatment of 13 mm full thickness calvarial bone defects in rabbits. Moreover the influence of a collagen/chondroitin sulfate (coll I/cs) coating of PCL scaffolds was evaluated. Defect areas filled with autologous bone and empty defects served as reference. The healing process was monitored over 6 months by combining a novel ultrasonographic method, radiographic imaging, biomechanical testing, and histology. The PCL coll I/cs treated group reached 68% new bone volume compared to the autologous group (100%) and the biomechanical stability of the defect area was similar to that of the gold standard. Histological investigations revealed a significantly more homogenous bone distribution over the whole defect area in the PCL coll I/cs group compared to the noncoated group. The bioactive, coll I/cs coated, highly porous, 3-dimensional PCL scaffold acted as a guide rail for new skull bone formation along and into the implant. PMID:25013767
Park, Su A.; Lee, Hyo-Jung; Kim, Keun-Suh; Lee, Jung-Tae; Kim, Sung-Yeol; Chang, Na-Hee
2018-01-01
Insufficient bone volume is one of the major challenges encountered by dentists after dental implant placement. This study aimed to evaluate the efficacy of a customized three-dimensional polycaprolactone (3D PCL) scaffold implant fabricated with a 3D bio-printing system to facilitate rapid alveolar bone regeneration. Saddle-type bone defects were surgically created on the healed site after extracting premolars from the mandibles of four beagle dogs. The defects were radiologically examined using computed tomography for designing a customized 3D PCL scaffold block to fit the defect site. After fabricating 3D PCL scaffolds using rapid prototyping, the scaffolds were implanted into the alveolar bone defects along with β-tricalcium phosphate powder. In vivo analysis showed that the PCL blocks maintained the physical space and bone conductivity around the defects. In addition, no inflammatory infiltrates were observed around the scaffolds. However, new bone formation occurred adjacent to the scaffolds, rather than directly in contact with them. More new bone was observed around PCL blocks with 400/1200 lattices than around blocks with 400/400 lattices, but the difference was not significant. These results indicated the potential of 3D-printed porous PCL scaffolds to promote alveolar bone regeneration for defect healing in dentistry. PMID:29401707
Bone augmentation of the osteo-odonto alveolar lamina in MOOKP--will it delay laminar resorption?
Iyer, Geetha; Srinivasan, Bhaskar; Agarwal, Shweta; Rishi, Ekta; Rishi, Pukhraj; Rajan, Gunaseelan; Shanmugasundaram, Shanmugasundaram
2015-07-01
We aimed to describe a new technique and analyse the early outcomes of augmenting the canine tooth using a mandibular bone graft in an attempt to delay or retard the process of laminar resorption following the modified osteo odonto keratoprosthesis (MOOKP) procedure. This was a retrospective case series. Eyes that underwent the bone augmentation procedure between December 2012 and February 2014 were retrospectively analysed. The procedure, performed by the oromaxillofacial surgeon, involved securing a mandibular bone graft beneath the periosteum on the labial aspect of the canine tooth chosen to be harvested for the MOOKP procedure. This procedure was performed simultaneously with the Stage 1 A of the MOOKP. Three months later, the tooth was harvested and fashioned into the osteo-odonto alveolar lamina similar to the method described in the Rome-Vienna Protocol. The bone augmentation procedure was performed in 11 eyes (five SJS/ six chemical injuries). The mean follow-up after Stage 2 of MOOKP procedure in these eyes was 7.45 months (2 to 20 months). Complications noted were peripheral laminar exposure (three eyes-SJS) and bone graft exposure and necrosis in the mouth (nine-SJS). No evidence of clinical laminar resorption was noted in any of the eyes. Laminar resorption in MOOKP can lead to vision and globe threatening complications due to the consequent cylinder instability and chances of extrusion. Augmenting the bone on the labial aspect of the canine tooth might have a role to play in delaying or preventing laminar resorption.
Horizontal alveolar bone loss: A periodontal orphan
Jayakumar, A.; Rohini, S.; Naveen, A.; Haritha, A.; Reddy, Krishnanjeneya
2010-01-01
Background: Attempts to successfully regenerate lost alveolar bone have always been a clinician’s dream. Angular defects, at least, have a fairer chance, but the same cannot be said about horizontal bone loss. The purpose of the present study was to evaluate the prevalence of horizontal alveolar bone loss and vertical bone defects in periodontal patients; and later, to correlate it with the treatment modalities available in the literature for horizontal and vertical bone defects. Materials and Methods: The study was conducted in two parts. Part I was the radiographic evaluation of 150 orthopantomographs (OPGs) (of patients diagnosed with chronic periodontitis and seeking periodontal care), which were digitized and read using the AutoCAD 2006 software. All the periodontitis-affected teeth were categorized as teeth with vertical defects (if the defect angle was ≤45° and defect depth was ≥3 mm) or as having horizontal bone loss. Part II of the study comprised search of the literature on treatment modalities for horizontal and vertical bone loss in four selected periodontal journals. Results: Out of the 150 OPGs studied, 54 (36%) OPGs showed one or more vertical defects. Totally, 3,371 teeth were studied, out of which horizontal bone loss was found in 3,107 (92.2%) teeth, and vertical defects were found only in 264 (7.8%) of the teeth, which was statistically significant (P<.001). Search of the selected journals revealed 477 papers have addressed the treatment modalities for vertical and horizontal types of bone loss specifically. Out of the 477 papers, 461 (96.3%) have addressed vertical bone loss, and 18 (3.7%) have addressed treatment options for horizontal bone loss. Two papers have addressed both types of bone loss and are included in both categories. Conclusion: Horizontal bone loss is more prevalent than vertical bone loss but has been sidelined by researchers as very few papers have been published on the subject of regenerative treatment modalities for this type of bone loss. This study should be an impetus for greater attention to an otherwise ubiquitous periodontal challenge. PMID:21760673
Yang, Ying-yang; DU, Sheng-nan; Lv, Zong-kai
2015-08-01
To compare the results of high-speed handpiece and minimally invasive extraction in impacted mandibular third molar extraction. From May 2011 to May 2014, 83 patients undergoing impacted mandibular third molar extraction were enrolled into the study and randomly divided into 2 groups: 42 patients in group A (experimental group) and 41 patients in group B (control group). Group B underwent extraction with traditional method and group A underwent high-speed handpiece and minimally invasive extraction of the impacted mandibular third molar. The occurrences of the root fracture, gingival laceration, tooth mobility, lingual bone plate fracture, jaw fracture and dislocation of temporomandibular joint during operation and lower lip numbness, dry socket, facial swelling and limitation of mouth opening after operation were observed and compared between 2 groups. The operation time, integrity of extraction sockets, VAS pain score and satisfaction from patients were collected and compared. SPSS 19.0 software package was used for statistical analysis. The occurrences of root fracture, gingival laceration, tooth mobility, lingual bone plate fracture, jaw fracture, and dislocation of temporomandibular joint during operation in group A significantly decreased compared with group B (P<0.05). The occurrences of lower lip numbness, dry socket, facial swelling and limitation of mouth opening after operation in group A significantly decreased compared with group B (P<0.05). The operation time, integrity of extraction sockets, VAS pain scores and satisfaction scores in group A improved significantly compared with group B (P<0.05). High-speed handpiece and minimally invasive extraction should be widely used in impacted mandibular third molar extraction, due to the advantages of simple operation, high efficiency, minimal trauma, and few perioperative complications.
Buyukkaplan, U S; Guldag, M U
2012-07-01
Fluoride is one of the biological trace elements with a strong affinity for osseous, cartilaginous and dental tissue. The dental and skeletal effects of high fluoride intake have already been studied in the literature, but little is known about the effects of high fluoride intake on edentulous mandibles. The purpose of this study was to evaluate the effects of high fluoride intake on mandibular bone mineral density (BMD) measured by the dual-energy X-ray absorptiometry (DXA) technique in edentulous individuals with systemic fluorosis. 32 people who were living in an endemic fluorosis area since birth and 31 people who were living in a non-endemic fluorosis area since birth (control group) participated in this study. Systemic fluorosis was diagnosed in the patients using the sialic acid (NANA)/glycosaminoglycan (GAG) ratio. The BMDs of the mandibles were determined by the DXA technique. The serum NANA/GAG ratios in the fluorosis group were significantly lower than those in the control group (p < 0.001). There was also a statistically significant difference in mandibular BMD measurements (p < 0.05) between the systemic fluorosis and control groups, as measured by the DXA technique. Mandibular body BMD measurements were higher in the fluorosis group (1.25 ± 0.24 g cm(-2)) than in the control group (1.01 ± 0.31 g cm(-2)). The results of the study showed that fluoride intake higher than the optimum level causes increased mandibular BMD in edentulous individuals. Further dose-related studies are needed to determine the effects of high fluoride intake on bony structures of the stomatognathic system.
Exclusion of MYF5, GSC, RUNX2, and TCOF1 mutation in a case of cerebro-costo-mandibular syndrome.
Su, Pen-Hua; Chen, Jia-Yuh; Chiang, Chin-Lung; Ng, Yan-Yan; Chen, Suh-Jen
2010-04-01
Cerebro-costo-mandibular syndrome (CCMS) is an uncommon multiple congenital anomaly syndrome characterized by severe micrognathia, posterior rib-gap defects, and developmental delay. The cause of CCMS is unknown. Genes hypothesized to have a causal role in CCMS, include myogenic factor 5 (MYF5), goosecoid homeobox (GSC) and runt-related transcription factor 2 (RUNX2) [formerly known as core-binding factor (CBFA1)]. We report an infant with typical features of CCMS who, on prenatal ultrasound, was found to have severe micrognathia. We present the first image by three-dimensional computed tomography of posterior rib-defect, and we exclude mutations of the MYF5, GSC, RUNX2, and TCOF1 genes in our patient. Further molecular studies are needed to evaluate the cause of CCMS.
Successful human long-term application of in situ bone tissue engineering
Horch, Raymund E; Beier, Justus P; Kneser, Ulrich; Arkudas, Andreas
2014-01-01
Tissue Engineering (TE) and Regenerative Medicine (RM) have gained much popularity because of the tremendous prospects for the care of patients with tissue and organ defects. To overcome the common problem of donor-site morbidity of standard autologous bone grafts, we successfully combined tissue engineering techniques for the first time with the arteriovenous loop model to generate vascularized large bone grafts. We present two cases of large bone defects after debridement of an osteomyelitis. One of the defects was localized in the radius and one in the tibia. For osseus reconstruction, arteriovenous loops were created as vascular axis, which were placed in the bony defects. In case 1, the bone generation was achieved using cancellous bone from the iliac crest and fibrin glue and in case 2 using a clinically approved β-tricalciumphosphate/hydroxyapatite (HA), fibrin glue and directly auto-transplanted bone marrow aspirate from the iliac crest. The following post-operative courses were uneventful. The final examinations took place after 36 and 72 months after the initial operations. Computer tomogrphy (CT), membrane resonance imaging (MRI) and doppler ultrasound revealed patent arterio-venous (AV) loops in the bone grafts as well as completely healed bone defects. The patients were pain-free with normal ranges of motion. This is the first study demonstrating successfully axially vascularized in situ tissue engineered bone generation in large bone defects in a clinical scenario using the arteriovenous loop model without creation of a significant donor-site defect utilizing TE and RM techniques in human patients with long-term stability. PMID:24801710
[Surgical Techniques for Patella Replacement in Cases of Deficient Bone Stock in Revision TKA].
Ritschl, P; Machacek, F; Strehn, L; Kloiber, J
2015-06-01
The patella replacement in revision surgery is a challenge especially in cases of unsufficient bone stock. Depending on the extent of the bone defect, the following videos demonstrate different approaches: Video 1: bone sparing removal of the patella implant: onlay-type patella implants. Video 2: complete cortical bone rim of the patella, residual thickness between 6 to 10 mm: biconvex patella implant. Video 3 and 4: small defects of the cortical bone rim of the patella, residual thickness 1 to 5 mm (patella shell): gull-wing osteotomy, patella bone grafting techniques. Video 5: partial necrosis/defect of the patella shell with incomplete cortical bone rim: porous tantalum patella prosthesis. On account of the various surgical options for different bone defects of the patella, patellectomy and pure patelloplasty should be avoided to prevent functional shortcomings. Georg Thieme Verlag KG Stuttgart · New York.
Kattimani, Vivekanand S; Chakravarthi, Srinivas P; Neelima Devi, K Naga; Sridhar, Meka S; Prasad, L Krishna
2014-01-01
Bone grafts are frequently used in the treatment of bone defects. Bone harvesting can cause postoperative complications and sometimes does not provide a sufficient quantity of bone. Therefore, synthetic biomaterials have been investigated as an alternative to autogenous bone grafts. The aim of this study was to evaluate and compare bovine derived hydroxyapatite (BHA) and synthetic hydroxyapatite (SHA) graft material as bone graft substitute in maxillary cystic bony defects. Patients were analyzed by computerized densitometric study and digital radiography. In this study, 12 patients in each group were included randomly after clinical and radiological evaluation. The integration of hydroxyapatite was assessed with mean bone density, surgical site margin, and radiological bone formation characteristics, of the successful graft cases using computer densitometry and radio-visiograph. Statistical analysis was carried out using Mann-Whitney U-test, Wilcoxon matched pairs test and paired t-test. By the end of 24 th week, the grafted defects radiologically and statistically showed similar volumes of bone formation. However, the significant changes observed in the formation of bone and merging of material and surgical site margin at 1 st week to 1 st month. The results were significant and correlating with all the parameters showing the necessity of the grafting for early bone formation. However, the bone formation pattern is different in both BHA and SHA group at 3 rd month interval with significant P value. Both BHA and SHA graft materials are biocompatible for filling bone defects, showing less resorption and enhanced bone formation with similar efficacy. Our study showed maximum bone healing within 12 weeks of grafting of defects. The BHA is economical; however, price difference between the two is very nominal.
Effect of Resorbable Collagen Plug on Bone Regeneration in Rat Critical-Size Defect Model.
Liu, Weiqing; Kang, Ning; Dong, Yuliang; Guo, Yuchen; Zhao, Dan; Zhang, Shiwen; Zhou, Liyan; Seriwatanachai, Dutmanee; Liang, Xing; Yuan, Quan
2016-04-01
The purpose of this investigation was to examine the effect of resorbable collagen plug (RCP) on bone regeneration in rat calvarial critical-size defects. About 5-mm-diameter calvarial defects were created in forty 12-week-old male Sprague-Dawley rats and implanted with or without RCP. Animals were killed at 1, 2, 4, and 8 weeks postoperatively. After being killed, specimens were collected and subjected to micro-computed tomography (μCT) and histological analysis. The μCT showed a significant increase of newly formed bone volume/tissue volume in RCP-implanted defect compared with controls at all designated time points. After 8 weeks, the defects implanted with RCP displayed almost complete closure. Hematoxylin and eosin staining of the decalcified sections confirmed these observations and evidenced active bone regeneration in the RCP group. In addition, Masson's trichrome staining demonstrated that RCP implantation accelerated the process of collagen maturation. The RCP enhances bone regeneration in rat critical-size cranial defects, which suggest it might be a desired material for bone defect repair.
Zhang, Ya-Dong; Wang, Gang; Sun, Yan; Zhang, Chang-Qing
2011-02-01
Porous scaffold biomaterials may offer a clinical alternative to bone grafts; however, scaffolds alone are typically insufficient to heal large bone defects. Numerous studies have demonstrated that osteoinductive growth factor significantly improves bone repair. In this study, a strategy combining degradable bioactive borate glass (BG) scaffolds with platelet-rich plasma (PRP) was tested. The bone defect was filled with BG alone, BG combined with autologous PRP or left empty. Bone formation was analyzed at 4, 8 and 12 weeks using both histology and radiology. The PRP treated group yielded better bone formation than the pure BG scaffold as determined by both histology and microcomputer tomography after 12 weeks. In conclusion, PRP improved bone healing in a diaphyseal rabbit model on BG. The combination of PRP and BG may be an effective approach to repair critical defects.
Guskuma, Marcos Heidy; Hochuli-Vieira, Eduardo; Pereira, Flávia Priscila; Rangel-Garcia, Idelmo; Okamoto, Roberta; Okamoto, Tetuo; Filho, Osvaldo Magro
2014-06-01
The purpose of this study was to evaluate the expression of proteins that participate in the osteoinduction stage (VEGF, BMP2 and CBFA1) of the process of bone regeneration of defects created in rat calvariae and filled with autogenous bone block grafts. 10 adult male rats (Rattus norvegicus albinus, Wistar) were used, who received two bone defects measuring 5 mm each in the calvariae. The bone defects constituted two experimental groups (n = 10): Control Group (CONT) (defects filled with a coagulum); Graft Group (GR) (defects filled with autogenous bone removed from the contralateral defect). The animals were submitted to euthanasia at 7 and 30 days post-operatively. Quantitative analysis demonstrated significantly greater bone formation in Group GR, but the presence of the studied proteins was significantly greater in the CONT Group in both time intervals of observation. It was not possible in this study in cortical bone block groups to detect the osteoinductive proteins in a significant amount during the repair process. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Kün-Darbois, Jean-Daniel; Libouban, Hélène; Mabilleau, Guillaume; Pascaretti-Grizon, Florence; Chappard, Daniel
2018-02-16
Pathogenesis of bisphosphonate-related osteonecrosis of the jaws (BRONJ) is not fully explained. An antiangiogenic effect of bisphosphonates (BPs) or an altered bone quality have been advocated. The aims of the present study were to analyze alveolar mandibular vascularization and bone quality in rats with BRONJ. Thirty-eight Sprague-Dawley rats were randomized into two groups: zoledronic acid (ZA), n = 27, and control (CTRL) n = 11. The ZA group received a weekly IV injection of ZA (100 μg/kg) during 10 weeks. The CTRL group received saline. After 6 weeks, extraction of the right mandibular molars was performed. Rats were sacrificed after 14 weeks. Microtomography characterized bone lesions and vascularization after injection of a radio-opaque material. Raman microspectroscopy evaluated bone mineralization. Fifty-five percent of ZA rats presented bone exposure and signs of BRONJ. None sign was found at the left hemimandible in the ZA group and in the CTRL group. Vascular density appeared significantly increased in the right hemimandibles of the CTRL group compared to the left hemimandibles. Vascularization was reduced in the ZA group. A significantly increased of the mineral-to-amide ratio was found in the alveolar bone of ZA rats by Raman microspectroscopy. In a rat model of BRONJ, microtomography evidenced osteonecrosis in BRONJ. Raman spectroscopy showed an increased mineralization. Vascularization after tooth extraction was impaired by ZA. Prolonged BP administration caused an increase in the mineralization and a quantitative reduction of the vascularization in the alveolar bone; both factors might be involved concomitantly in the BRONJ pathophysiology.
Carlsson, Gunnar E
2014-08-01
To present a literature review on implant overdentures after a brief survey of bone loss after extraction of all teeth. Papers on alveolar bone loss and implant overdentures have been studied for a narrative review. Bone loss of the alveolar process after tooth extraction occurs with great individual variation, impossible to predict at the time of extraction. The simplest way to prevent bone loss is to avoid extraction of all teeth. To keep a few teeth and use them or their roots for a tooth or root-supported overdenture substantially reduces bone loss. Jaws with implant-supported prostheses show less bone loss than jaws with conventional dentures. Mandibular 2-implant overdentures provide patients with better outcomes than do conventional dentures, regarding satisfaction, chewing ability and oral-health-related quality of life. There is no strong evidence for the superiority of one overdenture retention-system over the others regarding patient satisfaction, survival, peri-implant bone loss and relevant clinical factors. Mandibular single midline implant overdentures have shown promising results but long-term results are not yet available. For a maxillary overdenture 4 to 6 implants splinted with a bar provide high survival both for implants and overdenture. In edentulous mandibles, 2-implant overdentures provide excellent long-term success and survival, including patient satisfaction and improved oral functions. To further reduce the costs a single midline implant overdenture can be a promising option. In the maxilla, overdentures supported on 4 to 6 implants splinted with a bar have demonstrated good functional results.