Sample records for manganese complexes

  1. Low-spin manganese(II) and high-spin manganese(III) complexes derived from disalicylaldehyde oxaloyldihydrazone: Synthesis, spectral characterization and electrochemical studies

    NASA Astrophysics Data System (ADS)

    Syiemlieh, Ibanphylla; Kumar, Arvind; Kurbah, Sunshine D.; De, Arjune K.; Lal, Ram A.

    2018-01-01

    Low-spin manganese(II) complexes [MnII(H2slox)].H2O (1), [MnII(H2slox)(SL)] (where SL (secondary ligand) = pyridine (py, 2), 2-picoline (2-pic, 3), 3-picoline (3-pic, 4), and 4-picoline (4-pic, 5) and high-spin manganese(III) complex Na(H2O)4[MnIII(slox)(H2O)2].2.5H2O have been synthesized from disalicyaldehyde oxaloyldihydrazone in methanolic - water medium. The composition of complexes has been established by elemental analyses and thermoanalytical data. The structures of the complexes have been discussed on the basis of data obtained from molar conductance, UV visible, 1H NMR, infrared spectra, magnetic moment and electron paramagnetic resonance spectroscopic studies. Conductivity measurements in DMF suggest that the complexes (1-5) are non-electrolyte while the complex (6) is 1:1 electrolyte. The electronic spectral studies and magnetic moment data suggest five - coordinate square pyramidal structure for the complexes (2-5) and square planar geometry for manganese(II) in complex (1). In complex (6), both sodium and manganese(III) have six coordinate octahedral geometry. IR spectral studies reveal that the dihydrazone coordinates to the manganese centre in keto form in complexes (1-5) and in enol form in complex (6). In all complexes, the ligand is present in anti-cis configuration. Magnetic moment and EPR studies indicate manganese in +2 oxidation state in complexes (1-5), with low-spin square planar complex (1) and square pyramidal stereochemistries complexes (2-5) while in +3 oxidation state in high-spin distorted octahedral stereochemistry in complex (6). The complex (1) involves significant metal - metal interaction in the solid state. All of the complexes show only one metal centred electron transfer reaction in DMF solution in cyclic voltammetric studies. The complexes (1-5) involve MnII→MnI redox reaction while the complex (6) involves MnIII→MnII redox reaction, respectively.

  2. Reduction of paraquat-induced renal cytotoxicity by manganese and copper complexes of EGTA and EHPG.

    PubMed

    Samai, Mohamed; Hague, Theresa; Naughton, Declan P; Gard, Paul R; Chatterjee, Prabal K

    2008-02-15

    Superoxide anion generation plays an important role in the development of paraquat toxicity. Although superoxide dismutase mimetics (SODm) have provided protection against organ injury involving generation of superoxide anions, they often suffer problems, e.g., regarding their bioavailability or potential pro-oxidant activity. The aim here was to investigate and compare the therapeutic potential of two novel SODm, manganese(II) and copper(II) complexes of the calcium chelator ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) and of the contrast agent ethylenebis(hydroxyphenylglycine) (EHPG), against paraquat-induced renal toxicity in vitro. Incubation of renal NRK-52E cells with paraquat (1 mM) for 24 h produced submaximal, yet significant, reduction in cellular viability and cell death and produced significant increases in superoxide anion and hydroxyl radical generation. Manganese and copper complexes of EGTA (10-100 microM) and EHPG (30-100 microM) reduced paraquat-induced renal cell toxicity and reduced superoxide anion and hydroxyl radical generation significantly. Manganese complexes displayed greater efficacy than copper complexes and, at equivalent concentrations, manganese complexed with EHPG provided the greatest protection. Furthermore, these metal complexes did not interfere with the uptake of [methyl-(14)C]paraquat into NRK-52E cells, suggesting that they provided protection against paraquat cytotoxicity via intracellular mechanisms. These complexes did not display cytotoxicity at the concentrations examined. Together, these results suggest that manganese and copper complexes of EGTA and EHPG, and especially the manganese-EHPG complex, could provide benefit against paraquat nephrotoxicity.

  3. Electrocatalytic oxidation of 2-mercaptoethanol using modified glassy carbon electrode by MWCNT in combination with unsymmetrical manganese (II) Schiff base complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohebbi, Sajjad, E-mail: smohebbi@uok.ac.ir; Eslami, Saadat

    2015-06-15

    Highlights: • High electocatalytic efficiency and stability of modified hybrid electrode GC/MWCNTs/MnSaloph. • Direct reflection of catalytic activity of manganese complexes on electrocatalytic oxidation of 2-ME. • Decreasing overpotential and increasing catalytic peak current toward oxidation of 2-ME. • Deposition of range of novel substituted N{sub 2}O{sub 2} Saloph complexes of manganese(II) on GCE/MWCNT. • Enhancement of electrocatalytic oxidation activity upon electron donating substitutions on the Saloph. - Abstract: The performance of modified hybrid glassy carbon electrode with composite of carbon nanotubes and manganese complexes for the electrocatalytic oxidation of 2-mercaptoethanol is developed. GC electrode was modified using MWCNT andmore » new N{sub 2}O{sub 2} unsymmetrical tetradentate Schiff base complexes of manganese namely Manganese Saloph complexes 1-5, with general formula Mn[(5-x-4-y-Sal)(5-x′-4-y′-Sal) Ph], where x, x′ = H, Br, NO{sub 2} and y, y′ = H, MeO. Direct immobilization of CNT on the surface of GCE is performed by abrasive immobilization, and then modified by manganese(II) complexes via direct deposition method. These novel modified electrodes clearly demonstrate the necessity of modifying bare carbon electrodes to endow them with the desired behavior and were identified by HRTEM. Also complexes were characterized by elemental analyses, MS, UV–vis and IR spectroscopy. Modified hybrid GC/MWCNT/MnSaloph electrode exhibits strong and stable electrocatalytic activity towards the electrooxidation of 2-mercaptoethanol molecules in comparison with bare glassy carbon electrode with advantages of very low over potential and high catalytic current. Such ability promotes the thiol’s electron transfer reaction. Also, electron withdrawing substituent on the Saloph was enhanced electrocatalytic oxidation activity.« less

  4. A mechanistic study and computational prediction of iron, cobalt and manganese cyclopentadienone complexes for hydrogenation of carbon dioxide.

    PubMed

    Ge, Hongyu; Chen, Xiangyang; Yang, Xinzheng

    2016-10-13

    A series of cobalt and manganese cyclopentadienone complexes are proposed and examined computationally as promising catalysts for hydrogenation of CO 2 to formic acid with total free energies as low as 20.0 kcal mol -1 in aqueous solution. Density functional theory study of the newly designed cobalt and manganese complexes and experimentally reported iron cyclopentadienone complexes reveals a stepwise hydride transfer mechanism with a water or a methanol molecule assisted proton transfer for the cleavage of H 2 as the rate-determining step.

  5. Polydisulfide Manganese(II) Complexes as Non-Gadolinium Biodegradable Macromolecular MRI Contrast Agents

    PubMed Central

    Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Tan, Mingqian; Yin, Shouyu; Lu, Zheng-Rong

    2011-01-01

    Purpose To develop safe and effective manganese(II) based biodegradable macromolecular MRI contrast agents. Materials and Methods In this study, we synthesized and characterized two polydisulfide manganese(II) complexes, Mn-DTPA cystamine copolymers and Mn-EDTA cystamine copolymers, as new biodegradable macromolecular MRI contrast agents. The contrast enhancement of the two manganese based contrast agents were evaluated in mice bearing MDA-MB-231 human breast carcinoma xenografts, in comparison with MnCl2. Results The T1 and T2 relaxivities were 4.74 and 10.38 mM−1s−1 per manganese at 3T for Mn-DTPA cystamine copolymers (Mn=30.50 kDa) and 6.41 and 9.72 mM−1s−1 for Mn-EDTA cystamine copolymers (Mn= 61.80 kDa). Both polydisulfide Mn(II) complexes showed significant liver, myocardium and tumor enhancement. Conclusion The manganese based polydisulfide contrast agents have a potential to be developed as alternative non-gadolinium contrast agents for MR cancer and myocardium imaging. PMID:22031457

  6. Amorphous manganese-calcium oxides as a possible evolutionary origin for the CaMn₄ cluster in photosystem II.

    PubMed

    Najafpour, Mohammad Mahdi

    2011-06-01

    In this paper a few calcium-manganese oxides and calcium-manganese minerals are studied as catalysts for water oxidation. The natural mineral marokite is also studied as a catalyst for water oxidation for the first time. Marokite is made up of edge-sharing Mn(3+) in a distorted octahedral environment and eight-coordinate Ca(2+) centered polyhedral layers. The structure is similar to recent models of the oxygen evolving complex in photosystem II. Thus, the oxygen evolving complex in photosystem II does not have an unusual structure and could be synthesized hydrothermally. Also in this paper, oxygen evolution is studied with marokite (CaMn₂O₄), pyrolusite (MnO₂) and compared with hollandite (Ba(0.2)Ca(0.15)K(0.3)Mn(6.9)Al(0.2)Si(0.3)O(16)), hausmannite (Mn₃O₄), Mn₂O₃.H₂O, Ca Mn₃O₆.H₂O, CaMn₄O₈.H₂O, CaMn₂O₄.H₂O and synthetic marokite (CaMn₂O₄). I propose that the origin of the oxygen evolving complex in photosystem II resulted from absorption of calcium and manganese ions that were precipitated together in the archean oceans by protocyanobacteria because of changing pH from ~5 to ~8-10. As reported in this paper, amorphous calcium-manganese oxides with different ratios of manganese and calcium are effective catalysts for water oxidation. The bond types and lengths of the calcium and manganese ions in the calcium-manganese oxides are directly comparable to those in the OEC. This primitive structure of these amorphous calcium-manganese compounds could be changed and modified by environmental groups (amino acids) to form the oxygen evolving complex in photosystem II.

  7. Permanganate ion oxidations. IX. Manganese intermediates (complexes) in the oxidation of 2,4(1H,3H)-pyrimidinediones.

    PubMed

    Freeman, F; Karchefski, E M

    1976-10-04

    Uniquely stable manganese intermediates (complexes) are formed from the permanganate ion oxidation of the 5,6-carbon-carbon double bond in several 2,4(1H,3H)-pyrimidinediones [uracil, (compound 7), 5-methyluracil (thymine, compound 5), and 6-methyluracil (compound 8)]. These manganese complexes, which represent some of the most stable intermediate manganese species observed thus far in the oxidation of carbon-carbon double bonds, show absorption maxima in the 285-296 nm region (epsilon max approximately 4500). The relative reactivities of 6-methyluracil: uracil: thymine are 1: 23 : 194 and the bimolecular oxidation process is characterized by relatively small deltaH++ values and large negative deltaS++ values.

  8. Synthesis, characterization and electrochemical studies of heterometallic manganese(IV)-zinc(II) and manganese(IV)-copper(II) complexes derived from bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone

    NASA Astrophysics Data System (ADS)

    Koch, Angira; Phukan, Arnab; Chanu, Oinam B.; Kumar, A.; Lal, R. A.

    2014-02-01

    Five manganese(IV) complexes [Mn(L)(bpy)] (1) and heterobimetallic complexes [MMn(L)Cl2(H2O)4]·1.5H2O (M = ZnII(2), CuII(3)) and [MnM(L)(bpy)Cl2] (M = ZnII(4), CuII(5)] have been synthesized from bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone (H4L) in methanol medium. The composition of the complexes have been established based on the data obtained from analytical, thermoanalytical and mass spectral studies. The structures of the complexes have been discussed in the light of molar conductance, magnetic moment, electronic, EPR, IR, FT-IR spectroscopic studies and transmission electron microscopies. The molar conductance values of these complexes in DMSO suggest their non-electrolytic nature. The μeff value for the complexes (1), (2) and (4) fall in the range 3.82-4.12 BM characteristic of the presence of the manganese(IV) in them. The complex (3) has μeff value of 3.70 BM at RT indicating considerable antiferromagnetic interaction between Mn(IV) and Cu(II). The μeff value of 4.72 BM for complex (5) is slightly lower than 4.90 BM for S = 2 ground state. In the complex (1) to (3), the ligand is coordinated to the metal centres as tetradentate ligand while in the complexes (4) and (5) as hexadentate ligand. Manganese(IV) has distorted octahedral stereochemistry in all complexes. Copper(II) has distorted octahedral and square planar stereochemistry in complexes (3) and (5) while zinc has distorted octahedral and tetrahedral stereochemistry, respectively. EPR studies of the complexes are also reported. The electron transfer reactions of the complexes have also been investigated by cyclic voltammetry.

  9. Manganese As a Metal Accumulator

    EPA Science Inventory

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  10. Water exchange in manganese-based water-oxidizing catalysts in photosynthetic systems: from the water-oxidizing complex in photosystem II to nano-sized manganese oxides.

    PubMed

    Najafpour, Mohammad Mahdi; Isaloo, Mohsen Abbasi; Eaton-Rye, Julian J; Tomo, Tatsuya; Nishihara, Hiroshi; Satoh, Kimiyuki; Carpentier, Robert; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2014-09-01

    The water-oxidizing complex (WOC), also known as the oxygen-evolving complex (OEC), of photosystem II in oxygenic photosynthetic organisms efficiently catalyzes water oxidation. It is, therefore, responsible for the presence of oxygen in the Earth's atmosphere. The WOC is a manganese-calcium (Mn₄CaO₅(H₂O)₄) cluster housed in a protein complex. In this review, we focus on water exchange chemistry of metal hydrates and discuss the mechanisms and factors affecting this chemical process. Further, water exchange rates for both the biological cofactor and synthetic manganese water splitting are discussed. The importance of fully unveiling the water exchange mechanism to understand the chemistry of water oxidation is also emphasized here. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Metal cation controls phosphate release in the myosin ATPase.

    PubMed

    Ge, Jinghua; Huang, Furong; Nesmelov, Yuri E

    2017-11-01

    Myosin is an enzyme that utilizes ATP to produce a conformational change generating a force. The kinetics of the myosin reverse recovery stroke depends on the metal cation complexed with ATP. The reverse recovery stroke is slow for MgATP and fast for MnATP. The metal ion coordinates the γ phosphate of ATP in the myosin active site. It is accepted that the reverse recovery stroke is correlated with the phosphate release; therefore, magnesium "holds" phosphate tighter than manganese. Magnesium and manganese are similar ions in terms of their chemical properties and the shell complexation; hence, we propose to use these ions to study the mechanism of the phosphate release. Analysis of octahedral complexes of magnesium and manganese show that the partial charge of magnesium is higher than that of manganese and the slightly larger size of manganese ion makes its ionic potential smaller. We hypothesize that electrostatics play a role in keeping and releasing the abstracted γ phosphate in the active site, and the stronger electric charge of magnesium ion holds γ phosphate tighter. We used stable myosin-nucleotide analog complex and Raman spectroscopy to examine the effect of the metal cation on the relative position of γ phosphate analog in the active site. We found that in the manganese complex, the γ phosphate analog is 0.01 nm further away from ADP than in the magnesium complex. We conclude that the ionic potential of the metal cation plays a role in the retention of the abstracted phosphate. © 2017 The Protein Society.

  12. Matrix Infrared Spectra of Manganese and Iron Isocyanide Complexes.

    PubMed

    Chen, Xiuting; Li, Qingnuan; Andrews, Lester; Gong, Yu

    2017-11-22

    Mono and diisocyanide complexes of manganese and iron were prepared via the reactions of laser-ablated manganese and iron atoms with (CN) 2 in an argon matrix. Product identifications were performed based on the characteristic infrared absorptions from isotopically labeled (CN) 2 experiments as compared with computed values for both cyanides and isocyanides. Manganese atoms reacted with (CN) 2 to produce Mn(NC) 2 upon λ > 220 nm irradiation, during which MnNC was formed mainly as a result of the photoinduced decomposition of Mn(NC) 2 . Similar reaction products FeNC and Fe(NC) 2 were formed during the reactions of Fe and (CN) 2 . All the product molecules together with the unobserved cyanide isomers were predicted to have linear geometries at the B3LYP level of theory. The cyanide complexes of manganese and iron were computed to be more stable than the isocyanide isomers with energy differences between 0.4 and 4 kcal/mol at the CCSD(T) level. Although manganese and iron cyanide molecules are slightly more stable according to the theory, no absorption can be assigned to these isomers in the region above the isocyanides possibly due to their low infrared intensities.

  13. Water oxidation catalysed by manganese compounds: from complexes to 'biomimetic rocks'.

    PubMed

    Wiechen, Mathias; Berends, Hans-Martin; Kurz, Philipp

    2012-01-07

    One of the most fundamental processes of the natural photosynthetic reaction sequence is the light-driven oxidation of water to molecular oxygen. In vivo, this reaction takes place in the large protein ensemble Photosystem II, where a μ-oxido-Mn(4)Ca- cluster, the oxygen-evolving-complex (OEC), has been identified as the catalytic site for the four-electron/four-proton redox reaction of water oxidation. This Perspective presents recent progress for three strategies which have been followed to prepare functional synthetic analogues of the OEC: (1) the synthesis of dinuclear manganese complexes designed to act as water-oxidation catalysts in homogeneous solution, (2) heterogeneous catalysts in the form of clay hybrids of such Mn(2)-complexes and (3) the preparation of manganese oxide particles of different compositions and morphologies. We discuss the key observations from the studies of such synthetic manganese systems in order to shed light upon the catalytic mechanism of natural water oxidation. Additionally, it is shown how research in this field has recently been motivated more and more by the prospect of finding efficient, robust and affordable catalysts for light-driven water oxidation, a key reaction of artificial photosynthesis. As manganese is an abundant and non-toxic element, manganese compounds are very promising candidates for the extraction of reduction equivalents from water. These electrons could consecutively be fed into the synthesis of "solar fuels" such as hydrogen or methanol.

  14. 40 CFR 721.10003 - Manganese heterocyclic tetraamine complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10003 Manganese heterocyclic tetraamine complex (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically...

  15. Calcium-manganese oxides as structural and functional models for active site in oxygen evolving complex in photosystem II: lessons from simple models.

    PubMed

    Najafpour, Mohammad Mahdi

    2011-01-01

    The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Structure and magnetism of a Mn(III)-Mn(II)-Mn(II)-Mn(III) chain complex.

    PubMed

    Uhrecký, Róbert; Moncoľ, Ján; Koman, Marian; Titiš, Ján; Boča, Roman

    2013-07-14

    A novel tetranuclear manganese(II/III) complex with anions of pyridine-2,6-dicarboxylic acid (dipicolinic acid) has been synthesised and magneto-structurally characterised. The crystal structure of [Mn(II)2Mn(III)2(dipic)6(H2O)4]·2CH3OH·4H2O has been determined by single-crystal X-ray diffraction. The tetranuclear complex molecule [Mn(II)2Mn(III)2(dipic)6(H2O)4] is centrosymmetric and two manganese(II) and two manganese(III) atoms are bridged by four dipicolinate ligands. The complex molecules and uncoordinated water and methanol molecules are connected through hydrogen bonds and they form a 3D supramolecular hydrogen-bonding network.

  17. Redox-inactive metal ions promoted the catalytic reactivity of non-heme manganese complexes towards oxygen atom transfer.

    PubMed

    Choe, Cholho; Yang, Ling; Lv, Zhanao; Mo, Wanling; Chen, Zhuqi; Li, Guangxin; Yin, Guochuan

    2015-05-21

    Redox-inactive metal ions can modulate the reactivity of redox-active metal ions in a variety of biological and chemical oxidations. Many synthetic models have been developed to help address the elusive roles of these redox-inactive metal ions. Using a non-heme manganese(II) complex as the model, the influence of redox-inactive metal ions as a Lewis acid on its catalytic efficiency in oxygen atom transfer was investigated. In the absence of redox-inactive metal ions, the manganese(II) catalyst is very sluggish, for example, in cyclooctene epoxidation, providing only 9.9% conversion with 4.1% yield of epoxide. However, addition of 2 equiv. of Al(3+) to the manganese(II) catalyst sharply improves the epoxidation, providing up to 97.8% conversion with 91.4% yield of epoxide. EPR studies of the manganese(II) catalyst in the presence of an oxidant reveal a 16-line hyperfine structure centered at g = 2.0, clearly indicating the formation of a mixed valent di-μ-oxo-bridged diamond core, Mn(III)-(μ-O)2-Mn(IV). The presence of a Lewis acid like Al(3+) causes the dissociation of this diamond Mn(III)-(μ-O)2-Mn(IV) core to form monomeric manganese(iv) species which is responsible for improved epoxidation efficiency. This promotional effect has also been observed in other manganese complexes bearing various non-heme ligands. The findings presented here have provided a promising strategy to explore the catalytic reactivity of some di-μ-oxo-bridged complexes by adding non-redox metal ions to in situ dissociate those dimeric cores and may also provide clues to understand the mechanism of methane monooxygenase which has a similar diiron diamond core as the intermediate.

  18. Fate of manganese associated with the inhalation of welding fumes: potential neurological effects.

    PubMed

    Antonini, James M; Santamaria, Annette B; Jenkins, Neil T; Albini, Elisa; Lucchini, Roberto

    2006-05-01

    Welding fumes are a complex mixture composed of different metals. Most welding fumes contain a small percentage of manganese. There is an emerging concern among occupational health officials about the potential neurological effects associated with the exposure to manganese in welding fumes. Little is known about the fate of manganese that is complexed with other metals in the welding particles after inhalation. Depending on the welding process and the composition of the welding electrode, manganese may be present in different oxidation states and have different solubility properties. These differences may affect the biological responses to manganese after the inhalation of welding fumes. Manganese intoxication and the associated neurological symptoms have been reported in individual cases of welders who have been exposed to high concentrations of manganese-containing welding fumes due to work in poorly ventilated areas. However, the question remains as to whether welders who are exposed to low levels of welding fumes over long periods of time are at risk for the development of neurological diseases. For the most part, questions remain unanswered. There is still paucity of adequate scientific reports on welders who suffered significant neurotoxicity, hence there is a need for well-designed epidemiology studies that combine complete information on the occupational exposure of welders with both behavioral and biochemical endpoints of neurotoxicity.

  19. Manganese-modified asphalts : chemistry of the curing reaction, its effect on properties, and evidence for manganese inactivation following cure

    DOT National Transportation Integrated Search

    1986-06-01

    The chemical reactions and reaction kinetics of asphalt modified with a patented modifier supplied by Chemkrete Technologies, Inc. were investigated. The modifier, a manganese-carboxylic acid complex, has been shown to cause a rap; d react; on with a...

  20. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    PubMed

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important step in designing Mn III -peroxo complexes that convert cleanly to high-valent Mn-oxo species. Although some synthetic Mn IV -oxo complexes show great potential for oxidizing substrates with strong C-H bonds, most Mn IV -oxo species are sluggish oxidants. Both two-state reactivity and thermodynamic arguments have been put forth to explain these observations. To address these issues, we generated a series of Mn IV -oxo complexes supported by neutral, pentadentate ligands with systematically perturbed equatorial donation. Kinetic investigations of these complexes revealed a correlation between equatorial ligand-field strength and hydrogen-atom and oxygen-atom transfer reactivity. While this trend can be understood on the basis of the two-state reactivity model, the reactivity trend also correlates with variations in Mn III/IV reduction potential caused by changes in the ligand field. This work demonstrates the dramatic influence simple ligand perturbations can have on reactivity but also illustrates the difficulties in understanding the precise basis for a change in reactivity. In the enzyme manganese lipoxygenase, an active-site Mn III -hydroxo adduct initiates substrate oxidation by abstracting a hydrogen atom from a C-H bond. Precedent for this chemistry from synthetic Mn III -hydroxo centers is rare. To better understand hydrogen-atom transfer by Mn III centers, we developed a pair of Mn III -hydroxo complexes, formed in high yield from dioxygen oxidation of Mn II precursors, capable of attacking weak O-H and C-H bonds. Kinetic and computational studies show a delicate interplay between thermodynamic and steric influences in hydrogen-atom transfer reactivity, underscoring the potential of Mn III -hydroxo units as mild oxidants.

  1. Spectroscopic and electrochemical investigation with coordination stabilities: Mononuclear manganese(II) complexes derived from different constituents macrocyclic ligands

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chnadra, S.; Mishra, Parashuram

    2007-12-01

    Since the manganese(II) complexes are known as having a high degree of stability, some of them may be able to play a very important role in biosystems. We prepared manganese(II) complexes with different chromospheres containing macrocyclic ligands bearing N, S and O like functional donor atoms in order to obtain different models of compounds. So these new manganese(II) complexes were derived from macrocyclic ligands by chelating them with metal ions. Thus, two macrocyclic ligands, L 1: 2,4-diphenyl-1,5-diaza-8,12-dioxo-6,7:13,14-dibenzocyclo tetradeca-1,4-diene[N 2O 2]ane; L 2: 2,4,9,11-tetraphenyl-6,13-dimethyl-1,5,8,12-traazacyclotertr-adeca-1,4,8,11-tetraene[N 4]ane; and two more different form first one viz.—L 3: 1,7-diaza-4-monothia-10,14-dioxo-8,9:15,16-cyclohexadecane[N 2O 2S]ane and L 4: 4,13-diaoxa-1,7,10,16-hexazacyclooctadecane[N 4O 2]ane were prepared and their capacity to retain the manganese(II) ion in solid as well as aqueous solution was determined from various physiochemical techniques viz: characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic, ESR spectral studies and cyclic voltammetric measurements.

  2. Nanodiamond-Manganese dual mode MRI contrast agents for enhanced liver tumor detection.

    PubMed

    Hou, Weixin; Toh, Tan Boon; Abdullah, Lissa Nurrul; Yvonne, Tay Wei Zheng; Lee, Kuan J; Guenther, Ilonka; Chow, Edward Kai-Hua

    2017-04-01

    Contrast agent-enhanced magnetic resonance (MR) imaging is critical for the diagnosis and monitoring of a number of diseases, including cancer. Certain clinical applications, including the detection of liver tumors, rely on both T1 and T2-weighted images even though contrast agent-enhanced MR imaging is not always reliable. Thus, there is a need for improved dual mode contrast agents with enhanced sensitivity. We report the development of a nanodiamond-manganese dual mode contrast agent that enhanced both T1 and T2-weighted MR imaging. Conjugation of manganese to nanodiamonds resulted in improved longitudinal and transverse relaxivity efficacy over unmodified MnCl 2 as well as clinical contrast agents. Following intravenous administration, nanodiamond-manganese complexes outperformed current clinical contrast agents in an orthotopic liver cancer mouse model while also reducing blood serum concentration of toxic free Mn 2+ ions. Thus, nanodiamond-manganese complexes may serve as more effective dual mode MRI contrast agent, particularly in cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A chemiluminescence method to detect hydroquinone with water-soluble sulphonato-(salen)manganese(III) complex as catalyst.

    PubMed

    Zhang, Guangbin; Tang, Yuhai; Sun, Yang; Yu, Hua; Du, Wei; Fu, Qiang

    2016-02-01

    A water-soluble sulphonato-(salen)manganese(III) complex with excellent catalytic properties was synthesized and demonstrated to greatly enhance the chemiluminescence signal of the hydrogen peroxide - luminol reaction. Coupled with flow-injection technique, a simple and sensitive chemiluminescence method was first developed to detect hydroquinone based on the chemiluminescence system of the hydrogen peroxide-luminol-sulphonato-(salen)manganese(III) complex. Under optimal conditions, the assay exhibited a wide linear range from 0.1 to 10 ng mL(-1) with a detection limit of 0.05 ng mL(-1) for hydroquinone. The method was applied successfully to detect hydroquinone in tap-water and mineral-water, with a sampling frequency of 120 times per hour. The relative standard deviation for determination of hydroquinone was less than 5.6%, and the recoveries ranged from 96.8 to 103.0%. The ultraviolet spectra, chemiluminescence spectra, and the reaction kinetics for the peroxide-luminol-sulphonato-(salen)manganese(III) complex system were employed to study the possible chemiluminescence mechanism. The proposed chemiluminescence analysis technique is rapid and sensitive, with low cost, and could be easily extended and applied to other compounds. Copyright © 2015 John Wiley & Sons, Ltd.

  4. High-spin Mn-oxo complexes and their relevance to the oxygen-evolving complex within photosystem II.

    PubMed

    Gupta, Rupal; Taguchi, Taketo; Lassalle-Kaiser, Benedikt; Bominaar, Emile L; Yano, Junko; Hendrich, Michael P; Borovik, A S

    2015-04-28

    The structural and electronic properties of a series of manganese complexes with terminal oxido ligands are described. The complexes span three different oxidation states at the manganese center (III-V), have similar molecular structures, and contain intramolecular hydrogen-bonding networks surrounding the Mn-oxo unit. Structural studies using X-ray absorption methods indicated that each complex is mononuclear and that oxidation occurs at the manganese centers, which is also supported by electron paramagnetic resonance (EPR) studies. This gives a high-spin Mn(V)-oxo complex and not a Mn(IV)-oxy radical as the most oxidized species. In addition, the EPR findings demonstrated that the Fermi contact term could experimentally substantiate the oxidation states at the manganese centers and the covalency in the metal-ligand bonding. Oxygen-17-labeled samples were used to determine spin density within the Mn-oxo unit, with the greatest delocalization occurring within the Mn(V)-oxo species (0.45 spins on the oxido ligand). The experimental results coupled with density functional theory studies show a large amount of covalency within the Mn-oxo bonds. Finally, these results are examined within the context of possible mechanisms associated with photosynthetic water oxidation; specifically, the possible identity of the proposed high valent Mn-oxo species that is postulated to form during turnover is discussed.

  5. Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design.

    PubMed

    Ge, Hongyu; Chen, Xiangyang; Yang, Xinzheng

    2017-07-03

    Density functional theory study of the hydrogenation of carbon dioxide to methanol catalyzed by iron, cobalt, and manganese cyclopentadienone complexes reveals a self-promoted mechanism, which features a methanol- or water-molecule-assisted proton transfer for the cleavage of H 2 . The total free energy barrier of the formation of methanol from CO 2 and H 2 catalyzed by Knölker's iron cyclopentadienone complex, [2,5-(SiMe 3 ) 2 -3,4-(CH 2 ) 4 (η 5 -C 4 COH)]Fe(CO) 2 H, is 26.0 kcal mol -1 in the methanol solvent. We also evaluated the catalytic activities of 8 other experimentally reported iron cyclopentadienone complexes and 37 iron, cobalt, and manganese cyclopentadienone complexes proposed in this study. In general, iron and manganese complexes have relatively higher catalytic activities. Among all calculated complexes, [2,5-(SiMe 3 ) 2 -3,4-CH 3 CHSCH 2 (η 5 -C 4 COH)]Fe(CO) 2 H (1 Fe-Casey-S-CH3 ) is the most active one with a total free energy barrier of 25.1 kcal mol -1 in the methanol solvent. Such a low barrier indicates that 1 Fe-Casey-S-CH3 is a very promising low-cost and high efficiency catalyst for the conversion of CO 2 and H 2 to methanol under mild conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Selective hydroxylation of benzene derivatives and alkanes with hydrogen peroxide catalysed by a manganese complex incorporated into mesoporous silica-alumina.

    PubMed

    Aratani, Yusuke; Yamada, Yusuke; Fukuzumi, Shunichi

    2015-03-18

    Selective hydroxylation of benzene derivatives and alkanes to the corresponding phenol and alcohol derivatives with hydrogen peroxide was efficiently catalysed by a manganese tris(2-pyridylmethyl)amine (tpa) complex ([(tpa)Mn(II)](2+)) incorporated into mesoporous silica-alumina with highly acidic surfaces in contrast to the reactions in a homogeneous solution where [(tpa)Mn(II)](2+) was converted catalytically to a much less active bis(μ-oxo)dimanganese(III,IV) complex.

  7. High performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Winkelman, D. M.

    1989-01-01

    Electroformed copper and nickel are used in structural applications for advanced propellant combustion chambers. An improved process has been developed by Bell Aerospace Textron, Inc. wherein electroformed nickel-manganese alloy has demonstrated superior mechanical and thermal stability when compared to previously reported deposits from known nickel plating processes. Solution chemistry and parametric operating procedures are now established and material property data is established for deposition of thick, large complex shapes such as the Space Shuttle Main Engine. The critical operating variables are those governing the ratio of codeposited nickel and manganese. The deposition uniformity which in turn affects the manganese concentration distribution is affected by solution resistance and geometric effects as well as solution agitation. The manganese concentration in the deposit must be between 2000 and 3000 ppm for optimum physical properties to be realized. The study also includes data regarding deposition procedures for achieving excellent bond strength at an interface with copper, nickel-manganese or INCONEL 718. Applications for this electroformed material include fabrication of complex or re-entry shapes which would be difficult or impossible to form from high strength alloys such as INCONEL 718.

  8. Aqueous Speciation and Electrochemical Properties of a Water-Soluble Manganese Phthalocyanine Complex#

    PubMed Central

    Blakemore, James D.; Hull, Jonathan F.

    2012-01-01

    The speciation behavior of a water-soluble manganese(III) tetrasulfonated phthalocyanine complex was investigated with UV-visible and electron paramagnetic resonance (EPR) spectroscopies, as well as cyclic voltammetry. Parallel-mode EPR (in dimethylformamide:pyridine solvent mix) reveals a six-line hyperfine signal, centered at a g-value of 8.8, for the manganese(III) monomer, characteristic of the d4 S=2 system. The color of an aqueous solution containing the complex is dependent upon the pH of the solution; the phthalocyanine complex can exist as a water-bound monomer, a hydroxide-bound monomer, or an oxo-bridged dimer. Addition of coordinating bases such as borate or pyridine changes the speciation behavior by coordinating the manganese center. From the UV-visible spectra, complete speciation diagrams are plotted by global analysis of the pH-dependent UV-visible spectra, and a complete set of pKa values is obtained by fitting the data to a standard pKa model. Electrochemical studies reveal a pH-independent quasi-reversible oxidation event for the monomeric species, which likely involves oxidation of the organic ligand to the radical cation species. Adsorption of the phthalocyanine complex on the carbon working electrode was sometimes observed. The pKa values and electrochemistry data are discussed in the context of the development of mononuclear water-oxidation catalysts. PMID:22585306

  9. Epoxidation of alkenes and oxidation of alcohols with hydrogen peroxide catalyzed by a manganese(V) nitrido complex.

    PubMed

    Kwong, Hoi-Ki; Lo, Po-Kam; Lau, Kai-Chung; Lau, Tai-Chu

    2011-04-14

    The manganese(V) nitrido complex (PPh(4))(2)[Mn(N)(CN)(4)] is an active catalyst for alkene epoxidation and alcohol oxidation using H(2)O(2) as an oxidant. The catalytic oxidation is greatly enhanced by the addition of just one equivalent of acetic acid. The oxidation of ethene by this system has been studied computationally by the DFT method.

  10. Mn2+ exerts stronger structural effects than the Mn-citrate complex on the human erythrocyte membrane and molecular models.

    PubMed

    Suwalsky, M; Villena, F; Sotomayor, C P

    2010-01-01

    While traces of manganese (Mn) take part in important and essential functions in biology, elevated exposures have been shown to cause significant toxicity. Chronic exposure to the metal leads to manganese neurotoxicity (or manganism), a brain disorder that resembles Parkinsonism. Toxic effect mechanisms of Mn is not understood, toxic concentrations of manganese are not well defined and blood manganese concentration at which neurotoxicity occurs has not been identified. There are reports indicating that the most abundant Mn-species in Mn carriers within blood is the Mn-citrate complex. Despite the well-documented information about the toxic effects of Mn, there are scarce reports concerning the effects of manganese compounds on both structure and functions of cell membranes, particularly those of human erythrocytes. With the aim to better understand the molecular mechanisms of the interaction of Mn with cell membranes, MnCl(2), and the Mn-citrate complex were incubated with intact erythrocytes, isolated unsealead human erythrocyte membranes (IUM), and molecular models of the erythrocyte membrane. These consisted in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes present in the outer and inner monolayers of the erythrocyte membrane, respectively. The capacity of the Mn compounds to perturb the bilayer structures of DMPC and DMPE was evaluated by X-ray diffraction, IUM were studied by fluorescence spectroscopy, and intact human erythrocytes were observed by scanning electron microscopy (SEM). In all these systems it was found that Mn(2+) exerted considerable higher structural perturbations than the Mn-citrate complex.

  11. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions.

    PubMed

    Yin, Yongyuan; Guo, Xuetao; Peng, Dan

    2018-08-01

    Maize straw modified by iron and manganese oxides was synthesized via a simple and environmentally friendly method. Three maize straw materials, the original maize straw, maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides, were detected by SEM, BET, XPS, XRD and FTIR. The results showed that maize straw was successfully modified and maize straw modified by iron and manganese oxides has a larger surface area than MS. According to the experimental data, the sorption trend could conform to the pseudo-second-order kinetic model well, and the sorption ability of tylosin on sorbents followed the order of original maize straw < maize straw modified by manganese oxides < maize straw modified by iron and manganese oxides. The study indicated that manganese oxides and iron-manganese oxides could significantly enhance the sorption capacity of original maize straw. The sorption isotherm data of tylosin on original maize straw fit a linear model well, while Freundlich models were more suitable for maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides. The pH, ionic strength and temperature can affect the sorption process. The sorption mechanisms of tylosin on iron and manganese oxides modified maize straw were attribute to the surface complexes, electrostatic interactions, H bonding and hydrophobic interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide

    USGS Publications Warehouse

    Balistrieri, L.S.; Chao, T.T.

    1990-01-01

    This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites is reflected in decreasing equilibrium constants for selenite with increasing adsorption density and both experimental observations and modeling results suggest that manganese dioxide has fewer sites of higher energy for selenite adsorption than amorphous iron oxyhydroxide. Modeling and interpreting the adsorption of phosphate, molybdate, and silicate on the oxides are made difficult by the lack of constraint in choosing surface species and the fact that equally good fits can be obtained with different surface species. Finally, predictions of anion competition using the model results from single adsorbate systems are not very successful because the model does not account for surface site heterogeneity. Selenite adsorption data from a multi-adsorbate system could be fit if the equilibrium constant for selenite is decreased with increasing anion adsorption density. ?? 1990.

  13. Synthesis, characterization, biological evaluation and docking studies of macrocyclic binuclear manganese(II) complexes containing 3,5-dinitrobenzoyl pendant arms

    NASA Astrophysics Data System (ADS)

    Arthi, P.; Shobana, S.; Srinivasan, P.; Mitu, L.; Kalilur Rahiman, A.

    2015-05-01

    A series of bis(phenoxo) bridged binuclear manganese(II) complexes of the type [Mn2L1-3](ClO4)2 (1-3) containing 3,5-dinitrobenzoyl pendant-arms have been synthesized by cyclocondensation of 2,6-diformyl-4-R-phenols (where R = sbnd CH3, sbnd C(CH3)3 or sbnd Br) with 2,2‧-3,5-dinitrobenzoyliminodi(ethylamine) trihydrochloride in the presence of manganese(II) perchlorate. The IR spectra of complexes indicate the presence of uncoordinated perchlorate anions. The UV-Vis spectra of complexes suggest the distorted octahedral geometry around manganese(II) nuclei. The EPR spectra of Mn(II) complexes show a broad signal with g value 2.03-2.04, which is characteristic for octahedral high spin Mn2+ complex. The observed room temperature magnetic moment values of the Mn(II) complexes (5.60-5.62 B.M.) are less than the normal value (5.92 B.M.), indicating weak antiferromagnetic coupling interaction between the two metal ions. Electrochemical studies of the complexes show two distinct quasi-reversible one electron transfer processes in the cathodic (E1pc = -0.73 to -0.76 V, E2pc = -1.30 to -1.36 V), and anodic (E1pa = 1.02-1.11 V, E2pa = 1.32-1.79 V) potential regions. Antibacterial efficacy of complexes have been screened against four Gram (-ve) and two Gram (+ve) bacterial strains. The DNA interaction studies suggest that these complexes bind with CT-DNA by intercalation, giving the binding affinity in the order 1 > 2 > 3. All the complexes display significant cleavage activity against circular plasmid pBR322 DNA. Docking simulation was performed to insert complexes into the crystal structure of EGFR tyrosine kinase and B-DNA at active site to determine the probable binding mode.

  14. Uncaging a catalytic hydrogen peroxide generator through the photo-induced release of nitric oxide from a {MnNO}(6) complex.

    PubMed

    Iwamoto, Yuji; Kodera, Masahito; Hitomi, Yutaka

    2015-06-11

    The photo-initiated cytotoxicity of a newly developed manganese nitrosyl {MnNO}(6) complex (UG1NO) to HeLa cells is described. The complex was found to be strongly cytotoxic after being exposed to light with a wavelength of 650 nm. Cell death was caused by a manganese(II) complex, UG1, generated from UG1NO through the photo-dissociation of NO, rather than by NO directly. Mechanistic studies revealed that UG1 consumes O2 only in the presence of a reducing agent to catalytically produce H2O2.

  15. How pharmacokinetic modeling could improve a risk assessment for manganese

    EPA Science Inventory

    The neurotoxicity of manganese (Mn) is well established, yet the risk assessment of Mn is made complex by certain enigmas. These include apparently greatertoxicity via inhalation compared to oral exposure and greater toxicity in humans compared to rats. In addition, until recentl...

  16. Six-coordinate manganese(3+) in catalysis by yeast manganese superoxide dismutase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Yuewei; Gralla, Edith Butler; Schumacher, Mikhail

    Reduction of superoxide (O{sub 2}{sup -}) by manganese-containing superoxide dismutase occurs through either a 'prompt protonation' pathway, or an 'inner-sphere' pathway, with the latter leading to formation of an observable Mn-peroxo complex. We recently reported that wild-type (WT) manganese superoxide dismutases (MnSODs) from Saccharomyces cerevisiae and Candida albicans are more gated toward the 'prompt protonation' pathway than human and bacterial MnSODs and suggested that this could result from small structural changes in the second coordination sphere of manganese. We report here that substitution of a second-sphere residue, Tyr34, by phenylalanine (Y34F) causes the MnSOD from S. cerevisiae to react exclusivelymore » through the 'inner-sphere' pathway. At neutral pH, we have a surprising observation that protonation of the Mn-peroxo complex in the mutant yeast enzyme occurs through a fast pathway, leading to a putative six-coordinate Mn3+ species, which actively oxidizes O{sub 2}{sup -} in the catalytic cycle. Upon increasing pH, the fast pathway is gradually replaced by a slow proton-transfer pathway, leading to the well-characterized five-coordinate Mn{sup 3+}. We here propose and compare two hypothetical mechanisms for the mutant yeast enzyme, diffeeing in the structure of the Mn-peroxo complex yet both involving formation of the active six-coordinate Mn{sup 3+} and proton transfer from a second-sphere water molecule, which has substituted for the -OH of Tyr34, to the Mn-peroxo complex. Because WT and the mutant yeast MnSOD both rest in the 2+ state and become six-coordinate when oxidized up from Mn{sup 2+}, six-coordinate Mn{sup 3+} species could also actively function in the mechanism of WT yeast MnSODs.« less

  17. Structural basis for the metal-selective activation of the manganese transport regulator of Bacillus subtilis.

    PubMed

    Kliegman, Joseph I; Griner, Sarah L; Helmann, John D; Brennan, Richard G; Glasfeld, Arthur

    2006-03-21

    The manganese transport regulator (MntR) of Bacillus subtilis is activated by Mn(2+) to repress transcription of genes encoding transporters involved in the uptake of manganese. MntR is also strongly activated by cadmium, both in vivo and in vitro, but it is poorly activated by other metal cations, including calcium and zinc. The previously published MntR.Mn(2+) structure revealed a binuclear complex of manganese ions with a metal-metal separation of 3.3 A (herein designated the AB conformer). Analysis of four additional crystal forms of MntR.Mn(2+) reveals that the AB conformer is only observed in monoclinic crystals at 100 K, suggesting that this conformation may be stabilized by crystal packing forces. In contrast, monoclinic crystals analyzed at room temperature (at either pH 6.5 or pH 8.5), and a second hexagonal crystal form (analyzed at 100 K), all reveal the shift of one manganese ion by 2.5 A, thereby leading to a newly identified conformation (the AC conformer) with an internuclear distance of 4.4 A. Significantly, the cadmium and calcium complexes of MntR also contain binuclear complexes with a 4.4 A internuclear separation. In contrast, the zinc complex of MntR contains only one metal ion per subunit, in the A site. Isothermal titration calorimetry confirms the stoichiometry of Mn(2+), Cd(2+), and Zn(2+) binding to MntR. We propose that the specificity of MntR activation is tied to productive binding of metal ions at two sites; the A site appears to act as a selectivity filter, determining whether the B or C site will be occupied and thereby fully activate MntR.

  18. Synthesis and reaction of [[HC(CMeNAr)2]Mn]2 (Ar = 2,6-iPr2C6H3): the complex containing three-coordinate manganese(I) with a Mn-Mn bond exhibiting unusual magnetic properties and electronic structure.

    PubMed

    Chai, Jianfang; Zhu, Hongping; Stückl, A Claudia; Roesky, Herbert W; Magull, Jörg; Bencini, Alessandro; Caneschi, Andrea; Gatteschi, Dante

    2005-06-29

    This paper reports on the synthesis, X-ray structure, magnetic properties, and DFT calculations of [[HC(CMeNAr)2]Mn]2 (Ar = 2,6-iPr2C6H3) (2), the first complex with three-coordinate manganese(I). Reduction of the iodide [[HC(CMeNAr)2]Mn(mu-I)]2 (1) with Na/K in toluene afforded 2 as dark-red crystals. The molecule of 2 contains a Mn2(2+) core with a Mn-Mn bond. The magnetic investigations show a rare example of a high-spin manganese(I) complex with an antiferromagnetic interaction between the two Mn(I) centers. The DFT calculations indicate a strong s-s interaction of the two Mn(I) ions with the open shell configuration (3d54s1). This suggests that the magnetic behavior of 2 could be correctly described as the coupling between two S1 = S2 = 5/2 spin centers. The Mn-Mn bond energy is estimated at 44 kcal mol(-1) by first principle calculations with the B3LYP functional. The further oxidative reaction of 2 with KMnO4 or O2 resulted in the formation of manganese(III) oxide [[HC(CMeNAr)2]Mn(mu-O)]2 (3). Compound 3 shows an antiferromagnetic coupling between the two oxo-bridged manganese(III) centers by magnetic measurements.

  19. One-electron oxidation of electronically diverse manganese(III) and nickel(II) salen complexes: transition from localized to delocalized mixed-valence ligand radicals.

    PubMed

    Kurahashi, Takuya; Fujii, Hiroshi

    2011-06-01

    Ligand radicals from salen complexes are unique mixed-valence compounds in which a phenoxyl radical is electronically linked to a remote phenolate via a neighboring redox-active metal ion, providing an opportunity to study electron transfer from a phenolate to a phenoxyl radical mediated by a redox-active metal ion as a bridge. We herein synthesize one-electron-oxidized products from electronically diverse manganese(III) salen complexes in which the locus of oxidation is shown to be ligand-centered, not metal-centered, affording manganese(III)-phenoxyl radical species. The key point in the present study is an unambiguous assignment of intervalence charge transfer bands by using nonsymmetrical salen complexes, which enables us to obtain otherwise inaccessible insight into the mixed-valence property. A d(4) high-spin manganese(III) ion forms a Robin-Day class II mixed-valence system, in which electron transfer is occurring between the localized phenoxyl radical and the phenolate. This is in clear contrast to a d(8) low-spin nickel(II) ion with the same salen ligand, which induces a delocalized radical (Robin-Day class III) over the two phenolate rings, as previously reported by others. The present findings point to a fascinating possibility that electron transfer could be drastically modulated by exchanging the metal ion that bridges the two redox centers. © 2011 American Chemical Society

  20. Structure and Magnetic Properties of a Mixed-Valence Heptanuclear Manganese Cluster.

    PubMed

    Abbati, Gian Luca; Cornia, Andrea; Fabretti, Antonio C.; Caneschi, Andrea; Gatteschi, Dante

    1998-07-27

    Two novel polynuclear manganese(II,III) complexes have been synthesized by exploiting controlled methanolysis. A one-pot reaction of MnCl(2), NaOMe, dibenzoylmethane (Hdbm), and O(2) in anhydrous methanol, followed by recrystallization from MeOH/CHCl(3) mixtures, afforded the alkoxomanganese complexes [Mn(7)(OMe)(12)(dbm)(6)].CHCl(3).14MeOH (2) and [Mn(2)(OMe)(2)(dbm)(4)] (3). Complex 2 crystallizes in trigonal space group R&thremacr; with a = 14.439(2) Å, alpha = 86.34(1) degrees, and Z = 1. Complex 3 crystallizes in triclinic space group P&onemacr; with a = 9.612(1) Å, b = 10.740(1) Å, c = 13.168(1) Å, alpha = 80.39(1) degrees, beta = 87.66(1) degrees, gamma = 83.57(1) degrees, and Z = 1. The solid-state structure of 2 comprises a [Mn(6)(OMe)(12)(dbm)(6)] "crown" with crystallographically imposed 6-fold symmetry plus a central manganese ion. The layered Mn/O core mimics a fragment of the manganese oxide mineral lithiophorite. Conductivity measurements confirmed the nonionic character of 2 and suggested a mixed-valence Mn(II)(3)Mn(III)(4) formulation. The metrical parameters of the core were analyzed with the aid of bond-valence sum calculations. The central ion is essentially a valence-trapped Mn(II) ion, whereas the average Mn-O distances for the manganese ions of the "crown" are consistent with the presence of two Mn(II) and four Mn(III) ions. However, (1)H NMR spectra in solution strongly support valence localization and suggest that the observed solid-state structure may be a result of static disorder effects. Magnetic susceptibility vs T and magnetization vs field data at low temperature are consistent with an S = (17)/(2) ground state. Complex 3 is a symmetric alkoxo-bridged dimer. The two high-spin Mn(III) ions are antiferromagnetically coupled with J = 0.28(4) cm(-)(1), g = 1.983(2), and D = -2.5(4) cm(-)(1).

  1. Nucleophilic reactivity of a series of peroxomanganese(III) complexes supported by tetradentate aminopyridyl ligands.

    PubMed

    Geiger, Robert A; Chattopadhyay, Swarup; Day, Victor W; Jackson, Timothy A

    2011-02-28

    Peroxomanganese(iii) adducts have been postulated as important intermediates in manganese-containing enzymes and small molecule oxidation catalysts. Synthetic peroxomanganese(iii) complexes are known to be nucleophilic and facilitate aldehyde deformylation, offering a convenient way to compare relative reactivities of complexes supported by different ligands. In this work, tetradentate dipyridyldiazacycloalkane ligands with systematically perturbed steric and electronic properties were used to generate a series of manganese(ii) and peroxomanganese(iii) complexes. X-Ray crystal structures of five manganese(ii) complexes all show the ligands bound to give trans complexes. Treatment of these Mn(II) precursors with H(2)O(2) and Et(3)N in MeCN at -40 °C results in the formation of peroxomanganese(iii) complexes that differ only in the identity of the pyridine ring substituent and/or the number of carbons in the diazacycloalkane backbone. To determine the effects of small ligand perturbations on the reactivity of the peroxo group, the more thermally stable peroxomanganese(iii) complexes were reacted with cyclohexanecarboxaldehyde. For these complexes, the rate of deformylation does not correlate with the expected nucleophilicity of the peroxomanganese(iii) unit, as the inclusion of methyl substituents on the pyridines affords slower deformylation rates. It is proposed that adding methyl-substituents to the pyridines, or increasing the number of carbons on the diazacycloalkane, sterically hinders nucleophilic attack of the peroxo ligand on the carbonyl carbon of the aldehyde.

  2. Calcium manganese oxides as oxygen evolution catalysts: O2 formation pathways indicated by 18O-labelling studies.

    PubMed

    Shevela, Dmitriy; Koroidov, Sergey; Najafpour, M Mahdi; Messinger, Johannes; Kurz, Philipp

    2011-05-02

    Oxygen evolution catalysed by calcium manganese and manganese-only oxides was studied in (18)O-enriched water. Using membrane-inlet mass spectrometry, we monitored the formation of the different O(2) isotopologues (16)O(2), (16)O(18)O and (18)O(2) in such reactions simultaneously with good time resolution. From the analysis of the data, we conclude that entirely different pathways of dioxygen formation catalysis exist for reactions involving hydrogen peroxide (H(2)O(2)), hydrogen persulfate (HSO(5)(-)) or single-electron oxidants such as Ce(IV) and [Ru(III) (bipy)(3)](3+) . Like the studied oxide catalysts, the active sites of manganese catalase and the oxygen-evolving complex (OEC) of photosystem II (PSII) consist of μ-oxido manganese or μ-oxido calcium manganese sites. The studied processes show very similar (18)O-labelling behaviour to the natural enzymes and are therefore interesting model systems for in vivo oxygen formation by manganese metalloenzymes such as PSII. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Exchange interactions in a dinuclear manganese (II) complex with cyanopyridine-N-oxide bridging ligands

    NASA Astrophysics Data System (ADS)

    Markosyan, A. S.; Gaidukova, I. Yu.; Ruchkin, A. V.; Anokhin, A. O.; Irkhin, V. Yu.; Ryazanov, M. V.; Kuz'mina, N. P.; Nikiforov, V. N.

    2014-01-01

    The magnetic properties of dinuclear manganese(II) complex [Mn(hfa)2cpo]2 (where hfa is hexafluoroacetylacetonate anion and cpo is 4-cyanopyridine-N-oxide) are presented. The non-monotonous dependence of magnetic susceptibility is explained in terms of the hierarchy of exchange parameters by using exact diagonalization. The thermodynamic behavior of pure cpo and [Mn(hfa)2(cpo)]2 is simulated numerically by an extrapolation to spin S=5/2. The Mn-Mn exchange integral is evaluated.

  4. Spectroscopic characterization and reactivity studies of a mononuclear nonheme Mn(III)-hydroperoxo complex.

    PubMed

    So, Hee; Park, Young Jun; Cho, Kyung-Bin; Lee, Yong-Min; Seo, Mi Sook; Cho, Jaeheung; Sarangi, Ritimukta; Nam, Wonwoo

    2014-09-03

    We report the first example of a mononuclear nonheme manganese(III)-hydroperoxo complex derived from protonation of an isolated manganese(III)-peroxo complex bearing an N-tetramethylated cyclam (TMC) ligand, [Mn(III)(TMC)(OOH)](2+). The Mn(III)-hydroperoxo intermediate is characterized with various spectroscopic methods as well as with density functional theory (DFT) calculations, showing the binding of a hydroperoxide ligand in an end-on fashion. The Mn(III)-hydroperoxo species is a competent oxidant in oxygen atom transfer (OAT) reactions, such as the oxidation of sulfides. The electrophilic character of the Mn(III)-hydroperoxo complex is demonstrated unambiguously in the sulfoxidation of para-substituted thioanisoles.

  5. A pre-edge analysis of Mn K-edge XANES spectra to help determine the speciation of manganese in minerals and glasses

    NASA Astrophysics Data System (ADS)

    Chalmin, E.; Farges, F.; Brown, G. E.

    2009-01-01

    High-resolution manganese K-edge X-ray absorption near edge structure spectra were collected on a set of 40 Mn-bearing minerals. The pre-edge feature information (position, area) was investigated to extract as much as possible quantitative valence and symmetry information for manganese in various “test” and “unknown” minerals and glasses. The samples present a range of manganese symmetry environments (tetrahedral, square planar, octahedral, and cubic) and valences (II to VII). The extraction of the pre-edge information is based on a previous multiple scattering and multiplet calculations for model compounds. Using the method described in this study, a robust estimation of the manganese valence could be obtained from the pre-edge region at 5% accuracy level. This method applied to 20 “test” compounds (such as hausmannite and rancieite) and to 15 “unknown” compounds (such as axinite and birnessite) provides a quantitative estimate of the average valence of manganese in complex minerals and silicate glasses.

  6. Antibacterial activity and spectral studies of trivalent chromium, manganese, iron macrocyclic complexes derived from oxalyldihydrazide and glyoxal.

    PubMed

    Singh, D P; Kumar, Ramesh; Singh, Jitender

    2009-06-01

    A new series of complexes is synthesized by template condensation of oxalyldihydrazide and glyoxal in methanolic medium in the presence of trivalent chromium, manganese and iron salts forming complexes of the type: [M(C(8)H(8)N(8)O(4))X]X(2) where M = Cr(III), Mn(III), Fe(III) and X = Cl(-1), NO(-1)(3), CH(3)COO(-1). The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic susceptibility measurements, electronic, NMR, infrared and far infrared spectral studies. On the basis of these studies, a five coordinate square pyramidal geometry for these complexes has been proposed. The biological activities of the metal complexes were tested in vitro against a number of pathogenic bacteria and some of the complexes exhibited remarkable antibacterial activities.

  7. Structure and nature of manganese(II) imidazole complexes in frozen aqueous solutions.

    PubMed

    Un, Sun

    2013-04-01

    A common feature of a large majority of the manganese metalloenzymes, as well as many synthetic biomimetic complexes, is the bonding between the manganese ion and imidazoles. This interaction was studied by examining the nature and structure of manganese(II) imidazole complexes in frozen aqueous solutions using 285 GHz high magnet-field continuous-wave electron paramagnetic resonance (cw-HFEPR) and 95 GHz pulsed electron-nuclear double resonance (ENDOR) and pulsed electron-double resonance detected nuclear magnetic resonance (PELDOR-NMR). The (55)Mn hyperfine coupling and isotropic g values of Mn(II) in frozen imidazole solutions continuously decreased with increasing imidazole concentration. ENDOR and PELDOR-NMR measurements demonstrated that the structural basis for this behavior arose from the imidazole concentration-dependent distribution of three six-coordinate and two four-coordinate species: [Mn(H2O)6](2+), [Mn(imidazole)(H2O)5](2+), [Mn(imidazole)2(H2O)4](2+), [Mn(imidazole)3(H2O)](2+), and [Mn(imidazole)4](2+). The hyperfine and g values of manganese proteins were also fully consistent with this imidazole effect. Density functional theory methods were used to calculate the structures, spin and charge densities, and hyperfine couplings of a number of different manganese imidazole complexes. The use of density functional theory with large exact-exchange admixture calculations gave isotropic (55)Mn hyperfine couplings that were semiquantitative and of predictive value. The results show that the covalency of the Mn-N bonds play an important role in determining not only magnetic spin parameters but also the structure of the metal binding site. The relationship between the isotropic (55)Mn hyperfine value and the number of imidazole ligands provides a quick and easy test for determining whether a protein binds an Mn(II) ion using histidine residues and, if so, how many are involved. Application of this method shows that as much as 40% of the Mn(II) ions in Deinococcus radiodurans are ligated to two histidines (Tabares, L. C.; Un, S. J. Biol. Chem 2013, in press).

  8. Water oxidation chemistry of photosystem II.

    PubMed Central

    Vrettos, John S; Brudvig, Gary W

    2002-01-01

    The O(2)-evolving complex of photosystem II catalyses the light-driven four-electron oxidation of water to dioxygen in photosynthesis. In this article, the steps leading to photosynthetic O(2) evolution are discussed. Emphasis is given to the proton-coupled electron-transfer steps involved in oxidation of the manganese cluster by oxidized tyrosine Z (Y(*)(Z)), the function of Ca(2+) and the mechanism by which water is activated for formation of an O-O bond. Based on a consideration of the biophysical studies of photosystem II and inorganic manganese model chemistry, a mechanism for photosynthetic O(2) evolution is presented in which the O-O bond-forming step occurs via nucleophilic attack on an electron-deficient Mn(V)=O species by a calcium-bound water molecule. The proposed mechanism includes specific roles for the tetranuclear manganese cluster, calcium, chloride, Y(Z) and His190 of the D1 polypeptide. Recent studies of the ion selectivity of the calcium site in the O(2)-evolving complex and of a functional inorganic manganese model system that test key aspects of this mechanism are also discussed. PMID:12437878

  9. Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review

    PubMed Central

    Najafpour, Mohammad Mahdi; Rahimi, Fahimeh; Aro, Eva-Mari; Lee, Choon-Hwan; Allakhverdiev, Suleyman I.

    2012-01-01

    There has been a tremendous surge in research on the synthesis of various metal compounds aimed at simulating the water-oxidizing complex (WOC) of photosystem II (PSII). This is crucial because the water oxidation half reaction is overwhelmingly rate-limiting and needs high over-voltage (approx. 1 V), which results in low conversion efficiencies when working at current densities required for hydrogen production via water splitting. Particular attention has been given to the manganese compounds not only because manganese has been used by nature to oxidize water but also because manganese is cheap and environmentally friendly. The manganese–calcium cluster in PSII has a dimension of about approximately 0.5 nm. Thus, nano-sized manganese compounds might be good structural and functional models for the cluster. As in the nanometre-size of the synthetic models, most of the active sites are at the surface, these compounds could be more efficient catalysts than micrometre (or bigger) particles. In this paper, we focus on nano-sized manganese oxides as functional and structural models of the WOC of PSII for hydrogen production via water splitting and review nano-sized manganese oxides used in water oxidation by some research groups. PMID:22809849

  10. Bacterially mediated diagenetic origin for chert-hosted manganese deposits in the Franciscan Complex, California Coast Ranges

    NASA Astrophysics Data System (ADS)

    Hein, James R.; Koski, Randolph A.

    1987-08-01

    Numerous manganese deposits in the Franciscan Complex, California, occur as conformable lenses within bedded radiolarian chert-argillite sequences that are, in turn, intercalated within thicker sections of sandstone and shale. The field relations, composition, and petro-graphic and isotopic characteristics indicate that the manganese was concentrated by diagenetic reconstitution of siliceous and hemipelagic sediment during burial. The ore lenses are Mn-rich and Fe-poor assemblages consisting largely of rhodochrosite, manganese silicates, opal-CT (disordered cristobalite-tridymite), and quartz. Highly negative δ13C values for the carbonate carbon in rhodochrosite indicate that CO2 likely originated from oxidation of methane; less negative values result from mixing of methanogenic carbon and CO2 derived from bacterial degradation of organic matter. The δ18O values for the carbonate of rhodochrosite indicate temperatures of formation between 12 and 100 °C. The oxidation of methane prior to carbonate precipitation may have used the minor (0.4% 0.5%) Mn and Fe oxyhydroxides and oxides deposited with the sediment. The mobilization of manganese from biogenic and terrigenous sources in the sediment column into discrete horizons and the fractioriation of manganese from iron reflect the presence of oxidation-reduction boundaries and gradients in the sediment column. Fluids derived from compaction and silica-dehydration reactions in the transformation of opal-A (X-ray amorphous biogenic silica) to quartz were involved in transportation of principal components. Sedimentary and geochemical attributes suggest that the deposits formed in a deep-water environment in a zone of oceanic upwelling near a continental margin.

  11. Root Uptake Of Lipophilic Zinc-Rhamnolipid Complexes

    EPA Science Inventory

    This study investigated the formation and plant uptake of lipophilic metal-rhamnolipid complexes. Monorhamnosyl and dirhamnosyl rhamnolipids formed lipophilic complexes with copper (Cu), manganese (Mn), and zinc (Zn). Rhamnolipids significantly increased Zn absorption by Bra...

  12. Negative cerium anomalies in manganese (hydr)oxide precipitates due to cerium oxidation in the presence of dissolved siderophores

    NASA Astrophysics Data System (ADS)

    Kraemer, Dennis; Tepe, Nathalie; Pourret, Olivier; Bau, Michael

    2017-01-01

    We present experimental results on the sorption behavior of rare earth elements and yttrium (REY) on precipitating manganese (hydr)oxide in the presence of the biogenic siderophore desferrioxamine B (DFOB). In marked contrast to inorganic systems, where preferential adsorption of HREY and depletion of LREY is commonly observed in manganese (hydr)oxide precipitates, sorption of REY in presence of the DFOB siderophore leads to HREY-depleted and LREY-enriched patterns in the precipitates. Moreover, our data indicate that surface oxidation of Ce(III) to Ce(IV) during sorption onto manganese (hydr)oxides and the resulting development of a positive Ce anomaly, which are commonly observed in inorganic experiments, are prevented in the presence of DFOB. Instead, Ce(III) is oxidized to Ce(IV) but associated with the dissolved desferrioxamine B which forms complexes with Ce(IV), that are at least twenty orders of magnitude more stable than those with Ce(III) and REY(III). The overall result is the formation of a positive Ce anomaly in the solution and a negative Ce anomaly in the Mn (hydr)oxides. The distribution of the strictly trivalent REY and Eu(III) between the manganese (hydr)oxide phase and the remaining ambient solution mimics the distribution of published stability constants for complexes of REY(III) with DFOB, i.e. the heavy REY form more stable complexes with the ligand and hence are better shielded from sorption than the LREY. Surface complexation modeling corroborates our experimental results. Negative Ce anomalies in Mn precipitates have been described from biogenic Mn oxides. Our results provide experimental evidence for the development of negative Ce anomalies in abiogenic Mn (hydr)oxide precipitates and show that the presence of the widespread siderophore desferrioxamine B during mineral precipitation results in HREY-depleted Mn (hydr)oxides with negative Ce anomalies.

  13. Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of manganese (II) complex of picolinate: A combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Tamer, Ömer; Avcı, Davut; Atalay, Yusuf; Çoşut, Bünyemin; Zorlu, Yunus; Erkovan, Mustafa; Yerli, Yusuf

    2016-02-01

    A novel manganese (II) complex with picolinic acid (pyridine 2-carboxylic acid, Hpic), namely, [Mn(pic)2(H2O)2] was prepared and its crystal structure was fully characterized by using single crystal X-ray diffraction. Picolinate (pic) ligands were coordinated to the central manganese(II) ion as bidentate N,O-donors through the nitrogen atoms of pyridine rings and the oxygen atoms of carboxylate groups forming five-membered chelate rings. The spectroscopic characterization of Mn(II) complex was performed by the applications of FT-IR, Raman, UV-vis and EPR techniques. In order to support these studies, density functional theory (DFT) calculations were carried out by using B3LYP level. IR and Raman spectra were simulated at B3LYP level, and obtained results indicated that DFT calculations generally give compatible results to the experimental ones. The electronic structure of the Mn(II) complex was predicted using time dependent DFT (TD-DFT) method with polarizable continuum model (PCM). Molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength were investigated by applying natural bond orbital (NBO) analysis. Nonlinear optical properties of Mn(II) complex were investigated by the determining of molecular polarizability (α) and hyperpolarizability (β) parameters.

  14. Coprecipitation of gold(III) complex ions with manganese(II) hydroxide and their stoichiometric reduction to atomic gold (Au(0)): analysis by Mössbauer spectroscopy and XPS.

    PubMed

    Yamashita, Mamiko; Ohashi, Hironori; Kobayashi, Yasuhiro; Okaue, Yoshihiro; Kurisaki, Tsutomu; Wakita, Hisanobu; Yokoyama, Takushi

    2008-03-01

    To elucidate the formation process of precursor of gold-supported manganese dioxide (MnO2), the coprecipitation behavior of [AuCl4-n(OH)n](-) (n=0-4) (Au(III)) complex ions with manganese(II) hydroxide (Mn(OH)2 and the change in their chemical state were examined. The Au(III) complex ions were rapidly and effectively coprecipitated with Mn(OH)(2) at pH 9. According to the Mössbauer spectra for gold (Au) coprecipitated with Mn(OH)2, below an Au content of 60 wt% in the coprecipitates, all of the coprecipitated Au existed in the atomic state (Au(0)), while, above an Au content of 65 wt%, part of the gold existed in the Au(III) state, and the proportion increased with increasing coprecipitated Au content. Based on the results of X-ray photoelectron spectroscopy, Mn(II) in Mn(OH)2 converted to Mn(IV) in conjunction with coprecipitation of Au(III) complex ions. These results indicate that the rapid stoichiometric reduction of Au(III) to Au(0) is caused by electron transfer from Mn(II) in Mn(OH)2 to the Au(III) complex ion through an Mn-O-Au bond.

  15. Quantitative analysis of dinuclear manganese(II) EPR spectra

    NASA Astrophysics Data System (ADS)

    Golombek, Adina P.; Hendrich, Michael P.

    2003-11-01

    A quantitative method for the analysis of EPR spectra from dinuclear Mn(II) complexes is presented. The complex [(Me 3TACN) 2Mn(II) 2(μ-OAc) 3]BPh 4 ( 1) (Me 3TACN= N, N', N''-trimethyl-1,4,7-triazacyclononane; OAc=acetate 1-; BPh 4=tetraphenylborate 1-) was studied with EPR spectroscopy at X- and Q-band frequencies, for both perpendicular and parallel polarizations of the microwave field, and with variable temperature (2-50 K). Complex 1 is an antiferromagnetically coupled dimer which shows signals from all excited spin manifolds, S=1 to 5. The spectra were simulated with diagonalization of the full spin Hamiltonian which includes the Zeeman and zero-field splittings of the individual manganese sites within the dimer, the exchange and dipolar coupling between the two manganese sites of the dimer, and the nuclear hyperfine coupling for each manganese ion. All possible transitions for all spin manifolds were simulated, with the intensities determined from the calculated probability of each transition. In addition, the non-uniform broadening of all resonances was quantitatively predicted using a lineshape model based on D- and r-strain. As the temperature is increased from 2 K, an 11-line hyperfine pattern characteristic of dinuclear Mn(II) is first observed from the S=3 manifold. D- and r-strain are the dominate broadening effects that determine where the hyperfine pattern will be resolved. A single unique parameter set was found to simulate all spectra arising for all temperatures, microwave frequencies, and microwave modes. The simulations are quantitative, allowing for the first time the determination of species concentrations directly from EPR spectra. Thus, this work describes the first method for the quantitative characterization of EPR spectra of dinuclear manganese centers in model complexes and proteins. The exchange coupling parameter J for complex 1 was determined ( J=-1.5±0.3 cm-1; H ex=-2J S1· S2) and found to be in agreement with a previous determination from magnetization. The phenomenon of exchange striction was found to be insignificant for 1.

  16. Liver transplantation in a patient with rapid onset parkinsonism-dementia complex induced by manganism secondary to liver failure.

    PubMed

    Fabiani, Giorgio; Rogacheski, Enio; Wiederkehr, Júlio César; Khouri, Jussara; Cianfarano, Andréa

    2007-09-01

    Bilateral and symmetric globus-pallidus hyperintensities are observed on T1-weighted MRI in most of the patients with chronic liver failure, due to manganese accumulation. We report a 53-year-old man, with rapid onset parkinsonism-dementia complex associated with accumulation of manganese in the brain, secondary to liver failure. A brain MRI was performed and a high signal on T1-weighted images was seen on globus-pallidus, as well as on T2-weighted images on the hemispheric white-matter. He was referred to a liver-transplantation. The patient passed away on the seventh postoperative day. Our findings support the concept of the toxic effects of manganese on the globus-pallidus. The treatment of this form of parkinsonism is controversial and liver-transplantation should not be considered as first line treatment but as an alternative one.

  17. Manganese complex-catalyzed oxidation and oxidative kinetic resolution of secondary alcohols by hydrogen peroxide.

    PubMed

    Miao, Chengxia; Li, Xiao-Xi; Lee, Yong-Min; Xia, Chungu; Wang, Yong; Nam, Wonwoo; Sun, Wei

    2017-11-01

    The highly efficient catalytic oxidation and oxidative kinetic resolution (OKR) of secondary alcohols has been achieved using a synthetic manganese catalyst with low loading and hydrogen peroxide as an environmentally benign oxidant in the presence of a small amount of sulfuric acid as an additive. The product yields were high (up to 93%) for alcohol oxidation and the enantioselectivity was excellent (>90% ee) for the OKR of secondary alcohols. Mechanistic studies revealed that alcohol oxidation occurs via hydrogen atom (H-atom) abstraction from an α-CH bond of the alcohol substrate and a two-electron process by an electrophilic Mn-oxo species. Density functional theory calculations revealed the difference in reaction energy barriers for H-atom abstraction from the α-CH bonds of R - and S -enantiomers by a chiral high-valent manganese-oxo complex, supporting the experimental result from the OKR of secondary alcohols.

  18. An engineered polypeptide around nano-sized manganese-calcium oxide: copying plants for water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Sarvi, Bahram; Haghighi, Behzad

    2015-09-14

    Synthesis of new efficient catalysts inspired by Nature is a key goal in the production of clean fuel. Different compounds based on manganese oxide have been investigated in order to find their water-oxidation activity. Herein, we introduce a novel engineered polypeptide containing tyrosine around nano-sized manganese-calcium oxide, which was shown to be a highly active catalyst toward water oxidation at low overpotential (240 mV), with high turnover frequency of 1.5 × 10(-2) s(-1) at pH = 6.3 in the Mn(III)/Mn(IV) oxidation range. The compound is a novel structural and efficient functional model for the water-oxidizing complex in Photosystem II. A new proposed clever strategy used by Nature in water oxidation is also discussed. The new model of the water-oxidizing complex opens a new perspective for synthesis of efficient water-oxidation catalysts.

  19. Twisting phonons in complex crystals with quasi-one-dimensional substructures [Twisting Phonons in Higher Manganese Silicides with a Complex Nowotny Chimney Ladder Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abernathy, Douglas L.; Ma, Jie; Yan, Jiaqiang

    A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain themore » low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.« less

  20. Twisting phonons in complex crystals with quasi-one-dimensional substructures [Twisting Phonons in Higher Manganese Silicides with a Complex Nowotny Chimney Ladder Structure

    DOE PAGES

    Abernathy, Douglas L.; Ma, Jie; Yan, Jiaqiang; ...

    2015-04-15

    A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain themore » low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.« less

  1. Complexation- and ligand-induced metal release from 316L particles: importance of particle size and crystallographic structure.

    PubMed

    Hedberg, Yolanda; Hedberg, Jonas; Liu, Yi; Wallinder, Inger Odnevall

    2011-12-01

    Iron, chromium, nickel, and manganese released from gas-atomized AISI 316L stainless steel powders (sized <45 and <4 μm) were investigated in artificial lysosomal fluid (ALF, pH 4.5) and in solutions of its individual inorganic and organic components to determine its most aggressive component, elucidate synergistic effects, and assess release mechanisms, in dependence of surface changes using atomic absorption spectroscopy, Raman, XPS, and voltammetry. Complexation is the main reason for metal release from 316L particles immersed in ALF. Iron was mainly released, while manganese was preferentially released as a consequence of the reduction of manganese oxide on the surface. These processes resulted in highly complexing media in a partial oxidation of trivalent chromium to hexavalent chromium on the surface. The extent of metal release was partially controlled by surface properties (e.g., availability of elements on the surface and structure of the outermost surface) and partially by the complexation capacity of the different metals with the complexing agents of the different media. In general, compared to the coarse powder (<45 μm), the fine (<4 μm) powder displayed significantly higher released amounts of metals per surface area, increased with increased solution complexation capacity, while less amounts of metals were released into non-complexing solutions. Due to the ferritic structure of lower solubility for nickel of the fine powder, more nickel was released into all solutions compared with the coarser powder.

  2. A series of new manganese thioarsenates(v) based on different unsaturated [Mn(amine)x](2+) complexes.

    PubMed

    Zhou, Jian; Tan, Xiao-Feng; Liu, Xing; Qing, Miao; Zhao, Rong-Qing; Tang, Qiuling

    2015-10-07

    A series of new manganese thioarsenates(V) [Mn(en)2Cu(AsVS4)]n (1, en = ethylenediamine), [Mn(dien)2][Mn(dien)(AsVS4)]2 (2, dien = diethylenetriamine), [Mn(teta)(AsVS4)]n (3, teta = triethylenetetramine), and {[Mn(dap)2][Mn(dap)(AsVS4)]2}n (4, dap = 1,2-diaminopropane) have been solvothermally synthesized and structurally characterized. 1 displays a neutral heterometallic [Mn(en)2Cu(AsVS4)]n chain built up from the linkages of [Mn(en)2]2+ complexes and infinite heterometallic [Cu(AsVS4)2−]n chains, and represents the only example of incorporation of an unsaturated [Mn(en)2]2+ complex into the 1-D [Cu(AsVS4)2−]n framework. 2 consists of a discrete {[Mn(dien)]2(AsVS4)2}2− cluster and a charge compensating complex cation [Mn(dien)2]2+. 3 shows a 1-D neutral [Mn(teta)(AsVS4)]n chain constructed by the combination of both complex [Mn(teta)]2+ ions and tetrahedral [AsVS4]3− anions. 4 exhibits a rare 2-D {[Mn(dap)2][Mn(dap)(AsVS4)]2}n layer based on the linkages of [AsVS4]3− anions and [Mn(dap)x]2+ (x = 1, 2) groups. These results show that different unsaturated [Mn(amine)x]2+ complexes are directly bonded to [AsVS4]3− anions to give different manganese thioarsenates(V), which have a significant structure directing effect on the structures of manganese thioarsenates(V) under similar solvothermal conditions. The present compounds exhibit wide-band-gap semiconducting properties with absorption band edges between 2.00 and 2.58 eV, and density functional theory calculations for compounds 1, 3 and 4 have also been performed.

  3. Biological water-oxidizing complex: a nano-sized manganese-calcium oxide in a protein environment.

    PubMed

    Najafpour, Mohammad Mahdi; Moghaddam, Atefeh Nemati; Yang, Young Nam; Aro, Eva-Mari; Carpentier, Robert; Eaton-Rye, Julian J; Lee, Choon-Hwan; Allakhverdiev, Suleyman I

    2012-10-01

    The resolution of Photosystem II (PS II) crystals has been improved using isolated PS II from the thermophilic cyanobacterium Thermosynechococcus vulcanus. The new 1.9 Å resolution data have provided detailed information on the structure of the water-oxidizing complex (Umena et al. Nature 473: 55-61, 2011). The atomic level structure of the manganese-calcium cluster is important for understanding the mechanism of water oxidation and to design an efficient catalyst for water oxidation in artificial photosynthetic systems. Here, we have briefly reviewed our knowledge of the structure and function of the cluster.

  4. Kinetics of Mn3+-oxalate formation and decay in reactions catalyzed by manganese peroxidase of Ceriporiopsis subvermispora

    Treesearch

    Ulises Urzua; Philip J. Kersten; Rafael Vicuna

    1998-01-01

    The kinetics of Mn3+- oxalate formation and decay were investigated in reactions catalyzed by manganese peroxidase (MnP) from the basiomycete Ceriporiopsis subvermispora in the absence of externally added hydrogen peroxide. A characteristic lag observed in the formation of this complex was shortened by glyoxylate or catalytic amounts of Mn3+ or hydrogen peroxide. MnP...

  5. Application of chromatography and mass spectrometry to the characterization of cobalt, copper, manganese and molybdenum in Morinda citrifolia.

    PubMed

    Rybak, Justyna; Ruzik, Lena

    2013-03-15

    An analytical procedure was proposed to determine the manganese species and to study the fractionation of microelements such as copper, cobalt and molybdenum in Noni juice. Morinda citrifolia is known as a noni fruit, Indian mulberry, nunaakai, dog dumpling, mengkudu, beach mulberry, vomit fruit and cheese fruit. It is a tropical plant with a long tradition of medicinal use in Polynesia and tropical parts of eastern Asia and Australia. This article covers the determination of manganese species in Noni juice and established by fractionation by size exclusion chromatography inductively coupled plasma mass spectrometry (SEC ICP MS) and next characterization of species by electrospray ionization mass spectrometry (ESI MS). Also presented the fractionation analysis of copper, cobalt and molybdenum in Noni juice sample using SEC ICP MS - juice was treated with buffer and enzymatic extraction media and analyzed. For the evaluation of the amounts of the metal fractions distinguished, the ICP MS was used off-line prior to the determination of copper, cobalt, molybdenum and manganese concentrations in the juice. It was established that elements are present in the analyzed samples in different species and their concentration is μg mL(-1) and ng mL(-1) range in fruit. The accuracy of the entire fractionation scheme and sample preparation procedures involved was verified by the performance of the recovery test. For the information about the bioavailability of these elements, in vitro bioavailability investigation was used by SEC ICP MS technique. Two step digestion model simulating gastric (pepsin digestion) and intestinal (pancreatin digestion) juices. In Noni juice, manganese is complexed from flavonoids - rutin, from dye like anthraquinone (alizarin) and glycosides - asperulosidic acid (ESI MS - characterization). The study shows that copper and molybdenum contained in Noni juice are complexed by peptides, and cobalt by organic acids (which are 3.6% of juice). Molybdenum in the sample is also bound by the polysaccharides (SEC ICP MS). In addition, compounds complexing manganese, copper and molybdenum are hydrophobic proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Manganese ions enhance mitochondrial H2O2 emission from Krebs cycle oxidoreductases by inducing permeability transition.

    PubMed

    Bonke, Erik; Siebels, Ilka; Zwicker, Klaus; Dröse, Stefan

    2016-10-01

    Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn 2+ ions induce hydrogen peroxide (H 2 O 2 ) production from the ubiquinone binding site of mitochondrial complex II (II Q ) and generally enhance H 2 O 2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H 2 O 2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn 2+ and different respiratory chain inhibitors led to a dynamically increasing H 2 O 2 emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn 2+ stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca 2+ increased the rate of H 2 O 2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H 2 O 2 emission: stimulating its production from distinct sites (e.g. site II Q ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The synthesis of PNP-supported low-spin nitro manganese(I) carbonyl complexes

    DOE PAGES

    Tondreau, Aaron M.; Boncella, James M.

    2016-09-01

    In this study, the coordination chemistry of Mn(CO) 5Br was investigated with a series of PNP-pincer ligands. The ligands iPrPONOP ( iPrPONOP = 2,6-bis(diisopropylphosphinito)pyridine) and iPrPN HP ( iPrPN HP = HN{CH 2CH 2(PiPr 2)} 2) gave the desired organometallic manganese complexes ( iPrPONOP)Mn(CO) 2Br and ( iPrPN HP)Mn(CO) 2Br, respectively, upon chelation to Mn(CO) 5Br. The reactivity of iPrPNNNP ( iPrPNNNP = N,N'-bis(diisopropylphosphino)-2,6-diaminopyridine) with Mn(CO) 5Br yielded a pair of products, [( iPrPNNNP)Mn(CO) 3][Br] and ( iPrPNNNCO)Mn(CO) 3. The formation of the asymmetric chelate arises from a formal loss of iPr 2PBr and C–N bond formation from a carbonylmore » ligand and NH, yielding a Mn(I) amide core. The nitration reactions of ( iPrPONOP)Mn(CO) 2Br and ( iPrPN HP)Mn(CO) 2Br were carried out using silver nitrite, yielding the nitro compounds ( iPrPONOP)Mn(CO) 2(NO 2) and ( iPrPN HP)Mn(CO) 2(NO 2), respectively. The analogous iron complex ( iPrPONOP)Fe(CO)Cl 2 was nitrated under the same conditions to yield the salt pair [( iPrPONOP)Fe(CO) 2][FeCl 3NO]. This reactivity underlines the difference between iso-valent iron and manganese centers. The manganese complexes ( iPrPONOP)Mn(CO) 2(NO 2) and ( iPrPN HP)Mn(CO) 2(NO 2) were ineffective as oxygen atom transfer reagents for a variety of substrates.« less

  8. Assigning Oxidation States to Some Metal Dioxygen Complexes of Biological Interest.

    ERIC Educational Resources Information Center

    Summerville, David A.; And Others

    1979-01-01

    The bonding of dioxygen in metal-dioxygen complexes is discussed, paying particular attention to the problems encountered in assigning conventional oxidation numbers to both the metal center and coordinated dioxygen. Complexes of iron, cobalt, chromium, and manganese are considered. (BB)

  9. The Manganese Health Research Program (MHRP): status report and future research needs and directions.

    PubMed

    Aschner, M; Lukey, B; Tremblay, A

    2006-09-01

    The manganese (Mn) research health program (MHRP) symposium was a full day session at the 22nd International Neurotoxicology Conference. Mn is a critical metal in many defense and defense-related private sector applications including steel making and fabrication, improved fuel efficiency, and welding, and a vital and large component in portable power sources (batteries). At the current time, there is much debate concerning the potential adverse health effects of the use of manganese in these and other applications. Due to the significant use of manganese by the Department of Defense, its contractors and its suppliers, the Manganese Health Research Program (MHRP) seeks to use the resources of the federal government, in tandem with manganese researchers, as well as those industries that are involved with manganese, to determine the exact health effects of manganese, as well as to devise proper safeguard measures for both public and private sector workers. Humans require manganese as an essential element; however, exposure to high levels of this metal is sometimes associated with adverse health effects, most notably within the central nervous system. Exposure scenarios vary extensively in relation to geographical location, urban versus rural environment, lifestyles, diet, and occupational setting. Furthermore, exposure may be brief or chronic, it may be to different types of manganese compounds (aerosols or salts of manganese with different physical and/or chemical properties), and it may occur at different life-stages (e.g., in utero, neonatal life, puberty, adult life, or senescence). These factors along with diverse genetic composition that imposes both a background and disease occurrence likely reflect on differential sensitivity of individuals to manganese exposure. Unraveling these complexities requires a multi-pronged research approach to address multiple questions about the role of manganese as an essential metal as well as its modulation of disease processes and dysfunction. A symposium on the Health Effects of Manganese (Mn) was held on Wednesday, September 14, 1005, to discuss advances in the understanding on role of Mn both in health and disease. The symposium was sponsored by the Manganese Health Research Program (MHRP). This summary provides background on the MHRP, identifies the speakers and topics discussed at the symposium, and identifies research needs and anticipated progress in understanding Mn health- and disease-related issues.

  10. Manganese(II), iron(II), cobalt(II), and copper(II) complexes of an extended inherently chiral tris-bipyridyl cage.

    PubMed

    Perkins, David F; Lindoy, Leonard F; McAuley, Alexander; Meehan, George V; Turner, Peter

    2006-01-17

    Manganese(II), iron(II), cobalt(II), and copper(II) derivatives of two inherently chiral, Tris(bipyridyl) cages (L and L') of type [ML]-(PF(6))(2)(solvent)(n) and [FeL'](ClO(4))(2) are reported, where L is the hexa-tertiary butyl-substituted derivative of L'. These products were obtained by using the free cage and metal template procedures; the latter involved the reductive amination of the respective Tris-dialdehyde precursor complexes of iron(II), cobalt(II), or nickel(II). Electrochemical, EPR, and NMR studies have been used to probe the nature of the individual complexes. X-ray structures of the manganese(II), iron(II), and copper(II) complexes of L and the iron(II) complex of L' are presented; these are compared with the previously reported structures of the corresponding nickel(II) complex and metal-free cage (L). In each complex the metal cation occupies the cage's central cavity and is coordinated to six nitrogens from the three bipyridyl groups. The cations [MnL](2+) and [FeL](2+) are isostructural but both exhibit a different arrangement of the bound cage to that observed in the corresponding nickel(II) and copper(II) complexes. The latter have an exo-exo arrangement of the bridgehead nitrogen lone pairs, with the metal inducing a triple helical twist that extends approximately 22 A along the axial length of each complex. In contrast, [MnL](2+) and [FeL](2+) have their terminal nitrogen lone pairs directed endo, causing a significant change in the configuration of the bound ligand. In [FeL'](2+), the cage has both bridgehead nitrogen lone pairs orientated exo. Semiempirical calculations indicate that the observed endo-endo and exo-exo arrangements are of comparable energy.

  11. REFRACTORY DIE FOR EXTRUDING URANIUM

    DOEpatents

    Creutz, E.C.

    1959-08-11

    A die is presented for the extrusion of metals, said die being formed of a refractory complex oxide having the composition M/sub n/O/sub m/R/sub x/O/sub y/ where M is magnesium, zinc, manganese, or iron, R is aluminum, chromic chromium, ferric iron, or manganic manganese, and m, n, x, and y are whole numbers. Specific examples are spinel, magnesium aluminate, magnetite, magnesioferrite, chromite, and franklinite.

  12. Reversible 1,2-Addition of Water To Form a Nucleophilic Mn(I) Hydroxide Complex: A Thermodynamic and Reactivity Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tondreau, Aaron M.; Michalczyk, Ryszard; Boncella, James M.

    ( iPrPN HP)Mn(CO) 2(OH) (2; iPrPN HP = HN{CH 2CH 2(P iPr 2)} 2) was formed from the reversible 1,2-addition of water to ( iPrPNP)Mn(CO) 2 (1; iPrPNP = the deprotonated, amide form of the ligand, –N{CH 2CH 2(P iPr 2)} 2). This reversible reaction was probed via variable-temperature NMR experiments, and the energetics of the 1,2-addition/elimination was found to be slightly exothermic (-0.8 kcal/mol). The corresponding manganese hydroxide was found to react with aldehydes, yielding the corresponding manganese carboxylate complexes ( iPrPN HP)Mn(CO) 2(CO 2R), where R = H, methyl, phenyl. While no reaction between 1 and neat benzaldehydemore » was observed, in the presence of water, conversion to the corresponding manganese-bound benzoate with formation of H 2 was observed. The catalytic oxidation of benzaldehyde by water without additives was unsuccessful due to strong product inhibition, with the manganese benzoate formed under a variety of reaction conditions. Upon addition of base, a catalytic cycle for the conversion of aldehyde to carboxylate and hydrogen can be devised.« less

  13. Novel EPR characterization of the antioxidant activity of tea leaves

    NASA Astrophysics Data System (ADS)

    Morsy, M. A.; Khaled, M. M.

    2002-04-01

    Electron paramagnetic resonance (EPR) spectroscopy is utilized to investigate several categories of green and black tea: Twining green tea (TGT), Chinese green tea (CGT), Red-labels black tea (RBT). Basically, two EPR signals from all the studied samples are observed: One of them is a very weak sharp EPR signal with Δ Hpp≅10 G and g-factor=2.00023 superimposed on the other broad signal with Δ Hpp≅550 G and g-factor=2.02489. The broad signal is a characteristic one of manganese(II) complex, while the sharp signal is related to a stable radical of aromatic origin exist in a powder condition. The feature of the manganese EPR signal is attributed to manganese(II) complex and reflected the molecular behavior of Mn(II) in the protein system of the natural leaves. The sharp signal, which is most probably due to a semiquinones radicals, is observed at room temperature and its intensity is remarkably affected by photo degradation of the studied samples. The intensity of manganese(II) EPR signal is found to be related to ageing and disintegration of the tea leaves. Moreover, direct relation between the relative intensity of the semiquinones radical signal and antioxidant activity of the studied samples was also correlated.

  14. Reversible 1,2-Addition of Water To Form a Nucleophilic Mn(I) Hydroxide Complex: A Thermodynamic and Reactivity Study

    DOE PAGES

    Tondreau, Aaron M.; Michalczyk, Ryszard; Boncella, James M.

    2017-09-20

    ( iPrPN HP)Mn(CO) 2(OH) (2; iPrPN HP = HN{CH 2CH 2(P iPr 2)} 2) was formed from the reversible 1,2-addition of water to ( iPrPNP)Mn(CO) 2 (1; iPrPNP = the deprotonated, amide form of the ligand, –N{CH 2CH 2(P iPr 2)} 2). This reversible reaction was probed via variable-temperature NMR experiments, and the energetics of the 1,2-addition/elimination was found to be slightly exothermic (-0.8 kcal/mol). The corresponding manganese hydroxide was found to react with aldehydes, yielding the corresponding manganese carboxylate complexes ( iPrPN HP)Mn(CO) 2(CO 2R), where R = H, methyl, phenyl. While no reaction between 1 and neat benzaldehydemore » was observed, in the presence of water, conversion to the corresponding manganese-bound benzoate with formation of H 2 was observed. The catalytic oxidation of benzaldehyde by water without additives was unsuccessful due to strong product inhibition, with the manganese benzoate formed under a variety of reaction conditions. Upon addition of base, a catalytic cycle for the conversion of aldehyde to carboxylate and hydrogen can be devised.« less

  15. Oxidation of dimethylselenide by δMnO2: oxidation product and factors affecting oxidation rate

    USGS Publications Warehouse

    Wang, Bronwen; Burau, Richard G.

    1995-01-01

    Volatile dimethylselenide (DMSe) was transformed to a nonvolatile Se compound in a ??-MnO2 suspension. The nonvolatile product was a single compound identified as dimethylselenoxide based on its mass spectra pattern. After 24 h, 100% of the DMSe added to a ??-MnO2 suspension was converted to nonpurgable Se as opposed to 20%, 18%, and 4% conversion for chromate, permanganate, and the filtrate from the suspension, respectively. Manganese was found in solution after reaction. These results imply that the reaction between manganese oxide and DMSe was a heterogeneous redox reaction involving solid phase ??-MnO2 and solution phase DMSe. Oxidation of DMSe to dimethylselenoxide [OSe(CH3)2] by a ??-MnO2 suspension appears to be first order with respect to ??-MnO2, to DMSe, and to hydrogen ion with an overall rate law of d[OSe(CH3)2 ]/dt = 95 M-2 min-1 [MnO2]1[DMSe]1[H+]1 for the MnO2 concentration range of 0.89 ?? 10-3 - 2.46 ?? 10-3 M, the DMSe concentration range of 3.9 ?? 10-7 - 15.5 ?? 10-7 M Se, and a hydrogen ion concentation range of 7.4 ?? 10-6 -9.5 ?? 10-8 M. A general surface site adsorption model is consistent with this rate equation if the uncharged |OMnOH is the surface adsorption site. DMSe acts as a Lewis base, and the manganese oxide surface acts as a Lewis acid. DMSe adsorption to |OMnOH can be viewed as a Lewis acid/ base complex between the largely p orbitals of the DMSe lone pair and the unoccupied eg orbitals on manganese oxide. For such a complex, frontier molecular orbital theory predicts electron transfer to occur via an inner-sphere complex between the DMSe and the manganese oxide. ?? 1995 American Chemical Society.

  16. Cytotoxicity of Manganese (III) Complex in Human Breast Adenocarcinoma Cell Line Is Mediated by the Generation of Reactive Oxygen Species Followed by Mitochondrial Damage.

    PubMed

    Al-Anbaky, Qudes; Al-Karakooly, Zeiyad; Kilaparty, Surya P; Agrawal, Megha; Albkuri, Yahya M; RanguMagar, Ambar B; Ghosh, Anindya; Ali, Nawab

    2016-11-01

    Manganese (Mn) complexes are widely studied because of their important catalytic properties in synthetic and biochemical reactions. A Mn (III) complex of an amidoamine ligand was synthesized using a tetradentate amidoamine ligand. In this study, the Mn (III) complex was evaluated for its biological activity by measuring its cytotoxicity in human breast adenocarcinoma cell line (MCF-7). Cytotoxic effects of the Mn (III) complex were determined using established biomarkers in an attempt to delineate the mechanism of action and the utility of the complex as a potential anticancer drug. The Mn (III) complex induces cell death in a dose- and time-dependent manner as shown by microculture tetrazolium assay, a measure of cytotoxic cell death. Our results demonstrated that cytotoxic effects were significantly increased at higher concentrations of Mn (III) complex and with longer time of treatment. The IC 50 (Inhibitor concentration that results in 50% cell death) value of Mn (III) complex in MCF-7 cells was determined to be 2.5 mmol/L for 24 hours of treatment. In additional experiments, we determined the Mn (III) complex-mediated cell death was due to both apoptotic and nonspecific necrotic cell death mechanisms. This was assessed by ethidium bromide/acridine orange staining and flow cytometry techniques. The Mn (III) complex produced reactive oxygen species (ROS) triggering the expression of manganese superoxide dismutase 1 and ultimately damaging the mitochondrial function as is evident by a decline in mitochondrial membrane potential. Treatment of the cells with free radical scavenger, N, N-dimethylthiourea decreased Mn (III) complex-mediated generation of ROS and attenuated apoptosis. Together, these results suggest that the Mn (III) complex-mediated MCF-7 cell death utilizes combined mechanism involving apoptosis and necrosis perhaps due to the generation of ROS. © The Author(s) 2016.

  17. Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro.

    PubMed

    Pradhan, Saheli; Patra, Prasun; Mitra, Shouvik; Dey, Kushal Kumar; Jain, Sneha; Sarkar, Samapd; Roy, Shuvrodeb; Palit, Pratip; Goswami, Arunava

    2014-09-03

    Mung bean plants were grown under controlled conditions and supplemented with macro- and micronutrients. The objective of this study was to determine the response of manganese nanoparticles (MnNP) in nitrate uptake, assimilation, and metabolism compared with the commercially used manganese salt, manganese sulfate (MS). MnNP was modulated to affect the assimilatory process by enhancing the net flux of nitrogen assimilation through NR-NiR and GS-GOGAT pathways. This study was associated with toxicological investigation on in vitro and in vivo systems to promote MnNP as nanofertilizer and can be used as an alternative to MS. MnNP did not impart any toxicity to the mice brain mitochondria except in the partial inhibition of complex II-III activity in ETC. Therefore, mitochondrial dysfunction and neurotoxicity, which were noted by excess usage of elemental manganese, were prevented. This is the first attempt to highlight the nitrogen uptake, assimilation, and metabolism in a plant system using a nanoparticle to promote a biosafe nanomicronutrient-based crop management.

  18. Thermodynamics of Manganese Oxides at Bulk and Nanoscale: Phase Formation, Transformation, Oxidation-Reduction, and Hydration

    NASA Astrophysics Data System (ADS)

    Birkner, Nancy R.

    Natural manganese oxides are generally formed in surficial environments that are near ambient temperature and water-rich, and may be exposed to wet-dry cycles and a variety of adsorbate species that influence dramatically their level of hydration. Manganese oxide minerals are often poorly crystalline, nanophase, and hydrous. In the near-surface environment they are involved in processes that are important to life, such as water column oxygen cycling, biomineralization, and transport of minerals/nutrients through soils and water. These processes, often involving transformations among manganese oxide polymorphs, are governed by a complex interplay between thermodynamics and kinetics. Manganese oxides are also used in technology as catalysts, and for other applications. The major goal of this dissertation is to examine the energetics of bulk and nanophase manganese oxide phases as a function of particle size, composition, and surface hydration. Careful synthesis and characterization of manganese oxide phases with different surface areas provided samples for the study of enthalpies of formation by high temperature oxide melt solution calorimetry and of the energetics of water adsorption on their surfaces. These data provide a quantitative picture of phase stability and how it changes at the nanoscale. The surface energy of the hydrous surface of Mn3O4 is 0.96 +/- 0.08 J/m2, of Mn2O3 is 1.29 +/- 0.10 J/m2, and of MnO2 is 1.64 +/- 0.10 J/m2. The surface energy of the anhydrous surface of Mn3O4 is 1.62 +/- 0.08 J/m 2, of Mn2O3 is 1.77 +/- 0.10 J/m 2, and of MnO2 is 2.05 +/- 0.10 J/m2. Supporting preliminary findings (Navrotsky et al., 2010), the spinel phase (Mn3O4) has a lower surface energy (more stabilizing) than bixbyite, while the latter has a smaller surface energy than pyrolusite. These differences significantly change the positions in oxygen fugacity---temperature space of the redox couples Mn3O4-Mn2O 3 and Mn2O3-MnO2 favoring the lower surface enthalpy phase (the spinel Mn3O4) for smaller particle size and in the presence of surface hydration. Chemisorption of water onto anhydrous nanophase Mn2O 3 surfaces promotes rapidly reversible redox phase changes at room temperature as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Water adsorption microcalorimetry (in situ) at room temperature measured the strongly exothermic integral enthalpy of water adsorption (-103.5 kJ/mol) and monitored the energetics of the redox phase transformation. Hydration-driven redox transformation of anhydrous nanophase Mn(III) 2O3, (high surface enthalpy of anhydrous surfaces 1.77 +/- 0.10 J/m2) to Mn(II,III)3O4 (lower surface enthalpy 0.96 +/- 0.08 J/m2) occurred during the first few doses of water vapor. Surface reduction of nanoparticle bixbyite (Mn 2O3) to hausmannite (Mn3O4) occurs under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Layered structure manganese oxides contain alkali or alkaline earth cations and water, are generally fine-grained, and have considerable thermodynamic stability. The surface enthalpies (SE) of layered and tunnel structure complex manganese oxides are significantly lower than those of the binary manganese oxide phases. The SE for hydrous surfaces and overall manganese average oxidation state (AOS) (value in parentheses) are: cryptomelane 0.77 +/- 0.10 J/m 2 (3.78), sodium birnessite 0.69 +/- 0.13 J/m2 (3.56), potassium birnessite 0.55 +/- 0.11 J/m2 (3.52), and calcium birnessite 0.41 +/- 0.11 J/m2 (3.50). Surface enthalpies of hydrous surfaces of the calcium manganese oxide nanosheets are: deltaCa 0.39MnO2.3nH2O 0.75 +/- 0.10 J/m2 (3.89) and deltaCa0.43MnO2.3nH2O 0.57 +/- 0.12 J/m2 (3.68). The surface enthalpy of the complex manganese oxides appears to decrease with decreasing manganese average oxidation state, that is, with greater mixed valence manganese (Mn 3+/4+). Low surface energy suggests loose binding of H2O on the internal and external surfaces and may be critical to catalysis in both natural and technological settings.

  19. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.

    PubMed

    Ribeiro, Thales P; Fernandes, Christiane; Melo, Karen V; Ferreira, Sarah S; Lessa, Josane A; Franco, Roberto W A; Schenk, Gerhard; Pereira, Marcos D; Horn, Adolfo

    2015-03-01

    Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. A Low Spin Manganese(IV) Nitride Single Molecule Magnet

    PubMed Central

    Ding, Mei; Cutsail, George E.; Aravena, Daniel; Amoza, Martín; Rouzières, Mathieu; Dechambenoit, Pierre; Losovyj, Yaroslav; Pink, Maren

    2016-01-01

    Structural, spectroscopic and magnetic methods have been used to characterize the tris(carbene)borate compound PhB(MesIm)3Mn≡N as a four-coordinate manganese(IV) complex with a low spin (S = 1/2) configuration. The slow relaxation of the magnetization in this complex, i.e. its single-molecule magnet (SMM) properties, is revealed under an applied dc field. Multireference quantum mechanical calculations indicate that this SMM behavior originates from an anisotropic ground doublet stabilized by spin-orbit coupling. Consistent theoretical and experiment data show that the resulting magnetization dynamics in this system is dominated by ground state quantum tunneling, while its temperature dependence is influenced by Raman relaxation. PMID:27746891

  1. [Vitamin and mineral supplements in the diet of military personnel: effect on the balance of iron, copper and manganese, immune reactivity and physical work-capacity].

    PubMed

    Zaĭtseva, I P; Nosolodin, V V; Zaĭtsev, O N; Gladkikh, I P; Koznienko, I V; Beliakov, R A; Arshinov, N P

    2012-03-01

    Conducted with the participation of 50 students of military educational study the effect of various vitamin and mineral complexes for the provision by the body naturally iron, copper and manganese on the immune and physical status. Found that diets enriched BMV was accompanied by a significant delay in the micro-elements, mainly iron, which indicates a deficiency of these bioelements in chickens Santo during the summer. Under the influence of vitamin-mineral complexes significantly increased rates of natural and specific immunity. As the delay increases significantly increased iron medical indicators of immunological reaction efficiency and physical performance.

  2. Effect of additives on chemoselectivity and diastereoselectivity in the catalytic epoxidation of chiral allylic alcohols with hydrogen peroxide and binuclear manganese complexes.

    PubMed

    Kilic, Hamdullah; Adam, Waldemar; Alsters, Paul L

    2009-02-06

    The catalytic oxidations of chiral allylic alcohols 2 by manganese complexes of the cyclic triamine 1,4,7-trimethyl-1,4,7-triazacyclononane (tmtacn) 1 and hydrogen peroxide as oxygen donor in the presence of co-catalyst are investigated to understand the factors that affect the catalyst selectivity. Chemoselectivity and diastereoselectivity of catalyst 1 are significantly affected by the structure of the allylic alcohol and the nature and amount of co-catalyst. More pronounced is the influence of the amount of added molar equivalents of H(2)O(2) (20-110 mol % with respect to the substrate). Our present results reflect the complex redox chemistry of the Mn catalyst 1/H(2)O(2)/co-catalyst system in the early phase of the alkene oxidation.

  3. Photo-activation of Single Molecule Magnet Behavior in a Manganese-based Complex

    NASA Astrophysics Data System (ADS)

    Fetoh, Ahmed; Cosquer, Goulven; Morimoto, Masakazu; Irie, Masahiro; El-Gammal, Ola; El-Reash, Gaber Abu; Breedlove, Brian K.; Yamashita, Masahiro

    2016-03-01

    A major roadblock to fully realizing molecular electronic devices is the ability to control the properties of each molecule in the device. Herein we report the control of the magnetic properties of single-molecule magnets (SMMs), which can be used in memory devices, by using a photo-isomerizable diarthylenthene ligand. Photo-isomerization of the diarylethene ligand bridging two manganese salen complexes with visible light caused a significant change in the SMM behavior due to opening of the six-membered ring of diarylethene ligand, accompanied by reorganization of the entire molecule. The ring-opening activated the frequency-dependent magnetization of the complex. Our results are a major step towards the realization of molecular memory devices composed of SMMs because the SMM behaviour can be turned on and off simply by irradiating the molecule.

  4. Mechanisms of Pb(II) sorption on a biogenic manganese oxide.

    PubMed

    Villalobos, Mario; Bargar, John; Sposito, Garrison

    2005-01-15

    Macroscopic Pb(II) uptake experiments and Pb L3-edge extended X-ray absorption fine structure (EXAFS) spectroscopy were combined to examine the mechanisms of Pb(II) sequestration by a biogenic manganese oxide and its synthetic analogues, all of which are layer-type manganese oxides (phyllomanganates). Relatively fast Pb(II) sorption was observed, as well as extremely high sorption capacities, suggesting Pb incorporation into the structure of the oxides. EXAFS analysis revealed similar uptake mechanisms regardless of the specific nature of the phyllomanganate, electrolyte background, total Pb(II) loading, or equilibration time. One Pb-O and two Pb-Mn shells at distances of 2.30, 3.53, and 3.74 A, respectively, were found, as well as a linear relationship between Brunauer-Emmett-Teller (BET; i.e., external) specific surface area and maximum Pb(II) sorption that also encompassed data from previous work. Both observations support the existence of two bonding mechanisms in Pb(II) sorption: a triple-corner-sharing complex in the interlayers above/ below cationic sheet vacancies (N theoretical = 6), and a double-corner-sharing complex on particle edges at exposed singly coordinated -O(H) bonds (N theoretical = 2). General prevalence of external over internal sorption is predicted, but the two simultaneous sorption mechanisms can account for the widely noted high affinity of manganese oxides for Pb(ll) in natural environments.

  5. An analysis of manganese as an indicator for heavy metal removal in passive treatment using laboratory spent mushroom compost columns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, B.A.; Unz, R.F.; Dempsey, B.A.

    1999-07-01

    The National Pollution Discharge Elimination System (NPDES) dictates removal of manganese in mine drainage to less than 4 mg/1 daily or less than 2 mg/1 on a monthly average. Owing to its high solubility at low and circumneutral pH, removal of manganese is often the most difficult of the NPDES discharge standards. This has lead to the use of Mn(II) as a surrogate for metal removal. However, recent studies concluded that zinc or nickel may be more appropriate indicators for removal of other metals. Previous field studies showed zinc removal to be highly correlated to the removal of copper, cobalt,more » and nickel in a sulfate reducing subsurface loaded wetland, whereas manganese removal was poorly correlated. The objective of this study was to evaluate zinc and manganese retention under sulfate reducing conditions in bench scale columns containing fresh spent mushroom compost. Column effluent data were analyzed using an EPA geochemical computer model (MINTEQ) over the pH range of 6.0 to 6.8. Under these conditions, zinc and manganese displayed distinctly reactivities. Zn(II) was supersaturated with respect to ZnS{sub s} and the Zn(HS){sub 2}{degree} and Zn(HS){sub 3}{sup minus} complexes dominated solubility. Soluble zinc concentrations were inversely correlated to sulfide. Mn(II) remained as soluble Mn{sup +2}. During early column operation at pH > 7, MnCO{sup 3(s)} was supersaturated. Manganese concentrations did not correlate with pH or sulfide. Given these fundamental differences in removal mechanisms between Zn and Mn under sulfate reducing conditions, the use of manganese removal as a surrogate for heavy metal removal in passive treatment of mine drainage seems unjustified.« less

  6. Investigating relationships between biomarkers of exposure and environmental copper and manganese levels in house dusts from a Portuguese industrial city.

    PubMed

    Reis, A P; Costa, S; Santos, I; Patinha, C; Noack, Y; Wragg, J; Cave, M; Sousa, A J

    2015-08-01

    This study reports on data obtained from a pilot survey focusing on house dust and toenail metal(loids) concentrations in residents living in the industrial city of Estarreja. The study design hereby described aims at investigating relationships between human toenails and both copper and manganese levels in settled house dusts. A total of 21 households and 30 individuals were recruited for the pilot study: 19 households corresponding to 27 residents living near the industrial complex, forming the exposed group, plus 2 households and 3 residents from residential areas with no anticipated environmental contaminants that were used for comparison. Factorial analysis was used for source identification purposes. Investigation on the potential influence of environmental factors over copper and manganese levels in the toenails was carried out via questionnaire data and multiple correspondence analysis. The results show that copper concentrations are more elevated in the indoor dusts, while manganese concentrations are more elevated in the outdoor dust samples. The geometrical relationships in the datasets suggest that the backyard soil is a probable source of manganese to the indoor dust. Copper and manganese contents in the toenail clippings are more elevated in children than in adults, but the difference between the two age groups is not statistically significant (p > 0.05). Investigation of environmental factors influencing the exposure-biomarker association indicates a probable relationship between manganese contents in indoor dust and manganese levels in toenail clippings, a result that is partially supported by the bioaccessibility estimates. However, for copper, no relationship was found between indoor dusts and the biomarkers of exposure.

  7. Biogeochemical evidence for subsurface hydrocarbon occurrence, Recluse oil field, Wyoming; preliminary results

    USGS Publications Warehouse

    Dalziel, Mary C.; Donovan, Terrence J.

    1980-01-01

    Anomalously high manganese-to-iron ratios occurring in pine needles and sage leaves over the Recluse oil field, Wyoming, suggest effects of petroleum microseepage on the plants. This conclusion is supported by iron and manganese concentrations in soils and carbon and oxygen isotope ratios in rock samples. Seeping hydrocarbons provided reducing conditions sufficient to enable divalent iron and manganese to be organically complexed or adsorbed on solids in the soils. These bound or adsorped elements in the divalent state are essential to plants, and the plants readily assimilate them. The magnitude of the plant anomalies, combined with the supportive isotopic and chemical evidence confirming petroleum leakage, makes a strong case for the use of plants as a biogeochemical prospecting tool.

  8. De novo design and engineering of functional metal and porphyrin-binding protein domains

    NASA Astrophysics Data System (ADS)

    Everson, Bernard H.

    In this work, I describe an approach to the rational, iterative design and characterization of two functional cofactor-binding protein domains. First, a hybrid computational/experimental method was developed with the aim of algorithmically generating a suite of porphyrin-binding protein sequences with minimal mutual sequence information. This method was explored by generating libraries of sequences, which were then expressed and evaluated for function. One successful sequence is shown to bind a variety of porphyrin-like cofactors, and exhibits light- activated electron transfer in mixed hemin:chlorin e6 and hemin:Zn(II)-protoporphyrin IX complexes. These results imply that many sophisticated functions such as cofactor binding and electron transfer require only a very small number of residue positions in a protein sequence to be fixed. Net charge and hydrophobic content are important in determining protein solubility and stability. Accordingly, rational modifications were made to the aforementioned design procedure in order to improve its overall success rate. The effects of these modifications are explored using two `next-generation' sequence libraries, which were separately expressed and evaluated. Particular modifications to these design parameters are demonstrated to effectively double the purification success rate of the procedure. Finally, I describe the redesign of the artificial di-iron protein DF2 into CDM13, a single chain di-Manganese four-helix bundle. CDM13 acts as a functional model of natural manganese catalase, exhibiting a kcat of 0.08s-1 under steady-state conditions. The bound manganese cofactors have a reduction potential of +805 mV vs NHE, which is too high for efficient dismutation of hydrogen peroxide. These results indicate that as a high-potential manganese complex, CDM13 may represent a promising first step toward a polypeptide model of the Oxygen Evolving Complex of the photosynthetic enzyme Photosystem II.

  9. Microbanded manganese formations; protoliths in the Franciscan Complex, California

    USGS Publications Warehouse

    Huebner, J. Stephen; Flohr, Marta J.

    1990-01-01

    The Buckeye manganese deposit, 93 km southeast of San Francisco in the California Coast Ranges, preserves a geologic history that provides clues to the origin of numerous lenses of manganese carbonate, oxides, and silicates that occur with interbedded radiolarian chert and metashale of the Franciscan Complex. Compositionally and mineralogically laminated Mn-rich protoliths were deformed and dismembered, in a manner that mimics in smaller scale the deformation of the host complex, and then were incipiently metamorphosed at blueschistfacies conditions. Eight phases occur as almost monomineralic protoliths and mixtures: rhodochrosite, caryopilite, chlorite, gageite, taneyamalite, braunite, hausmannite, and laminated chert (quartz). Braunite, gageite, and some chlorite and caryopilite layers were deposited as gel-like materials; rhodochrosite, most caryopilite, and at least some hausmannite layers as lutites; and the chert as turbidites of radiolarian sand. Some gel-like materials are now preserved as transparent, sensibly isotropic relics of materials that fractured or shattered when deformed, creating curved surfaces. In contrast, the micrites flowed between the fragments of gel-like materials. The orebody and most of its constituent minerals have unusually Mn-rich compositions that are described by the system MnO-SiO2-O2-CO2-H2O. High values of Mn/Fe and U/Th, and low concentrations of Co, Cu, and Ni, distinguish the Buckeye deposit from many high-temperature hydrothermal deposits and hydrogenous or diagenetic manganese and ferromanganese nodules and pavements. This chemical signature suggests that ore deposition was related to fluids from the sediment column and seawater. Tungsten is associated exclusively with gageite, in concentrations as high as 80 parts per million. The source of the manganese is unknown; because basalts do not occur near the deposit, it was probably manganese leached from the sediment column by reducing solutions. Low concentrations of calcium (CaO approximately 0.6 weight percent) suggest that the host sediments formed beneath the carbonate-compensation depth. The most probable cause of the microbanding is changing proportions of chemical fluxes supplied to the sediment-seawater interface. The principal fluxes were biogenic silica from the water column, carbon dioxide from organic matter in the sediment column, O2 and other seawater constituents, and Mn +2-bearing fluid. The presence of Al2O3 and TiO2 (supplied by a detrital flux) in the metashale but not the ore lens suggests rapid ore deposition. Material supply-rate changes were probably due to a complex combination of episodic variations in the hydrothermal flux and periodic flows of radiolarian sand (silica and CO2 fluxes) that may be related to climate variations. The processes that form recent marine hydrothermal mounds may be the same as processes that formed the Buckeye deposit. Features common to both include the presence of Mn-oxyhydroxide crusts (corresponding to the Buckeye orebody), a large Mn/Fe ratio, low abundances of most minor elements, and small size. The most important differences are the absence of rhodochrosite and manganese silicates, interlayered with oxide, and the absence of adjacent chert in the contemporary deposits. These differences may be due to an absence of the debris of siliceous pelagic organisms, which accumulated in the Buckeye paleoenvironment. Periodic turbidity flows of chert-forming radiolarian sand could provide the changes in the fluxes of silica and organic matter necessary to form manganese carbonate and silicates. Turbidity flows of graywacke indicate proximity to an environment with high relief. A possible paleodepositional environment is an oceanic spreading center approaching a continental margin at which subduction occurred.

  10. Importance of Pipe Deposits to Lead and Copper Rule Compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schock, Michael R.; Cantor, Abigail F.; Triantafyllidou, Simoni

    When Madison, Wis., exceeded the lead action level in 1992, residential and off-line tests suggested that lead release into the water was more complex than a lead solubility mechanism. Scale analyses (color and texture as well as mineralogical and elemental composition) of five excavated lead service lines (LSLs) revealed that accumulation of manganese (and iron) onto pipe walls had implications for lead corrosion by providing a high-capacity sink for lead. Manganese that accumulated from source well water onto pipe scales (up to 10% by weight of scale composition) served to capture and eventually transport lead to consumer taps. In addition,more » manganese sometimes obstructed the predominance of an insoluble (and thus potentially protective) plattnerite [Pb(IV) solid] scale layer. Full LSL replacement in Madison achieved Lead and Copper Rule compliance and a major reduction in lead contamination and exposure, supplemented by unidirectional flushing of water mains and manganese control in the source well water.« less

  11. Hot Ductility Behavior of Boron Containing Microalloyed Steels with Varying Manganese Contents

    NASA Astrophysics Data System (ADS)

    Brune, Tobias; Senk, Dieter; Walpot, Raphael; Steenken, Bernhard

    2015-02-01

    The hot ductility is measured for six different steel grades with different microalloying elements and with varying manganese contents using the hot tensile test machine with melting/solidification unit at the Department of Ferrous Metallurgy RWTH Aachen University. To identify the influence of manganese on hot ductility, tests are performed with varying the manganese content from 0.7 to 18.2 wt pct, a high manganese steel. Additionally, the effect of different cooling and strain rates is analyzed by changing the particular rate for selected samples in the minima. To investigate and detect the cause of cracking during testing, the fracture surfaces in the ductility minima are considered with scanning electron microscope-energy dispersive X-ray spectroscopy. Thermodynamic modeling is conducted on basis of the commercial software ThermoCalc©. A sharp decrease of the hot ductility is recognizable at 1398 K (1125 °C), at only 0.7 wt pct manganese because of the low manganese to sulfur ratio. The grades with a Mn content up to 1.9 wt pct show a good ductility with minimal ductility loss. In comparison, the steel grade with 18.2 wt pct has a poor hot ductility. Because of the formation of complex precipitates, where several alloying elements are involved, the influence of boron on hot ductility is not fully clarified. By increasing the cooling rate, the reduction of area values are shifted to smaller values. For high test temperatures, these measured values are decreased for lower strain rates. Thereby, an early drop of the ductility is noticeable for the high temperatures around 1373 K (1100 °C).

  12. Photo-catalytic Degradation and Sorption of Radio-cobalt from EDTA-Co Complexes Using Manganese Oxide Materials - 12220

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koivula, Risto; Harjula, Risto; Tusa, Esko

    2012-07-01

    The synthesised cryptomelane-type α-MnO{sub 2} was tested for its Co-57 uptake properties in UV-photo-reactor filled with 10 μM Co-EDTA solution with a background of 10 mM NaNO{sub 3}. High cobalt uptake of 96% was observed after 1 hour of UV irradiation. As for comparison, a well-known TiO{sub 2} (Degussa P25) was tested as reference material that showed about 92% cobalt uptake after six hours of irradiation in identical experiment conditions. It was also noted that the cobalt uptake on cryptomelane with out UV irradiation was modest, only about 10%. Decreasing the pH of the Co-EDTA solution had severe effects onmore » the cobalt uptake mainly due to the rather high point of zero charge of the MnO{sub 2} surface (pzc at pH ∼4.5). Modifying the synthesis procedure we were able to produce a material that functioned well even in solution of pH 3 giving cobalt uptake of almost 99%. The known properties, catalytic and ion exchange, of manganese oxides were simultaneously used for the separation of EDTA complexed Co-57. Tunnel structured cryptomelane -type showed very fast and efficient Co uptake properties outperforming the well known and widely used Degussa P25 TiO{sub 2} in both counts. The layered structured manganese oxide, birnessite, reached also as high Co removal level as the reference material Degussa did but the reaction rate was considerably faster. Since the decontamination solutions are typically slightly acidic and the point of zero charge of the manganese oxides are rather high > pH 4.5 the material had to be modified. This modified material had tolerance to acidic solutions and it's Co uptake performance remained high in the solutions of lower pH (pH 3). Increasing the ion concentration of test solutions, background concentration, didn't affect the final Co uptake level; however, some changes in the uptake kinetics could be seen. The increase in EDTA/MoMO ratio was clearly reflected in the Co uptake curves. The obtained results of manganese oxide were very promising for the treatment of EDTA complexed Co solutions. The better performance values and cheaper production cost of manganese oxide, compared to titanium dioxide, is so big driving force that further studies on the material are evident. The possibilities for continuous treatment, instead of the fluidized bed -type batch experiment are investigated and the effects of other compounds affecting the de-complexation of Co-EDTA are further studied. (authors)« less

  13. Equatorial Ligand Perturbations Influence the Reactivity of Manganese(IV)-Oxo Complexes.

    PubMed

    Massie, Allyssa A; Denler, Melissa C; Cardoso, Luísa Thiara; Walker, Ashlie N; Hossain, M Kamal; Day, Victor W; Nordlander, Ebbe; Jackson, Timothy A

    2017-04-03

    Manganese(IV)-oxo complexes are often invoked as intermediates in Mn-catalyzed C-H bond activation reactions. While many synthetic Mn IV -oxo species are mild oxidants, other members of this class can attack strong C-H bonds. The basis for these reactivity differences is not well understood. Here we describe a series of Mn IV -oxo complexes with N5 pentadentate ligands that modulate the equatorial ligand field of the Mn IV center, as assessed by electronic absorption, electron paramagnetic resonance, and Mn K-edge X-ray absorption methods. Kinetic experiments show dramatic rate variations in hydrogen-atom and oxygen-atom transfer reactions, with faster rates corresponding to weaker equatorial ligand fields. For these Mn IV -oxo complexes, the rate enhancements are correlated with both 1) the energy of a low-lying 4 E excited state, which has been postulated to be involved in a two-state reactivity model, and 2) the Mn III/IV reduction potentials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling.

    PubMed

    Wang, Zimeng; Lee, Sung-Woo; Catalano, Jeffrey G; Lezama-Pacheco, Juan S; Bargar, John R; Tebo, Bradley M; Giammar, Daniel E

    2013-01-15

    The mobility of hexavalent uranium in soil and groundwater is strongly governed by adsorption to mineral surfaces. As strong naturally occurring adsorbents, manganese oxides may significantly influence the fate and transport of uranium. Models for U(VI) adsorption over a broad range of chemical conditions can improve predictive capabilities for uranium transport in the subsurface. This study integrated batch experiments of U(VI) adsorption to synthetic and biogenic MnO(2), surface complexation modeling, ζ-potential analysis, and molecular-scale characterization of adsorbed U(VI) with extended X-ray absorption fine structure (EXAFS) spectroscopy. The surface complexation model included inner-sphere monodentate and bidentate surface complexes and a ternary uranyl-carbonato surface complex, which was consistent with the EXAFS analysis. The model could successfully simulate adsorption results over a broad range of pH and dissolved inorganic carbon concentrations. U(VI) adsorption to synthetic δ-MnO(2) appears to be stronger than to biogenic MnO(2), and the differences in adsorption affinity and capacity are not associated with any substantial difference in U(VI) coordination.

  15. Eight- and six-coordinated Mn(II) complexes of heteroaromatic alcohol and aldehyde: Crystal structure, spectral, magnetic, thermal and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Jabłońska-Wawrzycka, Agnieszka; Barszcz, Barbara; Zienkiewicz, Małgorzata; Hodorowicz, Maciej; Jezierska, Julia; Stadnicka, Katarzyna; Lechowicz, Łukasz; Kaca, Wiesław

    2014-08-01

    Crystal, molecular and electronic structure of new manganese(II) compounds: [Mn(2-CH2OHpy)2(NO3)2] (1), [Mn(4-CHO-5-MeIm)2(NO3)2] (2) and [Mn(4-CHO-5-MeIm)2Cl2] (3), where 2-hydroxymethylpyridine (2-CH2OHpy) and 5(4)-carbaldehyde-4(5)-methylimidazole (5(4)-CHO-4(5)-MeIm), have been characterised using X-ray, spectroscopic, magnetic and TG/DTG data. In compounds 1 and 2, the Mn(II) ion is eight-coordinated forming distorted pseudo-dodecahedron, that is rather unusual for the manganese(II) complexes, whereas in 3 the Mn(II) ion environment is a distorted octahedron. The high coordination number (CN = 8) of 1 and 2 results from bidentate character of the nitrate ligands. The X-band EPR spectra of compounds 2 and 3 exhibit fine structure signals resulting from zero-field splitting (ZFS) of the spin states for high spin d5 Mn(II), whereas for 1 the broad isotropic signals were observed. The estimation of ZFS for individual Mn(II) ions was carried out for all compounds using DFT calculations. The free ligands and their manganese(II) complexes have been tested in vitro against gram-positive and gram-negative bacteria in order to assess their antimicrobial properties.

  16. Characterization of the interaction between the heavy and light chains of bovine factor Va.

    PubMed

    Walker, F J

    1992-10-05

    Bovine factor Va has been previously been shown to consist of heavy (M(r) = 94,000) and light chains (M(r) = 81,000), that interact in a manner dependent upon the presence of either calcium or manganese ions. In an attempt to understand the mechanism of subunit interaction we have studied the effects of temperature and ions on factor Va stability. The rates of formation of factor Va from isolated chains and dissociation were temperature-dependent with an energy of activation of 6.2 and 1.3 kcal mol-1, respectively. The yield of factor Va from isolated chains was inversely related to the amount of time the chains were incubated at 4 degrees C. Incubation of individual chains revealed that the heavy chain is cold-labile, an effect that is reversible. Manganese ion was observed to prevent the conversion to the inactive form. High salt tends to stabilize the two-chain structure of factor Va, but is inhibitory to its formation from isolated chains. High concentrations of either manganese or calcium ions also inhibited reconstitution of activity. The light chain, in particular, was sensitive to the presence of manganese or calcium ion. Heavy chain that had been cleaved by activated protein C had a weakened interaction with the light chain, and the resulting complex had no procoagulant activity. Cooling of the heavy chain to 4 degrees C enhanced its intrinsic fluorescence. Manganese ion prevented some of this enhancement. The heavy chain fluorescence returned to the room temperature value with a half-life of approximately 10 min. In the presence of manganese ion relaxation was accelerated. The intrinsic fluorescence of activated protein C-cleaved heavy chain was not increased when the temperature was decreased. These data suggest that the heavy chain can exist in two forms. Elevated temperature converts it to a form that can bind ions and have a productive interaction with the light chain. However, conditions that prevent the heavy chain from combining with the light chain also stabilize the two subunit structure, suggesting that the high affinity of the complex is due to conformational changes that occur after chain interaction.

  17. Metal phthalocyanine catalysts

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  18. Water-soluble Manganese and Iron Mesotetrakis(carboxyl)porphyrin: DNA Binding, Oxidative Cleavage, and Cytotoxic Activities.

    PubMed

    Shi, Lei; Jiang, Yi-Yu; Jiang, Tao; Yin, Wei; Yang, Jian-Ping; Cao, Man-Li; Fang, Yu-Qi; Liu, Hai-Yang

    2017-06-29

    Two new water-soluble metal carboxyl porphyrins, manganese (III) meso -tetrakis (carboxyl) porphyrin and iron (III) meso -tetrakis (carboxyl) porphyrin, were synthesized and characterized. Their interactions with ct-DNA were investigated by UV-Vis titration, fluorescence spectra, viscosity measurement and CD spectra. The results showed they can strongly bind to ct-DNA via outside binding mode. Electrophoresis experiments revealed that both complexes can cleave pBR322 DNA efficiently in the presence of hydrogen peroxide, albeit 2-Mn exhibited a little higher efficiency. The inhibitor tests suggest the oxidative DNA cleavage by these two complexes may involve hydroxyl radical active intermediates. Notably, 2-Mn exhibited considerable photocytotoxicity against Hep G2 cell via triggering a significant generation of ROS and causing disruption of MMP after irradiation.

  19. Photoprotection in plants: a new light on photosystem II damage.

    PubMed

    Takahashi, Shunichi; Badger, Murray R

    2011-01-01

    Sunlight damages photosynthetic machinery, primarily photosystem II (PSII), and causes photoinhibition that can limit plant photosynthetic activity, growth and productivity. The extent of photoinhibition is associated with a balance between the rate of photodamage and its repair. Recent studies have shown that light absorption by the manganese cluster in the oxygen-evolving complex of PSII causes primary photodamage, whereas excess light absorbed by light-harvesting complexes acts to cause inhibition of the PSII repair process chiefly through the generation of reactive oxygen species. As we review here, PSII photodamage and the inhibition of repair are therefore alleviated by photoprotection mechanisms associated with avoiding light absorption by the manganese cluster and successfully consuming or dissipating the light energy absorbed by photosynthetic pigments, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Proposed mechanisms for water oxidation by Photosystem II and nanosized manganese oxides.

    PubMed

    Najafpour, Mohamad Mahdi; Heidari, Sima; Balaghi, S Esmael; Hołyńska, Małgorzata; Sadr, Moayad Hossaini; Soltani, Behzad; Khatamian, Maasoumeh; Larkum, Anthony W; Allakhverdiev, Suleyman I

    2017-02-01

    Plants, algae and cyanobacteria capture sunlight, extracting electrons from H 2 O to reduce CO 2 into sugars while releasing O 2 in the oxygenic photosynthetic process. Because of the important role of water oxidation in artificial photosynthesis and many solar fuel systems, understanding the structure and function of this unique biological catalyst forms a requisite research field. Herein the structure of the water-oxidizing complex and its ligand environment are described with reference to the 1.9Å resolution X-ray-derived crystallographic model of the water-oxidizing complex from the cyanobacterium Thermosynechococcus vulcanus. Proposed mechanisms for water oxidation by Photosystem II and nanosized manganese oxides are also reviewed and discussed in the paper. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Chronic Manganese Toxicity Associated with Voltage-Gated Potassium Channel Complex Antibodies in a Relapsing Neuropsychiatric Disorder

    PubMed Central

    Ho, Cyrus S.H.; Quek, Amy M.L.

    2018-01-01

    Heavy metal poisoning is a rare but important cause of encephalopathy. Manganese (Mn) toxicity is especially rare in the modern world, and clinicians’ lack of recognition of its neuropsychiatric manifestations can lead to misdiagnosis and mismanagement. We describe the case of a man who presented with recurrent episodes of confusion, psychosis, dystonic limb movement and cognitive impairment and was initially diagnosed with anti-voltage-gated potassium channel (VGKC) complex limbic encephalitis in view of previous positive autoantibodies. His failure to respond to immunotherapy prompted testing for heavy metal poisoning, which was positive for Mn. This is the first report to examine an association between Mn and VGKC antibodies and the effects of Mn on functional brain activity using functional near-infrared spectroscopy (fNIRS). PMID:29669989

  2. Chronic Manganese Toxicity Associated with Voltage-Gated Potassium Channel Complex Antibodies in a Relapsing Neuropsychiatric Disorder.

    PubMed

    Ho, Cyrus S H; Ho, Roger C M; Quek, Amy M L

    2018-04-18

    Heavy metal poisoning is a rare but important cause of encephalopathy. Manganese (Mn) toxicity is especially rare in the modern world, and clinicians’ lack of recognition of its neuropsychiatric manifestations can lead to misdiagnosis and mismanagement. We describe the case of a man who presented with recurrent episodes of confusion, psychosis, dystonic limb movement and cognitive impairment and was initially diagnosed with anti-voltage-gated potassium channel (VGKC) complex limbic encephalitis in view of previous positive autoantibodies. His failure to respond to immunotherapy prompted testing for heavy metal poisoning, which was positive for Mn. This is the first report to examine an association between Mn and VGKC antibodies and the effects of Mn on functional brain activity using functional near-infrared spectroscopy (fNIRS).

  3. Manganese L-edge X-ray absorption spectroscopy of manganese catalase from Lactobacillus plantarum and mixed valence manganese complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grush, M.M.; Chen, J.; George, S.J.

    1996-01-10

    The first Mn L-edge absorption spectra of a Mn metalloprotein are presented in this paper. Both reduced and superoxidized Mn catalase have been examined by fluorescence-detected soft X-ray absorption spectroscopy, and their Mn L-edge spectra are dramatically different. The spectrum of reduced Mn(II)Mn(II) catalase has been interpreted by ligand field atomic multiplet calculations and by comparison to model compound spectra. The analysis finds a 10 Dq value of nearly 1.1 eV, consistent with coordination by predominately nitrogen and oxygen donor ligands. For interpretation of mixed valence Mn spectra, an empirical simulation procedure based on the addition of homovalent model compoundmore » spectra has been developed and was tested on a variety of Mn complexes and superoxidized Mn catalase. This routine was also used to determine the oxidation state composition of the Mn in [Ba{sub 8}Na{sub 2}ClMn{sub 16}(OH){sub 8}(CO{sub 3}){sub 4}L{sub 8}] .53 H{sub 2}O (L=1,3-diamino-2-hydroxypropane-N,N,N`N`-tetraacetic acid). 27 refs., 6 figs.« less

  4. New Methods of Simulation of Mn(II) EPR Spectra: Single Crystals, Polycrystalline and Amorphous (Biological) Materials

    NASA Astrophysics Data System (ADS)

    Misra, Sushil K.

    Biological systems exhibit properties of amorphous materials. The Mn(II) ion in amorphous materials is characterized by distributions of spin-Hamiltonian parameters around mean values. It has a certain advantage over other ions, being one of the most abundant elements on the earth. The extent to which living organisms utilize manganese varies from one organism to the other. There is a fairly high concentration of the Mn(II) ion in green plants, which use it in the O2 evolution reaction of photosynthesis (Sauer, 1980). Structure-reactivity relationships in Mn(II)-O2 complexes are given in a review article by Coleman and Taylor (1980). Manganese is a trace requirement in animal nutrition; highly elevated levels of manganese in the diet can be toxic, probably because of an interference with iron homeostasis (Underwood, 1971). On the other hand, animals raised with a dietary deficiency of manganese exhibit severe abnormalities in connective tissue; these problems have been attributed to the obligatory role of Mn(II) in mucopolysaccharide metabolism (Leach, 1971). Mn(II) has been detected unequivocally in living organisms.

  5. Preparation of electrochromic thin films by transformation of manganese(II) carbonate

    NASA Astrophysics Data System (ADS)

    Stojkovikj, Sasho; Najdoski, Metodija; Koleva, Violeta; Demiri, Sani

    2013-10-01

    A new chemical bath method for deposition of manganese(II) carbonate thin film on electroconductive FTO glass substrates is designed. The homogeneous thin films with thickness in the range of 70 to 500 nm are deposited at about 98 °C from aqueous solution containing urea and MnCl2. The chemical process is based on a low temperature hydrolysis of the manganese complexes with urea. Three types of films are under consideration: as-deposited, annealed and electrochemically transformed thin films. The structure of the films is studied by XRD, IR and Raman spectroscopy. Electrochemical and optical properties are examined in eight different electrolytes (neutral and alkaline) and the best results are achieved in two component aqueous solution of 0.1 M KNO3 and 0.01 M KOH. It is established that the as-deposited MnCO3 film undergoes electrochemically transformation into birnessite-type manganese(IV) oxide films, which exhibit electrochromic color changes (from bright brown to pale yellow and vice versa) with 30% difference in the transmittance of the colored and bleached state at 400 nm.

  6. Manganese Catalyzed C–H Halogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Groves, John T.

    2015-06-16

    The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species thatmore » transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–Mn V$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond formation. Indeed, this idea led to the discovery of the first Mn-catalyzed direct aliphatic C–H fluorination reactions utilizing simple, nucleophilic fluoride salts. Mechanistic studies and DFT calculations have revealed a trans-difluoromanganese(IV) species as the key fluorine transfer intermediate. In addition to catalyzing normal 19F-fluorination reactions, manganese salen complexes were found to enable the incorporation of radioactive 18F fluorine via C–H activation. This advance represented the first direct C sp3–H bond 18F labeling with no-carrier-added [ 18F]fluoride and facilitated the late-stage labeling of drug molecules for PET imaging. Given the high reactivity and enzymatic-like selectively of metalloporphyrins, we envision that this new Heteroatom-Rebound Catalysis (HRC) strategy will find widespread application in the C–H functionalization arena and serve as an effective tool for forming new carbon–heteroatom bonds at otherwise inaccessible sites in target molecules.« less

  7. Synthesis, crystal structure and bioactivity of manganese complexes with asymmetric chiral Schiff base

    NASA Astrophysics Data System (ADS)

    Zhang, Enfeng; Wei, Yi; Huang, Fuping; Yu, Qing; Bian, Hedong; Liang, Hong; Lei, Fuhou

    2018-03-01

    A couple of chiral unsymmtrical Schiff base ligands, (1R,2R) (-)chxn (salH) (naftalH) and (1S,2S) (-)chxn (salH) (naftalH) had been synthesized by the condensation of salicylaldehyde and 2-hydroxy-1-naphthaldehyde with two isomers of (1R,2R)-trans-1,2-cyclohexanediamin and (1S,2S)-trans-1,2-cyclohexanediamin, respectively. At the same time, two manganese complexes have been synthesized and fully characterized by FT-IR spectrum, elemental analyses, single crystal X-ray diffraction. The interaction of the two Mn (III) complexes with bovine serum albumin (BSA) was investigated by spectroscopic techniques. The result reveals that the complexes can strongly quench the intrinsic fluorescence of BSA through a static quenching mechanism. The binding constant and binding mode has been determined. The secondary structure and the amino acid residues microenvironment of BSA change in the presence of these complexes. SOD-like activity and ABTS free radical scavenging ability were also studied. The antioxidant capacity of the compounds showed that the complexes and their corresponding BSA adducts showed some SOD activity. The results of ABTS free radical scavenging showed that the activity of the BSA adduct was more obvious than that of the complex.

  8. Synthesis, characterisation and computational studies on a novel one-dimensional arrangement of Schiff-base Mn3 single-molecule magnet.

    PubMed

    Lin, Po-Heng; Gorelsky, Serge; Savard, Didier; Burchell, Tara J; Wernsdorfer, Wolfgang; Clérac, Rodolphe; Murugesu, Muralee

    2010-09-07

    The syntheses, structures and magnetic properties are reported for three new manganese complexes containing the Schiff-base ((2-hydroxy-3-methoxyphenyl)methylene)isonicotinohydrazine (H(2)hmi) ligand. Complex [Mn(II)(H(2)hmi)(2)(MeOH)(2)Cl(2)] (1) was obtained from the reaction of H(2)hmi with MnCl(2) in a MeOH-MeCN mixture. Addition of triethylamine to the previous reaction mixture followed by diethyl ether diffusion yielded a dinuclear manganese [Mn(III)(2)(hmi)(2)(OMe)(2)](infinity).2MeCN.2OEt(2) (2) compound. Upon increasing the MnCl(2)/H(2)hmi ratio, the mixed valence complex [Mn(III)(2)Mn(II)(hmi)(2)(OMe)(2)Cl(2)](infinity).MeOH (3) was obtained. Dc and ac magnetic measurements were carried out on all three samples. The ac susceptibility and field dependence of the magnetisation measurements confirmed that complex 3 exhibits a single-molecule magnet behaviour with an effective energy barrier of 8.1 K and an Arrhenius pre-exponential factor of 3 x 10(-9) s.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannachi, Amira, E-mail: amira.hannachi88@gmail.com; Maghraoui-Meherzi, Hager

    Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferentialmore » orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like. - Graphical Abstract: We report the preparation of different phases of manganese sulfide thin films (γ, β and α-MnS) by chemical bath deposition method. The effects of deposition parameters such as deposition time and temperature, concentrations of precursors and multi-layer deposition on MnS thin films structure and morphology were investigated. The influence of thermal annealing under nitrogen atmosphere at different temperature on MnS properties was also studied. Different manganese precursors as well as different complexing agent were also used. - Highlights: • γ and β-MnS films were deposited on substrate using the chemical bath deposition. • The effect of deposition parameters on MnS film properties has been investigated. • Multi-layer deposition was also studied to increase film thickness. • The effect of annealing under N{sub 2} at different temperature was investigated.« less

  10. Metal phthalocyanine catalysts

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-10-11

    A new composition of matter is described which is an alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  11. Manganese

    USGS Publications Warehouse

    Cannon, William F.; Kimball, Bryn E.; Corathers, Lisa A.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Manganese is an essential element for modern industrial societies. Its principal use is in steelmaking, where it serves as a purifying agent in iron-ore refining and as an alloy that converts iron into steel. Although the amount of manganese consumed to make a ton of steel is small, ranging from 6 to 9 kilograms, it is an irreplaceable component in the production of this fundamental material. The United States has been totally reliant on imports of manganese for many decades and will continue to be so for at least the near future. There are no domestic reserves, and although some large low-grade resources are known, they are far inferior to manganese ores readily available on the international market. World reserves of manganese are about 630 million metric tons, and annual global consumption is about 16 million metric tons. Current reserves are adequate to meet global demand for several decades. Global resources in traditional land-based deposits, including both reserves and rocks sufficiently enriched in manganese to be ores in the future, are much larger, at about 17 billion metric tons. Manganese resources in seabed deposits of ferromanganese nodules and crusts are larger than those on land and have not been fully quantified. No production from seabed deposits has yet been done, but current research and development activities are substantial and may bring parts of these seabed resources into production in the future. The advent of economically successful seabed mining could substantially alter the current scenario of manganese supply by providing a large new source of manganese in addition to traditional land-based deposits.From a purely geologic perspective, there is no global shortage of proven ores and potential new ores that could be developed from the vast tonnage of identified resources. Reserves and resources are very unevenly distributed, however. The Kalahari manganese district in South Africa contains 70 percent of the world’s identified resources and about 25 percent of its reserves. South Africa, Brazil, and Ukraine together accounted for nearly 65 percent of reserves in 2013. The combination of total import reliance for manganese, the mineral commodity’s essential uses in our industrialized society, and the potential for supply disruptions because of the limited sources of the ore makes manganese among the most critical minerals for the United States.Manganese is the 12th most abundant element in Earth’s crust. Its concentration varies among common types of rocks, mostly in the range of from 0.1 to 0.2 percent. The highest quality manganese ores contain from 40 to 45 percent manganese. The formation of these ores requires specialized geologic conditions that concentrate manganese at several hundred times its average crustal abundance. The dominant processes in forming the world’s principal deposits take place in the oceans. As a result, most important manganese deposits occur in ancient marine sedimentary rocks that are now exposed on continents as a result of subsequent tectonic uplift and erosion. In many cases, other processes have further enriched these manganiferous sedimentary rocks to form some of today’s highest grade ores. Modern seabed resources of ferromanganese nodules cover vast areas of the present ocean floor and are still forming by complex interactions of marine microorganisms, manganese dissolved in seawater, and chemical processes on the seabed.Manganese is ubiquitous in soil, water, and air. It occurs most often in solid form but can become soluble under acidic conditions. Manganese mining, like any activity that disturbs large areas of Earth’s surface, has the potential to produce increases in manganese concentrations that could be harmful to humans or the environment if not properly controlled. Although manganese is an essential nutrient for humans and most other organisms, overexposure can lead to neurotoxicity in humans. Workers at manganese mining and processing facilities have the greatest potential to inhale manganese-rich dust. Without proper protective equipment, these workers may develop a permanent neurological disorder known as manganism. Each manganese mine is unique and presents its own suite of potential hazards and preventative measures. Likewise, various nations have their own sets of standards to ensure safe mining, isolation of mine waste, treatment of mine waters, and mine closure and restoration. Interest in mining trace metals contained in ferromanganese nodules and crusts on the seabed has increased rapidly in the past decade. Prime areas for future research include overcoming the technological challenges presented by mining as deep as 6,500 meters below sea level and understanding and mitigating the potential impacts of seabed mining on marine ecosystems.

  12. Facile synthesis of three-dimensional diatomite/manganese silicate nanosheet composites for enhanced Fenton-like catalytic degradation of malachite green dye

    NASA Astrophysics Data System (ADS)

    Jiang, De Bin; Yuan, Yunsong; Zhao, Deqiang; Tao, Kaiming; Xu, Xuan; Zhang, Yu Xin

    2018-05-01

    In this work, we demonstrate a novel and simple approach for fabrication of the complex three-dimensional (3D) diatomite/manganese silicate nanosheet composite (DMSNs). The manganese silicate nanosheets are uniformly grown on the inner and outer surface of diatomite with controllable morphology using a hydrothermal method. Such structural features enlarged the specific surface area, resulting in more catalytic active sites. In the heterogeneous Fenton-like reaction, the DMSNs exhibited excellent catalytic capability for the degradation of malachite green (MG). Under optimum condition, 500 mg/L MG solution was nearly 93% decolorized at 70 min in the reaction. The presented results show an enhanced catalytic behavior of the DMSNs prepared by the low-cost natural diatomite material and simple controllable process, which indicates their potential for environmental remediation applications. [Figure not available: see fulltext.

  13. Aqua­(dicyanamido-κN 1)(nitrato-κ2 O,O′)(2,3,5,6-tetra-2-pyridylpyrazine-κ3 N 2,N 1,N 6)manganese(II)

    PubMed Central

    Callejo, Lorena; De la Pinta, Noelia; Vitoria, Pablo; Cortés, Roberto

    2009-01-01

    In the title compound, [Mn(C2N3)(NO3)(C24H16N6)(H2O)], the central manganese(II) ion is hepta­coordinated to a tridentate 2,3,5,6-tetra-2-pyridylpyrazine ligand (tppz), a bidentate nitrate ligand, a terminal monodentate dicyanamide ligand (dca) and a water mol­ecule. The structure contains isolated neutral complexes, which are linked by O(water)—H⋯N hydrogen bonds generating chains along [010]. PMID:21581535

  14. Sorption J-T refrigeration utilizing manganese nitride chemisorption

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Lund, Alan

    1990-01-01

    The equilibrium pressures and compositions have been measured for a system of finely powdered manganese nitride and nitrogen gas at 650, 700, 800, and 850 C for various nitrogen loadings. Pressures ranged from less than 0.02 MPa at 650 C to 6.38 MPa at 850 C. Analysis of the test results has shown that under certain conditions Mn(x)N(y) could potentially be used in a triple regenerative sorption compressor refrigeration system, but the potential power savings are small compared to the increased complexity and reliability problems associated with very high temperature (above 950 C) pressurized systems.

  15. Manganese catalyzed reductive amination of aldehydes using hydrogen as a reductant.

    PubMed

    Wei, Duo; Bruneau-Voisine, Antoine; Valyaev, Dmitry A; Lugan, Noël; Sortais, Jean-Baptiste

    2018-04-24

    A one-pot two-step procedure was developed for the alkylation of amines via reductive amination of aldehydes using molecular dihydrogen as a reductant in the presence of a manganese pyridinyl-phosphine complex as a pre-catalyst. After the initial condensation step, the reduction of imines formed in situ is performed under mild conditions (50-100 °C) with 2 mol% of catalyst and 5 mol% of tBuOK under 50 bar of hydrogen. Excellent yields (>90%) were obtained for a large combination of aldehydes and amines (40 examples), including aliphatic aldehydes and amino-alcohols.

  16. Overcoming Matrix Effects in a Complex Sample: Analysis of Multiple Elements in Multivitamins by Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad

    2011-01-01

    A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…

  17. Electrocatalytic Water Oxidation Promoted by 3 D Nanoarchitectured Turbostratic δ-MnOx on Carbon Nanotubes.

    PubMed

    Zhang, Biaobiao; Li, Yuanyuan; Valvo, Mario; Fan, Lizhou; Daniel, Quentin; Zhang, Peili; Wang, Linqin; Sun, Licheng

    2017-11-23

    The development of manganese-based water oxidation electrocatalysts is desirable for the production of solar fuels, as manganese is earth-abundant, inexpensive, non-toxic, and has been employed by the Photosystem II in nature for a billion years. Herein, we directly constructed a 3 D nanoarchitectured turbostratic δ-MnO x on carbon nanotube-modified nickel foam (MnO x /CNT/NF) by electrodeposition and a subsequent annealing process. The MnO x /CNT/NF electrode gives a benchmark catalytic current density (10 mA cm -2 ) at an overpotential (η) of 270 mV under alkaline conditions. A steady current density of 19 mA cm -2 is obtained during electrolysis at 1.53 V for 1.0 h. To the best of our knowledge, this work represents the most efficient manganese-oxide-based water oxidation electrode and demonstrates that manganese oxides, as a structural and functional model of oxygen-evolving complex (OEC) in Photosystem II, can also become comparable to those of most Ni- and Co-based catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Reticulation of Aqueous Polyurethane Systems Controlled by DSC Method

    PubMed Central

    Cakic, Suzana; Lacnjevac, Caslav; Rajkovic, Milos B.; Raskovic, Ljiljana; Stamenkovic, Jakov

    2006-01-01

    The DSC method has been employed to monitor the kinetics of reticulation of aqueous polyurethane systems without catalysts, and with the commercial catalyst of zirconium (CAT®XC-6212) and the highly selective manganese catalyst, the complex Mn(III)-diacetylacetonemaleinate (MAM). Among the polyol components, the acrylic emulsions were used for reticulation in this research, and as suitable reticulation agents the water emulsible aliphatic polyisocyanates based on hexamethylendoisocyanate with the different contents of NCO-groups were employed. On the basis of DSC analysis, applying the methods of Kissinger, Freeman-Carroll and Crane-Ellerstein the pseudo kinetic parameters of the reticulation reaction of aqueous systems were determined. The temperature of the examination ranged from 50°C to 450°C with the heat rate of 0.5°C/min. The reduction of the activation energy and the increase of the standard deviation indicate the catalytic action of the selective catalysts of zirconium and manganese. The impact of the catalysts on the reduction of the activation energy is the strongest when using the catalysts of manganese and applying all the three afore-said methods. The least aberrations among the stated methods in defining the kinetic parameters were obtained by using the manganese catalyst.

  19. Prevention of nonalcoholic steatohepatitis in rats by two manganese-salen complexes.

    PubMed

    Rezazadeh, Alireza; Yazdanparast, Razieh

    2014-01-01

    Nonalcoholic steatohepatitis (NASH), a progressive stage of nonalcoholic fatty liver disease (NAFLD), is characterized by steatosis with inflammation. Investigations have suggested that oxidative stress may play an important role in the progress of NAFLD to NASH. To provide further insights into beneficial effects of antioxidants in NASH prevention, we employed two manganese-superoxide dismutase/catalase mimetics, manganese N,N`-bis(salicyldene) ethylene diamine chloride (EUK-8) and manganese-3-methoxy N,N`-bis(salicyldene)ethylenediamine chloride (EUK-134), as two salen representatives and vitamin C as the standard antioxidant. Experimental NASH was induced in Male N-Mary rats by feeding a methionine/choline-deficient (MCD) diet to rats for 10 weeks. The rats (n = 5, 30 mg/kg/day) were randomly assigned to receive vitamin C, EUK-8, EUK-134 or vehicle orally. Administration of salens together with the MCD diet reduced the serum aminotransferases, glutathione transferase and alkaline phosphatase, cholesterol, and LDL contents. In addition, the EUK-8 and EUK-134 improved NASH pathological features in liver of MCD-fed rats. EUK-8 and EUK-134 supplementation reduces NASH-induced abnormalities, pointing out that antioxidant strategy could be beneficial for prevention of NASH.

  20. Prevention of Nonalcoholic Steatohepatitis in Rats by Two Manganese-Salen Complexes

    PubMed Central

    Rezazadeh, Alireza; Yazdanparast, Razieh

    2014-01-01

    Background: Nonalcoholic steatohepatitis (NASH), a progressive stage of nonalcoholic fatty liver disease (NAFLD), is characterized by steatosis with inflammation. Investigations have suggested that oxidative stress may play an important role in the progress of NAFLD to NASH. To provide further insights into beneficial effects of antioxidants in NASH prevention, we employed two manganese-superoxide dismutase/catalase mimetics, manganese N,N`-bis(salicyldene) ethylene diamine chloride (EUK-8) and manganese-3-methoxy N,N`-bis(salicyldene)ethylenediamine chloride (EUK-134), as two salen representatives and vitamin C as the standard antioxidant. Methods: Experimental NASH was induced in Male N-Mary rats by feeding a methionine/choline-deficient (MCD) diet to rats for 10 weeks. The rats (n = 5, 30 mg/kg/day) were randomly assigned to receive vitamin C, EUK-8, EUK-134 or vehicle orally. Results: Administration of salens together with the MCD diet reduced the serum aminotransferases, glutathione transferase and alkaline phosphatase, cholesterol, and LDL contents. In addition, the EUK-8 and EUK-134 improved NASH pathological features in liver of MCD-fed rats. Conclusion: EUK-8 and EUK-134 supplementation reduces NASH-induced abnormalities, pointing out that antioxidant strategy could be beneficial for prevention of NASH. PMID:24375162

  1. Transcriptome Analysis of Manganese-deficient Chlamydomonas reinhardtii Provides Insight on the Chlorophyll Biosynthesis Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockhart, Ainsley; Zvenigorodsky, Natasha; Pedraza, Mary Ann

    2011-08-11

    The biosynthesis of chlorophyll and other tetrapyrroles is a vital but poorly understood process. Recent genomic advances with the unicellular green algae Chlamydomonas reinhardtii have created opportunity to more closely examine the mechanisms of the chlorophyll biosynthesis pathway via transcriptome analysis. Manganese is a nutrient of interest for complex reactions because of its multiple stable oxidation states and role in molecular oxygen coordination. C. reinhardtii was cultured in Manganese-deplete Tris-acetate-phosphate (TAP) media for 24 hours and used to create cDNA libraries for sequencing using Illumina TruSeq technology. Transcriptome analysis provided intriguing insight on possible regulatory mechanisms in the pathway. Evidencemore » supports similarities of GTR (Glutamyl-tRNA synthase) to its Chlorella vulgaris homolog in terms of Mn requirements. Data was also suggestive of Mn-related compensatory up-regulation for pathway proteins CHLH1 (Manganese Chelatase), GUN4 (Magnesium chelatase activating protein), and POR1 (Light-dependent protochlorophyllide reductase). Intriguingly, data suggests possible reciprocal expression of oxygen dependent CPX1 (coproporphyrinogen III oxidase) and oxygen independent CPX2. Further analysis using RT-PCR could provide compelling evidence for several novel regulatory mechanisms in the chlorophyll biosynthesis pathway.« less

  2. Copper-Based Electrochemical Sensor with Palladium Electrode for Cathodic Stripping Voltammetry of Manganese

    PubMed Central

    2015-01-01

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River. PMID:25476591

  3. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese.

    PubMed

    Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2014-12-16

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River.

  4. Nickel and manganese transfer from soil to plant in lateritic mining soils from New Caledonia

    NASA Astrophysics Data System (ADS)

    Pouschat, P.; Rose, J.; Alliot, I.; Dominici, C.; Keller, C.; Laffont-Schwob, I.; Olivi, L.; Ambrosi, J.-P.

    2009-04-01

    New Caledonian ferritic soils (more than 50 % of iron) are naturally rich in metals (chromium, nickel, cobalt, and manganese), deficient in major nutrients (nitrogen, phosphorous, and potassium), and unbalanced for the calcium/magnesium ratio. Under these particular ecological conditions, New Caledonia, recognized as a hot-spot of biodiversity, is a natural laboratory to study and understand the adaptation strategies of plants to metalliferous soils, and particularly the tolerance and (hyper)accumulation of metals by plants. Moreover, understanding such mechanisms is essential to develop rehabilitation or phytoremediation techniques for polluted soils, as well as phytomining techniques. Thus, in order to understand the soil - plant relationship and metal mobility along a toposequence in a future nickel mining massif, field experiments were conducted in an isolated ultramafic massif of New Caledonia. Several plant species of two endemic and frequent plant genera were chosen: Tristaniopsis guillainii and T. calobuxus (Myrtaceae), and Phyllanthus serpentinus and P. favieri (Euphorbiaceae), because of their nickel and/or manganese accumulating or hyperaccumulating nature. Leaves, twigs, and roots of all plants were collected along the soil sequence and their associated rhizospheric and bulk soils were sampled. Next, a series of characterization techniques were adapted and then coupled to cryogenics. The combined use of those multiple techniques (cryo-microtomy, cryo-SEM, µXRF, cryo-XAS, and soil characterization) allowed to study co-location and speciation of nickel and manganese in the different plant organs and soils (rhizospheric and bulk). Bioaccumulated nickel and manganese had different distribution patterns. In leaves, Ni accumulated in non photosynthetic tissues (e.g. epidermis) whereas Mn preferentially accumulated in mesophyll whatever the plant species. Nevertheless, in spite of a different speciation in soils, nickel and manganese were both found as similar divalent organometallic complexes in the different plant parts.

  5. Manganese oxide octahedral molecular sieves: Synthesis, self-assembly, control over morphologies and tunnel structure

    NASA Astrophysics Data System (ADS)

    Yuan, Jikang

    Direct architecture of complex nanostructures is desirable and still remains a challenge in areas of materials science. Due to their size-, shape-dependent electronic and optical properties, much effort has been made to control morphologies of transition metal oxide nanoparticles and to organize them into complicated 3D structures using templates. In particular, manganese oxides have attracted much attention because they have extensive applications in many chemical processes due to their porous structures, acidity, ionexchange, separation, catalysis, and energy storage in secondary batteries. Using organic templates such as trimethylamine (TMA), manganese oxides have been successfully organized into macroscopic rings and helices via sol-gel processes. However, the methods mentioned above all need further purification, so impurities will be avoided. Subsequent procedures are needed to obtain pure products. Thus facile and template-free methods are highly desired for synthesis of manganese oxide nanaoparticles with complex 3D structures. Manganese oxide octahedral molecular sieves (OMS) are a class of microporous transition metallic oxides with various kinds of tunnel structures that can be synthesized via controlling synthetic conditions such as temperature, concentration, pH, and cations. Manganese oxide molecular sieves are semiconducting mixed-valence catalysts that utilize electron transport to catalyze reactions such as selective oxidation of alcohols. OMS has distinct advantages over aluminosilicate molecular sieve materials for applications in catalysis due to the mixed valence character. The synthesis of manganese oxide OMS materials will be much more complicated than those of main group metallic oxides because of different coordination numbers and oxidation states. OMS-type materials with desirable morphologies formed under mild synthetic conditions are highly desirable. Herein, we report a template-free, low temperature preparation of porous cryptomelane-type manganese oxide (OMS-2) 3D nanostructures. The objectives of this research include exploration of new methods to oxidize Mn2+ in aqueous solution either under low-temperature reflux or hydrothermal conditions. Various oxidants were used with precisely controlled synthetic parameters such as temperature, concentrations of starting materials, pH, and kinds of templates. A variety of techniques including powder X-ray diffraction and transmission electron microscopy (TEM) scanning electron microscopy are used to investigate the structures of synthesized materials. Atomic force microscopy (AFM) and scanning electron microscopy are utilized to studying the morphology and topography. The surface areas of the materials is measured by the BET method. Inductively coupled argon plasma atomic emission spectrometer (ICP-AES) are utilized to investigate the chemical composition of the materials. Thermal-stability of the materials is investigated by thermal gravimetric analysis (TGA). The objectives of this research includes exploring new synthetic approach such as oxidation of Mn2+ in aqueous solution by selecting suitable oxidants so as to control redox potential, varying pH of reaction systems, and controlling tunnel structures using hard templates (cations) under hydrothermal conditions.

  6. Aquatic Humic Substances: Relationship Between Origin and Complexing Capacity.

    PubMed

    González-Guadarrama, María de Jesús; Armienta-Hernández, Ma Aurora; Rosa, André H

    2018-05-01

    Aiming to determine the relationship between source and complexing capacity, humic substances obtained from three sites (Sorocaba and Itapanhau Brasilian rivers, and Xochimilco Lake in Mexico) were studied. Copper, manganese, zinc and arsenic complexing capacity were determined for the three substances under various pH conditions. Results showed similar complexing capacity for the three elements depending on the chemistry of each one and on the physico-chemical conditions. Speciation diagrams showed that these conditions affect both, the humic substances, and the transition metals and arsenic.

  7. The influence of curcumin and manganese complex of curcumin on cadmium-induced oxidative damage and trace elements status in tissues of mice.

    PubMed

    Eybl, Vladislav; Kotyzová, Dana; Lesetický, Ladislav; Bludovská, Monika; Koutenský, Jaroslav

    2006-01-01

    Curcumin (diferuoyl methane) from turmeric is a well-known biologically active compound. It has been shown to ameliorate oxidative stress and it is considered to be a potent cancer chemopreventive agent. In our previous study the antioxidative effects of curcumin in cadmium exposed animals were demonstrated. Also manganese exerts protective effects in experimental cadmium intoxication. The present study examined the ability of the manganese complex of curcumin (Mn-curcumin) and curcumin to protect against oxidative damage and changes in trace element status in cadmium-intoxicated male mice. Curcumin or Mn-curcumin were administered at equimolar doses (0.14 mmol/kg b.w.) for 3 days, by gastric gavages, dispersed in methylcellulose. One hour after the last dose of antioxidants, cadmium chloride (33 micromol/kg) was administered subcutaneously. Both curcumin and Mn-curcumin prevented the increase of hepatic lipid peroxidation -- expressed as MDA level, induced by cadmium intoxication and attenuated the Cd-induced decrease of hepatic GSH level. No change in hepatic glutathione peroxidase or catalase activities was found in Cd-exposed mice. A decreased GSH-Px activity was measured in curcumin and Mn-curcumin alone treated mice. Neither curcumin nor Mn-curcumin treatment influenced cadmium distribution in the tissues and did not correct the changes in the balance of essential elements caused by Cd-treatment. The treatment with Mn-curcumin increased the Fe and Mn content in the kidneys of both control and Cd-treated mice and Fe and Cu content in the brain of control mice. In conclusion, regarding the antioxidative action, introducing manganese into the curcumin molecule does not potentiate the studied effects of curcumin. Copyright 2006 John Wiley & Sons, Ltd.

  8. Manganese-Catalyzed Aminomethylation of Aromatic Compounds with Methanol as a Sustainable C1 Building Block.

    PubMed

    Mastalir, Matthias; Pittenauer, Ernst; Allmaier, Günter; Kirchner, Karl

    2017-07-05

    This study represents the first example of a manganese-catalyzed environmentally benign, practical three-component aminomethylation of activated aromatic compounds including naphtols, phenols, pyridines, indoles, carbazoles, and thiophenes in combination with amines and MeOH as a C1 source. These reactions proceed with high atom efficiency via a sequence of dehydrogenation and condensation steps which give rise to selective C-C and C-N bond formations, thereby releasing hydrogen and water. A well-defined hydride Mn(I) PNP pincer complex, recently developed in our laboratory, catalyzes this process in a very efficient way, and a total of 28 different aminomethylated products were synthesized and isolated yields of up to 91%. In a preliminary study, a related Fe(II) PNP pincer complex was shown to catalyze the methylation of 2-naphtol rather than its aminomethylation displaying again the divergent behavior of isoelectronic Mn(I) and Fe(II) PNP pincer systems.

  9. Photosynthesis. Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation.

    PubMed

    Cox, Nicholas; Retegan, Marius; Neese, Frank; Pantazis, Dimitrios A; Boussac, Alain; Lubitz, Wolfgang

    2014-08-15

    The photosynthetic protein complex photosystem II oxidizes water to molecular oxygen at an embedded tetramanganese-calcium cluster. Resolving the geometric and electronic structure of this cluster in its highest metastable catalytic state (designated S3) is a prerequisite for understanding the mechanism of O-O bond formation. Here, multifrequency, multidimensional magnetic resonance spectroscopy reveals that all four manganese ions of the catalyst are structurally and electronically similar immediately before the final oxygen evolution step; they all exhibit a 4+ formal oxidation state and octahedral local geometry. Only one structural model derived from quantum chemical modeling is consistent with all magnetic resonance data; its formation requires the binding of an additional water molecule. O-O bond formation would then proceed by the coupling of two proximal manganese-bound oxygens in the transition state of the cofactor. Copyright © 2014, American Association for the Advancement of Science.

  10. Simulation of the mobility of metal - EDTA complexes in groundwater: The influence of contaminant metals

    USGS Publications Warehouse

    Friedly, J.C.; Kent, D.B.; Davis, J.A.

    2002-01-01

    Reactive transport simulations were conducted to model chemical reactions between metal - EDTA (ethylenediaminetetraacetic acid) complexes during transport in a mildly acidic quartz - sand aquifer. Simulations were compared with the results of small-scale tracer tests wherein nickel-, zinc-, and calcium - EDTA complexes and free EDTA were injected into three distinct chemical zones of a plume of sewage-contaminated groundwater. One zone had a large mass of adsorbed, sewage-derived zinc; one zone had a large mass of adsorbed manganese resulting from mildly reducing conditions created bythe sewage plume; and one zone had significantly less adsorbed manganese and negligible zinc background. The chemical model assumed that the dissolution of iron(III) from metal - hydroxypolymer coatings on the aquifer sediments by the metal - EDTA complexes was kinetically restricted. All other reactions, including metal - EDTA complexation, zinc and manganese adsorption, and aluminum hydroxide dissolution were assumed to reach equilibrium on the time scale of transport; equilibrium constants were either taken from the literature or determined independently in the laboratory. A single iron(III) dissolution rate constant was used to fit the breakthrough curves observed in the zone with negligible zinc background. Simulation results agreed well with the experimental data in all three zones, which included temporal moments derived from breakthrough curves at different distances downgradient from the injections and spatial moments calculated from synoptic samplings conducted at different times. Results show that the tracer cloud was near equilibrium with respect to Fe in the sediment after 11 m of transport in the Zn-contaminated region but remained far from equilibrium in the other two zones. Sensitivity studies showed that the relative rate of iron(III) dissolution by the different metal - EDTA complexes was less important than the fact that these reactions are rate controlled. Results suggest that the published solubility for ferrihydrite reasonably approximates the Fe solubility of the hydroxypolymer coatings on the sediments. Aluminum may be somewhat more soluble than represented by the equilibrium constant for gibbsite, and its dissolution may be rate controlled when reacting with Ca - EDTA complexes.

  11. Catalytic Oxygen Evolution by a Bioinorganic Model of the Photosystem II Oxygen-Evolving Complex

    ERIC Educational Resources Information Center

    Howard, Derrick L.; Tinoco, Arthur D.; Brudvig, Gary W.; Vrettos, John S.; Allen, Bertha Connie

    2005-01-01

    Bioinorganic models of the manganese Mn4 cluster are important not only as aids in understanding the structure and function of the oxygen-evolving complex (OEC), but also in developing artificial water-oxidation catalysts. The mechanism of water oxidation by photosystem II (PSII) is thought to involve the formation of a high-valent terminal Mn-oxo…

  12. Magnetic behaviour of composites containing polyaniline-coated manganese-zinc ferrite

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. E.; Vilčáková, J.; Křesálek, V.; Sáha, P.; Sapurina, I.; Stejskal, J.

    2004-02-01

    Polycrystalline manganese-zinc ferrite has been coated with polyaniline (PANI) and embedded into a polyurethane matrix. The complex permeability of the composites was studied in the frequency range 1 MHz-3 GHz. The conductivity of PANI coating was adjusted by controlled protonation with picric acid. Large shifts in the resonance frequency were observed as a function of varying PANI conductivity. The changes in the magnetic properties of the PANI-coated composite material are due to the change of the boundary conditions of the microwave field at the interface between the ferrite particle and polymer matrix. This effect is observed especially when the magnetic anisotropy of ferrite is low.

  13. Matrix isolation infrared spectra, assignment and DFT investigation on reactions of iron and manganese monoxides with CH3Cl.

    PubMed

    Zhao, Yanying; Fan, Kexue; Huang, Yongfei; Zheng, Xuming

    2013-12-01

    The reactions of iron and manganese monoxide molecules (FeO, and MnO) with monochloromethane in solid argon have been studied by matrix isolation infrared spectroscopy and quantum chemistry calculations. When annealing, the reactions of FeO and MnO with CH3Cl first form the OM-(η(Cl)-CH3Cl) (MMn, Fe) complexes, which can isomerize to CH3MOCl (MMn, Fe) upon 300<λ<580 nm irradiation. The products were characterized by isotopic IR studies with CD3Cl and (13)CH3Cl and density functional calculations. Based on theoretical calculations, the OFe-(η(Cl)-CH3Cl) and OMn-(η(Cl)-CH3Cl) complexes have (5)A' and (6)A' ground state with Cs symmetry, respectively. The accurate CCSD(T) single point calculations illustrate the CH3MOCl isomerism are 13.8 and 3.1 kcal/mol lower in energy than the OM-(η(Cl)-CH3Cl) (MMn, Fe) complexes. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.

    PubMed

    Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk

    2014-07-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.

  15. Synthesis, structural analysis, and magnetic properties of ethylmalonate-manganese(II) complexes.

    PubMed

    Déniz, Mariadel; Pasán, Jorge; Ferrando-Soria, Jesús; Fabelo, Oscar; Cañadillas-Delgado, Laura; Yuste, Consuelo; Julve, Miguel; Cano, Joan; Ruiz-Pérez, Catalina

    2011-11-07

    Five manganese(II) complexes of formulas [Mn(2)(Etmal)(2)(H(2)O)(2)(L)](n) (1-4) and {[Mn(Etmal)(2)(H(2)O)][Mn(H(2)O)(4)]}(n) (5) with H(2)Etmal = ethylmalonic acid (1-5) and L = 1,2-bis(4-pyridyl)ethane (bpa) (1), 4,4'-azobispyridine (azpy) (2), 4,4'-bipyridyl (4,4'-bpy) (3), and 1,2-bis(4-pyridyl)ethylene (bpe) (4) were synthesized and structurally characterized by single crystal X-ray diffraction. Their thermal behavior and variable-temperature magnetic properties were also investigated. The structure of the compounds 1-4 consists of corrugated layers of aquamanganese(II) units with intralayer carboxylate-ethylmalonate bridges in the anti-syn (equatorial-equatorial) coordination mode which are linked through bis-monodentate bpa (1), azpy (2), 4,4'-bpy (3), and bpe (4) ligands to build up a three-dimensional (3D) framework. The structure of compound 5 is made up by zigzag chains of manganese(II) ions with a regular alternation of [Mn(H(2)O)(4)](2+) and chiral (either Δ or λ enantiomeric forms) [Mn(Etmal)(2)(H(2)O)](2-) units within each chain. In contrast to the bidentate/bis-monodentate coordination mode of the Etmal ligand in 1-4, it adopts the bidentate/monodentate coordination mode in 5 with the bridging carboxylate-ethylmalonate also exhibiting the anti-syn conformation but connecting one equatorial and an axial position from adjacent metal centers. The manganese-manganese separation through the carboxylate-ethylmalonate bridge in 1-5 vary in the range 5.3167(4)-5.5336(7) Å. These values are much shorter than those across the extended bis-monodentate N-donors in 1-4 with longest/shortest values of 11.682(3) (3)/13.9745(9) Å (4). Compounds 1-5 exhibit an overall antiferromagnetic behavior, where the exchange pathway is provided by the carboxylate-ethylmalonate bridge. Monte Carlo simulations based on the classical spin approach (1-5) were used to successfully reproduce the magnetic data of 1-5. © 2011 American Chemical Society

  16. Manganese and ferromanganese ores from different tectonic settings in the NW Himalayas, Pakistan

    NASA Astrophysics Data System (ADS)

    Tahir Shah, Mohammad; Moon, Charles J.

    2007-02-01

    In Pakistan manganese and ferromanganese ores have been reported from the Hazara area of North West Frontier Province, Waziristan agencies in the Federally Administered Tribal Areas and the Lasbela-Khuzdar regions of Baluchistan. This study is focused on comparison of mineralogy and geochemistry of the continental ferromanganese ores of Hazara and the ophiolitic manganese ores of the Waziristan area of Pakistan. In the Hazara area, ferromanganese ores occur at Kakul, Galdanian and Chura Gali, near Abbottabad, within the Hazira Formation of the Kalachitta-Margala thrust belt of the NW Himalayas of the Indo-Pakistan Plate. The Cambrian Hazira Formation is composed of reddish-brown ferruginous siltstone, with variable amounts of clay, shale, ferromanganese ores, phosphorite and barite. In Waziristan, manganese ores occur at Shuidar, Mohammad Khel and Saidgi, within the Waziristan ophiolite complex, on the western margin of the Indo-Pakistan Plate in NW Pakistan. These banded and massive ores are hosted by metachert and overlie metavolcanics. The ferromanganese ores of the Hazara area contain variable amount of bixbyite, partridgeite, hollandite, pyrolusite and braunite. Bixbyite and partridgeite are the dominant Mn-bearing phases. Hematite dominates in Fe-rich ores. Gangue minerals are iron-rich clay, alumino-phosphate minerals, apatite, barite and glauconite are present in variable amounts, in both Fe-rich and Mn-rich varieties. The texture of the ore phases indicates greenschist facies metamorphism. The Waziristan ores are composed of braunite, with minor pyrolusite and hollandite. Hematite occurs as an additional minor phase in the Fe-rich ores of the Shuidar area. The only silicate phase in these ores is cryptocrystalline quartz. The chemical composition of the ferromanganese ores in Hazara suggests that the Mn-Fe was contributed by both hydrogenous and hydrothermal sources, while the manganese ores of Waziristan originated only from a hydrothermal source. It is suggested that the Fe-Mn ores of the Hazara area originated from a mixed hydrothermal-hydrogenetic source in shallow water in a ontinental shelf environment due to the transgression and regression of the sea, while the Mn ores of Waziristan were formed at sea-floor spreading centers within the Neo-Tethys Ocean, and were later obducted as part of the Waziristan ophiolite complex.

  17. Two binuclear cyanide-bridged Cr(III)-Mn(III) complexes based-on [Cr(2,2'-bipy)(CN)4]- building block: synthesis, crystal structures and magnetic properties.

    PubMed

    Zhanga, Daopeng; Kong, Lingqian; Zhang, Hongyan

    2015-01-01

    Tetracyanide building block [Cr(2,2'-bipy)(CN)(4)]- and two bicompartimental Schiff-base based manganese(III) compounds have been employed to assemble cyanide-bridged heterometallic complexes, resulting in two cyanide-bridged CrIII-MnIII complexes: [Mn(L(1))(H(2)O)][Cr(2,2'-bipy)(CN)(4)]·CH(3)OH·2.5H(2)O (1) and [Mn(L(2))(H(2)O)][Cr(2,2'-bipy)(CN)(4)]·CH(3)OH·(3)H(2)O (2) (L1 = N,N'-(1,3-propylene)-bis(3-methoxysalicylideneiminate), L2 = N,N'-ethylene-bis(3-ethoxysalicylideneiminate)). Single X-ray diffraction analysis shows their similar cyanide-bridged binuclear structures, in which the cyanide precursor acting as monodentate ligand connects the manganese(III) ion. The binuclear complexes are self-complementary through coordinated aqua ligand and the free O4 compartment from the neighboring complex, giving H-bond linking dimer structure. Investigation over magnetic properties reveals the antiferromagnetic magnetic coupling between the cyanide-bridged Cr(III) and Mn(III) ions. A best-fit to the magnetic susceptibilities of these two complexes leads to the magnetic coupling constants J = -5.95 cm(-1), j = -0.61 cm(-1) (1) and J = -4.15 cm(-1), j = -0.57 cm(-1) (2), respectively.

  18. Discovery of Unusual Minerals in Paleolithic Black Pigments from Lascaux (France) and Ekain (Spain)

    NASA Astrophysics Data System (ADS)

    Chalmin, E.; Farges, F.; Vignaud, C.; Susini, J.; Menu, M.; Brown, G. E.

    2007-02-01

    Analyses of archaeological materials aim to rediscover the know-how of Prehistoric people by determining the nature of the painting matter, its preparation mode, and the geographic origin of its raw materials. This study deals with identification of manganese oxides in black pigments by micro-XANES (X-ray absorption near-edge structure) based on previous TEM (transmission electron microscopy) studies. Complex mixtures of the manganese oxides studied are present in some of mankind's oldest known paintings, namely those from the caves of Lascaux (Dordogne, France) and Ekain (Basque country, Spain). Scarce manganese oxide minerals, including groutite, hausmannite, and manganite, were found for the first time in Paleolithic art at these archaeological sites. Because there are no known deposits of such minerals in these areas, more distant origins and trade routes are inferred. The closest known Mn-rich geological province for Lascaux is the central Pyrénées, which is ≈ 250 km from the Dordogne area.

  19. Discovery of Unusual Minerals in Paleolithic Black Pigments from Lascaux (France) and Ekain (Spain)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chalmin, E.; /Marne la Vallee U.; Farges, F.

    2006-12-13

    Analyses of archaeological materials aim to rediscover the know-how of Prehistoric people by determining the nature of the painting matter, its preparation mode, and the geographic origin of its raw materials. This study deals with identification of manganese oxides in black pigments by micro-XANES (X-ray absorption near-edge structure) based on previous TEM (transmission electron microscopy) studies. Complex mixtures of the manganese oxides studied are present in some of mankind's oldest known paintings, namely those from the caves of Lascaux (Dordogne, France) and Ekain (Basque country, Spain). Scarce manganese oxide minerals, including groutite, hausmannite, and manganite, were found for the firstmore » time in Paleolithic art at these archaeological sites. Because there are no known deposits of such minerals in these areas, more distant origins and trade routes are inferred. The closest known Mn-rich geological province for Lascaux is the central Pyrenees, which is {approx} 250 km from the Dordogne area.« less

  20. Manganese

    MedlinePlus

    ... de Manganèse, Dioxyde de Manganèse, Gluconate de Manganèse, Glycérophosphate de Manganèse, Manganèse, Manganese Amino Acid Chelate, Manganese ... Chloridetetrahydrate, Manganese Citrate, Manganese Dioxide, Manganese ... Sulfate, Manganese Sulfate Monohydrate, Manganese Sulfate Tetrahydrate, ...

  1. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-01-18

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.

  2. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

  3. Dinuclear complexes containing linear M-F-M [M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)] bridges: trends in structures, antiferromagnetic superexchange interactions, and spectroscopic properties.

    PubMed

    Reger, Daniel L; Pascui, Andrea E; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew

    2012-11-05

    The reaction of M(BF(4))(2)·xH(2)O, where M is Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), with the new ditopic ligand m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene (L(m)*) leads to the formation of monofluoride-bridged dinuclear metallacycles of the formula [M(2)(μ-F)(μ-L(m)*)(2)](BF(4))(3). The analogous manganese(II) species, [Mn(2)(μ-F)(μ-L(m)*)(2)](ClO(4))(3), was isolated starting with Mn(ClO(4))(2)·6H(2)O using NaBF(4) as the source of the bridging fluoride. In all of these complexes, the geometry around the metal centers is trigonal bipyramidal, and the fluoride bridges are linear. The (1)H, (13)C, and (19)F NMR spectra of the zinc(II) and cadmium(II) compounds and the (113)Cd NMR of the cadmium(II) compound indicate that the metallacycles retain their structure in acetonitrile and acetone solution. The compounds with M = Mn(II), Fe(II), Co(II), Ni(II), and Cu(II) are antiferromagnetically coupled, although the magnitude of the coupling increases dramatically with the metal as one moves to the right across the periodic table: Mn(II) (-6.7 cm(-1)) < Fe(II) (-16.3 cm(-1)) < Co(II) (-24.1 cm(-1)) < Ni(II) (-39.0 cm(-1)) ≪ Cu(II) (-322 cm(-1)). High-field EPR spectra of the copper(II) complexes were interpreted using the coupled-spin Hamiltonian with g(x) = 2.150, g(y) = 2.329, g(z) = 2.010, D = 0.173 cm(-1), and E = 0.089 cm(-1). Interpretation of the EPR spectra of the iron(II) and manganese(II) complexes required the spin Hamiltonian using the noncoupled spin operators of two metal ions. The values g(x) = 2.26, g(y) = 2.29, g(z) = 1.99, J = -16.0 cm(-1), D(1) = -9.89 cm(-1), and D(12) = -0.065 cm(-1) were obtained for the iron(II) complex and g(x) = g(y) = g(z) = 2.00, D(1) = -0.3254 cm(-1), E(1) = -0.0153, J = -6.7 cm(-1), and D(12) = 0.0302 cm(-1) were found for the manganese(II) complex. Density functional theory (DFT) calculations of the exchange integrals and the zero-field splitting on manganese(II) and iron(II) ions were performed using the hybrid B3LYP functional in association with the TZVPP basis set, resulting in reasonable agreement with experiment.

  4. Why did Nature choose manganese to make oxygen?

    PubMed Central

    Armstrong, Fraser A

    2007-01-01

    This paper discusses the suitability of manganese for its function in catalysing the formation of molecular oxygen from water. Manganese is an abundant element. In terms of its inherent properties, Mn has a particularly rich redox chemistry compared with other d-block elements, with several oxidizing states accessible. The most stable-state Mn2+ behaves like a Group 2 element—it is mobile, weakly complexing, easily taken up by cells and redox-inactive in simple aqueous media. Only in the presence of suitable ligands does Mn2+ become oxidized, so it provides an uncomplicated building unit for the oxygen-evolving centre (OEC). The intermediate oxidation states Mn(III) and Mn(IV) are strongly complexed by O2− and form robust mixed-valence poly-oxo clusters in which the Mn(IV)/Mn(III) ratio can be elevated, one electron at a time, accumulating oxidizing potential and capacity. The OEC is a Mn4CaOx cluster that undergoes sequential oxidations by P680+ at potentials above 1 V, ultimately to a super-oxidized level that includes one Mn(V) or a Mn(IV)-oxyl radical. The latter is powerfully oxidizing and provides the crucial ‘power stroke’ necessary to generate an O–O bond. This leaves a centre still rich in Mn(IV), ensuring a rapid follow-through to O2. PMID:17971329

  5. State of the environment in the arrangement area of the enterprises for repairing and utilization of nuclear-powered submarines.

    PubMed

    Dovgusha, V V; Bychenkov, V S; Blekher AYa; Belyaev, A V; Krupkin, A B; Kovygin GPh; Puzikov, A G; Ryabchikov, S G; Stepanov, S V; Toropov, S A

    2001-01-01

    The influence of nuclear-powered utilization (disjunction) upon the state of health of the soil, vegetation and atmospheric air was studied. It was stated that the concentration of hazardous metals in the air of an industrial site did not exceed the permissible levels. In the residential area the cases of increased concentrations of manganese and chromium were noted. The major pollutants of vegetation are manganese, titanium, copper and nickel. The authors propose a complex of anthropogenic factors to be the cause of the environmental contamination by hard metals. The volume activity of radioactive aerosols in the studied site is confined to the local hum.

  6. Comparison of the Manganese Cluster in Oxygen-Evolving Photosystem II with Distorted Cubane Manganese Compounds through X-ray Absorption Spectroscopy

    PubMed Central

    Cinco, Roehl M.; Rompel, Annette; Visser, Hendrik; Aromí, Guillem; Christou, George; Sauer, Kenneth; Klein, Melvin P.; Yachandra, Vittal K.

    2014-01-01

    X-ray absorption spectroscopy has been employed to assess the degree of similarity between the oxygen-evolving complex (OEC) in photosystem II (PS II) and a family of synthetic manganese complexes containing the distorted cubane [Mn4O3X] core (X = benzoate, acetate, methoxide, hydroxide, azide, fluoride, chloride, or bromide). These [Mn4(μ3-O)3(μ3-X)] cubanes possess C3v symmetry except for the X = benzoate species, which is slightly more distorted with only Cs symmetry. In addition, Mn4O3Cl complexes containing three or six terminal Cl ligands at three of the Mn were included in this study. The Mn K-edge X-ray absorption near edge structure (XANES) from the oxygen-ligated complexes begin to resemble general features of the PS II (S1 state) spectrum, although the second derivatives are distinct from those in PS II. The extended X-ray absorption fine structure (EXAFS) of these Mn compounds also displays superficial resemblance to that of PS II, but major differences emerge on closer examination of the phases and amplitudes. The most obvious distinction is the smaller magnitude of the Fourier transform (FT) of the PS II EXAFS compared to the FTs from the distorted cubanes. Curve fitting of the Mn EXAFS spectra verifies the known core structures of the Mn cubanes, and shows that the number of the crucial 2.7 and 3.3 Å Mn–Mn distances differs from that observed in the OEC. The EXAFS method detects small changes in the core structures as X is varied in this series, and serves to exclude the distorted cubane of C3v symmetry as a topological model for the Mn catalytic cluster of the OEC. Instead, the method shows that even more distortion of the cubane framework, altering the ratio of the Mn–Mn distances, is required to resemble the Mn cluster in PS II. PMID:11671305

  7. Ligand-Centered Electron-Transfer Redox Processes for Manganese, Iron, and Cobalt Complexes in Relation to Selected Catalytic Systems

    DTIC Science & Technology

    1989-05-01

    of Fe(acac)3 exhibits oxidation features common to acac- and its complexes. Table VIH (b) summarizes the EI/ 2 values for the oxidations of a number of...Data supplied by Dr. Pablo Cofr6 of the Universidad Cat6lica de Chile . 141. Chin, D.-H.; Chiericato, G., Jr.; Nanni, E. J., Jr.; Sawyer, D. T. 1. Am

  8. The structure of the Caenorhabditis elegans manganese superoxide dismutase MnSOD-3-azide complex

    DOE PAGES

    Hunter, Gary J.; Trinh, Chi H.; Bonetta, Rosalin; ...

    2015-08-27

    C. elegans MnSOD-3 has been implicated in the longevity pathway and its mechanism of catalysis is relevant to the aging process and carcinogenesis. The structures of MnSOD-3 provide unique crystallographic evidence of a dynamic region of the tetrameric interface (residues 41–54). We have determined the structure of the MnSOD-3-azide complex to 1.77-Å resolution. The analysis of this complex shows that the substrate analog, azide, binds end-on to the manganese center as a sixth ligand and that it ligates directly to a third and new solvent molecule also positioned within interacting distance to the His30 and Tyr34 residues of the substratemore » access funnel. This is the first structure of a eukaryotic MnSOD-azide complex that demonstrates the extended, uninterrupted hydrogen-bonded network that forms a proton relay incorporating three outer sphere solvent molecules, the substrate analog, the gateway residues, Gln142, and the solvent ligand. This configuration supports the formation and release of the hydrogen peroxide product in agreement with the 5-6-5 catalytic mechanism for MnSOD. The high product dissociation constant k₄ of MnSOD-3 reflects low product inhibition making this enzyme efficient even at high levels of superoxide.« less

  9. Synthesis, spectroscopy and biological investigations of manganese(III) Schiff base complexes derived from heterocyclic β-diketone with various primary amine and 2,2'-bipyridyl

    NASA Astrophysics Data System (ADS)

    Surati, Kiran R.

    2011-06-01

    The mixed ligand mononuclear complex [Mn(bipy)(HPMFP)(OAc)]ClO 4 was synthesized by reaction of Mn(OAc) 3·2H 2O with HPMFP and 2,2'-bipyridyl. The corresponding Schiff base complexes were prepared by condensation of [Mn(bipy)(HPMFP)(OAc)]ClO 4 with ethylenediamine, ethanolamine and glycine (where HPMFP = 1-phenyl-3methyl-4-formyl-2-pyrazolin-5one, bipy = 2,2'-bipyridyl). All the compounds have been characterized by elemental analysis, magnetic susceptibility, conductometry measurements and 1H and 13C NMR, FT-IR, mass spectrometry. Electronic spectral and magnetic susceptibility measurements indicate square pyramidal geometry around manganese(III) ion. The thermal stabilities, activation energy E*, entropy change Δ S*, enthalpy change Δ H* and heat capacity of thermal degradation for these complexes were determined by TGA and DSC. The in vitro antibacterial and antifungal activity of four coordination compounds and ligand HPMFP were investigated. In vitro activates of Bacillus subtillis (MTCC-619), Staphylococcus aureus (MTCC-96), Escherichia coli (MTCC-722) and Klebsiella pneumonia (MTCC-109) bacteria and the fungus Candida albicans (ATCC-90028) were determined. All the compounds showed good antimicrobial activity. The antimicrobial activities increased as formation of Schiff base.

  10. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1995-01-17

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or [beta]-pyrrolic positions.

  11. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1993-05-18

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso- and/or [beta]-pyrrolic positions.

  12. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1993-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  13. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1995-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  14. Manganese Health Research Program (MHRP)

    DTIC Science & Technology

    2008-01-01

    NO3)2 Manganese sulphate or Manganese (II) sulphate – MnSO4 Manganese sulphide or Manganese (II) sulphide – MnS Manganese oxide – MnO Barium... sulphide or Manganese (II) sulphide – MnS 1344-43-0 Manganese oxide – MnO 7787-35-1 Barium manganate - BaMnO4 10294-64-1 Potassium manganate – K2MnO4...Characterization of welding fumes and their potential neurotoxic effects. International Workshop: Neurotoxic Metals- Lead, Mercury , and Manganese

  15. Pseudotetrahedral manganese complexes supported by the anionic tris(phosphino)borate ligand [PhBPiPr3

    PubMed Central

    Lu, Connie C.; Peters, Jonas C.

    2008-01-01

    This paper presents aspects of the coordination chemistry of mono- and divalent manganese complexes supported by the anionic tris(phosphino)borate ligand, [PhBPiPr3] (where [PhBPiPr3] = [PhB(CH2PiPr2)3]−). The Mn(II) halide complexes, [PhBPiPr3]MnCl (1 and [PhBPiPr3]MnI (2), have been characterized by X-ray diffraction, SQUID magnetometry, and EPR spectroscopy. Compound 2 serves as a precursor to a series of Mn azide, alkyl, and amide species: [PhBPiPr3]Mn(N3) (3), [PhBPiPr3]Mn(CH2Ph) (4), [PhBPiPr3]Mn(Me) (5), [PhBPiPr3]Mn(NH(2,6-iPr2-C6H3)) (6), [PhBPiPr3]Mn(dbabh) (7), and [PhBPiPr3]Mn(1-Ph(isoindolate)) (8). The complexes 2 – 8 feature a divalent-metal center and are pseudotetrahedral. They collectively represent an uncommon structural motif for low-coordinate, polyphosphine-supported Mn complexes. Two Mn(I) species have also been prepared. These include the Tl-Mn adduct, [PhBPiPr3]Tl-MnBr(CO)4 (9), and the octahedral complex [PhBPiPr3]Mn(CNtBu)3 (10). Some of our initial synthetic efforts to generate [PhBPiPr3]Mn≡Nx species are briefly described, as are DFT studies that probe the electronic viability of these types of multiply bonded target structures. PMID:17029370

  16. Preparation and properties of a calcium(II)-based molecular chain decorated with manganese(II) butterfly-like complexes.

    PubMed

    Benniston, A C; Melnic, S; Turta, C; Arauzo, A B; Bartolomé, J; Bartolomé, E; Harrington, R W; Probert, M R

    2014-09-21

    The room temperature reaction of [Mn2O2(bipy)4](ClO4)3 (bipy = 2,2'-bipyridine) with Ca(CHCl2COO)2 in methanol produced a yellow crystalline material. The X-ray determined structure comprises of a multiple calcium(II) carboxylate bridged chain-like structure which is decorated with [Mn(bipy)2(OH2)](2+) subunits. The redox behaviour for the complex in H2O and MeCN is reported. In the latter solvent the oxidation of the manganese ions appears to be facilitated by the presence of the calcium ions. Magnetic susceptibility and low temperature magnetization measurements show that the Mn moment is isotropic, with g = 1.99(1) and S = 5/2, confirming it is in the 2+ oxidation state. A very weak antiferromagnetic interaction is also detected. Frequency-dependent ac measurements evidence slow magnetic relaxation of the Mn(bipy)2 units. Two relaxation mechanisms are identified: a very slow direct process and a faster one caused by the Resonant Phonon Trapping mechanism. This is the first example of field-induced single ion magnet (SIM) behavior in a mononuclear Mn(II) complex.

  17. Mn(II) based T1 and T2 potential MRI contrast agent appended with tryptamine: Recognition moiety for Aβ-plaques.

    PubMed

    Rastogi, Neeraj; Tyagi, Nidhi; Singh, Ovender; Hemanth Kumar, B S; Singh, Udai P; Ghosh, Kaushik; Roy, Raja

    2017-12-01

    We report the synthesis and characterization of manganese(II) complexes having pentadentate ligands L 1 (2,6-bis(1-(2-phenyl-2-(pyridin-2-yl)hydrazono)ethyl)pyridine), L 2 (methyl 2,6-bis((E)-1-(2-phenyl-2-(pyridin-2yl)hydrazono)ethyl)isonicotinate), L 3 (N-(2-(1H-indol-3-yl)ethyl)-2,6-bis((E)-1-(2-phenyl-2-(pyridin2yl)hydrazono)ethyl)isonicotiamide) and their application as dual contrast agents for simultaneous T 1 and T 2 weighted magnetic resonance imaging. Single crystal analysis of all the complexes [Mn II L 1 , Mn II L 2 and Mn II L 3 ] confirm the formation of novel seven-coordinate manganese complexes with an inner sphere water and perchlorate ion. The Magnetic Resonance Imaging (MRI) contrast agent [MnL 2 ] was further modified by incorporating tryptamine as a binding moiety specific to Amyloid Beta-fibrils (Aβ-fibrils) in Alzhiemer's disease (AD) and it's in vitro evaluation for specific binding with Aβ-fibrils indicated as a bio-marker of AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx.

    PubMed

    Romano, Christine A; Zhou, Mowei; Song, Yang; Wysocki, Vicki H; Dohnalkova, Alice C; Kovarik, Libor; Paša-Tolić, Ljiljana; Tebo, Bradley M

    2017-09-29

    Bacteria that produce Mn oxides are extraordinarily skilled engineers of nanomaterials that contribute significantly to global biogeochemical cycles. Their enzyme-based reaction mechanisms may be genetically tailored for environmental remediation applications or bioenergy production. However, significant challenges exist for structural characterization of the enzymes responsible for biomineralization. The active Mn oxidase in Bacillus sp. PL-12, Mnx, is a complex composed of a multicopper oxidase (MCO), MnxG, and two accessory proteins, MnxE and MnxF. MnxG shares sequence similarity with other, structurally characterized MCOs. MnxE and MnxF have no similarity to any characterized proteins. The ~200 kDa complex has been recalcitrant to crystallization, so its structure is unknown. Here, we show that native mass spectrometry defines the subunit topology and copper binding of Mnx, while high-resolution electron microscopy visualizes the protein and nascent Mn oxide minerals. These data provide critical structural information for understanding Mn biomineralization by such unexplored enzymes.Significant challenges exist for structural characterization of enzymes responsible for biomineralization. Here the authors show that native mass spectrometry and high resolution electron microscopy can define the subunit topology and copper binding of a manganese oxidizing complex, and describe early stage formation of its mineral products.

  19. Enhancement of CNT-based filters efficiency by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Elsehly, Emad M.; Chechenin, N. G.; Makunin, A. V.; Shemukhin, A. A.; Motaweh, H. A.

    2018-05-01

    It is shown in the report that disorder produced by ion beam irradiation can enhance the functionality of the carbon nanotubes. The filters of pressed multiwalled carbon nanotubes (MWNTs) were irradiated by He+ ions of the energy E = 80 keV with the fluence 2 × 1016 ion/cm2. The removal of manganese from aqueous solutions by using pristine and ion beam irradiated MWNTs filters was studied as a function of pH, initial concentration of manganese in aqueous solution, MWNT mass and contact time. The filters before and after filtration were characterized by Raman (RS) and energy dispersive X-ray spectroscopy (EDS) techniques to investigate the deposition content in the filter and defect formation in the MWNTs. The irradiated samples showed an enhancement of removal efficiency of manganese up to 97.5% for 10 ppm Mn concentration, suggesting that irradiated MWNT filter is a better Mn adsorbent from aqueous solutions than the pristine one. Radiation-induced chemical functionalization of MWNTs due to ion beam irradiation, suggesting that complexation between the irradiated MWNTs and manganese ions is another mechanism. This conclusion is supported by EDS and RS and is correlated with a larger disorder in the irradiated samples as follows from RS. The study demonstrates that ion beam irradiation is a promising tool to enhance the filtration efficiency of MWNT filters.

  20. The binding of manganese(II) and zinc(II) to the synthetic oligonucleotide d(C-G-C-G-A-A-T-T-C-G-C-G)2. A 1H NMR study.

    PubMed

    Frøystein, N A; Sletten, E

    1991-03-01

    The interaction of the synthetic oligonucleotide d(C-G-C-G-A-A-T-T-C-G-C-G)2 with two different transition-metal ions has been investigated in aqueous solution by means of 1H NMR spectroscopy. The effects on the DNA due to the presence of manganese(II) or zinc(II) have been monitored by observing the paramagnetic broadening and diamagnetic shifts of the non-exchangeable proton resonance lines, respectively. The 1H NMR spectra acquired during the course of the manganese(II) titration show very distinct broadening effects on certain DNA resonance lines. Primarily, the H8 resonance of G4 is affected, but also the H5 and H6 resonances of C3 are clearly affected by the metal. The results imply that the binding of manganese(II) to DNA is sequence specific. The 1H spectra obtained during the zinc(II) titration reveal diamagnetic shift effects which largely conform with the paramagnetic broadening effects due to the presence of manganese(II), although this picture is somewhat more complex. The H8 resonance of G4 displays a clearly visible high-field shift, while for the other guanosine H8 protons this effect is absent. The H1' and H2' protons of C3 show an effect of similar strength, although in the opposite direction, while H5 and H6 of C3 are only slightly affected. Local differences in the structure of the DNA and the basicities of potential binding sites on different base steps in the sequence might account for the observed sequence selectivity.

  1. Use of poisons in determination of microbial manganese binding rates in seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosson, R.A.; Tebo, B.M.; Nealson, K.H.

    1984-04-01

    A method was developed to determine whether microorganisms mediate the precipitation of manganese(II) in the marine environment. Radioactive /sup 54/Mn(II) was used as a tracer to measure the precipitation (binding and oxidation) of Mn(II) (i.e., the /sup 54/Mn(II) trapped on 0.2-..mu..m membrane filters) in the presence and absence of biological poisons. A variety of antibiotics, fixatives, and metabolic inhibitors were tested in laboratory control experiments to select poisons that did not interfere in the chemistry of manganese. The poisons were deemed suitable if (i) they did not complex Mn(II) more strongly than the ion-exchange resin Chelex 100, (ii) they didmore » not interfere in the adsorption of /sup 54/Mn(II) onto synthetic deltaMnO/sub 2/ (manganate), (iii) they did not cause desorption of /sup 54/Mn(II) which had been preadsorbed onto synthetic manganate, and (iv) they did not solubilize synthetic /sup 54/manganate. In addition, several known chelators, reducing agents, and buffers normally added to microbiological growth media or used in biochemical assays were tested. Most additions interfered to some extent with manganese chemistry. However, at least one inhibitor, sodium azide, or a mixture of sodium azide, penicillin, and tetracycline was shown to be appropriate for use in field studies of /sup 54/Mn(II) binding. Formaldehyde could also be used in short incubations (1 to 3 h) but was not suitable for longer time course studies. The method was applied to studies of Mn(II) precipitation in Saanich Inlet, British Columbia, Canada. Bacteria were shown to significantly enhance the rate of Mn(II) removal from solution in the manganese-rich particulate layer which occurs just above the oxygen-hydrogen sulfide interface in the water column. 23 references.« less

  2. Single molecule magnets with protective ligand shells on gold and titanium dioxide surfaces: In situ electrospray deposition and x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Handrup, Karsten; Richards, Victoria J.; Weston, Matthew; Champness, Neil R.; O'Shea, James N.

    2013-10-01

    Two single molecule magnets based on the dodecamanganese (III, IV) cluster with either benzoate or terphenyl-4-carboxylate ligands, have been studied on the Au(111) and rutile TiO2(110) surfaces. We have used in situ electrospray deposition to produce a series of surface coverages from a fraction of a monolayer to multilayer films in both cases. X-ray absorption spectroscopy measured at the Mn L-edge (Mn 2p) has been used to study the effect of adsorption on the oxidation states of the manganese atoms in the core. In the case of the benzoate-functionalised complex reduction of the manganese metal centres is observed due to the interaction of the manganese core with the underlying surface. In the case of terphenyl-4-carboxylate, the presence of this much larger ligand prevents the magnetic core from interacting with either the gold or the titanium dioxide surfaces and the characteristic Mn3+ and Mn4+ oxidation states necessary for magnetic behaviour are preserved.

  3. Reactive Pendant Mn═O in a Synthetic Structural Model of a Proposed S4 State in the Photosynthetic Oxygen Evolving Complex.

    PubMed

    Vaddypally, Shivaiah; Kondaveeti, Sandeep K; Karki, Santosh; Van Vliet, Megan M; Levis, Robert J; Zdilla, Michael J

    2017-04-05

    The molecular mechanism of the Oxygen Evolving Center of photosystem II has been under debate for decades. One frequently cited proposal is the nucleophilic attack by water hydroxide on a pendant Mn═O moiety, though no chemical example of this reactivity at a manganese cubane cluster has been reported. We describe here the preparation, characterization, and a reactivity study of a synthetic manganese cubane cluster with a pendant manganese-oxo moiety. Reaction of this cluster with alkenes results in oxygen and hydrogen atom transfer reactions to form alcohol- and ketone-based oxygen-containing products. Nitrene transfer from core imides is negligible. The inorganic product is a cluster identical to the precursor, but with the pendant Mn═O moiety replaced by a hydrogen abstracted from the organic substrate, and is isolated in quantitative yield. 18 O and 2 H isotopic labeling studies confirm the transfer of atoms between the cluster and the organic substrate. The results suggest that the core cubane structure of this model compound remains intact, and that the pendant Mn═O moiety is preferentially reactive.

  4. The Escherichia coli Small Protein MntS and Exporter MntP Optimize the Intracellular Concentration of Manganese

    PubMed Central

    Martin, Julia E.; Waters, Lauren S.; Storz, Gisela; Imlay, James A.

    2015-01-01

    Escherichia coli does not routinely import manganese, but it will do so when iron is unavailable, so that manganese can substitute for iron as an enzyme cofactor. When intracellular manganese levels are low, the cell induces the MntH manganese importer plus MntS, a small protein of unknown function; when manganese levels are high, the cell induces the MntP manganese exporter and reduces expression of MntH and MntS. The role of MntS has not been clear. Previous work showed that forced MntS synthesis under manganese-rich conditions caused bacteriostasis. Here we find that when manganese is scarce, MntS helps manganese to activate a variety of enzymes. Its overproduction under manganese-rich conditions caused manganese to accumulate to very high levels inside the cell; simultaneously, iron levels dropped precipitously, apparently because manganese-bound Fur blocked the production of iron importers. Under these conditions, heme synthesis stopped, ultimately depleting cytochrome oxidase activity and causing the failure of aerobic metabolism. Protoporphyrin IX accumulated, indicating that the combination of excess manganese and iron deficiency had stalled ferrochelatase. The same chain of events occurred when mutants lacking MntP, the manganese exporter, were exposed to manganese. Genetic analysis suggested the possibility that MntS exerts this effect by inhibiting MntP. We discuss a model wherein during transitions between low- and high-manganese environments E. coli uses MntP to compensate for MntH overactivity, and MntS to compensate for MntP overactivity. PMID:25774656

  5. Gallium(III) adsorption on carbonates and oxides: X-ray absorption fine structure spectroscopy study and surface complexation modeling.

    PubMed

    Pokrovsky, O S; Pokrovski, G S; Schott, J

    2004-11-15

    Adsorption of Ga on calcite, magnesite, amorphous silica, and manganese oxide as a function of pH and gallium concentration in solution was studied using a batch adsorption technique. Adsorbed complexes of Ga on calcite, magnesite, and delta-MnO2 were further characterized using XAFS spectroscopy. At high surface loadings from supersaturated solutions, Ga is likely to form a polymeric network at the surface (edge- and corner-sharing octahedra). At low surface loadings, Ga presents as isolated octahedra, probably attached to the Me-O sites on the surface, and coordinated by water molecules and hydroxide groups at 1.90-1.94 A. At pH>6, Ga therefore changes its coordination from 4 to 6 when adsorbing from solution (Ga(OH)(-)4(aq)) onto metal surface sites (MeOGa(OH)n(H2O)2-n(5-n), Me = Ca, Mg, or Mn, and n=1 and 2 for carbonate minerals and MnO2, respectively). Because the EXAFS is not capable of seeing hydrogen atoms, the protonation of surface complexes was determined by fitting the experimental pH-dependent Ga adsorption edge. A surface complexation model which assumes the constant capacitance of the electric double layer (CCM) and postulates the formation of positively charged, neutral and negatively charged surface complexes for carbonates, manganese oxide and silica, respectively, was used to describe the dependence of adsorption equilibria on aqueous solution composition in a wide range of pH and Ga concentration.

  6. Synthesis, spectral, crystallography and thermal investigations of novel Schiff base complexes of manganese (III) derived from heterocyclic β-diketone with aromatic and aliphatic diamine

    NASA Astrophysics Data System (ADS)

    Surati, Kiran R.; Thaker, B. T.

    2010-01-01

    The Schiff base tetradentate ligands N,N-bis-(3,5-dimethyl-1-p-tolyl-1H-pyrazol-4-ylmethylene)-ethane-1,2-diamine (H 2L 1), N,N-bis-(3,5-dimethyl-1-p-sulfonyl-1H-pyrazol-4-ylmethylene)-ethane-1,2-diamine (H 2L 2), N,N-bis-(3,5-dimethyl-1-p-tolyl-1H-pyrazol-4-ylmethylene)-benzene-1,2-diamine (H 2L 3) and N,N-bis-(3,5-dimethyl-1-p-sulfonyl-1H-pyrazol-4-ylmethylene)-benzene-1,2-diamine (H 2L 4) were prepared from the reaction between 5-oxo-3-methyl-1-p-tolyl-1H-pyrazole-4-carbaldehyde or 4-(4-formyl-5-oxo-3-methyl-pyrazol-1-yl)-benzenesulfonic acid and o-phenylenediamine or ethylenediamine. And these are characterized by elemental analysis, FT-IR, 1H NMR and GC-MS. The corresponding Schiff base complexes of Mn(III) were prepared by condensation of [Mn 3(μ 3-O)(OAc) 6(H 2O) 3]·3H 2O with ligands H 2L 1, H 2L 2, H 2L 3 and H 2L 4. All these complexes have been characterized by elemental analysis, magnetic susceptibility, X-ray crystallography, conductometry measurement, FT-IR, electronic spectra and mass (FAB) spectrometry. Thermal behaviour of the complexes has been studied by TGA, DTA and DSC. Electronic spectra and magnetic susceptibility measurements indicate octahedral stereochemistry of manganese (III) complexes, while non-electrolytic behaviour complexes indicate the absence of counter ion.

  7. Manganese, Metallogenium, and Martian Microfossils

    NASA Technical Reports Server (NTRS)

    Stein, L. Y.; Nealson, K. H.

    1999-01-01

    Manganese could easily be considered an abundant element in the Martian regolith, assuming that the composition of martian meteorites reflects the composition of the planet. Mineralogical analyses of 5 SNC meteorites have revealed an average manganese oxide concentration of 0.48%, relative to the 0.1% concentration of manganese found in the Earth's crust. On the Earth, the accumulation of manganese oxides in oceans, soils, rocks, sedimentary ores, fresh water systems, and hydrothermal vents can be largely attributed to microbial activity. Manganese is also a required trace nutrient for most life forms and participates in many critical enzymatic reactions such as photosynthesis. The wide-spread process of bacterial manganese cycling on Earth suggests that manganese is an important element to both geology and biology. Furthermore, there is evidence that bacteria can be fossilized within manganese ores, implying that manganese beds may be good repositories for preserved biomarkers. A particular genus of bacteria, known historically as Metallogenium, can form star-shaped manganese oxide minerals (called metallogenium) through the action of manganese oxide precipitation along its surface. Fossilized structures that resemble metallogenium have been found in Precambrian sedimentary formations and in Cretaceous-Paleogene cherts. The Cretaceous-Paleogene formations are highly enriched in manganese and have concentrations of trace elements (Fe, Zn, Cu, and Co) similar to modern-day manganese oxide deposits in marine environments. The appearance of metallogenium-like fossils associated with manganese deposits suggests that bacteria may be preserved within the minerals that they form. Additional information is contained in the original extended abstract.

  8. Facile N...N coupling of manganese(V) imido species.

    PubMed

    Yiu, Shek-Man; Lam, William W Y; Ho, Chi-Ming; Lau, Tai-Chu

    2007-01-31

    (Salen)manganese(V) nitrido species are activated by electrophiles such as trifluoroacetic anhydride (TFAA) or trifluoroacetic acid (TFA) to produce N2. Mechanistic studies suggest that the manganese(V) nitrido species first react with TFAA or TFA to produce an imido species, which then undergoes N...N coupling. It is proposed that the resulting manganese(III) mu-diazene species decomposes via internal redox to give N2 and manganese(II). The manganese(II) species is then rapidly oxidized by manganese(V) imide to give manganese(III) and CF3CONH2 (for TFAA) or NH3 (for TFA).

  9. Simultaneous determination of theophylline and caffeine on novel [Tetra-(5-chloroquinolin-8-yloxy) phthalocyanato] manganese(III)-Carbon nanotubes composite electrode.

    PubMed

    Koçak, Çağrı Ceylan; Nas, Asiye; Kantekin, Halit; Dursun, Zekerya

    2018-07-01

    This work reports the synthesis of new symmetrically substituted manganese(III) phthalocyanine (2eOHMnPc) (2) containing tetra 5-chloroquinolin-8-yloxy group at the peripheral position for the first time. Manganese(III) phthalocyanine (2) was synthesized by cyclotetramerization of 4-(5-chloroquinolin-8-yloxy)phthalonitrile (1) in the presence of corresponding metal salt (manganese(II) chloride). This peripherally substituted phthalocyanine complex (2) was purified by column chromatography and characterized by several techniques such as IR, mass and UV-Visible spectral data. This novel synthesized phthalocyanine was mixed with multiwalled carbon nanotubes in order to prepare the novel catalytic surface on glassy carbon electrode for theophylline and caffeine detection in acidic medium. The novel composite electrode surfaces were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Individual and simultaneous determination of theophylline and caffeine were studied by differential pulse voltammetry. The detection limits were individually calculated for theophylline and caffeine as 6.6 × 10 -9 M and 5.0 × 10 -8 M, respectively. In simultaneous determination, LODs were calculated for theophylline and caffeine as 8.1 × 10 -9 M and 3.0 × 10 -7 M, respectively. The practical applicability of the proposed modified electrode was tested for the determination of theophylline and caffeine in green tea, cola and theophylline serum. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Determination of uranyl incorporation into biogenic manganese oxides using X-ray absorption spectroscopy and scattering

    USGS Publications Warehouse

    Webb, S.M.; Fuller, C.C.; Tebo, B.M.; Bargar, J.R.

    2006-01-01

    Biogenic manganese oxides are common and an important source of reactive mineral surfaces in the environment that may be potentially enhanced in bioremediation cases to improve natural attenuation. Experiments were performed in which the uranyl ion, UO22+ (U(VI)), at various concentrations was present during manganese oxide biogenesis. At all concentrations, there was strong uptake of U onto the oxides. Synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction (XRD) studies were carried out to determine the molecular-scale mechanism by which uranyl is incorporated into the oxide and how this incorporation affects the resulting manganese oxide structure and mineralogy. The EXAFS experiments show that at low concentrations (2 mol % U, >4 ??M U(VI) in solution), the presence of U(VI) affects the stability and structure of the Mn oxide to form poorly ordered Mn oxide tunnel structures, similar to todorokite. EXAFS modeling shows that uranyl is present in these oxides predominantly in the tunnels of the Mn oxide structure in a tridentate complex. Observations by XRD corroborate these results. Structural incorporation may lead to more stable U(VI) sequestration that may be suitable for remediation uses. These observations, combined with the very high uptake capacity of the Mn oxides, imply that Mn-oxidizing bacteria may significantly influence dissolved U(VI) concentrations in impacted waters via sorption and incorporation into Mn oxide biominerals. ?? 2006 American Chemical Society.

  11. Sub-chronic inhalation of high concentrations of manganese sulfate induces lower airway pathology in rhesus monkeys

    PubMed Central

    Dorman, David C; Struve, Melanie F; Gross, Elizabeth A; Wong, Brian A; Howroyd, Paul C

    2005-01-01

    Background Neurotoxicity and pulmonary dysfunction are well-recognized problems associated with prolonged human exposure to high concentrations of airborne manganese. Surprisingly, histological characterization of pulmonary responses induced by manganese remains incomplete. The primary objective of this study was to characterize histologic changes in the monkey respiratory tract following manganese inhalation. Methods Subchronic (6 hr/day, 5 days/week) inhalation exposure of young male rhesus monkeys to manganese sulfate was performed. One cohort of monkeys (n = 4–6 animals/exposure concentration) was exposed to air or manganese sulfate at 0.06, 0.3, or 1.5 mg Mn/m3 for 65 exposure days. Another eight monkeys were exposed to manganese sulfate at 1.5 mg Mn/m3 for 65 exposure days and held for 45 or 90 days before evaluation. A second cohort (n = 4 monkeys per time point) was exposed to manganese sulfate at 1.5 mg Mn/m3 and evaluated after 15 or 33 exposure days. Evaluations included measurement of lung manganese concentrations and evaluation of respiratory histologic changes. Tissue manganese concentrations were compared for the exposure and control groups by tests for homogeneity of variance, analysis of variance, followed by Dunnett's multiple comparison. Histopathological findings were evaluated using a Pearson's Chi-Square test. Results Animals exposed to manganese sulfate at ≥0.3 mg Mn/m3 for 65 days had increased lung manganese concentrations. Exposure to manganese sulfate at 1.5 mg Mn/m3 for ≥15 exposure days resulted in increased lung manganese concentrations, mild subacute bronchiolitis, alveolar duct inflammation, and proliferation of bronchus-associated lymphoid tissue. Bronchiolitis and alveolar duct inflammatory changes were absent 45 days post-exposure, suggesting that these lesions are reversible upon cessation of subchronic high-dose manganese exposure. Conclusion High-dose subchronic manganese sulfate inhalation is associated with increased lung manganese concentrations and small airway inflammatory changes in the absence of observable clinical signs. Subchronic exposure to manganese sulfate at exposure concentrations (≤0.3 mg Mn/m3) similar to the current 8-hr occupational threshold limit value established for inhaled manganese was not associated with pulmonary pathology. PMID:16242036

  12. Pharmacokinetic Evaluation of the Equivalency of Gavage, Dietary, and Drinking Water Exposure to Manganese in F344 Rats

    PubMed Central

    Foster, Melanie L.; Bartnikas, Thomas B.; Johnson, Laura C.; Herrera, Carolina; Pettiglio, Michael A.; Keene, Athena M.; Taylor, Michael D.; Dorman, David C.

    2015-01-01

    Concerns exist as to whether individuals may be at greater risk for neurotoxicity following increased manganese (Mn) oral intake. The goals of this study were to determine the equivalence of 3 methods of oral exposure and the rate (mg Mn/kg/day) of exposure. Adult male rats were allocated to control diet (10 ppm), high manganese diet (200 ppm), manganese-supplemented drinking water, and manganese gavage treatment groups. Animals in the drinking water and gavage groups were given the 10 ppm manganese diet and supplemented with manganese chloride (MnCl2) in drinking water or once-daily gavage to provide a daily manganese intake equivalent to that seen in the high-manganese diet group. No statistically significant difference in body weight gain or terminal body weights was seen. Rats were anesthetized following 7 and 61 exposure days, and samples of bile and blood were collected. Rats were then euthanized and striatum, olfactory bulb, frontal cortex, cerebellum, liver, spleen, and femur samples were collected for chemical analysis. Hematocrit was unaffected by manganese exposure. Liver and bile manganese concentrations were elevated in all treatment groups on day 61 (relative to controls). Increased cerebellum manganese concentrations were seen in animals from the high-manganese diet group (day 61, relative to controls). Increased (relative to all treatment groups) femur, striatum, cerebellum, frontal cortex, and olfactory bulb manganese concentrations were also seen following gavage suggesting that dose rate is an important factor in the pharmacokinetics of oral manganese. These data will be used to refine physiologically based pharmacokinetic models, extending their utility for manganese risk assessment by including multiple dietary exposures. PMID:25724921

  13. Manganese recycling in the United States in 1998

    USGS Publications Warehouse

    Jones, Thomas S.

    2001-01-01

    This report describes the flow and processing of manganese within the U.S. economy in 1998 with emphasis on the extent to which manganese is recycled. Manganese was used mostly as an alloying agent in alloys in which it was a minor component. Manganese was recycled mostly within scrap of iron and steel. A small amount was recycled within aluminum used beverage cans. Very little manganese was recycled from materials being recovered specifically for their manganese content. For the United States in 1998, 218,000 metric tons of manganese was estimated to have been recycled from old scrap, of which 96% was from iron and steel scrap. Efficiency of recycling was estimated as 53% and recycling rate as 37%. Metallurgical loss of manganese was estimated to be about 1.7 times that recycled. This loss was mostly into slags from iron and steel production, from which recovery of manganese has yet to be shown economically feasible.

  14. REGIOSELECTIVE OXIDATIONS OF EQUILENIN DERIVATIVES CATALYZED BY A RHODIUM (III) PORPHYRIN COMPLEX-CONTRAST WITH THE MANGANESE (III) PORPHYRIN. (R826653)

    EPA Science Inventory

    Abstract

    Equilenin acetate and dihydroequilenin acetate were oxidized with iodosobenzene and a rhodium(III) porphyrin catalyst. The selectivity of the reactions differs from that with the corresponding Mn(III) catalyst, or from that of free radical chain oxidation.

  15. Biogenic Manganese-Oxide Mineralization is Enhanced by an Oxidative Priming Mechanism for the Multi-Copper Oxidase, MnxEFG.

    PubMed

    Tao, Lizhi; Simonov, Alexandr N; Romano, Christine A; Butterfield, Cristina N; Fekete, Monika; Tebo, Bradley M; Bond, Alan M; Spiccia, Leone; Martin, Lisandra L; Casey, William H

    2017-01-26

    In a natural geochemical cycle, manganese-oxide minerals (MnO x ) are principally formed through a microbial process, where a putative multicopper oxidase MnxG plays an essential role. Recent success in isolating the approximately 230 kDa, enzymatically active MnxEFG protein complex, has advanced our understanding of biogenic MnO x mineralization. Here, the kinetics of MnO x formation catalyzed by MnxEFG are examined using a quartz crystal microbalance (QCM), and the first electrochemical characterization of the MnxEFG complex is reported using Fourier transformed alternating current voltammetry. The voltammetric studies undertaken using near-neutral solutions (pH 7.8) establish the apparent reversible potentials for the Type 2 Cu sites in MnxEFG immobilized on a carboxy-terminated monolayer to be in the range 0.36-0.40 V versus a normal hydrogen electrode. Oxidative priming of the MnxEFG protein complex substantially enhances the enzymatic activity, as found by in situ electrochemical QCM analysis. The biogeochemical significance of this enzyme is clear, although the role of an oxidative priming of catalytic activity might be either an evolutionary advantage or an ancient relic of primordial existence. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Moessbauer studies in zinc-manganese ferrites for use in measuring small velocities and accelerations with great precision

    NASA Technical Reports Server (NTRS)

    Escue, W. T.; Gupta, R. G.; Mendiratta, R. G.

    1975-01-01

    Mossbauer spectroscopy was used for a systematic study of the magnetic behavior of manganese and zinc in mixed ferrites. It was observed that Zn2+ has preference to substitute Mn2+ at interstitial sites where the metal ions are tetrahedrally coordinated with four oxygen neighbors. The internal magnetic hyperfine field at the tetrahedral iron site is larger than that at the octahedral site. The relaxation effects were observed to play an important role as the zinc contents were increased, while the spin-correlation time and the magnetic field were observed to decrease in strength. It is concluded that Mossbauer effect data on complex materials, when used in conjunction with other data, can provide useful insight into the origin of the microscopic properties of magnetic materials.

  17. Pretreatment of algae-laden and manganese-containing waters by oxidation-assisted coagulation: Effects of oxidation on algal cell viability and manganese precipitation.

    PubMed

    Lin, Jr-Lin; Hua, Lap-Cuong; Wu, Yuting; Huang, Chihpin

    2016-02-01

    Preoxidation is manipulated to improve performance of algae and soluble manganese (Mn) removal by coagulation-sedimentation for water treatment plants (WTPs) when large amount of soluble Mn presents in algae-laden waters. This study aimed to investigate the effects of preoxidation on the performance of coagulation-sedimentation for the simultaneous removal of algae and soluble Mn, including ionic and complexed Mn. NaOCl, ClO2, and KMnO4 were used to pretreat such algae-laden and Mn containing waters. The variation of algal cell viability, residual cell counts, and concentrations of Mn species prior to and after coagulation-sedimentation step were investigated. Results show that NaOCl dosing was effective in reducing the viability of algae, but precipitated little Mn. ClO2 dosing had a strongest ability to lower algae viability and oxidize ionic and complexed soluble Mn, where KMnO4 dosing oxidized ionic and complexed Mn instead of reducing the viability of cells. Preoxidation by NaOCl only improved the algae removal by sedimentation, whereas most of soluble Mn still remained. On the other hand, ClO2 preoxidation substantially improved the performance of coagulation-sedimentation for simultaneous removal of algae and soluble Mn. Furthermore, KMnO4 preoxidation did improve the removal of algae by sedimentation, but left significant residual Mn in the supernatant. Images from FlowCAM showed changes in aspect ratio (AR) and transparency of algae-Mn flocs during oxidation-assisted coagulation, and indicates that an effective oxidation can improve the removal of most compact algae-Mn flocs by sedimentation. It suggests that an effective preoxidation for reducing algal cell viability and the concentration of soluble Mn is a crucial step for upgrading the performance of coagulation-sedimentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Mian; Lee, Yong-Min; Gupta, Ranjana

    Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less

  19. Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles

    DOE PAGES

    Guo, Mian; Lee, Yong-Min; Gupta, Ranjana; ...

    2017-10-22

    Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less

  20. Soil manganese enrichment from industrial inputs: a gastropod perspective.

    PubMed

    Bordean, Despina-Maria; Nica, Dragos V; Harmanescu, Monica; Banatean-Dunea, Ionut; Gergen, Iosif I

    2014-01-01

    Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems.

  1. Manganese-enriched electrochemistry of LiFePO4/RGO nanohybrid for aqueous energy storage

    NASA Astrophysics Data System (ADS)

    Rossouw, Claire A.; Raju, Kumar; Zheng, Haitao; Ozoemena, Kenneth I.

    2017-07-01

    Manganese-doped lithium iron phosphate (LFMP) integrated with reduced graphene oxide (RGO) has been prepared via microwave-assisted synthesis and investigated as lithium-ion energy storage system in aqueous Li2SO4 electrolyte. The doping of the LFP was achieved with a low-cost commercial electrolytic manganese oxide (EMD) precursor using a microwave-assisted solvothermal technique. When compared to the undoped counterpart (LFP/RGO), obtained under similar experimental conditions, the LFMP/RGO nanohybrid showed an improved electrochemical performance. The LFMP/RGO gave a maximum areal capacitance of ca. 39.48 mF cm-2, power density of 70.3 mW cm-2 and energy density of 8 mWh cm-2 compared to the values for the pristine complex (LFP/RGO); ca. 16.85 mF cm-2, 54.4 mW cm-2 and 4.8 mWh cm-2. In addition, when the two types of electrochemical storage systems were subjected to voltage-holding (floating) experiment for 50 h, LFMP/RGO maintained 98% capacitance retention while LFP/G maintained 94% capacitance retention. The findings in this work prove that Mn-doping is capable of enhancing the electrochemical performance of the LFP material for energy storage.

  2. Exploiting Process-Related Advantages of Selective Laser Melting for the Production of High-Manganese Steel.

    PubMed

    Haase, Christian; Bültmann, Jan; Hof, Jan; Ziegler, Stephan; Bremen, Sebastian; Hinke, Christian; Schwedt, Alexander; Prahl, Ulrich; Bleck, Wolfgang

    2017-01-11

    Metal additive manufacturing has strongly gained scientific and industrial importance during the last decades due to the geometrical flexibility and increased reliability of parts, as well as reduced equipment costs. Within the field of metal additive manufacturing methods, selective laser melting (SLM) is an eligible technique for the production of fully dense bulk material with complex geometry. In the current study, we addressed the application of SLM for processing a high-manganese TRansformation-/TWinning-Induced Plasticity (TRIP/TWIP) steel. The solidification behavior was analyzed by careful characterization of the as-built microstructure and element distribution using optical and scanning electron microscopy (SEM). In addition, the deformation behavior was studied using uniaxial tensile testing and SEM. Comparison with conventionally produced TRIP/TWIP steel revealed that elemental segregation, which is normally very pronounced in high-manganese steels and requires energy-intensive post processing, is reduced due to the high cooling rates during SLM. Also, the very fast cooling promoted ε- and α'-martensite formation prior to deformation. The superior strength and pronounced anisotropy of the SLM-produced material was correlated with the microstructure based on the process-specific characteristics.

  3. Exploiting Process-Related Advantages of Selective Laser Melting for the Production of High-Manganese Steel

    PubMed Central

    Haase, Christian; Bültmann, Jan; Hof, Jan; Ziegler, Stephan; Bremen, Sebastian; Hinke, Christian; Schwedt, Alexander; Prahl, Ulrich; Bleck, Wolfgang

    2017-01-01

    Metal additive manufacturing has strongly gained scientific and industrial importance during the last decades due to the geometrical flexibility and increased reliability of parts, as well as reduced equipment costs. Within the field of metal additive manufacturing methods, selective laser melting (SLM) is an eligible technique for the production of fully dense bulk material with complex geometry. In the current study, we addressed the application of SLM for processing a high-manganese TRansformation-/TWinning-Induced Plasticity (TRIP/TWIP) steel. The solidification behavior was analyzed by careful characterization of the as-built microstructure and element distribution using optical and scanning electron microscopy (SEM). In addition, the deformation behavior was studied using uniaxial tensile testing and SEM. Comparison with conventionally produced TRIP/TWIP steel revealed that elemental segregation, which is normally very pronounced in high-manganese steels and requires energy-intensive post processing, is reduced due to the high cooling rates during SLM. Also, the very fast cooling promoted ε- and α’-martensite formation prior to deformation. The superior strength and pronounced anisotropy of the SLM-produced material was correlated with the microstructure based on the process-specific characteristics. PMID:28772416

  4. Covalent Heterogenization of a Discrete Mn(II) Bis-Phen Complex by a Metal-Template/Metal-Exchange Method: An Epoxidation Catalyst with Enhanced Reactivity

    PubMed Central

    Terry, Tracy J.; Stack, T. Daniel P.

    2009-01-01

    Considerable attention has been devoted to the immobilization of discrete epoxidation catalysts onto solid supports due to the possible benefits of site isolation such as increased catalyst stability, catalyst recycling, and product separation. A synthetic metal-template/metal-exchange method to imprint a covalently attached bis-1,10-phenanthroline coordination environment onto high-surface area, mesoporous SBA-15 silica is reported herein along with the epoxidation reactivity once reloaded with manganese. Comparisons of this imprinted material with material synthesized by random grafting of the ligand show that the template method creates more reproducible, solution-like bis-1,10-phenanthroline coordination at a variety of ligand loadings. Olefin epoxidation with peracetic acid shows the imprinted manganese catalysts have improved product selectivity for epoxides, greater substrate scope, more efficient use of oxidant, and higher reactivity than their homogeneous or grafted analogues independent of ligand loading. The randomly grafted manganese catalysts, however, show reactivity that varies with ligand loading while the homogeneous analogue degrades trisubstituted olefins and produces trans-epoxide products from cis-olefins. Efficient recycling behavior of the templated catalysts is also possible. PMID:18351763

  5. Effect of olfactory manganese exposure on anxiety-related behavior in a mouse model of iron overload hemochromatosis

    PubMed Central

    Ye, Qi; Kim, Jonghan

    2015-01-01

    Manganese in excess promotes unstable emotional behavior. Our previous study showed that olfactory manganese uptake into the brain is altered in Hfe−/− mice, a model of iron overload hemochromatosis, suggesting that Hfe deficiency could modify the neurotoxicity of airborne manganese. We determined anxiety-related behavior and monoaminergic protein expression after repeated intranasal instillation of MnCl2 to Hfe−/− mice. Compared with manganese-instilled wild-type mice, Hfe−/− mice showed decreased manganese accumulation in the cerebellum. Hfe−/− mice also exhibited increased anxiety with decreased exploratory activity and elevated dopamine D1 receptor and norepinephrine transporter in the striatum. Moreover, Hfe deficiency attenuated manganese-associated impulsivity and modified the effect of manganese on the expression of tyrosine hydroxylase, vesicular monoamine transporter and serotonin transporter. Together, our data indicate that loss of HFE function alters manganese-associated emotional behavior and further suggest that HFE could be a potential molecular target to alleviate affective disorders induced by manganese inhalation. PMID:26189056

  6. Population Structure of Manganese-Oxidizing Bacteria in Stratified Soils and Properties of Manganese Oxide Aggregates under Manganese–Complex Medium Enrichment

    PubMed Central

    Zhang, Zhongming; Chen, Hong; Liu, Jin; Ali, Muhammad; Liu, Fan; Li, Lin

    2013-01-01

    Manganese-oxidizing bacteria in the aquatic environment have been comprehensively investigated. However, little information is available about the distribution and biogeochemical significance of these bacteria in terrestrial soil environments. In this study, stratified soils were initially examined to investigate the community structure and diversity of manganese-oxidizing bacteria. Total 344 culturable bacterial isolates from all substrata exhibited Mn(II)-oxidizing activities at the range of 1 µM to 240 µM of the equivalent MnO2. The high Mn(II)-oxidizing isolates (>50 mM MnO2) were identified as the species of phyla Actinobacteria, Firmicutes and Proteobacteria. Seven novel Mn(II)-oxidizing bacterial genera (species), namely, Escherichia, Agromyces, Cellulomonas, Cupriavidus, Microbacterium, Ralstonia, and Variovorax, were revealed via comparative phylogenetic analysis. Moreover, an increase in the diversity of soil bacterial community was observed after the combined enrichment of Mn(II) and carbon-rich complex. The phylogenetic classification of the enriched bacteria represented by predominant denaturing gradient gel electrophoresis bands, was apparently similar to culturable Mn(II)-oxidizing bacteria. The experiments were further undertaken to investigate the properties of the Mn oxide aggregates formed by the bacterial isolates with high Mn(II)-oxidizing activity. Results showed that these bacteria were closely encrusted with their Mn oxides and formed regular microspherical aggregates under prolonged Mn(II) and carbon-rich medium enrichment for three weeks. The biotic oxidation of Mn(II) to Mn(III/IV) by these isolates was confirmed by kinetic examinations. X-ray diffraction assays showed the characteristic peaks of several Mn oxides and rhodochrosite from these aggregates. Leucoberbelin blue tests also verified the Mn(II)-oxidizing activity of these aggregates. These results demonstrated that Mn oxides were formed at certain amounts under the enrichment conditions, along with the formation of rhodochrosite in such aggregates. Therefore, this study provides insights into the structure and diversity of soil-borne bacterial communities in Mn(II)-oxidizing habitats and supports the contribution of soil-borne Mn(II)-oxidizing bacteria to Mn oxide mineralization in soils. PMID:24069232

  7. Recovery of manganese from manganese oxide ores in the EDTA solution

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Wang, Shuai; Cao, Zhan-fang; Zhong, Hong

    2018-04-01

    A new process has been experimentally and theoretically established for the recovery of manganese from manganese oxide ores, mainly including the reductive leaching of manganese by ethylenediaminetetraacetic acid (EDTA), EDTA recovery, and manganese electrolysis. The experimental conditions for this process were investigated. Moderate leaching environment by EDTA with the pH in the range of 5-6 is of benefit to leach manganese from some manganese oxide ores with high-content impurities, such as iron and aluminum. Most of EDTA can be recovered by acidification. A small amount of the residual EDTA in the electrolyte can prevent the generation of anode mud. In addition, trimanganese tetroxide (Mn3O4) can be obtained by the roasting of the EDTA-Mn crystallized product.

  8. Synthesis, spectral, crystallography and thermal investigations of novel Schiff base complexes of manganese (III) derived from heterocyclic beta-diketone with aromatic and aliphatic diamine.

    PubMed

    Surati, Kiran R; Thaker, B T

    2010-01-01

    The Schiff base tetradentate ligands N,N-bis-(3,5-dimethyl-1-p-tolyl-1H-pyrazol-4-ylmethylene)-ethane-1,2-diamine (H(2)L(1)), N,N-bis-(3,5-dimethyl-1-p-sulfonyl-1H-pyrazol-4-ylmethylene)-ethane-1,2-diamine (H(2)L(2)), N,N-bis-(3,5-dimethyl-1-p-tolyl-1H-pyrazol-4-ylmethylene)-benzene-1,2-diamine (H(2)L(3)) and N,N-bis-(3,5-dimethyl-1-p-sulfonyl-1H-pyrazol-4-ylmethylene)-benzene-1,2-diamine (H(2)L(4)) were prepared from the reaction between 5-oxo-3-methyl-1-p-tolyl-1H-pyrazole-4-carbaldehyde or 4-(4-formyl-5-oxo-3-methyl-pyrazol-1-yl)-benzenesulfonic acid and o-phenylenediamine or ethylenediamine. And these are characterized by elemental analysis, FT-IR, (1)H NMR and GC-MS. The corresponding Schiff base complexes of Mn(III) were prepared by condensation of [Mn(3)(mu(3)-O)(OAc)(6)(H(2)O)(3)].3H(2)O with ligands H(2)L(1), H(2)L(2), H(2)L(3) and H(2)L(4). All these complexes have been characterized by elemental analysis, magnetic susceptibility, X-ray crystallography, conductometry measurement, FT-IR, electronic spectra and mass (FAB) spectrometry. Thermal behaviour of the complexes has been studied by TGA, DTA and DSC. Electronic spectra and magnetic susceptibility measurements indicate octahedral stereochemistry of manganese (III) complexes, while non-electrolytic behaviour complexes indicate the absence of counter ion. Copyright 2009. Published by Elsevier B.V.

  9. Copper and manganese complexes based on 1,4-naphthalene dicarboxylic acid ligand and its derivative: Syntheses, crystal structures, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Xing, Yubo; Liu, Yuqi; Xue, Xiaofei; Wang, Xinying; Li, Wei

    2018-02-01

    Three new metal-organic coordination polymers, {[Mn2(1,4-NDC)2 (C2H5OH) (DMF) (H2O)]·CH3OH}n(1), {[Mn(III)(1,4-NDC)(C2H5O)][Mn(II)(1,4-NDC)(DMF)(H2O)]}n(2) and {[Cu2(C13H9O4)4(H2O)2]}n(3) based on1,4-H2NDC and its derivative were hydrothermally synthesized (1,4-H2NDC = 1,4-naphthalene-dicarboxylic acid, C13H10O4 = 4-methyl formate-1-naphthalenecarboxylic acid), and characterized by techniques of single crystal X-ray diffraction, infrared spectra (IR), elemental analysis, powder X-ray diffraction(PXRD) and variable-temperature magnetic susceptibility measurements. X-ray crystal structure analyses reveal that complexes 1 and 2 show a same 3,5-connected fsc 3D topology network with the Schlȁfli symbol of {4·6·8}{4·66·83}. But, the valence of some Mn atom in complex 2 take place transition from the +II oxidation state to the +III oxidation state, which may be the effect of the different solvent ratio. In complex 3, the Cu⋯Cu distance of 2.620(13) Å is significantly shorter than the sum of the van der Waals radii of Cu (1.40 Å), resulting in a strong ferromagnetic interaction between the Cu(II) centers. Furthermore, the temperature-dependent magnetic susceptibility measurements exhibit overall antiferromagnetic interactions between manganese ions for complexes 1 and 2, and a strong ferromagnetic interaction between the Cu(II) centers for complex 3.

  10. Electronic structure and spectroscopic properties of mononuclear manganese(III) Schiff base complexes: a systematic study on [Mn(acen)X] complexes by EPR, UV/vis, and MCD spectroscopy (X = Hal, NCS).

    PubMed

    Westphal, Anne; Klinkebiel, Arne; Berends, Hans-Martin; Broda, Henning; Kurz, Philipp; Tuczek, Felix

    2013-03-04

    The manganese(III) Schiff base complexes [Mn(acen)X] (H2acen: N,N'-ethylenebis(acetylacetone)imine, X: I(-), Br(-), Cl(-), NCS(-)) are considered as model systems for a combined study of the electronic structure using vibrational, UV/vis absorption, parallel-mode electron paramagnetic resonance (EPR) and low-temperature magnetic circular dichroism (MCD) spectroscopy. By variation of the co-ligand X, the influence of the axial ligand field within a given square-pyramidal coordination geometry on the UV/vis, EPR, and MCD spectra of the title compounds is investigated. Between 25000 and 35000 cm(-1), the low-temperature MCD spectra are dominated by two very intense, oppositely signed pseudo-A terms, referred to as "double pseudo-A terms", which change their signs within the [Mn(acen)X] series dependent on the axial ligand X. Based on molecular orbital (MO) and symmetry considerations, these features are assigned to π(n.b.)(s, a) → yz, z(2) ligand-to-metal charge transfer transitions. The individual MCD signs are directly determined from the calculated MOs of the [Mn(acen)X] complexes. The observed sign change is explained by an inversion of symmetry among the π(n.b.)(s, a) donor orbitals which leads to an interchange of the positive and negative pseudo-A terms constituting the "double pseudo-A term".

  11. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... manganese violet is a violet pigment obtained by reacting phosphoric acid, ammonium dihydrogen orthophosphate, and manganese dioxide at temperatures above 450 °F. The pigment is a manganese ammonium...

  12. Effect of quantity and route of administration of manganese monoxide on feed intake and serum manganese in ruminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, J.R.; Ammerman, C.B.; Henry, P.R.

    1985-02-01

    The experiment investigated effects of high quantities of manganese and route of administration (diet versus capsule-dosed) on feed intake and blood characteristics in sheep. Twenty-four Florida native or Florida native by St. Croix crossbred wethers, 47 kg initially, were assigned randomly to eight treatments including basal diet supplemented with 0, 3000, 6000, or 9000 ppm manganese as a reagent grade manganese monoxide or basal diet plus gelatin capsules containing the equivalent of 0, 3000, 6000, or 9000 ppm manganese based on intake of the previous day. Three sheep per treatment were provided feed and tap water for ad libitum intake.more » Sheep were fed basal diet for 7 days followed by a 21-day experimental period, then placed back on the basal diet for 7 days. Average daily feed intake was reduced by increasing supplemental manganese, regardless of route. Animals dosed by capsule consumed less feed than those administered manganese in the diet. Serum manganese increased as manganese supplementation increased, but route of administration had no effect.« less

  13. Spectroscopic investigation of new water soluble Mn(II)(2) and Mg(II)(2) complexes for the substrate binding models of xylose/glucose isomerases.

    PubMed

    Patra, Ayan; Bera, Manindranath

    2014-01-30

    In methanol, the reaction of stoichiometric amounts of Mn(OAc)(2)·4H(2)O and the ligand H(3)hpnbpda [H(3)hpnbpda=N,N'-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N'-diacetic acid] in the presence of NaOH, afforded a new water soluble dinuclear manganese(II) complex, [Mn2(hpnbpda)(μ-OAc)] (1). Similarly, the reaction of Mg(OAc)(2)·4H(2)O and the ligand H3hpnbpda in the presence of NaOH, in methanol, yielded a new water soluble dinuclear magnesium(II) complex, [Mg2(hpnbpda)(μ-OAc)(H2O)2] (2). DFT calculations have been performed for the structural optimization of complexes 1 and 2. The DFT optimized structure of complex 1 shows that two manganese(II) centers are in a distorted square pyramidal geometry, whereas the DFT optimized structure of complex 2 reveals that two magnesium(II) centers adopt a six-coordinate distorted octahedral geometry. To understand the mode of substrate binding and the mechanistic details of the active site metals in xylose/glucose isomerases (XGI), we have investigated the binding interactions of biologically important monosaccharides d-glucose and d-xylose with complexes 1 and 2, in aqueous alkaline solution by a combined approach of FTIR, UV-vis, fluorescence, and (13)C NMR spectroscopic techniques. Fluorescence spectra show the binding-induced gradual decrease in emission of complexes 1 and 2 accompanied by a significant blue shift upon increasing the concentration of sugar substrates. The binding modes of d-glucose and d-xylose with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in (13)C NMR spectra for C1 and C2 carbon atoms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Zwitterionic metal carboxylate complexes: In solid state

    NASA Astrophysics Data System (ADS)

    Nath, Bhaskar; Kalita, Dipjyoti; Baruah, Jubaraj B.

    2012-07-01

    A flexible dicarboxylic acid having composition [(CH(o-C5H4N)(p-C6H4OCH2CO2H)2] derived from corresponding bis-phenol reacts with various metal(II) acetates such as manganese(II), cobalt(II) and nickel(II) acetate leads to zwtterionic complexes with compositions [CH(o-C5H4N)(p-C6H4OCH2CO2){p-C6H4OCH2CO2M(H2O)5}].6H2O (where M = Mn, Co, Ni). The complexes are characterised by X-ray crystallography. These complexes have chiral center due to unsymmetric structure conferred to the ligand through coordination at only one carboxylate group of the ligand. In solid state these complexes are racemic.

  15. Soil Manganese Enrichment from Industrial Inputs: A Gastropod Perspective

    PubMed Central

    Bordean, Despina-Maria; Nica, Dragos V.; Harmanescu, Monica; Banatean-Dunea, Ionut; Gergen, Iosif I.

    2014-01-01

    Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems. PMID:24454856

  16. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria

    PubMed Central

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-01-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 106 acetate-utilizing manganese-reducing cells cm−3 in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments. PMID:22572639

  17. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.

    PubMed

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-11-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.

  18. Maternal and Cord Blood Manganese Concentrations and Early Childhood Neurodevelopment among Residents near a Mining-Impacted Superfund Site.

    PubMed

    Claus Henn, Birgit; Bellinger, David C; Hopkins, Marianne R; Coull, Brent A; Ettinger, Adrienne S; Jim, Rebecca; Hatley, Earl; Christiani, David C; Wright, Robert O

    2017-06-28

    Environmental manganese exposure has been associated with adverse neurodevelopmental outcomes among school-aged children; yet, few studies have evaluated prenatal exposure. Our study examines associations between prenatal manganese concentrations and placental transfer of manganese with neurodevelopment in 224 2-y-old children residing near the Tar Creek Superfund Site. We collected maternal and cord blood at delivery, measured manganese using inductively coupled plasma mass spectrometry, and assessed neurodevelopment using the Bayley Scales of Infant Development-II. Associations between manganese and mental (MDI) and psychomotor (PDI) development indices were estimated in multivariable models. Placental transfer, approximated by cord/maternal manganese ratio, cord/total manganese ratio (total=maternal+cord), and by joint classification according to high or low (above or below median) maternal and cord manganese, was evaluated as a predictor of neurodevelopment. Median levels [interquartile ranges (IQR)] of manganese in maternal and cord blood, respectively, were 24.0 (19.5-29.7) and 43.1 (33.5-52.1) μg/L. Adjusting for lead, arsenic, and other potential confounders, an IQR increase in maternal manganese was associated with -3.0 (95% CI: -5.3, -0.7) points on MDI and -2.3 (95% CI: -4.1, -0.4) points on PDI. Cord manganese concentrations were not associated with neurodevelopment scores. Cord/maternal and cord/total manganese ratios were positively associated with MDI [cord/maternal: β=2.6 (95% Cl: −0.04, 5.3); cord/total: β=22.0 (95% Cl: 3.2, 40.7)] and PDI (cord/maternal: β=1.7 (95% Cl: −0.5, 3.9); cord/total: β=15.6 (95% Cl: 0.3, 20.9)). Compared to mother-child pairs with low maternal and cord manganese, associations with neurodevelopment scores were negative for pairs with either high maternal, high cord, or high maternal and cord manganese. Maternal blood manganese concentrations were negatively associated with early childhood neurodevelopment scores in our study. Findings highlight the importance of understanding maternal exposures during pregnancy and factors influencing placental transfer. https://doi.org/10.1289/EHP925.

  19. Manganese uptake of imprinted polymers

    DOE Data Explorer

    Susanna Ventura

    2015-09-30

    Batch tests of manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T=45C . Data on manganese uptake for two consecutive cycles are included.

  20. Magnetic susceptibility and ground-state zero-field splitting in high-spin mononuclear manganese(III) of inverted N-methylated porphyrin complexes: Mn(2-NCH3NCTPP)Br.

    PubMed

    Hung, Sheng-Wei; Yang, Fuh-An; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu

    2008-08-18

    The crystal structures of diamagnetic dichloro(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-tin(IV) methanol solvate [Sn(2-NCH 3NCTPP)Cl 2.2(0.2MeOH); 6.2(0.2MeOH)] and paramagnetic bromo(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-manganese(III) [Mn(2-NCH 3NCTPP)Br; 5] were determined. The coordination sphere around Sn (4+) in 6.2(0.2MeOH) is described as six-coordinate octahedron ( OC-6) in which the apical site is occupied by two transoid Cl (-) ligands, whereas for the Mn (3+) ion in 5, it is a five-coordinate square pyramid ( SPY-5) in which the unidentate Br (-) ligand occupies the axial site. The g value of 9.19 (or 10.4) measured from the parallel polarization (or perpendicular polarization) of X-band EPR spectra at 4 K is consistent with a high spin mononuclear manganese(III) ( S = 2) in 5. The magnitude of axial ( D) and rhombic ( E) zero-field splitting (ZFS) for the mononuclear Mn(III) in 5 were determined approximately as -2.4 cm (-1) and -0.0013 cm (-1), respectively, by paramagnetic susceptibility measurements and conventional EPR spectroscopy. Owing to weak C(45)-H(45A)...Br(1) hydrogen bonds, the mononuclear Mn(III) neutral molecules of 5 are arranged in a one-dimensional network. A weak Mn(III)...Mn(III) ferromagnetic interaction ( J = 0.56 cm (-1)) operates via a [Mn(1)-C(2)-C(1)-N(4)-C(45)-H(45A)...Br(1)-Mn(1)] superexchange pathway in complex 5.

  1. Control of the axial coordination of a surface-confined manganese (III) porphyrin complex.

    PubMed

    Beggan, J P; Krasnikov, S A; Sergeeva, N N; Senge, M O; Cafolla, A A

    2012-06-15

    The organization and thermal lability of chloro(5,10,15,20-tetraphenyl porphyrinato)manganese(III) (Cl-MnTPP) molecules on the Ag(111) surface have been investigated under ultra-high vacuum conditions, using scanning tunnelling microscopy, low energy electron diffraction and x-ray photoelectron spectroscopy. The findings reveal the epitaxial nature of the molecule-substrate interface, and moreover, offer a valuable insight into the latent coordination properties of surface-confined metalloporphyrins. The Cl-MnTPP molecules are found to self-assemble on the Ag(111) surface at room temperature, forming an ordered molecular overlayer described by a square unit cell. In accordance with the threefold symmetry of the Ag(111) surface, three rotationally equivalent domains of the molecular overlayer are observed. The primitive lattice vectors of the Cl-MnTPP overlayer show an azimuthal rotation of ±15° relative to those of the Ag(111) surface, while the principal molecular axes of the individual molecules are found to be aligned with the substrate (0(-)11) and ((-)211) crystallographic directions. The axial chloride (Cl) ligand is found to be orientated away from the Ag(111) surface, whereby the average plane of the porphyrin macrocycle lies parallel to that of the substrate. When adsorbed on the Ag(111) surface, the Cl-MnTPP molecules display a latent thermal lability resulting in the dissociation of the axial Cl ligand at ~423 K. The thermally induced dissociation of the Cl ligand leaves the porphyrin complex otherwise intact, giving rise to the coordinatively unsaturated Mn(III) derivative. Consistent with the surface conformation of the Cl-MnTPP precursor, the resulting (5,10,15,20-tetraphenyl porphyrinato)manganese(III) (MnTPP) molecules display the same lattice structure and registry with the Ag(111) surface.

  2. Electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue.

    PubMed

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Du, Jun; Tao, Changyuan

    2015-10-01

    Electrolytic manganese residue (EMR) is a solid waste found in filters after sulphuric acid leaching of manganese carbonate ore, which mainly contains manganese and ammonia nitrogen and seriously damages the ecological environment. This work demonstrated the use of electrokinetic (EK) remediation to remove ammonia nitrogen and manganese from EMR. The transport behavior of manganese and ammonia nitrogen from EMR during electrokinetics, Mn fractionation before and after EK treatment, the relationship between Mn fractionation and transport behavior, as well as the effects of electrolyte and pretreatment solutions on removal efficiency and energy consumption were investigated. The results indicated that the use of H2SO4 and Na2SO4 as electrolytes and pretreatment of EMR with citric acid and KCl can reduce energy consumption, and the removal efficiencies of manganese and ammonia nitrogen were 27.5 and 94.1 %, respectively. In these systems, electromigration and electroosmosis were the main mechanisms of manganese and ammonia nitrogen transport. Moreover, ammonia nitrogen in EMR reached the regulated level, and the concentration of manganese in EMR could be reduced from 455 to 37 mg/L. In general, the electrokinetic remediation of EMR is a promising technology in the future.

  3. /sup 54/Mn absorption and excretion in rats fed soy protein and casein diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.Y.; Johnson, P.E.

    1989-02-01

    Rats were fed diets containing either soy protein or casein and different levels of manganese, methionine, phytic acid, or arginine for 7 days and then fed test meals labeled with 2 microCi of 54Mn after an overnight fast. Retention of 54Mn in each rat was measured every other day for 21 days using a whole-body counter. Liver manganese was higher (P less than 0.0001) in soy protein-fed rats (8.8 micrograms/g) than in casein-fed rats (5.2 micrograms/g); manganese superoxide dismutase activity also was higher in soy protein-fed rats than in casein-fed rats (P less than 0.01). There was a significant interactionmore » between manganese and protein which affected manganese absorption and biologic half-life of 54Mn. In a second experiment, rats fed soy protein-test meals retained more 54Mn (P less than 0.001) than casein-fed rats. Liver manganese (8.3 micrograms/g) in the soy protein group was also higher than that (5.7 micrograms/g) in the casein group (P less than 0.0001), but manganese superoxide dismutase activity was unaffected by protein. Supplementation with methionine increased 54Mn retention from both soy and casein diets (P less than 0.06); activity of manganese superoxide dismutase increased (P less than 0.05) but liver manganese did not change. The addition of arginine to casein diets had little effect on manganese bioavailability. Phytic acid affected neither manganese absorption nor biologic half-life in two experiments, but it depressed liver manganese in one experiment. These results suggest that neither arginine nor phytic acid was the component in soy protein which made manganese more available from soy protein diets than casein diets.« less

  4. Discrete Responses to Limitation for Iron and Manganese in Agrobacterium tumefaciens: Influence on Attachment and Biofilm Formation

    PubMed Central

    Hibbing, Michael E.; Xu, Jing; Natarajan, Ramya; Buechlein, Aaron M.

    2015-01-01

    ABSTRACT Transition metals such as iron and manganese are crucial trace nutrients for the growth of most bacteria, functioning as catalytic cofactors for many essential enzymes. Dedicated uptake and regulatory systems have evolved to ensure their acquisition for growth, while preventing toxicity. Transcriptomic analysis of the iron- and manganese-responsive regulons of Agrobacterium tumefaciens revealed that there are discrete regulatory networks that respond to changes in iron and manganese levels. Complementing earlier studies, the iron-responsive gene network is quite large and includes many aspects of iron-dependent metabolism and the iron-sparing response. In contrast, the manganese-responsive network is restricted to a limited number of genes, many of which can be linked to transport and utilization of the transition metal. Several of the target genes predicted to drive manganese uptake are required for growth under manganese-limited conditions, and an A. tumefaciens mutant with a manganese transport deficiency is attenuated for plant virulence. Iron and manganese limitation independently inhibit biofilm formation by A. tumefaciens, and several candidate genes that could impact biofilm formation were identified in each regulon. The biofilm-inhibitory effects of iron and manganese do not rely on recognized metal-responsive transcriptional regulators, suggesting alternate mechanisms influencing biofilm formation. However, under low-manganese conditions the dcpA operon is upregulated, encoding a system that controls levels of the cyclic di-GMP second messenger. Mutation of this regulatory pathway dampens the effect of manganese limitation. IMPORTANCE Responses to changes in transition metal levels, such as those of manganese and iron, are important for normal metabolism and growth in bacteria. Our study used global gene expression profiling to understand the response of the plant pathogen Agrobacterium tumefaciens to changes of transition metal availability. Among the properties that are affected by both iron and manganese levels are those required for normal surface attachment and biofilm formation, but the requirement for each of these transition metals is mechanistically independent from the other. PMID:26712936

  5. Molecular identification of an ABC transporter complex for manganese: analysis of a cyanobacterial mutant strain impaired in the photosynthetic oxygen evolution process.

    PubMed Central

    Bartsevich, V V; Pakrasi, H B

    1995-01-01

    During photosynthesis, the photosystem II (PSII) pigment-protein complex catalyzes oxygen evolution, a reaction in which a four-manganese ensemble plays a crucial role. Using a newly developed selection scheme, we have isolated BP13, a random photosynthesis-deficient mutant strain of the cyanobacterium, Synechocystis 6803. This mutant grew slowly under photoautotrophic conditions, and had a low oxygen evolution activity. Biochemical analysis revealed that the lesion in this mutant strain had specifically affected the Mn ensemble in PSII. Interestingly, incubation of BP13 cells with micromolar levels of added Mn induced rapid recovery of oxygen evolution activity. The mutant could be complemented with a fragment of wild-type chromosomal DNA containing three closely linked genes, mntA, mntB and mntC. These gene products showed significant sequence similarities with polypeptide components of bacterial permeases that are members of the 'ABC (ATP binding cassette) superfamily' of transporter proteins. We determined that in the BP13 strain, a single nucleotide change had resulted in the replacement of an alanine by an aspartic acid residue in MntA, a soluble protein containing ATP binding motifs. These results suggest that the mntCAB gene cluster encodes polypeptide components of a Mn transporter, the first such protein complex identified in any organism. PMID:7743991

  6. X-ray absorption spectroscopy to watch catalysis by metalloenzymes: status and perspectives discussed for the water-splitting manganese complex of photosynthesis.

    PubMed

    Dau, Holger; Haumann, Michael

    2003-01-01

    Understanding structure-function relations is one of the main interests in the molecular biosciences. X-ray absorption spectroscopy of biological samples (BioXAS) has gained the status of a useful tool for characterization of the structure of protein-bound metal centers with respect to the electronic structure (oxidation states, orbital occupancies) and atomic structure (arrangement of ligand atoms). Owing to progress in the performance characteristics of synchrotron radiation sources and of experimental stations dedicated to the study of (ultra-dilute) biological samples, it is now possible to carry out new types of BioXAS experiments, which have been impracticable in the past. Of particular interest are approaches to follow biological catalysis at metal sites by characterization of functionally relevant structural changes. In this Article, the first steps towards the use of BioXAS to 'watch' biological catalysis are reviewed for the water-splitting reactions occurring at the manganese complex of photosynthesis. The following aspects are considered: the role of BioXAS in life sciences; methodological aspects of BioXAS; catalysis at the Mn complex of photosynthesis; combination of EXAFS and crystallographic information; the freeze-quench technique to capture semi-stable states; time-resolved BioXAS using a freeze-quench approach; room-temperature experiments and 'real-time' BioXAS; tasks and perspectives.

  7. Acute Toxicity and Gastroprotection Studies of a New Schiff Base Derived Manganese (II) Complex against HCl/Ethanol-Induced Gastric Ulcerations in Rats.

    PubMed

    Ibrahim, Mohamed Yousif; Hashim, Najihah Mohd; Dhiyaaldeen, Summaya M; Al-Obaidi, Mazen M Jamil; El-Ferjani, Rashd M; Adam, Hoyam; Alkotaini, Bassam; Batran, Rami Al; Ali, Hapipah Mohd

    2016-05-27

    Manganese is a crucial element for health. In this study, the gastroprotective efficacy of Mn (II) complex (MDLA) against acidified ethanol (HCl/Ethanol)-induced gastric ulceration in rats was evaluated. The animals were distributed into 5 groups. Groups 1 and 2 received carboxymethylcellulose (CMC), group 3 was pretreated with omeprazole, and groups 4 and 5 were given 10 and 20 mg/kg of MDLA, respectively. After one hour, CMC and HCl/Ethanol were given to groups 2-5 whilst the animals in group 1 were ingested with CMC. After sacrifice, gastric lesions were evaluated by wall mucus, gross appearance, histology, antioxidant enzymes and immunohistochemistry. Group 2 displayed severe gastric damage with a significant reduction in wall mucus. Conversely, gastric lesions were reduced in groups 3-5 by 85.72%, 56.51% and 65.93%, respectively. The rats in groups 3-5 showed up-regulation of heat shock protein 70 (Hsp70) with down-regulation of Bcl-2-associated protein x (Bax). Pretreatment with omeprazole or MDLA led to an increase in the uptake of Periodic Acid Schiff (PAS) stain in the glandular part of the gastric tissue, raised levels of prostaglandin E2 (PGE2) and superoxide dismutase (SOD), and a reduction in malondialdehyde (MDA) concentrations. These results suggested the gastroprotective action of Mn (II) complex.

  8. Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism-dystonia.

    PubMed

    Tuschl, Karin; Meyer, Esther; Valdivia, Leonardo E; Zhao, Ningning; Dadswell, Chris; Abdul-Sada, Alaa; Hung, Christina Y; Simpson, Michael A; Chong, W K; Jacques, Thomas S; Woltjer, Randy L; Eaton, Simon; Gregory, Allison; Sanford, Lynn; Kara, Eleanna; Houlden, Henry; Cuno, Stephan M; Prokisch, Holger; Valletta, Lorella; Tiranti, Valeria; Younis, Rasha; Maher, Eamonn R; Spencer, John; Straatman-Iwanowska, Ania; Gissen, Paul; Selim, Laila A M; Pintos-Morell, Guillem; Coroleu-Lletget, Wifredo; Mohammad, Shekeeb S; Yoganathan, Sangeetha; Dale, Russell C; Thomas, Maya; Rihel, Jason; Bodamer, Olaf A; Enns, Caroline A; Hayflick, Susan J; Clayton, Peter T; Mills, Philippa B; Kurian, Manju A; Wilson, Stephen W

    2016-05-27

    Although manganese is an essential trace metal, little is known about its transport and homeostatic regulation. Here we have identified a cohort of patients with a novel autosomal recessive manganese transporter defect caused by mutations in SLC39A14. Excessive accumulation of manganese in these patients results in rapidly progressive childhood-onset parkinsonism-dystonia with distinctive brain magnetic resonance imaging appearances and neurodegenerative features on post-mortem examination. We show that mutations in SLC39A14 impair manganese transport in vitro and lead to manganese dyshomeostasis and altered locomotor activity in zebrafish with CRISPR-induced slc39a14 null mutations. Chelation with disodium calcium edetate lowers blood manganese levels in patients and can lead to striking clinical improvement. Our results demonstrate that SLC39A14 functions as a pivotal manganese transporter in vertebrates.

  9. Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism–dystonia

    PubMed Central

    Tuschl, Karin; Meyer, Esther; Valdivia, Leonardo E.; Zhao, Ningning; Dadswell, Chris; Abdul-Sada, Alaa; Hung, Christina Y.; Simpson, Michael A.; Chong, W. K.; Jacques, Thomas S.; Woltjer, Randy L.; Eaton, Simon; Gregory, Allison; Sanford, Lynn; Kara, Eleanna; Houlden, Henry; Cuno, Stephan M.; Prokisch, Holger; Valletta, Lorella; Tiranti, Valeria; Younis, Rasha; Maher, Eamonn R.; Spencer, John; Straatman-Iwanowska, Ania; Gissen, Paul; Selim, Laila A. M.; Pintos-Morell, Guillem; Coroleu-Lletget, Wifredo; Mohammad, Shekeeb S.; Yoganathan, Sangeetha; Dale, Russell C.; Thomas, Maya; Rihel, Jason; Bodamer, Olaf A.; Enns, Caroline A.; Hayflick, Susan J.; Clayton, Peter T.; Mills, Philippa B.; Kurian, Manju A.; Wilson, Stephen W.

    2016-01-01

    Although manganese is an essential trace metal, little is known about its transport and homeostatic regulation. Here we have identified a cohort of patients with a novel autosomal recessive manganese transporter defect caused by mutations in SLC39A14. Excessive accumulation of manganese in these patients results in rapidly progressive childhood-onset parkinsonism–dystonia with distinctive brain magnetic resonance imaging appearances and neurodegenerative features on post-mortem examination. We show that mutations in SLC39A14 impair manganese transport in vitro and lead to manganese dyshomeostasis and altered locomotor activity in zebrafish with CRISPR-induced slc39a14 null mutations. Chelation with disodium calcium edetate lowers blood manganese levels in patients and can lead to striking clinical improvement. Our results demonstrate that SLC39A14 functions as a pivotal manganese transporter in vertebrates. PMID:27231142

  10. A Multi-Pumping Flow System for In Situ Measurements of Dissolved Manganese in Aquatic Systems

    PubMed Central

    Meyer, David; Prien, Ralf D.; Dellwig, Olaf; Waniek, Joanna J.; Schuffenhauer, Ingo; Donath, Jan; Krüger, Siegfried; Pallentin, Malte; Schulz-Bull, Detlef E.

    2016-01-01

    A METals In Situ analyzer (METIS) has been used to determine dissolved manganese (II) concentrations in the subhalocline waters of the Gotland Deep (central Baltic Sea). High-resolution in situ measurements of total dissolved Mn were obtained in near real-time by spectrophotometry using 1-(2-pyridylazo)-2-naphthol (PAN). PAN is a complexing agent of dissolved Mn and forms a wine-red complex with a maximum absorbance at a wavelength of 562 nm. Results are presented together with ancillary temperature, salinity, and dissolved O2 data. Lab calibration of the analyzer was performed in a pressure testing tank. A detection limit of 77 nM was obtained. For validation purposes, discrete water samples were taken by using a pump-CTD system. Dissolved Mn in these samples was determined by an independent laboratory based method (inductively coupled plasma–optical emission spectrometry, ICP-OES). Mn measurements from both METIS and ICP-OES analysis were in good agreement. The results showed that the in situ analysis of dissolved Mn is a powerful technique reducing dependencies on heavy and expensive equipment (pump-CTD system, ICP-OES) and is also cost and time effective. PMID:27916898

  11. Transition-metal-ion-mediated polymerization of dopamine: mussel-inspired approach for the facile synthesis of robust transition-metal nanoparticle-graphene hybrids.

    PubMed

    Yang, Liping; Kong, Junhua; Zhou, Dan; Ang, Jia Ming; Phua, Si Lei; Yee, Wu Aik; Liu, Hai; Huang, Yizhong; Lu, Xuehong

    2014-06-16

    Inspired by the high transition-metal-ion content in mussel glues, and the cross-linking and mechanical reinforcement effects of some transition-metal ions in mussel threads, high concentrations of nickel(II), cobalt(II), and manganese(II) ions have been purposely introduced into the reaction system for dopamine polymerization. Kinetics studies were conducted for the Ni(2+)-dopamine system to investigate the polymerization mechanism. The results show that the Ni(2+) ions could accelerate the assembly of dopamine oligomers in the polymerization process. Spectroscopic and electron microscopic studies reveal that the Ni(2+) ions are chelated with polydopamine (PDA) units, forming homogeneous Ni(2+)-PDA complexes. This facile one-pot approach is utilized to construct transition-metal-ion-PDA complex thin coatings on graphene oxide, which can be carbonized to produce robust hybrid nanosheets with well-dispersed metallic nickel/metallic cobalt/manganese(II) oxide nanoparticles embedded in PDA-derived thin graphitic carbon layers. The nickel-graphene hybrid prepared by using this approach shows good catalytic properties and recyclability for the reduction of p-nitrophenol. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Manganese complex-catalyzed oxidation and oxidative kinetic resolution of secondary alcohols by hydrogen peroxide† †Electronic supplementary information (ESI) available: Tables S1–S4 and additional data: NMR spectra of the products, GC and HPLC chromatograms in the OKR of secondary alcohols, key geometric information for DFT, etc. See DOI: 10.1039/c7sc00891k Click here for additional data file.

    PubMed Central

    Miao, Chengxia; Li, Xiao-Xi; Lee, Yong-Min; Xia, Chungu; Wang, Yong

    2017-01-01

    The highly efficient catalytic oxidation and oxidative kinetic resolution (OKR) of secondary alcohols has been achieved using a synthetic manganese catalyst with low loading and hydrogen peroxide as an environmentally benign oxidant in the presence of a small amount of sulfuric acid as an additive. The product yields were high (up to 93%) for alcohol oxidation and the enantioselectivity was excellent (>90% ee) for the OKR of secondary alcohols. Mechanistic studies revealed that alcohol oxidation occurs via hydrogen atom (H-atom) abstraction from an α-CH bond of the alcohol substrate and a two-electron process by an electrophilic Mn–oxo species. Density functional theory calculations revealed the difference in reaction energy barriers for H-atom abstraction from the α-CH bonds of R- and S-enantiomers by a chiral high-valent manganese–oxo complex, supporting the experimental result from the OKR of secondary alcohols. PMID:29163900

  13. Novel MntR-Independent Mechanism of Manganese Homeostasis in Escherichia coli by the Ribosome-Associated Protein HflX

    PubMed Central

    Kaur, Gursharan; Sengupta, Sandeepan; Kumar, Vineet; Kumari, Aruna; Ghosh, Aditi; Parrack, Pradeep

    2014-01-01

    Manganese is a micronutrient required for activities of several important enzymes under conditions of oxidative stress and iron starvation. In Escherichia coli, the manganese homeostasis network primarily constitutes a manganese importer (MntH) and an exporter (MntP), which are regulated by the MntR dual regulator. In this study, we find that deletion of E. coli hflX, which encodes a ribosome-associated GTPase with unknown function, renders extreme manganese sensitivity characterized by arrested cell growth, filamentation, lower rate of replication, and DNA damage. We demonstrate that perturbation by manganese induces unprecedented influx of manganese in ΔhflX cells compared to that in the wild-type E. coli strain. Interestingly, our study indicates that the imbalance in manganese homeostasis in the ΔhflX strain is independent of the MntR regulon. Moreover, the influx of manganese leads to a simultaneous influx of zinc and inhibition of iron import in ΔhflX cells. In order to review a possible link of HflX with the λ phage life cycle, we performed a lysis-lysogeny assay to show that the Mn-perturbed ΔhflX strain reduces the frequency of lysogenization of the phage. This observation raises the possibility that the induced zinc influx in the manganese-perturbed ΔhflX strain stimulates the activity of the zinc-metalloprotease HflB, the key determinant of the lysis-lysogeny switch. Finally, we propose that manganese-mediated autophosphorylation of HflX plays a central role in manganese, zinc, and iron homeostasis in E. coli cells. PMID:24794564

  14. Bioturbation and Manganese Cycling in Hemipelagic Sediments

    NASA Astrophysics Data System (ADS)

    Aller, R. C.

    1990-06-01

    The activities of infaunal macrobenthos have major influences on the types, rates and distributions of diagenetic reactions involving manganese in relatively carbon-rich deep-sea and nearshore sediments. In some non-sulphidic hemipelagic deposits of the eastern equatorial Pacific (Panama Basin) biogenic reworking drives internal cycles of manganese, which can apparently account for up to ca. 100% of organic carbon oxidation and reduction of O2 supplied (diffusively) to the sea floor. Heterotrophic (carbon-based) manganese reduction is stimulated by simultaneous mixing of reactive organic matter and manganese oxide into suboxic-anoxic deposits. In sulphidic sediments, biogenic reworking must also enhance a lithotrophic pathway (sulphur-based) pathway of manganese reduction by promoting contact of manganese oxides and iron sulphides. Particle reworking dramatically alters the balance between aerobic and anaerobic decomposition pathways, promoting the utilization of O2 in the reoxidaton of reduced metabolites rather than direct oxidation of carbon. Irrigated burrows create microenvironments, which increase manganese reduction-oxidation and deplete Mn2+ from deeper pore waters. This may increase net Mn2+ production rates by removal of metabolites and potential co-precipitants with Mn2+. The occurrence and geometry of manganese oxide encrusted biogenic structures imply specific adaptations of infauna to manganese based microbial activity in hemipelagic sediments like the Panama Basin.

  15. Time-lapse crystallography snapshots of a double-strand break repair polymerase in action.

    PubMed

    Jamsen, Joonas A; Beard, William A; Pedersen, Lars C; Shock, David D; Moon, Andrea F; Krahn, Juno M; Bebenek, Katarzyna; Kunkel, Thomas A; Wilson, Samuel H

    2017-08-15

    DNA polymerase (pol) μ is a DNA-dependent polymerase that incorporates nucleotides during gap-filling synthesis in the non-homologous end-joining pathway of double-strand break repair. Here we report time-lapse X-ray crystallography snapshots of catalytic events during gap-filling DNA synthesis by pol μ. Unique catalytic intermediates and active site conformational changes that underlie catalysis are uncovered, and a transient third (product) metal ion is observed in the product state. The product manganese coordinates phosphate oxygens of the inserted nucleotide and PP i . The product metal is not observed during DNA synthesis in the presence of magnesium. Kinetic analyses indicate that manganese increases the rate constant for deoxynucleoside 5'-triphosphate insertion compared to magnesium. The likely product stabilization role of the manganese product metal in pol μ is discussed. These observations provide insight on structural attributes of this X-family double-strand break repair polymerase that impact its biological function in genome maintenance.DNA polymerase (pol) μ functions in DNA double-strand break repair. Here the authors use time-lapse X-ray crystallography to capture the states of pol µ during the conversion from pre-catalytic to product complex and observe a third transiently bound metal ion in the product state.

  16. Interactions of carbon nanotubes and/or graphene with manganese peroxidase during biodegradation of endocrine disruptors and triclosan.

    PubMed

    Chen, Ming; Zeng, Guangming; Lai, Cui; Zhang, Chang; Xu, Piao; Yan, Min; Xiong, Weiping

    2017-10-01

    Molecular-level biodegradation processes of bisphenol A (BPA), nonylphenol (NP) and triclosan (TCS) mediated by manganese peroxidase (MnP) were investigated with and without single-walled carbon nanotube (SWCNT) and/or graphene (GRA). Although the incorporation of SWCNT, GRA or their combination (SWCNT+GRA) did not break up the complexes composed of manganese peroxidase (MnP) and these substrates, they had different effects on the native contacts between the substrates and MnP. GRA tended to decrease the overall stability of the binding between MnP and its substrates. SWCNT or SWCNT+GRA generally had a minor impact on the mean binding energy between MnP and its substrates. We detected some sensitive residues from MnP that were dramatically disturbed by the GRA, SWCNT or SWCNT+GRA. Nanomaterials changed the number and behavior of water molecules adjacent to both MnP and its substrates, which was not due to the destruction of H-bond network formed by sensitive regions and water molecules. The present results are useful for understanding the molecular basis of pollutant biodegradation affected by the nanomaterials in the environment, and are also helpful in assessing the risks of these materials to the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, Jessica N.; John, Seth G.; Marsay, Christopher M.; Hoffman, Colleen L.; Nicholas, Sarah L.; Toner, Brandy M.; German, Christopher R.; Sherrell, Robert M.

    2017-02-01

    Hydrothermally sourced dissolved metals have been recorded in all ocean basins. In the oceans' largest known hydrothermal plume, extending westwards across the Pacific from the Southern East Pacific Rise, dissolved iron and manganese were shown by the GEOTRACES program to be transported halfway across the Pacific. Here, we report that particulate iron and manganese in the same plume also exceed background concentrations, even 4,000 km from the vent source. Both dissolved and particulate iron deepen by more than 350 m relative to 3He--a non-reactive tracer of hydrothermal input--crossing isopycnals. Manganese shows no similar descent. Individual plume particle analyses indicate that particulate iron occurs within low-density organic matrices, consistent with its slow sinking rate of 5-10 m yr-1. Chemical speciation and isotopic composition analyses reveal that particulate iron consists of Fe(III) oxyhydroxides, whereas dissolved iron consists of nanoparticulate Fe(III) oxyhydroxides and an organically complexed iron phase. The descent of plume-dissolved iron is best explained by reversible exchange onto slowly sinking particles, probably mediated by organic compounds binding iron. We suggest that in ocean regimes with high particulate iron loadings, dissolved iron fluxes may depend on the balance between stabilization in the dissolved phase and the reversibility of exchange onto sinking particles.

  18. Sorption of Ferric Iron from Ferrioxamine B to Synthetic and Biogenic Layer Type Manganese Oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, O.; John, B.; Sposito, G.

    2006-12-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effects of predominantly Mn(IV) oxides, we studied the sorption reaction of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(III, IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over at pH 8. After 72 hours equilibration time, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the EXAFS spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to into the mineral structure at multiple sites with no evidence of DFOB complexation, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron in marine and terrestrial environments.

  19. A computational microscopy study of nanostructural evolution in irradiated pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Odette, G. R.; Wirth, B. D.

    1997-11-01

    Nanostructural features that form in reactor pressure vessel steels under neutron irradiation at around 300°C lead to significant hardening and embrittlement. Continuum thermodynamic-kinetic based rate theories have been very successful in modeling the general characteristics of the copper and manganese nickel rich precipitate evolution, often the dominant source of embrittlement. However, a more detailed atomic scale understanding of these features is needed to interpret experimental measurements and better underpin predictive embrittlement models. Further, other embrittling features, believed to be subnanometer defect (vacancy)-solute complexes and small regions of modest enrichment of solutes are not well understood. A general approach to modeling embrittlement nanostructures, based on the concept of a computational microscope, is described. The objective of the computational microscope is to self-consistently integrate atomic scale simulations with other sources of information, including a wide range of experiments. In this work, lattice Monte Carlo (LMC) simulations are used to resolve the chemically and structurally complex nature of CuMnNiSi precipitates. The LMC simulations unify various nanoscale analytical characterization methods and basic thermodynamics. The LMC simulations also reveal that significant coupled vacancy and solute clustering takes place during cascade aging. The cascade clustering produces the metastable vacancy-cluster solute complexes that mediate flux effects. Cascade solute clustering may also play a role in the formation of dilute atmospheres of solute enrichment and enhance the nucleation of manganese-nickel rich precipitates at low Cu levels. Further, the simulations suggest that complex, highly correlated processes (e.g. cluster diffusion, formation of favored vacancy diffusion paths and solute scavenging vacancy cluster complexes) may lead to anomalous fast thermal aging kinetics at temperatures below about 450°C. The potential technical significance of these phenomena is described.

  20. Examining an underappreciated control on lignin decomposition in soils? Effects of reactive manganese species on intact plant cell walls

    NASA Astrophysics Data System (ADS)

    Keiluweit, M.; Bougoure, J.; Pett-Ridge, J.; Kleber, M.; Nico, P. S.

    2011-12-01

    Lignin comprises a dominant proportion of carbon fluxes into the soil (representing up to 50% of plant litter and roots). Two lines of evidence suggest that manganese (Mn) acts as a strong controlling factor on the residence time of lignin in soil ecosystems. First, Mn content is highly correlated with litter decomposition in temperate and boreal forest soil ecosystems and, second, microbial agents of lignin degradation have been reported to rely on reactive Mn(III)-complexes to specifically oxidize lignin. However, few attempts have been made to isolate the mechanisms responsible for the apparent Mn-dependence of lignin decomposition in soils. Here we tested the hypothesis that Mn(III)-oxalate complexes may act as a perforating 'pretreatment' for structurally intact plant cell walls. We propose that these diffusible oxidizers are small enough to penetrate and react with non-porous ligno-cellulose in cell walls. This process was investigated by reacting single Zinnia elegans tracheary elements with Mn(III)-oxalate complexes in a continuous flow-through microreactor. The uniformity of cultured tracheary elements allowed us to examine Mn(III)-induced changes in cell wall chemistry and ultrastructure on the micro-scale using fluorescence and electron microscopy as well as synchrotron-based infrared and X-ray spectromicroscopy. Our results show that Mn(III)-complexes substantially oxidize specific lignin components of the cell wall, solubilize decomposition products, severely undermine the cell wall integrity, and cause cell lysis. We conclude that Mn(III)-complexes induce oxidative damage in plant cell walls that renders ligno-cellulose substrates more accessible for microbial lignin- and cellulose-decomposing enzymes. Implications of our results for the rate limiting impact of soil Mn speciation and availability on litter decomposition in forest soils will be discussed.

  1. Manganese toxicity and Saccharomyces cerevisiae Mam3p, a member of the ACDP (ancient conserved domain protein) family

    PubMed Central

    2004-01-01

    Manganese is an essential, but potentially toxic, trace metal in biological systems. Overexposure to manganese is known to cause neurological deficits in humans, but the pathways that lead to manganese toxicity are largely unknown. We have employed the bakers' yeast Saccharomyces cerevisiae as a model system to identify genes that contribute to manganese-related damage. In a genetic screen for yeast manganese-resistance mutants, we identified S. cerevisiae MAM3 as a gene which, when deleted, would increase cellular tolerance to toxic levels of manganese and also increased the cell's resistance towards cobalt and zinc. By sequence analysis, Mam3p shares strong similarity with the mammalian ACDP (ancient conserved domain protein) family of polypeptides. Mutations in human ACDP1 have been associated with urofacial (Ochoa) syndrome. However, the functions of eukaryotic ACDPs remain unknown. We show here that S. cerevisiae MAM3 encodes an integral membrane protein of the yeast vacuole whose expression levels directly correlate with the degree of manganese toxicity. Surprisingly, Mam3p contributes to manganese toxicity without any obvious changes in vacuolar accumulation of metals. Furthermore, through genetic epistasis studies, we demonstrate that MAM3 operates independently of the well-established manganese-trafficking pathways in yeast, involving the manganese transporters Pmr1p, Smf2p and Pho84p. This is the first report of a eukaryotic ACDP family protein involved in metal homoeostasis. PMID:15498024

  2. Mineral resource of the month: manganese

    USGS Publications Warehouse

    Corathers, Lisa A.

    2012-01-01

    Manganese is a silver-colored metal resembling iron and often found in conjunction with iron. The earliest-known human use of manganese compounds was in the Stone Age, when early humans used manganese dioxide as pigments in cave paintings. In ancient Rome and Egypt, people started using it to color or remove the color from glass - a practice that continued to modern times. Today, manganese is predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production. Steel and cast iron together provide the largest market for manganese (historically 85 to 90 percent), but it is also alloyed with nonferrous metals such as aluminum and copper. Its importance to steel cannot be overstated, as almost all types of steel contain manganese and could not exist without it.

  3. Manganese in Madison's drinking water.

    PubMed

    Schlenker, Thomas; Hausbeck, John; Sorsa, Kirsti

    2008-12-01

    Public concern over events of manganese-discolored drinking water and the potential for adverse health effects from exposure to excess manganese reached a high level in 2005. In response, Public Health Madison Dane County, together with the Madison Water Utility, conceived and implemented a public health/water utility strategy to quantify the extent of the manganese problem, determine the potential for adverse human health effects, and communicate these findings to the community. This strategy included five basic parts: taking an inventory of wells and their manganese levels, correlating manganese concentration with turbidity, determining the prevalence and distribution of excess manganese in Madison households, reviewing the available scientific literature, and effectively communicating our findings to the community. The year-long public health/water utility strategy successfully resolved the crisis of confidence in the safety of Madison's drinking water.

  4. Essentiality, Toxicity and Uncertainty in the Risk Assessment of Manganese

    EPA Science Inventory

    Risk assessments of manganese by inhalation or oral routes of exposure typically acknowledge the duality of manganese as an essential element at low doses and a toxic metal at high doses. Previously, however, risk assessors were unable to describe manganese pharmacokinetics quant...

  5. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5455 Manganese glycerophosphate. (a) Product. Manganese glycerophosphate. (b...

  6. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5455 Manganese glycerophosphate. (a) Product. Manganese glycerophosphate. (b...

  7. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5455 Manganese glycerophosphate. (a) Product. Manganese glycerophosphate. (b...

  8. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5455 Manganese glycerophosphate. (a) Product. Manganese glycerophosphate. (b...

  9. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5455 Manganese glycerophosphate. (a) Product. Manganese glycerophosphate. (b...

  10. Stratigraphy of the pedogenic manganese nodules in the Carletonville area, North West Province of South Africa: A case study of the General Nice Manganese Mine

    NASA Astrophysics Data System (ADS)

    Pharoe, Benedict Kinshasa; Liu, Kuiwu

    2018-07-01

    The lithostratigraphy of pedogenic manganese (Mn) nodules in the Carletonville area is similar to the Klipkuil, Ryedale, Wes Wits, and Houtkoppies deposits in the West Rand region of the Gauteng and North West Provinces and to a lesser extent the Bronkhorstfontein manganese deposit in the Limpopo Province of South Africa. The lithostratigraphy of the ore deposit at the General Nice Manganese Mine consists of a basal manganese wad, preserved in a typical karst setting on top of the underlying Malmani stromatolitic dolomites and Tertiary fluvial and secondary mineral deposits consisting of manganese nodules of variable size in a finer-grained soil matrix. At the top of the deposit is a Mn-depleted Quaternary sand cover. The Tertiary alluvial succession hosting Mn nodules was informally subdivided into A, B, C, D, E, F, G and H zones on the basis of geochemical analyses (XRD, XRF and SEM) of bulk zone samples and the manganese nodule size and concentration.

  11. Selection and Use of Manganese Dioxide by Neanderthals

    PubMed Central

    Heyes, Peter J.; Anastasakis, Konstantinos; de Jong, Wiebren; van Hoesel, Annelies; Roebroeks, Wil; Soressi, Marie

    2016-01-01

    Several Mousterian sites in France have yielded large numbers of small black blocs. The usual interpretation is that these ‘manganese oxides’ were collected for their colouring properties and used in body decoration, potentially for symbolic expression. Neanderthals habitually used fire and if they needed black material for decoration, soot and charcoal were readily available, whereas obtaining manganese oxides would have incurred considerably higher costs. Compositional analyses lead us to infer that late Neanderthals at Pech-de-l’Azé I were deliberately selecting manganese dioxide. Combustion experiments and thermo-gravimetric measurements demonstrate that manganese dioxide reduces wood’s auto-ignition temperature and substantially increases the rate of char combustion, leading us to conclude that the most beneficial use for manganese dioxide was in fire-making. With archaeological evidence for fire places and the conversion of the manganese dioxide to powder, we argue that Neanderthals at Pech-de-l’Azé I used manganese dioxide in fire-making and produced fire on demand. PMID:26922901

  12. Current understanding of the effects of enviromental and irradiation variables on RPV embrittlement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odette, G.R.; Lucas, G.E.; Wirth, B.

    1997-02-01

    Radiation enhanced diffusion at RPV operating temperatures around 290{degrees}C leads to the formation of various ultrafine scale hardening phases, including copper-rich and copper-catalyzed manganese-nickel rich precipitates. In addition, defect cluster or cluster-solute complexes, manifesting a range of thermal stability, develop under irradiation. These features contribute directly to hardening which in turn is related to embrittlement, manifested as shifts in Charpy V-notch transition temperature. Models based on the thermodynamics, kinetics and micromechanics of the embrittlement processes have been developed; these are broadly consistent with experiment and rationalize the highly synergistic effects of most important irradiation (temperature, flux, fluence) and metallurgical (copper,more » nickel, manganese, phosphorous and heat treatment) variables on both irradiation hardening and recovery during post-irradiation annealing. A number of open questions remain which can be addressed with a hierarchy of new theoretical and experimental tools.« less

  13. Growth of different phases and morphological features of MnS thin films by chemical bath deposition: Effect of deposition parameters and annealing

    NASA Astrophysics Data System (ADS)

    Hannachi, Amira; Maghraoui-Meherzi, Hager

    2017-03-01

    Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferential orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like.

  14. Application of multivariate statistical techniques for differentiation of ripe banana flour based on the composition of elements.

    PubMed

    Alkarkhi, Abbas F M; Ramli, Saifullah Bin; Easa, Azhar Mat

    2009-01-01

    Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.

  15. Bis(O-n-butyl dithio­carbonato-κ2 S,S′)bis­(pyridine-κN)manganese(II)

    PubMed Central

    Alam, Naveed; Ehsan, Muhammad Ali; Zeller, Matthias; Mazhar, Muhammad; Arifin, Zainudin

    2011-01-01

    The structure of the title manganese complex, [Mn(C5H9OS2)2(C5H5N)2] or [Mn(S2CO-n-Bu)2(C5H5N)2], consists of discrete monomeric entities with Mn2+ ions located on centres of inversion. The metal atom is coordinated by a six-coordinate trans-N2S4 donor set with the pyridyl N atoms located in the apical positions. The observed slight deviations from octa­hedral geometry are caused by the bite angle of the bidentate κ2-S2CO-n-Bu ligands [69.48 (1)°]. The O(CH2)3(CH3) chains of the O-n-butyl dithio­carbonate units are disordered over two sets of sites with an occupancy ratio of 0.589 (2):0.411 (2). PMID:22090847

  16. Bis(O-n-butyl dithio-carbonato-κS,S')bis-(pyridine-κN)manganese(II).

    PubMed

    Alam, Naveed; Ehsan, Muhammad Ali; Zeller, Matthias; Mazhar, Muhammad; Arifin, Zainudin

    2011-08-01

    The structure of the title manganese complex, [Mn(C(5)H(9)OS(2))(2)(C(5)H(5)N)(2)] or [Mn(S(2)CO-n-Bu)(2)(C(5)H(5)N)(2)], consists of discrete monomeric entities with Mn(2+) ions located on centres of inversion. The metal atom is coordinated by a six-coordinate trans-N(2)S(4) donor set with the pyridyl N atoms located in the apical positions. The observed slight deviations from octa-hedral geometry are caused by the bite angle of the bidentate κ(2)-S(2)CO-n-Bu ligands [69.48 (1)°]. The O(CH(2))(3)(CH(3)) chains of the O-n-butyl dithio-carbonate units are disordered over two sets of sites with an occupancy ratio of 0.589 (2):0.411 (2).

  17. Water oxidation catalyzed by the tetranuclear Mn complex [Mn(IV)4O5(terpy)4(H2O)2](ClO4)6.

    PubMed

    Gao, Yunlong; Crabtree, Robert H; Brudvig, Gary W

    2012-04-02

    The tetranuclear manganese complex [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) (1; terpy = 2,2':6',2″-terpyridine) gives catalytic water oxidation in aqueous solution, as determined by electrochemistry and GC-MS. Complex 1 also exhibits catalytic water oxidation when adsorbed on kaolin clay, with Ce(IV) as the primary oxidant. The redox intermediates of complex 1 adsorbed on kaolin clay upon addition of Ce(IV) have been characterized by using diffuse reflectance UV/visible and EPR spectroscopy. One of the products in the reaction on kaolin clay is Mn(III), as determined by parallel-mode EPR spectroscopic studies. When 1 is oxidized in aqueous solution with Ce(IV), the reaction intermediates are unstable and decompose to form Mn(II), detected by EPR spectroscopy, and MnO(2). DFT calculations show that the oxygen in the mono-μ-oxo bridge, rather than Mn(IV), is oxidized after an electron is removed from the Mn(IV,IV,IV,IV) tetramer. On the basis of the calculations, the formation of O(2) is proposed to occur by reaction of water with an electrophilic manganese-bound oxyl radical species, (•)O-Mn(2)(IV/IV), produced during the oxidation of the tetramer. This study demonstrates that [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) may be relevant for understanding the role of the Mn tetramer in photosystem II.

  18. Surface characterization of ZnO/ZnMn{sub 2}O{sub 4} and Cu/Mn{sub 3}O{sub 4} powders obtained by thermal degradation of heterobimetallic complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrault, Joeel, E-mail: joel.barrault@univ-poitiers.fr; Makhankova, Valeriya G., E-mail: leram@univ.kiev.ua; Khavryuchenko, Oleksiy V.

    2012-03-15

    From the selective transformation of the heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes with 2,2 Prime -bipyridyl by thermal degradation at relatively low (350 Degree-Sign C) temperature, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Morphology of the powder surface was examined by scanning electron microscopy with energy dispersive X-ray microanalysis (SEM/EDX). Surface composition was determined by X-ray photoelectron spectroscopy (XPS). Specific surface of the powders by nitrogen adsorption was found to be 33{+-}0.2 and 9{+-}0.06more » m{sup 2} g{sup -1} for Zn-Mn and Cu-Mn samples, respectively, which is comparable to those of commercial products. - Graphical abstract: From the selective transformation of heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Highlights: Black-Right-Pointing-Pointer Thermal degradation of heterometallic complexes results in fine disperse particles. Black-Right-Pointing-Pointer Core-shell Cu/Mn{sub 3}O{sub 4} particles are obtained. Black-Right-Pointing-Pointer ZnMn{sub 2}O{sub 4} spinel layer covers ZnO particles.« less

  19. Timing of Neogene Manganese Deposit Formation in the Paleo-Japan Sea, northeast Japan

    NASA Astrophysics Data System (ADS)

    Ito, T.; Orihashi, Y.; Yanagisawa, Y.; Sakai, S.; Motoyama, I.; Kamikuri, S. I.; Komuro, K.; Suzuki, K.

    2017-12-01

    The generation ages of the two Neogene manganese deposits in northeast Japan were determined by diatom and radiolarian biostratigraphic analyses and zircon U-Pb dating. The manganese deposits analyzed were from the Kitaichi and Maruyama mines in the Fukaura district, northeast Japan. Manganese oxide layers of 0.5 m (Kitaichi) and 1.5 m (Maruyama) in thickness were predominantly composed of todorokite and occur conformably within volcanogenic sediments, which stratigraphically had correlated to middle Miocene in previous studies. The ages of the manganese oxide layers were 12.4 Ma. There was no time gap between the Kitaichi and the Maruyama manganese oxide layers, between the manganese oxide layer and the underlying tuffaceous sandstone in the Kitaichi mine, or within the manganese oxide layer of ca. 1.5 m thickness in the Maruyama mine. On the other hand, the overlying tuffaceous sandstone was dated at 4.5 Ma. The results suggest that the manganese oxide layers were formed immediately after the deposition of the tuffaceous sandstone at 12.4 Ma and that the restricted supply of volcanogenic and/or other detrital matter had kept for a long time (ca. 7 m.y.). The timing of the manganese deposit generation, 12.4 Ma, is identical to the age of the base of the Onnagawa Stage on the Nishikurosawa Stage in the Neogene stratotype section on the Japan Sea side, northeast Japan. And this is equivalent to the age of the start of diatom blooming. Paleogeographically, the manganese oxide deposition happened in a shallower area on a paleo-hill or a small island surrounded by stagnant mid to deep basins with diatom and organically carbon-rich, laminated, and fine-grained mud. It is highly probable that upwelling of mid to deep water rich in both dissolved manganese and nutrients is the trigger for the manganese deposit generation in shallower areas and the deposition of diatomaceous sediments in mid and deep basins. Eustatic regression might be the reason for the short-term formation of manganese deposits in shallower areas compared to continuous sedimentation ( several million years) of diatomaceous and organic carbon-rich mud in the surrounding mid to deep basins.

  20. Production of Manganese Oxide Nanoparticles by Shewanella Species

    PubMed Central

    Farooqui, Saad M.; White, Alan R.

    2016-01-01

    ABSTRACT Several species of the bacterial genus Shewanella are well-known dissimilatory reducers of manganese under anaerobic conditions. In fact, Shewanella oneidensis is one of the most well studied of all metal-reducing bacteria. In the current study, a number of Shewanella strains were tested for manganese-oxidizing capacity under aerobic conditions. All were able to oxidize Mn(II) and to produce solid dark brown manganese oxides. Shewanella loihica strain PV-4 was the strongest oxidizer, producing oxides at a rate of 20.3 mg/liter/day and oxidizing Mn(II) concentrations of up to 9 mM. In contrast, S. oneidensis MR-1 was the weakest oxidizer tested, producing oxides at 4.4 mg/liter/day and oxidizing up to 4 mM Mn(II). Analysis of products from the strongest oxidizers, i.e., S. loihica PV-4 and Shewanella putrefaciens CN-32, revealed finely grained, nanosize, poorly crystalline oxide particles with identical Mn oxidation states of 3.86. The biogenic manganese oxide products could be subsequently reduced within 2 days by all of the Shewanella strains when culture conditions were made anoxic and an appropriate nutrient (lactate) was added. While Shewanella species were detected previously as part of manganese-oxidizing consortia in natural environments, the current study has clearly shown manganese-reducing Shewanella species bacteria that are able to oxidize manganese in aerobic cultures. IMPORTANCE Members of the genus Shewanella are well known as dissimilatory manganese-reducing bacteria. This study shows that a number of species from Shewanella are also capable of manganese oxidation under aerobic conditions. Characterization of the products of the two most efficient oxidizers, S. loihica and S. putrefaciens, revealed finely grained, nanosize oxide particles. With a change in culture conditions, the manganese oxide products could be subsequently reduced by the same bacteria. The ability of Shewanella species both to oxidize and to reduce manganese indicates that the genus plays a significant role in the geochemical cycling of manganese. Due to the high affinity of manganese oxides for binding other metals, these bacteria may also contribute to the immobilization and release of other metals in the environment. PMID:27342559

  1. Spatially complex distribution of dissolved manganese in a fjord as revealed by high-resolution in situ sensing using the autonomous underwater vehicle Autosub.

    PubMed

    Statham, P J; Connelly, D P; German, C R; Brand, T; Overnell, J O; Bulukin, E; Millard, N; McPhail, S; Pebody, M; Perrett, J; Squire, M; Stevenson, P; Webb, A

    2005-12-15

    Loch Etive is a fjordic system on the west coast of Scotland. The deep waters of the upper basin are periodically isolated, and during these periods oxygen is lost through benthic respiration and concentrations of dissolved manganese increase. In April 2000 the autonomous underwater vehicle (AUV) Autosub was fitted with an in situ dissolved manganese analyzer and was used to study the spatial variability of this element together with oxygen, salinity, and temperature throughout the basin. Six along-loch transects were completed at either constant height above the seafloor or at constant depth below the surface. The ca. 4000 in situ 10-s-average dissolved Mn (Mnd) data points obtained provide a new quasi-synoptic and highly detailed view of the distribution of manganese in this fjordic environment not possible using conventional (water bottle) sampling. There is substantial variability in concentrations (<25 to >600 nM) and distributions of Mnd. Surface waters are characteristically low in Mnd reflecting mixing of riverine and marine end-member waters, both of which are low in Mnd. The deeper waters are enriched in Mnd, and as the water column always contains some oxygen, this must reflect primarily benthic inputs of reduced dissolved Mn. However, this enrichment of Mnd is spatially very variable, presumably as a result of variability in release of Mn coupled with mixing of water in the loch and removal processes. This work demonstrates how AUVs coupled with chemical sensors can reveal substantial small-scale variability of distributions of chemical species in coastal environments that would not be resolved by conventional sampling approaches. Such information is essential if we are to improve our understanding of the nature and significance of the underlying processes leading to this variability.

  2. Relationship between blood manganese and blood pressure in the Korean general population according to KNHANES 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Byung-Kook; Kim, Yangho, E-mail: yanghokm@nuri.net

    Introduction: We present data on the association of manganese (Mn) level with hypertension in a representative sample of the adult Korean population who participated in the Korean National Health and Nutrition Examination Survey (KNHANES) 2008. Methods: This study was based on the data obtained by KNHANES 2008, which was conducted for three years (2007-2009) using a rolling sampling design involving a complex, stratified, multistage, probability-cluster survey of a representative sample of the noninstitutionalized civilian population of South Korea. Results: Multiple regression analysis after controlling for covariates, including gender, age, regional area, education level, smoking, drinking status, hemoglobin, and serum creatinine,more » showed that the beta coefficients of log blood Mn were 3.514, 1.878, and 2.517 for diastolic blood pressure, and 3.593, 2.449, and 2.440 for systolic blood pressure in female, male, and all participants, respectively. Multiple regression analysis including three other blood metals, lead, mercury, and cadmium, revealed no significant effects of the three metals on blood pressure and showed no effect on the association between blood Mn and blood pressure. In addition, doubling the blood Mn increased the risk of hypertension 1.828, 1.573, and 1.567 fold in women, men, and all participants, respectively, after adjustment for covariates. The addition of blood lead, mercury, and cadmium as covariates did not affect the association between blood Mn and the prevalence of hypertension. Conclusion: Blood Mn level was associated with an increased risk of hypertension in a representative sample of the Korean adult population. - Highlights: {yields} We showed the association of manganese with hypertension in Korean population. {yields} This study was based on the data obtained by KNHANES 2008. {yields} Blood manganese level was associated with an increased risk of hypertension.« less

  3. Changes in DnaA-dependent gene expression contribute to the transcriptional and developmental response of Bacillus subtilis to manganese limitation in Luria-Bertani medium.

    PubMed

    Hoover, Sharon E; Xu, Weihong; Xiao, Wenzhong; Burkholder, William F

    2010-08-01

    The SOS response to DNA damage in bacteria is a well-known component of the complex transcriptional responses to genotoxic environmental stresses such as exposure to reactive oxygen species, alkylating agents, and many of the antibiotics targeting DNA replication. However, bacteria such as Bacillus subtilis also respond to conditions that perturb DNA replication via a transcriptional response mediated by the replication initiation protein DnaA. In addition to regulating the initiation of DNA replication, DnaA directly regulates the transcription of specific genes. Conditions that perturb DNA replication can trigger the accumulation of active DnaA, activating or repressing the transcription of genes in the DnaA regulon. We report here that simply growing B. subtilis in LB medium altered DnaA-dependent gene expression in a manner consistent with the accumulation of active DnaA and that this was part of a general transcriptional response to manganese limitation. The SOS response to DNA damage was not induced under these conditions. One of the genes positively regulated by DnaA in Bacillus subtilis encodes a protein that inhibits the initiation of sporulation, Sda. Sda expression was induced as cells entered stationary phase in LB medium but not in LB medium supplemented with manganese, and the induction of Sda inhibited sporulation-specific gene expression and the onset of spore morphogenesis. In the absence of Sda, manganese-limited cells initiated spore development but failed to form mature spores. These data highlight that DnaA-dependent gene expression may influence the response of bacteria to a range of environmental conditions, including conditions that are not obviously associated with genotoxic stress.

  4. Changes in DnaA-Dependent Gene Expression Contribute to the Transcriptional and Developmental Response of Bacillus subtilis to Manganese Limitation in Luria-Bertani Medium▿ †

    PubMed Central

    Hoover, Sharon E.; Xu, Weihong; Xiao, Wenzhong; Burkholder, William F.

    2010-01-01

    The SOS response to DNA damage in bacteria is a well-known component of the complex transcriptional responses to genotoxic environmental stresses such as exposure to reactive oxygen species, alkylating agents, and many of the antibiotics targeting DNA replication. However, bacteria such as Bacillus subtilis also respond to conditions that perturb DNA replication via a transcriptional response mediated by the replication initiation protein DnaA. In addition to regulating the initiation of DNA replication, DnaA directly regulates the transcription of specific genes. Conditions that perturb DNA replication can trigger the accumulation of active DnaA, activating or repressing the transcription of genes in the DnaA regulon. We report here that simply growing B. subtilis in LB medium altered DnaA-dependent gene expression in a manner consistent with the accumulation of active DnaA and that this was part of a general transcriptional response to manganese limitation. The SOS response to DNA damage was not induced under these conditions. One of the genes positively regulated by DnaA in Bacillus subtilis encodes a protein that inhibits the initiation of sporulation, Sda. Sda expression was induced as cells entered stationary phase in LB medium but not in LB medium supplemented with manganese, and the induction of Sda inhibited sporulation-specific gene expression and the onset of spore morphogenesis. In the absence of Sda, manganese-limited cells initiated spore development but failed to form mature spores. These data highlight that DnaA-dependent gene expression may influence the response of bacteria to a range of environmental conditions, including conditions that are not obviously associated with genotoxic stress. PMID:20511500

  5. Low level exposure to manganese from drinking water and cognition in school-age children.

    PubMed

    Bouchard, Maryse F; Surette, Céline; Cormier, Pierre; Foucher, Delphine

    2018-01-01

    Manganese (Mn) is an element found in the environment and certain geographic areas have elevated concentrations in soil and water du to natural conditions or anthropic activities. A growing body of data suggests that exposure to manganese in drinking water could be neurotoxic. Firstly, we aimed to examine the association between exposure to manganese from drinking water and cognition in children consuming well water. Secondly, we also aimed to examine the relation between cognition and manganese concentrations in children's hair, nail, and saliva. A total 259 children from 189 households consuming well water were included in the present study (ages 5.9 to 13.7 years). We assessed children's cognition with the WISC-IV, and we used five indicators of manganese exposure: concentration in tap water, intake from the consumption of water divided by child's weight, manganese concentration in children's hair, toe nail, and saliva. We used General Estimating Equation analysis to assess the relation between manganese exposure indicators and IQ scores, adjusting for potential confounders, and taking into account family clusters. Drinking water manganese concentrations were generally low, with 48% of children consuming water <5μg/L, 25% >50μg/L, and 4% >400μg/L. Results differed by sex. In girls, higher manganese concentration in water, hair, and toe nail were associated with poorer Performance IQ scores but this was significant only for toe nail (for a 10-fold increase in manganese, β: -5.65, 95% CIs: -10.97, -0.32). Opposite associations were observed in boys, i.e., better Performance IQ scores with higher manganese concentration hair, toe nail, and water, the latter being significant (β: 2.66, 95% CIs: 0.44, 4.89). Verbal IQ scores did not seem to be associated with manganese exposure indicators. Drinking water manganese levels were considerably lower than in previous studies reporting neurotoxic effects. There was no clear indication of an association between exposure to manganese and cognitive development in this sample of school-age children although the data suggest there might be sex-specific associations. Given the low levels of exposure and sex-specific associations, a larger sample size would have been required to increase the statistical power and better characterize the relations. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Manganese-enhanced magnetic resonance microscopy of mineralization

    USGS Publications Warehouse

    Chesnick, I.E.; Todorov, T.I.; Centeno, J.A.; Newbury, D.E.; Small, J.A.; Potter, K.

    2007-01-01

    Paramagnetic manganese (II) can be employed as a calcium surrogate to sensitize magnetic resonance microscopy (MRM) to the processing of calcium during bone formation. At high doses, osteoblasts can take up sufficient quantities of manganese, resulting in marked changes in water proton T1, T2 and magnetization transfer ratio values compared to those for untreated cells. Accordingly, inductively coupled plasma mass spectrometry (ICP-MS) results confirm that the manganese content of treated cell pellets was 10-fold higher than that for untreated cell pellets. To establish that manganese is processed like calcium and deposited as bone, calvaria from the skull of embryonic chicks were grown in culture medium supplemented with 1 mM MnCl2 and 3 mM CaCl2. A banding pattern of high and low T2 values, consistent with mineral deposits with high and low levels of manganese, was observed radiating from the calvarial ridge. The results of ICP-MS studies confirm that manganese-treated calvaria take up increasing amounts of manganese with time in culture. Finally, elemental mapping studies with electron probe microanalysis confirmed local variations in the manganese content of bone newly deposited on the calvarial surface. This is the first reported use of manganese-enhanced MRM to study the process whereby calcium is taken up by osteoblasts cells and deposited as bone. ?? 2007 Elsevier Inc. All rights reserved.

  7. MntABC and MntH Contribute to Systemic Staphylococcus aureus Infection by Competing with Calprotectin for Nutrient Manganese

    PubMed Central

    Kehl-Fie, Thomas E.; Zhang, Yaofang; Moore, Jessica L.; Farrand, Allison J.; Hood, M. Indriati; Rathi, Subodh; Chazin, Walter J.; Caprioli, Richard M.

    2013-01-01

    During infection, vertebrates limit access to manganese and zinc, starving invading pathogens, such as Staphylococcus aureus, of these essential metals in a process termed “nutritional immunity.” The manganese and zinc binding protein calprotectin is a key component of the nutrient-withholding response, and mice lacking this protein do not sequester manganese from S. aureus liver abscesses. One potential mechanism utilized by S. aureus to minimize host-imposed manganese and zinc starvation is the expression of the metal transporters MntABC and MntH. We performed transcriptional analyses of both mntA and mntH, which revealed increased expression of both systems in response to calprotectin treatment. MntABC and MntH compete with calprotectin for manganese, which enables S. aureus growth and retention of manganese-dependent superoxide dismutase activity. Loss of MntABC and MntH results in reduced staphylococcal burdens in the livers of wild-type but not calprotectin-deficient mice, suggesting that these systems promote manganese acquisition during infection. During the course of these studies, we observed that metal content and the importance of calprotectin varies between murine organs, and infection leads to profound changes in the anatomical distribution of manganese and zinc. In total, these studies provide insight into the mechanisms utilized by bacteria to evade host-imposed nutrient metal starvation and the critical importance of restricting manganese availability during infection. PMID:23817615

  8. Direct Comparison of Manganese Detoxification/Efflux Proteins and Molecular Characterization of ZnT10 Protein as a Manganese Transporter*

    PubMed Central

    Nishito, Yukina; Tsuji, Natsuko; Fujishiro, Hitomi; Takeda, Taka-aki; Yamazaki, Tomohiro; Teranishi, Fumie; Okazaki, Fumiko; Matsunaga, Ayu; Tuschl, Karin; Rao, Rajini; Kono, Satoshi; Miyajima, Hiroaki; Narita, Hiroshi; Himeno, Seiichiro; Kambe, Taiho

    2016-01-01

    Manganese homeostasis involves coordinated regulation of specific proteins involved in manganese influx and efflux. However, the proteins that are involved in detoxification/efflux have not been completely resolved nor has the basis by which they select their metal substrate. Here, we compared six proteins, which were reported to be involved in manganese detoxification/efflux, by evaluating their ability to reduce manganese toxicity in chicken DT40 cells, finding that human ZnT10 (hZnT10) was the most significant contributor. A domain swapping and substitution analysis between hZnT10 and the zinc-specific transporter hZnT1 showed that residue Asn43, which corresponds to the His residue constituting the potential intramembranous zinc coordination site in other ZnT transporters, is necessary to impart hZnT10's unique manganese mobilization activity; residues Cys52 and Leu242 in transmembrane domains II and V play a subtler role in controlling the metal specificity of hZnT10. Interestingly, the His → Asn reversion mutant in hZnT1 conferred manganese transport activity and loss of zinc transport activity. These results provide important information about manganese detoxification/efflux mechanisms in vertebrate cells as well as the molecular characterization of hZnT10 as a manganese transporter. PMID:27226609

  9. Leaching of manganese from electrolytic manganese residue by electro-reduction.

    PubMed

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Chen, Hongliang; Tao, Changyuan

    2017-08-01

    In this study, an improved process for leaching manganese from electrolytic manganese residue (EMR) by electro-reduction was developed. The mechanisms of the electro-reduction leaching were investigated through X-ray diffraction, scanning electron microscopy, X-ray fluorescence, and Brunauer Emmett Teller. The results show that the electric field could change the surface charge distribution of EMR particles, and the high-valent manganese can be reduced by electric field. The leaching efficient of manganese reached 84.1% under the optimal leaching condition: 9.2 wt% H 2 SO 4 , current density of 25 mA/cm 2 , solid-to-liquid ratio of 1:5, and leaching time for 1 h. It is 37.9% higher than that attained without an electric field. Meanwhile, the manganese content in EMR decreased from 2.57% to 0.48%.

  10. Manganese intoxication: the cause of an inexplicable epileptic syndrome in a 3 year old child.

    PubMed

    Herrero Hernandez, Elena; Discalzi, Gianluigi; Dassi, Patrizia; Jarre, Laura; Pira, Enrico

    2003-08-01

    Excess manganese (Mn) can cause several neurotoxic effects, however only a few studies have reported epileptic syndromes related to manganese intoxication. We describe an epileptic syndrome due to manganese intoxication in a 3 year old male child. His blood manganese was elevated, but no other abnormal values or toxic substances were found in blood or urine. The electroencephalogram (EEG) showed a picture of progressive encephalopathy, while brain magnetic resonance was normal. The patient's conditions rapidly worsened to epileptic status despite the use of antiepileptic drugs. Chelating treatment with CaNa(2)EDTA was initiated to remove excess manganese and promptly succeeded in reverting epileptic symptoms. Concurrently, manganese blood levels and electroencephalogram progressively normalized. Thereafter it has been possible to discontinue antiepileptic treatment, and the patient remains in excellent conditions without any treatment.

  11. Synthesis and spectroscopic studies of biologically active compounds derived from oxalyldihydrazide and benzil, and their Cr(III), Fe(III) and Mn(III) complexes.

    PubMed

    Singh, D P; Kumar, Ramesh; Singh, Jitender

    2009-04-01

    A new series of complexes have been synthesized by template condensation of oxalyldihydrazide and benzil in methanolic medium in the presence of trivalent chromium, manganese and iron salts forming complexes of the type [M(C(32)H(24)N(8)O(4))X]X(2) where M = Cr(III), Mn(III), Fe(III) and X = Cl(-1), NO(3)(-1), CH(3)COO(-1). The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic susceptibility measurements, electronic, NMR, infrared and far infrared spectral studies. On the basis of these studies, a five coordinate square pyramidal geometry has been proposed for all these complexes. The biological activities of the metal complexes have been tested in vitro against a number of pathogenic bacteria to assess their inhibiting potential. Some of these complexes have been found to exhibit remarkable antibacterial activities.

  12. Prolactin levels in manganese-exposed male welders.

    PubMed

    Tutkun, Engin; Abuşoğlu, Sedat; Yılmaz, Hinç; Gündüzöz, Meşide; Gıynas, Nilgün; Bal, Ceylan Demir; Ünlü, Ali

    2014-12-01

    Early studies on manganese (Mn) exposure have demonstrated that this transition metal affects dopamine neurotransmission. Dopamine serves as a tonic inhibitor of prolactin release in the anterior hypophysis. Our aim was to determine the relation between serum prolactin levels and manganese-exposure. Whole blood was collected from 95 non-exposed control subjects and 179 manganese-exposed male welders. Whole blood manganese was analyzed by Inductively Coupled Plasma--Mass Spectrometer on Agilent 7700 (Agilent Technologies, USA). Serum prolactin levels (PRL), aspartate transaminase (AST), alanine transaminase (ALT), urea, creatinine, soduim (Na), potassium (K) were analyzed by immunological and spectrophotometric methods on Roche E170 Modular System (Roche Diagnostics, Mannheim, Germany). The mean ages for control and manganese-exposed group were 40.5 ± 7.8 and 39.5 ± 8.7, respectively (p = 0.258). The mean working period (years) for control and manganese-exposed group were 17.4 ± 9.8 and 18.2 ± 7.7 years, respectively (p = 0.581). Serum AST and potassium levels were significantly higher in control group than manganese-exposed group (p = 0.002 and p = 0.048, respectively) and body-mass index (BMI) was significantly lower in control group than manganese-exposed group (p = 0.033). There was a significantly positive correlation between whole blood manganese levels and serum prolactin (r = 0.860, p < 0.001). Serum ALT levels were positively correlated with serum AST, urea and sodium (r = 0.315, p < 0.001; r = 0.121, p = 0.046; r = 0.130, p = 0.031). Serum prolactin level is a diagnostic marker for determining the effect of manganese-exposure.

  13. Essentiality, toxicity, and uncertainty in the risk assessment of manganese.

    PubMed

    Boyes, William K

    2010-01-01

    Risk assessments of manganese by inhalation or oral routes of exposure typically acknowledge the duality of manganese as an essential element at low doses and a toxic metal at high doses. Previously, however, risk assessors were unable to describe manganese pharmacokinetics quantitatively across dose levels and routes of exposure, to account for mass balance, and to incorporate this information into a quantitative risk assessment. In addition, the prior risk assessment of inhaled manganese conducted by the U.S. Environmental Protection Agency (EPA) identified a number of specific factors that contributed to uncertainty in the risk assessment. In response to a petition regarding the use of a fuel additive containing manganese, methylcyclopentadienyl manganese tricarbonyl (MMT), the U.S. EPA developed a test rule under the U.S. Clean Air Act that required, among other things, the generation of pharmacokinetic information. This information was intended not only to aid in the design of health outcome studies, but also to help address uncertainties in the risk assessment of manganese. To date, the work conducted in response to the test rule has yielded substantial pharmacokinetic data. This information will enable the generation of physiologically based pharmacokinetic (PBPK) models capable of making quantitative predictions of tissue manganese concentrations following inhalation and oral exposure, across dose levels, and accounting for factors such as duration of exposure, different species of manganese, and changes of age, gender, and reproductive status. The work accomplished in response to the test rule, in combination with other scientific evidence, will enable future manganese risk assessments to consider tissue dosimetry more comprehensively than was previously possible.

  14. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium manganese...

  15. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium manganese...

  16. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium manganese...

  17. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this section... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance...

  18. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this section... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance...

  19. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this section... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance...

  20. Malonate-containing manganese(III) complexes: synthesis, crystal structure, and magnetic properties of AsPh4[Mn(mal)2(H2O)2].

    PubMed

    Delgado, Fernando S; Kerbellec, Nicolas; Ruiz-Pérez, Catalina; Cano, Joan; Lloret, Francesc; Julve, Miguel

    2006-02-06

    The novel manganese(III) complexes PPh4[Mn(mal)2(H2O)2] (1) and AsPh4[Mn(mal)2(H2O)2] (2) (PPh4+ = tetraphenylphosphonium cation, AsPh4+ = tetraphenylarsonium cation, and H2mal = malonic acid) have been prepared, and the structure of 2 was determined by X-ray diffraction analysis. 2 is a mononuclear complex whose structure is made up of trans-diaquabis(malonato)manganate(III) units and tetraphenylarsonium cations. Two crystallographically independent manganese(III) ions (Mn(1) and Mn(2)) occur in 2 that exhibit elongated octahedral surroundings with four oxygen atoms from two bidentate malonate groups in equatorial positions (Mn(1)-O = 1.923(6) and 1.9328(6) A and Mn(2)-O = 1.894(6) and 1.925(6) A) and two trans-coordinated water molecules in the axial sites (Mn(1)-Ow = 2.245(6) A and Mn(2)-Ow = 2.268(6) A). The [Mn(mal)2(H2O)2]- units are linked through hydrogen bonds involving the free malonate-oxygen atoms and the coordinated water molecules to yield a quasi-square-type anionic layer growing in the ab plane. The shortest intralayer metal-metal separations are 7.1557(7) and 7.1526(7) A (through the edges of the square). The anionic sheets are separated from each other by layers of AsPh4+ where sextuple- and double-phenyl embraces occur. The magnetic behavior of 1 and 2 in the temperature range 1.9-290 K reveals the occurrence of weak intralayer ferromagnetic interactions (J = +0.081(1) (1) and +0.072(2) cm(-1) (2)). These values are compared to those of the weak antiferromagnetic coupling [J = -0.19(1) cm(-1)], which is observed in the chain compound K2[Mn(mal)2(MeOH)2][Mn(mal)2] (3), where the exchange pathway involves the carboxyate-malonate bridge in the anti-syn conformation. The structure of 3 was reported elsewhere. Theoretical calculations on fragment models of 2 and 3 were performed to analyze and substantiate both the nature and magnitude of the magnetic couplings observed.

  1. Photoinduced oxidation of a water-soluble manganese(III) porphyrin

    PubMed Central

    Maliyackel, Anthony C.; Otvos, John W.; Spreer, Larry O.; Calvin, Melvin

    1986-01-01

    The photoinduced oxidation of tetra(N-methyl-4-pyridyl)porphyrinmanganese(III) has been achieved in homogeneous solution. The manganese porphyrin was used as an electron donor in a three-component system with tris-(2,2′-bipyridine)ruthenium(II) as the photosensitizer and chloropentaamminecobalt(III) as the electron acceptor. The photooxidized manganese porphyrin is unstable in aqueous solution, reverting to the starting manganese(III) porphyrin. The oxidation of manganese(III) porphyrin and the subsequent reduction of the oxidized porphyrin can be cycled repeatedly. PMID:16593699

  2. Quantifying manganese and nitrogen cycle coupling in manganese-rich, organic carbon-starved marine sediments: Examples from the Clarion-Clipperton fracture zone

    NASA Astrophysics Data System (ADS)

    Mogollón, José M.; Mewes, Konstantin; Kasten, Sabine

    2016-07-01

    Extensive deep-sea sedimentary areas are characterized by low organic carbon contents and thus harbor suboxic sedimentary environments where secondary (autotrophic) redox cycling becomes important for microbial metabolic processes. Simulation results for three stations in the Eastern Equatorial Pacific with low organic carbon content (<0.5 dry wt %) and low sedimentation rates (10-1-100 mm ky-1) show that ammonium generated during organic matter degradation may act as a reducing agent for manganese oxides below the oxic zone. Likewise, at these sedimentary depths, dissolved reduced manganese may act as a reducing agent for oxidized nitrogen species. These manganese-coupled transformations provide a suboxic conversion pathway of ammonium and nitrate to dinitrogen. These manganese-nitrogen interactions further explain the presence and production of dissolved reduced manganese (up to tens of μM concentration) in sediments with high nitrate (>20 μM) concentrations.

  3. 75 FR 70665 - Proposed Significant New Use Rule for Cobalt Lithium Manganese Nickel Oxide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... Proposed Significant New Use Rule for Cobalt Lithium Manganese Nickel Oxide AGENCY: Environmental... as cobalt lithium manganese nickel oxide (CAS No. 182442-95-1) which was the subject of... section 5(a)(2) of TSCA for the chemical substance identified as cobalt lithium manganese nickel oxide...

  4. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese chloride. 184.1446 Section 184.1446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2·4H2O, CAS...

  5. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium oxide...

  6. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium oxide...

  7. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium oxide...

  8. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium oxide...

  9. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium oxide...

  10. 76 FR 47996 - Cobalt Lithium Manganese Nickel Oxide; Significant New Use Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... 2070-AB27 Cobalt Lithium Manganese Nickel Oxide; Significant New Use Rule AGENCY: Environmental... lithium manganese nickel oxide (CAS No. 182442-95-1), which was the subject of premanufacture notice (PMN... 5(a)(2) (15 U.S.C. 2604(a)(2)) for the chemical substance identified as cobalt lithium manganese...

  11. Methanogenesis from wastewater stimulated by addition of elemental manganese

    PubMed Central

    Qiao, Sen; Tian, Tian; Qi, Benyu; Zhou, Jiti

    2015-01-01

    This study presents a novel procedure for accelerating methanogenesis from wastewater by adding elemental manganese into the anaerobic digestion system. The results indicated that elemental manganese effectively enhanced both the methane yield and the production rate. Compared to the control test without elemental manganese, the total methane yield and production rate with 4 g/L manganese addition increased 3.4-fold (from 0.89 ± 0.03 to 2.99 ± 0.37 M/gVSS within 120 h) and 4.4-fold (from 6.2 ± 0.1 to 27.2 ± 2.2 mM/gVSS/h), respectively. Besides, more acetate consumption and less propionate generation were observed during the methanogenesis with manganese. Further studies demonstrated that the elemental manganese served as electron donors for the methanogenesis from carbon dioxide, and the final proportion of methane in the total generated gas with 4 g/L manganese addition reached 96.9%, which was 2.1-fold than that of the control (46.6%). PMID:26244609

  12. Removal of Iron and Manganese in Groundwater using Natural Biosorbent

    NASA Astrophysics Data System (ADS)

    Baharudin, F.; Tadza, M. Y. Mohd; Imran, S. N. Mohd; Jani, J.

    2018-04-01

    This study was conducted to measure and compare the concentration of iron, manganese and hardness of the river and groundwater and to determine the effectiveness of iron and manganese removal by using natural biosorbent which is banana peels. The samples of river and groundwater were collected at riverbank filtration site at Jenderam Hilir, Dengkil. Based on the water quality investigation, the concentration of iron and manganese in the samples of groundwater have exceeded the drinking water quality standard which are 0.3 mg/L for iron and 0.1 mg/L for manganese. The removal process of the iron and manganese in the groundwater was done by using 2, 4 and 8 grams of banana peels activated carbon. It is found that with higher amount of activated banana peels, the removal of iron and manganese is more effective. The ranges of percentage of iron and manganese removal are between 82.25% to 90.84% and 98.79% to 99.43% respectively. From the result, banana peels activated carbon can be concluded as a one of the most effective low-cost adsorbent for groundwater treatment.

  13. Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Pang, Huan; Zhang, Yizhou; Cheng, Tao; Lai, Wen-Yong; Huang, Wei

    2015-09-01

    Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity.Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04322k

  14. A tissue dose-based comparative exposure assessment of manganese using physiologically based pharmacokinetic modeling—The importance of homeostatic control for an essential metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentry, P. Robinan, E-mail: rgentry@ramboll.com

    A physiologically-based pharmacokinetic (PBPK) model (Schroeter et al., 2011) was applied to simulate target tissue manganese (Mn) concentrations following occupational and environmental exposures. These estimates of target tissue Mn concentrations were compared to determine margins of safety (MOS) and to evaluate the biological relevance of applying safety factors to derive acceptable Mn air concentrations. Mn blood concentrations measured in occupational studies permitted verification of the human PBPK models, increasing confidence in the resulting estimates. Mn exposure was determined based on measured ambient air Mn concentrations and dietary data in Canada and the United States (US). Incorporating dietary and inhalation exposuresmore » into the models indicated that increases in target tissue concentrations above endogenous levels only begin to occur when humans are exposed to levels of Mn in ambient air (i.e. > 10 μg/m{sup 3}) that are far higher than those currently measured in Canada or the US. A MOS greater than three orders of magnitude was observed, indicating that current Mn air concentrations are far below concentrations that would be required to produce the target tissue Mn concentrations associated with subclinical neurological effects. This application of PBPK modeling for an essential element clearly demonstrates that the conventional application of default factors to “convert” an occupational exposure to an equivalent continuous environmental exposure, followed by the application of safety factors, is not appropriate in the case of Mn. PBPK modeling demonstrates that the relationship between ambient Mn exposures and dose-to-target tissue is not linear due to normal tissue background levels and homeostatic controls. - Highlights: • Manganese is an essential nutrient, adding complexity to its risk assessment. • Nonlinearities in biological processes are important for manganese risk assessment. • A PBPK model was used to estimate target tissue concentrations of manganese. • An MOS approach also considered target tissue concentrations for ambient exposures. • Relationships between ambient Mn exposures and dose-to-target tissue are not linear.« less

  15. Biogeochemical cycling of manganese in Oneida Lake, New York: whole lake studies of manganese

    NASA Technical Reports Server (NTRS)

    Aguilar, C.; Nealson, K. H.

    1998-01-01

    Oneida Lake, New York is a eutrophic freshwater lake known for its abundant manganese nodules and a dynamic manganese cycle. Temporal and spatial distribution of soluble and particulate manganese in the water column of the lake were analyzed over a 3-year period and correlated with other variables such as oxygen, pH, and temperature. Only data from 1988 are shown. Manganese is removed from the water column in the spring via conversion to particulate form and deposited in the bottom sediments. This removal is due to biological factors, as the lake Eh/pH conditions alone can not account for the oxidation of the soluble manganese Mn(II). During the summer months the manganese from microbial reduction moves from the sediments to the water column. In periods of stratification the soluble Mn(II) builds up to concentrations of 20 micromoles or more in the bottom waters. When mixing occurs, the soluble Mn(II) is rapidly removed via oxidation. This cycle occurs more than once during the summer, with each manganese atom probably being used several times for the oxidation of organic carbon. At the end of the fall, whole lake concentrations of manganese stabilize, and remain at about 1 micromole until the following summer, when the cycle begins again. Inputs and outflows from the lake indicate that the active Mn cycle is primarily internal, with a small accumulation each year into ferromanganese nodules located in the oxic zones of the lake.

  16. Intellectual Impairment in School-Age Children Exposed to Manganese from Drinking Water

    PubMed Central

    Bouchard, Maryse F.; Sauvé, Sébastien; Barbeau, Benoit; Legrand, Melissa; Brodeur, Marie-Ève; Bouffard, Thérèse; Limoges, Elyse; Bellinger, David C.; Mergler, Donna

    2011-01-01

    Background Manganese is an essential nutrient, but in excess it can be a potent neurotoxicant. Despite the common occurrence of manganese in groundwater, the risks associated with this source of exposure are largely unknown. Objectives Our first aim was to assess the relations between exposure to manganese from drinking water and children’s intelligence quotient (IQ). Second, we examined the relations between manganese exposures from water consumption and from the diet with children’s hair manganese concentration. Methods This cross-sectional study included 362 children 6–13 years of age living in communities supplied by groundwater. Manganese concentration was measured in home tap water (MnW) and children’s hair (MnH). We estimated manganese intake from water ingestion and the diet using a food frequency questionnaire and assessed IQ with the Wechsler Abbreviated Scale of Intelligence. Results The median MnW in children’s home tap water was 34 μg/L (range, 1–2,700 μg/L). MnH increased with manganese intake from water consumption, but not with dietary manganese intake. Higher MnW and MnH were significantly associated with lower IQ scores. A 10-fold increase in MnW was associated with a decrease of 2.4 IQ points (95% confidence interval: −3.9 to −0.9; p < 0.01), adjusting for maternal intelligence, family income, and other potential confounders. There was a 6.2-point difference in IQ between children in the lowest and highest MnW quintiles. MnW was more strongly associated with Performance IQ than Verbal IQ. Conclusions The findings of this cross-sectional study suggest that exposure to manganese at levels common in groundwater is associated with intellectual impairment in children. PMID:20855239

  17. Intellectual impairment in school-age children exposed to manganese from drinking water.

    PubMed

    Bouchard, Maryse F; Sauvé, Sébastien; Barbeau, Benoit; Legrand, Melissa; Brodeur, Marie-Ève; Bouffard, Thérèse; Limoges, Elyse; Bellinger, David C; Mergler, Donna

    2011-01-01

    Manganese is an essential nutrient, but in excess it can be a potent neurotoxicant. Despite the common occurrence of manganese in groundwater, the risks associated with this source of exposure are largely unknown. Our first aim was to assess the relations between exposure to manganese from drinking water and children's intelligence quotient (IQ). Second, we examined the relations between manganese exposures from water consumption and from the diet with children's hair manganese concentration. This cross-sectional study included 362 children 6-13 years of age living in communities supplied by groundwater. Manganese concentration was measured in home tap water (MnW) and children's hair (MnH). We estimated manganese intake from water ingestion and the diet using a food frequency questionnaire and assessed IQ with the Wechsler Abbreviated Scale of Intelligence. The median MnW in children's home tap water was 34 µg/L (range, 1-2,700 µg/L). MnH increased with manganese intake from water consumption, but not with dietary manganese intake. Higher MnW and MnH were significantly associated with lower IQ scores. A 10-fold increase in MnW was associated with a decrease of 2.4 IQ points (95% confidence interval: -3.9 to -0.9; p < 0.01), adjusting for maternal intelligence, family income, and other potential confounders. There was a 6.2-point difference in IQ between children in the lowest and highest MnW quintiles. MnW was more strongly associated with Performance IQ than Verbal IQ. The findings of this cross-sectional study suggest that exposure to manganese at levels common in groundwater is associated with intellectual impairment in children.

  18. Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore

    USGS Publications Warehouse

    Okita, P.M.; Maynard, J.B.; Spiker, E. C.; Force, E.R.

    1988-01-01

    Unlike other marine-sedimentary manganese ore deposits, which are largely composed of manganese oxides, the primary ore at Molango (Hidalgo State, Mexico) is exclusively manganese carbonate (rhodochrosite, Mn-calcite, kutnahorite). Stable isotope studies of the carbonates from Molango provide critical new information relevant to the controversy over syngenetic and diagenetic models of stratiform manganese deposit formation. Negative ??13C values for carbonates from mineralized zones at Molango are strongly correlated with manganese content both on a whole rock scale and by mineral species. Whole rock ??13C data fall into three groups: high-grade ore = -16.4 to -11.5%.; manganese-rich, sub-ore-grade = -5.2 to 0%.; and unmineralized carbonates = 0 to +2.5%. (PDB). ??18O data show considerable overlap in values among the three groups: +4.8 to -2.8, -5.4 to -0.3%., and -7.4 to +6.2 (PDB), respectively. Isotopic data for individual co-existing minerals suggest a similar separation of ??13C values: ??13C values from calcite range from -1.1 to +0.7%. (PDB), whereas values from rhodochrosite are very negative, -12.9 to -5.5%., and values from kutnahorite or Mn-calcite are intermediate between calcite and rhodochrosite. 13C data are interpreted to indicate that calcite (i.e. unmineralized carbonate) formed from a normal marine carbon reservoir. However, 13C data for the manganese-bearing carbonates suggest a mixed seawater and organic source of carbon. The presence of only trace amounts of pyrite suggests sulfate reduction may have played a minor part in oxidizing organic matter. It is possible that manganese reduction was the predominant reaction that oxidized organic matter and that it released organic-derived CO2 to produce negative ??13C values and manganese carbonate mineralization. ?? 1988.

  19. Alteration of serum concentrations of manganese, iron, ferritin, and transferrin receptor following exposure to welding fumes among career welders.

    PubMed

    Lu, Ling; Zhang, Long-Lian; Li, G Jane; Guo, Wenrui; Liang, Wannian; Zheng, Wei

    2005-03-01

    This study was performed to determine airborne manganese levels during welding practice and to establish the relationship between long-term, low-level exposure to manganese and altered serum concentrations of manganese, iron, and proteins associated with iron metabolism in career welders. Ninety-seven welders (average age of 36 years) who have engaged in electric arc weld in a vehicle manufacturer were recruited as the exposed group. Welders worked 7-8h per day with employment duration of 1-33 years. Control subjects consisted of 91 employees (average age of 35 years) in the same factory but not in the welding profession. Ambient manganese levels in welders' breathing zone were the highest inside the vehicle (1.5 +/- 0.7 mg/m3), and the lowest in the center of the workshop (0.2 +/- 0.05 mg/m3). Since the filter size was 0.8 microm, it is possible that these values may be likely an underestimation of the true manganese levels. Serum levels of manganese and iron in welders were about three-fold (p < 0.01) and 1.2-fold (p < 0.01), respectively, higher than those of controls. Serum concentrations of ferritin and transferrin were increased among welders, while serum transferrin receptor levels were significantly decreased in comparison to controls. Linear regression analyses revealed a lack of association between serum levels of manganese and iron. However, serum concentrations of iron and ferritin were positively associated with years of welder experience (p < 0.05). Moreover, serum transferrin receptor levels were inversely associated with serum manganese concentrations (p < 0.05). These findings suggest that exposure to welding fume among welders disturbs serum homeostasis of manganese, iron, and the proteins associated with iron metabolism. Serum manganese may serve as a reasonable biomarker for assessment of recent exposure to airborne manganese.

  20. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    NASA Astrophysics Data System (ADS)

    Aras, Neny Rasnyanti M.; Arcana, I. Made

    2015-09-01

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm-1 which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese stearate, and followed by thermal treatment at a temperature of 70 °C and the incubation time for 45 days in the activated sludge.

  1. The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques.

    PubMed

    Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong; Pan, Min

    2017-09-28

    Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R² > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II) adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X₂Cd) at low pH and inner-sphere surface complexation sites (SOCd⁺ and (SO)₂CdOH - species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water-mineral interface.

  2. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS Reg. No. 7785-0987-097) is a... of pyrolusite (MnO2) ore with solid ferrous sulfate and coal, followed by leaching and...

  3. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... dioxide in sulfuric acid, and the roasting of pyrolusite (MnO2) ore with solid ferrous sulfate and coal...

  4. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... dioxide in sulfuric acid, and the roasting of pyrolusite (MnO2) ore with solid ferrous sulfate and coal...

  5. A historical overview of the development of manganese (Mn) pharmacokinetic data under Section 211(b) of the Clean Air Act (CAA)

    EPA Science Inventory

    Abstract for Manganese 2016A historical overview of the development of manganese (Mn) pharmacokinetic data under Section 211(b) of the Clean Air Act (CAA)William K BoyesBackground. In the 1990’s, the use of methylcyclopentadienyl manganese tricarbonyl (MMT) as an octane-enh...

  6. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for the...

  7. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for the...

  8. 75 FR 70583 - Cobalt Lithium Manganese Nickel Oxide; Withdrawal of Significant New Use Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... 2070-AB27 Cobalt Lithium Manganese Nickel Oxide; Withdrawal of Significant New Use Rule AGENCY... chemical substance identified as cobalt lithium manganese nickel oxide (CAS No. 182442-95-1), which was the... lithium manganese nickel oxide (PMN P-04-269; CAS No. 182442-95-1) at 40 CFR 721.10201 because the Agency...

  9. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for the...

  10. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for the...

  11. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for the...

  12. Nanostructured manganese oxide thin films as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Lai, Man On; Lu, Li

    2011-01-01

    Electrochemical capacitors, also called supercapacitors, are alternative energy storage devices, particularly for applications requiring high power densities. Recently, manganese oxides have been extensively evaluated as electrode materials for supercapacitors due to their low cost, environmental benignity, and promising supercapacitive performance. In order to maximize the utilization of manganese oxides as the electrode material for the supercapacitors and improve their supercapacitive performance, the nanostructured manganese oxides have therefore been developed. This paper reviews the synthesis of the nanostructured manganese oxide thin films by different methods and the supercapacitive performance of different nanostructures.

  13. FISSION PRODUCT REMOVAL FROM ORGANIC SOLUTIONS

    DOEpatents

    Moore, R.H.

    1960-05-10

    The decontamination of organic solvents from fission products and in particular the treatment of solvents that were used for the extraction of uranium and/or plutonium from aqueous acid solutions of neutron-irradiated uranium are treated. The process broadly comprises heating manganese carbonate in air to a temperature of between 300 and 500 deg C whereby manganese dioxide is formed; mixing the manganese dioxide with the fission product-containing organic solvent to be treated whereby the fission products are precipitated on the manganese dioxide; and separating the fission product-containing manganese dioxide from the solvent.

  14. Systems for the Storage of Molecular Oxygen - A Study.

    DTIC Science & Technology

    1980-11-25

    form adducts with certain chemical compounds . This process, which will be called chemical absorption, generally uses a transition metal coordination... compound as the absorber. The study of oxygen binding to metal complexes has become of great interest over the past three decades (21), and some...for iron, most notably cobalt (33-35) manganese (36,37) and ruthenium (38), usually to serve as model compounds for biologically important heme

  15. Potentiation of Artemisinin Activity against Chloroquine-Resistant Plasmodium falciparum Strains by Using Heme Models

    PubMed Central

    Benoit-Vical, Françoise; Robert, Anne; Meunier, Bernard

    1999-01-01

    The influence of different metalloporphyrin derivatives on the antimalarial activity of artemisinin was studied with two chloroquine-resistant strains of Plasmodium falciparum (FcB1-Colombia and FcM29-Cameroon) cultured in human erythrocytes. This potentiation study indicates that the manganese complex of meso-tetrakis(4-sulfonatophenyl)porphyrin has a significant synergistic effect on the activity of artemisinin against both Plasmodium strains. PMID:10508044

  16. Human Manganese Superoxide Dismutase Tyrosine 34 Contribution to Structure and Catalysis

    PubMed Central

    Perry, J. Jefferson P.; Hearn, Amy S.; Cabelli, Diane E.; Nick, Harry S.; Tainer, John A.; Silverman, David N.

    2009-01-01

    Superoxide dismutase (SOD) enzymes are critical in controlling levels of reactive oxygen species (ROS) that are linked to aging, cancer and neurodegenerative disease. Superoxide (O2 •−) produced during respiration is removed by the product of the SOD2 gene, the homotetrameric manganese superoxide dismutase (MnSOD). Here, we examine the structural and catalytic roles of the highly conserved active-site residue Tyr34, based upon structure-function studies of MnSOD enzymes with mutations at this site. Substitution of Tyr34 with five different amino acids retained the active site protein structure and assembly, but causes a substantial decrease in the catalytic rate constant for the reduction of superoxide. The rate constant for formation of product inhibition complex also decreases but to a much lesser extent, resulting in a net increase in the product inhibition form of the mutant enzymes. Comparisons of crystal structures and catalytic rates also suggest that one mutation, Y34V, interrupts the hydrogen-bonded network, which is associated with a rapid dissociation of the product-inhibited complex. Notably, with three of the Tyr34 mutants we also observe an intermediate in catalysis, which has not been reported previously. Thus, these mutants establish a means to trap a catalytic intermediate that promises to help elucidate the mechanism of catalysis. PMID:19265433

  17. Corrosion-induced release of the main alloying constituents of manganese-chromium stainless steels in different media.

    PubMed

    Herting, Gunilla; Wallinder, Inger Odnevall; Leygraf, Christofer

    2008-09-01

    The main focus of this paper is the assessment of release rates of chromium, nickel, iron and manganese from manganese-chromium stainless steel grades of low nickel content. The manganese content varied between 9.7 and 1.5 wt% and the corresponding nickel content between 1 and 5 wt%. All grades were exposed to artificial rain and two were immersed in a synthetic body fluid of similar pH but of different composition and exposure conditions. Surface compositional studies were performed using X-ray photoelectron spectroscopy (XPS) in parallel to correlate the metal release process with changes in surface oxide properties. All grades, independent of media, revealed a time-dependent metal release process with a preferential low release of iron and manganese compared to nickel and chromium while the chromium content of the surface oxide increased slightly. Manganese was detected in the surface oxide of all grades, except the grade of the lowest manganese bulk content. No nickel was observed in the outermost surface oxide. Stainless steel grades of the lowest chromium content (approximately 16 wt%) and highest manganese content (approximately 7-9 wt%), released the highest quantity of alloy constituents in total, and vice versa. No correlation was observed between the release rate of manganese and the alloy composition. Released main alloy constituents were neither proportional to the bulk alloy composition nor to the surface oxide composition.

  18. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of use...

  19. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of use...

  20. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of use...

  1. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of use...

  2. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of use...

  3. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium manganese oxide (BaMnO3). 721...

  4. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium manganese oxide (BaMnO3). 721...

  5. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00...

  6. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00...

  7. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00...

  8. Bioaccumulation of manganese and its toxicity in feral pigeons (Columba livia) exposed to manganese oxide dust (Mn{sub 3}O{sub 4})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra, P.; Chakrabarti, S.; Tounkara, R.

    1998-11-01

    Manganese tetroxide (Mn{sub 3}O{sub 4}) is a product from the combustion of methylcyclopentadienyl manganese tricarbonyl. Exposure to high levels of manganese can lead to serious health effects especially to the central nervous and respiratory systems. Very few studies on the effects of long-term low level exposure to Mn{sub 3}O{sub 4} have been reported. The present study was therefore conducted to examine the bioaccumulation and toxicity of manganese in various organs of feral pigeons (Columba kivia) when exposed to low levels of Mn{sub 3}O{sub 4} via inhalation and hence to find any possible relationship between these two parameters. A total ofmore » 22 pigeons was exposed to 239 {micro}g/m{sup 3} of manganese for 7 h/day, 5 days/week for 5, 9, and 13 consecutive weeks. Manganese concentrations in various tissues, e.g., brain (mesencephalon), lung, liver, intestine, pancreas, kidney, muscle, bone, and whole blood, were measured by neutron activation analysis. Various biochemical parameters in blood, e.g., hematocrit, total proteins, glucose, uric acid, alinine aminotransferase, total iron, blood urea nitrogen and triglycerides, were also measured.« less

  9. Potential Role of Epigenetic Mechanism in Manganese Induced Neurotoxicity

    PubMed Central

    Tarale, Prashant; Chakrabarti, Tapan; Sivanesan, Saravanadevi; Naoghare, Pravin; Bafana, Amit; Krishnamurthi, Kannan

    2016-01-01

    Manganese is a vital nutrient and is maintained at an optimal level (2.5–5 mg/day) in human body. Chronic exposure to manganese is associated with neurotoxicity and correlated with the development of various neurological disorders such as Parkinson's disease. Oxidative stress mediated apoptotic cell death has been well established mechanism in manganese induced toxicity. Oxidative stress has a potential to alter the epigenetic mechanism of gene regulation. Epigenetic insight of manganese neurotoxicity in context of its correlation with the development of parkinsonism is poorly understood. Parkinson's disease is characterized by the α-synuclein aggregation in the form of Lewy bodies in neuronal cells. Recent findings illustrate that manganese can cause overexpression of α-synuclein. α-Synuclein acts epigenetically via interaction with histone proteins in regulating apoptosis. α-Synuclein also causes global DNA hypomethylation through sequestration of DNA methyltransferase in cytoplasm. An individual genetic difference may also have an influence on epigenetic susceptibility to manganese neurotoxicity and the development of Parkinson's disease. This review presents the current state of findings in relation to role of epigenetic mechanism in manganese induced neurotoxicity, with a special emphasis on the development of Parkinson's disease. PMID:27314012

  10. Manganese ore tailing: optimization of acid leaching conditions and recovery of soluble manganese.

    PubMed

    Santos, Olívia de Souza Heleno; Carvalho, Cornélio de Freitas; Silva, Gilmare Antônia da; Santos, Cláudio Gouvêa Dos

    2015-01-01

    Manganese recovery from industrial ore processing waste by means of leaching with sulfuric acid was the objective of this study. Experimental conditions were optimized by multivariate experimental design approaches. In order to study the factors affecting leaching, a screening step was used involving a full factorial design with central point for three variables in two levels (2(3)). The three variables studied were leaching time, concentration of sulfuric acid and sample amount. The three factors screened were shown to be relevant and therefore a Doehlert design was applied to determine the best working conditions for leaching and to build the response surface. By applying the best leaching conditions, the concentrations of 12.80 and 13.64 %w/w of manganese for the global sample and for the fraction -44 + 37 μm, respectively, were found. Microbeads of chitosan were tested for removal of leachate acidity and recovering of soluble manganese. Manganese recovery from the leachate was 95.4%. Upon drying the leachate, a solid containing mostly manganese sulfate was obtained, showing that the proposed optimized method is efficient for manganese recovery from ore tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. QSAR analysis for nano-sized layered manganese-calcium oxide in water oxidation: An application of chemometric methods in artificial photosynthesis.

    PubMed

    Shahbazy, Mohammad; Kompany-Zareh, Mohsen; Najafpour, Mohammad Mahdi

    2015-11-01

    Water oxidation is among the most important reactions in artificial photosynthesis, and nano-sized layered manganese-calcium oxides are efficient catalysts toward this reaction. Herein, a quantitative structure-activity relationship (QSAR) model was constructed to predict the catalytic activities of twenty manganese-calcium oxides toward water oxidation using multiple linear regression (MLR) and genetic algorithm (GA) for multivariate calibration and feature selection, respectively. Although there are eight controlled parameters during synthesizing of the desired catalysts including ripening time, temperature, manganese content, calcium content, potassium content, the ratio of calcium:manganese, the average manganese oxidation state and the surface of catalyst, by using GA only three of them (potassium content, the ratio of calcium:manganese and the average manganese oxidation state) were selected as the most effective parameters on catalytic activities of these compounds. The model's accuracy criteria such as R(2)test and Q(2)test in order to predict catalytic rate for external test set experiments; were equal to 0.941 and 0.906, respectively. Therefore, model reveals acceptable capability to anticipate the catalytic activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A manganese-dependent ribozyme in the 3'-untranslated region of Xenopus Vg1 mRNA.

    PubMed

    Kolev, Nikolay G; Hartland, Emilia I; Huber, Paul W

    2008-10-01

    The smallest catalytic RNA identified to date is a manganese-dependent ribozyme that requires only a complex between GAAA and UUU to effect site-specific cleavage. We show here that this ribozyme occurs naturally in the 3'-UTR of Vg1 and beta-actin mRNAs. In accord with earlier studies with model RNAs, cleavage occurs only in the presence of manganese or cadmium ions and proceeds optimally near 30 degrees C and physiological pH. The time course of cleavage in Vg1 mRNA best fits a two-step process in which both steps are first-order. In Vg1 mRNA, the ribozyme is positioned adjacent to a polyadenylation signal, but has no influence on translation of the mRNA in Xenopus oocytes. Putative GAAA ribozyme structures are also near polyadenylation sites in yeast and rat actin mRNAs. Analysis of sequences in the PolyA Cleavage Site and 3'-UTR Database (PACdb) revealed no particular bias in the frequency or distribution of the GAAA motif that would suggest that this ribozyme is currently or was recently used for cleavage to generate processed transcripts. Nonetheless, we speculate that the complementary strands that comprise the ribozyme may account for the origin of sequence elements that direct present-day 3'-end processing of eukaryotic mRNAs.

  13. Crystal structure of bis-(2-{[1,1-bis-(hy-droxy-meth-yl)-2-oxidoeth-yl]imino-meth-yl}-6-meth-oxy-phenolato)manganese(IV) 0.39-hydrate.

    PubMed

    Buvaylo, Elena A; Vassilyeva, Olga Yu; Skelton, Brian W

    2015-11-01

    The title compound, [Mn(C12H15NO5)2]·0.39H2O, is a 0.39 hydrate of the isostructural complex bis-(2-{[1,1-bis-(hy-droxy-meth-yl)-2-oxidoeth-yl]imino-meth-yl}-6-meth-oxy-phenolato)manganese(IV) that has previously been reported by Back, Oliveira, Canabarro & Iglesias [Z. Anorg. Allg. Chem. (2015), 641, 941-947], based on room-temperature data. The current structure that was determined at 100 K reveals a lengthening of the c cell parameter compared with the published one due to the incorporation of the partial occupancy water mol-ecule. The title compound crystallizes in the tetra-gonal chiral space group P41212; the neutral [Mn(IV)(C12H15NO5)2] mol-ecule is situated on a crystallographic C 2 axis. The overall geometry about the central manganese ion is octa-hedral with an N2O4 core; each ligand acts as a meridional ONO donor. The coordination environment of Mn(IV) at 100 K displays a difference in one of the two Mn-O bond lengths, compared with the room-temperature structure. In the crystal, the neutral mol-ecules are stacked in a helical fashion along the c-axis direction.

  14. Activation of MAP kinases by hexavalent chromium, manganese and nickel in human lung epithelial cells.

    PubMed

    Tessier, Daniel M; Pascal, Laura E

    2006-12-01

    Epidemiological studies indicate that workers who perform welding operations are at increased risk for bronchitis, siderosis, occupational asthma and lung cancer due to fume exposure. Welding fumes are a complex chemical mixture, and the metal composition is hypothesized to be an etiological factor in respiratory disease due to this exposure. In the present study, human lung epithelial cells in vitro responded to hexavalent chromium, manganese and nickel over a concentration range of 0.2-200 microM with a significant increase in intracellular phosphoprotein (a measure of stress response pathway activation). The mitogen-activated protein kinases ERK1/2, SAPK/JNK and p38 were activated via phosphorylation following 1-h exposures. Hexavalent chromium up-regulated p-38 phosphorylation 23-fold and SAPK/JNK phosphorylation 17-fold, with a comparatively modest 4-fold increase in ERK1/2 phosphorylation. Manganese caused a two- to four-fold increase in SAPK/JNK and ERK 1/2 phosphorylation, with no observed effects on p38 kinase. Nickel caused increased (two-fold) phosphorylation of ERK 1/2 only, and was not cytotoxic over the tested concentration range. The observed effects of welding fume metals on cellular signaling in lung epithelium demonstrate a potentially significant interplay between stress-response signaling (p38 and SAPK/JNK) and anti-apototic signaling (ERK 1/2) that is dependant on the specific metal or combination of metals involved.

  15. Electromagnetic characteristics of manganese oxide-coated Fe3O4 nanoparticles at 2-18 GHz

    NASA Astrophysics Data System (ADS)

    Yang, R. B.; Liang, W. F.; Lin, C. K.

    2011-04-01

    The dielectric and magnetic properties of manganese oxide-coated Fe3O4 nanoparticles (NPs) were measured by the transmission/reflection method in 2-18 GHz. MnOx-coated Fe3O4 NPs were prepared by sol-gel method followed by heat-treating at 300, 400, and 500 °C, respectively. The heat-treated powders were then used as magnetic fillers and added to an epoxy resin to prepare MnOx-coated Fe3O4 composites for the complex permittivity (ɛ'-jɛ″) and permeability (μ'-jμ″) measurements. After the sol-gel process, the coating of manganese oxide (mixture of major Mn2O3 and minor Mn3O4) reduced the value of ɛ'. The lower the heat-treating temperature, the larger the decrease in ɛ'. The relative decrease in ɛ', compared with uncoated Fe3O4 nanoparticles, is 28.7, 23.5, and 20.0% for coated MnOx heat-treated at 300, 400, and 500 °C, respectively, while the relative decrease in ɛ″ is 74.1, 68.8, and 65.2%, respectively. In the present study, MnOx-coated Fe3O4 exhibited a significant decrease in dielectric loss tangent of ˜100% compared to that of uncoated NPs and can be of practical use for microwave components.

  16. Simultaneous removal of ammonia nitrogen and manganese from wastewater using nitrite by electrochemical method.

    PubMed

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Qiu, Jiang; Chen, Hongliang; Tao, Changyuan

    2017-02-01

    In this work, nitrite was developed to simultaneously remove manganese and ammonia nitrogen from wastewater by the electrochemical method. The characteristics of electrolytic reaction were observed via cyclic voltammograms. Moreover, the mole ratio of nitrite and ammonia nitrogen, voltage, and initial pH value, which affected the removal efficiency of ammonia nitrogen and manganese, were investigated. The results showed that the concentration of ammonia nitrogen in wastewater could be reduced from 120.2 to 6.0 mg L -1 , and manganese could be simultaneously removed from 302.4 to 1.5 mg L -1 at initial pH of 8.0, the mole ratios of nitrite and ammonia nitrogen of 1.5:1, and voltage of 20 V direct current electrolysis for 4.0 h. XRD analysis showed that manganese dioxide was deposited on the anode, and manganese was mainly removed in the form of manganese hydroxide precipitation in the cathode chamber.

  17. Reductive atmospheric acid leaching of spent alkaline batteries in H2SO4/Na2SO3 solutions

    NASA Astrophysics Data System (ADS)

    Morcali, Mehmet Hakan

    2015-07-01

    This work studies the optimum reductive leaching process for manganese and zinc recovery from spent alkaline battery paste. The effects of reducing agents, acid concentration, pulp density, reaction temperature, and leaching time on the dissolution of manganese and zinc were investigated in detail. Manganese dissolution by reductive acidic media is an intermediate-controlled process with an activation energy of 12.28 kJ·mol-1. After being leached, manganese and zinc were selectively precipitated with sodium hydroxide. The zinc was entirely converted into zincate (Zn(OH){4/2-}) ions and thus did not co-precipitate with manganese hydroxide during this treatment (2.0 M NaOH, 90 min, 200 r/min, pH > 13). After the manganese was removed from the solution, the Zn(OH){4/2-} was precipitated as zinc sulfate in the presence of sulfuric acid. The results indicated that this process could be effective in recovering manganese and zinc from alkaline batteries.

  18. Update on a Pharmacokinetic-Centric Alternative Tier II Program for MMT—Part I: Program Implementation and Lessons Learned

    PubMed Central

    Dorman, David C.; Andersen, Melvin E.; Roper, Jerry M.; Taylor, Michael D.

    2012-01-01

    Concerns have been raised regarding environmental manganese exposure since high exposures have been associated with neurological disorders. The USA Environmental Protection Agency most recent human health risk assessment of inhaled manganese conducted in 1993 identified specific areas of uncertainty regarding manganese pharmacokinetics. This led to the development of a test rule under the USA Clean Air Act that required the generation of pharmacokinetic information on the inorganic manganese combustion products of the organometallic fuel additive methylcyclopentadienyl manganese tricarbonyl (MMT). The Alternative Tier 2 testing program for MMT, described in this paper, has yielded substantial pharmacokinetic data and has enabled the generation of physiologically based pharmacokinetic (PBPK) models for manganese. These models are capable of predicting tissue manganese concentrations across a variety of dose routes, levels, and durations while accounting for factors such as age, gender, and reproductive status, enabling the consideration of tissue dosimetry in future risk assessments. PMID:22545047

  19. Efficient determination of average valence of manganese in manganese oxides by reaction headspace gas chromatography.

    PubMed

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2017-08-18

    This work investigates a new reaction headspace gas chromatographic (HS-GC) technique for efficient quantifying average valence of manganese (Mn) in manganese oxides. This method is on the basis of the oxidation reaction between manganese oxides and sodium oxalate under the acidic condition. The carbon dioxide (CO 2 ) formed from the oxidation reaction can be quantitatively analyzed by headspace gas chromatography. The data showed that the reaction in the closed headspace vial can be completed in 20min at 80°C. The relative standard deviation of this reaction HS-GC method in the precision testing was within 1.08%, the relative differences between the new method and the reference method (titration method) were no more than 5.71%. The new HS-GC method is automated, efficient, and can be a reliable tool for the quantitative analysis of average valence of manganese in the manganese oxide related research and applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Permanganate-based synthesis of manganese oxide nanoparticles in ferritin

    NASA Astrophysics Data System (ADS)

    Olsen, Cameron R.; Smith, Trevor J.; Embley, Jacob S.; Maxfield, Jake H.; Hansen, Kameron R.; Peterson, J. Ryan; Henrichsen, Andrew M.; Erickson, Stephen D.; Buck, David C.; Colton, John S.; Watt, Richard K.

    2017-05-01

    This paper investigates the comproportionation reaction of MnII with {{{{MnO}}}4}- as a route for manganese oxide nanoparticle synthesis in the protein ferritin. We report that {{{{MnO}}}4}- serves as the electron acceptor and reacts with MnII in the presence of apoferritin to form manganese oxide cores inside the protein shell. Manganese loading into ferritin was studied under acidic, neutral, and basic conditions and the ratios of MnII and permanganate were varied at each pH. The manganese-containing ferritin samples were characterized by transmission electron microscopy, UV/Vis absorption, and by measuring the band gap energies for each sample. Manganese cores were deposited inside ferritin under both the acidic and basic conditions. All resulting manganese ferritin samples were found to be indirect band gap materials with band gap energies ranging from 1.01 to 1.34 eV. An increased UV/Vis absorption around 370 nm was observed for samples formed under acidic conditions, suggestive of MnO2 formation inside ferritin.

  1. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  2. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use. This...

  3. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use. This...

  4. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  5. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  6. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use. This...

  7. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use. This...

  8. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  9. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  10. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use. This...

  11. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  12. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  13. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use. This...

  14. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  15. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use. This...

  16. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use. This...

  17. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  18. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use. This...

  19. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  20. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use. This...

  1. Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors.

    PubMed

    Pang, Huan; Zhang, Yizhou; Cheng, Tao; Lai, Wen-Yong; Huang, Wei

    2015-10-14

    Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity.

  2. Sorption behavior of the Pt(II) complex anion on manganese dioxide (δ-MnO2): a model reaction to elucidate the mechanism by which Pt is concentrated into a marine ferromanganese crust

    NASA Astrophysics Data System (ADS)

    Maeno, Mamiko Yamashita; Ohashi, Hironori; Yonezu, Kotaro; Miyazaki, Akane; Okaue, Yoshihiro; Watanabe, Koichiro; Ishida, Tamao; Tokunaga, Makoto; Yokoyama, Takushi

    2016-02-01

    It is difficult to directly investigate the chemical state of Pt in marine ferromanganese crusts (a mixture of hydrous iron(III) oxide and manganese dioxide (δ-MnO2)) because it is present at extremely low concentration levels. This paper attempts to elucidate the mechanism by which Pt is concentrated into marine ferromanganese crust from the Earth's continental crust through ocean water. In this investigation, the sorption behavior of the Pt(II) complex ions on the surface of the δ-MnO2 that is a host of Pt was examined as a model reaction. The δ-MnO2 sorbing Pt was characterized by X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) to determine the chemical state of the Pt. Hydrolytic Pt(II) complex ions were specifically sorbed above pH 6 by the formation of a Mn-O-Pt bond. XPS spectra and XANES spectra for δ-MnO2 sorbing Pt showed that the sorbed Pt(II) was oxidized to Pt(IV) on δ-MnO2. The extended X-ray absorption fine structure (EXAFS) analysis showed that the coordination structure of Pt sorbed on δ-MnO2 is almost the same as that of the [Pt(OH)6]2- complex ion used as a standard. Therefore, the mechanism for the concentration of Pt in marine ferromanganese crust may be an oxidative substitution (penetration of Pt(IV) into structure of δ-MnO2) by a reduction-oxidation reaction between Pt(II) in [PtCl4-n(OH)n]2- and Mn(IV) in δ-MnO2 through a Mn-O-Pt bond.

  3. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aras, Neny Rasnyanti M., E-mail: neny.rasnyanti@gmail.com; Arcana, I Made, E-mail: arcana@chem.itb.ac.id

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearatemore » with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm{sup −1} which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese stearate, and followed by thermal treatment at a temperature of 70 °C and the incubation time for 45 days in the activated sludge.« less

  4. Supramolecular complexes obtained from the interaction of violuric acid with manganese ion and nitrogenous ligands

    NASA Astrophysics Data System (ADS)

    Garcia, Humberto C.; Diniz, Renata; Speziali, Nivaldo L.; de Oliveira, Luiz Fernando C.

    2014-07-01

    This work describes the synthesis, spectroscopic characterization (Raman and infrared) and structural arrangement of three new supramolecular complexes named [Mn(H2Vi)2(H2O)4)](bpy)2(1), [Mn(bpa)2(H2O)4](H2Vi)2(2) and [Mn(bpp)2(H2Vi)2]·(bpp)2(H2O)2(3); these compounds have been obtained making use of different building blocks such as 4,4‧-bipyridyne (bpy), 1,2-bis(4-pyridyl)ethane (bpa) and 4,4‧-trimethylene-dipyridine (bpp) acting as spacers with violuric acid and manganese ion, presenting behavior related to processes of molecular self-assembling and self-organization, very common in studies of supramolecular systems. In all these compounds the violurate anion appears in the crystalline arrangement as monodentate, anionic and chelate forms for 1, 2 and 3, respectively. The important to note is that monodentate coordination in 1 and chelate in 3 through O2 and O3 oxygen atoms from the oxime group can be considered the first example in literature involving violuric acid, both in coordination or interaction with manganese ion. Moreover, it can be seen a good agreement between the structural results and the spectroscopic data; for instance the presence of an intense band in the Raman spectrum around 1603 and 1012 cm-1 in all obtained compounds, assigned to the ν(CC)/ν(CN) and ν(ring)modes of the pyridyl ligand, respectively. Other important band can be observed in 1031 cm-1 only for compound 3, assigned to the ν(Nsbnd O) mode of the violurate ligand; the band at 1284 cm-1 referring to the ν(Ndbnd O) mode, very characteristic of violurate species is not seen in the spectrum, thus confirming the coordination of this building block by the oxime moiety.

  5. Attenuation of Combined Nickel(II) Oxide and Manganese(II, III) Oxide Nanoparticles' Adverse Effects with a Complex of Bioprotectors.

    PubMed

    Minigalieva, Ilzira A; Katsnelson, Boris A; Privalova, Larisa I; Sutunkova, Marina P; Gurvich, Vladimir B; Shur, Vladimir Y; Shishkina, Ekaterina V; Valamina, Irene E; Makeyev, Oleg H; Panov, Vladimir G; Varaksin, Anatoly N; Grigoryeva, Ekaterina V; Meshtcheryakova, Ekaterina Y

    2015-09-17

    Stable suspensions of NiO and Mn₃O₄ nanoparticles (NPs) with a mean (±s.d.) diameter of 16.7±8.2 and 18.4±5.4 nm, respectively, purposefully prepared by laser ablation of 99.99% pure nickel or manganese in de-ionized water, were repeatedly injected intraperitoneally (IP) to rats at a dose of 2.5 mg/kg 3 times a week up to 18 injections, either alone or in combination. A group of rats was injected with this combination with the background oral administration of a "bio-protective complex" (BPC) comprising pectin, vitamins A, C, E, glutamate, glycine, N-acetylcysteine, selenium, iodide and omega-3 PUFA, this composition having been chosen based on mechanistic considerations and previous experience. After the termination of injections, many functional and biochemical indices and histopathological features (with morphometric assessment) of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The Ni and Mn content of these organs was measured with the help of the atomic emission and electron paramagnetic resonance spectroscopies. We obtained blood leukocytes for performing the RAPD (Random Amplified Polymorphic DNA) test. Although both metallic NPs proved adversely bio-active in many respects considered in this study, Mn₃O₄-NPs were somewhat more noxious than NiO-NPs as concerns most of the non-specific toxicity manifestations and they induced more marked damage to neurons in the striatum and the hippocampus, which may be considered an experimental correlate of the manganese-induced Parkinsonism. The comparative solubility of the Mn₃O₄-NPs and NiO-NPs in a biological medium is discussed as one of the factors underlying the difference in their toxicokinetics and toxicities. The BPC has attenuated both the organ-systemic toxicity and the genotoxicity of Mn₃O₄-NPs in combination with NiO-NPs.

  6. Catalytic two-electron reduction of dioxygen by ferrocene derivatives with manganese(V) corroles.

    PubMed

    Jung, Jieun; Liu, Shuo; Ohkubo, Kei; Abu-Omar, Mahdi M; Fukuzumi, Shunichi

    2015-05-04

    Electron transfer from octamethylferrocene (Me8Fc) to the manganese(V) imidocorrole complex (tpfc)Mn(V)(NAr) [tpfc = 5,10,15-tris(pentafluorophenyl)corrole; Ar = 2,6-Cl2C6H3] proceeds efficiently to give an octamethylferrocenium ion (Me8Fc(+)) and [(tpfc)Mn(IV)(NAr)](-) in acetonitrile (MeCN) at 298 K. Upon the addition of trifluoroacetic acid (TFA), further reduction of [(tpfc)Mn(IV)(NAr)](-) by Me8Fc gives (tpfc)Mn(III) and ArNH2 in deaerated MeCN. TFA also results in hydrolysis of (tpfc)Mn(V)(NAr) with residual water to produce a protonated manganese(V) oxocorrole complex ([(tpfc)Mn(V)(OH)](+)) in deaerated MeCN. [(tpfc)Mn(V)(OH)](+) is rapidly reduced by 2 equiv of Me8Fc in the presence of TFA to give (tpfc)Mn(III) in deaerated MeCN. In the presence of dioxygen (O2), (tpfc)Mn(III) catalyzes the two-electron reduction of O2 by Me8Fc with TFA in MeCN to produce H2O2 and Me8Fc(+). The rate of formation of Me8Fc(+) in the catalytic reduction of O2 follows zeroth-order kinetics with respect to the concentrations of Me8Fc and TFA, whereas the rate increases linearly with increasing concentrations of (tpfc)Mn(V)(NAr) and O2. These kinetic dependencies are consistent with the rate-determining step being electron transfer from (tpfc)Mn(III) to O2, followed by further proton-coupled electron transfer from Me8Fc to produce H2O2 and [(tpfc)Mn(IV)](+). Rapid electron transfer from Me8Fc to [(tpfc)Mn(IV)](+) regenerates (tpfc)Mn(III), completing the catalytic cycle. Thus, catalytic two-electron reduction of O2 by Me8Fc with (tpfc)Mn(V)(NAr) as a catalyst precursor proceeds via a Mn(III)/Mn(IV) redox cycle.

  7. Neurobehavioral function in school-age children exposed to manganese in drinking water.

    PubMed

    Oulhote, Youssef; Mergler, Donna; Barbeau, Benoit; Bellinger, David C; Bouffard, Thérèse; Brodeur, Marie-Ève; Saint-Amour, Dave; Legrand, Melissa; Sauvé, Sébastien; Bouchard, Maryse F

    2014-12-01

    Manganese neurotoxicity is well documented in individuals occupationally exposed to airborne particulates, but few data are available on risks from drinking-water exposure. We examined associations of exposure from concentrations of manganese in water and hair with memory, attention, motor function, and parent- and teacher-reported hyperactive behaviors. We recruited 375 children and measured manganese in home tap water (MnW) and hair (MnH). We estimated manganese intake from water ingestion. Using structural equation modeling, we estimated associations between neurobehavioral functions and MnH, MnW, and manganese intake from water. We evaluated exposure-response relationships using generalized additive models. After adjusting for potential confounders, a 1-SD increase in log10 MnH was associated with a significant difference of -24% (95% CI: -36, -12%) SD in memory and -25% (95% CI: -41, -9%) SD in attention. The relations between log10 MnH and poorer memory and attention were linear. A 1-SD increase in log10 MnW was associated with a significant difference of -14% (95% CI: -24, -4%) SD in memory, and this relation was nonlinear, with a steeper decline in performance at MnW > 100 μg/L. A 1-SD increase in log10 manganese intake from water was associated with a significant difference of -11% (95% CI: -21, -0.4%) SD in motor function. The relation between log10 manganese intake and poorer motor function was linear. There was no significant association between manganese exposure and hyperactivity. Exposure to manganese in water was associated with poorer neurobehavioral performances in children, even at low levels commonly encountered in North America.

  8. Longitudinal and contemporaneous manganese exposure in apartheid-era South Africa: Implications for the past and future.

    PubMed

    Hess, Catherine A; Smith, Martin J; Trueman, Clive; Schutkowski, Holger

    2015-03-01

    Manganese is a potent environmental toxin, with significant effects on human health. Manganese exposure is of particular concern in South Africa where in the last decade, lead in gasoline has been replaced by methylcyclopentadienyl manganese tricarbonyl (MMT). We investigated recent historical levels of manganese exposure in urban Gauteng, South Africa prior to the introduction of MMT in order to generate heretofore non-existent longitudinal public health data on manganese exposure in urban South Africans. Cortical bone manganese concentration was measured by inductively coupled plasma mass spectrometer in 211 deceased adults with skeletal material from a fully identified archived tissue collection at the University of Pretoria, South Africa. All tissues came from individuals who lived and died in urban Gauteng (Transvaal), between 1958 and 1998. Median Mn concentration within the sampled tissues was 0.3μgg -1 , which is within reported range for bone manganese concentration in non-occupationally exposed populations and significantly below that reported in individuals environmentally exposed to MMT. No significant differences were seen in bone Mn between men and women or in individuals of different ethnicity, which further suggests environmental, as opposed to occupational exposure. There were no significant temporal or geographic differences in bone Mn. The results suggest that Mn exposure was low and uniformly distributed across the whole population prior to the introduction of MMT as a gasoline additive. In addition, should manganese exposure follow the same patterns as vehicle-emitted lead, a clear pattern of exposure will emerge with individuals in the urban core facing the greatest manganese exposure. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Manganese distribution in brains of Sprague-Dawley rats after 60 days of stainless steel welding-fume exposure.

    PubMed

    Yu, Il Je; Park, Jung Duck; Park, Eon Sub; Song, Kyung Seuk; Han, Kuy Tae; Han, Jeong Hee; Chung, Yong Hyun; Choi, Byung Sun; Chung, Kyu Hyuck; Cho, Myung Haing

    2003-12-01

    Welders working in a confined space, as in the shipbuilding industry, are at risk of being exposed to high concentrations of welding fumes and developing pneumoconiosis or other welding-fume exposure related diseases. Among such diseases, manganism resulting from welding-fume exposure remains a controversial issue, as the movement of manganese into specific brain regions has not yet been clearly established. Accordingly, to investigate the distribution of manganese in the brain after welding-fume exposure, male Sprague-Dawley rats were exposed to welding fumes generated from manual metal arc-stainless steel (MMA-SS) at concentrations of 63.6 +/- 4.1 mg/m(3) (low dose, containing 1.6 mg/m(3) Mn) and 107.1 +/- 6.3 mg/m(3) (high dose, containing 3.5 mg/m(3) Mn) total suspended particulate (TSP) for 2 h per day in an inhalation chamber over a 60-day period. Blood, brain, lung, and liver samples were collected after 2 h, 15, 30, and 60 days of exposure and the tissues analyzed for their manganese concentrations using an atomic absorption spectrophotometer. Although dose- and time-dependent increases in the manganese concentrations were found in the lungs and livers of the rats exposed for 60 days, only slight manganese increases were observed in the blood during this period. Major statistically significant increases in the brain manganese concentrations were detected in the cerebellum after 15 days of exposure and up until 60 days. Slight increases in the manganese concentrations were also found in the substantia nigra, basal ganglia (caudate nucleus, putamen, and globus pallidus), temporal cortex, and frontal cortex, thereby indicating that the pharmacokinetics and distribution of the manganese inhaled from the welding fumes were different from those resulting from manganese-only exposure.

  10. Deficiency in the manganese efflux transporter SLC30A10 induces severe hypothyroidism in mice.

    PubMed

    Hutchens, Steven; Liu, Chunyi; Jursa, Thomas; Shawlot, William; Chaffee, Beth K; Yin, Weiling; Gore, Andrea C; Aschner, Michael; Smith, Donald R; Mukhopadhyay, Somshuvra

    2017-06-09

    Manganese is an essential metal that becomes toxic at elevated levels. Loss-of-function mutations in SLC30A10, a cell-surface-localized manganese efflux transporter, cause a heritable manganese metabolism disorder resulting in elevated manganese levels and parkinsonian-like movement deficits. The underlying disease mechanisms are unclear; therefore, treatment is challenging. To understand the consequences of loss of SLC30A10 function at the organism level, we generated Slc30a10 knock-out mice. During early development, knock-outs were indistinguishable from controls. Surprisingly, however, after weaning and compared with controls, knock-out mice failed to gain weight, were smaller, and died prematurely (by ∼6-8 weeks of age). At 6 weeks, manganese levels in the brain, blood, and liver of the knock-outs were ∼20-60-fold higher than controls. Unexpectedly, histological analyses revealed that the brain and liver of the knock-outs were largely unaffected, but their thyroid exhibited extensive alterations. Because hypothyroidism leads to growth defects and premature death in mice, we assayed for changes in thyroid and pituitary hormones. At 6 weeks and compared with controls, the knock-outs had markedly reduced thyroxine levels (∼50-80%) and profoundly increased thyroid-stimulating hormone levels (∼800-1000-fold), indicating that Slc30a10 knock-out mice develop hypothyroidism. Importantly, a low-manganese diet produced lower tissue manganese levels in the knock-outs and rescued the phenotype, suggesting that manganese toxicity was the underlying cause. Our unanticipated discovery highlights the importance of determining the role of thyroid dysfunction in the onset and progression of manganese-induced disease and identifies Slc30a10 knock-out mice as a new model for studying thyroid biology. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Maternal dietary manganese protects chick embryos against maternal heat stress via epigenetic-activated antioxidant and anti-apoptotic abilities.

    PubMed

    Zhu, Yongwen; Lu, Lin; Liao, Xiudong; Li, Wenxiang; Zhang, Liyang; Ji, Cheng; Lin, Xi; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2017-10-27

    Maternal heat stress induced the aberrant epigenetic patterns resulting in the abnormal development of offspring embryos. It is unclear whether maternal dietary manganese supplementation as an epigenetic modifier could protect the chick embryonic development against maternal heat stress via epigenetic mechanisms. To test this hypothesis using an avian model, a completely randomized design with a 2 (maternal normal and high environmental temperatures of 21 and 32°C, respectively) × 3 (maternal dietary manganese sources, the control diet without manganese supplementation and the control diet + 120 mg/kg as either inorganic or organic manganese) factorial arrangement was adopted. Maternal environmental hyperthermia increased mRNA expressions of heat shock proteins 90 and 70, cyclin-dependent kinase 6 and B-cell CLL/lymphoma 2-associated X protein displaying oxidative damage and apoptosis in the embryonic heart. Maternal environmental hyperthermia impaired the embryonic development associated with the alteration of epigenetic status, as evidenced by global DNA hypomethylation and histone 3 lysine 9 hypoacetylation in the embryonic heart. Maternal dietary manganese supplementation increased the heart anti-apoptotic gene B-cell CLL/lymphoma 2 expressions under maternal environmental hyperthermia and manganese superoxide dismutase enzyme activity in the embryonic heart. Maternal dietary organic Mn supplementation effectively eliminated the impairment of maternal environmental hyperthermia on the embryonic development. Maternal dietary manganese supplementation up-regulated manganese superoxide dismutase mRNA expression by reducing DNA methylation and increasing histone 3 lysine 9 acetylation of its promoter. It is suggested that maternal dietary manganese addition could protect the chick embryonic development against maternal heat stress via enhancing epigenetic-activated antioxidant and anti-apoptotic abilities.

  12. Effect of Manganese on some aspects of carbohydrate metabolism in rats. [None

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, R.; Mushtaq, M.; Seth, P.K.

    1980-10-01

    Numerous biochemical and toxicological studies have indicated that chronic exposure to manganese leads to neurological abnormalities. Increasing use of manganese compounds as antiknocks in gasoline and diesel fuel has aroused a great concern over the toxicological potential of this metal and stressed the need for understanding the mechanism of its poisoning. Reports of alerations in the levels of biogenic amines have helped in understanding the basis of neurological disorders. However, little is known about the mechanism by which manganese exposure leads to hypoglycemia in workers. This study deals with the influence of manganese exposure on metabolism of glucose, the chiefmore » fuel of the brain, and some enzymes involved in its oxidation. These studies will provide an assessment of the extent to which manganese affects the various processes controlling carbohydrate metabolism.« less

  13. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation

    PubMed Central

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H.; Navrotsky, Alexandra

    2013-01-01

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn3+/Mn4+ ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states. PMID:23667149

  14. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation.

    PubMed

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra

    2013-05-28

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.

  15. Trithiocyanurate complexes of iron, manganese and nickel and their anticholinesterase activity.

    PubMed

    Kopel, Pavel; Dolezal, Karel; Langer, Vratislav; Jun, Daniel; Adam, Vojtech; Kuca, Kamil; Kizek, Rene

    2014-04-08

    The complexes of Fe(II), Mn(II) and Ni(II) with a combination of a Schiff base, nitrogen-donor ligand or macrocyclic ligand and trithiocyanuric acid (ttcH3) were prepared and characterized by elemental analysis and spectroscopies. Crystal and molecular structures of the iron complex of composition [Fe(L1)](ttcH2)(ClO4)·EtOH·H2O (1), where L1 is Schiff base derived from tris(2-aminoethyl)amine and 2-pyridinecarboxaldehyde, were solved. It was found that the Schiff base is coordinated to the central iron atom by six nitrogens forming deformed octahedral arrangement, whereas trithiocyanurate(1-) anion, perchlorate and solvent molecules are not coordinated. The X-ray structure of the Schiff base sodium salt is also presented and compared with the iron complex. The anticholinesterase activity of the complexes was also studied.

  16. Tellurium content of marine manganese oxides and other manganese oxides

    USGS Publications Warehouse

    Lakin, H.W.; Thompson, C.E.; Davidson, D.F.

    1963-01-01

    Tellurium in amounts ranging from 5 to 125 parts per million was present in all of 12 samples of manganese oxide nodules from the floor of the Pacific and Indian oceans. These samples represent the first recognized points of high tellurium concentration in a sedimentary cycle. The analyses may lend support to the theory that the minor-element content of seafloor manganese nodules is derived from volcanic emanations.

  17. Performance of point-of-use devices to remove manganese from drinking water.

    PubMed

    Carrière, Annie; Brouillon, Manon; Sauvé, Sébastien; Bouchard, Maryse F; Barbeau, Benoit

    2011-01-01

    A recent epidemiological study reported significant cognitive deficits among children in relation with consumption of water with manganese concentrations in the order of 50-100 ug/L. Concerns for neurotoxic effects of manganese raises the need for evaluating the efficiency of domestic water treatment systems for removal of this metal. The objective of the present study was to determine whether POU devices are efficient at reducing dissolved manganese concentration in drinking water. Various devices were tested according to the NSF 53 protocol for general metals for high pH test water. Based on these assays, the pour-through filters were identified as the most promising POU devices, with dissolved manganese removal greater than 60% at 100% rated capacity, and greater than 45% at 200% rated capacity (influent Mn ≈1,000 μg/L). Under-the-sink filters using cationic exchange resins (i.e., water softeners) were also efficient at removing dissolved manganese but over a shorter operating life. Manganese leaching was also observed beyond their rated capacity, making them less robust treatments. The activated carbon block filters and other proprietary technologies were found to be inappropriate for dissolved manganese removal. Further evaluation of POU devices performance should evaluate the impact of hardness on process performance. The impact of particulate Mn should also be evaluated.

  18. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor

    NASA Technical Reports Server (NTRS)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Microbes that couple growth to the reduction of manganese could play an important role in the biogeochemistry of certain anaerobic environments. Such a bacterium, Alteromonas putrefaciens MR-1, couples its growth to the reduction of manganese oxides only under anaerobic conditions. The characteristics of this reduction are consistent with a biological, and not an indirect chemical, reduction of manganese, which suggest that this bacterium uses manganic oxide as a terminal electron acceptor. It can also utilize a large number of other compounds as terminal electron acceptors; this versatility could provide a distinct advantage in environments where electron-acceptor concentrations may vary.

  19. Synergistic Heterobimetallic Manifold for Expedient Manganese(I)-Catalyzed C-H Cyanation.

    PubMed

    Liu, Weiping; Richter, Sven C; Mei, Ruhuai; Feldt, Milica; Ackermann, Lutz

    2016-12-12

    The manganese-catalyzed cyanation of inert C-H bonds was achieved within a heterobimetallic catalysis regime. The manganese(I) catalysis proved widely applicable and enabled C-H cyanations on indoles, pyrroles and thiophenes by facile C-H manganesation. The robustness of the manganese catalyst set the stage for the racemization-free C-H cyanation of amino acids with excellent levels of positional and chemo selectivity by the new cyanating agent NCFS. Experimental and computational mechanistic studies provided strong support for a synergistic heterobimetallic activation mode, facilitating the key C-C formation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Influence of oxalic acid on the dissolution kinetics of manganese oxide

    NASA Astrophysics Data System (ADS)

    Godunov, E. B.; Artamonova, I. V.; Gorichev, I. G.; Lainer, Yu. A.

    2012-11-01

    The kinetics and electrochemical processes of the dissolution of manganese oxides with various oxidation states in sulfuric acid solutions containing oxalate ion additives is studied under variable conditions (concentration, pH, temperature). The parameters favoring a higher degree of the dissolution of manganese oxides in acidic media are determined. The optimal conditions are found for the dissolution of manganese oxides in acidic media in the presence of oxalate ions. The mechanism proposed for the dissolution of manganese oxides in sulfuric acid solutions containing oxalic acid is based on the results of kinetic and electrochemical studies. The steps of the dissolution mechanism are discussed.

  1. Manganese in occupational arc welding fumes--aspects on physiochemical properties, with focus on solubility.

    PubMed

    Taube, Fabian

    2013-01-01

    Physicochemical properties, such as particle sizes, composition, and solubility of welding fumes are decisive for the bioaccessibility of manganese and thereby for the manganese cytotoxic and neurotoxic effects arising from various welding fumes. Because of the diverse results within the research on welding fume solubility, this article aims to review and discuss recent literature on physicochemical properties of gas metal arc welding, shielded metal arc welding, and flux-cored arc welding fumes, with focus on solubility properties. This article also presents a short introduction to the literature on arc welding techniques, health effects from manganese, and occupational exposure to manganese among welders.

  2. Autonomic function in manganese alloy workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrington, W.W.; Angle, C.R.; Willcockson, N.K.

    1998-07-01

    The observation of orthostatic hypotension in an index case of manganese toxicity lead to this prospective attempt to evaluate cardiovascular autonomic function and cognitive and emotional neurotoxicity in eight manganese alloy welders and machinists. The subjects consisted of a convenience sample consisting of an index case of manganese dementia, his four co-workers in a frog shop for gouging, welding, and grinding repair of high manganese railway track and a convenience sample of three mild steel welders with lesser manganese exposure also referred because of cognitive or autonomic symptoms. Frog shop air manganese samples 9.6--10 years before and 1.2--3.4 years aftermore » the diagnosis of the index case exceeded 1.0 mg/m{sup 3} in 29% and 0.2 mg/m{sup 3} in 62%. Twenty-four-hour electrocardiographic (Holter) monitoring was used to determine the temporal variability of the heartrate (RR{prime} interval) and the rates of change at low frequency and high frequency. MMPI and MCMI personality assessment and short-term memory, figure copy, controlled oral word association, and symbol digit tests were used.« less

  3. Hepatoprotective effect of manganese chloride against CCl4-induced liver injury in rats.

    PubMed

    Eidi, Akram; Mortazavi, Pejman; Behzadi, Khodabakhsh; Rohani, Ali Haeri; Safi, Shahabeddin

    2013-11-01

    The aim of the present study is to evaluate the protective effect of manganese chloride against carbon tetrachloride (CCl4)-induced liver injury in rats. Manganese chloride (0.001, 0.01, 0.05 and 0.1 g/kg bw) was administered intragastrically for 28 consecutive days to male CCl4-treated rats. The hepatoprotective activity was assessed using various biochemical parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), γ-glutamyltransferase (GGT) and superoxide dismutase (SOD). Histopathological changes in the liver of different groups were also studied. Administration of CCl4 increased the serum ALT, AST, ALP and GGT but decreased SOD levels in rats. Treatment with manganese chloride significantly attenuated these changes to nearly normal levels. The animals treated with manganese chloride have shown decreased necrotic zones and hepatocellular degeneration when compared to the liver exposed to CCl4 intoxication alone. Thus, the histopathological studies also supported the protective effect of manganese chloride. Therefore, the results of this study suggest that manganese chloride exerts hepatoprotection via promoting antioxidative properties against CCl4-induced oxidative liver damage.

  4. Speciation of Mn(II), Mn(VII) and total manganese in water and food samples by coprecipitation-atomic absorption spectrometry combination.

    PubMed

    Citak, Demirhan; Tuzen, Mustafa; Soylak, Mustafa

    2010-01-15

    A speciation procedure based on the coprecipitation of manganese(II) with zirconium(IV) hydroxide has been developed for the investigation of levels of manganese species. The determination of manganese levels was performed by flame atomic absorption spectrometry (FAAS). Total manganese was determined after the reduction of Mn(VII) to Mn(II) by ascorbic acid. The analytical parameters including pH, amount of zirconium(IV), sample volume, etc., were investigated for the quantitative recoveries of manganese(II). The effects of matrix ions were also examined. The recoveries for manganese(II) were in the range of 95-98%. Preconcentration factor was calculated as 50. The detection limit for the analyte ions based on 3 sigma (n=21) was 0.75 microg L(-1) for Mn(II). The relative standard deviation was found to be lower than 7%. The validation of the presented procedure was performed by analysis of certified reference material having different matrices, NIST SRM 1515 (Apple Leaves) and NIST SRM 1568a (Rice Flour). The procedure was successfully applied to natural waters and food samples.

  5. Characterization of Sumbawa manganese ore and recovery of manganese sulfate as leaching products

    NASA Astrophysics Data System (ADS)

    Kusumaningrum, Retno; Rahmani, Siti Astari; Widayatno, Wahyu Bambang; Wismogroho, Agus Sukarto; Nugroho, Dwi Wahyu; Maulana, Syahrizal; Rochman, Nurul Taufiqu; Amal, M. Ikhlasul

    2018-05-01

    The aims of this research were to study the leaching process of manganese ore which originated from Sumbawa, Indonesia and its characterization. A high grade Indonesian manganese ore from Sumbawa, West of Nusa Tenggara was characterized by X-Ray Fluorescence (XRF). The result showed composition of 78.8 % Mn, 17.77% Fe and the rest were trace elements such as Si, Co, Ti, Zn, V and Zr contents. X-Ray Diffraction analysis showed that the manganese ore was consisted of pyrolusite (MnO2), rhodonite (MnSiO3), rhodochrosite (MnCO3) and hematite (Fe2O3). Manganese ore was also analyzed by thermal analysis to observe their thermal decomposition character. In this study, sulphuric acid (H2SO4, 6 M) was deployed as leaching agent. The leaching process was performed at 90 °C for two hours with the addition of NH4OH to control pH. Recovery percentage of leaching process yielded of 87 % Mn extracted. The crystallization process result at heating temperature of 200 °C was confirmed by XRD as manganese sulfate.

  6. Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction

    NASA Astrophysics Data System (ADS)

    Gac, Wojciech; Greluk, Magdalena; Słowik, Grzegorz; Turczyniak-Surdacka, Sylwia

    2018-05-01

    Surface and structural changes of unmodified manganese and cobalt-manganese oxide during activation and ethanol steam reforming reaction conditions (ESR) were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction/oxidation (TPR/TPO) and transmission electron microscopy. It was shown that synthesis of cobalt manganese oxide by the redox precipitation method led to the formation of strongly dispersed cobalt ionic species within cryptomelane-based manganese oxide structure. Development of large cube-like MnO nanoparticles with spherical cobalt metallic crystallites decorated by manganese oxide on the high oxidation state and potassium species was observed during reduction. Cobalt manganese catalyst showed high initial activity and selectivity to H2 and CO2 in ethanol stem reforming reaction in the range of 390-480 °C. The drop of ethanol conversion and changes of selectivity with the time-on-stream were observed. An increase of reaction temperature led to intensification of deactivation phenomena. TEM studies evidenced coexistence of Co and CoOx nanoparticles formed under ethanol steam reforming conditions, partially covered by filamentous and encapsulating carbonaceous deposits.

  7. Extraction of manganese from electrolytic manganese residue by bioleaching.

    PubMed

    Xin, Baoping; Chen, Bing; Duan, Ning; Zhou, Changbo

    2011-01-01

    Extraction of manganese from electrolytic manganese residues using bioleaching was investigated in this paper. The maximum extraction efficiency of Mn was 93% by sulfur-oxidizing bacteria at 4.0 g/l sulfur after bioleaching of 9days, while the maximum extraction efficiency of Mn was 81% by pyrite-leaching bacteria at 4.0 g/l pyrite. The series bioleaching first by sulfur-oxidizing bacteria and followed by pyrite-leaching bacteria evidently promoted the extraction of manganese, witnessing the maximum extraction efficiency of 98.1%. In the case of sulfur-oxidizing bacteria, the strong dissolution of bio-generated sulfuric acid resulted in extraction of soluble Mn2+, while both the Fe2+ catalyzed reduction of Mn4+ and weak acidic dissolution of Mn2+ accounted for the extraction of manganese with pyrite-leaching bacteria. The chemical simulation of bioleaching process further confirmed that the acid dissolution of Mn2+ and Fe2+ catalyzed reduction of Mn4+ were the bioleaching mechanisms involved for Mn extraction from electrolytic manganese residues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Chronic manganese poisoning in the dry battery industry

    PubMed Central

    Emara, A. M.; El-Ghawabi, S. H.; Madkour, O. I.; El-Samra, G. H.

    1971-01-01

    Emara, A. M., El-Ghawabi, S. H., Madkour, O. I., and El-Samra, G. H. (1971). Brit. J. industr. Med., 28, 78-82. Chronic manganese poisoning in the dry battery industry. A survey was carried out on 36 workers in the dry battery industry exposed to dust containing 65 to 70% manganese oxide. Eight (22·2%) were found to have neuropsychiatric manifestations, six (16·6%) had chronic manganese psychosis, one had left hemi-parkinsonism, and one had left choreoathetosis. An environmental study revealed a high concentration of manganese dust at the main working areas, far exceeding the accepted MAC. The manganese level in blood was almost within the normal range. Coproporphyrin in urine was normal. The electroencephalogram was abnormal in only two of the affected workers (25%) but there was no association between this and the clinical manifestations or duration of exposure. The concentration of manganese dust in air showed some association with the prevalence and rapidity of effect on workers according to their occupation. However, individual susceptibility was apparent. The shortest latent period was one year. PMID:5101169

  9. Intramolecular electron transfer in cyanide bridged adducts comprising Ru(II)/Ru(III) tetracarboxylate and [Mn(I)(CO)(CN)((t)BuNC)(4)] units.

    PubMed

    Imhof, Wolfgang; Sterzik, Anke; Krieck, Sven; Schwierz, Markus; Hoffeld, Thomas; Spielberg, Eike T; Plass, Winfried; Patmore, Nathan

    2010-07-21

    Reaction of mixed valence ruthenium tetracarboxylates [Ru(2)(II,III)(R(1)COO)(2)(R(2)COO)(2)Cl] (R(1) = Me, R(2) = 2,4,6-(i)Pr-Ph or R(1) = R(2) = (t)Bu) with two equivalents of the octahedral manganese complex [Mn(I)(CO)(CN)((t)BuNC)(4)] leads to the formation of cyanide bridged heteronuclear coordination compounds of the general formula {[Ru(2)(II,III)(R(1)COO)(2)(R(2)COO)(2)][Mn(I)(CO)(CN)((t)BuNC)(4)](2)}Cl. In solution an intramolecular electron transfer from manganese towards the multiply bonded Ru(2) core occurs that is verified by EPR and IR spectroscopy, magnetic measurements and DFT calculations. Nevertheless, disproportionation of an initially formed {Mn(I)-Ru(2)(II,III)-Mn(I)}(+) adduct into {Mn(II)-Ru(2)(II,III)-Mn(I)}(2+) and {Mn(I)-Ru(2)(II,II)-Mn(I)} species cannot be completely ruled out.

  10. Characterization of the glaze and in-glaze pigments of the nineteenth-century relief tiles from the Pena National Palace, Sintra, Portugal

    NASA Astrophysics Data System (ADS)

    Coutinho, M. L.; Veiga, J. P.; Alves, L. C.; Mirão, J.; Dias, L.; Lima, A. M.; Muralha, V. S.; Macedo, M. F.

    2016-07-01

    The glaze and in-glaze pigments of the historical nineteenth-century glazed tiles from the Pena National Palace (Sintra, Portugal) were characterized using a multi-analytical approach. Chemical composition and microstructural characterization were ascertained by µ-PIXE, µ-Raman, optical microscopy and VP-SEM-EDS. The manufacturing technique and colour palette in these tiles were found to be close to the ceramic pigments used in traditional majolica. The blue and purple colours derive from cobalt oxide and manganese oxide, respectively. A mixture of Pb-Sn-Sb yellow with cobalt oxide and iron oxide was used for green and dark yellow, respectively, while grey tonalities consist of a complex mixture of cobalt oxide, manganese oxide and Pb-Sn-Sb yellow in different proportions. Results obtained allowed the determination of the oxides and elements used in pigments as well as production techniques, resorting to traditional majolica manufacture, although the tiles were produced by the end of the nineteenth century.

  11. Homeostasis of metals in the progression of Alzheimer's disease.

    PubMed

    González-Domínguez, Raúl; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2014-06-01

    In order to study the involvement of metals in the progression of Alzheimer's disease, serum samples from patients with Alzheimer and mild cognitive impairment were investigated. For this purpose, metal content was analyzed after size-fractionation of species and then, inter-element and inter-fraction ratios were computed. In this way, the analysis allowed discovering changes that could be used as markers of disease, but also provided a new insight into the interactions in the homeostasis of elements in neurodegeneration and its progression. Aluminum and labile forms of iron and copper were increased in demented patients, while manganese, zinc and selenium were reduced. Interestingly, levels of different elements, principally iron, aluminum and manganese, were closely inter-related, which could evidence a complex interdependency between the homeostasis of the different metals in this disorder. On the other hand, imbalances in metabolism of copper, zinc and selenium could be associated to abnormal redox status. Therefore, this study may contribute to our understanding of the pathological mechanisms related to metals in Alzheimer's disease.

  12. Fluorescent Properties of Manganese Halide Benzothiazole Inorganic-Organic Hybrids.

    PubMed

    Yu, Hui; Mei, YingXuan; Wei, ZhenHong; Mei, GuangQuan; Cai, Hu

    2016-11-01

    The reaction of manganese (II) halides MnX 2 and benzothiazole (btz) in the concentrated acids HX (X = Cl, Br) at 80 °C resulted in the formation of two inorganic-organic hybrid complexes: [(btz) 2 (MnX 4 )]·2H 2 O (X = Cl, 1; X = Br, 2). Both compounds showed green luminescence and exhibited moderate quantum yields of 43.17 % for 1 and 26.18 % for 2, which were directly originated from the tetrahedral coordination of Mn 2+ ion. Two organic - inorganic hybrids [(btz) 2 (MnX 4 )]·2H 2 O based on MnCl 2 , benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light. Graphical abstract Two organic-inorganic hybrids [(btz) 2 (MnX 4 )]·2H 2 O based on MnCl 2 , benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light.

  13. Degradation of alkylphenols by white rot fungus Irpex lacteus and its manganese peroxidase.

    PubMed

    Moon, Dong-Soo; Song, Hong-Gyu

    2012-10-01

    Alkylphenols are common endocrine disrupters that are produced from the degradation of widely used surfactants. Since they cause various harmful effects on aquatic life and in humans, they should be removed from the environments being contaminated. White rot fungus Irpex lacteus can completely degrade 100 mg/L of octylphenol, nonylphenol, and phenylphenol during 1 day of incubation in the complex YMG medium, which was the highest degrading capability among nine strains of white rot fungi tested. In the N-limited Kirk's basal salts medium, I. lacteus could degrade almost 100 % of 100 mg/L octylphenol and nonylphenol in 1 h, and exhibited a high activity of manganese peroxidase (MnP; 1,790 U/L). MnP of I. lacteus was purified by ion exchange chromatography, and this degraded 99 % of 50 mg/L octylphenol and removed 80 % of estrogenic activity in 2 hours. In addition, the purified MnP (10 U/mL) degraded over 90 % of 50 mg/L nonylphenol in 1 h.

  14. Solid state microwave synthesis of highly crystalline ordered mesoporous hausmannite Mn 3 O 4 films

    DOE PAGES

    Xia, Yanfeng; Qiang, Zhe; Lee, Byeongdu; ...

    2017-06-23

    Microwave calcination of ordered micelle templated manganese carbonate films leads to highly crystalline, ordered mesoporous manganese oxide, while similar temperatures in a furnace lead to disordered, amorphous manganese oxide.

  15. Determination of urinary manganese by the direct chelation-extraction method and flameless atomic absorption spectrophotometry.

    PubMed Central

    Watanabe, T; Tokunaga, R; Iwahana, T; Tati, M; Ikeda, M

    1978-01-01

    The direct chelation-extraction method, originally developed by Hessel (1968) for blood lead analysis, has been successfully applied to urinalysis for manganese. The analyses of 35 urine samples containing up to 100 microgram/1 of manganese from manganese-exposed workers showed that the data obtained by this method agree well with those by wet digestion-flame atomic absorption spectrophotometry and also by flameless atomic absorption spectrophotometry. PMID:629893

  16. Ion-Selective Deposition of Manganese Sulphate Solution from Trenggalek Manganese Ore by Active Carbon and Sodium Hydroxide

    NASA Astrophysics Data System (ADS)

    Andriyah, L.; Sulistiyono, E.

    2017-02-01

    One of the step in manganese dioxide manufacturing process for battery industry is a purification process of lithium manganese sulphate solution. The elimination of impurities such as iron removal is important in hydrometallurgical processes. Therefore, this paper present the purification results of manganese sulphate solution by removing impurities using a selective deposition method, namely activated carbon adsorption and NaOH. The experimental results showed that the optimum condition of adsorption process occurs on the addition of 5 g adsorbent and the addition of 10 ml NaOH 1 N, processing time of 30 minutes and the best is the activated carbon adsorption of Japan. Because the absolute requirement of the cathode material of lithium ion manganese are free of titanium then of local wood charcoal is good enough in terms of eliminating ions Ti is equal to 70.88%.

  17. Banana peel reductant for leaching medium grade manganese ore in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Aripin, H.; Joni, I. Made; Busaeri, Nundang; Usrah, Ifkar; Sudiana, I. Nyoman; Sabchevski, Svilen

    2017-03-01

    In this investigation, manganese has been produced from medium grade manganese ore from Karangnunggal mine (West Java, Indonesia). The effects of weighed amount of banana peels on the structural and leaching properties have been studied. The material's properties have been characterized on the basis of the experimental data obtained using X-ray fluorescence (XRF), X-ray diffraction (XRD), and Fourier transforms infrared (FTIR) spectroscopy. It has been found that an increase of the weighed amount of banana peels up to 4 g leads to an increase of the leaching efficiency of manganese from manganese ore. Above 4 g, however, the leaching efficiency does not change significantly. The analysis based on the interpretation of both XRD patterns and FTIR spectrum allows one to explain the increase in the leaching efficiencies of manganese by the reduction of MnO2 minerals and by the removal of hemicelluloses groups of banana peel in the samples.

  18. Reagent removal of manganese from ground water

    NASA Astrophysics Data System (ADS)

    Brayalovsky, G.; Migalaty, E.; Naschetnikova, O.

    2017-06-01

    The study is aimed at the technology development of treating drinking water from ground waters with high manganese content and oxidizability. Current technologies, physical/chemical mechanisms and factors affecting in ground treatment efficiency are reviewed. Research has been conducted on manganese compound removal from ground waters with high manganese content (5 ppm) and oxidizability. The studies were carried out on granular sorbent industrial ODM-2F filters (0.7-1.5 mm fraction). It was determined that conventional reagent oxidization technologies followed by filtration do not allow us to obtain the manganese content below 0.1 ppm when treating ground waters with high oxidizability. The innovative oxidation-based manganese removal technology with continuous introduction of reaction catalytic agent is suggested. This technology is effective in alkalization up to pH 8.8-9. Potassium permanganate was used as a catalytic agent, sodium hypochlorite was an oxidizer and cauistic soda served an alkalifying agent.

  19. Globally sustainable manganese metal production and use.

    PubMed

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also reduces the quantity of solid wastes generated during processing. Secondary aluminum facilities have reported hazardous waste generation management issues due to baghouse dusts from rotary furnaces processing selenium contaminated manganese alloys. Environmental impacts resulting from industry are represented by emission inventories of chemical releases to the air, water, and soil. The U.S. metals industry releases reported to EPA Toxic Release Inventory indicate the primary metals industry is the major source of metal air toxic emissions, exceeding electric utility air toxic emissions. The nonferrous metals industry is reported to be the Organization for Economic Co-operation and Development (OECD) most intensive airborne and land pollution source of bioaccumulative metals. However, total waste emissions from industries in the OECD countries have declined due to improving energy consumption. Emission registers and access are improving around the world. However, environmental databases for metal particulates have low confidence ratings since the majority of air toxic emissions are not reported, not monitored, or are estimated based on worst-case emission factors. Environmental assessments including biological monitoring are necessary to validate mandated particulate metal emission reductions and control technologies during metal processing.

  20. Prenatal co-exposure to manganese and depression and 24-months neurodevelopment.

    PubMed

    Muñoz-Rocha, Teresa Verenice; Tamayo Y Ortiz, Marcela; Romero, Martín; Pantic, Ivan; Schnaas, Lourdes; Bellinger, David; Claus-Henn, Birgit; Wright, Rosalind; Wright, Robert O; Téllez-Rojo, Martha María

    2018-01-01

    Normal prenatal neurodevelopment follows stages that are potentially influenced by both chemical and psychosocial environments. Exposure to elevated manganese during this critically vulnerable period has been found to be neurotoxic. Independently, maternal prenatal depression has been associated with subsequent neurodevelopmental decrements in children. The association between child neurodevelopment and prenatal co-exposure to manganese and maternal depression has not been sufficiently studied. During pregnancy and at birth, we measured maternal blood and cord blood manganese levels respectively. Maternal depression was assessed in the 3rd trimester of pregnancy using the Edinburgh Depression Scale. Neurodevelopment was evaluated at 24 months of age with the Bayley Scales of Infant Development. A multivariate multiple regression model was used to analyze cognitive, language and motor scores simultaneously for 473 children from the PROGRESS birth cohort in Mexico City. Over 25% of our study participants reported having depressive symptoms. 3rd trimester blood manganese as well as depressive symptoms were independently negatively associated with all neurodevelopment scores in adjusted models. In stratified analyses, the negative association between manganese (maternal as well as cord blood) and 24-month language scores was stronger among women with depressive symptoms. Receptive language was mostly affected. Inverted U-shaped curves were seen for the association between with cord blood manganese and neurodevelopment scores. Our findings are in line with previous studies of manganese and depression neurotoxicity. The prenatal period may be particularly sensitive to manganese and depression co-exposures and should be of interest for public health interventions to promote healthy emotional and nutritional pregnancies. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Preliminary study of sources and processes of enrichment of manganese in water from University of Rhode Island supply wells

    USGS Publications Warehouse

    Silvey, William Dudley; Johnston, Herbert E.

    1977-01-01

    Concentrations of dissolved manganese have increased from 0.0 to as much as 3.3 mg/liter over a period of years in closely spaced University of Rhode Island supply wells. The wells tap stratified glacial deposits and derive part of their water from infiltration from a nearby river-pond system. The principal sources of the manganese seem to be coatings of oxides and other forms of manganese on granular aquifer materials and organic-rich sediments on the bottom of the pond and river. Chemical analyses of water from an observation well screened from 3 to 5 feet below the pond bottom indicate that infiltration of water through organic-rich sediments on the pond bottom is the likely cause of manganese enrichment in the well supplies. After passing through the organic layer, the water contains concentrations of manganese as high as 1.2 mg/liter. Manganese in water in concentrations that do not cause unpleasant taste is not regarded to be toxicologically significant. However, concentrations in excess of a few tenths of a milligram per liter are undesirable in public supplies and in many industrial supplies. Brown and others (21970) note that waters containing manganese in concentrations less than 0.1 mg/liter seldom prove troublesome, but that those containing more than 0.5 mg/liter may form objectionable deposits on cooked food, laundry, and plumbing fixtures. The U.S. Public health Service (1962) recommends that the concentrations of manganese in drinking and culinary water not exceed 0.05 mg/liter. (Woodard-USGS)

  2. Evaluation of particulate matter emissions from manganese alloy production using life-cycle assessment.

    PubMed

    Davourie, Julia; Westfall, Luke; Ali, Mohammed; McGough, Doreen

    2017-01-01

    Life-cycle assessments (LCAs) provide a wealth of industry data to assist in evaluating the environmental impacts of industrial processes and product supply chains. In this investigation, data from a recent LCA covering global manganese alloy production was used to evaluate sources of particulate matter (PM) emissions associated with the manganese alloy supply chain. The analysis is aimed at providing an empirical, industry-averaged breakdown of the contribution that processes and emissions controls have on total emissions, manganese releases and occupational exposure. The assessment shows that 66% of PM emissions associated with manganese production occur beyond manganese facilities. Direct or on-site emissions represent 34% of total PM and occur predominantly as disperse sources during mineral extraction and hauling, and as primary furnace emissions. The largest contribution of manganese-bearing PM at ground-level is associated with fugitive emissions from metal and slag tapping, casting, crushing and screening. The evaluation provides a high-level ranking of emissions by process area, to assist in identifying priority areas for industry-wide initiatives to reduce emissions and occupational exposure of manganese. The range of PM emission levels in industry indicate that further enhancements in PM emissions can be achieved by sharing of best practices in emissions controls, limiting furnace conditions which lead to by-passing of emissions controls and application of secondary emission controls to capture fugitive emissions during tapping and casting. The LCA approach to evaluating PM emissions underscores the important role that process optimization and resource efficiency have on reducing PM emissions throughout the manganese supply chain. Copyright © 2016. Published by Elsevier B.V.

  3. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex

    NASA Astrophysics Data System (ADS)

    Zhou, Mowei; Yan, Jing; Romano, Christine A.; Tebo, Bradley M.; Wysocki, Vicki H.; Paša-Tolić, Ljiljana

    2018-01-01

    Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase, Mnx, from Bacillus sp. PL-12 has been successfully overexpressed in active form as a protein complex with a molecular mass of 211 kDa. We have recently used surface induced dissociation (SID) and ion mobility-mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data from the native mass spectrometry experiments led to a plausible structural model of this multicopper oxidase, which has been difficult to study by conventional structural biology methods. It was also revealed that each Mnx subunit binds a variable number of copper ions. Becasue of the heterogeneity of the protein and limited mass resolution, ambiguities in assigning some of the observed peaks remained as a barrier to fully understanding the role of metals and potential unknown ligands in Mnx. In this study, we performed SID in a modified Fourier transform-ion cyclotron resonance (FTICR) mass spectrometer. The high mass accuracy and resolution offered by FTICR unveiled unexpected artificial modifications on the protein that had been previously thought to be iron bound species based on lower resolution spectra. Additionally, isotopically resolved spectra of the released subcomplexes revealed the metal binding stoichiometry at different structural levels. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes. [Figure not available: see fulltext.

  4. The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques

    PubMed Central

    Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong

    2017-01-01

    Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II) adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd) at low pH and inner-sphere surface complexation sites (SOCd+ and (SO)2CdOH− species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface. PMID:28956849

  5. Study of high performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.

    1984-01-01

    The first series of heat treated nickel manganese alloys are tested for mechanical properties at temperatures of 148.9 C (300 F) and 260 C (500 F). All material receives the same heat treatment in order to provide a common basis for comparison of results. Mechanical property performance improves with increasing manganese content in the alloy. Although all manganese bearing alloy is significantly superior to conventional electroformed nickel, samples containing over 3000 ppm manganese display outstanding ultimate and yield strengths while maintaining reasonably satisfactory ductility. Alloy containing over 6000 ppm of manganese is very competitive to Inconel 718 (mill annealed and age hardened) at all temperatures of interest, although ductility is not as great in the electrodeposited counterpart.

  6. The scavenging of silver by manganese and iron oxides in stream sediments collected from two drainage areas of Colorado

    USGS Publications Warehouse

    Chao, T.T.; Anderson, B.J.

    1974-01-01

    Stream sediments of two well-weathered and aerated drainage areas of Colorado containing anomalous amounts of silver were allowed to react by shaking with nitric acid of different concentrations (1-10M). Silver, manganese, and iron simultaneously dissolved were determined by atomic absorption. The relationship between silver dissolution and the dissolution of manganese and/or iron was evaluated by linear and multiple regression analyses. The highly significant correlation coefficient (r = 0.913) between silver and manganese dissolution suggests that manganese oxides are the major control on the scavenging of silver in these stream sediments, whereas iron oxides only play a secondary role in this regard. ?? 1974.

  7. Metal Doped Manganese Oxide Thin Films for Supercapacitor Application.

    PubMed

    Tung, Mai Thanh; Thuy, Hoang Thi Bich; Hang, Le Thi Thu

    2015-09-01

    Co and Fe doped manganese oxide thin films were prepared by anodic deposition at current density of 50 mA cm(-2) using the electrolyte containing manganese sulfate and either cobalt sulfate or ferrous sulfate. Surface morphology and crystal structure of oxides were studied by scanning electron microscope (SEM) and X-ray diffraction (XRD). Chemical composition of materials was analyzed by X-ray energy dispersive spectroscope (EDS), iodometric titration method and complexometric titration method, respectively. Supercapacitive behavior of Co and Fe doped manganese oxide films were characterized by cyclic voltammetry (CV) and impedance spectroscopy (EIS). The results show that the doped manganese oxides are composed of nano fiber-like structure with radius of 5-20 nm and remain amorphous structure after heat treatment at 100 degrees C for 2 hours. The average valence of manganese increases from +3.808 to +3.867 after doping Co and from +3.808 to +3.846 after doping Fe. The doped manganese oxide film electrodes exhibited preferably ideal pseudo-capacitive behavior. The specific capacitance value of deposited manganese oxide reaches a maximum of 175.3 F/g for doping Co and 244.6 F/g for doping Fe. The thin films retained about 84% of the initial capacity even after 500 cycles of charge-discharge test. Doping Co and Fe decreases diffusion and charge transfer resistance of the films. The electric double layer capacitance and capacitor response frequency are increased after doping.

  8. Neurobehavioral Function in School-Age Children Exposed to Manganese in Drinking Water

    PubMed Central

    Oulhote, Youssef; Mergler, Donna; Barbeau, Benoit; Bellinger, David C.; Bouffard, Thérèse; Brodeur, Marie-Ève; Saint-Amour, Dave; Legrand, Melissa; Sauvé, Sébastien

    2014-01-01

    Background: Manganese neurotoxicity is well documented in individuals occupationally exposed to airborne particulates, but few data are available on risks from drinking-water exposure. Objective: We examined associations of exposure from concentrations of manganese in water and hair with memory, attention, motor function, and parent- and teacher-reported hyperactive behaviors. Methods: We recruited 375 children and measured manganese in home tap water (MnW) and hair (MnH). We estimated manganese intake from water ingestion. Using structural equation modeling, we estimated associations between neurobehavioral functions and MnH, MnW, and manganese intake from water. We evaluated exposure–response relationships using generalized additive models. Results: After adjusting for potential confounders, a 1-SD increase in log10 MnH was associated with a significant difference of –24% (95% CI: –36, –12%) SD in memory and –25% (95% CI: –41, –9%) SD in attention. The relations between log10 MnH and poorer memory and attention were linear. A 1-SD increase in log10 MnW was associated with a significant difference of –14% (95% CI: –24, –4%) SD in memory, and this relation was nonlinear, with a steeper decline in performance at MnW > 100 μg/L. A 1-SD increase in log10 manganese intake from water was associated with a significant difference of –11% (95% CI: –21, –0.4%) SD in motor function. The relation between log10 manganese intake and poorer motor function was linear. There was no significant association between manganese exposure and hyperactivity. Conclusion: Exposure to manganese in water was associated with poorer neurobehavioral performances in children, even at low levels commonly encountered in North America. Citation: Oulhote Y, Mergler D, Barbeau B, Bellinger DC, Bouffard T, Brodeur ME, Saint-Amour D, Legrand M, Sauvé S, Bouchard MF. 2014. Neurobehavioral function in school-age children exposed to manganese in drinking water. Environ Health Perspect 122:1343–1350; http://dx.doi.org/10.1289/ehp.1307918 PMID:25260096

  9. Associations between petrol-station density and manganese and lead in the cord blood of newborns living in Taiwan.

    PubMed

    Lin, Ying-Ying; Guo, Yue-Liang Leon; Chen, Pau-Chung; Liu, Jyung-Hung; Wu, Hui-Chen; Hwang, Yaw-Huei

    2011-02-01

    Although the anti-knocking agents used in Taiwan do not contain manganese, there are relatively high concentrations of the element in diesel fuel. As such, there have been many concerns about the impact of exposure to diesel fuels on health. This study was conducted in Taiwan to investigate the relationship between the concentration of manganese in cord blood of Taiwanese newborns and the geographic density of petrol stations as a surrogate for determining manganese emissions from vehicular traffic. A total of 1526 full-term newborns without major congenital malformations were consecutively recruited from various medical facilities from May 2004 to July 2005. Questionnaires were completed by the newborns' mothers after delivery to collect information on demographic characteristics, medical history, living environment, and other factors. Cord blood samples were collected at birth and analyzed for manganese and lead using inductively coupled plasma mass spectrometry. The geographic density of petrol stations within a 10 km zone around each newborn's residence was calculated for 1343 newborns using the Arc9 Geographic Information System. The geometric means of cord blood manganese and lead concentrations were 47.0 μg/L (GSD=1.42) and 12.6 μg/L (GSD=1.76), respectively. After adjusting for potential confounding factors, including maternal age, and maternal education, the results of a multiple linear regression model indicated that the concentration of cord blood manganese increased monotonically with an increasing density of petrol stations. However, no such association was found for levels of lead in cord blood. Further smoothing spline model analysis indicated that a ten unit increment in petrol station density made cord blood manganese and lead levels change by factors of 1.0092 (95% CI: 1.0058, 1.0127) and 0.9994 (95% CI: 0.9890, 0.9998), respectively. This finding suggests that exposure to manganese-containing fuel from motor vehicles may result in elevated manganese levels in the fetus. Further research is warranted to explore the relationship between traffic-related manganese exposure and potential adverse effects on fetal development. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Molecules in high spin states III: The millimeter/submillimeter-wave spectrum of the MnCl radical (X 7Σ+)

    NASA Astrophysics Data System (ADS)

    Halfen, D. T.; Ziurys, L. M.

    2005-02-01

    The pure rotational spectrum of the MnCl radical (X 7Σ+) has been recorded in the range 141-535 GHz using millimeter-submillimeter direct absorption spectroscopy. This work is the first time the molecule has been studied with rotational resolution in its ground electronic state. MnCl was synthesized by the reaction of manganese vapor, produced in a Broida-type oven, with Cl2. Transitions of both chlorine isotopomers were measured, as well as lines originating in several vibrationally excited states. The presence of several spin components and manganese hyperfine interactions resulted in quite complex spectra, consisting of multiple blended features. Because 42 rotational transitions were measured for Mn35Cl over a wide range of frequencies with high signal-to-noise, a very accurate set of rotational, fine structure, and hyperfine constants could be determined with the aid of spectral simulations. Spectroscopic constants were also determined for Mn37Cl and several vibrationally excited states. The values of the spin-rotation and spin-spin parameters were found to be relatively small (γ=11.2658 MHz and λ=1113.10 MHz for Mn35Cl); in the case of λ, excited electronic states contributing to the second-order spin-orbit interaction may be canceling each other. The Fermi contact hyperfine term was found to be large in manganese chloride with bF(Mn35Cl)=397.71 MHz, a result of the manganese 4s character mixing into the 12σ orbital. This orbital is spσ hybridized, and contains some Mn 4pσ character, as well. Hence, it also contributes to the dipolar constant c, which is small and positive for this radical (c=32.35 MHz for Mn35Cl). The hyperfine parameters in MnCl are similar to those of MnH and MnF, suggesting that the bonding in these three molecules is comparable.

  11. Molecules in high spin states III: the millimeter/submillimeter-wave spectrum of the MnCl radical (X (7)Sigma(+)).

    PubMed

    Halfen, D T; Ziurys, L M

    2005-02-01

    The pure rotational spectrum of the MnCl radical (X (7)Sigma(+)) has been recorded in the range 141-535 GHz using millimeter-submillimeter direct absorption spectroscopy. This work is the first time the molecule has been studied with rotational resolution in its ground electronic state. MnCl was synthesized by the reaction of manganese vapor, produced in a Broida-type oven, with Cl(2). Transitions of both chlorine isotopomers were measured, as well as lines originating in several vibrationally excited states. The presence of several spin components and manganese hyperfine interactions resulted in quite complex spectra, consisting of multiple blended features. Because 42 rotational transitions were measured for Mn(35)Cl over a wide range of frequencies with high signal-to-noise, a very accurate set of rotational, fine structure, and hyperfine constants could be determined with the aid of spectral simulations. Spectroscopic constants were also determined for Mn(37)Cl and several vibrationally excited states. The values of the spin-rotation and spin-spin parameters were found to be relatively small (gamma=11.2658 MHz and lambda=1113.10 MHz for Mn(35)Cl); in the case of lambda, excited electronic states contributing to the second-order spin-orbit interaction may be canceling each other. The Fermi contact hyperfine term was found to be large in manganese chloride with b(F)(Mn(35)Cl)=397.71 MHz, a result of the manganese 4s character mixing into the 12sigma orbital. This orbital is spsigma hybridized, and contains some Mn 4psigma character, as well. Hence, it also contributes to the dipolar constant c, which is small and positive for this radical (c=32.35 MHz for Mn(35)Cl). The hyperfine parameters in MnCl are similar to those of MnH and MnF, suggesting that the bonding in these three molecules is comparable.

  12. METAL MIXTURES AND CHILDREN&RSQUO;S NEURODEVELOPMENT

    EPA Science Inventory

    Since manganese is an essential nutrient, it is expected that children who were exposed to the highest and lowest levels of manganese will have lower neurodevelopmental scores than children who were exposed to moderate levels of manganese. Neurodevelopmental scores are also...

  13. Is electric arc welding linked to manganism or Parkinson's disease?

    PubMed

    McMillan, Grant

    2005-01-01

    Manganese and its inorganic compounds are widely used in many industries and have been accepted as occupational neurotoxins that have caused a distinct and disabling clinical entity, manganism, in several types of work, notably where exposure is by way of dust. There is inconclusive and inconsistent evidence that, in these occupations, subclinical neurological effects, detectable only by neurobehavioural studies, may be caused by low doses. This has prompted a re-evaluation of occupational exposure limits. Some countries, including the UK, already demand much higher levels of protection against exposure than 5 years ago. Welding is the most common source of occupational exposure as manganese is an essential component of steel and so its compounds are inevitable components of fume emitted from steel welding processes. There it is found in respirable particles, often as complex oxides (spinels), sometimes within a core protected by a silicon oxide shell - as distinct from the much simpler form of particle formed by disintegration in processes such as mining and ore milling where manganism has been diagnosed convincingly. Millions of workers are at risk of exposure to manganese-containing compounds in fumes from electric arc welding of steel. In recent years it has been asserted that neurological and neurobehavioural disorders may develop consequent to exposure to steel welding fumes and that employment as a welder is associated with the unusually early onset of Parkinson's disease. Causal relationships have been postulated. Welders have been recorded as having been exposed to high levels of manganese-containing fume, especially where they have worked in confined, unventilated spaces, although this appears from limited data to be the exception rather than the rule. Even then the dose received is generally less than in mining or ore crushing. When care is taken to exclude exposures from hardfacing and burning and cutting arc processes, where manganese may form a high percentage of the fume, manganese compounds usually form a relatively low percentage of the composition of welding fume particles, <2.0%, much outweighed by iron. Although these manganese-compound-containing welding fume particles are insoluble in water, the manganese compounds in particles that are retained in the alveoli may be absorbed, at least in part. Manganese concentrations in biological material samples in some exposed groups reflect this relative to unexposed workers. Some of the transfer systems for absorption and transport, including across the blood-brain barrier, are used in competition with iron which is present in abundance in welding fume. This may reduce absorption of manganese in welders and thus reduce the opportunity for sufficient doses to cause neurotoxicological consequences. Scrutiny of the literature covering the last 40 years has revealed only five cases that meet sufficient criteria for manganism to just cross the diagnostic threshold, and even then they carry a degree of doubt with them. This low incidence alone gives notice that welders have not been and are not at high risk of clinically apparent damage from exposure to manganese. If this needs to be further emphasised, there is the fact that the literature contains no confirmed cases of manganism in welders. Assertions of abnormal results in neurobehavioural studies of welders have raised the possibility of there being a subclinical form of manganism with loss of fine motor control as one of its features. While observations of such changes in workers in other industries have caused regulators in some countries to apply more stringent controls of exposure, as yet the results lack convincing consistency and there is no indication of any dose-effect relationship. If welding fume can have these motor effects it would be a heavy and perhaps career-ending blow to those affected. It would not be prudent to dismiss the warnings sounded by the results of studies of welders, no matter how flawed these investigations are, but wiser and better to act with vigour to reduce exposure and monitor the effectiveness of this additional protection whilst conducting high quality research to allow sound conclusions to be drawn as to whether there actually is a subclinical disorder. Idiopathic Parkinson's disease is a common disorder affecting 1-2% of those in the general population aged >65 years. It has been suggested, on flawed and contested evidence, not that welding causes the disease but rather that employment as a welder carries with it the risk of developing this disease at a younger age than if that trade had not been followed. Manganese in welding fume has been nominated as the neurotoxin. This may be biologically feasible if manganese destroys insufficient receptor cells to produce clinical manganism but sufficient to enhance the effects of a reduced supply of dopamine to give the manifestations of already developing idiopathic Parkinson's disease earlier in the course of destruction of the substantia nigra than if all receptors were intact.

  14. Analysis of material flow in a utillzation technology of low grade manganese ore and sulphur coal complementary

    NASA Astrophysics Data System (ADS)

    Wang, Bo-Zhi; Deng, Biao; Su, Shi-Jun; Ding, Sang-Lan; Sun, Wei-Yi

    2018-03-01

    Electrolytic manganese is conventionally produced through low-grade manganese ore leaching in SO2, with the combustion of high sulfur coal. Subsequently the coal ash and manganese slag, produced by the combustion of high sulfur coal and preparation of electrolytic manganese, can be used as raw ingredients for the preparation of sulphoaluminate cement. In order to realize the `coal-electricity-sulfur-manganese-building material' system of complementary resource utilization, the conditions of material inflow and outflow in each process were determined using material flow analysis. The material flow models in each unit and process can be obtained by analyzed of material flow for new technology, and the input-output model could be obtained. Through the model, it is possible to obtain the quantity of all the input and output material in the condition of limiting the quantity of a substance. Taking one ton electrolytic manganese as a basis, the quantity of other input material and cements can be determined with the input-output model. The whole system had thusly achieved a cleaner production level. Therefore, the input-output model can be used for guidance in practical production.

  15. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo

    2015-06-24

    Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmissionmore » electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.« less

  16. Controllable Synthesis of Formaldehyde Modified Manganese Oxide Based on Gas-Liquid Interfacial Reaction and Its Application of Electrochemical Sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Nie, Fei; Zheng, Jianbin

    2015-12-30

    Controllable synthesis of manganese oxides was performed via a simple one-step synthetic method. Then obtained manganese oxides which exhibit flower-like, cloud-like, hexagon-like, and rod-like morphologies were modified by formaldehyde based on a simple self-made gas-liquid reaction device respectively and the modified manganese oxides with coral-like, scallop-like and rod-like morphology were synthesized accordingly. The obtained materials were characterized and the formation mechanism was also researched. Then the modified manganese oxides were used to fabricate electrochemical sensors to detect H2O2. Comparison of electrochemical properties between three kinds of modified manganese oxides was investigated and the best one has been successfully employed as H2O2 sensor which shows a low detection limit of 0.01 μM, high sensitivity of 162.69 μA mM(-1) cm(-2), and wide linear range of 0.05 μM-12.78 mM. The study provides a new method for controllable synthesis of metal oxides, and electrochemical application of formaldehyde modified manganese oxides will provides a new strategy for electrochemical sensing with high performance, low cost, and simple fabrication.

  17. Shape-controlled synthesis and properties of dandelion-like manganese sulfide hollow spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Wei; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083; Chen, Gen

    2012-09-15

    Graphical abstract: Dandelion-like MnS hollow spheres assembled with nanorods could be successfully synthesized in large quantities through a simple and convenient hydrothermal synthetic method under mild conditions using soluble hydrated manganese chloride as Mn source, L-cysteine as both a precipitator and complexing reagent. The dandelion-like MnS hollow spheres might have potential applications in microdevices and magnetic cells. Highlights: ► MnS hollow spheres assembled with nanorods could be synthesized. ► The morphologies and sizes of final products could be controlled. ► Possible formation mechanism of MnS hollow spheres is proposed. -- Abstract: Dandelion-like gamma-manganese (II) sulfide (MnS) hollow spheres assembled withmore » nanorods have been prepared via a hydrothermal process in the presence of L-cysteine and polyvinylpyrrolidone (PVP). L-cysteine was employed as not only sulfur source, but also coordinating reagent for the synthesis of dandelion-like MnS hollow spheres. The morphology, structure and properties of as-prepared products have been investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM) and photoluminescence spectra (PL). The probable formation mechanism of as-prepared MnS hollow spheres was discussed on the basis of the experimental results. This strategy may provide an effective method for the fabrication of other metal sulfides hollow spheres.« less

  18. Interaction of Metal Oxides with Biomolecules: Implication in Astrobiology

    NASA Astrophysics Data System (ADS)

    Kamaluddin; Iqubal, Md. Asif

    2014-08-01

    Steps of chemical evolution have been designated as formation of biomonomers followed by their polymerization and then to modify in an organized structure leading to the formation of first living cell. Polymerization of biomonomers could have required some catalyst. In addition to clay, role of metal ions and metal complexes as prebiotic catalyst in the synthesis and polymerization of biomonomers cannot be ruled out. Metal oxides are important constituents of Earth crust and that of other planets. These oxides might have adsorbed organic molecules and catalyzed the condensation processes, which may have led to the formation of first living cell. Different studies were performed in order to investigate the role of metal oxides (especially oxides of iron and manganese) in chemical evolution. Iron oxides (goethite, akaganeite and hematite) as well as manganese oxides (MnO, Mn2O3, Mn3O4 and MnO2) were synthesized and their characterization was done using IR, powder XRD, FE-SEM and TEM. Role of above oxides was studied in the adsorption of ribose nucleotides, formation of nucleobases from formamide and oligomerization of amino acids. Above oxides of iron and manganese were found to have good adsorption affinity towards ribose nucleotides, high catalytic activity in the formation of several nucleobases from formamide and oligomerization of glycine and alanine. Characterization of products was performed using UV, IR, HPLC and ESI-MS techniques. Presence of hematite-water system on Mars has been suggested to be a positive indicator in the chemical evolution on Mars.

  19. Manganese-Catalyzed Carbonylative Annulations for Redox-Neutral Late-Stage Diversification.

    PubMed

    Liang, Yu-Feng; Steinbock, Ralf; Münch, Annika; Stalke, Dietmar; Ackermann, Lutz

    2018-05-04

    An inexpensive, nontoxic manganese catalyst enabled unprecedented redox-neutral carbonylative annulations under ambient pressure. The manganese catalyst outperformed all other typically used base and precious-metal catalysts. The outstanding versatility of the manganese catalysis manifold was reflected by ample substrate scope, setting the stage for effective late-stage manipulations under racemization-free conditions of a wealth of marketed drugs and natural products, including alkaloids, amino acids, steroids, and carbohydrates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Manganese toxicity to chlorophyll synthesis in tobacco callus. [Nicotiana tabacum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clairmont, K.B.; Hagar, W.G.; Davis, E.A.

    1986-01-01

    Tobacco (Nicotiana tabacum) pith explants were grown on manganese containing medium. At moderate concentration (10 millimolar), manganese selectivity inhibited chlorophyll synthesis, resulting initially in growth of white callus. Several weeks later the white callus turned brown due to the accumulation of a pigment identified as protoporphyrin IX by its elution profile using high performance liquid chromatography, by its absorption spectrum, and by its fluorescence properties. At a concentration of 100 millimolar manganese the pigment accumulated without growth of the explant.

  1. A manganese-rich environment supports superoxide dismutase activity in a Lyme disease pathogen, Borrelia burgdorferi.

    PubMed

    Aguirre, J Dafhne; Clark, Hillary M; McIlvin, Matthew; Vazquez, Christine; Palmere, Shaina L; Grab, Dennis J; Seshu, J; Hart, P John; Saito, Mak; Culotta, Valeria C

    2013-03-22

    The Lyme disease pathogen Borrelia burgdorferi represents a novel organism in which to study metalloprotein biology in that this spirochete has uniquely evolved with no requirement for iron. Not only is iron low, but we show here that B. burgdorferi has the capacity to accumulate remarkably high levels of manganese. This high manganese is necessary to activate the SodA superoxide dismutase (SOD) essential for virulence. Using a metalloproteomic approach, we demonstrate that a bulk of B. burgdorferi SodA directly associates with manganese, and a smaller pool of inactive enzyme accumulates as apoprotein. Other metalloproteins may have similarly adapted to using manganese as co-factor, including the BB0366 aminopeptidase. Whereas B. burgdorferi SodA has evolved in a manganese-rich, iron-poor environment, the opposite is true for Mn-SODs of organisms such as Escherichia coli and bakers' yeast. These Mn-SODs still capture manganese in an iron-rich cell, and we tested whether the same is true for Borrelia SodA. When expressed in the iron-rich mitochondria of Saccharomyces cerevisiae, B. burgdorferi SodA was inactive. Activity was only possible when cells accumulated extremely high levels of manganese that exceeded cellular iron. Moreover, there was no evidence for iron inactivation of the SOD. B. burgdorferi SodA shows strong overall homology with other members of the Mn-SOD family, but computer-assisted modeling revealed some unusual features of the hydrogen bonding network near the enzyme's active site. The unique properties of B. burgdorferi SodA may represent adaptation to expression in the manganese-rich and iron-poor environment of the spirochete.

  2. Manganese: it turns iron into steel (and does so much more)

    USGS Publications Warehouse

    Cannon, William F.

    2014-01-01

    Manganese is a common ferrous metal with atomic weight of 25 and the chemical symbol Mn. It constitutes roughly 0.1 percent of the Earth’s crust, making it the 12th most abundant element. Its early uses were limited largely to pigments and oxidants in chemical processes and experiments, but the significance of manganese to human societies exploded with the development of modern steelmaking technology in the 1860s. U.S consumption of manganese is about 500,000 metric tons each year, predominantly by the steel industry. Because manganese is essential and irreplaceable in steelmaking and its global mining industry is dominated by just a few nations, it is considered one of the most critical mineral commodities for the United States.

  3. Optical spectroscopy of disordered Ca3Ga2Ge4O14 crystal doped with manganese

    NASA Astrophysics Data System (ADS)

    Burkov, Vladimir; Alyabyeva, Liudmila; Mill, Boris; Kotov, Viacheslav

    2018-05-01

    Circular dichroism, absorption and luminescence spectra of single crystalline manganese doped calcium gallogermanate Ca3Ga2Ge4O14:Mn were investigated in 300-850 nm wavelength region in wide temperature range 8-300 K. Careful analysis of experimental results revealed presence of electron transitions typical for sixfold coordinated trivalent manganese ions with d4 electron configuration. Thus, manganese ions doping the crystal matrix of CCG incorporate into lattice in 1a octahedral site-positions substituting Ga3+ ions. The results obtained were compared with investigation of isostructural to CGG manganese doped langasite crystals, La3Ga5SiO14:Mn where dopant is in octahedral Mn4+ state.

  4. Bicarbonate may Be required for ligation of manganese in the oxygen-evolving complex of photosystem II.

    PubMed

    Klimov, V V; Hulsebosch, R J; Allakhverdiev, S I; Wincencjusz, H; van Gorkom, H J; Hoff, A J

    1997-12-23

    It was previously shown in the photosystem II membrane preparation DT-20 that photoxidation of the oxygen-evolving manganese cluster was blocked by 0.1 mM formate, unless 0.2 mM bicarbonate was present as well [Wincencjusz, H., Allakhverdiev, S. I., Klimov, V. V., and Van Gorkom, H. J. (1996) Biochim. Biophys. Acta 1273, 1-3]. Here it is shown by measurements of EPR signal II that oxidation of the secondary electron donor, YZ, is not inhibited. However, the reduction of is greatly slowed and occurs largely by back reaction with reduced acceptors. Bicarbonate is shown to prevent the loss of fast electron donation to . The release of about one or two free Mn2+ per photosystem II during formate treatment, and the fact that these effects are mimicked by Mn-depletion, suggests that formate may act by replacing a bicarbonate which is essential for Mn binding. Irreversible light-induced rebinding in an EPR-silent form of Mn2+ that was added to Mn-depleted DT-20 was indeed found to depend on the presence of bicarbonate, as did the reconstitution in such material of both the fast electron donation to and the UV absorbance changes characteristic of a functional oxygen-evolving complex. It is concluded that bicarbonate may be an essential ligand of the functional Mn cluster.

  5. Laser Flash Photolysis Generation of High-Valent Transition Metal-Oxo Species: Insights from Kinetic Studies in Real Time

    PubMed Central

    Zhang, Rui; Newcomb, Martin

    2010-01-01

    Conspectus High-valent transition metal-oxo species are active oxidizing species in many metal-catalyzed oxidation reactions in both Nature and the laboratory. In homogeneous catalytic oxidations, a transition metal catalyst is oxidized to a metal-oxo species by a sacrificial oxidant, and the activated transition metal-oxo intermediate oxidizes substrates. Mechanistic studies of these oxidizing species can provide insights for understanding commercially important catalytic oxidations and the oxidants in cytochrome P450 enzymes. In many cases, however, the transition metal oxidants are so reactive that they do not accumulate to detectable levels in mixing experiments, which have millisecond mixing times, and successful generation and direct spectroscopic characterization of these highly reactive transients remain a considerable challenge. Our strategy for understanding homogeneous catalysis intermediates employs photochemical generation of the transients with spectroscopic detection on time-scales as short as nanoseconds and direct kinetic studies of their reactions with substrates by laser flash photolysis (LFP) methods. This Account describes studies of high-valent manganese- and iron-oxo intermediates. Irradiation of porphyrin-manganese(III) nitrates and chlorates or corrole-manganese(IV) chlorates resulted in homolytic cleavage of the O-X bonds in the ligands, whereas irradiation of porphyrin-manganese(III) perchlorates resulted in heterolytic cleavage of O-Cl bonds to give porphyrin-manganese(V)-oxo cations. Similar reactions of corrole- and porphyrin-iron(IV) complexes gave highly reactive transients that were tentatively identified as macrocyclic ligand-iron(V)-oxo species. Kinetic studies demonstrated high reactivity of the manganese(V)-oxo species, and even higher reactivities of the putative iron(V)-oxo transients. For example, second-order rate constants for oxidations of cis-cyclooctene at room temperature were 6 × 103 M−1 s−1 for a corrole-iron(V)-oxo species and 1.6 × 106 M−1 s−1 for the putative tetramesitylporphyrin-iron(V)-oxo perchlorate species. The latter rate constant is 25,000 times larger than that for oxidation of cis-cyclooctene by iron(IV)-oxo perchlorate tetramesitylporphyrin radical cation, which is the thermodynamically favored electronic isomer of the putative iron(V)-oxo species. The LFP-determined rate constants can be used to implicate the transient oxidants in catalytic reactions under turnover conditions where high-valent species are not observable. Similarly, the observed reactivities of the putative porphyrin-iron(V)-oxo species might explain the unusually high reactivity of oxidants produced in the cytochrome P450 enzymes, heme-thiolate enzymes that are capable of oxidizing unactivated carbon-hydrogen bonds in substrates so rapidly that iron-oxo intermediates have not been detected under physiological conditions. PMID:18278877

  6. Laser flash photolysis generation of high-valent transition metal-oxo species: insights from kinetic studies in real time.

    PubMed

    Zhang, Rui; Newcomb, Martin

    2008-03-01

    High-valenttransition metal-oxo species are active oxidizing species in many metal-catalyzed oxidation reactions in both Nature and the laboratory. In homogeneous catalytic oxidations, a transition metal catalyst is oxidized to a metal-oxo species by a sacrificial oxidant, and the activated transition metal-oxo intermediate oxidizes substrates. Mechanistic studies of these oxidizing species can provide insights for understanding commercially important catalytic oxidations and the oxidants in cytochrome P450 enzymes. In many cases, however, the transition metal oxidants are so reactive that they do not accumulate to detectable levels in mixing experiments, which have millisecond mixing times, and successful generation and direct spectroscopic characterization of these highly reactive transients remain a considerable challenge. Our strategy for understanding homogeneous catalysis intermediates employs photochemical generation of the transients with spectroscopic detection on time scales as short as nanoseconds and direct kinetic studies of their reactions with substrates by laser flash photolysis (LFP) methods. This Account describes studies of high-valent manganese- and iron-oxo intermediates. Irradiation of porphyrin-manganese(III) nitrates and chlorates or corrole-manganese(IV) chlorates resulted in homolytic cleavage of the O-X bonds in the ligands, whereas irradiation of porphyrin-manganese(III) perchlorates resulted in heterolytic cleavage of O-Cl bonds to give porphyrin-manganese(V)-oxo cations. Similar reactions of corrole- and porphyrin-iron(IV) complexes gave highly reactive transients that were tentatively identified as macrocyclic ligand-iron(V)-oxo species. Kinetic studies demonstrated high reactivity of the manganese(V)-oxo species, and even higher reactivities of the putative iron(V)-oxo transients. For example, second-order rate constants for oxidations of cis-cyclooctene at room temperature were 6 x 10(3) M(-1) s(-1) for a corrole-iron(V)-oxo species and 1.6 x 10(6) M(-1) s(-1) for the putative tetramesitylporphyrin-iron(V)-oxo perchlorate species. The latter rate constant is 25,000 times larger than that for oxidation of cis-cyclooctene by iron(IV)-oxo perchlorate tetramesitylporphyrin radical cation, which is the thermodynamically favored electronic isomer of the putative iron(V)-oxo species. The LFP-determined rate constants can be used to implicate the transient oxidants in catalytic reactions under turnover conditions where high-valent species are not observable. Similarly, the observed reactivities of the putative porphyrin-iron(V)-oxo species might explain the unusually high reactivity of oxidants produced in the cytochrome P450 enzymes, heme-thiolate enzymes that are capable of oxidizing unactivated carbon-hydrogen bonds in substrates so rapidly that iron-oxo intermediates have not been detected under physiological conditions.

  7. Manganese in Air: Associations in Residents with Tremor and Motor Function

    EPA Science Inventory

    Objective: An environmental study examined air manganese (Mn) exposed residents of two towns in Ohio: Marietta (near a ferro-manganese smelter) and East Liverpool (EL)(adjacent to an open-storage ore packaging facility). Air Mn inhalation is associated with neuropsychological/neu...

  8. Manganese pollution in the city environment and its relationship to traffic density.

    PubMed Central

    Joselow, M M; Tobias, E; Koehler, R; Coleman, S; Bogden, J; Gause, D

    1978-01-01

    As lead is phased out of gasoline, other additives with anti-knock properties, particularly organic manganese compounds, are being substituted. Unavoidably, such compounds go through the combustion process, are eliminated in exhaust gases, and become part of the city environment. To obtain some indication of the extent of this new pollution street soils from various locations in a heavily trafficked city (Newark, NJ) were analyzed for manganese and lead by atomic absorption. Highly signigicant inverse relationships were found between the concentrations of both contaminants and distances from major traffic arteries. Strong circumstantial evidence is thus provided that: 1) manganese pollution is occurring, along with lead, in the city environment; 2) this new pollution is related to traffic density; and 3) the most likely sources are automobile exhausts. This suspicion is further strengthened by the significant correlations observed between manganese and lead contents in children's blood, suggesting a common source for both. Substantiation of the safety of this practice of adding manganese to gasoline is needed. PMID:655314

  9. Corrosion Behavior of High Nitrogen Nickel-Free Fe-16Cr-Mn-Mo-N Stainless Steels

    NASA Astrophysics Data System (ADS)

    Chao, K. L.; Liao, H. Y.; Shyue, J. J.; Lian, S. S.

    2014-04-01

    The purpose of the current study is to develop austenitic nickel-free stainless steels with lower chromium content and higher manganese and nitrogen contents. In order to prevent nickel-induced skin allergy, cobalt, manganese, and nitrogen were used to substitute nickel in the designed steel. Our results demonstrated that manganese content greater than 14 wt pct results in a structure that is in full austenite phase. The manganese content appears to increase the solubility of nitrogen; however, a lower corrosion potential was found in steel with high manganese content. Molybdenum appears to be able to increase the pitting potential. The effects of Cr, Mn, Mo, and N on corrosion behavior of Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were evaluated with potentiodynamic tests and XPS surface analysis. The results reveal that anodic current and pits formation of the Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were smaller than those of lower manganese and nitrogen content stainless steel.

  10. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    NASA Astrophysics Data System (ADS)

    ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  11. Chronic organic manganese administration in the rat does not damage dopaminergic nigrostriatal neurons.

    PubMed

    Yong, V W; Perry, T L; Godolphin, W J; Jones, K A; Clavier, R M; Ito, M; Foulks, J G

    1986-01-01

    In an attempt to produce an animal model of Parkinson's disease, we injected rats repeatedly with high doses of methylcyclopentadienyl manganese tricarbonyl (MMT), a compound which has been reported to lower striatal dopamine content in mice. Chronic MMT administration for up to 5 months, even though it produced a substantial elevation in brain manganese content during the period of exposure, did not destroy dopaminergic nigrostriatal neurons. This was assessed by measurements of tyrosine hydroxylase activity and contents of dopamine and its metabolites in the striatum, and by histological examination of the substantia nigra. Our results differ from those of others who administered manganese chloride in drinking water to rats. This discrepancy is unlikely to be a consequence of differences in duration of exposure or route of administration. It could be due to our having used an organic rather than an inorganic manganese compound, or to a species difference in vulnerability to organic manganese between rats and mice.

  12. Batch study of manganese removal from mine effluent using mixture of ferromanganese ore and humus

    NASA Astrophysics Data System (ADS)

    Kamal, Norinsafrina Mustaffa; Aziz, Hamidi Abdul; Sulaiman, Shamsul Kamal; Hussin, Hashim

    2017-10-01

    Environmental problem related to mining industry always associates with high heavy metal contents in mine effluent. Manganese is among the metals that need to be reduced before the mine effluent entering receiving waterways. In this batch study, mixture of ferromanganese ore and humus had been applied to remove manganese from mine effluent. Effect of particle size of ferromanganese ore, dosage, mix ratio, pH and contact time had been studied to examine the effectiveness of the mixture in removing manganese. Results from the study have shown that optimum manganese removal was 93.54% by using particle size of 0.25-0.5 mm of ferromanganese ore, 3g of dosage mixture, mix ratio of 20%;80%, solution pH of 7 and 210 minutes (3.5 hours) of contact time. Thus, it is proven that mixture of ferromanganese ore and humus has potential to be used for removal of manganese in mine effluent.

  13. Sol-gel synthesis and adsorption properties of mesoporous manganese oxide

    NASA Astrophysics Data System (ADS)

    Ivanets, A. I.; Kuznetsova, T. F.; Prozorovich, V. G.

    2015-03-01

    Sol-gel synthesis of mesoporous xerogels of manganese oxide with different phase compositions has been performed. The manganese oxide sols were obtained by redox reactions of potassium permanganate with hydrogen peroxide or manganese(II) chloride in aqueous solutions. The isotherms of the low-temperature adsorption-desorption of nitrogen with manganese oxide xerogels treated at 80, 200, 400, and 600°C were measured. The samples were studied by electron microscopy and thermal and XRD analysis. The phase transformation and the changes in the adsorption and capillary-condensation properties of manganese oxide were shown to depend on the sol synthesis conditions and the temperature of the thermal treatment of the gel. The X-ray amorphous samples heated at 80°C were shown to have low values of the specific surface; at higher temperatures, the xerogel crystallized into mixed phases with various compositions and its surface area increased at 200-400°C and decreased at 600°C.

  14. Manganese oxide-based materials as electrochemical supercapacitor electrodes.

    PubMed

    Wei, Weifeng; Cui, Xinwei; Chen, Weixing; Ivey, Douglas G

    2011-03-01

    Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).

  15. Barium and manganese-doped zinc silicate rods prepared by mesoporous template route and their luminescence property

    NASA Astrophysics Data System (ADS)

    Dang, Lingyan; Tian, Chen; Zhao, Shifeng; Lu, Qingshan

    2018-06-01

    Barium and manganese-doped zinc silicates was prepared under hydrothermal treatment by mesoporous template route employing mesoporous silica as an active template. The sample displays a rod-like morphology with a mean diameter of ∼40 nm and a mean length of ∼450 nm, which inherits the characteristics of mesoporous silica. The individual rods show single crystalline and assemble into bundle-like hierarchical structure along the channels of the mesoporous silica. When barium ions together with manganese ions are co-doped in zinc silicate, the green emission corresponding to manganese ions display a significant enhancement, especially for the sample with the barium doping concentration of 0.08, which indicates that an energy transfer from barium to manganese ions takes place. With further increasing barium concentration from 0.08 to 0.10, the recombination between the defects related to barium and the excitation states of the manganese dominates accompanying non-radiative transitions which can reduce the emission efficiency.

  16. Dynamic observation on the growth behaviors in manganese silicide/silicon nanowire heterostructures.

    PubMed

    Hsieh, Yu-Hsun; Chiu, Chung-Hua; Huang, Chun-Wei; Chen, Jui-Yuan; Lin, Wan-Jhen; Wu, Wen-Wei

    2015-02-07

    Metal silicide nanowires (NWs) are very interesting materials with diverse physical properties. Among the silicides, manganese silicide nanostructures have attracted wide attention due to their several potential applications, including in microelectronics, optoelectronics, spintronics and thermoelectric devices. In this work, we exhibited the formation of pure manganese silicide and manganese silicide/silicon nanowire heterostructures through solid state reaction with line contacts between manganese pads and silicon NWs. Dynamical process and phase characterization were investigated by in situ transmission electron microscopy (in situ TEM) and spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM), respectively. The growth dynamics of the manganese silicide phase under thermal effects were systematically studied. Additionally, Al2O3, serving as the surface oxide, altered the growth behavior of the MnSi nanowire, enhancing the silicide/Si epitaxial growth and effecting the diffusion process in the silicon nanowire as well. In addition to fundamental science, this significant study has great potential in advancing future processing techniques in nanotechnology and related applications.

  17. Associations of Serum Manganese Levels with Prediabetes and Diabetes among ≥60-Year-Old Chinese Adults: A Population-Based Cross-Sectional Analysis.

    PubMed

    Wang, Xuan; Zhang, Mingyue; Lui, Guang; Chang, Hong; Zhang, Meilin; Liu, Wei; Li, Ziwei; Liu, Yixin; Huang, Guowei

    2016-08-13

    Older adults can experience glucose metabolism dysfunction, and although manganese may help regulate glucose metabolism, there is little information regarding this association among older people. This cross-sectional study included 2402 Chinese adults who were ≥60 years old in 2013 (Tianjin, China), and evaluated the associations of serum manganese with prediabetes and diabetes. Serum manganese levels were measured using inductively coupled plasma mass spectrometry. Multivariable logistic regression models were used to evaluate the sex-specific associations of manganese levels with diabetes and prediabetes after adjusting for confounding factors (age, sex, life style factors, and health status). Based on the WHO criteria, prediabetes was observed in 15.1% of men and 13.4% of women, while diabetes was observed in 30.0% of men and 34.4% of women. In the final model, the odds ratios (95% confidence interval) for prediabetes according to manganese quartile were 1.000, 0.463 (0.269-0.798), 0.639 (0.383-1.065), and 0.614 (0.365-1.031) among men and 1.000, 0.773 (0.498-1.200), 0.602 (0.382-0.947), and 0.603 (0.381-0.953) among women (p for trend = 0.134 and 0.015, respectively). The lowest prevalence of diabetes among men occurred at a moderate range of serum manganese (p < 0.05). Therefore, appropriate serum manganese levels may help prevent and control prediabetes and diabetes.

  18. The effect of spices and manganese on meat starter culture activity.

    PubMed

    Coventry, M J; Hickey, M W

    1993-01-01

    Three species, two proprietary spice blends and six starter preparations used in commercial salami manufacture were analysed for manganese and magnesium content. A mettwurst spices blend showed the highest levels of manganese (0·77 ppm expressed as effective product level assuming a 1% spice content) while mild and hot paprika and milano blend contained levels of manganese 1 4 - 1 3 lower. Magnesium levels for spices ranged from 3·14 to 25·81 ppm. Only two of the six meat starter cultures showed high levels of manganese (7·77 and 16·12 ppm as effective product level based on inoculation rate) while magnesium levels for all starter cultures did not exceed 0·37 ppm. The pH of salami products made with starter cultures containing no added manganese lagged behind that of products made with added mangenese (5 ppm) by 0·2 pH units at 48 h. The effect of manganese ions on the fermentation rate of starter bacteria was studied further in a salami model system, in the absence and presence of added spices. The mettwurst blend produced greatest stimulation and the milano the least. A level of 1·2 ppm of added manganese was sufficient to achieve an optimal (< 4·9 pH units within 48 h) fermentation in the presence of all five spices tested in the salami model system. Copyright © 1993. Published by Elsevier Ltd.

  19. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium calcium...

  20. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium calcium...

  1. MODIFYING IRON REMOVAL PROCESSES TO INCREASE ARSENIC REMOVAL

    EPA Science Inventory

    Iron and manganese are naturally occurring substances that are normally found in insoluble forms in many ground waters in the US. Similar to iron and manganese, arsenic also occurs widely in the earth's crust and is a natural contaminant of many ground waters. Iron and manganese ...

  2. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive... less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing...

  3. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive... less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing...

  4. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive... less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing...

  5. Development of Surface Complexation Models of Cr(VI) Adsorption on Soils, Sediments and Model Mixtures of Kaolinite, Montmorillonite, γ-Alumina, Hydrous Manganese and Ferric Oxides and Goethite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koretsky, Carla

    Hexavalent chromium is a highly toxic contaminant that has been introduced into aquifers and shallow sediments and soils via many anthropogenic activities. Hexavalent chromium contamination is a problem or potential problem in the shallow subsurface at several DOE sites, including Hanford, Idaho National Laboratory, Los Alamos National Laboratory and the Oak Ridge Reservation (DOE, 2008). To accurately quantify the fate and transport of hexavalent chromium at DOE and other contaminated sites, robust geochemical models, capable of correctly predicting changes in chromium chemical form resulting from chemical reactions occurring in subsurface environments are needed. One important chemical reaction that may greatlymore » impact the bioavailability and mobility of hexavalent chromium in the subsurface is chemical binding to the surfaces of particulates, termed adsorption or surface complexation. Quantitative thermodynamic surface complexation models have been derived that can correctly calculate hexavalent chromium adsorption on well-characterized materials over ranges in subsurface conditions, such pH and salinity. However, models have not yet been developed for hexavalent chromium adsorption on many important constituents of natural soils and sediments, such as clay minerals. Furthermore, most of the existing thermodynamic models have been developed for relatively simple, single solid systems and have rarely been tested for the complex mixtures of solids present in real sediments and soils. In this study, the adsorption of hexavalent chromium was measured as a function of pH (3-10), salinity (0.001 to 0.1 M NaNO3), and partial pressure of carbon dioxide(0-5%) on a suite of naturally-occurring solids including goethite (FeOOH), hydrous manganese oxide (MnOOH), hydrous ferric oxide (Fe(OH)3), γ-alumina (Al2O3), kaolinite (Al2Si2O5(OH)4), and montmorillonite (Na3(Al, Mg)2Si4O10(OH)2-nH2O). The results show that all of these materials can bind substantial quantities of hexavalent chromium, especially at low pH. Unexpectedly, experiments with the clay minerals kaolinite and montmorillonite suggest that hexavalent chromium may interact with these solids over much longer periods of time than expected. Furthermore, hexavalent chromium may irreversibly bind to these solids, perhaps because of oxidation-reduction reactions occurring on the surfaces of the clay minerals. More work should be done to investigate and quantify these chemical reactions. Experiments conducted with mixtures of goethite, hydrous manganese oxide, hydrous ferric oxide, γ-alumina, montmorillonite and kaolinite demonstrate that it is possible to correctly predict hexavalent chromium binding in the presence of multiple minerals using thermodynamic models derived for the simpler systems. Further, these models suggest that of the six solid considered in this study, goethite is typically the solid to which most of the hexavalent chromium will bind. Experiments completed with organic-rich and organic-poor natural sediments demonstrate that in organic-rich substrates, organic matter is likely to control uptake of the hexavalent chromium. The models derived and tested in this study for hexavalent chromium binding to γ-alumina, hydrous manganese oxide, goethite, hydrous ferric oxide and clay minerals can be used to better predict changes in hexavalent chromium bioavailability and mobility in contaminated sediments and soils.« less

  6. Siderophore-mediated oxidation of Ce and fractionation of HREE by Mn (hydr)oxide-coprecipitation and sorption on MnO2: Experimental evidence for negative Ce-anomalies in abiogenic manganese precipitates

    NASA Astrophysics Data System (ADS)

    Krämer, Dennis; Tepe, Nathalie; Bau, Michael

    2014-05-01

    We conducted experiments with Rare Earths and Yttrium (REY), where the REY were sorbed on synthetic manganese dioxide as well as on coprecipitating manganese (hydr)oxide in the presence and absence of the siderophore desferrioxamine-B (DFOB). Siderophores are a group of globally abundant biogenic complexing agents which are excreted by plants and bacteria to enhance the bioavailability of Fe in oxic environments. The model siderophore used in this study, DFOB, is a hydroxamate siderophore occurring in almost all environmental settings with concentrations in the nanomolar to millimolar range and is one of the most thoroughly studied siderophores. In the absence of siderophores and other organic ligands, trivalent Ce is usually surface-oxidized to tetravalent Ce during sorption onto manganese (hydr)oxides. Such Mn precipitates, therefore, often show positive Ce anomalies, whereas the ambient solutions exhibit negative Ce anomalies (Ohta and Kawabe, 2001). In marked contrast, however, REY sorption in the presence of DFOB produces negative Ce anomalies in the Mn precipitates and a distinct and characteristic positive Ce anomaly in the residual siderophore-bearing solution. Furthermore, the heavy REY with ionic radii larger than the radius of Sm are also almost completely prevented from sorption onto the Mn solid phases. Sorption of REY onto Mn (hydr)oxides in the presence of DFOB creates a distinct and pronounced fractionation of Ce and the heavy REY from the light and middle REY. Apart from Ce, which is oxidized in solution by the siderophore, the distribution of the other REY mimics the stability constants for multi-dentate complexes of REY with DFOB, as determined by Christenson & Schijf (2011). Heavier REY are forming stronger complexes (and are hence better "protected" from sorption) than light REY, excluding Ce. Preferential partitioning of Ce into the liquid phase during the precipitation of Mn (hydr)oxides has only rarely been described for natural Mn (hydr)oxides (e.g., Tanaka et al., 2010, Loges et al., 2012). Our experimental results demonstrate that biogenic organic ligands such as hydroxamate siderophores, may produce solutions with positive Ce anomaly (Bau et al., 2013) and may even counteract the surface oxidation of Ce on Mn (hydr)oxides. References Bau, M., Tepe, N., Mohwinkel, D., 2013. Siderophore-promoted transfer of rare earth elements and iron from volcanic ash into glacial meltwater, river and ocean water. Earth Planet. Sci. Lett. 364, 30-36. Christenson E. A. and Schijf J. (2011) Stability of YREE complexes with the trihydroxamate siderophore desferrioxamine B at seawater ionic strength. Geochim. Cosmochim. Acta 75, 7047-7062. Loges, A., Wagner, T., Barth, M., Bau, M., Göb, S., and Markl, G. 2012. Negative Ce anomalies in Mn oxides: The role of Ce4+ mobility during water-mineral interaction. Geochimica and Cosmochimica Acta 86, 296-317 Ohta A. and Kawabe I. (2001) REE (III) adsorption onto Mn dioxide (delta-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by delta-MnO2. Geochim. Cosmochim. Acta 65, 695-703. Tanaka K., Tani Y., Takahashi Y., Tanimizu M., Suzuki Y., Kozai N. and Ohnuki T. (2010) A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21-2. Geochim. Cosmochim. Acta 74, 5463-5477.

  7. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Manganese violet. 73.2775 Section 73.2775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive...

  8. Manganese Testing under a Clean Air Act Test Rule and the Application of Resultant Data in Risk Assessments

    EPA Science Inventory

    In the 1990’s, the proposed use of methylcyclopentadienyl manganese tricarbonyl (MMT) as an octane-enhancing gasoline fuel additive led to concerns for potential public health consequences from exposure to manganese (Mn) combustion products in automotive exhaust. After a series ...

  9. Manganese Testing under a Clean Air Act Test Rule and the Application of Resultant Data in Risk Assessments

    EPA Science Inventory

    In the 1990’s, the proposed use of methylcyclopentadienyl manganese tricarbonyl (MMT) as an octane-enhancing gasoline fuel additive led to concerns for potential public health consequences from exposure to manganese (Mn) combustion products in automotive exhaust. After a s...

  10. Proton conduction in electrolyte made of manganese dioxide for hydrogen gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanaka, Hideki; Ueda, Yoshikatsu; Takeuchi, K

    2012-01-01

    We propose a network model of oxygen-pairs to store and conduct protons on the surface of manganese dioxide with a weak covalent bond like protons stored in pressured ice. The atomic distances of oxygen-pairs were estimated between 2.57 and 2.60 angstroms in crystal structures of ramsdellite-type and lambda-type manganese dioxides by using protonated samples and inelastic neutron scattering measurements. Good properties for a hydrogen gas sensor using electrolytes made of manganese dioxides that contain such oxygen-pairs were confirmed experimentally.

  11. Manganese oxide nanoparticles, methods and applications

    DOEpatents

    Abruna, Hector D.; Gao, Jie; Lowe, Michael A.

    2017-08-29

    Manganese oxide nanoparticles having a chemical composition that includes Mn.sub.3O.sub.4, a sponge like morphology and a particle size from about 65 to about 95 nanometers may be formed by calcining a manganese hydroxide material at a temperature from about 200 to about 400 degrees centigrade for a time period from about 1 to about 20 hours in an oxygen containing environment. The particular manganese oxide nanoparticles with the foregoing physical features may be used within a battery component, and in particular an anode within a lithium battery to provide enhanced performance.

  12. Process for the electrodeposition of low stress nickel-manganese alloys

    DOEpatents

    Kelly, James John; Goods, Steven Howard; Yang, Nancy Yuan-Chi; Cadden, Charles Henry

    2005-06-07

    A process for electrodepositing a low stress nickel-manganese multilayer alloy on an electrically conductive substrate is provided. The process includes the steps of immersing the substrate in an electrodeposition solution containing a nickel salt and a manganese salt and repeatedly passing an electric current through an immersed surface of the substrate. The electric current is alternately pulsed for predetermined durations between a first electrical current that is effective to electrodeposit nickel and a second electrical current that is effective to electrodeposit nickel and manganese. A multilayered alloy having adjacent layers of nickel and a nickel-manganese alloy on the immersed surface of the substrate is thereby produced. The resulting multilayered alloy exhibits low internal stress, high strength and ductility, and high strength retention upon exposure to heat.

  13. Reduction in the Band Gap of Manganese-Doped Zinc Oxide: Role of the Oxidation State

    NASA Astrophysics Data System (ADS)

    Sharma, Sonia; Ramesh, Pranith; Swaminathan, P.

    2015-12-01

    Manganese-doped zinc oxide powders were synthesized by solid state reaction of the respective oxides. The high-temperature conditions were chosen such that multiple valence states of manganese were doped in the host zinc oxide lattice. Structural characterization was carried out to confirm the doping and to find the maximum amount of manganese that can be incorporated. Diffuse reflectance spectroscopy was used to measure the optical band gap of the doped sample and the lowering with respect to pure ZnO was attributed to the presence of higher oxidation states of manganese. The presence of these oxidation states was confirmed using x-ray photoelectron spectroscopy. The study shows that a solid state reaction is a viable route for synthesizing doped metal oxides with desired optical properties.

  14. Exposure to manganese: health effects on the general population, a pilot study in central Mexico.

    PubMed

    Santos-Burgoa, C; Rios, C; Mercado, L A; Arechiga-Serrano, R; Cano-Valle, F; Eden-Wynter, R A; Texcalac-Sangrador, J L; Villa-Barragan, J P; Rodriguez-Agudelo, Y; Montes, S

    2001-02-01

    To support a risk assessment of manganese exposure in two communities living within a manganese mining district a cross-sectional study was performed on a sample of the adult population of long-term residents. One community was exposed to a point source from an ore primary refining plant. Manganese is an essential mineral for human life. It is also the fourth in importance for industrial metal making. Data were collected on socioeconomic living conditions, emission sources, environmental media concentrations (air, water, soil, dust, food), respiratory symptomatology, and a neuropsychological examination (Mini-Mental Screening test, the Hooper Visual Organization test, the Ardila-Ostroski, and others). We examined 73 subjects (52 women), most of low socioeconomic status. Environmental air concentrations were 2 to 3 times higher than those in other urban concentrations. Manganese blood concentrations ranged from 7.5 to 88 microg/L, with a median concentration of 15, the upper quartile starting at 20 microg/L; the upper 10% was above 25 microg/L. Lead and manganese were highly correlated; there was an inverse relation to hemoglobin. Reduced levels of plasma lipid peroxidation were associated with blood manganese. Using multivariate logistic regression, we identified B-Mn as increasing the risk of deficient cognitive performance 12 times (Mini-Mental score of less than 17). Copyright 2001 Academic Press.

  15. Simultaneous stripping recovery of ammonia-nitrogen and precipitation of manganese from electrolytic manganese residue by air under calcium oxide assist.

    PubMed

    Chen, Hongliang; Liu, Renlong; Shu, Jiancheng; Li, Wensheng

    2015-01-01

    Leaching tests of electrolytic manganese residue (EMR) indicated that high contents of soluble manganese and ammonia-nitrogen posed a high environmental risk. This work reports the results of simultaneous stripping recovery of ammonia-nitrogen and precipitation of manganese by air under calcium oxide assist. The ammonia-nitrogen stripping rate increased with the dosage of CaO, the air flow rate and the temperature of EMR slurry. Stripped ammonia-nitrogen was absorbed by a solution of sulfuric acid and formed soluble (NH4)2SO4 and (NH4)3H(SO4)3. The major parameters that effected soluble manganese precipitation were the dosage of added CaO and the slurry temperature. Considering these two aspects, the efficient operation conditions should be conducted with 8 wt.% added CaO, 60°C, 800 mL min(-1) air flow rate and 60-min reaction time. Under these conditions 99.99% of the soluble manganese was precipitated as Mn3O4, which was confirmed by XRD and SEM-EDS analyses. In addition, the stripping rate of ammonia-nitrogen was 99.73%. Leaching tests showed the leached toxic substances concentrations of the treated EMR met the integrated wastewater discharge standard of China (GB8978-1996).

  16. Manganese micro-nodules on ancient brick walls.

    PubMed

    López-Arce, P; García-Guinea, J; Fierro, J L G

    2003-01-20

    Romans, Jews, Arabs and Christians built the ancient city of Toledo (Spain) with bricks as the main construction material. Manganese micro-nodules (circa 2 microm in diameter) have grown under the external bio-film surface of the bricks. Recent anthropogenic activities such as industrial emissions, foundries, or traffic and housing pollution have further altered these old bricks. The energy-dispersive X-ray microanalyses (XPS) of micro-nodules show Al, Si, Ca, K, Fe and Mn, with some carbon species. Manganese atoms are present only as Mn(4+) and iron as Fe(3+) (FeOOH-Fe(2)O(3) mixtures). The large concentration of alga biomass of the River Tagus and the Torcón and Guajaraz reservoirs suggest manganese micro-nodules are formed either from water solutions rich in anthropogenic MnO(4)K in a reduction environment (from Mn(7+) to Mn(4+)) or by oxidation mechanisms from dissolved Mn(2+) (from Mn(2+) to Mn(4+)) linked to algae biofilm onto the ancient brick surfaces. Ancient wall surfaces were also studied by scanning electron microscopy (SEM-EDS) and X-ray diffraction (XRD). Chemical and biological analyses of the waters around Toledo are also analysed for possible sources of manganese. Manganese micro-nodules on ancient brick walls are good indicators of manganese pollution. Copyright 2002 Elsevier Science B.V.

  17. Spatial mapping of mineralization with manganese-enhanced magnetic resonance imaging

    USGS Publications Warehouse

    Chesnick, I.E.; Centeno, J.A.; Todorov, T.I.; Koenig, A.E.; Potter, K.

    2011-01-01

    Paramagnetic manganese can be employed as a calcium surrogate to sensitize the magnetic resonance imaging (MRI) technique to the processing of calcium during the bone formation process. At low doses, after just 48h of exposure, osteoblasts take up sufficient quantities of manganese to cause marked reductions in the water proton T1 values compared with untreated cells. After just 24h of exposure, 25??M MnCl2 had no significant effect on cell viability. However, for mineralization studies 100??M MnCl2 was used to avoid issues of manganese depletion in calvarial organ cultures and a post-treatment delay of 48h was implemented to ensure that manganese ions taken up by osteoblasts is deposited as mineral. All specimens were identified by their days in vitro (DIV). Using inductively coupled plasma optical emission spectroscopy (ICP-OES), we confirmed that Mn-treated calvariae continued to deposit mineral in culture and that the mineral composition was similar to that of age-matched controls. Notably there was a significant decrease in the manganese content of DIV18 compared with DIV11 specimens, possibly relating to less manganese sequestration as a result of mineral maturation. More importantly, quantitative T1 maps of Mn-treated calvariae showed localized reductions in T1 values over the calvarial surface, indicative of local variations in the surface manganese content. This result was verified with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We also found that ??R1 values, calculated by subtracting the relaxation rate of Mn-treated specimens from the relaxation rate of age-matched controls, were proportional to the surface manganese content and thus mineralizing activity. From this analysis, we established that mineralization of DIV4 and DIV11 specimens occurred in all tissue zones, but was reduced for DIV18 specimens because of mineral maturation with less manganese sequestration. In DIV25 specimens, active mineralization was observed for the expanding superficial surface and ??R1 values were increased due to the mineralization of small, previously unmineralized areas. Our findings support the use of manganese-enhanced MRI (MEMRI) to study well-orchestrated mineralizing events that occur during embryonic development. In conclusion, MEMRI is more sensitive to the study of mineralization than traditional imaging approaches. ?? 2011.

  18. Spatial mapping of mineralization with manganese-enhanced magnetic resonance imaging☆☆☆

    PubMed Central

    Chesnick, Ingrid E.; Centeno, Jose A.; Todorov, Todor I.; Koenig, Alan E.; Potter, Kimberlee

    2011-01-01

    Paramagnetic manganese can be employed as a calcium surrogate to sensitize the magnetic resonance imaging (MRI) technique to the processing of calcium during the bone formation process. At low doses, after just 48 h of exposure, osteoblasts take up sufficient quantities of manganese to cause marked reductions in the water proton T1 values compared with untreated cells. After just 24 h of exposure, 25 μM MnCl2 had no significant effect on cell viability. However, for mineralization studies 100 μM MnCl2 was used to avoid issues of manganese depletion in calvarial organ cultures and a post-treatment delay of 48 h was implemented to ensure that manganese ions taken up by osteoblasts is deposited as mineral. All specimens were identified by their days in vitro (DIV). Using inductively coupled plasma optical emission spectroscopy (ICP-OES), we confirmed that Mn-treated calvariae continued to deposit mineral in culture and that the mineral composition was similar to that of age-matched controls. Notably there was a significant decrease in the manganese content of DIV18 compared with DIV11 specimens, possibly relating to less manganese sequestration as a result of mineral maturation. More importantly, quantitative T1 maps of Mn-treated calvariae showed localized reductions in T1 values over the calvarial surface, indicative of local variations in the surface manganese content. This result was verified with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We also found that ΔR1 values, calculated by subtracting the relaxation rate of Mn-treated specimens from the relaxation rate of age-matched controls, were proportional to the surface manganese content and thus mineralizing activity. From this analysis, we established that mineralization of DIV4 and DIV11 specimens occurred in all tissue zones, but was reduced for DIV18 specimens because of mineral maturation with less manganese sequestration. In DIV25 specimens, active mineralization was observed for the expanding superficial surface and ΔR1 values were increased due to the mineralization of small, previously unmineralized areas. Our findings support the use of manganese-enhanced MRI (MEMRI) to study well-orchestrated mineralizing events that occur during embryonic development. In conclusion, MEMRI is more sensitive to the study of mineralization than traditional imaging approaches. PMID:21352960

  19. Saturation kinetics in phenolic O-H bond oxidation by a mononuclear Mn(III)-OH complex derived from dioxygen.

    PubMed

    Wijeratne, Gayan B; Corzine, Briana; Day, Victor W; Jackson, Timothy A

    2014-07-21

    The mononuclear hydroxomanganese(III) complex, [Mn(III)(OH)(dpaq)](+), which is supported by the amide-containing N5 ligand dpaq (dpaq = 2-[bis(pyridin-2-ylmethyl)]amino-N-quinolin-8-yl-acetamidate) was generated by treatment of the manganese(II) species, [Mn(II)(dpaq)](OTf), with dioxygen in acetonitrile solution at 25 °C. This oxygenation reaction proceeds with essentially quantitative yield (greater than 98% isolated yield) and represents a rare example of an O2-mediated oxidation of a manganese(II) complex to generate a single product. The X-ray diffraction structure of [Mn(III)(OH)(dpaq)](+) reveals a short Mn-OH distance of 1.806(13) Å, with the hydroxo moiety trans to the amide function of the dpaq ligand. No shielding of the hydroxo group is observed in the solid-state structure. Nonetheless, [Mn(III)(OH)(dpaq)](+) is remarkably stable, decreasing in concentration by only 10% when stored in MeCN at 25 °C for 1 week. The [Mn(III)(OH)(dpaq)](+) complex participates in proton-coupled electron transfer reactions with substrates with relatively weak O-H and C-H bonds. For example, [Mn(III)(OH)(dpaq)](+) oxidizes TEMPOH (TEMPOH = 2,2'-6,6'-tetramethylpiperidine-1-ol), which has a bond dissociation free energy (BDFE) of 66.5 kcal/mol, in MeCN at 25 °C. The hydrogen/deuterium kinetic isotope effect of 1.8 observed for this reaction implies a concerted proton-electron transfer pathway. The [Mn(III)(OH)(dpaq)](+) complex also oxidizes xanthene (C-H BDFE of 73.3 kcal/mol in dimethylsulfoxide) and phenols, such as 2,4,6-tri-t-butylphenol, with BDFEs of less than 79 kcal/mol. Saturation kinetics were observed for phenol oxidation, implying an initial equilibrium prior to the rate-determining step. On the basis of a collective body of evidence, the equilibrium step is attributed to the formation of a hydrogen-bonding complex between [Mn(III)(OH)(dpaq)](+) and the phenol substrates.

  20. Microbial oxidation and reduction of manganese: consequences in groundwater and applications.

    PubMed

    Gounot, A M

    1994-08-01

    In the natural environment, manganese is found as reduced soluble or adsorbed Mn(II) and insoluble Mn(III) and Mn(IV) oxides. Mn oxidation has been reported in various microorganisms. Several possible pathways, indirect or direct, have been proposed. A wider variety of Mn-reducing microorganisms, from highly aerobic to strictly anaerobic, has been described. The mechanisms of Mn reduction can be either an indirect process resulting from interactions with organic or inorganic compounds, or a direct enzymatic (electron-transfer) reaction. The role of microorganisms in Mn cycle is now well demonstrated by various methods in superficial natural environments, and research has been initiated on subsurface sediments. Observations in vivo (Rhône valley) and under in vitro suggested that bacterial activities are the main processes that promote manganese evolution and migration in shallow aquifers. After the building of hydroelectric dams, the stream of the Rhône was modified, giving rise to mud deposition on the bank. In the mud, bacteria are stimulated by the high organic content and consume oxygen. The redox potential drops. The manganese oxides previously formed under aerobic conditions are reduced and soluble manganese (Mn(II)) migrates into the aquifer. If the subsurface sediments are coarse-grained, the aquifer is well aerated, allowing the re-oxidation of Mn(II) by the oligotrophic attached bacteria in aquifer sediments. If the aquifer is confined, aeration is not sufficient for Mn-reoxidation. Mn(II) remains in a reduced state and migrates to the wells. Furthermore, the presence of organic matter in subsurface sediments results in the reduction of previously formed Mn oxides. Pseudo-amorphous manganese oxides, which were probably recently formed by bacteria, are more readily reduced than old crystalline manganese oxides. Although the concentrations of soluble manganese found in groundwaters are not toxic, it still is a problem since its oxidation results in darkening of water and plugging of pipes in drinking or industrial water systems. Soluble manganese can be removed from water by biological processes involving manganese-oxidizing bacteria, either in situ, or in sand filters after pumping. Various procedures are mentioned.

  1. Processes of nickel and cobalt uptake by a manganese oxide forming sediment in Pinal Creek, Globe mining district, Arizona

    USGS Publications Warehouse

    Kay, J.T.; Conklin, M.H.; Fuller, C.C.; O'Day, P. A.

    2001-01-01

    A series of column experiments was conducted using manganese oxide coated sediments collected from the hyporheic zone in Pinal Creek (AZ), a metal-contaminated stream, to study the uptake and retention of Mn, Ni, and Co. Experimental variables included the absence (abiotic) and presence (biotic) of active Mn-oxidizing bacteria, the absence and presence of dissolved Mn, and sediment manganese oxide content. Uptake of Mn under biotic conditions was between 8 and 39% higher than under abiotic conditions. Continuous uptake of Mn due to biotic oxidation was evident from extraction of column sediments. Manganese uptake is hypothesized to initially occur as adsorption, which led to subsequent surface and/or microbial oxidation. Complete breakthrough of Ni within 100 pore volumes indicated no process of continuous uptake and was modeled as an equilibrium adsorption process. Nickel uptake in the presence of dissolved Mn was 67-100% reversible. Sediment extractions suggest that Ni uptake occurred through weak and strong adsorption. Continuous uptake of cobalt increased with sediment manganese oxide content, and Co uptake was up to 75% greater under biotic than abiotic conditions. Cobalt uptake was controlled by both existing and newly formed manganese oxides. Only a small amount of Co uptake was reversible (10-25%). XANES spectral analysis indicated that most Co(II) was oxidized to Co(III) and probably incorporated structurally into manganese oxides. Although manganese oxides were the primary phase controlling uptake and retention of Mn, Ni, and Co, the mechanisms varied among the metals.

  2. Relative association of Rubisco with manganese and magnesium as a regulatory mechanism in plants.

    PubMed

    Bloom, Arnold J; Kameritsch, Petra

    2017-12-01

    Rubisco, the enzyme that constitutes as much as half of the protein in a leaf, initiates either the photorespiratory pathway that supplies reductant for the assimilation of nitrate into amino acids or the C3 carbon fixation pathway that generates carbohydrates. The relative rates of these two pathways depend both on the relative extent to which O 2 and CO 2 occupies the active site of Rubisco and on whether manganese or magnesium is bound to the enzyme. This study quantified the activities of manganese and magnesium in isolated tobacco chloroplasts and the thermodynamics of binding of these metals to Rubisco purified from tobacco or a bacterium. In tobacco chloroplasts, manganese was less active than magnesium, but Rubisco purified from tobacco had a higher affinity for manganese. The activity of each metal in the chloroplast was similar in magnitude to the affinity of tobacco Rubisco for each. This indicates that, in tobacco chloroplasts, Rubisco associates almost equally with both metals and rapidly exchanges one metal for the other. Binding of magnesium was similar in Rubisco from tobacco and a bacterium, whereas binding of manganese differed greatly between the Rubisco from these species. Moreover, the ratio of leaf manganese to magnesium in C3 plants increased as atmospheric CO 2 increased. These results suggest that Rubisco has evolved to improve the energy transfers between photorespiration and nitrate assimilation and that plants regulate manganese and magnesium activities in the chloroplast to mitigate detrimental changes in their nitrogen/carbon balance as atmospheric CO 2 varies. © 2017 Scandinavian Plant Physiology Society.

  3. Surface monolayers of well-defined amphiphilic block copolymer composed of poly(acrylic acid) or poly(oxyethylene) and poly(styrene). Interpolymer complexation at the air-water interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niwa, Masazo; Hayashi, Takehiro; Higashi, Nobuyuki

    1990-01-01

    Amphiphilic block polymers (2,3) composed of poly(acrylic acid) (PAA) or poly(oxyethylene) (POE) and chain length controlled poly(styrene) (PSt) have been prepared by using a catalytic system of tribromomethyl-terminated oligomer and manganese carbonyl. All the amphiphilic materials formed well-behaved surface monolayers, and the II-A curves for them expanded systematically with an increase of the PSt chain length.

  4. Synthesis, Reactivity, and Characterization of (-Hexacarbocyclic) Manganese Dicarbonyl Complexes with Sulfur and Phosphorus Ligands

    DTIC Science & Technology

    1993-05-01

    Coupling of SCHS (6 221) and ring methyls (6 16.8) in 52 in (a)13C[’H) and (b) 13C NMR Spectra ......................... 128 14. Low- energy collision...spectrum of 51 (m/z 351) .................. 136 15. Low- energy collision spectrum of 52 (m/z 593) .................. 138 16. Low- energy collision...spectrum of 53 (m/z 390) .................. 139 17. Low- energy collision spectrum of 54 (m/z 410) .................. 140 18. Low- energy collision spectrum of

  5. Necessity of a Security Barrier in the Nord Kivu and Ituri Border Provinces of the Democratic Republic of the Congo

    DTIC Science & Technology

    2016-06-10

    cobalt, wood products, crude oil , coal, zinc, manganese, coltan, uranium, a flourishing flora, and a diversified fauna. The DRC’s geological potentiality...Poor knowledge of informatics has also limited the speed of research. Finally, the complexity and ambiguity of the problem, and the insistence on...Pong Massif in South Vietnam. By 1974, the trail was a four-lane wide route and also boasted four oil pipelines. From 1965 to 1975, Hanoi moved about

  6. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section for...

  7. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section for...

  8. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section for...

  9. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section for...

  10. Influence of cobalt and manganese content on the dehydrogenation capacity and kinetics of air-exposed LaNi 5+ x-type alloys in solid gas and electrochemical reactions

    NASA Astrophysics Data System (ADS)

    Raekelboom, E.; Cuevas, F.; Knosp, B.; Percheron-Guégan, A.

    The effect of cobalt and manganese content on the dehydrogenation properties of air-exposed MmB 5+ x-type (Mm = mischmetal; B = Ni, Al, Co and Mn) alloys was investigated both in solid gas and electrochemical reactions. The cobalt and manganese content were varied separately while keeping constant the plateau pressure of the hydrides. The increase of the cobalt content leads to a decrease of the hydrogen capacity whereas the manganese content has no much effect. In solid gas reactions, the kinetics were found to be limited by the hydrogen diffusion through the surface oxidation layer. As for the electrochemistry, the kinetics are limited by a corrosion layer formed in alkaline medium. The desorption rates for both processes increase as the cobalt or manganese content decreases. This is thought to be due to an enhancement of the hydrogen diffusivity through the oxidation layer. As a result, a low cobalt or manganese content in MmB 5+ x alloys is found to be beneficial for the hydrogen desorption kinetics in both processes.

  11. Inhibition of chlorophyll synthesis and carotenoid accumulation by manganese and cobalt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clairmont, K.B.; Davis, E.; Hagar, W.

    1986-05-01

    The authors have developed methods for the separation and identification of the major pigments of the photosynthetic apparatus in plants using reversed phase microbore high performance liquid chromatography. Using these methods they have monitored the concentrations of pigments in tissue cultured tobacco callus in the absence and presence of excess manganese and cobalt. Manganese and cobalt were reported to inhibit chlorophyll synthesis in blue green algae. They have found that excess manganese blocks chlorophyll synthesis in tobacco callus also. In the manganese inhibited callus there is an increase in the concentration of protoporphyrin IX- the last common precursor to bothmore » the chlorophyll and heme synthetic pathways. They have found that cobalt also blocks chlorophyll synthesis in tissue cultured tobacco callus, but at a much lower concentration. In addition to the inhibition of chlorophyll synthesis by excess manganese and cobalt, the accumulation of carotenoids is reduced by several orders of magnitude in this tissue. The absence of chlorophyll may prevent assembly of any components of the photosynthetic apparatus in these cells.« less

  12. Removal of iron and manganese using biological roughing up flow filtration technology.

    PubMed

    Pacini, Virginia Alejandra; María Ingallinella, Ana; Sanguinetti, Graciela

    2005-11-01

    The removal of iron and manganese from groundwater using biological treatment methods is almost unknown in Latin America. Biological systems used in Europe are based on the process of double rapid biofiltration during which dissolved oxygen and pH need to be strictly controlled in order to limit abiotic iron oxidation. The performance of roughing filter technology in a biological treatment process for the removal of iron and manganese, without the use of chemical agents and under natural pH conditions was studied. Two pilot plants, using two different natural groundwaters, were operated with the following treatment line: aeration, up flow roughing filtration and final filtration (either slow or rapid). Iron and manganese removal efficiencies were found to be between 85% and 95%. The high solid retention capability of the roughing filter means that it is possible to remove iron and manganese simultaneously by biotic and abiotic mechanisms. This system combines simple, low-cost operation and maintenance with high iron and manganese removal efficiencies, thus constituting a technology which is particularly suited to small waterworks.

  13. Development of a field method for measuring manganese in welding fume.

    PubMed

    Dale Marcy, A; Drake, Pamela L

    2007-11-01

    Workers who perform routine welding tasks are potentially exposed to fume that may contain manganese. Manganese may cause respiratory problems and is implicated in causing the occurrence of Parkinson-like symptoms. In this study, a field colorimetric method for extracting and measuring manganese in welding fume was developed. The method uses ultrasonic extraction with an acidic hydrogen peroxide solution to extract welding fume collected on polyvinyl chloride filters. Commercially available pre-packaged reagents are used to produce a colored solution, created by a reaction of manganese(ii) with 1-(2-pyridylazo)-2-naphthol. Absorbance measurements are then made using a portable spectrophotometer. The method detection limit and limit of quantification (LOQ) were 5.2 microg filter(-1) and 17 microg filter(-1), respectively, with a dynamic range up to 400 microg filter(-1). When the results are above the LOQ for the colorimetric method, the manganese masses are equivalent to those measured by the International Organization for Standardization Method 15202-2, which employs a strong acid digestion and analysis using inductively coupled plasma-optical emission spectrometry.

  14. Selection of organic acid leaching reagent for recovery of zinc and manganese from zinc-carbon and alkaline spent batteries

    NASA Astrophysics Data System (ADS)

    Yuliusman; Amiliana, R. A.; Wulandari, P. T.; Ramadhan, I. T.; Kusumadewi, F. A.

    2018-03-01

    Zinc-carbon and alkaline batteries are often used in electronic equipment that requires small quantities of power. The waste from these batteries contains valuable metals, such as zinc and manganese, that are needed in many industries and can pollute the environment if not treated properly. This paper concerns the recovery of zinc and manganese metals from zinc-carbon and alkaline spent batteries with leaching method and using organic acid as the environmental friendly leaching reagent. Three different organic acids, namely citric acid, malic acid and aspartic acid, were used as leaching reagents and compared with sulfuric acid as non-organic acid reagents that often used for leaching. The presence of hydrogen peroxide as manganese reducers was investigated for both organic and non-organic leaching reagents. The result showed that citric acid can recover 64.37% Zinc and 51.32% Manganese, while malic acid and aspartic acid could recover less than these. Hydrogen peroxide gave the significant effect for leaching manganese with non-organic acid, but not with organic acid.

  15. Immobilization of iron- and manganese-oxidizing bacteria with a biofilm-forming bacterium for the effective removal of iron and manganese from groundwater.

    PubMed

    Li, Chunyan; Wang, Shuting; Du, Xiaopeng; Cheng, Xiaosong; Fu, Meng; Hou, Ning; Li, Dapeng

    2016-11-01

    In this study, three bacteria with high Fe- and Mn-oxidizing capabilities were isolated from groundwater well sludge and identified as Acinetobacter sp., Bacillus megaterium and Sphingobacterium sp. The maximum removal ratios of Fe and Mn (99.75% and 96.69%) were obtained by an optimal combination of the bacteria at a temperature of 20.15°C, pH 7.09 and an inoculum size of 2.08%. Four lab-scale biofilters were tested in parallel for the removal of iron and manganese ions from groundwater. The results indicated that the Fe/Mn removal ratios of biofilter R4, which was inoculated with iron- and manganese-oxidizing bacteria and a biofilm-forming bacterium, were approximately 95% for each metal during continuous operation and were better than the other biofilters. This study demonstrated that the biofilm-forming bacterium could promote the immobilization of the iron- and manganese-oxidizing bacteria on the biofilters and enhance the removal efficiency of iron and manganese ions from groundwater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Manganese and selenium concentrations in cerebrospinal fluid of seriously ill children.

    PubMed

    Franěk, Tomáš; Kotaška, Karel; Průša, Richard

    2017-11-01

    The homeostasis of essential trace elements such as selenium and manganese may be altered in patients with severe diseases of various etiologies (trauma brain injuries, tumors, leukemias, lymphomas, neurological diseases). Concentration of manganese and selenium were determined in cerebrospinal fluid by electrothermal atomic absorption spectrometry in 50 hospitalized children with various clinical ethiologies including oncological, neurological, and brain related diseases. The concentrations of manganese in cerebrospinal fluid of children were 0.97±0.67 μg/L. The concentrations of selenium were 13.3±3.5 μg/L. The concentrations were similar as published in adults. The values did not correlated with the age, gender and severity of the disease. We evaluated values of selenium and manganese in cerebrospinal fluid of seriously diseased children. © 2017 Wiley Periodicals, Inc.

  17. [Studies on semen quality in workers exposed to manganese and electric welding].

    PubMed

    Wu, W; Zhang, Y; Zhang, F

    1996-09-01

    Three hundred and ten workers were selected to study the effects of manganese and electric welding on male reproductive function, with 211 occupationally exposed to manganess and electric welding fume and 99 controls. Concentrations of manganese and welding fume in the air of the workplace were 0.14-5.5 mg/m3 and 6.5-82.3 mg/m3, respectively. Semen concentrations of manganese, copper, chromium, nickel, and iron in workers employed in electric welding were significantly higher than those in controls. Time from ejaculation to liquefaction of semen in exposed workers was longer than that in controls, and volume of semen, sperm count, viable sperm count and percentage were significantly lower in the exposed workers than in the controls. Stepwise regression analysis suggests a direct toxic effect of manganese on sperm production.

  18. Effective removal of trace thallium from surface water by nanosized manganese dioxide enhanced quartz sand filtration.

    PubMed

    Huangfu, Xiaoliu; Ma, Chengxue; Ma, Jun; He, Qiang; Yang, Chun; Zhou, Jian; Jiang, Jin; Wang, Yaan

    2017-12-01

    Thallium (Tl) has drawn wide concern due to its high toxicity even at extremely low concentrations, as well as its tendency for significant accumulation in the human body and other organisms. The need to develop effective strategies for trace Tl removal from drinking water is urgent. In this study, the removal of trace Tl (0.5 μg L -1 ) by conventional quartz sand filtration enhanced by nanosized manganese dioxide (nMnO 2 ) has been investigated using typical surface water obtained from northeast China. The results indicate that nMnO 2 enhanced quartz sand filtration could remove trace Tl(I) and Tl(III) efficiently through the adsorption of Tl onto nMnO 2 added to a water matrix and onto nMnO 2 attached on quartz sand surfaces. Tl(III)-HA complexes might be responsible for higher residual Tl(III) in the effluent compared to residual Tl(I). Competitive Ca 2+ cations inhibit Tl removal to a certain extent because the Ca 2+ ions will occupy the Tl adsorption site on nMnO 2 . Moreover, high concentrations of HA (10 mgTOC L -1 ), which notably complexes with and dissolves nMnO 2 (more than 78%), resulted in higher residual Tl(I) and Tl(III). Tl(III)-HA complexes might also enhance Tl(III) penetration to a certain extent. Additionally, a higher pH level could enhance the removal of trace Tl from surface water. Finally, a slight increase of residual Tl was observed after backwash, followed by the reduction of the Tl concentration in the effluent to a "steady" state again. The knowledge obtained here may provide a potential strategy for drinking water treatment plants threatened by trace Tl. Copyright © 2017. Published by Elsevier Ltd.

  19. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mowei; Yan, Jing; Romano, Christine A.

    Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase Mnx from Bacillus sp. PL-12 has been successfully overexpressed in active form, unexpectedly, as a protein complex with a molecular weight of 211 kDa with no homology to known proteins in the database. We have recently used surface induced dissociation (SID) and ion mobility – mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data frommore » the native mass spectrometry experiment led to a plausible model of this unknown multicopper oxidase which has been difficult to study by conventional structural biology methods. However, because each subunit of Mnx binds copper ions as cofactor at varying ratios, there were remaining ambiguities in assigning some of the observed peaks to metal-binding species because of the sample heterogeneity and limited mass resolution. In this study, we performed SID in a modified Fourier transform – ion cyclotron resonance (FT-ICR) mass spectrometer for obtaining the ultimate resolution on the released subcomplexes of Mnx. The high mass accuracy and resolution unveiled unexpected artificial modifications in the protein that have been previously thought to be iron bound species based on lower resolution data. Additionally, most released subcomplexes were isotopically resolved for defining metal binding stoichiometry at each structural level. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes.« less

  20. Modeling U-shaped dose-response curves for manganese using categorical regression.

    PubMed

    Milton, Brittany; Krewski, Daniel; Mattison, Donald R; Karyakina, Nataliya A; Ramoju, Siva; Shilnikova, Natalia; Birkett, Nicholas; Farrell, Patrick J; McGough, Doreen

    2017-01-01

    Manganese is an essential nutrient which can cause adverse effects if ingested to excess or in insufficient amounts, leading to a U-shaped exposure-response relationship. Methods have recently been developed to describe such relationships by simultaneously modeling the exposure-response curves for excess and deficiency. These methods incorporate information from studies with diverse adverse health outcomes within the same analysis by assigning severity scores to achieve a common response metric for exposure-response modeling. We aimed to provide an estimate of the optimal dietary intake of manganese to balance adverse effects from deficient or excess intake. We undertook a systematic review of the literature from 1930 to 2013 and extracted information on adverse effects from manganese deficiency and excess to create a database on manganese toxicity following oral exposure. Although data were available for seven different species, only the data from rats was sufficiently comprehensive to support analytical modelling. The toxicological outcomes were standardized on an 18-point severity scale, allowing for a common analysis of all available toxicological data. Logistic regression modelling was used to simultaneously estimate the exposure-response profile for dietary deficiency and excess for manganese and generate a U-shaped exposure-response curve for all outcomes. Data were available on the adverse effects of 6113 rats. The nadir of the U-shaped joint response curve occurred at a manganese intake of 2.70mg/kgbw/day with a 95% confidence interval of 2.51-3.02. The extremes of both deficient and excess intake were associated with a 90% probability of some measurable adverse event. The manganese database supports estimation of optimal intake based on combining information on adverse effects from systematic review of published experiments. There is a need for more studies on humans. Translation of our results from rats to humans will require adjustment for interspecies differences in sensitivity to manganese. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The fruit juice of Morinda citrifolia (noni) downregulates HIF-1α protein expression through inhibition of PKB, ERK-1/2, JNK-1 and S6 in manganese-stimulated A549 human lung cancer cells.

    PubMed

    Jang, Byeong-Churl

    2012-03-01

    High exposure of manganese is suggested to be a risk factor for many lung diseases. Evidence suggests anticancerous and antiangiogenic effects by products derived from Morinda citrifolia (noni) fruit. In this study, we investigated the effect of noni fruit juice (NFJ) on the expression of HIF-1α, a tumor angiogenic transcription factor in manganese-chloride (manganese)-stimulated A549 human lung carcinoma cells. Treatment with manganese largely induced expression of HIF-1α protein but did not affect HIF-1α mRNA expression in A549 cells, suggesting the metal-mediated co- and/or post-translational HIF-1α upregulation. Manganese treatment also led to increased phosphorylation of extracellular-regulated protein kinase-1/2 (ERK-1/2), c-Jun N-terminal kinase-1 (JNK-1), protein kinase B (PKB), S6 and eukaryotic translation initiation factor-2α (eIF-2α) in A549 cells. Of note, the exposure of NFJ inhibited the manganese-induced HIF-1α protein upregulation in a concentration-dependent manner. Importantly, as assessed by results of pharmacological inhibition and siRNA transfection studies, the effect of NFJ on HIF-1α protein downregulation seemed to be largely associated with the ability of NFJ to interfere with the metal's signaling to activate PKB, ERK-1/2, JNK-1 and S6 in A549 cells. It was further shown that NFJ could repress the induction of HIF-1α protein by desferoxamine or interleukin-1β (IL-1β), another HIF-1α inducer in A549 cells. Thus, the present study provides the first evidence that NFJ has the ability to strongly downregulate manganese-induced HIF-1α protein expression in A549 human lung cancer cells, which may suggest the NFJ-mediated beneficial effects on lung pathologies in which manganese and HIF-1α overexpression play pathogenic roles.

  2. Minocycline increases the life span and motor activity and decreases lipid peroxidation in manganese treated Drosophila melanogaster.

    PubMed

    Bonilla, E; Contreras, R; Medina-Leendertz, S; Mora, M; Villalobos, V; Bravo, Y

    2012-03-29

    The objective of this study was to investigate the effect of Minocycline in the life span, motor activity, and lipid peroxidation of Drosophila melanogaster treated with manganese. Two days after emerging from the pupa male wild-type D. melanogaster were fed for 13 days with corn media containing 15 mM manganese. Then, they were divided in six groups of 300 flies each: group (a) remained treated with manganese (Mn group); group (b) began treatment with Minocycline (0.05 mM) (Mn-Minocycline group); group (c) received no additional treatment (Mn-no treatment group); group (d) simultaneously fed with manganese and Minocycline (Mn+Minocycline group). Additionally, a control (group e) with no treatment and another group (f) fed only with Minocycline after emerging from the pupa were added. All the manganese treated flies (group a) were dead on the 25th day. The life span in group f (101.66±1.33 days, mean S.E.M.) and of group b (97.00±3.46 days) were similar, but in both cases it was significantly higher than in group e (68.33±1.76 days), group c (67.05±2.30 days) and in those of group d (37.33±0.88). Manganese (groups a and d) decreased motor activity in D. melanogaster. In the Minocycline fed flies (groups b and f) a higher motor activity was detected. In Mn-Minocycline and Mn+Minocycline treated flies a significant decrease of MDA levels was detected when compared to the Minocycline group indicating that Minocycline and Mn appear to have a synergistic effect. In conclusion, Minocycline increased the life span and motor activity and decreased MDA formation of manganese treated D. melanogaster, probably by an inhibition of the production of reactive oxygen species. Manganese also exerted an antioxidant effect as shown by the significant decrease of MDA levels when compared to control flies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Tissue distribution of manganese in iron-sufficient or iron-deficient rats after stainless steel welding-fume exposure.

    PubMed

    Park, Jung-Duck; Kim, Ki-Young; Kim, Dong-Won; Choi, Seong-Jin; Choi, Byung-Sun; Chung, Yong Hyun; Han, Jeong Hee; Sung, Jae Hyuck; Kwon, Il Hoon; Mun, Je-Hyeok; Yu, Il Je

    2007-05-01

    Welders can be exposed to high levels of manganese through welding fumes. Although it has already been suggested that excessive manganese exposure causes neurotoxicity, called manganism, the pathway of manganese transport to the brain with welding-fume exposure remains unclear. Iron is an essential metal that maintains a homeostasis in the body. The divalent metal transporter 1 (DMT1) transports iron and other divalent metals, such as manganese, and the depletion of iron is known to upregulate DMT1 expression. Accordingly, this study investigated the tissue distribution of manganese in iron-sufficient and iron-deficient rats after welding-fume exposure. The feeding of an iron-deficient diet for 4 wk produced a depletion of body iron, such as decreased iron levels in the serum and tissues, and upregulated the DMT1 expression in the rat duodenum. The iron-sufficient and iron-deficient rats were then exposed to welding fumes generated from manual metal arc stainless steel at a concentration of 63.5 +/- 2.3 mg/m3 for 2 h per day over a 30-day period. Animals were sacrificed on days 1, 15, and 30. The level of body iron in the iron-deficient rats was restored to the control level after the welding-fume exposure. However, the tissue distributions of manganese after the welding-fume exposure showed similar patterns in both the iron-sufficient and iron-deficient groups. The concentration of manganese increased in the lungs and liver on days 15 and 30, and increased in the olfactory bulb on day 30. Slight and heterogeneous increases of manganese were observed in different brain regions. Consequently, these findings suggest that the presence of Fe in the inhaled welding fumes may not have a significant effect on the uptake of Mn into the brain. Thus, the condition of iron deficiency did not seem to have any apparent effect on the transport of Mn into the brain after the inhalation of welding fumes.

  4. Oxygen-atom transfer chemistry and thermolytic properties of a di-tert-butylphosphate-ligated Mn4O4 cubane.

    PubMed

    Van Allsburg, Kurt M; Anzenberg, Eitan; Drisdell, Walter S; Yano, Junko; Tilley, T Don

    2015-03-16

    [Mn4O4{O2P(OtBu)2}6] (1), an Mn4O4 cubane complex combining the structural inspiration of the photosystem II oxygen-evolving complex with thermolytic precursor ligands, was synthesized and fully characterized. Core oxygen atoms within complex 1 are transferred upon reaction with an oxygen-atom acceptor (PEt3), to give the butterfly complex [Mn4O2{O2P(OtBu)2}6(OPEt3)2]. The cubane structure is restored by reaction of the latter complex with the O-atom donor PhIO. Complex 1 was investigated as a precursor to inorganic Mn metaphosphate/pyrophosphate materials, which were studied by X-ray absorption spectroscopy to determine the fate of the Mn4O4 unit. Under the conditions employed, thermolyses of 1 result in reduction of the manganese to Mn(II) species. Finally, the related butterfly complex [Mn4O2{O2P(pin)}6(bpy)2] (pin = pinacolate) is described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mineral of the month: manganese

    USGS Publications Warehouse

    Corathers, Lisa A.

    2005-01-01

    Manganese is one of the most important ferrous metals and one of the few for which the United States is totally dependent on imports. It is a black, brittle element predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production, which together provide the largest market for manganese (about 83 percent). It is also used as an alloy with nonferrous metals such as aluminum and copper. Nonmetallurgical applications of manganese include battery cathodes, soft ferrite magnets used in electronics, micronutrients found in fertilizers and animal feed, water treatment chemicals, and a colorant for bricks and ceramics.

  6. Effect of metal stress on the thermal infrared emission of soybeans: A greenhouse experiment - Possible utility in remote sensing

    NASA Technical Reports Server (NTRS)

    Suresh, R.; Schwaller, M. R.; Foy, C. D.; Weidner, J. R.; Schnetzler, C. S.

    1989-01-01

    Manganese-sensitive forest and manganese-tolerant lee soybean cultivars were subjected to differential manganese stress in loring soil in a greenhouse experiment. Leaf temperature measurements were made using thermistors for forest and lee. Manganese-stressed plants had higher leaf temperatures than control plants in both forest and lee. Results of this experiment have potential applications in metal stress detection using remote sensing thermal infrared data over large areas of vegetation. This technique can be useful in reconnaissance mineral exploration in densely-vegetated regions where conventional ground-based methods are of little help.

  7. Removal of iron and manganese using granular activated carbon and zeolite in artificial barrier of riverbank filtration

    NASA Astrophysics Data System (ADS)

    Ismail, Abustan; Harmuni, Halim; Mohd, Remy Rozainy M. A. Z.

    2017-04-01

    Iron and Manganese was examined from riverbank filtration (RBF) and river water in Sungai Kerian, Lubok Buntar, Serdang Kedah. Water from the RBF was influenced by geochemical and hydro chemical processes in the aquifer that made concentrations of iron (Fe), and manganese (Mn) high, and exceeded the standard values set by the Malaysia Ministry of Health. Therefore, in order to overcome the problem, the artificial barrier was proposed to improve the performance of the RBF. In this study, the capability and performance of granular activated carbon, zeolite and sand were investigated in this research. The effects of dosage, shaking speed, pH and contact time on removal of iron and manganese were studied to determine the best performance. For the removal of iron using granular activated carbon (GAC) and zeolite, the optimum contact time was at 2 hours with 200rpm shaking speed with 5g and 10g at pH 5 with percentage removal of iron was 87.81% and 83.20% respectively. The removal of manganese and zeolite arose sharply in 75 minutes with 90.21% removal, with 100rpm shaking speed. The GAC gave the best performance with 99.39% removal of manganese. The highest removal of manganese was achieved when the adsorbent dosage increased to 10g with shaking speed of 200rpm.

  8. Hyperspectral characteristics of Celosia argentea which lived in manganese stress environment and inversion model for concentration effect of manganese

    NASA Astrophysics Data System (ADS)

    Chen, Sanming; Lin, Gang; Yin, Xianyang; Sun, Xiaolin; Xu, Jiasheng; Liu, Zhiying

    2015-12-01

    Sedimentary manganese deposits widely distribute in North Guangxi with the characteristic existing Celosia argentea. Celosia argentea is a kind of plant which has a strong ability to enrich manganese. In order to study the relationship between the hyperspectral characteristics of Celosia argentea and the concentration effect of manganese in the soil, we used soil of B layer in mining area, background soil and the soil adding reagent of MnCl4 to make up experimental sample soil with 10 levels Manganese content for the same batch Celosia argentea. The levels are 0mg/kg, 4500mg/kg, 9000mg/kg, 13500mg/kg, 18000mg/kg, 18020mg/kg, 18040mg/kg, 18080mg/kg, 18160mg/kg. ASD FieldSpec-4 has been used to measure the abnormal spectrums of these Celosia argentea through a whole growth cycle. After pretreating the spectral data, we used Successive Projections Algorithm (SPA) to extract the characteristic variables for extracting 1603 bands into 8 bands. Finally, the relationship between the spectral variables and the concentration of manganese was predicted by the Model of Partial Least Squares Regression (PLSR). The results show that the correlation coefficient-r2 are 0.8714 and 0.9141 in two sets of data. The prediction results are satisfactory, but the front 5 groups are closer to the regression line than the last 5 groups.

  9. The role of electronic and ionic conductivities in the rate performance of tunnel structured manganese oxides in Li-ion batteries

    DOE PAGES

    Byles, B. W.; Palapati, N. K. R.; Subramanian, A.; ...

    2016-04-29

    Single nanowires of two manganese oxide polymorphs (α-MnO 2 and todorokite manganese oxide), which display a controlled size variation in terms of their square structural tunnels, were isolated onto nanofabricated platforms using dielectrophoresis. This platform allowed for the measurement of the electronic conductivity of these manganese oxides, which was found to be higher in α-MnO 2 as compared to that of the todorokite phase by a factor of similar to 46. Despite this observation of substantially higher electronic conductivity in α-MnO 2, the todorokite manganese oxide exhibited better electrochemical rate performance as a Li-ion battery cathode. The relationship between thismore » electrochemical performance, the electronic conductivities of the manganese oxides, and their reported ionic conductivities is discussed for the first time, clearly revealing that the rate performance of these materials is limited by their Li + diffusivity, and not by their electronic conductivity. This result reveals important new insights relevant for improving the power density of manganese oxides, which have shown promise as a low-cost, abundant, and safe alternative for next-generation cathode materials. Moreover, the presented experimental approach is suitable for assessing a broader family of one-dimensional electrode active materials (in terms of their electronic and ionic conductivities) for both Li-ion batteries and for electrochemical systems utilizing charge-carrying ions beyond Li +.« less

  10. Characterization of Total and Size-Fractionated Manganese Exposure by Work Area in a Shipbuilding Yard.

    PubMed

    Jeong, Jee Yeon; Park, Jong Su; Kim, Pan Gyi

    2016-06-01

    Shipbuilding involves intensive welding activities, and welders are exposed to a variety of metal fumes, including manganese, that may be associated with neurological impairments. This study aimed to characterize total and size-fractionated manganese exposure resulting from welding operations in shipbuilding work areas. In this study, we characterized manganese-containing particulates with an emphasis on total mass (n = 86, closed-face 37-mm cassette samplers) and particle size-selective mass concentrations (n = 86, 8-stage cascade impactor samplers), particle size distributions, and a comparison of exposure levels determined using personal cassette and impactor samplers. Our results suggest that 67.4% of all samples were above the current American Conference of Governmental Industrial Hygienists manganese threshold limit value of 100 μg/m(3) as inhalable mass. Furthermore, most of the particles containing manganese in the welding process were of the size of respirable particulates, and 90.7% of all samples exceeded the American Conference of Governmental Industrial Hygienists threshold limit value of 20 μg/m(3) for respirable manganese. The concentrations measured with the two sampler types (cassette: total mass; impactor: inhalable mass) were significantly correlated (r = 0.964, p < 0.001), but the total concentration obtained using cassette samplers was lower than the inhalable concentration of impactor samplers.

  11. Sulfur dioxide leaching of spent zinc-carbon-battery scrap

    NASA Astrophysics Data System (ADS)

    Avraamides, J.; Senanayake, G.; Clegg, R.

    Zinc-carbon batteries, which contain around 20% zinc, 35% manganese oxides and 10% steel, are currently disposed after use as land fill or reprocessed to recover metals or oxides. Crushed material is subjected to magnetic separation followed by hydrometallurgical treatment of the non-magnetic material to recover zinc metal and manganese oxides. The leaching with 2 M sulfuric acid in the presence of hydrogen peroxide recovers 93% Zn and 82% Mn at 25 °C. Alkaline leaching with 6 M NaOH recovers 80% zinc. The present study shows that over 90% zinc and manganese can be leached in 20-30 min at 30 °C using 0.1-1.0 M sulfuric acid in the presence of sulfur dioxide. The iron extraction is sensitive to both acid concentration and sulfur dioxide flow rate. The effect of reagent concentration and particle size on the extraction of zinc, manganese and iron are reported. It is shown that the iron and manganese leaching follow a shrinking core kinetic model due to the formation of insoluble metal salts/oxides on the solid surface. This is supported by (i) the decrease in iron and manganese extraction from synthetic Fe(III)-Mn(IV)-Zn(II) oxide mixtures with increase in acid concentration from 1 M to 2 M, and (ii) the low iron dissolution and re-precipitation of dissolved manganese and zinc during prolonged leaching of battery scrap with low sulfur dioxide.

  12. From lead to manganese through mercury: mythology, science, and lessons for prevention.

    PubMed

    Alessio, Lorenzo; Campagna, Marcello; Lucchini, Roberto

    2007-11-01

    Lead (Pb), mercury (Hg), and manganese (Mn) are well-known neurotoxic metals. The knowledge of toxicity was developed through an extensive amount of research, starting with lead and mercury and proceeding today with manganese. Unfortunately, the consequent implementation of preventive measures was generally delayed, causing important negative effects to the exposed populations. A review and historical reconstruction of the research development that yielded modern understanding of lead and mercury neurotoxicity was conducted to derive useful lessons for the prevention of manganese neurotoxicity. Medieval alchemists named planets and metals from gods since they were already aware of the toxicity and the adverse effects caused by lead and mercury. Historical lessons learned from these two metals may help to avoid the repetition of further mistakes regarding other neurotoxic metals like manganese. The knowledge and experience on the toxicokinetics and toxicodynamics of lead and mercury is useful and valuable to identify a proper approach to "safe" exposure levels for manganese. Further information is still needed on the early neurotoxic and neurobehavioral effects after prolonged exposure to very low doses of lead, mercury, and manganese. Nevertheless, according to the precautionary principle, effective preventive measures should be already undertaken to prevent the onset of more severe health effects in the population. This is the most important lesson to be learned and applied from more than 30 years of occupational and environmental neurotoxicology of metals. (c) 2007 Wiley-Liss, Inc.

  13. Low copper and high manganese levels in prion protein plaques

    USGS Publications Warehouse

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  14. Synthesis and crystal structure of the coordination compound of pyridoxine with manganese sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furmanova, N. G., E-mail: furm@ns.crys.ras.ru; Verin, I. A.; Shyityeva, N.

    2011-11-15

    The reaction of pyridoxine with manganese sulfate in an aqueous solution gave the coordination compound MnSO{sub 4} {center_dot} 2C{sub 8}H{sub 11}O{sub 3}N {center_dot} 2H{sub 2}O (I). The structure of I was determined from single-crystal X-ray diffraction data. In the centrosymmetric complex (sp. gr. P1-bar, Z = 1), the Mn atom is coordinated by two pyridoxine molecules and two water molecules, thus adopting an octahedral coordination. The sulfate anion is also at a center of symmetry and, consequently, is disordered. The pyridoxine molecules are coordinated to the metal atom through the oxygen atoms of the deprotonated hydroxyl group and the CH{submore » 2}OH group that retains the hydrogen atom. The nitrogen atom is protonated in such a way that the heterocycle assumes a pyridinium character. The crystal structure also contains six water molecules of crystallization. A thermogravimetric study showed that the decomposition of I occurs in several successive steps, such as dehydration, the combustion of organic ligands, and the formation of an inorganic residue.« less

  15. Beta-manganese dioxide nanorods for sufficient high-temperature electromagnetic interference shielding in X-band

    NASA Astrophysics Data System (ADS)

    Song, Wei-Li; Cao, Mao-Sheng; Hou, Zhi-Ling; Lu, Ming-Ming; Wang, Chan-Yuan; Yuan, Jie; Fan, Li-Zhen

    2014-09-01

    As the development of electronic and communication technology, electromagnetic interference (EMI) shielding and attenuation is an effective strategy to ensure the operation of the electronic devices. Among the materials for high-performance shielding in aerospace industry and related high-temperature working environment, the thermally stable metal oxide semiconductors with narrow band gap are promising candidates. In this work, beta-manganese dioxide ( β-MnO2) nanorods were synthesized by a hydrothermal method. The bulk materials of the β-MnO2 were fabricated to evaluate the EMI shielding performance in the temperature range of 20-500 °C between 8.2 and 12.4 GHz (X-band). To understand the mechanisms of high-temperature EMI shielding, the contribution of reflection and absorption to EMI shielding was discussed based on temperature-dependent electrical properties and complex permittivity. Highly sufficient shielding effectiveness greater than 20 dB was observed over all the investigated range, suggesting β-MnO2 nanorods as promising candidates for high-temperature EMI shielding. The results have also established a platform to develop high-temperature EMI shielding materials based on nanoscale semiconductors.

  16. Fabrication of band gap engineered nanostructured tri-metallic (Mn-Co-Ti) oxide thin films

    NASA Astrophysics Data System (ADS)

    Mansoor, Muhammad Adil; Yusof, Farazila Binti; Nay-Ming, Huang

    2018-04-01

    In continuation of our previous studies on photoelectrochemical (PEC) properties of titanium based composite oxide thin films, an effort is made to develop thin films of 1:1:2 manganese-cobalt-titanium oxide composite, Mn2O3-Co2O3-4TiO2 (MCT), using Co(OAc)2 and a bimetallic manganese-titanium complex, [Mn2Ti4(TFA)8(THF)6(OH)4(O)2].0.4THF (1), where OAc = acetato, TFA = trifluoroacetato and THF = tetrahydrofuran, via aerosol-assisted chemical vapour deposition (AACVD) technique. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopic analyses confirmed formation of thin film of Mn2O3-Co2O3-4TiO2 composite material with uniformly distributed agglomerated particles. The average size of 39.5 nm, of the particles embedded inside agglomerates, was estimated by Scherer's equation. Further, UV-Vis spectroscopy was used to estimate the band gap of 2.62 eV for MCT composite thin film.

  17. Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4

    PubMed Central

    Tsurkan, Vladimir; Zherlitsyn, Sergei; Prodan, Lilian; Felea, Viorel; Cong, Pham Thanh; Skourski, Yurii; Wang, Zhe; Deisenhofer, Joachim; von Nidda, Hans-Albrecht Krug; Wosnitza, Joahim; Loidl, Alois

    2017-01-01

    Frustrated magnets provide a promising avenue for realizing exotic quantum states of matter, such as spin liquids and spin ice or complex spin molecules. Under an external magnetic field, frustrated magnets can exhibit fractional magnetization plateaus related to definite spin patterns stabilized by field-induced lattice distortions. Magnetization and ultrasound experiments in MnCr2S4 up to 60 T reveal two fascinating features: (i) an extremely robust magnetization plateau with an unusual spin structure and (ii) two intermediate phases, indicating possible realizations of supersolid phases. The magnetization plateau characterizes fully polarized chromium moments, without any contributions from manganese spins. At 40 T, the middle of the plateau, a regime evolves, where sound waves propagate almost without dissipation. The external magnetic field exactly compensates the Cr–Mn exchange field and decouples Mn and Cr sublattices. In analogy to predictions of quantum lattice-gas models, the changes of the spin order of the manganese ions at the phase boundaries of the magnetization plateau are interpreted as transitions to supersolid phases. PMID:28345038

  18. Crystal structure of ilyukhinite, a new mineral of the eudialyte group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastsvetaeva, R. K., E-mail: rast@crys.ras.ru; Rozenberg, K. A.; Chukanov, N. V.

    The crystal structure of ilyukhinite, a new mineral of the eudialyte group, is studied by X-ray diffraction. The mineral found in pegmatite bodies of the Kukisvumchorr Mountain (Khibiny alkaline complex) is characterized by low sodium content, high degree of hydration, and predominance of manganese over iron. The trigonal cell has the following parameters: a = 14.1695(6) and c = 31.026(1) Å; space group R3m. The structure is refined to final R = 0.046 in the anisotropic approximation of atomic displacements using 1527F > 3σF. The idealized formula of ilyukhinite (Z = 3) is written as (H{sub 3}O,Na){sub 14}Ca{sub 6}Mn{sub 2}Zr{submore » 3}Si{sub 26}O{sub 72}(OH){sub 2} · 3H{sub 2}O. The new mineral differs from other representatives of the eudialyte group by the predominance of both oxonium in the N positions of extra-framework cations and manganese in the М2 position centering the tetragonal pyramid.« less

  19. Manganese-catalysed benzylic C(sp3)-H amination for late-stage functionalization

    NASA Astrophysics Data System (ADS)

    Clark, Joseph R.; Feng, Kaibo; Sookezian, Anasheh; White, M. Christina

    2018-06-01

    Reactions that directly install nitrogen into C-H bonds of complex molecules are significant because of their potential to change the chemical and biological properties of a given compound. Although selective intramolecular C-H amination reactions are known, achieving high levels of reactivity while maintaining excellent site selectivity and functional-group tolerance remains a challenge for intermolecular C-H amination. Here, we report a manganese perchlorophthalocyanine catalyst [MnIII(ClPc)] for intermolecular benzylic C-H amination of bioactive molecules and natural products that proceeds with unprecedented levels of reactivity and site selectivity. In the presence of a Brønsted or Lewis acid, the [MnIII(ClPc)]-catalysed C-H amination demonstrates unique tolerance for tertiary amine, pyridine and benzimidazole functionalities. Mechanistic studies suggest that C-H amination likely proceeds through an electrophilic metallonitrene intermediate via a stepwise pathway where C-H cleavage is the rate-determining step of the reaction. Collectively, these mechanistic features contrast with previous base-metal-catalysed C-H aminations and provide new opportunities for tunable selectivities.

  20. Manganese-catalysed benzylic C(sp3)-H amination for late-stage functionalization.

    PubMed

    Clark, Joseph R; Feng, Kaibo; Sookezian, Anasheh; White, M Christina

    2018-06-01

    Reactions that directly install nitrogen into C-H bonds of complex molecules are significant because of their potential to change the chemical and biological properties of a given compound. Although selective intramolecular C-H amination reactions are known, achieving high levels of reactivity while maintaining excellent site selectivity and functional-group tolerance remains a challenge for intermolecular C-H amination. Here, we report a manganese perchlorophthalocyanine catalyst [MnIII(ClPc)] for intermolecular benzylic C-H amination of bioactive molecules and natural products that proceeds with unprecedented levels of reactivity and site selectivity. In the presence of a Brønsted or Lewis acid, the [MnIII(ClPc)]-catalysed C-H amination demonstrates unique tolerance for tertiary amine, pyridine and benzimidazole functionalities. Mechanistic studies suggest that C-H amination likely proceeds through an electrophilic metallonitrene intermediate via a stepwise pathway where C-H cleavage is the rate-determining step of the reaction. Collectively, these mechanistic features contrast with previous base-metal-catalysed C-H aminations and provide new opportunities for tunable selectivities.

  1. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOEpatents

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  2. 40 CFR 721.10253 - Butanedioic acid, 2-methylene-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated. 721...+) sodium zinc salt, hydrogen peroxide-initiated. (a) Chemical substance and significant new uses subject to... furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated (PMN P-09-388; CAS No...

  3. 40 CFR 721.10253 - Butanedioic acid, 2-methylene-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated. 721...+) sodium zinc salt, hydrogen peroxide-initiated. (a) Chemical substance and significant new uses subject to... furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated (PMN P-09-388; CAS No...

  4. 40 CFR 721.10253 - Butanedioic acid, 2-methylene-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated. 721...+) sodium zinc salt, hydrogen peroxide-initiated. (a) Chemical substance and significant new uses subject to... furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated (PMN P-09-388; CAS No...

  5. In vitro response of Heterobasidion annosum to manganese

    Treesearch

    W.J. Otrosina; B.L. Illman

    1994-01-01

    Manganese (Mn) is postulated to play a role in wood decay caused by certain basidiomycetes. We determined the in vitro response of Heterobasidion annosum (Fr.) Bref. to Mn and compared differences between three isolates each of the S and the P intersterility groups from the Western United States.On manganese-amended malt agar plates, H. annosum produced a brownish-...

  6. Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eungje; Blauwkamp, Joel; Castro, Fernando C.

    2016-10-19

    Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3(1-x)LiMO2 (M=Ni, Mn, Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. These findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to manganese and nickel ions in close-packed oxides and (2) their higher potential (~3.6 V vs. Li0) relative to manganese oxide spinels (~2.9 V vs. Li0) for the spinel-to-lithiated spinel electrochemical reaction.more » In particular, we have revisited the structural and electrochemical properties of lithiated spinels in the LiCo1-xNixO2 (0x0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. The results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1-xNixO2 structures, when prepared in air between 400 and 800 C, and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentration, offer the possibility of improving the cycling stability, energy, and power of high energy (≥3.5 V) lithium-ion cells.« less

  7. Effects of manganese exposure on visuoperception and visual memory in schoolchildren.

    PubMed

    Hernández-Bonilla, D; Escamilla-Núñez, C; Mergler, D; Rodríguez-Dozal, S; Cortez-Lugo, M; Montes, S; Tristán-López, L A; Catalán-Vázquez, M; Schilmann, A; Riojas-Rodriguez, Horacio

    2016-12-01

    Manganese (Mn) is an essential metal involved in multiple physiological functions. Environmental exposure to airborne Mn is associated with neurocognitive deficits in humans. Children, whose nervous system is in development, are particularly susceptible to Mn neurotoxicity. The objective of this study was to assess the association between Mn environmental exposure, and effects on visuoperception and visual memory in schoolchildren. We assessed schoolchildren between 7 and 11 years old, with similar socioeconomic status, from the mining district of Molango (n=148) and Agua Blanca (n=119, non-mining area) in Hidalgo state, Mexico. The Rey-Osterrieth Complex Figure (ROCF) test was used to assess visuoperception and short-term visual memory. Hair manganese (MnH) concentrations were determined. Linear regression models were constructed to estimate the associations between MnH and ROCF scores, adjusted for potential confounders. The geometric mean MnH was nine times higher in schoolchildren from the Mn mining area (5.25μg/g) than in schoolchildren from the non-mining area (0.55μg/g). For the ROCF Copy trial, MnH was significantly associated with an increase in distortion errors (tangency, closure), angle errors, overtracing (partial overtracing). In the Immediate Recall trial, MnH was significantly associated with increased overtracing (partial overtracing) and omissions, and negatively associated with the number of perceptual drawn units, total score and percentage immediate recall. MnH is associated with alterations in visuoperception and short-term visual memory in schoolchildren exposed to airborne Mn. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effects of Kraft Pulp and Lignin on Trametes versicolor Carbon Metabolism

    PubMed Central

    Roy, Brian P.; Archibald, Frederick

    1993-01-01

    The white rot basidiomycete Trametes (Coriolus) versicolor can substantially increase the brightness and decrease the lignin content of washed, unbleached hardwood kraft pulp (HWKP). Monokaryotic strain 52J was used to study how HWKP and the lignin in HWKP affect the carbon metabolism and secretions of T. versicolor. Earlier work indicated that a biobleaching culture supernatant contained all components necessary for HWKP biobleaching and delignification, but the supernatant needed frequent contact with the fungus to maintain these activities. Thus, labile small fungal metabolites may be the vital biobleaching system components renewed or replaced by the fungus. Nearly all of the CO2 evolved by HWKP-containing cultures came from the added glucose, indicating that HWKP is not an important source of carbon or energy during biobleaching. Carbon dioxide appeared somewhat earlier in the absence of HWKP, but the culture partial O2 pressure was little affected by the presence of pulp. The presence of HWKP in a culture markedly increased the culture's production of a number of acidic metabolites, including 2-phenyllactate, oxalate, adipate, glyoxylate, fumarate, mandelate, and glycolate. Although the total concentration of these pulp-induced metabolites was only 4.3 mM, these compounds functioned as effective manganese-complexing agents for the manganese peroxidase-mediated oxidation of phenol red, propelling the reaction at 2.4 times the rate of 50 mM sodium malonate, the standard chelator-buffer. The presence of HWKP in a culture also markedly stimulated fungal secretion of the enzymes manganese peroxidase, cellulase, and cellobiose-quinone oxidoreductase, but not laccase (phenol oxidase) or lignin peroxidase. PMID:16348963

  9. Geological reconnaissance of some Uruguayan iron and manganese deposits in 1962

    USGS Publications Warehouse

    Wallace, Roberts Manning

    1976-01-01

    Three mineralized areas lie in an area near the town of Minas de Corrales in the Departamento de Rivera; they are the Cerro Amelia, the Cerro de Papagayo, and the Cerro Iman. The Cerro Amelia is composed of small bands of iron-rich rock separated by an amphibolitic or mafic rock. Selective mining would be necessary to extract the 31,000 tons per meter of depth of iron-rich rock that ranges from 15 to 40 percent metallic iron. The Cerro de Papagayo district contains many small, rich deposits of ferruginous manganese ore. The ratio of Mn to Fe varies widely within each small deposit as well as from deposit to deposit. Some ferruginous manganese ore contains 50-55 percent manganese dioxide. Although there are many thousands of tons of ore in the district, small-scale mining operations are imperative. One deposit, the Cerro Avestuz manganese mine, was visited. The manganese ore body lies within contorted highly metamorphosed itabirite that contains both hard low grade and soft high grade ferruginous manganese ores estimated to average 40 percent Mn. About 38,000 tons of manganese ore is present in this deposit. The Cerro Iman is a large block of itabirite that contains about 40 percent Fe. The grade is variable and probably runs from less than 35 percent Fe to more than 50 percent Fe. No exploration has been done on this deposit. It is recommended that the Cerro de Iman area be geologically mapped in detail, and that a geological reconnaissance be made of the area that is between the Cuchilla de Corrales and the Cuchilla de Areycua/Cuchilla del Cerro Pelado area.

  10. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1

  11. Reductive dissolution and reactive solute transport in a sewage-contaminated glacial outwash aquifer

    USGS Publications Warehouse

    Lee, R.W.; Bennett, P.C.

    1998-01-01

    Contamination of shallow ground water by sewage effluent typically contains reduced chemical species that consume dissolved oxygen, developing either a low oxygen geochemical environment or an anaerobic geochemical environment. Based on the load of reduced chemical species discharged to shallow ground water and the amounts of reactants in the aquifer matrix, it should be possible to determine chemical processes in the aquifer and compare observed results to predicted ones. At the Otis Air Base research site (Cape Cod, Massachusetts) where sewage effluent has infiltrated the shallow aquifer since 1936, bacterially mediated processes such as nitrification, denitrification, manganese reduction, and iron reduction have been observed in the contaminant plume. In specific areas of the plume, dissolved manganese and iron have increased significantly where local geochemical conditions are favorable for reduction and transport of these constituents from the aquifer matrix. Dissolved manganese and iron concentrations ranged from 0.02 to 7.3 mg/L, and 0.001 to 13.0 mg/L, respectively, for 21 samples collected from 1988 to 1989. Reduction of manganese and iron is linked to microbial oxidation of sewage carbon, producing bicarbonate and the dissolved metal ions as by-products. Calculated production and flux of CO2 through the unsaturated zone from manganese reduction in the aquifer was 0.035 g/m2/d (12% of measured CO2 flux during winter). Manganese is limited in the aquifer, however. A one-dimensional, reaction-coupled transport model developed for the mildly reducing conditions in the sewage plume nearest the source beds showed that reduction, transport, and removal of manganese from the aquifer sediments should result in iron reduction where manganese has been depleted.

  12. Neurotoxic effects of methylcyclopentadienyl manganese tricarbonyl (MMT) in the mouse: basis of MMT-induced seizure activity.

    PubMed

    Fishman, B E; McGinley, P A; Gianutsos, G

    1987-08-01

    Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic manganese-containing compound which is used as an additive in unleaded gasoline. One neurotoxic effect of MMT in mice is seizure activity. In this study, seizures were observed in mice treated with MMT in propylene glycol or corn oil. The LD50 associated with seizure activity was lower in mice receiving MMT in propylene glycol (152 mg/kg) than in those receiving MMT in corn oil (999 mg/kg). Manganese concentrations in the brains of mice which showed seizure activity due to MMT were higher than in those that did not (2.45 micrograms/g vs. 1.14 micrograms/g for MMT treated in propylene glycol and 3.25 micrograms/g vs. 1.63 micrograms/g for MMT in corn oil). Mice treated with manganese chloride (MnCl2) showed increases in brain manganese comparable to those of the mice showing seizure activity due to MMT, but exhibited no sign of seizure activity. MMT in non-lethal seizure-inducing doses had no effect on the accumulation of 4-aminobutyric acid (GABA) in mouse brain. However, MMT inhibited the binding of t-[3H]t-butylbicycloorthobenzoate [3H]-TBOB (a ligand for the GABA-A-receptor linked chloride channel) in mouse brain membranes with an IC50 value of 22.8 microM. The data suggest that MMT (organic manganese) or a closely related metabolite and not elemental manganese itself is responsible for the seizure activity observed. The seizure activity may be the result of an inhibitory effect of MMT at the GABA-A receptor linked chloride channel.

  13. Thunderbolt in biogeochemistry: galvanic effects of lightning as another source for metal remobilization.

    PubMed

    Schaller, Jörg; Weiske, Arndt; Berger, Frank

    2013-11-04

    Iron and manganese are relevant constituents of the earth's crust and both show increasing mobility when reduced by free electrons. This reduction is known to be controlled by microbial dissimilation processes. Alternative sources of free electrons in nature are cloud-to-ground lightning events with thermal and galvanic effects. Where thermal effects of lightning events are well described, less is known about the impact of galvanic lightning effects on metal mobilization. Here we show that a significant mobilization of manganese occurs due to galvanic effects of both positive and negative lightning, where iron seems to be unaffected with manganese being abundant in oxic forms in soils/sediments. A mean of 0.025 mmol manganese (negative lightning) or 0.08 mmol manganese (positive lightning) mobilization may occur. We suggest that lightning possibly influences biogeochemical cycles of redox sensitive elements in continental parts of the tropics/subtropics on a regional/local scale.

  14. Thunderbolt in biogeochemistry: galvanic effects of lightning as another source for metal remobilization

    PubMed Central

    Schaller, Jörg; Weiske, Arndt; Berger, Frank

    2013-01-01

    Iron and manganese are relevant constituents of the earth's crust and both show increasing mobility when reduced by free electrons. This reduction is known to be controlled by microbial dissimilation processes. Alternative sources of free electrons in nature are cloud-to-ground lightning events with thermal and galvanic effects. Where thermal effects of lightning events are well described, less is known about the impact of galvanic lightning effects on metal mobilization. Here we show that a significant mobilization of manganese occurs due to galvanic effects of both positive and negative lightning, where iron seems to be unaffected with manganese being abundant in oxic forms in soils/sediments. A mean of 0.025 mmol manganese (negative lightning) or 0.08 mmol manganese (positive lightning) mobilization may occur. We suggest that lightning possibly influences biogeochemical cycles of redox sensitive elements in continental parts of the tropics/subtropics on a regional/local scale. PMID:24184989

  15. Rapidly reversible redox transformation in nanophase manganese oxides at room temperature triggered by changes in hydration

    PubMed Central

    Birkner, Nancy; Navrotsky, Alexandra

    2014-01-01

    Chemisorption of water onto anhydrous nanophase manganese oxide surfaces promotes rapidly reversible redox phase changes as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Surface reduction of bixbyite (Mn2O3) to hausmannite (Mn3O4) occurs in nanoparticles under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Additionally, transformation does not occur on nanosurfaces passivated by at least 2% coverage of what is likely an amorphous manganese oxide layer. The transformation is due to thermodynamic control arising from differences in surface energies of the two phases (Mn2O3 and Mn3O4) under wet and dry conditions. Such reversible and rapid transformation near room temperature may affect the behavior of manganese oxides in technological applications and in geologic and environmental settings. PMID:24733903

  16. Stimulatory effect of boron and manganese salts on keratinocyte migration.

    PubMed

    Chebassier, Nathalie; Ouijja, El Houssein; Viegas, Isabelle; Dreno, Brigitte

    2004-01-01

    Keratinocyte proliferation and migration are essential for the reconstruction of the cutaneous barrier after skin injury. Interestingly, thermal waters which are rich in trace elements (e.g. boron and manganese), are known to be able to improve wound healing. In order to understand the mechanism of action of this effect, our study investigated the in vitro modulation of keratinocyte migration and proliferation by boron and manganese salts, which are present in high concentrations in a thermal water (Saint Gervais). Our in vitro study demonstrated that incubating keratinocytes for 24 h with boron salts at concentrations between 0.5 and 10 microg/ml or manganese salts at concentrations between 0.1 and 1.5 microg/ml accelerated wound closure compared with control medium (+20%). As this acceleration was not related to an increase in keratinocyte proliferation we suggest that boron and manganese act on wound healing mainly by increasing the migration of keratinocytes.

  17. Rapidly reversible redox transformation in nanophase manganese oxides at room temperature triggered by changes in hydration.

    PubMed

    Birkner, Nancy; Navrotsky, Alexandra

    2014-04-29

    Chemisorption of water onto anhydrous nanophase manganese oxide surfaces promotes rapidly reversible redox phase changes as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Surface reduction of bixbyite (Mn2O3) to hausmannite (Mn3O4) occurs in nanoparticles under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Additionally, transformation does not occur on nanosurfaces passivated by at least 2% coverage of what is likely an amorphous manganese oxide layer. The transformation is due to thermodynamic control arising from differences in surface energies of the two phases (Mn2O3 and Mn3O4) under wet and dry conditions. Such reversible and rapid transformation near room temperature may affect the behavior of manganese oxides in technological applications and in geologic and environmental settings.

  18. MANGANESE DIOXIDE METHOD FOR PREPARATION OF PROTACTINIUM

    DOEpatents

    Katzin, L.I.

    1958-08-12

    A method of obtaining U/sup 233/ is described. An aqueous solution of neutriln irradiated thoriunn is treated by forming tberein a precipitate of manganese dioxide which carries and thus separates the Pa/sup 233/ from the solution. The carrier precipitate so formed is then dissolved in an acidic solution containing a reducing agent sufficiently electronegative to reduce the tetravalent manganese to the divalent state. Further purification of the Pa/sup 233/ may be obtained by forming another manganese dioxide carrier precipitate and subsequently dissolving it. Ater a sufficient number of such cycles have brought the Pa/sup 233/ to the desired purity, the solution is aged, allowing the formation ot U/sup 233/ by radioaetive decay. A manganese dioxide precipitate is then formed in the U/sup 233/ containing solution. This precipitate carries down any remaining Pa/sup 233/ thus leaving the separated U/sup 233/solution, from whieh it may be easily recovered.

  19. Matrix effects on the determination of manganese in geological materials by atomic-absorption spectrophotometry under different flame conditions

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1978-01-01

    Suppression caused by five of the seven matrix elements studied (Si, Al, Fe, Ca and Mg) was observed in the atomic-absorption determination of manganese in geological materials, when synthetic solutions and the recommended oxidizing air-acetylene flame were used. The magnitude of the suppression effects depends on (1) the kind and concentration of the interfering elements, (2) the type of acid medium, and (3) the concentration of manganese to be determined. All interferences noted are removed or alleviated by using a reducing nitrous oxide-acetylene flame. The atomic-absorption method using this flame can be applied to the determination of total and extractable manganese in a wide range of geological materials without interferences. Analyses of six U.S. Geological Survey rock standards for manganese gave results in agreement with the reported values. ?? 1978.

  20. Effect of chronic low level manganese exposure on postural balance: A pilot study of residents in southwest Ohio

    PubMed Central

    Standridge, J. S.; Bhattacharya, Amit; Succop, Paul; Cox, Cyndy; Haynes, Erin

    2009-01-01

    OBJECTIVE The objective of this study was to determine the effect of non-occupational exposure to manganese on postural balance. METHODS Residents living near a ferromanganese refinery provided hair and blood samples after postural balance testing. The relationship between hair manganese and postural balance was analyzed with logistic regression. Following covariate adjustment, postural balance was compared with control data by analysis of covariance. RESULTS Mean hair manganese was 4.4 µg/g. A significantly positive association was found between hair manganese and sway area (EO, p=0.05; EC, p=0.04) and sway length (EO, p=0.05; EC, p=0.04). Postural balance of residents was significantly larger than controls in 5 out of 8 postural balance outcomes. CONCLUSION Preliminary findings suggest subclinical impairment in postural balance among residents chronically exposed to ambient Mn. A prospective study with a larger sample size is warranted. PMID:19092498

Top