Science.gov

Sample records for manganese ferrite nanoparticles

  1. Magnetic heating of silica-coated manganese ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Iqbal, Yousaf; Bae, Hongsub; Rhee, Ilsu; Hong, Sungwook

    2016-07-01

    Manganese ferrite nanoparticles were synthesized using the reverse micelle method; these particles were then coated with silica. The silica-coated nanoparticles were spherical in shape, with an average diameter of 14 nm. The inverse spinel crystalline structure was observed through X-ray diffraction patterns. The coating status of silica on the surface of the nanoparticles was confirmed with a Fourier transform infrared spectrometer. The superparamagnetic properties were revealed by the zero coercive force in the hysteresis curve. Controllable heating at a fixed temperature of 42 °C was achieved by changing either the concentration of nanoparticles in the aqueous solution or the intensity of the alternating magnetic field. We found that at a fixed field strength of 5.5 kA/m, the 2.6 mg/ml sample showed a saturation temperature of 42 °C for magnetic hyperthermia. On the other hand, at a fixed concentration of 3.6 mg/ml, a field intensity of 4.57 kA/m satisfied the required temperature of 42 °C.

  2. Magnetic, dielectric and sensing properties of manganese substituted copper ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, E. Ranjith; Jayaprakash, R.; Devi, G. Sarala; Reddy, P. Siva Prasada

    2014-04-01

    Manganese substituted copper ferrite nanoparticles were synthesized by an auto-combustion technique using metal nitrates and urea for gas sensor application. The products were characterized by XRD, SEM, EDX, TEM and VSM techniques. The effect of annealing temperature on the particle size, magnetic and dielectric properties of Mn-Cu ferrite nanoparticles was analyzed. The size of the particles are in the range of ~9-45 nm. The effect of annealing on the magnetic properties is discussed with the help of variation in saturation magnetization (Ms) and coercivity (Hc) by vibrating sample magnetometer (VSM). The dielectric loss and dielectric constant have been measured in the frequency range of 100 kHz-5 MHz. Furthermore, Conductance response of Mn-Cu ferrite nanomaterial was measured by exposing the material to reducing gas like liquefied petroleum gas (LPG).

  3. Inter-particle interactions and magnetism in manganese-zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Poddar, P.; Srikanth, H.; Morrison, S. A.; Carpenter, E. E.

    2005-03-01

    Manganese-zinc ferrite (Mn xZn 1-xFe 2O 4) nanoparticles were synthesized by reverse micelle technique using two different surfactant media—(1) bis-(2-ethylhexl) sodium sulfosuccinate (AOT) and (2) mix of nonylphenol poly(oxyethylene) 5 and nonylphenol poly(oxyethylene) 9 (NP) followed by annealing of precursors to remove the surfactant coating and to obtain better crystalline phase. A comparison of the magnetic properties showed distinct differences in blocking temperature, coercivity and saturation magnetization. Radio-frequency (RF) transverse susceptibility (TS) measurements were in agreement with the static magnetization data. Our precise TS measurements further revealed features associated with anisotropy fields that were dependent on the grain size, crystallinity and inter-particle interactions. Overall, we have demonstrated that RF TS is an excellent probe of the dynamic magnetization and influence of effects such as crystallinity and inter-particle interactions in soft ferrite nanoparticles.

  4. Hydrothermal synthesis of fine stabilized superparamagnetic nanoparticles of Zn2+ substituted manganese ferrite

    NASA Astrophysics Data System (ADS)

    Zahraei, Maryam; Monshi, Ahmad; Morales, Maria del Puerto; Shahbazi-Gahrouei, Daryoush; Amirnasr, Mehdi; Behdadfar, Behshid

    2015-11-01

    Superparamagnetic Zn2+ substituted manganese ferrite Mn1-xZnxFe2O4 (x=0.3, 0.35, 0.4 and 0.45) nanoparticles (NPs) were synthesized via a direct, efficient and environmental friendly hydrothermal method. The synthesized NPs were characterized by X-ray powder diffractometry (XRD), transmission electron microscopy (TEM), thermo-gravimetry (TG) and vibrating sample magnetometry (VSM). The effects of various parameters such as the pH of reaction mixture, time and temperature of hydrothermal treatment and Zn substitution on the spinel phase formation, the magnetization, and the size of resulting NPs are discussed. The Zn2+ substituted manganese ferrite NPs obtained from hydrothermal process crystallized mainly in the spinel phase. Nevertheless, without citrate ions, the hematite phase appeared in the product. The monophase Zn2+ substituted manganese ferrite NPs hydrothermally prepared in the presence of citric acid had mean particle size of 7 nm and a narrow size distribution. Furthermore, the synthesized NPs can be used to prepare ferrofluids for biomedical applications due to their small size, good stability in aqueous medium (pH 7) and also high magnetization value.

  5. Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: Role of Mn

    NASA Astrophysics Data System (ADS)

    Thota, Suneetha; Kashyap, Subhash C.; Sharma, Shiv K.; Reddy, V. R.

    2016-04-01

    A series of Mn-Zn Ferrite nanoparticles (<15 nm) with formula MnxZn1-xFe2O4 (where x=0.00, 0.35, 0.50, 0.65) were successfully prepared by citrate-gel method at low temperature (400 °C). X-ray diffraction analysis confirmed the formation of single cubic spinel phase in these nanoparticles. The FESEM and TEM micrographs revealed the nanoparticles to be nearly spherical in shape and of fairly uniform size. The fractions of Mn2+, Zn2+ and Fe3+ cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of different ferrite samples are estimated by room temperature micro-Raman spectroscopy. Low temperature Mossbauer measurement on Mn0.5Zn0.5Fe2O4 has reconfirmed the mixed spinel phase of these nanoparticles. Room temperature magnetization studies (PPMS) of Mn substituted samples showed superparamagnetic behavior. Manganese substitution for Zn in the ferrite caused the magnetization to increase from 04 to18 emu/g and Lande's g factor (estimated from ferromagnetic resonance measurement) from 2.02 to 2.12 when x was increased up to 0.50. The FMR has shown that higher Mn cationic substitution leads to increase in dipolar interaction and decrease in super exchange interaction. Thermomagnetic (M-T) and magnetization (M-H) measurements have shown that the increase in Mn concentration (up to x=0.50) enhances the spin ordering temperature up to 150 K (blocking temperature). Magnetocrystalline anisotropy in the nanoparticles was established by Mossbauer, ferromagnetic resonance and thermomagnetic measurements. The optimized substitution of manganese for zinc improves the magnetic properties and makes these nanoparticles a potential candidate for their applications in microwave region and biomedical field.

  6. Structural, dielectric and magnetic properties of Gd substituted manganese ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Murugesan, C.; Sathyamoorthy, B.; Chandrasekaran, G.

    2015-08-01

    Gd3+ ion-substituted manganese ferrite nanoparticles with the chemical formula MnGdxFe2-xO4 (x = 0.0, 0.05, and 0.1) were synthesized by sol-gel auto combustion method. Thermal stability of the as-prepared sample was analyzed using thermo gravimetric and differential thermal analysis (TG-DTA) and the result reveals that the prepared sample is thermally stable above 300 °C. Structural and morphology studies were performed using powder x-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Indexed PXRD patterns confirm the formation of pure cubic spinel structure. The average crystallite sizes calculated using Sherrer’s formula decreased from 47 nm to 32 nm and lattice constant was enhanced from 8.407 Å to 8.432 Å. The FTIR spectrum of manganese ferrite shows a high frequency vibrational band at 564 cm-1 assigned to tetrahedral site and a low frequency vibrational band at 450 cm-1 assigned to octahedral site which are shifted to 556 cm-1 and 439 cm-1 for Gd3+ substitution and confirm the incorporation of Gd3+ into manganese ferrite. SEM analysis shows the presence of agglomerated spherical shaped particles at the surface. Room temperature dielectric and magnetic properties were studied using broadband dielectric spectroscopy (BDS) and vibrating sample magnetometry (VSM). Frequency dependent dielectric constant, ac conductivity and tan delta were found to increase with Gd3+ ion substitution. The measured values of saturation magnetization decrease from 46.6 emu g-1 to 41 emu g-1 with increase in Gd3+ concentration and coercivity decreases from 179.5 Oe to 143 Oe.

  7. Manganese ferrite-based nanoparticles induce ex vivo, but not in vivo, cardiovascular effects

    PubMed Central

    Nunes, Allancer DC; Ramalho, Laylla S; Souza, Álvaro PS; Mendes, Elizabeth P; Colugnati, Diego B; Zufelato, Nícholas; Sousa, Marcelo H; Bakuzis, Andris F; Castro, Carlos H

    2014-01-01

    Magnetic nanoparticles (MNPs) have been used for various biomedical applications. Importantly, manganese ferrite-based nanoparticles have useful magnetic resonance imaging characteristics and potential for hyperthermia treatment, but their effects in the cardiovascular system are poorly reported. Thus, the objectives of this study were to determine the cardiovascular effects of three different types of manganese ferrite-based magnetic nanoparticles: citrate-coated (CiMNPs); tripolyphosphate-coated (PhMNPs); and bare magnetic nanoparticles (BaMNPs). The samples were characterized by vibrating sample magnetometer, X-ray diffraction, dynamic light scattering, and transmission electron microscopy. The direct effects of the MNPs on cardiac contractility were evaluated in isolated perfused rat hearts. The CiMNPs, but not PhMNPs and BaMNPs, induced a transient decrease in the left ventricular end-systolic pressure. The PhMNPs and BaMNPs, but not CiMNPs, induced an increase in left ventricular end-diastolic pressure, which resulted in a decrease in a left ventricular end developed pressure. Indeed, PhMNPs and BaMNPs also caused a decrease in the maximal rate of left ventricular pressure rise (+dP/dt) and maximal rate of left ventricular pressure decline (−dP/dt). The three MNPs studied induced an increase in the perfusion pressure of isolated hearts. BaMNPs, but not PhMNPs or CiMNPs, induced a slight vasorelaxant effect in the isolated aortic rings. None of the MNPs were able to change heart rate or arterial blood pressure in conscious rats. In summary, although the MNPs were able to induce effects ex vivo, no significant changes were observed in vivo. Thus, given the proper dosages, these MNPs should be considered for possible therapeutic applications. PMID:25031535

  8. Role of surface charge in cytotoxicity of charged manganese ferrite nanoparticles towards macrophages

    NASA Astrophysics Data System (ADS)

    Yang, Seung-Hyun; Heo, Dan; Park, Jinsung; Na, Sungsoo; Suh, Jin-Suck; Haam, Seungjoo; Park, Sahng Wook; Huh, Yong-Min; Yang, Jaemoon

    2012-12-01

    Amphiphilic surfactants have been used to disperse magnetic nanoparticles in biological media, because they exhibit a dual hydrophobic/hydrophilic affinity that facilitates the formation of a nanoemulsion, within which nanoparticle surfaces can be modified to achieve different physicochemical properties. For the investigation of the interactions of cells with charged magnetic nanoparticles in a biological medium, we selected the nanoemulsion method to prepare water-soluble magnetic nanoparticles using amphiphilic surfactant (polysorbate 80). The hydroxyl groups of polysorbate 80 were modified to carboxyl or amine groups. The chemical structures of carboxylated and aminated polysorbate 80 were confirmed, and water-soluble manganese ferrite nanoparticles (MFNPs) were synthesized with three types of polysorbate 80. Colloidal size, morphology, monodispersity, solubility and T2 relaxivity were found to be similar between the three types of MFNP. However, cationic MFNPs exhibited greater cytotoxicity in macrophages (RAW264.7 cells) and lower cellular membrane effective stiffness than anionic and non-ionic MFNPs. Moreover, cationic MFNPs exhibited large uptake efficiency for RAW264.7 cells compared with anionic or non-ionic MFNPs under the same conditions. Therefore, we propose that surface charge should be a key consideration factor in the design of magnetic nanoparticles for theragnostic applications.

  9. Magnetic properties of conducting polymer doped with manganese zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Poddar, P.; Wilson, J. L.; Srikanth, H.; Morrison, S. A.; Carpenter, E. E.

    2004-10-01

    The magnetic properties of superparamagnetic particles are influenced by the supporting matrix. We have systematically studied the DC magnetic properties of loosely packed manganese-zinc ferrite (Mn0.68Zn0.25Fe2.07O3) nanoparticles synthesized using a reverse micelle technique. The results have been compared with those for particles suspended in paraffin wax and embedded in a polypyrrole matrix. The polypyrrole-doped particles were prepared using an in situ ultraviolet irradiation method and spin-coated into thin films. The loosely packed particles showed no resolvable coercivity even well below the blocking temperature. On the other hand, the same particles in wax showed the opening up of a large coercivity below the blocking temperature. However, both the samples showed characteristic superparamagnetic transition peaks in the temperature-dependent susceptibility nearly at the same temperature. The particles in the polypyrrole matrix showed a remarkable increase in the blocking temperature and large hysteresis at 300 K. The structural characterization of the polymer-doped sample showed clustering of the nanoparticles.

  10. Galactosylated manganese ferrite nanoparticles for targeted MR imaging of asialoglycoprotein receptor.

    PubMed

    Yang, Seung-Hyun; Heo, Dan; Lee, Eugene; Kim, Eunjung; Lim, Eun-Kyung; Lee, Young Han; Haam, Seungjoo; Suh, Jin-Suck; Huh, Yong-Min; Yang, Jaemoon; Park, Sahng Wook

    2013-11-29

    Cancer cells can express specific biomarkers, such as cell membrane proteins and signaling factors. Thus, finding biomarkers and delivering diagnostic agents are important in the diagnosis of cancer. In this study, we investigated a biomarker imaging agent for the diagnosis of hepatic cancers. The asialoglycoprotein receptor (ASGPr) was selected as a biomarker for hepatoma cells and the ASGPr-targetable imaging agent bearing a galactosyl group was prepared using manganese ferrite nanoparticles (MFNP) and galactosylgluconic acid. The utility of the ASGPr-targetable imaging agent, galactosylated MFNP (G-MFNP) was assessed by several methods in ASGPr-expressing HepG2 cells as target cells and ASGPr-deficient MCF7 cells. Physical and chemical properties of G-MFNP were examined using Fourier-transform infrared spectroscopy, dynamic light scattering, zeta potential analysis, and transmission electron microscopy. No significant cytotoxicity was observed in either cell line. Targeting ability was assessed using flow cytometry, magnetic resonance imaging, inductively coupled plasma atomic emission spectroscopy, absorbance analysis, dark-field microscopy, Prussian blue staining, and transmission electron microscopy. We demonstrated that G-MFNP target successfully and bind to ASGPr-expressing HepG2 cells specifically. We suggest that these results will be useful in strategies for cancer diagnoses based on magnetic resonance imaging.

  11. Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging

    NASA Astrophysics Data System (ADS)

    Pernia Leal, Manuel; Rivera-Fernández, Sara; Franco, Jaime M.; Pozo, David; de La Fuente, Jesús M.; García-Martín, María Luisa

    2015-01-01

    Magnetic resonance based molecular imaging has emerged as a very promising technique for early detection and treatment of a wide variety of diseases, including cancer, neurodegenerative disorders, and vascular diseases. The limited sensitivity and specificity of conventional MRI are being overcome by the development of a new generation of contrast agents, using nanotechnology approaches, with improved magnetic and biological properties. In particular, for molecular imaging, high specificity, high sensitivity, and long blood circulation times are required. Furthermore, the lack of toxicity and immunogenicity together with low-cost scalable production are also necessary to get them into the clinics. In this work, we describe a facile, robust and cost-effective ligand-exchange method to synthesize dual T1 and T2 MRI contrast agents with long circulation times. These contrast agents are based on manganese ferrite nanoparticles (MNPs) between 6 and 14 nm in size covered by a 3 kDa polyethylene glycol (PEG) shell that leads to a great stability in aqueous media with high crystallinity and magnetization values, thus retaining the magnetic properties of the uncovered MNPs. Moreover, the PEGylated MNPs have shown different relaxivities depending on their size and the magnetic field applied. Thus, the 6 nm PEGylated MNPs are characterized by a low r2/r1 ratio of 4.9 at 1.5 T, hence resulting in good dual T1 and T2 contrast agents under low magnetic fields, whereas the 14 nm MNPs behave as excellent T2 contrast agents under high magnetic fields (r2 = 335.6 mM-1 s-1). The polymer core shell of the PEGylated MNPs minimizes their cytotoxicity, and allows long blood circulation times. This combination of cellular compatibility and excellent T2 and r2/r1 values under low magnetic fields, together with long circulation times, make these nanomaterials very promising contrast agents for molecular imaging.Magnetic resonance based molecular imaging has emerged as a very promising

  12. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5

    PubMed Central

    Lopez-Abarrategui, Carlos; Figueroa-Espi, Viviana; Lugo-Alvarez, Maria B; Pereira, Caroline D; Garay, Hilda; Barbosa, João ARG; Falcão, Rosana; Jiménez-Hernández, Linnavel; Estévez-Hernández, Osvaldo; Reguera, Edilso; Franco, Octavio L; Dias, Simoni C; Otero-Gonzalez, Anselmo J

    2016-01-01

    Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity. PMID:27563243

  13. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5.

    PubMed

    Lopez-Abarrategui, Carlos; Figueroa-Espi, Viviana; Lugo-Alvarez, Maria B; Pereira, Caroline D; Garay, Hilda; Barbosa, João Arg; Falcão, Rosana; Jiménez-Hernández, Linnavel; Estévez-Hernández, Osvaldo; Reguera, Edilso; Franco, Octavio L; Dias, Simoni C; Otero-Gonzalez, Anselmo J

    2016-01-01

    Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity.

  14. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5.

    PubMed

    Lopez-Abarrategui, Carlos; Figueroa-Espi, Viviana; Lugo-Alvarez, Maria B; Pereira, Caroline D; Garay, Hilda; Barbosa, João Arg; Falcão, Rosana; Jiménez-Hernández, Linnavel; Estévez-Hernández, Osvaldo; Reguera, Edilso; Franco, Octavio L; Dias, Simoni C; Otero-Gonzalez, Anselmo J

    2016-01-01

    Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity. PMID:27563243

  15. Radio-frequency-heating capability of silica-coated manganese ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Qiu, Qing-Wei; Xu, Xiao-Wen; He, Mang; Zhang, Hong-Wang

    2015-06-01

    MnFe2O4 nanoparticles (NPs) with various sizes and tight size-distribution were synthesized by a chemical solution-phase method. The as-synthesized NPs were coated with a silica shell of 4 nm-5 nm in thickness, enabling the water-solubility and biocompatibility of the NPs. The MnFe2O4 NPs with a size of less than 18 nm exhibit superparamagnetic behavior with high saturated magnetization. The capacity of the heat production was enhanced by increasing particle sizes and radio frequency (RF) field strengths. MnFe2O4/SiO2 NPs with 18-nm magnetic cores showed the highest heat-generation ability under an RF field. These MnFe2O4/SiO2 NPs have great potentiality to cancer treatments, controlled drug releases, and remote controls of single cell functions.

  16. Low-temperature synthesis and thermal study of manganese-zinc ferrite nanoparticles by a ferrioelate precursor method

    NASA Astrophysics Data System (ADS)

    Lal, Madan; Singh, M.

    2006-12-01

    The procedure adopted for preparing the ferrite formation was found to be quite sensitive. The chlorine ion concentration and the pH in the solution has played a crucial role in retaining the initial stoichiometry of the solution in the nanoparticles. This work had the objective of studying the nanoparticle Mn-Zn ferrite obtained by the ferrioelate precursor method. In this process, Mn-Zn ferrite, synthesized through solutions of some specific salts led to the formation of crystalline power (10-30nm as evident from X-ray diffraction analysis) at a temperature of 2000C. The synthesis powders were characterized by X-ray diffractometer for identification of the crystalline phases present, by scanning electron microscopy for identification for their morphological structure and properties, thermogarvimetry and differential thermal analysis for identification of the oxidation/ reduction behaviour upon firing. The fourier transformation infrared spectroscopy (FT-IR) shows two main absorption bands v1 and v2 in the range of 4000-500cm-1and Differential Scanning Calorimetry (DSC) of the Mn0.4Zn0.6Fe2O4 powder at 5000C predicts the exothermic and endothermic reaction with the change in temperature with respect to heat flow. The synthesis route is simple, energy saving and cost effective. Details of the synthesis and characterizations of the resultant products were given.

  17. Atomic engineering of mixed ferrite and core-shell nanoparticles.

    PubMed

    Morrison, Shannon A; Cahill, Christopher L; Carpenter, Everett E; Calvin, Scott; Harris, Vincent G

    2005-09-01

    Nanoparticulate ferrites such as manganese zinc ferrite and nickel zinc ferrite hold great promise for advanced applications in power electronics. The use of these materials in current applications requires fine control over the nanoparticle size as well as size distribution to maximize their packing density. While there are several techniques for the synthesis of ferrite nanoparticles, reverse micelle techniques provide the greatest flexibility and control over size, crystallinity, and magnetic properties. Recipes for the synthesis of manganese zinc ferrite, nickel zinc ferrite, and an enhanced ferrite are presented along with analysis of the crystalline and magnetic properties. Comparisons are made on the quality of nanoparticles produced using different surfactant systems. The importance of various reaction conditions is explored with a discussion on the corresponding effects on the magnetic properties, particle morphology, stoichiometry, crystallinity, and phase purity.

  18. Relaxivities of hydrogen protons in aqueous solutions of PEG-coated rod-shaped manganese-nickel-ferrite (Mn0.4Ni0.6Fe2O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Iqbal, Yousaf; Bae, Hongsub; Rhee, Ilsu; Hong, Sungwook

    2014-11-01

    Spinel-structured manganese (Mn)-nickel (Ni)-ferrite nanoparticles were synthesized using a chemical co-precipitation method. Coating with PEG (polyethylene glycol) was simultaneously conducted along with the synthesis of Mn-Ni-ferrites. The X-ray diffraction (XRD) and the Fourier-transform infrared (FTIR) analyses revealed a cubic spinel ferrite structure of the synthesized nanoparticles. Transmission electron microscopy (TEM) images showed that the synthesized nanoparticles were rod-shaped with a uniform size distribution and that the average length and width were 15.13 ± 1.32 nm and 3.78 ± 0.71 nm, respectively. The bonding status of PEG on the nanoparticle surface was checked by using FTIR. The relaxivities of the hydrogen protons in the aqueous solutions of the coated particles were determined by using nuclear magnetic resonance (NMR) spectrometry. The T1 and the T2 relaxivities were 0.34 ± 0.11 mM-1s-1 and 29.91 ± 0.98 mM-1s-1, respectively. This indicates that the synthesized PEG-coated Mn-Ni-ferrite nanoparticles are suitable for use as T2 contrast agents.

  19. Magnetic properties of manganese ferrite films grown at atomic scale

    SciTech Connect

    Zuo Xu; Yang, Aria; Yoon, Soack-Dae; Christodoulides, Joe A.; Harris, Vincent G.; Vittoria, Carmine

    2005-05-15

    Manganese ferrite is a partial inverse spinel which, when prepared by conventional growth techniques, has {approx}20% of the Mn{sup 2+} ions on the octahedral sublattice. Here we describe a layer-by-layer growth scheme at atomic scale by which the percentage of Mn{sup 2+} ions on the octahedral sublattice can be artificially controlled. Manganese ferrite films grown by this technique exhibits different degrees of cation inversion when grown on {l_brace}100{r_brace} and {l_brace}111{r_brace} MgO substrates. It was observed that saturation magnetization varied in a wide range of values depending on chemical composition and oxygen pressure. Although bulk manganese ferrite was low anisotropy magnetic material, uniaxial anisotropy was observed at room temperature in the films deposited on {l_brace}100{r_brace} MgO substrates, and its magnitude and direction sensitively depended on chemical composition and oxygen pressure during deposition.

  20. Magnetic Properties of Manganese Ferrite Films Grown at Atomic Scale

    SciTech Connect

    Zuo,X.; Yang, A.; Yoon, S.; Christodoulides, I.; Harris, V.; Vittoria, C.

    2005-01-01

    Manganese ferrite is a partial inverse spinel which, when prepared by conventional growth techniques, has {approx}20% of the Mn{sup 2+} ions on the octahedral sublattice. Here we describe a layer-by-layer growth scheme at atomic scale by which the percentage of Mn{sup 2+} ions on the octahedral sublattice can be artificially controlled. Manganese ferrite films grown by this technique exhibits different degrees of cation inversion when grown on {l_brace}100{r_brace} and {l_brace}111{r_brace} MgO substrates. It was observed that saturation magnetization varied in a wide range of values depending on chemical composition and oxygen pressure. Although bulk manganese ferrite was low anisotropy magnetic material, uniaxial anisotropy was observed at room temperature in the films deposited on {l_brace}100{r_brace} MgO substrates, and its magnitude and direction sensitively depended on chemical composition and oxygen pressure during deposition.

  1. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section...

  2. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section...

  3. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section...

  4. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section...

  5. 40 CFR 721.10222 - Styrenyl surface treated manganese ferrite (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Styrenyl surface treated manganese... Specific Chemical Substances § 721.10222 Styrenyl surface treated manganese ferrite (generic). (a) Chemical... as styrenyl surface treated manganese ferrite (PMN P-09-581) is subject to reporting under...

  6. 40 CFR 721.10222 - Styrenyl surface treated manganese ferrite (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Styrenyl surface treated manganese... Specific Chemical Substances § 721.10222 Styrenyl surface treated manganese ferrite (generic). (a) Chemical... as styrenyl surface treated manganese ferrite (PMN P-09-581) is subject to reporting under...

  7. 40 CFR 721.10222 - Styrenyl surface treated manganese ferrite (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Styrenyl surface treated manganese... Specific Chemical Substances § 721.10222 Styrenyl surface treated manganese ferrite (generic). (a) Chemical... as styrenyl surface treated manganese ferrite (PMN P-09-581) is subject to reporting under...

  8. 40 CFR 721.10222 - Styrenyl surface treated manganese ferrite (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Styrenyl surface treated manganese... Specific Chemical Substances § 721.10222 Styrenyl surface treated manganese ferrite (generic). (a) Chemical... as styrenyl surface treated manganese ferrite (PMN P-09-581) is subject to reporting under...

  9. Transport in Manganese-Zinc Ferrites

    NASA Astrophysics Data System (ADS)

    Singh, David J.; Gupta, M.; Gupta, R.

    2002-03-01

    Density functional studies of the electronic and magnetic structure of the spinel ferrites ZnFe_2O4 and MnFe_2O4 are reported. Correct magnetic orderings are obtained. ZnFe_2O4 is predicted to be a small gap insulator in agreement with experiment. MnFe_2O4 is found to be a low carrier density half-metal in the fully ordered state. However, strong effects on the band structure near the band edges are found upon partial interchange of Fe and Mn atoms. These are above the criterion for disorder induced localization. This indicates that the insulating character may well be due to Anderson localization associated with the intersite Mn-Fe disorder in contrast to the usual picture of a Mott insulating ground state. This possibility is discussed in relation to experimental data.

  10. Electromagnetic properties of manganese-zinc ferrite with lithium substitution

    NASA Astrophysics Data System (ADS)

    De Fazio, E.; Bercoff, P. G.; Jacobo, S. E.

    2011-11-01

    Polycrystalline manganese-zinc ferrite with lithium substitution of composition Li 0.5 xMn 0.4Zn 0.6- xFe 2+0.5 xO 4 (0.0≤ x≤0.4) was prepared by the usual ceramic method. X-ray diffraction analysis confirmed that the samples have a spinel structure and are of single phase for some values of Li content. Lithium doping considerably modifies saturation magnetization since its value increases from 57.5 emu/g for x=0.0 to 82.9 emu/g for x=0.4. Lithium inclusion increases the real permeability (over 1 MHz) while the natural resonance frequency shifts to lower values as the fraction of Li increases. These ferrites show good electromagnetic properties as absorbers in the microwave range of 1 MHz - 1 GHz.

  11. Synthesis, characterization, optical and sensing property of manganese oxide nanoparticles

    SciTech Connect

    Manigandan, R.; Suresh, R.; Giribabu, K.; Narayanan, V.; Vijayalakshmi, L.; Stephen, A.

    2014-01-28

    Manganese oxide nanoparticles were prepared by thermal decomposition of manganese oxalate. Manganese oxalate was synthesized by reacting 1:1 mole ratio of manganese acetate and ammonium oxalate along with sodium dodecyl sulfate (SDS). The structural characterization of manganese oxalate and manganese oxide nanoparticles was analyzed by XRD. The XRD spectrum confirms the crystal structure of the manganese oxide and manganese oxalate. In addition, the average grain size, lattice parameter values were also calculated using XRD spectrum. Moreover, the diffraction peaks were broadened due to the smaller size of the particle. The band gap of manganese oxide was calculated from optical absorption, which was carried out by DRS UV-Visible spectroscopy. The morphology of manganese oxide nanoparticles was analyzed by SEM images. The FT-IR analysis confirms the formation of the manganese oxide from manganese oxalate nanoparticles. The electrochemical sensing behavior of manganese oxide nanoparticles were investigated using hydrogen peroxide by cyclic voltammetry.

  12. Cation Occupancy Determination in Manganese Zinc Ferrites using Fourier Transform Infrared Spectroscopy

    SciTech Connect

    Shultz,M.; Carpenter, E.; Morrison, S.; Calvin, S.

    2006-01-01

    The magnetic and electric properties of ferrites are influenced by the cation distribution within the crystalline spinel lattice. Methods such as extended x-ray-absorption fine structure (EXAFS) have been used to determine cation occupancies within the crystalline structure of materials such as manganese zinc ferrite (MZFO); however, it is not practical to be used for daily analysis. Fourier transform infrared (FTIR) spectroscopy is another technique which has the potential to determine cation occupancy while offering speed and convenience. In the literature it has been demonstrated that in ferrite systems FTIR data can be correlated to cation percentages when comparing tetrahedral (Td) and octahedral (Oh) sites. FTIR spectra were collected on a series of MZFO nanoparticles in the range from 200 to 600 cm-1 and two absorbance peaks were observed. The first absorption region shifted with changing sample composition as calculated from transmission EXAFS experiments and elemental analysis. The data was normalized to the maximum of the peak of interest and the shifts were correlated to cation occupancy.

  13. Influence of Sn-substitution on temperature dependence and magnetic disaccommodation of manganese-zinc ferrites

    NASA Astrophysics Data System (ADS)

    Ji, Haining; Lan, Zhongwen; Yu, Zhong; Sun, Ke; Li, Lezhong

    2009-07-01

    In this paper, the effects of Sn-substitution on temperature dependence and magnetic disaccommodation of manganese-zinc ferrites were investigated. Toroidal cores were prepared by the conventional ceramic process and sintered at 1360 °C for 4 h in atmosphere controlled by using the equation for equilibrium oxygen partial pressure. The experimental results show that the substitution of Sn 4+ in manganese-zinc ferrites can influence the thermal stability and disaccommodation remarkably. Secondly, the temperature dependence of the initial permeability μi and disaccommodation of Sn-substitution manganese-zinc ferrites have an internal relationship. The experimental results are explained and compared with those of Ti-substitution manganese-zinc ferrite.

  14. Magnetic properties and adsorptive performance of manganese-zinc ferrites/activated carbon nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, B. B.; Xu, J. C.; Xin, P. H.; Han, Y. B.; Hong, B.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Li, J.; Gong, J.; Ge, H. L.; Zhu, Z. W.; Wang, X. Q.

    2015-01-01

    Owing to the unique microstructure and high specific surface area, activated carbon (AC) could act as an excellent adsorbent for wastewater treatment and good carrier for functional materials. In this paper, manganese-zinc ferrites (Mn0.5Zn0.5Fe2O4: MZF) were anchored into AC by hydrothermal method, resulting in the excellent magnetic response for AC nanocomposites in wastewater treatment. All results demonstrated the magnetic nanoparticles presented a spinel phase structure and existed in the pores of AC. The saturation magnetization (Ms) of MZF/AC nanocomposites increased with the ferrites content, while the pore volume and specific surface area declined. The Sample-5 possessed the specific surface area of 1129 m2 g-1 (close to 1243 m2 g-1 of AC) and Ms of 3.96 emu g-1. Furthermore, the adsorptive performance for organic dyes was studied and 99% methylene blue was adsorbed in 30 min. The magnetic AC nanocomposites could be separated easily from solution by magnetic separation technique.

  15. Graphene oxide/manganese ferrite nanohybrids for magnetic resonance imaging, photothermal therapy and drug delivery.

    PubMed

    Yang, Yan; Shi, Haili; Wang, Yapei; Shi, Benzhao; Guo, Linlin; Wu, Dongmei; Yang, Shiping; Wu, Huixia

    2016-01-01

    Superparamagnetic manganese ferrite (MnFe2O4) nanoparticles have been deposited on graphene oxide (GO) by the thermal decomposition of manganese (II) acetylacetonate and iron (III) acetylacetonate precursors in triethylene glycol. The resulting GO/MnFe2O4 nanohybrids show very low cytotoxicity, negligible hemolytic activity, and imperceptible in vivo toxicity. In vitro and in vivo magnetic resonance imaging experiments demonstrate that GO/MnFe2O4 nanohybrids could be used as an effective T2 contrast agent. The strong optical absorbance in the near-infrared (NIR) region and good photothermal stability of GO/MnFe2O4 nanohybrids result in the highly efficient photothermal ablation of cancer cells. GO/MnFe2O4 nanohybrids can be further loaded with doxorubicin (DOX) by π-π conjugate effect for chemotherapy. DOX release from GO/MnFe2O4 is significantly influenced by pH and can be triggered by NIR laser. The enhanced cancer cell killing by GO/MnFe2O4/DOX composites has been achieved when irradiated with near-infrared light, suggesting that the nanohybrids could deliver both DOX chemotherapy and photothermal therapy with a synergistic effect.

  16. Magnetic materials based on manganese zinc ferrite with surface-organized polyaniline coating

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. E.; Bespyatykh, Yu. I.; Sapurina, I.; Stejskal, J.; Vilčáková, J.; Sáha, P.

    2006-06-01

    Core-shell composites of manganese-zinc (MnZn) ferrite and polyaniline (PANI) have been prepared by the oxidation of aniline with ammonium peroxydisulfate in the presence of ferrite. The various reaction conditions allowed controlling the thickness of PANI coating, 50-250 nm. Complex magnetic permeability spectra of MnZn ferrite of various particles sizes, 25-250 μm, and of their composites with PANI, have been studied in the frequency range 1 MHz-10 GHz. The formation of a polymer p-semiconducting nanolayer on the surface of a MnZn ferrite particle changes the character of the frequency dispersion of the permeability. The interfacial effects between MnZn ferrite and PANI nanofilm are responsible for the shifts of resonance frequency from MHz closer to GHz. This effect strongly depends on the specific area of the ferrite-PANI interface and, moreover, on the properties of the PANI overlayer.

  17. Cobalt ferrite nanoparticles under high pressure

    SciTech Connect

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V.; Errandonea, D.

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  18. Effects of Magnetic Field on Fracture Toughness of Manganese-Zinc Ferrite Ceramics

    NASA Astrophysics Data System (ADS)

    Wan, Y. P.; Fang, D. N.; Soh, A. K.

    Effects of magnetic field on the fracture toughness of magnetic ceramics were experimentally investigated by the use of the single-edge-notch-beam (SENB) specimens of three kinds of manganese-zinc ferrite ceramics with different permeability. Results indicate that there is no significant change in the measured fracture toughness of the Manganese-Zinc Ferrite ceramics in the presence of the magnetic field. Furthermore, the crack lengths caused by the Vickers' indentation on the manganese-zinc ferrite ceramics show that the fracture toughness in the magnetic field direction is almost identical to that in the direction perpendicular to the magnetic field. This reveals that the polycrystalline ceramic still exhibits isotropic fracture behavior after magnetization. Finally, a qualitative explanation is given in terms of a small-scale magnetic saturation model.

  19. Influence of quencher on microstructure and magnetic properties of manganese-zinc ferrites

    NASA Astrophysics Data System (ADS)

    Lezhong, Li; Zhongwen, Lan; Zhong, Yu; Ke, Sun; Haining, Ji

    2007-11-01

    The effects of quencher after calcination on the microstructure and magnetic properties of manganese-zinc ferrites were investigated by measuring the magnetic properties, electrical resistivity and density. The powder of Mn 0.68Zn 0.25Fe 2.07O 4 composition was prepared by adopting the conventional ceramic technique. Toroidal cores were sintered at 1350 °C for 4 h in atmosphere controlled by using the equation for equilibrium oxygen partial pressure. The fracture surface micrographs of samples were observed by scanning electron microscope. The results show that the inner stress of calcined powder increases, abnormal grains of ferrite grow up, initial permeability goes down and power losses of ferrite rise with the increase in quenching temperature, and the microstructure and magnetic properties of manganese-zinc ferrites can be improved with the gradual cooling of calcined powder to room temperature (25 °C).

  20. Magnetic behaviour of composites containing polyaniline-coated manganese-zinc ferrite

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. E.; Vilčáková, J.; Křesálek, V.; Sáha, P.; Sapurina, I.; Stejskal, J.

    2004-02-01

    Polycrystalline manganese-zinc ferrite has been coated with polyaniline (PANI) and embedded into a polyurethane matrix. The complex permeability of the composites was studied in the frequency range 1 MHz-3 GHz. The conductivity of PANI coating was adjusted by controlled protonation with picric acid. Large shifts in the resonance frequency were observed as a function of varying PANI conductivity. The changes in the magnetic properties of the PANI-coated composite material are due to the change of the boundary conditions of the microwave field at the interface between the ferrite particle and polymer matrix. This effect is observed especially when the magnetic anisotropy of ferrite is low.

  1. Processing of manganese zinc ferrites for high-frequency switch-mode power supplies

    SciTech Connect

    Hendricks, C.R.; Amarakoon, V.W.R. ); Sullivan, D. )

    1991-05-01

    The development and the continued success of switch-mode power supplies have created an expanding commercial market. This market is continually challenging the ferrite industry to produce high-quality ferrite cores capable of operating at increasingly higher frequencies. The advantage of the switch-mode power supply is that, as the switching frequency is increased, power output also increases. This allows smaller core volumes to transform the same amount of power as a larger core would at lower frequencies. This paper reports that the main motivation for using ferrite transformer cores is the dramatic reduction of eddy current losses when compared with traditional iron core transformers. The reduction of these losses is brought about by the high electrical resistivities of magnetic oxides, which can be up to a million times higher than those possessed by alloys. Of all the ferrites, manganese zinc ferrites have the lowest losses, in high-drive applications (up to a frequency of {approx}2 MHz).

  2. Multifunctional nano manganese ferrite ferrofluid for efficient theranostic application.

    PubMed

    Beeran, Ansar Ereath; Fernandez, Francis Boniface; Nazeer, Shaiju S; Jayasree, Ramapurath S; John, Annie; Anil, Sukumaran; Vellappally, Sajith; Al Kheraif, Abdul Aziz A; Varma, P R Harikrishna

    2015-12-01

    Ferrofluid-based manganese (Mn(2+)) substituted superparamagnetic iron oxide nanoparticles stabilized by surface coating with trisodium citrate (MnIOTCs) were synthesized for enhanced hyperthermic activity and use as negative magnetic resonance imaging (MRI) contrast media intended for applications in theranostics. The synthesized MnIOTC materials were characterized based on their physicochemical and biological features. The crystal size and the particle size at the nano level were studied using XRD and TEM. The presence of citrate molecules on the crystal surface of the iron oxide was established by FTIR, TGA, DLS and zeta potential measurements. The superparamagnetic property of MnIOTCs was measured using a vibrating sample magnetometer. Superparamagnetic iron oxide substituted with Mn(2+) with a 3:1 molar concentration of Mn(2+) to Fe(2+) and surface modified with trisodium citrate (MnIO75TC) that exhibited a high T2 relaxivity of 184.6mM(-1)s(-1) and showed excellent signal intensity variation in vitro. Hyperthermia via application of an alternating magnetic field to MnIO75TC in a HeLa cell population induced apoptosis, which was further confirmed by FACS and cLSM observations. The morphological features of the cells were highly disrupted after the hyperthermia experiment, as evidenced from E-SEM images. Biocompatibility evaluation was performed using an alamar blue assay and hemolysis studies, and the results indicated good cytocompatibility and hemocompatibility for the synthesized particles. In the current study, the potential of MnIO75TC as a negative MRI contrast agent and a hyperthermia agent was demonstrated to confirm its utility in the burgeoning field of theranostics. PMID:26595389

  3. Facile synthesis of manganese ferrite/graphene oxide nanocomposites for controlled targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Ma, Yingying; Zhang, Lina; Mu, Jingbo; Zhang, Zhixiao; Zhang, Xiaoliang; Che, Hongwei; Bai, Yongmei; Hou, Junxian

    2016-03-01

    In this study, manganese ferrite/graphene oxide (MnFe2O4/GO) nanocomposites as controlled targeted drug delivery were prepared by a facile sonochemical method. It was found that GO nanosheets were fully exfoliated and decorated with MnFe2O4 nanoparticles having diameters of 5-13 nm. The field-dependent magnetization curve indicated superparamagnetic behavior of the obtained MnFe2O4/GO with saturation magnetization of 34.9 emu/g at room temperature. The in vitro cytotoxicity testing exhibited negligible cytotoxicity of as-prepared MnFe2O4/GO even at the concentration as high as 150 μg/mL. Doxorubicin hydrochloride (DOX) as an anti-tumor model drug was utilized to explore the application potential of MnFe2O4/GO for controlled drug delivery. The drug loading capacity of this nanocarrier was as high as 0.97 mg/mg and the drug release behavior showed a sustained and pH-responsive way.

  4. A biosensor system using nickel ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Prachi; Rathore, Deepshikha

    2016-05-01

    NiFe2O4 ferrite nanoparticles were synthesized by chemical co-precipitation method and the structural characteristics were investigated using X-ray diffraction technique, where single cubic phase formation of nanoparticles was confirmed. The average particle size of NiFe2O4 was found to be 4.9 nm. Nanoscale magnetic materials are an important source of labels for biosensing due to their strong magnetic properties which are not found in biological systems. This property of the material was exploited and the fabrication of the NiFe2O4 nanoparticle based biosensor was done in the form of a capacitor system, with NiFe2O4 as the dielectric material. The biosensor system was tested towards different biological materials with the help of electrochemical workstation and the same was analysed through Cole-Cole plot of NiFe2O4. The performance of the sensor was determined based on its sensitivity, response time and recovery time.

  5. Friction and wear of single-crystal manganese-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with single-crystal manganese-zinc ferrite in contact with itself and with transition metals. Results indicate mating highest atomic density directions (110 line type) on matched crystallographic planes exhibit the lowest coefficient of friction indicating that direction is important in the friction behavior of ferrite. Matched parallel high atomic density planes and crystallographic directions at the interface exhibit low coefficients of friction. The coefficients of friction for ferrite in contact with various metals are related to the relative chemical activity of these metals. The more active the metal, the higher the coefficient of friction. Cracking and the formation of hexagon- and rectangular-shaped platelet wear debris due to cleavages are observed on the ferrite surfaces as a result of sliding.

  6. Friction and wear of single-crystal manganese-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with single crystal manganese-zinc ferrite in contact with itself and with transition metals. Results indicate mating highest atomic density directions (110) on matched crystallographic planes exhibit the lowest coefficient of friction, indicating that direction is important in the friction behavior of ferrite. Matched parallel high atomic density planes and crystallographic directions at the interface exhibit low coefficients of friction. The coefficients of friction for ferrite in contact with various metals are related to the relative chemical activity of these metals. The more active the metal, the higher the coefficient of friction. Cracking and the formation of hexagon- and rectangular-shaped platelet wear debris due to cleavages of (110) planes are observed on the ferrite surfaces as a result of sliding.

  7. X-ray spectral and Mossbauer investigations of structure defects and the degree of inversion of manganese-zinc ferrites

    NASA Astrophysics Data System (ADS)

    Kirichok, P. P.; Pashchenko, V. P.; Kompaniets, V. I.; Brovkina, G. T.

    1982-03-01

    X-ray and Mossbauer spectroscopy is used to investigate the effect of vacuum cooling on the valence of cations of manganese and iron, nonstoichiometry and the degree of inversion of manganese-zinc ferrites. The dependence of the valency of the cations of manganese and iron, the degree of inversion, and the degree of nonstoichiometry on the partial pressure of oxygen produced in the cooling stage is established. An interrelationship is found between the defects and the degree of inversion of manganese-zinc ferrites.

  8. Thermodynamic modelling of the formation of zinc-manganese ferrite spinel in electric arc furnace dust.

    PubMed

    Pickles, C A

    2010-07-15

    Electric arc furnace dust is generated when automobile scrap, containing galvanized steel, is remelted in an electric arc furnace. This dust is considered as a hazardous waste in most countries. Zinc is a major component of the dust and can be of significant commercial value. Typically, the majority of the zinc exists as zinc oxide (ZnO) and as a zinc-manganese ferrite spinel ((Zn(x)Mn(y)Fe(1-x-y))Fe(2)O(4)). The recovery of the zinc from the dust in metal recycling and recovery processes, particularly in the hydrometallurgical extraction processes, is often hindered by the presence of the mixed ferrite spinel. However, there is a paucity of information available in the literature on the formation of this spinel. Therefore, in the present research, the equilibrium module of HSC Chemistry 6.1 was utilized to investigate the thermodynamics of the formation of the spinel and the effect of variables on the amount and the composition of the mixed ferrite spinel. It is proposed that the mixed ferrite spinel forms due to the reaction of iron-manganese particulates with both gaseous oxygen and zinc, at the high temperatures in the freeboard of the furnace above the steel melt. Based on the thermodynamic predictions, methods are proposed for minimizing the formation of the mixed ferrite spinel.

  9. Recycling spent zinc manganese dioxide batteries through synthesizing Zn-Mn ferrite magnetic materials.

    PubMed

    Nan, Junmin; Han, Dongmei; Cui, Ming; Yang, Minjie; Pan, Linmao

    2006-05-20

    A novel process to reclaim spent zinc manganese dioxide batteries (SDBs) through synthesizing Zn-Mn ferrite magnetic materials is present. Firstly, the dismantling, watering, magnetism, baking and griddling steps were consecutively carried out to obtain iron battery shells, zinc grains and manganese compounds using the collected SDBs, and then these separated substances were dissolved with 4 mol L(-1) H(2)SO(4) to prepare FeSO(4), ZnSO(4) and MnSO(4) reactant solutions. Secondly, Zn-Mn ferrites with stoichiometric ratio of Mn(0.26)Zn(0.24)FeO(2) were synthesized using chemical co precipitation process with ammonium oxalate precipitator. The XRD results showed that the obtained Zn-Mn ferrites had spinel structure and high purity at the calcining temperatures of 850-1250 degrees C. With the increase of calcining temperature, the finer crystalline structure could be formed, and their intensity of saturation magnetization reached the highest value at 1150 degrees C. The magnetization performances of Zn-Mn ferrites prepared from the SDBs were similar to that of from analysis reagents, suggesting the feasibility to synthesize Zn-Mn ferrites with high properties from SDBs.

  10. Anisotropic friction and wear of single-crystal manganese-zinc ferrite in contact with itself

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with manganese-zinc ferrite (100), (110), (111), and (211) planes in contact with themselves. Mating the highest-atomic-density directions, (110), of matched crystallographic planes resulted in the lowest coefficients of friction. Mating matched (same) high-atomic-density planes and matched (same)crystallographic directions resulted in low coefficients of friction. Mating dissimilar crystallographic planes, however, did not give significantly different friction results from those with matched planes. Sliding caused cracking and the formation of hexagonal- and rectangular-platelet wear debris on ferrite surfaces, primarily from cleavage of the (110) planes.

  11. Tuning the magnetism of ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Viñas, S. Liébana; Simeonidis, K.; Li, Z.-A.; Ma, Z.; Myrovali, E.; Makridis, A.; Sakellari, D.; Angelakeris, M.; Wiedwald, U.; Spasova, M.; Farle, M.

    2016-10-01

    The importance of magnetic interactions within an individual nanoparticle or between adjacent ones is crucial not only for the macroscopic collective magnetic behavior but for the AC magnetic heating efficiency as well. On this concept, single-(MFe2O4 where M=Fe, Co, Mn) and core-shell ferrite nanoparticles consisting of a magnetically softer (MnFe2O4) or magnetically harder (CoFe2O4) core and a magnetite (Fe3O4) shell with an overall size in the 10 nm range were synthesized and studied for their magnetic particle hyperthermia efficiency. Magnetic measurements indicate that the coating of the hard magnetic phase (CoFe2O4) by Fe3O4 provides a significant enhancement of hysteresis losses over the corresponding single-phase counterpart response, and thus results in a multiplication of the magnetic hyperthermia efficiency opening a novel pathway for high-performance, magnetic hyperthermia agents. At the same time, the existence of a biocompatible Fe3O4 outer shell, toxicologically renders these systems similar to iron-oxide ones with significantly milder side-effects.

  12. Preparation and characterization of manganese ferrite-based magnetic liposomes for hyperthermia treatment of cancer

    NASA Astrophysics Data System (ADS)

    Pradhan, Pallab; Giri, Jyotsnendu; Banerjee, Rinti; Bellare, Jayesh; Bahadur, Dhirendra

    2007-04-01

    Comparative evaluation of two different methods of magnetic liposomes preparation, namely thin film hydration (TFH) and double emulsion (DE) with different molar ratios of egg-phosphatidyl choline (egg-PC) and cholesterol using lauric acid coated manganese ferrite-based aqueous magnetic fluid, is reported. TFH was found to be a better method of encapsulation and TFH 2:1 (egg-PC: cholesterol) magnetic liposomes showed the highest encapsulation efficiency and comparable heating ability to that of magnetic fluids. Stealth TFH 2:1 magnetic liposomes containing DSPE-PEG 2000 were three-fold more cytocompatible as compared to the magnetic fluid. Stealth TFH 2:1 manganese ferrite-based magnetic liposomes might be useful for hyperthermia treatment of cancer.

  13. Ultrasonic cavitation induced water in vegetable oil emulsion droplets--a simple and easy technique to synthesize manganese zinc ferrite nanocrystals with improved magnetization.

    PubMed

    Sivakumar, Manickam; Towata, Atsuya; Yasui, Kyuichi; Tuziuti, Toru; Kozuka, Teruyuki; Iida, Yasuo; Maiorov, Michail M; Blums, Elmars; Bhattacharya, Dipten; Sivakumar, Neelagesi; Ashok, M

    2012-05-01

    In the present investigation, synthesis of manganese zinc ferrite (Mn(0.5)Zn(0.5)Fe(2)O(4)) nanoparticles with narrow size distribution have been prepared using ultrasound assisted emulsion (consisting of rapeseed oil as an oil phase and aqueous solution of Mn(2+), Zn(2+) and Fe(2+) acetates) and evaporation processes. The as-prepared ferrite was nanocrystalline. In order to remove the small amount of oil present on the surface of the ferrite, it was subjected to heat treatment at 300 °C for 3h. Both the as-prepared and heat treated ferrites have been characterized by X-ray diffraction (XRD), infrared spectroscopy (IR), TGA/DTA, transmission electron microscopy (TEM) and energy dispersion X-ray spectroscopy (EDS) techniques. As-prepared ferrite is of 20 nm, whereas the heat treated ferrite shows the size of 33 nm. In addition, magnetic properties of the as-prepared as well as the heat treated ferrites have also been carried out and the results of which show that the spontaneous magnetization (σ(s)) of the heat treated sample (24.1 emu/g) is significantly higher than that of the as-synthesized sample (1.81 emu/g). The key features of this method are avoiding (a) the cumbersome conditions that exist in the conventional methods; (b) usage of necessary additive components (stabilizers or surfactants, precipitants) and (c) calcination requirements. In addition, rapeseed oil as an oil phase has been used for the first time, replacing the toxic and troublesome organic nonpolar solvents. As a whole, this simple straightforward sonochemical approach results in more phase pure system with improved magnetization.

  14. Magneto-structural studies of sol-gel synthesized nanocrystalline manganese substituted nickel ferrites

    NASA Astrophysics Data System (ADS)

    Pandav, R. S.; Patil, R. P.; Chavan, S. S.; Mulla, I. S.; Hankare, P. P.

    2016-11-01

    Nanocrystalline NiFe2-xMnxO4 (2≥x≥0) ferrites were prepared by sol-gel method. X-ray diffraction patterns reveal that synthesized compounds are in single phase cubic spinel lattice for all the composition. The surface morphology of all the samples were studied by scanning electron microscopy. The particle size measured from transmission electron microscopy and X-ray diffraction patterns confirms the nanosized dimension of the as-prepared powder. The elemental analysis was carried out by energy dispersive X-ray analysis technique. Magnetic properties such as saturation magnetization, coercivity and remanence are studied as a function of increasing Mn concentration at room temperature. The saturation magnetization shows a decreasing trend with increase in Mn content. The substitution of manganese in the nickel ferrite affects the structural and magnetic properties of cubic spinels.

  15. DAFS study of site-specific local structure of Mn in manganese ferrite films.

    SciTech Connect

    Kravtsov, E.; Haskel, D.; Cady, A.; Yang, A.; Vittoria, C.; Zuo, X.; Harris, V. G.; X-Ray Science Division; Inst. of Metal Physics; Northeastern Univ.; Nankai Univ.

    2006-01-01

    Manganese ferrite (MnFe{sub 2}O{sub 4}) is a well-known magnetic material widely used in electronics for many years. It is well established that its magnetic behavior is strongly influenced by local structural properties of Mn ions, which are distributed between crystallographically inequivalent tetrahedral and octahedral sites in the unit cell. In order to understand and be able to tune properties of these structures, it is necessary to have detailed site-specific structural information on the system. Here we report on the application of diffraction-anomalous fine structure (DAFS) spectroscopy to resolve site-specific Mn local structures in manganese ferrite films. The DAFS measurements were done at undulator beamline 4-ID-D of the Advanced Photon Source at Argonne National Laboratory. The DAFS spectra (Fig. 1) were measured at several Bragg reflections in the vicinity of the Mn absorption K-edge, having probed separately contributions from tetrahedrally and octahedrally coordinated Mn sites. The DAFS data analysis done with an iterative Kramers-Kroenig algorithm made it possible to solve separately the local structure around different inequivalent Mn sites in the unit cell. The reliability of the data treatment was checked carefully, and it was showed that the site-specific structural parameters obtained with DAFS allow us to describe fluorescence EXAFS spectrum measured independently. Fig. 2 shows individual site contributions to the imaginary part of the resonant scattering amplitude obtained from the treatment of the data of Fig. 1. The analysis of the refined site-specific absorption spectra was done using EXAFS methods based on theoretical standards. We provided direct evidence for the tetrahedral Mn-O bond distance being increased relative to the corresponding Fe-O distance in bulk manganese ferrites. The first coordination shell number was found to be reduced significantly for Mn atoms at these sites. This finding is consistent with the well-known tendency

  16. Strong and moldable cellulose magnets with high ferrite nanoparticle content.

    PubMed

    Galland, Sylvain; Andersson, Richard L; Ström, Valter; Olsson, Richard T; Berglund, Lars A

    2014-11-26

    A major limitation in the development of highly functional hybrid nanocomposites is brittleness and low tensile strength at high inorganic nanoparticle content. Herein, cellulose nanofibers were extracted from wood and individually decorated with cobalt-ferrite nanoparticles and then for the first time molded at low temperature (<120 °C) into magnetic nanocomposites with up to 93 wt % inorganic content. The material structure was characterized by TEM and FE-SEM and mechanically tested as compression molded samples. The obtained porous magnetic sheets were further impregnated with a thermosetting epoxy resin, which improved the load-bearing functions of ferrite and cellulose material. A nanocomposite with 70 wt % ferrite, 20 wt % cellulose nanofibers, and 10 wt % epoxy showed a modulus of 12.6 GPa, a tensile strength of 97 MPa, and a strain at failure of ca. 4%. Magnetic characterization was performed in a vibrating sample magnetometer, which showed that the coercivity was unaffected and that the saturation magnetization was in proportion with the ferrite content. The used ferrite, CoFe2O4, is a magnetically hard material, demonstrated by that the composite material behaved as a traditional permanent magnet. The presented processing route is easily adaptable to prepare millimeter-thick and moldable magnetic objects. This suggests that the processing method has the potential to be scaled-up for industrial use for the preparation of a new subcategory of magnetic, low-cost, and moldable objects based on cellulose nanofibers. PMID:25331121

  17. Strong and moldable cellulose magnets with high ferrite nanoparticle content.

    PubMed

    Galland, Sylvain; Andersson, Richard L; Ström, Valter; Olsson, Richard T; Berglund, Lars A

    2014-11-26

    A major limitation in the development of highly functional hybrid nanocomposites is brittleness and low tensile strength at high inorganic nanoparticle content. Herein, cellulose nanofibers were extracted from wood and individually decorated with cobalt-ferrite nanoparticles and then for the first time molded at low temperature (<120 °C) into magnetic nanocomposites with up to 93 wt % inorganic content. The material structure was characterized by TEM and FE-SEM and mechanically tested as compression molded samples. The obtained porous magnetic sheets were further impregnated with a thermosetting epoxy resin, which improved the load-bearing functions of ferrite and cellulose material. A nanocomposite with 70 wt % ferrite, 20 wt % cellulose nanofibers, and 10 wt % epoxy showed a modulus of 12.6 GPa, a tensile strength of 97 MPa, and a strain at failure of ca. 4%. Magnetic characterization was performed in a vibrating sample magnetometer, which showed that the coercivity was unaffected and that the saturation magnetization was in proportion with the ferrite content. The used ferrite, CoFe2O4, is a magnetically hard material, demonstrated by that the composite material behaved as a traditional permanent magnet. The presented processing route is easily adaptable to prepare millimeter-thick and moldable magnetic objects. This suggests that the processing method has the potential to be scaled-up for industrial use for the preparation of a new subcategory of magnetic, low-cost, and moldable objects based on cellulose nanofibers.

  18. An aqueous method for the controlled manganese (Mn(2+)) substitution in superparamagnetic iron oxide nanoparticles for contrast enhancement in MRI.

    PubMed

    Ereath Beeran, Ansar; Nazeer, Shaiju S; Fernandez, Francis Boniface; Muvvala, Krishna Surendra; Wunderlich, Wilfried; Anil, Sukumaran; Vellappally, Sajith; Ramachandra Rao, M S; John, Annie; Jayasree, Ramapurath S; Varma, P R Harikrishna

    2015-02-14

    Despite the success in the use of superparamagnetic iron oxide nanoparticles (SPION) for various scientific applications, its potential in biomedical fields has not been exploited to its full potential. In this context, an in situ substitution of Mn(2+) was performed in SPION and a series of ferrite particles, MnxFe1-xFe2O4 with a varying molar ratio of Mn(2+) : Fe(2+) where 'x' varies from 0-0.75. The ferrite particles obtained were further studied in MRI contrast applications and showed appreciable enhancement in their MRI contrast properties. Manganese substituted ferrite nanocrystals (MnIOs) were synthesized using a novel, one-step aqueous co-precipitation method based on the use of a combination of sodium hydroxide and trisodium citrate (TSC). This approach yielded the formation of highly crystalline, superparamagnetic MnIOs with good control over their size and bivalent Mn ion crystal substitution. The presence of a TSC hydrophilic layer on the surface facilitated easy dispersion of the materials in an aqueous media. Primary characterizations such as structural, chemical and magnetic properties demonstrated the successful formation of manganese substituted ferrite. More significantly, the MRI relaxivity of the MnIOs improved fourfold when compared to SPION crystals imparting high potential for use as an MRI contrast agent. Further, the cytocompatibility and blood compatibility evaluations demonstrated excellent cell morphological integrity even at high concentrations of nanoparticles supporting the non-toxic nature of nanoparticles. These results open new horizons for the design of biocompatible water dispersible ferrite nanoparticles with good relaxivity properties via a versatile and easily scalable co-precipitation route. PMID:25586703

  19. Element- and Site-Specific Oxidation State and Cation Distribution in Manganese Ferrite Films by Diffraction Anomalous Fine Structure

    SciTech Connect

    Yang,A.; Chen, Z.; Geiler, A.; Zuo, X.; Haskel, D.; Kravtsov, E.; Vittoria, C.; Harris, V.

    2008-01-01

    Epitaxial manganese ferrite thin films were studied by x-ray diffraction anomalous fine structure to obtain element-specific and site-specific information on site occupancy, local structure, and valency. These properties were introduced to molecular field theory to reproduce thermomagnetization curves and determine superexchange energy, Neel temperature, and spin canting angle.

  20. Magnetoabsorption and magnetic hysteresis in Ni ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Hernández-Gómez, P.; Muñoz, J. M.; Valente, M. A.; Torres, C.; de Francisco, C.

    2013-01-01

    Nickel ferrite nanoparticles were prepared by a modified sol-gel technique employing coconut oil, and then annealed at different temperatures in 400-1200 °C range. This route of preparation has revealed to be one efficient and cheap technique to obtain high quality nickel ferrite nanosized powder. Sample particles sizes obtained with XRD data and Scherrer's formula lie in 13 nm to 138 nm, with increased size with annealing temperature. Hysteresis loops have been obtained at room temperature with an inductive method. Magnetic field induced microwave absorption in nanoscale ferrites is a recent an active area of research, in order to characterize and explore potential novel applications. In the present work microwave magnetoabsorption data of the annealed nickel ferrite nanoparticles are presented. These data have been obtained with a system based on a network analyzer that operates in the frequency range 0 - 8.5 GHz. At fields up to 400 mT we can observe a peak according to ferromagnetic resonance theory. Sample annealed at higher temperature exhibits different absorption, coercivity and saturation magnetization figures, revealing its multidomain character.

  1. Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses.

    PubMed

    Wolff, Annalena; Hetaba, Walid; Wißbrock, Marco; Löffler, Stefan; Mill, Nadine; Eckstädt, Katrin; Dreyer, Axel; Ennen, Inga; Sewald, Norbert; Schattschneider, Peter; Hütten, Andreas

    2014-01-01

    Oriented attachment has created a great debate about the description of crystal growth throughout the last decade. This aggregation-based model has successfully described biomineralization processes as well as forms of inorganic crystal growth, which could not be explained by classical crystal growth theory. Understanding the nanoparticle growth is essential since physical properties, such as the magnetic behavior, are highly dependent on the microstructure, morphology and composition of the inorganic crystals. In this work, the underlying nanoparticle growth of cobalt ferrite nanoparticles in a bioinspired synthesis was studied. Bioinspired syntheses have sparked great interest in recent years due to their ability to influence and alter inorganic crystal growth and therefore tailor properties of nanoparticles. In this synthesis, a short synthetic version of the protein MMS6, involved in nanoparticle formation within magnetotactic bacteria, was used to alter the growth of cobalt ferrite. We demonstrate that the bioinspired nanoparticle growth can be described by the oriented attachment model. The intermediate stages proposed in the theoretical model, including primary-building-block-like substructures as well as mesocrystal-like structures, were observed in HRTEM measurements. These structures display regions of substantial orientation and possess the same shape and size as the resulting discs. An increase in orientation with time was observed in electron diffraction measurements. The change of particle diameter with time agrees with the recently proposed kinetic model for oriented attachment. PMID:24605288

  2. Dye removal using modified copper ferrite nanoparticle and RSM analysis.

    PubMed

    Mahmoodi, Niyaz Mohammad; Soltani-Gordefaramarzi, Sajjad; Sadeghi-Kiakhani, Moosa

    2013-12-01

    In this paper, copper ferrite nanoparticle (CFN) was synthesized, modified by cetyl trimethylammonium bromide, and characterized. Dye removal ability of the surface modified copper ferrite nanoparticle (SMCFN) from single system was investigated. The physical characteristics of SMCFN were studied using Fourier transform infrared, scanning electron microscopy, and X-ray diffraction. Acid Blue 92, Direct Green 6, Direct Red 23, and Direct Red 80 were used as model compounds. The effect of operational parameters (surfactant concentration, adsorbent dosage, dye concentration, and pH) on dye removal was evaluated. Response surface methodology (RSM) was used for the analysis of the dye removal data. The experimental checking in these optimal conditions confirms good agreements with RSM results. The results showed that the SMCFN being a magnetic adsorbent might be a suitable alternative to remove dyes from colored aqueous solutions. PMID:23852534

  3. Bifunctional Manganese Ferrite/Polyaniline Hybrid as Electrode Material for Enhanced Energy Recovery in Microbial Fuel Cell.

    PubMed

    Khilari, Santimoy; Pandit, Soumya; Varanasi, Jhansi L; Das, Debabrata; Pradhan, Debabrata

    2015-09-23

    Microbial fuel cells (MFCs) are emerging as a sustainable technology for waste to energy conversion where electrode materials play a vital role on its performance. Platinum (Pt) is the most common material used as cathode catalyst in the MFCs. However, the high cost and low earth abundance associated with Pt prompt the researcher to explore inexpensive catalysts. The present study demonstrates a noble metal-free MFC using a manganese ferrite (MnFe2O4)/polyaniline (PANI)-based electrode material. The MnFe2O4 nanoparticles (NPs) and MnFe2O4 NPs/PANI hybrid composite not only exhibited superior oxygen reduction reaction (ORR) activity for the air cathode but also enhanced anode half-cell potential upon modifying carbon cloth anode in the single-chambered MFC. This is attributed to the improved extracellular electron transfer of exoelectrogens due to Fe(3+) in MnFe2O4 and its capacitive nature. The present work demonstrates for the first time the dual property of MnFe2O4 NPs/PANI, i.e., as cathode catalyst and an anode modifier, thereby promising cost-effective MFCs for practical applications. PMID:26315619

  4. Site-specific local structure of Mn in artificial manganese ferrite films

    SciTech Connect

    Kravtsov, E.; Haskel, D.; Cady, A.; Yang, A.; Vittoria, C.; Harris, V. G.; Zuo, X.

    2006-09-01

    Diffraction anomalous fine structure (DAFS) spectroscopy has been applied to resolve site-specific Mn local structure in manganese ferrite films grown under nonequilibrium conditions. The DAFS spectra were measured at a number of Bragg reflections in the vicinity of the Mn absorption K edge. The DAFS data analysis done with an iterative Kramers-Kroenig algorithm made it possible to solve separately the local structure around crystallographically inequivalent Mn sites in the unit cell with nominal octahedral and tetrahedral coordination. The strong preference for Mn to be tetrahedrally coordinated in this compound is not only manifested in the relative site occupancies but also in a strong reduction in coordination number for Mn ions at nominal octahedral sites.

  5. Microwave-assisted synthesis and characterization of nickel ferrite nanoparticles

    SciTech Connect

    Carpenter, Gopal; Sen, Ravindra; Gupta, Nitish; Malviya, Nitin

    2015-08-28

    Nickel ferrite nanoparticles (NiFe{sub 2}O{sub 4}) were successfully prepared by microwave-assisted combustion method (MWAC) using citric Electron acid as a chelating agent. NiFe{sub 2}O{sub 4} nanoparticles were characterized by X-ray diffraction (XRD) pattern, Scanning Microscopy (SEM), Fourier transform infrared (FTIR) and UV-Visible techniques. XRD analysis revealed that NiFe{sub 2}O{sub 4} nanoparticles have spinel cubic structure with the average crystalline size of 26.38 nm. SEM analysis revealed random and porous structural morphology of particles and FTIR showed absorption bands related to octahedral and tetrahedral sites, in the range 400–600cm{sup −1} which strongly favor the formation of NiFe{sub 2}O{sub 4} nanoparticles. The optical band gap is determined by UV Visible method and found to be 5.4 eV.

  6. Chemisorption of cyanogen chloride by spinel ferrite magnetic nanoparticles.

    PubMed

    Glover, T Grant; DeCoste, Jared B; Sabo, Daniel; Zhang, Z John

    2013-05-01

    Spinel ferrite magnetic nanoparticles, MnFe2O4, NiFe2O4, and CoFe2O4, were synthesized and used as gas-phase adsorbents for the removal of cyanogen chloride from dry air. Fixed-bed adsorption breakthrough experiments show adsorption wave behavior at the leading edge of the breakthrough curve that is not typical of physically adsorbed species. Fourier transform infrared spectroscopy (FTIR) results indicate that CK is reacting with the spinel ferrite surface and forming a carbamate species. The reaction is shown to be a function of the hydroxyl groups and adsorbed water on the surface of the particles as well as the metallic composition of the particles. The surface reaction decreases the remnant and saturation magnetism of the MnFe2O4 and CoFe2O4 particles by approximately 25%.

  7. Cr(3+) substituted spinel ferrite nanoparticles with high coercivity.

    PubMed

    Zhang, Wei; Zuo, Xudong; Zhang, Dongmei; Wu, Chengwei; Silva, S Ravi P

    2016-06-17

    The low coercivity of spinel ferrites is a major barrier that significantly limits their use in high density magnetic recording applications. By controlling the substituting content of Cr(3+), in this article we describe how magnetic CoCr x Fe2-x O4 (0 < x < 1.2) nanoparticles with coercivity of up to 6.4 kOe were successfully obtained by the hydrothermal process. The high coercivity is attributed to the synergetic effects of magnetocrystalline anisotropy and the nanoscale size effect. X-ray diffraction analysis confirmed the spinel structure of the nanoparticles with transmission electron microscopy (TEM) suggesting regular tetragonal morphology. The TEM indicated an edge length ranging from 15 nm to 150 nm, which increases monotonically with increasing Cr content. Raman analyses supported the proposed model on the formation mechanism of the nanoparticles, i.e. heterogeneous and homogeneous nucleation. PMID:27159283

  8. Cr3+ substituted spinel ferrite nanoparticles with high coercivity

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zuo, Xudong; Zhang, Dongmei; Wu, Chengwei; Silva, S. Ravi P.

    2016-06-01

    The low coercivity of spinel ferrites is a major barrier that significantly limits their use in high density magnetic recording applications. By controlling the substituting content of Cr3+, in this article we describe how magnetic CoCr x Fe2‑x O4 (0 < x < 1.2) nanoparticles with coercivity of up to 6.4 kOe were successfully obtained by the hydrothermal process. The high coercivity is attributed to the synergetic effects of magnetocrystalline anisotropy and the nanoscale size effect. X-ray diffraction analysis confirmed the spinel structure of the nanoparticles with transmission electron microscopy (TEM) suggesting regular tetragonal morphology. The TEM indicated an edge length ranging from 15 nm to 150 nm, which increases monotonically with increasing Cr content. Raman analyses supported the proposed model on the formation mechanism of the nanoparticles, i.e. heterogeneous and homogeneous nucleation.

  9. Cr(3+) substituted spinel ferrite nanoparticles with high coercivity.

    PubMed

    Zhang, Wei; Zuo, Xudong; Zhang, Dongmei; Wu, Chengwei; Silva, S Ravi P

    2016-06-17

    The low coercivity of spinel ferrites is a major barrier that significantly limits their use in high density magnetic recording applications. By controlling the substituting content of Cr(3+), in this article we describe how magnetic CoCr x Fe2-x O4 (0 < x < 1.2) nanoparticles with coercivity of up to 6.4 kOe were successfully obtained by the hydrothermal process. The high coercivity is attributed to the synergetic effects of magnetocrystalline anisotropy and the nanoscale size effect. X-ray diffraction analysis confirmed the spinel structure of the nanoparticles with transmission electron microscopy (TEM) suggesting regular tetragonal morphology. The TEM indicated an edge length ranging from 15 nm to 150 nm, which increases monotonically with increasing Cr content. Raman analyses supported the proposed model on the formation mechanism of the nanoparticles, i.e. heterogeneous and homogeneous nucleation.

  10. Preparation of cobalt-ferrite nanoparticles within a biopolymer template

    NASA Astrophysics Data System (ADS)

    Garza, Marco; González, Virgilio; Torres-Castro, Alejandro; Hinojosa, Moisés; Ortíz, Ubaldo

    2008-03-01

    Using an in-situ co-precipitation reaction from solid dissolutions of stoichiometric amounts of Fe (III) and Co (II) inorganic salts, it was prepared highly loaded nanocomposites (as high as 75% w/w) of cobalt-ferrite nanoparticles within a chitosan matrix, with particle size of about 7 nm, narrow particle size distribution and superparamagnetic character. Nanocomposite samples were characterized by high resolution transmission electron microscopy (HRTEM), UV-vis spectrometry and magnetic measurements by SQUID, using magnetization-field dependent, M(H), and magnetization-temperature dependent, M(T), studies.

  11. Magnetoactive feature of in-situ polymerised polyaniline film developed on the surface of manganese-zinc ferrite

    NASA Astrophysics Data System (ADS)

    Babayan, V.; Kazantseva, N. E.; Sapurina, I.; Moučka, R.; Vilčáková, J.; Stejskal, J.

    2012-07-01

    A polyaniline film exhibits magnetoactive properties when deposited on the surface of multidomain particles of manganese-zinc ferrite during in-situ polymerisation of aniline. This is reflected in the increased coercivity and thermomagnetic stability of an in-situ prepared composite compared with bare ferrite and its mixed composite with polyaniline. In addition, the deposition of a polyaniline film results in a shift of the complex-permeability dispersion region towards ultrahigh frequency band. These changes in the magnetic properties of polyaniline-coated ferrite are attributed to the increased value of the inner demagnetisation factor, which results from stress-induced magnetic anisotropy due to the pinning of domain walls appearing on the surface of ferrite. This study is focused on the mechanism of pinning of domain walls and its influence on the magnetic properties of in-situ prepared composites in terms of the molecular mechanism of oxidative polymerisation of aniline. Ferrite stimulates the propagation of polyaniline chains, which start to grow on the domain walls on the ferrite surface. It leads to the pinning of domain walls and restricts their mobility in a magnetic field. The further increase in the coercivity and the resonance frequency of polyaniline-coated ferrite due to film shrinkage after deprotonation of polyaniline makes it obvious that polyaniline coating induces elastic stresses in a ferrite particle that stimulate the growth of the effective magnetic anisotropy. Stress-induced magnetic anisotropy contributes to the reorientation of the magnetisation vectors in domains with respect to the new directions of easy magnetisation, given by magnetoelastic stresses, which leads to complex changes in the magnetic properties of in-situ prepared composites.

  12. Electrical properties of In3+ and Cr3+ substituted magnesium manganese ferrites

    NASA Astrophysics Data System (ADS)

    Lakshman, A.; Subba Rao, P. S. V.; Parvatheeswara Rao, B.; Rao, K. H.

    2005-03-01

    Two series of magnesium-manganese ferrites, viz. Mg0.9Mn0.1InxFe2 - xO4 and Mg0.9Mn0.1CryFe2-yO4 have been prepared by the conventional ceramic process. The effects of In3+ and Cr3+ ions on the dc resistivity, dielectric constant and dielectric loss factor are presented in this paper. The resistivity increases with increasing concentrations of In3+ and Cr3+ ions. The observed variations in resistivity have been explained by Verwey's hopping mechanism. The activation energy, deduced from the temperature variation of resistivity, was found to increase with increasing concentrations of In3+ and Cr3+ ions. The room temperature dielectric constant at 100 kHz decreases with successive addition of trivalent ions in both the series. The observed variation in dielectric constant has been explained on the basis of space charge polarization. The dielectric loss tangent (tanδ) values measured at 100 kHz and 13 MHz are found to be very low for the samples with a higher concentration. The low values of the loss factor even at a high frequency indicate that the prepared materials may have great potential for use in microwave devices.

  13. Combined effect of demagnetizing field and induced magnetic anisotropy on the magnetic properties of manganese-zinc ferrite composites

    NASA Astrophysics Data System (ADS)

    Babayan, V.; Kazantseva, N. E.; Moučka, R.; Sapurina, I.; Spivak, Yu. M.; Moshnikov, V. A.

    2012-01-01

    This work is devoted to the analysis of factors responsible for the high-frequency shift of the complex permeability (μ*) dispersion region in polymer composites of manganese-zinc (MnZn) ferrite, as well as to the increase in their thermomagnetic stability. The magnetic spectra of the ferrite and its composites with polyurethane (MnZn-PU) and polyaniline (MnZn-PANI) are measured in the frequency range from 1 MHz to 3 GHz in a longitudinal magnetization field of up to 700 Ое and in the temperature interval from -20 °С to +150 °С. The approximation of the magnetic spectra by a model, which takes into account the role of domain wall motion and magnetization rotation, allows one to determine the specific contribution of resonance processes associated with domain wall motion and the natural ferromagnetic resonance to the μ*. It is established that, at high frequencies, the μ* of the MnZn ferrite is determined solely by magnetization rotation, which occurs in the region of natural ferromagnetic resonance when the ferrite is in the “single domain” state. In the polymer composites of the MnZn ferrite, the high-frequency permeability is also determined mainly by the magnetization rotation; however, up to high values of magnetizing fields, there is a contribution of domain wall motion, thus the “single domain” state in ferrite is not reached. The frequency and temperature dependence of μ* in polymer composites are governed by demagnetizing field and the induced magnetic anisotropy. The contribution of the induced magnetic anisotropy is crucial for MnZn-PANI. It is attributed to the elastic stresses that arise due to the domain wall pinning by a polyaniline film adsorbed on the surface of the ferrite during in-situ polymerization.

  14. Correlation between structural, magnetic, and dielectric properties of manganese substituted cobalt ferrite

    SciTech Connect

    Ramana, C. V. Kolekar, Y. D.; Kamala Bharathi, K.; Sinha, B.; Ghosh, K.

    2013-11-14

    Manganese (Mn) substituted cobalt ferrites (CoFe{sub 2−x}Mn{sub x}O{sub 4}, referred to CFMO) were synthesized and their structural, magnetic, and dielectric properties were evaluated. X-ray diffraction measurements coupled with Rietveld refinement indicate that the CFMO materials crystallize in the inverse cubic spinel phase. Temperature (T = 300 K and 10 K) dependent magnetization (M(H)) measurements indicate the long range ferromagnetic ordering in CoFe{sub 2−x}Mn{sub x}O{sub 4} (x = 0.00–0.15) ferrites. The cubic anisotropy constant (K{sub 1}(T)) and saturation magnetization (M{sub s}(T)) were derived by using the “law of approach” to saturation that describes the field dependence of M(H) for magnetic fields much higher than the coercive field (H{sub c}). Saturation magnetization (M{sub s}), obtained from the model, decreases with increasing temperature. For CoFe{sub 2}O{sub 4}, M{sub s} decreases from 3.63 μ{sub B} per formula unit (f.u.) to 3.47 μ{sub B}/f.u. with increasing temperature from 10 to 300 K. CFMO (0.00–0.15) exhibit the similar trend while the magnitude of M{sub s} is dependent on Mn-concentration. M{sub s}-T functional relationship obeys the Bloch's law. The lattice parameter and magnetic moment calculated for CFMO reveals that Mn ions occupying the Fe and Co position at the octahedral site in the inverse cubic spinel phase. The structure and magnetism in CFMO are further corroborated by bond length and bond angle calculations. The dielectric constant dispersion of CFMO in the frequency range of 20 Hz–1 MHz fits to the modified Debye's function with more than one ion contributing to the relaxation. The relaxation time and spread factor derived from modeling the experimental data are ∼10{sup −4} s and ∼0.35(±0.05), respectively.

  15. The role of annealing temperature and bio template (egg white) on the structural, morphological and magnetic properties of manganese substituted MFe2O4 (M=Zn, Cu, Ni, Co) nanoparticles

    NASA Astrophysics Data System (ADS)

    Ranjith Kumar, E.; Jayaprakash, R.; Kumar, Sanjay

    2014-02-01

    Manganese substituted ferrites (ZnFe2O4, CuFe2O4, NiFe2O4 and CoFe2O4) have been prepared in the bio template medium by using a simple evaporation method. The annealing temperature plays an important position on changing particle size and morphology of the mixed ferrite nanoparticles were found out by X-ray diffraction, transmission electron microscopy and scanning electron microscopy methods. The role of manganese substitution in the mixed ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in magnetic properties which is studied by using vibrating sample magnetometer (VSM). These spinel ferrites are decomposed to α-Fe2O3 after annealing above 550 °C in air. However, α-Fe2O3 phase was slowly vanished after ferrites annealing above 900 °C. The effect of this secondary phase on the structural change and magnetic properties of the mixed ferrite nanoparticles is discussed.

  16. Direct dyes removal using modified magnetic ferrite nanoparticle

    PubMed Central

    2014-01-01

    The magnetic adsorbent nanoparticle was modified using cationic surface active agent. Zinc ferrite nanoparticle and cetyl trimethylammonium bromide were used as an adsorbent and a surface active agent, respectively. Dye removal ability of the surface modified nanoparticle as an adsorbent was investigated. Direct Green 6 (DG6), Direct Red 31 (DR31) and Direct Red 23 (DR23) were used. The characteristics of the adsorbent were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of adsorbent dosage, initial dye concentration and salt was evaluated. In ternary system, dye removal of the adsorbent at 90, 120, 150 and 200 mg/L dye concentration was 63, 45, 30 and 23% for DR23, 97, 90, 78 and 45% for DR31 and 51, 48, 42 and 37% for DG6, respectively. It was found that dye adsorption onto the adsorbent followed Langmuir isotherm. The adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. PMID:24991427

  17. One-pot production of copper ferrite nanoparticles using a chemical method

    NASA Astrophysics Data System (ADS)

    Nishida, Naoki; Amagasa, Shota; Kobayashi, Yoshio; Yamada, Yasuhiro

    2016-12-01

    Copper ferrite nanoparticles were synthesized via the oxidation of precipitates obtained from the reaction of FeCl2, CuSO4 and N2H4 in the presence of gelatin. These copper ferrite particles were subsequently examined using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Mössbauer spectroscopy. The average size of the copper ferrite nanoparticles was less than 5 nm, and they exhibited superparamagnetic behavior as a result of their small size. The low temperature Mössbauer spectrum exhibited three sets of sextets, two corresponding to the tetrahedral and octahedral sites of the copper spinel structure and one with small hyperfine magnetic field corresponding to the surface or defects of the nanoparticles. When the ratio of copper salt was increased, the tetrahedral site became preferable for copper, and metallic copper and copper ferrite were both present in a single nanoparticle.

  18. Electrophoretic deposition of nickel zinc ferrite nanoparticles into microstructured patterns

    NASA Astrophysics Data System (ADS)

    Kelly, Stefan J.; Wen, Xiao; Arnold, David P.; Andrew, Jennifer S.

    2016-05-01

    Using DC electric fields, nickel-zinc ferrite (Ni0.5Zn0.5Fe2O4) nanoparticles (Dh =16.6 ± 3.6 nm) are electrophoretically deposited onto silicon substrates to form dense structures defined by photoresist molds. Parameters such as electric field, bath composition, and deposition time are tuned to produce films ranging in thickness from 177 to 805 nm. The deposited films exhibit soft magnetic properties with a saturation magnetization of 60 emu/g and a coercivity of 2.6 kA/m (33 Oe). Additionally, the influence of the photoresist mold on the deposit profile is studied, and patterned films with different shapes (lines, squares, circles, etc.) are demonstrated with feature sizes down to 5 μm.

  19. Microwave-hydrothermal synthesis of perovskite bismuth ferrite nanoparticles

    SciTech Connect

    Biasotto, G.; Simoes, A.Z.; Foschini, C.R.; Zaghete, M.A.; Varela, J.A.; Longo, E.

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer BiFeO{sub 3} (BFO) nanoparticles were grown by hydrothermal microwave method (HTMW). Black-Right-Pointing-Pointer The soaking time is effective in improving phase formation. Black-Right-Pointing-Pointer Rietveld refinement reveals an orthorhombic structure. Black-Right-Pointing-Pointer The observed magnetism of the BFO crystallites is a consequence of particle size. Black-Right-Pointing-Pointer The HTMW is a genuine technique for low temperatures and short times of synthesis. -- Abstract: Hydrothermal microwave method (HTMW) was used to synthesize crystalline bismuth ferrite (BiFeO{sub 3}) nanoparticles (BFO) in the temperature of 180 Degree-Sign C with times ranging from 5 min to 1 h. BFO nanoparticles were characterized by means of X-ray analyses, FT-IR, Raman spectroscopy, TG-DTA and FE-SEM. X-ray diffraction results indicated that longer soaking time was benefit to refraining the formation of any impurity phases and growing BFO crystallites into almost single-phase perovskites. Typical FT-IR spectra for BFO nanoparticles presented well defined bands, indicating a substantial short-range order in the system. TG-DTA analyses confirmed the presence of lattice OH{sup -} groups, commonly found in materials obtained by HTMW process. Compared with the conventional solid-state reaction process, submicron BFO crystallites with better homogeneity could be produced at the temperature as low as 180 Degree-Sign C. These results show that the HTMW synthesis route is rapid, cost effective, and could be used as an alternative to obtain BFO nanoparticles in the temperature of 180 Degree-Sign C for 1 h.

  20. Dielectric relaxations and alternating current conductivity in manganese substituted cobalt ferrite

    SciTech Connect

    Kolekar, Y. D.; Sanchez, L. J.; Ramana, C. V.

    2014-04-14

    Manganese (Mn) substituted cobalt ferrites (CoFe{sub 2-x}Mn{sub x}O{sub 4}, referred to CFMO) have been synthesized by the solid state reaction method and their dielectric properties and ac conductivity have been evaluated as a function of applied frequency and temperature. X-ray diffraction measurements indicate that CFMO crystallize in the inverse cubic spinel phase with a lattice constant ∼8.38 Å. Frequency dependent dielectric measurements at room temperature obey the modified Debye model with relaxation time of 10{sup −4} s and spreading factor of 0.35(±0.05). The frequency (20 Hz–1 MHz) and temperature (T = 300–900 K) dependent dielectric constant analyses indicate that CFMO exhibit two dielectric relaxations at lower frequencies (1–10 kHz), while completely single dielectric relaxation for higher frequencies (100 kHz–1 MHz). The dielectric constant of CFMO is T-independent up to ∼400 K, at which point increasing trend prevails. The dielectric constant increase with T > 400 K is explained through impedance spectroscopy assuming a two-layer model, where low-resistive grains separated from each other by high-resistive grain boundaries. Following this model, the two electrical responses in impedance formalism are attributed to the grain and grain-boundary effects, respectively, which also satisfactorily accounts for the two dielectric relaxations. The capacitance of the bulk of the grain determined from impedance analyses is ∼10 pF, which remains constant with T, while the grain-boundary capacitance increases up to ∼3.5 nF with increasing T. The tan δ (loss tangent)-T also reveals the typical behavior of relaxation losses in CFMO.

  1. Complex Impedance of Manganese Ferrite Powders Obtained by Two Different Methods

    NASA Astrophysics Data System (ADS)

    Mălăescu, I.; Lungu, Antoanetta; Marin, C. N.; Vlăzan, Paulina; Sfirloagă, Paula

    2015-12-01

    Two samples of manganese ferrite powder were obtained by the calcination method (sample A) and hydrothermal method (sample B). The crystal structure of the samples has been determined using X-ray diffraction analysis (XRD). The results shown that the sample A has three phases (FeMnO3, Mn2O3 and Fe2O3) and the prevailing phase is FeMnO3 with perovskite structure and the sample B has only a single phase (MnFe2O4). The grain morphology was analyzed by scanning electron microscopy (SEM) and the compositional analysis was done by energy dispersive spectroscopy (EDAX). Measurements of the frequency (f) and temperature (T) dependent complex impedance, Z(f, T) = Z'(f, T) - i Z''(f, T) of the samples over the frequency range 20 Hz - 2 MHz, at various temperature values from 300C to 1100C are presented. From these measurements, we have shown that the temperature dependence of the relaxation time is of Arhenius type, which suggests that the conduction process is thermally activated. The values obtained for the activation energy Ea, are: 16meV (sample A) and 147.65meV (sample B). Applying complex impedance spectroscopy technique, the obtained results shows the shape of a single semicircle at each temperature over the measurement range, meaning that the electrical process obeys to a single relaxation mechanism. The impedance and related parameters of the electrical equivalent circuit depend on the temperature and the microstructure of samples. The resistive and capacitive properties of the investigated samples are dominated with the conduction and relaxation processes associated with the grain boundaries mechanism..

  2. Chemical equilibria involved in the oxygen-releasing step of manganese ferrite water-splitting thermochemical cycle

    SciTech Connect

    Seralessandri, L.; Bellusci, M.; Alvani, C.; La Barbera, A.; Padella, F.; Varsano, F.

    2008-08-15

    Sodium ferrimanganite carbonatation reaction was investigated at different temperatures/carbon dioxide partial pressures to evaluate the feasibility of the thermochemical water-splitting cycle based on the MnFe{sub 2}O{sub 4}/Na{sub 2}CO{sub 3}/Na(Mn{sub 1/3}Fe{sub 2/3})O{sub 2} system. After thermal treatments in selected experimental conditions, the obtained powder samples were investigated by using the X-ray diffraction (XRD) technique and Rietveld analysis. Two different lamellar Na{sub 1-x}Mn{sub 1/3}Fe{sub 2/3}O{sub 2-{delta}} phases were observed together with the expected MnFe{sub 2}O{sub 4}/Na{sub 2}CO{sub 3} mixture. Different equilibrium regions among sodium-depleted lamellar phases, manganese ferrite and sodium carbonate were found as a function of the different reaction conditions. A hypothesis concerning the regeneration mechanism of the initial compounds is proposed. Chemical equilibrium between stoichiometric and sub-stoichiometric forms of sodium ferrimanganite and sodium carbonate formation/dissociation appears to be essential factors governing the oxygen-releasing step of the manganese ferrite thermochemical cycle. - Graphical abstract: Na(Mn{sub 1/3}Fe{sub 2/3})O{sub 2} disproportion reaction in the presence of CO{sub 2} was studied. Chemical equilibria among Na{sub 1-x}(Mn{sub 1/3}Fe{sub 2/3})O{sub 2}, MnFe{sub 2}O{sub 4} and Na{sub 2}CO{sub 3} compounds were evidenced and studied by means of Rietveld analysis performed on XRD patterns. Two different sodium-depleted lamellar structures were identified. The role of sodium carbonate formation/dissociation equilibrium in the oxygen-releasing step of the manganese ferrite thermochemical cycle has been highlighted.

  3. Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ahmad, Tanveer; Bae, Hongsub; Iqbal, Yousaf; Rhee, Ilsu; Hong, Sungwook; Chang, Yongmin; Lee, Jaejun; Sohn, Derac

    2015-05-01

    We report evidence for the possible application of chitosan-coated nickel-ferrite (NiFe2O4) nanoparticles as both T1 and T2 contrast agents in magnetic resonance imaging (MRI). The coating of nickel-ferrite nanoparticles with chitosan was performed simultaneously with the synthesis of the nickel-ferrite nanoparticles by a chemical co-precipitation method. The coated nanoparticles were cylindrical in shape with an average length of 17 nm and an average width of 4.4 nm. The bonding of chitosan onto the ferrite nanoparticles was confirmed by Fourier transform infrared spectroscopy. The T1 and T2 relaxivities were 0.858±0.04 and 1.71±0.03 mM-1 s-1, respectively. In animal experimentation, both a 25% signal enhancement in the T1-weighted mage and a 71% signal loss in the T2-weighted image were observed. This demonstrated that chitosan-coated nickel-ferrite nanoparticles are suitable as both T1 and T2 contrast agents in MRI. We note that the applicability of our nanoparticles as both T1 and T2 contrast agents is due to their cylindrical shape, which gives rise to both inner and outer sphere processes of nanoparticles.

  4. Seeded growth of ferrite nanoparticles from Mn oxides: observation of anomalies in magnetic transitions.

    PubMed

    Song, Hyon-Min; Zink, Jeffrey I; Khashab, Niveen M

    2015-07-28

    A series of magnetically active ferrite nanoparticles (NPs) are prepared by using Mn oxide NPs as seeds. A Verwey transition is identified in Fe3O4 NPs with an average diameter of 14.5 nm at 96 K, where a sharp drop of magnetic susceptibility occurs. In MnFe2O4 NPs, a spin glass-like state is observed with the decrease in magnetization below the blocking temperature due to the disordered spins during the freezing process. From these MnFe2O4 NPs, MnFe2O4@Mn(x)Fe(1-x)O core-shell NPs are prepared by seeded growth. The structure of the core is cubic spinel (Fd3¯m), and the shell is composed of iron-manganese oxide (Mn(x)Fe(1-x)O) with a rock salt structure (Fm3¯m). Moiré fringes appear perpendicular to the 〈110〉 directions on the cubic shape NPs through the plane-matched epitaxial growth. These fringes are due to the difference in the lattice spacings between MnFe2O4 and Mn(x)Fe(1-x)O. Exchange bias is observed in these MnFe2O4@Mn(x)Fe(1-x)O core-shell NPs with an enhanced coercivity, as well as the shift of hysteresis along the field direction.

  5. Synthesis and characterization of carbon-coated cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Bakhshi, Hamed; Shokuhfar, Ali; Vahdati, Nima

    2016-09-01

    Cobalt ferrite nanoparticles (CFNPs) were prepared via a reverse micelle method. The CFNPs were subsequently coated with carbon shells by means of thermal chemical vapor deposition (TCVD). In this process, acetylene gas (C2H2) was used as a carbon source and the coating was carried out for 1, 2, or 3 h at 750°C. The Ar/C2H2 ratio was 10:1. Heating during the TCVD process resulted in a NP core size that approached 30 nm; the thickness of the shell was less than 10 nm. The composition, structure, and morphology of the fabricated composites were characterized using X-ray diffraction, simultaneous thermal analysis, transmission electron microscopy, high-resolution transmission electron microscopy, and selected-area diffraction. A vibrating sample magnetometer was used to survey the samples' magnetic properties. The deposited carbon shell substantially affected the growth and magnetic properties of the CFNPs. Micro-Raman spectroscopy was used to study the carbon coating and revealed that the deposited carbon comprised graphite, multiwalled carbon nanotubes, and diamond- like carbon. With an increase in coating time, the intensity ratio between the amorphous and ordered peaks in the Raman spectra decreased, which indicated an increase in crystallite size.

  6. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Debnath, A.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl3) and Calcium chloride dihydrate (CaCl2.2H2O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  7. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Tanaka, K.

    1986-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and the deformed layers produced in single-crystal Mn-Zn ferrite simulated heads during contact with lapping tapes. The crystaline state of the head is changed drastically during the abrasion process. Crystalline states ranging from nearly amorphous to highly textured polycrystalline can be produced on the wear surface of a single-crystal Mn-Zn ferrite head. The total thickness of the deformed layer was approximately 0.8 microns. This thickness increased as the load and abrasive grit size increased. The anisotropic wear of the ferrite was found to be inversely proportional to the hardness of the wear surface. The wear was lower in the order 211 111 10 0110. The wear of the ferrite increased markedly with an increase in sliding velocity and abrasive grit size.

  8. Copper ferrite nanoparticle-induced cytotoxicity and oxidative stress in human breast cancer MCF-7 cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-06-01

    Copper ferrite (CuFe2O4) nanoparticles (NPs) are important magnetic materials currently under research due to their applicability in nanomedicine. However, information concerning the biological interaction of copper ferrite NPs is largely lacking. In this study, we investigated the cellular response of copper ferrite NPs in human breast cancer (MCF-7) cells. Copper ferrite NPs were prepared by co-precipitation technique with the thermal effect. Prepared NPs were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM) and dynamic light scattering (DLS). Characterization data showed that copper ferrite NPs were crystalline, spherical with smooth surfaces and average diameter of 15nm. Biochemical studies showed that copper ferrite NPs induce cell viability reduction and membrane damage in MCF-7 cells and degree of induction was dose- and time-dependent. High SubG1 cell population during cell cycle progression and MMP loss with a concomitant up-regulation of caspase-3 and caspase-9 genes suggested that copper ferrite NP-induced cell death through mitochondrial pathway. Copper ferrite NP was also found to induce oxidative stress in MCF-7 cells as indicated by reactive oxygen species (ROS) generation and glutathione depletion. Cytotoxicity due to copper ferrite NPs exposure was effectively abrogated by N-acetyl-cysteine (ROS scavenger) suggesting that oxidative stress could be the plausible mechanism of copper ferrite NPs toxicity. Further studies are underway to explore the toxicity mechanisms of copper ferrite NPs in different types of human cells. This study warrants further generation of extensive biointeraction data before their application in nanomedicine. PMID:26925725

  9. Copper ferrite nanoparticle-induced cytotoxicity and oxidative stress in human breast cancer MCF-7 cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-06-01

    Copper ferrite (CuFe2O4) nanoparticles (NPs) are important magnetic materials currently under research due to their applicability in nanomedicine. However, information concerning the biological interaction of copper ferrite NPs is largely lacking. In this study, we investigated the cellular response of copper ferrite NPs in human breast cancer (MCF-7) cells. Copper ferrite NPs were prepared by co-precipitation technique with the thermal effect. Prepared NPs were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM) and dynamic light scattering (DLS). Characterization data showed that copper ferrite NPs were crystalline, spherical with smooth surfaces and average diameter of 15nm. Biochemical studies showed that copper ferrite NPs induce cell viability reduction and membrane damage in MCF-7 cells and degree of induction was dose- and time-dependent. High SubG1 cell population during cell cycle progression and MMP loss with a concomitant up-regulation of caspase-3 and caspase-9 genes suggested that copper ferrite NP-induced cell death through mitochondrial pathway. Copper ferrite NP was also found to induce oxidative stress in MCF-7 cells as indicated by reactive oxygen species (ROS) generation and glutathione depletion. Cytotoxicity due to copper ferrite NPs exposure was effectively abrogated by N-acetyl-cysteine (ROS scavenger) suggesting that oxidative stress could be the plausible mechanism of copper ferrite NPs toxicity. Further studies are underway to explore the toxicity mechanisms of copper ferrite NPs in different types of human cells. This study warrants further generation of extensive biointeraction data before their application in nanomedicine.

  10. Targeting T1 and T2 dual modality enhanced magnetic resonance imaging of tumor vascular endothelial cells based on peptides-conjugated manganese ferrite nanomicelles

    PubMed Central

    Gong, Mingfu; Yang, Hua; Zhang, Song; Yang, Yan; Zhang, Dong; Li, Zhaohui; Zou, Liguang

    2016-01-01

    Tumor angiogenesis plays very important roles for tumorigenesis, tumor development, metastasis, and prognosis. Targeting T1/T2 dual modality magnetic resonance (MR) imaging of the tumor vascular endothelial cells (TVECs) with MR molecular probes can greatly improve diagnostic sensitivity and specificity, as well as helping to make an early diagnosis of tumor at the preclinical stage. In this study, a new T1 and T2 dual modality nanoprobe was successfully fabricated. The prepared nanoprobe comprise peptides CL 1555, poly(ε-caprolactone)-block-poly(ethylene glycol) amphiphilic copolymer shell, and dozens of manganese ferrite (MnFe2O4) nanoparticle core. The results showed that the hydrophobic MnFe2O4 nanoparticles were of uniform spheroidal appearance and narrow size distribution. Due to the self-assembled nanomicelles structure, the prepared probes were of high relaxivity of 281.7 mM−1 s−1, which was much higher than that of MnFe2O4 nanoparticles (67.5 mM 1 s−1). After being grafted with the targeted CD105 peptide CL 1555, the nanomicelles can combine TVECs specifically and make the labeled TVECs dark in T2-weighted MR imaging. With the passage on, the Mn2+ ions were released from MnFe2O4 and the size decreased gradually, making the signal intensity of the second and third passage of labeled TVECs increased in T1-weighted MR imaging. Our results demonstrate that CL-poly(ethylene glycol)-MnFe2O4 can conjugate TVECs and induce dark and bright contrast in MR imaging, and act as a novel molecular probe for T1- and T2-enhanced MR imaging of tumor angiogenesis. PMID:27578974

  11. Manganese

    MedlinePlus

    ... Taking manganese by mouth in combination with calcium, zinc, and copper seems to help reduce spinal bone ... Vitrum osteomag) containing manganese, calcium, vitamin D, magnesium, zinc, copper, and boron for one year seems to ...

  12. Substitution of manganese and iron into hydroxyapatite: Core/shell nanoparticles

    SciTech Connect

    Pon-On, Weeraphat; Meejoo, Siwaporn; Tang, I.-Ming

    2008-08-04

    The bioceramics, hydroxyapatite (HAP), is a material which is biocompatible to the human body and is well suited to be used in hyperthermia applications for the treatment of bone cancer. We investigate the substitution of iron and manganese into the hydroxyapatite to yield ceramics having the empirical formula Ca{sub 9.4}Fe{sub 0.4}Mn{sub 0.2}(PO{sub 4}){sub 6}(OH){sub 2}. The samples were prepared by the co-precipitation method. The formation of the nanocrystallites in the HAP structure as the heating temperatures were raised to obtain a glass-ceramic system are confirmed by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and electron spin resonance (ESR). TEM images show the core/shell structure of the nanoparticles, with the core being formed by the ferrites and the shell by the hydroxyapatite. The ED patterns indicate the nanoparticles formed at 500 deg. C have an amorphous structure while the nanoparticles formed at 1000 deg. C are crystalline. ESR spectroscopy indicated that the Fe{sup 3+} ions have a g-factor of 4.23 and the Mn{sup 2+} ions have a g-factor of 2.01. The values of the parameters in the spin Hamiltonian which describes the interaction between the transition metal ions and the Ca{sup 2+} ions, indicate that the Mn{sup 2+} ion substitute into the Ca{sup 2+} sites which are ninefold coordinated, i.e., the Ca(1) sites.

  13. Moessbauer studies in zinc-manganese ferrites for use in measuring small velocities and accelerations with great precision

    NASA Technical Reports Server (NTRS)

    Escue, W. T.; Gupta, R. G.; Mendiratta, R. G.

    1975-01-01

    Mossbauer spectroscopy was used for a systematic study of the magnetic behavior of manganese and zinc in mixed ferrites. It was observed that Zn2+ has preference to substitute Mn2+ at interstitial sites where the metal ions are tetrahedrally coordinated with four oxygen neighbors. The internal magnetic hyperfine field at the tetrahedral iron site is larger than that at the octahedral site. The relaxation effects were observed to play an important role as the zinc contents were increased, while the spin-correlation time and the magnetic field were observed to decrease in strength. It is concluded that Mossbauer effect data on complex materials, when used in conjunction with other data, can provide useful insight into the origin of the microscopic properties of magnetic materials.

  14. Superparamagnetic calcium ferrite nanoparticles synthesized using a simple sol-gel method for targeted drug delivery.

    PubMed

    Sulaiman, N H; Ghazali, M J; Majlis, B Y; Yunas, J; Razali, M

    2015-01-01

    The calcium ferrite nano-particles (CaFe2O4 NPs) were synthesized using a sol-gel method for targeted drug delivery application. The proposed nano-particles were initially prepared by mixing calcium and iron nitrates that were added with citric acid in order to prevent agglomeration and subsequently calcined at a temperature of 550°C to obtain small particle size. The prepared nanoparticles were characterized by using an XRD (X-ray diffraction), which revealed the configuration of orthorhombic structures of the CaFe2O4 nano-particles. A crystallite size of ~13.59 nm was obtained using a Scherer's formula. Magnetic analysis using a VSM (Vibrating Sample Magnetometer analysis), revealed that the synthesized particles exhibited super-paramagnetic behavior having magnetization saturation of approximately 88.3emu/g. Detailed observation via the scanning electron microscopy (SEM) showed the calcium ferrite nano-particles were spherical in shape. PMID:26405858

  15. Probing bismuth ferrite nanoparticles by hard x-ray photoemission: Anomalous occurrence of metallic bismuth

    SciTech Connect

    Chaturvedi, Smita; Rajendra, Ranguwar; Ballav, Nirmalya; Kulkarni, Sulabha; Sarkar, Indranil; Shirolkar, Mandar M.; Jeng, U-Ser; Yeh, Yi-Qi

    2014-09-08

    We have investigated bismuth ferrite nanoparticles (∼75 nm and ∼155 nm) synthesized by a chemical method, using soft X-ray (1253.6 eV) and hard X-ray (3500, 5500, and 7500 eV) photoelectron spectroscopy. This provided an evidence for the variation of chemical state of bismuth in crystalline, phase pure nanoparticles. X-ray photoelectron spectroscopy analysis using Mg Kα (1253.6 eV) source showed that iron and bismuth were present in both Fe{sup 3+} and Bi{sup 3+} valence states as expected for bismuth ferrite. However, hard X-ray photoelectron spectroscopy analysis of the bismuth ferrite nanoparticles using variable photon energies unexpectedly showed the presence of Bi{sup 0} valence state below the surface region, indicating that bismuth ferrite nanoparticles are chemically inhomogeneous in the radial direction. Consistently, small-angle X-ray scattering reveals a core-shell structure for these radial inhomogeneous nanoparticles.

  16. Zinc ferrite nanoparticle as a magnetic catalyst: Synthesis and dye degradation

    SciTech Connect

    Mahmoodi, Niyaz Mohammad

    2013-10-15

    Graphical abstract: Photocatalytic degradation of Reactive Red 198 and Reactive Red 120 by the synthesized zinc ferrite nanoparticle. - Highlights: • Magnetic zinc ferrite nanoparticle was synthesized and characterized. • Photocatalytic dye degradation by magnetic nanoparticle was studied. • Formate, acetate and oxalate were detected as dominant dye degradation aliphatic intermediates. • Nitrate and sulfate ions were detected as mineralization products of dyes. • Zinc ferrite nanoparticle was an effective magnetic photocatalyst to degrade dyes. - Abstract: In this paper, magnetic zinc ferrite (ZnFe{sub 2}O{sub 4}) nanoparticle was synthesized and its photocatalytic dye degradation ability from colored wastewater was studied. Reactive Red 198 (RR198) and Reactive Red 120 (RR120) were used as model dyes. The characteristics of ZnFe{sub 2}O{sub 4} were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). Photocatalytic dye degradation by ZnFe{sub 2}O{sub 4} was studied by UV–vis spectrophotometer and ion chromatography (IC). The effects of ZnFe{sub 2}O{sub 4} dosage, initial dye concentration and salt on dye degradation were evaluated. Formate, acetate and oxalate anions were detected as dominant aliphatic intermediate. Inorganic anions (nitrate and sulfate anions) were detected as dye mineralization products. The results indicated that ZnFe{sub 2}O{sub 4} could be used as a magnetic photocatalyst to degrade dyes from colored wastewater.

  17. Nonstoichiometry and its effect on the magnetic properties of a manganese-zinc ferrite

    SciTech Connect

    Inaba, Hideaki

    1995-11-01

    The effect of oxygen nonstoichiometry on physical and magnetic properties of a Mn-Zn ferrite has been studied by using annealed samples under various oxygen pressures and temperatures. The dependence of oxygen nonstoichiometry on disaccommodation and Fe{sup 2+} content changed at the stoichiometric composition, and the lattice parameter became maximum at the stoichiometric composition. These results suggest that Mn-Zn ferrites have two different defect structures: cation vacancies in cation-deficient regions and oxygen vacancies in anion-deficient regions. Initial permeability was maximum and power los was minimum at the stoichiometric composition, suggesting the importance of the number of point defects for the magnetic properties.

  18. Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites

    NASA Astrophysics Data System (ADS)

    Velinov, N.; Petrova, T.; Tsoncheva, T.; Genova, I.; Koleva, K.; Kovacheva, D.; Mitov, I.

    2016-12-01

    Spinel ferrites with nominal composition Cu 0.5Mn 0.5Fe 2 O 4 and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe 5 C 2 were observed by the influence of the reaction medium.

  19. Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release

    PubMed Central

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim Hj; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Zainal, Zulkarnain; Alhassan, Fatah H; Taufiq-Yap, Yun H; Eid, Eltayeb EM; Arbab, Ismail Adam; Al-Asbahi, Bandar A; Webster, Thomas J; Zowalaty, Mohamed Ezzat El

    2013-01-01

    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and −60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells. PMID:24204141

  20. Electrical and optical properties of gadolinium doped bismuth ferrite nanoparticles

    SciTech Connect

    Mukherjee, A. Banerjee, M. Basu, S.; Pal, M.

    2014-04-24

    Multiferroic bismuth ferrite (BFO) and gadolinium (Gd) doped bismuth ferrite had been synthesized by a sol-gel method. Particle size had been estimated by Transmission electron microscopy (TEM) and found to decrease with Gd doping. We studied the temperature and frequency dependence of impedance and electric modulus and calculated the grain and grain boundary resistance and capacitance of the investigated samples. We observed that electrical activation energy increases for all the doped samples. Optical band gap also increases for the doped samples which can be used in photocatalytic application of BFO.

  1. Structural and FMR lineshape analysis of Mn Zn-ferrite nanoparticles

    SciTech Connect

    Thirupathi, G.; Singh, R.

    2015-06-24

    The Mn{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} (MZF) nanoparticles of 3 to 5 nm size were synthesized by chemical coprecipitation method. The X-ray diffraction (XRD) patterns were well fitted with single phase spinel ferrite structure using Rietveld analysis as Fd-3m space group. The ferromagnetic resonance (FMR) spectra of MZF nanoparticles becomes more asymmetric with increase in particle size from 3 to 5 nm. The change in FMR line shape is attributed to the increase in ferromagnetic interactions and anisotropy in the system with increase in nanoparticles size. The decrease in total absorption of the FMR line with decreasing temperature at low temperatures indicates weak antiferromagnetic coupling between the octahedral and tetrahedral sublattices of the spinel ferrite system.

  2. Magnetic properties of bio-synthesized zinc ferrite nanoparticles

    SciTech Connect

    Yeary, Lucas W; Moon, Ji Won; Rawn, Claudia J; Love, Lonnie J; Rondinone, Adam Justin; Thompson, James R; Chakoumakos, Bryan C; Phelps, Tommy Joe

    2011-01-01

    The magnetic properties of zinc ferrite (Zn-substituted magnetite, Zn{sub y}Fe{sub 1-y}Fe{sub 2}O{sub 4}) formed by a microbial process compared favorably with chemically synthesized materials. A metal reducing bacterium, Thermoanaerobacter, strain TOR-39 was incubated with Zn{sub x}Fe{sub 1-x}OOH (x=0.01, 0.1, and 0.15) precursors and produced nanoparticulate zinc ferrites. Composition and crystalline structure of the resulting zinc ferrites were verified using X-ray fluorescence, X-ray diffraction, transmission electron microscopy, and neutron diffraction. The average composition from triplicates gave a value for y of 0.02, 0.23, and 0.30 with the greatest standard deviation of 0.02. Average crystallite sizes were determined to be 67, 49, and 25 nm, respectively. While crystallite size decreased with more Zn substitution, the lattice parameter and the unit cell volume showed a gradual increase in agreement with previous literature values. The magnetic properties were characterized using a superconducting quantum interference device magnetometer and were compared with values for the saturation magnetization (M{sub s}) reported in the literature. The averaged M{sub s} values for the triplicates with the largest amount of zinc (y=0.30) gave values of 100.1, 96.5, and 69.7 emu/g at temperatures of 5, 80, and 300 K, respectively indicating increased magnetic properties of the bacterially synthesized zinc ferrites.

  3. Frequency-dependent magnetic susceptibility of magnetite and cobalt ferrite nanoparticles embedded in PAA hydrogel.

    PubMed

    van Berkum, Susanne; Dee, Joris T; Philipse, Albert P; Erné, Ben H

    2013-05-14

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network.

  4. Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel

    PubMed Central

    van Berkum, Susanne; Dee, Joris T.; Philipse, Albert P.; Erné, Ben H.

    2013-01-01

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network. PMID:23673482

  5. Structural, morphological, magnetic and dielectric characterization of nano-phased antimony doped manganese zinc ferrites

    NASA Astrophysics Data System (ADS)

    Sridhar, Ch. S. L. N.; Lakshmi, Ch. S.; Govindraj, G.; Bangarraju, S.; Satyanarayana, L.; Potukuchi, D. M.

    2016-05-01

    Nano-phased doped Mn-Zn ferrites, viz., Mn0.5-x/2Zn0.5-x/2SbXFe2O4 for x=0 to 0.3 (in steps of 0.05) prepared by hydrothermal method are characterized by X-ray diffraction, Infrared and scanning electron microscopy. XRD and SEM infer the growth of nano-crystalline cubic and hematite (α-Fe2O3) phase structures. IR reveals the ferrite phase abundance and metal ion replacement with dopant. Decreasing trend of lattice constant with dopant reflects the preferential replacement of Fe3+ions by Sb5+ion. Doping is found to cause for the decrease (i.e., 46-14 nm) of grain size. An overall trend of decreasing saturation magnetization is observed with doping. Low magnetization is attributed to the diamagnetic nature of dopant, abundance of hematite (α-Fe2O3) phase, non-stoichiometry and low temperature (800 °C) sintering conditions. Increasing Yafet-Kittel angle reflects surface spin canting to pronounce lower Ms. Lower coercivity is observed for x≤0.1, while a large Hc results for higher concentrations. High ac resistivity (~106 ohm-cm) and low dielectric loss factor (tan δ~10-2-10-3) are witnessed. Resistivity is explained on the base of a transformation in the Metal Cation-to-Oxide anion bond configuration and blockade of conductivity path. Retarded hopping (between adjacent B-sites) of carriers across the grain boundaries is addressed. Relatively higher resistivity and low dielectric loss in Sbdoped Mn-Zn ferrite systems pronounce their utility in high frequency applications.

  6. Structure of Oxide Nanoparticles in Fe-16Cr MA/ODS Ferritic Steel

    SciTech Connect

    Hsiung, L; Fluss, M; Kimura, A

    2010-04-06

    Oxide nanoparticles in Fe-16Cr ODS ferritic steel fabricated by mechanical alloying (MA) method have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. A partial crystallization of oxide nanoparticles was frequently observed in as-fabricated ODS steel. The crystal structure of crystalline oxide particles is identified to be mainly Y{sub 4}Al{sub 2}O{sub 9} (YAM) with a monoclinic structure. Large nanoparticles with a diameter larger than 20 nm tend to be incoherent and have a nearly spherical shape, whereas small nanoparticles with a diameter smaller than 10 nm tend to be coherent or semi-coherent and have faceted boundaries. The oxide nanoparticles become fully crystallized after prolonged annealing at 900 C. These results lead us to propose a three-stage formation mechanism of oxide nanoparticles in MA/ODS steels.

  7. Oleate Coated Magnetic Cores Based on Magnetite, Zn Ferrite and Co Ferrite Nanoparticles - Preparation, Physical Characterization and Biological Impact on Helianthus Annuus Photosynthesis

    SciTech Connect

    Ursache-Oprisan, Manuela; Foca-nici, Ecaterina; Cirlescu, Aurelian; Caltun, Ovidiu; Creanga, Dorina

    2010-12-02

    Sodium oleate was used as coating shell for magnetite, Zn ferrite and Co ferrite powders to stabilize them in the form of aqueous magnetic suspensions. The physical characterization was carried out by applying X-ray diffraction and magnetization measurements. Both crystallite size and magnetic core diameter ranged between 7 and 11 nm. The influence of magnetic nanoparticle suspensions (corresponding to magnetic nanoparticle levels of 10{sup -14}-10{sup -15}/cm{sup 3}) on sunflower seedlings was studied considering the changes in the photosynthesis pigment levels. Similar responses were obtained for magnetite and cobalt ferrite nanoparticle treatment consisting in the apparent inhibition of chlorophyll biosynthesis while for zinc ferrite nanoparticles some concentrations seemed to have stimulatory effects on the chlorophylls as well as on the carotene levels. But the chlorophyll ratio was diminished in the case of all three types of magnetic nanoparticles meaning their slight negative effect on the light harvesting complex II (LHC II) from the chloroplast membranes and consequently on the photosynthesis efficiency.

  8. Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method

    NASA Astrophysics Data System (ADS)

    Yadavalli, Tejabhiram; Jain, Hardik; Chandrasekharan, Gopalakrishnan; Chennakesavulu, Ramasamy

    2016-05-01

    A facile low temperature co-precipitation method for the synthesis of crystalline cobalt ferrite nanostructures using ferrous sulfate salt as the precursor has been discussed. The prepared samples were compared with nanoparticles prepared by conventional co-precipitation and hydrothermal methods using ferric nitrate as the precursor. X-ray diffraction studies confirmed the formation of cubic spinel cobalt ferrites when dried at 110 °C as opposed to conventional methods which required higher temperatures/pressure for the formation of the same. Field emission scanning electron microscope studies of these powders revealed the formation of nearly spherical nanostructures in the size range of 20-30 nm which were comparable to those prepared by conventional methods. Magnetic measurements confirmed the ferromagnetic nature of the cobalt ferrites with low magnetic remanance. Further magnetic hyperthermia studies of nanostructures prepared by low temperature method showed a rise in temperature to 50 °C in 600 s.

  9. Spherical barium ferrite nanoparticles and hexaferrite single crystals for information data storage and RF devices

    NASA Astrophysics Data System (ADS)

    Jalli, Jeevan Prasad

    Since their discovery in the early 1950's hexagonal ferrites or hexaferrites have been studied for a long time because of their technological applications, such as microwave devices and high density magnetic recording media. In this dissertation efforts have been made to address these two applications by developing nanosized spherical barium ferrite particles for advanced magnetic recording media, and hexaferrite single crystals for low loss RF devices. Accordingly, this dissertation consists of two parts; part one spherical barium ferrite nanoparticles for information data storage media, and part two hexaferrite single crystals for RF devices. Part I. Spherical Barium Ferrite Nanoparticles Hexagonal barium ferrite (H-BaFe) nanoparticles are good candidates for particulate recording media due to their high uniaxial magnetocrystalline anisotropy, excellent chemical stability, and narrow switching field distribution. One major disadvantage of using H-BaFe particles for particulate recording media is their poor dispersion and a high degree of stacking that deteriorate the recording capability by creating large media noise and surface roughness. One way to solve and improve the recording performance of H-BaFe media is employing substantially nanosized spherical barium ferrite (S­BaFe) particles. Spherical shaped particles have low aspect ratio and only form a point-to-point contact, unlike the H-BaFe particles. Therefore, using S-BaFe particles not only decrease the degree of magnetic interaction between the particles but also can substantially increases the recording performance by improving the dispersion and SNR of the particles in the magnetic media. In this dissertation, two different approaches were employed successfully to synthesize S-BaFe nanoparticles in the range of 20-45 nm. Part II. Hexaferrite Single Crystals As wireless communication systems are flourishing, and the operating frequencies are increasing, there is a great demand for RF devices such as

  10. Study of Zn-Cu Ferrite Nanoparticles for LPG Sensing

    PubMed Central

    Jain, Anuj; Baranwal, Ravi Kant; Bharti, Ajaya; Vakil, Z.; Prajapati, C. S.

    2013-01-01

    Nanostructured zinc-copper mixed ferrite was synthesized using sol-gel method. XRD patterns of different compositions of zinc-copper ferrite, Zn(1−x)CuxFe2O4 (x = 0.0, 0.25, 0.50, 0.75), revealed single phase inverse spinel ferrite in all the samples synthesized. With increasing copper concentration, the crystallite size was found to be increased from 28 nm to 47 nm. The surface morphology of all the samples studied by the Scanning Electron Microscopy there exhibits porous structure of particles throughout the samples. The pellets of the samples are prepared for LPG sensing characteristics. The sensing is carried out at different operating temperatures (200, 225, and 250°C) with the variation of LPG concentrations (0.2, 0.4, and 0.6 vol%). The maximum sensitivity of 55.33% is observed at 250°C operating for the 0.6 vol% LPG. PMID:23864833

  11. Fabrication and magnetic property analysis of monodisperse manganese-zinc ferrite nanospheres

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Zhu, Meifang; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2009-10-01

    Monodisperse Mn-Zn ferrite (Mn 1-xZn xFe 2O 4) nanospheres have been prepared via a simple solvothermal method. The as-synthesized samples were characterized in detail by X-ray diffraction pattern (XRD), transmission electron microscope (TEM), high-solution transmission electron microscope (HRTEM), select area electron diffraction pattern (SAED), scanning electron microscope (SEM), and vibrating sample magnetometer (VSM). The results show that a large number of the high-purity Mn 1-xZn xFe 2O 4 nanocrystallites were synthesized and these nanocrystallites oriented aggregated to nanospheres. The dependence of magnetic properties of Mn 1-xZn xFe 2O 4 nanospheres on the composition content x of Zn was studied. The maximum saturation magnetization value of the as-prepared sample (Mn 0.6Zn 0.4Fe 2O 4) reached 52.4 emu g -1.

  12. On the dielectric dispersion and absorption in nanosized manganese zinc mixed ferrites.

    PubMed

    Veena Gopalan, E; Malini, K A; Sakthi Kumar, D; Yoshida, Yasuhiko; Al-Omari, I A; Saravanan, S; Anantharaman, M R

    2009-04-01

    The temperature and frequency dependence of dielectric permittivity and dielectric loss of nanosized Mn(1-x)Zn(x)Fe(2)O(4) (for x = 0, 0.2, 0.4, 0.6, 0.8, 1) were investigated. The impact of zinc substitution on the dielectric properties of the mixed ferrite is elucidated. Strong dielectric dispersion and broad relaxation were exhibited by Mn(1-x)Zn(x)Fe(2)O(4). The variation of dielectric relaxation time with temperature suggests the involvement of multiple relaxation processes. Cole-Cole plots were employed as an effective tool for studying the observed phenomenon. The activation energies were calculated from relaxation peaks and Cole-Cole plots and found to be consistent with each other and indicative of a polaron conduction.

  13. The diffusion coefficient of vacancies and jump length of electrons in zinc doped manganese ferrite

    NASA Astrophysics Data System (ADS)

    Tawfik, A.; Olofa, S. A.

    1997-10-01

    Samples of mixed ferrite Mn 1- xZn xFe 2O 4 ( x = 0.0, 0.1, 0.3, 0.5 and 0.7) have been prepared by the usual ceramic technique. X-ray diffraction patterns confirmed the spinel cubic structure for the samples. The jump length of electrons in the octahedral sites and electrical conductivity were studied as a function of zinc concentration. The increase of the jump length with Zn concentration is attributed to the substitution of Fe 3+ for Zn 2+ at the A sites which increase the B-B interaction. The increase of the diffusion coefficient and jump rate of vacancies with increasing Zn concentration expedite densification of the samples during sintering.

  14. Comparative Cytogenetic Study on the Toxicity of Magnetite and Zinc Ferrite Nanoparticles in Sunflower Root Cells

    NASA Astrophysics Data System (ADS)

    Foca-nici, Ecaterina; Capraru, Gabriela; Creanga, Dorina

    2010-12-01

    In this experimental study the authors present their results regarding the cellular division rate and the percentage of chromosomal aberrations in the root meristematic cells of Helianthus annuus cultivated in the presence of different volume fractions of magnetic nanoparticle suspensions, ranging between 20 and 100 microl/l. The aqueous magnetic colloids were prepared from chemically co-precipitated ferrites coated in sodium oleate. Tissue samples from the root meristeme of 2-3 day old germinated seeds were taken to prepare microscope slides following Squash method combined with Fuelgen techniques. Microscope investigation (cytogenetic tests) has resulted in the evaluation of mitotic index and chromosomal aberration index that appeared diminished and respectively increased following the addition of magnetic nanoparticles in the culture medium of the young seedlings. Zinc ferrite toxic influence appeared to be higher than that of magnetite, according to both cytogenetic parameters.

  15. Organ weight changes in mice after long-term inhalation exposure to manganese oxides nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeman, T.; Buchtová, M.; Dočekal, B.; Míšek, I.; Navrátil, J.; Mikuška, P.; Šerý, O.; Večeřa, Z.

    2015-05-01

    Recently, it has been proven that manganese from inhaled particles of manganese compounds can accumulate in the internal organs of laboratory animals. Nevertheless, there were only a few researches dealing with changes in body morphology induced by inhalation of these particles, even though results of some studies indicate existence of such changes. The aim of our research was to assess the effect of inhaled manganese oxides nanoparticles on weight of internal organs. For this purpose a long-term inhalation experiment on laboratory mice was performed, during which the mice were exposed to MnO.Mn2O3 nanoparticles in concentration 2 × 106 particles/cm3 for 17 weeks, 24 hours a day, 7 days a week. Manganese oxides nanoparticles were synthesized continuously via aerosol route in a hot wall tube flow reactor using thermal decomposition of metal organic precursor manganese(II)acetylacetonate in the flow tube reactor at temperature 750 °C in the presence of 30 vol% of oxygen. It was proven that inhaled nanoparticles can influence the weight of internal organs of mice. Moreover, it was discovered that the resulting change in weight of selected organs is disproportional. The mice from the experimental group had statistically significantly lighter kidneys, liver and spleen and heavier pancreas compared to the mice from the control group.

  16. Enhanced magnetic anisotropy and heating efficiency in multi-functional manganese ferrite/graphene oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Le, Anh-Tuan; Duy Giang, Chu; Thi Tam, Le; Tuan, Ta Quoc; Phan, Vu Ngoc; Alonso, Javier; Devkota, Jagannath; Garaio, Eneko; Ángel García, José; Martín-Rodríguez, Rosa; Fdez-Gubieda, Ma Luisa; Srikanth, Hariharan; Phan, Manh-Huong

    2016-04-01

    A promising nanocomposite material composed of MnFe2O4 (MFO) nanoparticles of ˜17 nm diameter deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. X-ray diffraction, transmission electron microscopy, and selected area electron diffraction confirmed the quality of the synthesized samples. Fourier transform infrared measurements and analysis evidenced that the MFO nanoparticles were attached to the GO surface. Magnetic measurements and analysis using the modified Langevin model evidenced the superparamagnetic characteristic of both the bare MFO nanoparticles and the MFO-GO nanocomposite at room temperature, and an appreciable increase of the effective anisotropy for the MFO-GO sample. Magnetic hyperthermia experiments performed by both calorimetric and ac magnetometry methods indicated that relative to the bare MFO nanoparticles, the heating efficiency of the MFO-GO nanocomposite was similar at low ac fields (0-300 Oe) but became progressively larger with increasing ac fields (>300 Oe). This has been related to the higher effective anisotropy of the MFO-GO nanocomposite. In comparison with the bare MFO nanoparticles, a smaller reduction in the heating efficiency was observed in the MFO-GO composites when embedded in agar or when their concentration was increased, indicating that the GO helped minimize the physical rotation and aggregation of the MFO nanoparticles. These findings can be of practical importance in exploiting this type of nanocomposite for advanced hyperthermia. Magnetoimpedance-based biodetection studies also indicated that the MFO-GO nanocomposite could be used as a promising magnetic biomarker in biosensing applications.

  17. Enhanced magnetic anisotropy and heating efficiency in multi-functional manganese ferrite/graphene oxide nanostructures.

    PubMed

    Le, Anh-Tuan; Giang, Chu Duy; Tam, Le Thi; Tuan, Ta Quoc; Phan, Vu Ngoc; Alonso, Javier; Devkota, Jagannath; Garaio, Eneko; García, José Ángel; Martín-Rodríguez, Rosa; Fdez-Gubieda, Ma Luisa; Srikanth, Hariharan; Phan, Manh-Huong

    2016-04-15

    A promising nanocomposite material composed of MnFe2O4 (MFO) nanoparticles of ∼17 nm diameter deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. X-ray diffraction, transmission electron microscopy, and selected area electron diffraction confirmed the quality of the synthesized samples. Fourier transform infrared measurements and analysis evidenced that the MFO nanoparticles were attached to the GO surface. Magnetic measurements and analysis using the modified Langevin model evidenced the superparamagnetic characteristic of both the bare MFO nanoparticles and the MFO-GO nanocomposite at room temperature, and an appreciable increase of the effective anisotropy for the MFO-GO sample. Magnetic hyperthermia experiments performed by both calorimetric and ac magnetometry methods indicated that relative to the bare MFO nanoparticles, the heating efficiency of the MFO-GO nanocomposite was similar at low ac fields (0-300 Oe) but became progressively larger with increasing ac fields (>300 Oe). This has been related to the higher effective anisotropy of the MFO-GO nanocomposite. In comparison with the bare MFO nanoparticles, a smaller reduction in the heating efficiency was observed in the MFO-GO composites when embedded in agar or when their concentration was increased, indicating that the GO helped minimize the physical rotation and aggregation of the MFO nanoparticles. These findings can be of practical importance in exploiting this type of nanocomposite for advanced hyperthermia. Magnetoimpedance-based biodetection studies also indicated that the MFO-GO nanocomposite could be used as a promising magnetic biomarker in biosensing applications.

  18. Enhanced magnetic anisotropy and heating efficiency in multi-functional manganese ferrite/graphene oxide nanostructures.

    PubMed

    Le, Anh-Tuan; Giang, Chu Duy; Tam, Le Thi; Tuan, Ta Quoc; Phan, Vu Ngoc; Alonso, Javier; Devkota, Jagannath; Garaio, Eneko; García, José Ángel; Martín-Rodríguez, Rosa; Fdez-Gubieda, Ma Luisa; Srikanth, Hariharan; Phan, Manh-Huong

    2016-04-15

    A promising nanocomposite material composed of MnFe2O4 (MFO) nanoparticles of ∼17 nm diameter deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. X-ray diffraction, transmission electron microscopy, and selected area electron diffraction confirmed the quality of the synthesized samples. Fourier transform infrared measurements and analysis evidenced that the MFO nanoparticles were attached to the GO surface. Magnetic measurements and analysis using the modified Langevin model evidenced the superparamagnetic characteristic of both the bare MFO nanoparticles and the MFO-GO nanocomposite at room temperature, and an appreciable increase of the effective anisotropy for the MFO-GO sample. Magnetic hyperthermia experiments performed by both calorimetric and ac magnetometry methods indicated that relative to the bare MFO nanoparticles, the heating efficiency of the MFO-GO nanocomposite was similar at low ac fields (0-300 Oe) but became progressively larger with increasing ac fields (>300 Oe). This has been related to the higher effective anisotropy of the MFO-GO nanocomposite. In comparison with the bare MFO nanoparticles, a smaller reduction in the heating efficiency was observed in the MFO-GO composites when embedded in agar or when their concentration was increased, indicating that the GO helped minimize the physical rotation and aggregation of the MFO nanoparticles. These findings can be of practical importance in exploiting this type of nanocomposite for advanced hyperthermia. Magnetoimpedance-based biodetection studies also indicated that the MFO-GO nanocomposite could be used as a promising magnetic biomarker in biosensing applications. PMID:26933975

  19. Magnetic properties of nanocomposites based on opal matrices with embedded ferrite-spinel nanoparticles

    NASA Astrophysics Data System (ADS)

    Rinkevich, A. B.; Korolev, A. V.; Samoylovich, M. I.; Klescheva, S. M.; Perov, D. V.

    2016-02-01

    Magnetic properties of nanocomposites based on opal matrices with ferrite-spinel nanoparticles embedded have been investigated in temperature range from 2 to 300 K. The magnetization curves and hysteresis loops as well as the temperature dependence of magnetic moment and the temperature and frequency dependences of AC susceptibility have been measured. The results of magnetic measurements are compared to X-ray analysis and electron microscopy investigations.

  20. In situ synthesis of magnetic MnZn-ferrite nanoparticles using reverse microemulsions

    NASA Astrophysics Data System (ADS)

    Košak, A.; Makovec, D.; Drofenik, M.; Žnidaršič, A.

    2004-05-01

    Superparamagnetic MnZn-ferrite nanoparticles with a narrow size distribution were prepared at various pH values using precipitation in a reverse microemulsion consisting of hexanol, as an oil phase; surfactant CTAB; and an aqueous solution of metal sulfates. Tetramethyl ammonium hydroxide was used as the precipitating agent and hydrogen peroxide as the oxidizing reagent. The synthesized materials were characterized using X-ray diffractometry, transmission electron microscopy, BET surface analysis and magnetometry.

  1. Manganese

    Integrated Risk Information System (IRIS)

    Manganese ; CASRN 7439 - 96 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  2. Preparation of Magnesium, Cobalt and Nickel Ferrite Nanoparticles from Metal Oxides using Deep Eutectic Solvents.

    PubMed

    Söldner, Anika; Zach, Julia; Iwanow, Melanie; Gärtner, Tobias; Schlosser, Marc; Pfitzner, Arno; König, Burkhard

    2016-09-01

    Natural deep eutectic solvents (DESs) dissolve simple metal oxides and are used as a reaction medium to synthesize spinel-type ferrite nanoparticles MFe2 O4 (M=Mg, Zn, Co, Ni). The best results for phase-pure spinel ferrites are obtained with the DES consisting of choline chloride (ChCl) and maleic acid. By employing DESs, the reactions proceed at much lower temperatures than usual for the respective solid-phase reactions of the metal oxides and at the same temperatures as synthesis with comparable calcination processes using metal salts. The method therefore reduces the overall required energy for the nanoparticle synthesis. Thermogravimetric analysis shows that the thermolysis process of the eutectic melts in air occurs in one major step. The phase-pure spinel-type ferrite particles are thoroughly characterized by X-ray diffraction, diffuse-reflectance UV/Vis spectroscopy, and scanning electron microscopy. The properties of the obtained nanoparticles are shown to be comparable to those obtained by other methods, illustrating the potential of natural DESs for processing metal oxides. PMID:27514793

  3. Preparation of Magnesium, Cobalt and Nickel Ferrite Nanoparticles from Metal Oxides using Deep Eutectic Solvents.

    PubMed

    Söldner, Anika; Zach, Julia; Iwanow, Melanie; Gärtner, Tobias; Schlosser, Marc; Pfitzner, Arno; König, Burkhard

    2016-09-01

    Natural deep eutectic solvents (DESs) dissolve simple metal oxides and are used as a reaction medium to synthesize spinel-type ferrite nanoparticles MFe2 O4 (M=Mg, Zn, Co, Ni). The best results for phase-pure spinel ferrites are obtained with the DES consisting of choline chloride (ChCl) and maleic acid. By employing DESs, the reactions proceed at much lower temperatures than usual for the respective solid-phase reactions of the metal oxides and at the same temperatures as synthesis with comparable calcination processes using metal salts. The method therefore reduces the overall required energy for the nanoparticle synthesis. Thermogravimetric analysis shows that the thermolysis process of the eutectic melts in air occurs in one major step. The phase-pure spinel-type ferrite particles are thoroughly characterized by X-ray diffraction, diffuse-reflectance UV/Vis spectroscopy, and scanning electron microscopy. The properties of the obtained nanoparticles are shown to be comparable to those obtained by other methods, illustrating the potential of natural DESs for processing metal oxides.

  4. Synthesis of Water Dispersible and Catalytically Active Gold-Decorated Cobalt Ferrite Nanoparticles.

    PubMed

    Silvestri, Alessandro; Mondini, Sara; Marelli, Marcello; Pifferi, Valentina; Falciola, Luigi; Ponti, Alessandro; Ferretti, Anna Maria; Polito, Laura

    2016-07-19

    Hetero-nanoparticles represent an important family of composite nanomaterials that in the past years are attracting ever-growing interest. Here, we report a new strategy for the synthesis of water dispersible cobalt ferrite nanoparticles (CoxFe3-xO4 NPs) decorated with ultrasmall (2-3 nm) gold nanoparticles (Au NPs). The synthetic procedure is based on the use of 2,3-meso-dimercaptosuccinic acid (DMSA), which plays a double role. First, it transfers cobalt ferrite NPs from the organic phase to aqueous media. Second, the DMSA reductive power promotes the in situ nucleation of gold NPs in proximity of the magnetic NP surface. Following this procedure, we achieved a water dispersible nanosystem (CoxFe3-xO4-DMSA-Au NPs) which combines the cobalt ferrite magnetic properties with the catalytic features of ultrasmall Au NPs. We showed that CoxFe3-xO4-DMSA-Au NPs act as an efficient nanocatalyst to reduce 4-nitrophenol to 4-aminophenol and that they can be magnetically recovered and recycled. It is noteworthy that such nanosystem is more catalytically active than Au NPs with equal size. Finally, a complete structural and chemical characterization of the hetero-NPs is provided.

  5. Structure, electric and dielectric studies of indium-substituted magnesium copper manganese ferrites

    NASA Astrophysics Data System (ADS)

    Kaiser, M.

    2011-02-01

    The structure, electric and dielectric properties of In-substituted Mg-Cu-Mn ferrites having the general formula of Mg 0.9Cu 0.1Mn 0.1In xFe 1.9- xO 4 with 0.0≤ x≤0.4 have been studied. X-ray diffraction (XRD) patterns of the samples indicated the formation of single-phase cubic spinel structure up to 0.2 and mixed phase (cubic and tetragonal phase) for samples x≥0.3. The relation of conductivity with temperature revealed a semiconductor to semimetal behavior as In +3 concentration increases. Variation in the universal exponent s with temperature indicates the presence of two hopping conduction mechanisms: the correlated barrier hopping (CHB) at low In +3 content x≤0.1 and small-polaron (SP) hopping at In +3 content x≥0.2. The variation in dielectric permittivity ( ε‧, ε″) with temperature at different frequencies shows a normal behavior for the studied compounds, while the variation in dielectric loss tangent with frequency at different temperatures shows abnormal behavior with more than relaxation peak. The conduction mechanism used in the present study has been discussed in the light of electron exchange between Fe 3+ and Fe 2+ ions and hole hopping between Mn 2+ and Mn 3+ ions at the octahedral B-sites.

  6. Cobalt Zinc Ferrite Nanoparticles as a Potential Magnetic Resonance Imaging Agent: An In vitro Study

    PubMed Central

    Ghasemian, Zeinab; Shahbazi-Gahrouei, Daryoush; Manouchehri, Sohrab

    2015-01-01

    Background: Magnetic Nanoparticles (MNP) have been used for contrast enhancement in Magnetic Resonance Imaging (MRI). In recent years, research on the use of ferrite nanoparticles in T2 contrast agents has shown a great potential application in MR imaging. In this work, Co0.5Zn0.5Fe2O4 and Co0.5Zn0.5Fe2O4-DMSA magnetic nanoparticles, CZF-MNPs and CZF-MNPs-DMSA, were investigated as MR imaging contrast agents. Methods: Cobalt zinc ferrite nanoparticles and their suitable coating, DMSA, were investigated under in vitro condition. Human prostate cancer cell lines (DU145 and PC3) with bare (uncoated) and coated magnetic nanoparticles were investigated as nano-contrast MR imaging agents. Results: Using T2-weighted MR images identified that signal intensity of bare and coated MNPs was enhanced with increasing concentration of MNPs in water. The values of 1/T2 relaxivity (r2) for bare and coated MNPs were found to be 88.46 and 28.80 (mM−1 s−1), respectively. Conclusion: The results show that bare and coated MNPs are suitable as T2-weighted MR imaging contrast agents. Also, the obtained r2/r1 values (59.3 and 50) for bare and coated MNPs were in agreement with the results of other previous relevant works. PMID:26140183

  7. Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment.

    PubMed

    Lin, Mei; Huang, Junxing; Sha, Min

    2014-01-01

    This paper reviews the recent research and development of nanosized manganese zinc (Mn-Zn) ferrite magnetic fluid hyperthermia (MFH) for cancer treatment. Mn-Zn ferrite MFH, which has a targeted positioning function that only the temperature of tumor tissue with magnetic nanoparticles can rise, while normal tissue without magnetic nanoparticles is not subject to thermal damage, is a promising therapy for cancer. We introduce briefly the composition and properties of magnetic fluid, the concept of MFH, and features of Mn-Zn ferrite magnetic nanoparticles for MFH such as thermal bystander effect, universality, high specific absorption rate, the targeting effect of small size, uniformity of hyperthermia temperature, and automatic temperature control and constant temperature effect. Next, preparation methods of Mn-Zn ferrite magnetic fluid are discussed, and biocompatibility and biosecurity of Mn-Zn ferrite magnetic fluid are analyzed. Then the applications of nanosized Mn-Zn ferrite MFH in cancer are highlighted, including nanosized Mn-Zn ferrite MFH alone, nanosized Mn-Zn ferrite MFH combined with As2O3 chemotherapy, and nanosized Mn-Zn ferrite MFH combined with radiotherapy. Finally, the combination application of nanosized Mn-Zn ferrite MFH and gene-therapy is conceived, and the challenges and perspectives for the future of nanosized Mn-Zn ferrite MFH for oncotherapy are discussed.

  8. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.

    PubMed

    Céspedes, Eva; Byrne, James M; Farrow, Neil; Moise, Sandhya; Coker, Victoria S; Bencsik, Martin; Lloyd, Jonathan R; Telling, Neil D

    2014-11-01

    Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy. PMID:25232657

  9. Valence-driven electrical behavior of manganese-modified bismuth ferrite thin films

    SciTech Connect

    Wu Jiagang; Wang, John; Xiao Dingquan; Zhu Jianguo

    2011-06-15

    BiFe{sub 0.95}R{sub 0.05}O{sub 3} (Mn{sup 2+}, Mn{sup 3+}, and Mn{sup 4+}) thin films with (110) orientation were fabricated on SrRuO{sub 3}/Pt/TiO{sub 2}/SiO{sub 2}/Si(100) substrates via rf sputtering. With the increasing valence of Mn in BiFe{sub 0.95}R{sub 0.05}O{sub 3}, the concentration of Fe{sup 2+} increases, whereas the concentration of oxygen vacancies decreases. The electrical properties of BiFe{sub 0.95}R{sub 0.05}O{sub 3} are correlated with the valence of Mn. Their leakage current density is dependent on the concentration of oxygen vacancies caused by different valences of Mn. Their P-E loops become better with the increasing valence of Mn owing to a lower leakage current density in high electric field regions, and a large remanent polarization of 2P{sub r} {approx} 145.2 {mu}C/cm{sup 2} is obtained for the Mn{sup 4+}-doped film. For the Mn{sup 2+}-doped bismuth ferrite film, the space-charge-limited conduction and Schottky barrier dominate its leakage behavior under a negative electric field, the Ohmic conduction and Schottky barrier are involved in the leakage behavior under a positive electric field, and the interface-limited Fowler-Nordheim tunneling is their dominant mechanism in a high electric field region. In contrast, an Ohmic conduction dominates the leakage behavior of Mn{sup 3+}- and Mn{sup 4+}-doped films regardless of negative and positive directions or measurement temperatures.

  10. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Céspedes, Eva; Byrne, James M.; Farrow, Neil; Moise, Sandhya; Coker, Victoria S.; Bencsik, Martin; Lloyd, Jonathan R.; Telling, Neil D.

    2014-10-01

    Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy.Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are

  11. Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Khan, M A Majeed; Alrokayan, Salman A

    2015-09-01

    Nickel ferrite nanoparticles (NPs) have received much attention for their potential applications in biomedical fields such as magnetic resonance imaging, drug delivery and cancer hyperthermia. However, little is known about the toxicity of nickel ferrite NPs at the cellular and molecular levels. In this study, we investigated the cytotoxic responses of nickel ferrite NPs in two different types of human cells (i.e., liver HepG2 and breast MCF-7). Nickel ferrite NPs induced dose-dependent cytotoxicity in both types of cells, which was demonstrated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) assays. Nickel ferrite NPs were also found to induce oxidative stress, which was evident by the depletion of glutathione and the induction of reactive oxygen species (ROS) and lipid peroxidation. The mitochondrial membrane potential due to nickel ferrite NP exposure was also observed. The mRNA levels for the tumor suppressor gene p53 and the apoptotic genes bax, CASP3 and CASP9 were up-regulated, while the anti-apoptotic gene bcl-2 was down-regulated following nickel ferrite NP exposure. Furthermore, the activities of apoptotic enzymes (caspase-3 and caspase-9) were also higher in both types of cells treated with nickel ferrite NPs. Cytotoxicity induced by nickel ferrite was efficiently prevented by N-acetyl cysteine (ROS scavenger) treatment, which suggested that oxidative stress might be one of the possible mechanisms of nickel ferrite NP toxicity. We also observed that MCF-7 cells were slightly more susceptible to nickel ferrite NP exposure than HepG2 cells. This study warrants further investigation to explore the potential mechanisms of different cytotoxic responses of nickel ferrite NPs in different cell lines.

  12. Highly aluminium doped barium and strontium ferrite nanoparticles prepared by citrate auto-combustion synthesis

    SciTech Connect

    Shirtcliffe, Neil J. . E-mail: neil.shirtcliffe@ntu.ac.uk; Thompson, Simon; O'Keefe, Eoin S.; Appleton, Steve; Perry, Carole C. . E-mail: carole.perry@ntu.ac.uk

    2007-02-15

    Aluminium doped barium and strontium hexaferrite nanoparticles BaAl {sub x}Fe{sub (12-x)}O{sub 19} and SrAl {sub x}Fe{sub (12-x)}O{sub 19} were synthesised via a sol-gel route using citric acid to complex the ions followed by an auto-combustion reaction. This method shows promise for the synthesis of complex ferrite powders with small particle size. It was found that around half of the iron could be substituted for aluminium in the barium ferrite with structure retention, whereas strontium aluminium ferrites could be produced with any aluminium content including total substitution of the iron. All synthesised materials consisted of particles smaller than 1 {mu}m, which is the size of a single magnetic domain, and various doping levels were achieved with the final elemental composition being within the bounds of experimental error. The materials show structural and morphological changes as they move from iron to aluminium ferrites. Such materials may be promising for imaging applications.

  13. Structure and magnetic properties of ZnO coated MnZn ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Mallesh, Shanigaram; Sunny, Annrose; Vasundhara, Mutta; Srinivas, Veeturi

    2016-11-01

    A comparative study of structural and magnetic properties of MnZn spinel ferrite (SF) and ZnO coated MnZn ferrite (ZF) nanoparticles (NPs) has been carried out. The as-prepared NPs show a single phase cubic spinel structure, with lattice parameter ~8.432 Å. However, α-Fe2O3 impurity phase emerge from SF particles when subjected to annealing at 600 °C in air. The weight fraction of α-Fe2O3 phase increases with increasing Mn concentration (9% for x=0.2 and 53% for x=0.6). On the other hand in ZF (x=0.2 and 0.4) NPs no trace of impurity phase is observed when annealed at 600 °C. The magnetic measurements as a function of field and temperature revealed superparamagnetic like behavior with cluster moment ~104 μB in as-prepared particles. The cluster size obtained from the magnetic data corroborates well with that estimated from structural analysis. Present results on ZnO coated MnZn ferrite particles suggest that an interfacial (ZnO@SF) reaction takes place during annealing, which results in formation of Zn-rich ferrite phase in the interface region. This leads to deterioration of magnetic properties even in the absence of α-Fe2O3 impurity phase.

  14. Influence of the morphology of ferrite nanoparticles on the directed assembly into magnetically anisotropic hierarchical structures.

    PubMed

    Lisjak, Darja; Jenuš, Petra; Mertelj, Alenka

    2014-06-10

    The effect of the morphology of ferrite nanoparticles on their assembly in a magnetic field was studied. Thin BaFe12O19 nanoplatelets were compared with isotropic, spherical or octahedral, CoFe2O4 nanoparticles, all of which were synthesized hydrothermally. The nanoplatelets and nanoparticles assembled into a variety of hierarchical structures from stable suspensions during the "drop deposition" and drying in a magnetic field. The alignment of the nanoparticles in the magnetic field was observed in situ with an optical microscope. The morphologies of the nanoparticles and the subsequent assemblies were observed with transmission and scanning electron microscopes, respectively. The magnetic properties of the nanoparticles and the assemblies were measured with a vibrating-sample magnetometer. The BaFe12O19 nanoplatelets aligned in the plane of the substrate and formed several-micrometers-thick, ordered films with a magnetic alignment of approximately 90%. The CoFe2O4 nanoparticles assembled into thick, dense columns with a height of several hundreds of micrometers and showed a magnetic alignment of up to 60%. The differences in the morphologies and the magnetic alignments between the BaFe12O19 and CoFe2O4 hierarchical structures could be explained in terms of the differences in the shape and magnetocrystalline structure of the specific nanoparticles. PMID:24841592

  15. Enhancement in magnetic properties of magnesium substituted bismuth ferrite nanoparticles

    SciTech Connect

    Xu, Jianlong; Xie, Dan E-mail: RenTL@mail.tsinghua.edu.cn; Teng, Changjiu; Zhang, Xiaowen; Zhang, Cheng; Sun, Yilin; Ren, Tian-Ling E-mail: RenTL@mail.tsinghua.edu.cn; Zeng, Min; Gao, Xingsen; Zhao, Yonggang

    2015-06-14

    We report a potential way to effectively improve the magnetic properties of BiFeO{sub 3} (BFO) nanoparticles through Mg{sup 2+} ion substitution at the Fe-sites of BFO lattice. The high purity and structural changes induced by Mg doping are confirmed by X-ray powder diffractometer and Raman spectra. Enhanced magnetic properties are observed in Mg substituted samples, which simultaneously exhibit ferromagnetic and superparamagnetic properties at room temperature. A physical model is proposed to support the observed ferromagnetism of Mg doped samples, and the superparamagnetic properties are revealed by the temperature dependent magnetization measurements. The improved magnetic properties and soft nature obtained by Mg doping in BFO nanoparticles demonstrate the possibility of BFO nanoparticles to practical applications.

  16. Magnetic studies of magnesium ferrite nanoparticles prepared by sol-gel technique

    SciTech Connect

    Argish, V.; Chithra, M.; Anumol, C. N.; Sahoo, S. C.; Sahu, B. N.

    2015-06-24

    Mg-ferrite nanoparticles were prepared by sol-gel technique and were annealed at different temperatures in air for 4 hours. Structural studies by X-ray diffraction confirmed the Mg-ferrite phasein all the samples annealed up to 600°C. Traces of α-Fe{sub 2}O{sub 3} were found for the sample annealed at higher temperature of 750°C.Grain size was found to be increasedfrom 13nm to 37nm with the increase in the annealing temperature. These samples showed super-paramagentic behavior at 300K where as at 60K they showed ferrimagnetic behavior.For the as prepared sample the magnetization value of 21emu/g was observed at 300K. The highest magnetization value of 24 emu/g which is ∼ 90% of the bulk value of Mg-ferrite, was observed at 300K for the sample annealed at 750°C.The observed magnetic behavior of these nanoparticles may be understood on the basis of nanosize grains, increase inrandom anisotropy and reduced thermal effects at low temperature.

  17. Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes

    PubMed Central

    Drašler, Barbara; Drobne, Damjana; Novak, Sara; Valant, Janez; Boljte, Sabina; Otrin, Lado; Rappolt, Michael; Sartori, Barbara; Iglič, Aleš; Kralj-Iglič, Veronika; Šuštar, Vid; Makovec, Darko; Gyergyek, Sašo; Hočevar, Matej; Godec, Matjaž; Zupanc, Jernej

    2014-01-01

    Background The purpose of this work is to provide experimental evidence on the interactions of suspended nanoparticles with artificial or biological membranes and to assess the possibility of suspended nanoparticles interacting with the lipid component of biological membranes. Methods 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid vesicles and human red blood cells were incubated in suspensions of magnetic bare cobalt ferrite (CoFe2O4) or citric acid (CA)-adsorbed CoFe2O4 nanoparticles dispersed in phosphate-buffered saline and glucose solution. The stability of POPC giant unilamellar vesicles after incubation in the tested nanoparticle suspensions was assessed by phase-contrast light microscopy and analyzed with computer-aided imaging. Structural changes in the POPC multilamellar vesicles were assessed by small angle X-ray scattering, and the shape transformation of red blood cells after incubation in tested suspensions of nanoparticles was observed using scanning electron microscopy and sedimentation, agglutination, and hemolysis assays. Results Artificial lipid membranes were disturbed more by CA-adsorbed CoFe2O4 nanoparticle suspensions than by bare CoFe2O4 nanoparticle suspensions. CA-adsorbed CoFe2O4-CA nanoparticles caused more significant shape transformation in red blood cells than bare CoFe2O4 nanoparticles. Conclusion Consistent with their smaller sized agglomerates, CA-adsorbed CoFe2O4 nanoparticles demonstrate more pronounced effects on artificial and biological membranes. Larger agglomerates of nanoparticles were confirmed to be reactive against lipid membranes and thus not acceptable for use with red blood cells. This finding is significant with respect to the efficient and safe application of nanoparticles as medicinal agents. PMID:24741305

  18. Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications.

    PubMed

    Peng, Erwin; Choo, Eugene Shi Guang; Chandrasekharan, Prashant; Yang, Chang-Tong; Ding, Jun; Chuang, Kai-Hsiang; Xue, Jun Min

    2012-12-01

    In this study, MnFe(2)O(4) nanoparticle (MFNP)-decorated graphene oxide nanocomposites (MGONCs) are prepared through a simple mini-emulsion and solvent evaporation process. It is demonstrated that the loading of magnetic nanocrystals can be tuned by varying the ratio of graphene oxide/magnetic nanoparticles. On top of that, the hydrodynamic size range of the obtained nanocomposites can be optimized by varying the sonication time during the emulsion process. By fine-tuning the sonication time, MGONCs as small as 56.8 ± 1.1 nm, 55.0 ± 0.6 nm and 56.2 ± 0.4 nm loaded with 6 nm, 11 nm, and 14 nm MFNPs, respectively, are successfully fabricated. In order to improve the colloidal stability of MGONCs in physiological solutions (e.g., phosphate buffered saline or PBS solution), MGONCs are further conjugated with polyethylene glycol (PEG). Heating by exposing MGONCs samples to an alternating magnetic field (AMF) show that the obtained nanocomposites are efficient hyperthermia agents. At concentrations as low as 0.1 mg Fe mL(-1) and under an 59.99 kA m(-1) field, the highest specific absorption rate (SAR) recorded is 1588.83 W g(-1) for MGONCs loaded with 14 nm MFNPs. It is also demonstrated that MGONCs are promising as magnetic resonance imaging (MRI) T(2) contrast agents. A T(2) relaxivity value (r(2) ) as high as 256.2 (mM Fe)(-1) s(-1) could be achieved with MGONCs loaded with 14 nm MFNPs. The cytotoxicity results show that PEGylated MGONCs exhibit an excellent biocompatibility that is suitable for biomedical applications.

  19. Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process

    PubMed Central

    Bellusci, Mariangela; La Barbera, Aurelio; Padella, Franco; Mancuso, Mariateresa; Pasquo, Alessandra; Grollino, Maria Giuseppa; Leter, Giorgio; Nardi, Elisa; Cremisini, Carlo; Giardullo, Paola; Pacchierotti, Francesca

    2014-01-01

    Superparamagnetic iron oxide nanoparticles are candidate contrast agents for magnetic resonance imaging and targeted drug delivery. Biodistribution and toxicity assessment are critical for the development of nanoparticle-based drugs, because of nanoparticle-enhanced biological reactivity. Here, we investigated the uptake, in vivo biodistribution, and in vitro and in vivo potential toxicity of manganese ferrite (MnFe2O4) nanoparticles, synthesized by an original high-yield, low-cost mechanochemical process. Cultures of murine Balb/3T3 fibroblasts were exposed for 24, 48, or 72 hours to increasing ferrofluid concentrations. Nanoparticle cellular uptake was assessed by flow-cytometry scatter-light measurements and microscopy imaging after Prussian blue staining; cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony-forming assays. After a single intravenous injection, in vivo nanoparticle biodistribution and clearance were evaluated in mice by Mn spectrophotometric determination and Prussian blue staining in the liver, kidneys, spleen, and brain at different posttreatment times up to 21 days. The same organs were analyzed for any possible histopathological change. The in vitro study demonstrated dose-dependent nanoparticle uptake and statistically significant cytotoxic effects from a concentration of 50 μg/mL for the MTT assay and 20 μg/mL for the colony-forming assay. Significant increases in Mn concentrations were detected in all analyzed organs, peaking at 6 hours after injection and then gradually declining. Clearance appeared complete at 7 days in the kidneys, spleen, and brain, whereas in the liver Mn levels remained statistically higher than in vehicle-treated mice up to 3 weeks postinjection. No evidence of irreversible histopathological damage to any of the tested organs was observed. A comparison of the lowest in vitro toxic concentration with the intravenously injected dose and the administered dose of

  20. Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process.

    PubMed

    Bellusci, Mariangela; La Barbera, Aurelio; Padella, Franco; Mancuso, Mariateresa; Pasquo, Alessandra; Grollino, Maria Giuseppa; Leter, Giorgio; Nardi, Elisa; Cremisini, Carlo; Giardullo, Paola; Pacchierotti, Francesca

    2014-01-01

    Superparamagnetic iron oxide nanoparticles are candidate contrast agents for magnetic resonance imaging and targeted drug delivery. Biodistribution and toxicity assessment are critical for the development of nanoparticle-based drugs, because of nanoparticle-enhanced biological reactivity. Here, we investigated the uptake, in vivo biodistribution, and in vitro and in vivo potential toxicity of manganese ferrite (MnFe2O4) nanoparticles, synthesized by an original high-yield, low-cost mechanochemical process. Cultures of murine Balb/3T3 fibroblasts were exposed for 24, 48, or 72 hours to increasing ferrofluid concentrations. Nanoparticle cellular uptake was assessed by flow-cytometry scatter-light measurements and microscopy imaging after Prussian blue staining; cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony-forming assays. After a single intravenous injection, in vivo nanoparticle biodistribution and clearance were evaluated in mice by Mn spectrophotometric determination and Prussian blue staining in the liver, kidneys, spleen, and brain at different posttreatment times up to 21 days. The same organs were analyzed for any possible histopathological change. The in vitro study demonstrated dose-dependent nanoparticle uptake and statistically significant cytotoxic effects from a concentration of 50 μg/mL for the MTT assay and 20 μg/mL for the colony-forming assay. Significant increases in Mn concentrations were detected in all analyzed organs, peaking at 6 hours after injection and then gradually declining. Clearance appeared complete at 7 days in the kidneys, spleen, and brain, whereas in the liver Mn levels remained statistically higher than in vehicle-treated mice up to 3 weeks postinjection. No evidence of irreversible histopathological damage to any of the tested organs was observed. A comparison of the lowest in vitro toxic concentration with the intravenously injected dose and the administered dose of

  1. The preparation of MnZn-ferrite nanoparticles in water CTAB hexanol microemulsions

    NASA Astrophysics Data System (ADS)

    Makovec, D.; Kosak, A.; Drofenik, M.

    2004-04-01

    Magnetic MnZn-ferrite nanoparticles with a narrow size distribution were prepared in water-CTAB-hexanol microemulsions. The region of microemulsion stability in the system was determined, using the titration method, as a function of the temperature and of the type and concentration of solutes in the aqueous phase. The nanoparticles were prepared in a two-step process: the precipitation of the corresponding hydroxides, followed by oxidation of the Fe2+. The particle size was controlled by the composition of the microemulsion and the concentration of the reactants (the corresponding sulfates and a precipitation agent, tetramethyl ammonium hydroxide) in the aqueous solution of the microemulsion. The specific magnetization of the nanoparticles (measured at 13 kOe) was found to depend mainly on particle size: ranging from 1.3 emu g-1 for particles of approximately 2 nm in size to 7.3 emu g-1 for particles of approximately 5 nm in size.

  2. The superspin glass transition in zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaman, O.; Kořínková, T.; Jirák, Z.; Maryško, M.; Veverka, M.

    2015-05-01

    Nanoparticles of the ZnxFe3-xO4 (x = 0.3-0.4) spinel phase having 5 and 15 nm size were synthesized by thermal decomposition of the respective acetylacetonates in a high boiling-point solvent employing surfactants. The collective behaviour of the nanoparticles was probed by dc and ac magnetic measurements of tightly compressed pellets of the particles and silica coated products which were prepared by reverse microemulsion technique. The assembly of bare 5 nm particles remains in the superparamagnetic state with Curie-Weiss characteristics down to 35 K when a rather sharp freezing of superspins is detected. The larger particles show a similar but more diffusive transition at 250 K. The cores encapsulated into the diamagnetic silica do not exhibit glassy freezing.

  3. Nanotexaphyrin: One-Pot Synthesis of a Manganese Texaphyrin-Phospholipid Nanoparticle for Magnetic Resonance Imaging.

    PubMed

    Keca, Joseph M; Chen, Juan; Overchuk, Marta; Muhanna, Nidal; MacLaughlin, Christina M; Jin, Cheng S; Foltz, Warren D; Irish, Jonathan C; Zheng, Gang

    2016-05-17

    The discovery and synthesis of novel multifunctional organic building blocks for nanoparticles is challenging. Texaphyrin macrocycles are capable and multifunctional chelators. However, they remain elusive as building blocks for nanoparticles because of the difficulty associated with synthesis of texaphyrin constructs capable of self-assembly. A novel manganese (Mn)-texaphyrin-phospholipid building block is described, along with its one-pot synthesis and self-assembly into a Mn-nanotexaphyrin. This nanoparticle possesses strong resilience to manganese dissociation, structural stability, in vivo bio-safety, and structure-dependent T1 and T2 relaxivities. Magnetic resonance imaging (MRI) contrast enhanced visualization of lymphatic drainage is demonstrated with respect to proximal lymph nodes on the head and neck VX-2 tumors of a rabbit. Synthesis of 17 additional metallo-texaphyrin building blocks suggests that this novel one-pot synthetic procedure for nanotexaphyrins may lead to a wide range of applications in the field of nanomedicines. PMID:27071806

  4. Nanotexaphyrin: One-Pot Synthesis of a Manganese Texaphyrin-Phospholipid Nanoparticle for Magnetic Resonance Imaging.

    PubMed

    Keca, Joseph M; Chen, Juan; Overchuk, Marta; Muhanna, Nidal; MacLaughlin, Christina M; Jin, Cheng S; Foltz, Warren D; Irish, Jonathan C; Zheng, Gang

    2016-05-17

    The discovery and synthesis of novel multifunctional organic building blocks for nanoparticles is challenging. Texaphyrin macrocycles are capable and multifunctional chelators. However, they remain elusive as building blocks for nanoparticles because of the difficulty associated with synthesis of texaphyrin constructs capable of self-assembly. A novel manganese (Mn)-texaphyrin-phospholipid building block is described, along with its one-pot synthesis and self-assembly into a Mn-nanotexaphyrin. This nanoparticle possesses strong resilience to manganese dissociation, structural stability, in vivo bio-safety, and structure-dependent T1 and T2 relaxivities. Magnetic resonance imaging (MRI) contrast enhanced visualization of lymphatic drainage is demonstrated with respect to proximal lymph nodes on the head and neck VX-2 tumors of a rabbit. Synthesis of 17 additional metallo-texaphyrin building blocks suggests that this novel one-pot synthetic procedure for nanotexaphyrins may lead to a wide range of applications in the field of nanomedicines.

  5. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells

    SciTech Connect

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Gu, Yan; Fang, Ning; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2011-11-15

    The production of man-made nanoparticles for various modern applications has increased exponentially in recent years, but the potential health effects of most nanoparticles are not well characterized. Unfortunately, in vitro nanoparticle toxicity studies are extremely limited by yet unresolved problems relating to dosimetry. In the present study, we systematically characterized manganese (Mn) nanoparticle sizes and examined the nanoparticle-induced oxidative signaling in dopaminergic neuronal cells. Differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) studies revealed that Mn nanoparticles range in size from single nanoparticles ({approx} 25 nM) to larger agglomerates when in treatment media. Manganese nanoparticles were effectively internalized in N27 dopaminergic neuronal cells, and they induced a time-dependent upregulation of the transporter protein transferrin. Exposure to 25-400 {mu}g/mL Mn nanoparticles induced cell death in a time- and dose-dependent manner. Mn nanoparticles also significantly increased ROS, accompanied by a caspase-mediated proteolytic cleavage of proapoptotic protein kinase C{delta} (PKC{delta}), as well as activation loop phosphorylation. Blocking Mn nanoparticle-induced ROS failed to protect against the neurotoxic effects, suggesting the involvement of other pathways. Further mechanistic studies revealed changes in Beclin 1 and LC3, indicating that Mn nanoparticles induce autophagy. Primary mesencephalic neuron exposure to Mn nanoparticles induced loss of TH positive dopaminergic neurons and neuronal processes. Collectively, our results suggest that Mn nanoparticles effectively enter dopaminergic neuronal cells and exert neurotoxic effects by activating an apoptotic signaling pathway and autophagy, emphasizing the need for assessing possible health risks associated with an increased use of Mn nanoparticles in modern applications. -- Highlights: Black-Right-Pointing-Pointer Mn nanoparticles

  6. Citric Acid Fuctionalized Magnetic Ferrite Nanoparticles for Photocatalytic Degradation of Azo Dye.

    PubMed

    Mahto, Triveni Kumar; Roy, Anurag; Sahoo, Banalata; Sahu, Sumanta Kumar

    2015-01-01

    In this study different magnetic ferrite nanoparticles (MFe2O4, where M = Fe, Mn, Zn) were synthesized through an aqueous coprecipitation method and then functionalized with citric acid for the degradation of azo dye present in industrial waste water. Here we evaluated the role of citric acid for photocatalytic application. The synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and the catalytic activity in degradation of methyl orange (MO) was evaluated. The rate of MO degradation in different magnetic systems was determined by UV-Vis spectroscopy. The effect of active parameters (pH, initial MO concentration and effect of sunlight) on degradation performance was investigated. For the first time, citric acid chemistry is successfully exploited to develop a photocatalyst that can successfully degrade the dyes. This citric acid functionalized magnetic ferrite nanoparticles are very much effective for photocalytic degradation of dye and also these can be recollected with the help of permanent magnet for successive uses.

  7. Correlation of spin and structure in doped bismuth ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Lin, J. W.; Tite, Teddy; Tang, Y. H.; Lue, C. S.; Chang, Y. M.; Lin, J. G.

    2012-04-01

    The mutiferroic Bi1-xEuxFeO3 nanoparticles with x = 0 to 0.4 are studied by x-ray diffraction (XRD), Raman spectra and electron spin resonance (ESR) with X-band (9.53 GHz), in order to investigate the doping effect on crystalline and spin structures. Both XRD and Raman spectrum reveal a structural transformation at x = 0.15, which is associated with the shortening of Bi—O bond length. These structural data are further related to the variation of ESR peak position and peak area, providing evidence for the enhancement of ferromagnetic coupling as x < 0.3.

  8. HRTEM Study of Oxide Nanoparticles in K3-ODS Ferritic Steel Developed for Radiation Tolerance

    SciTech Connect

    Hsiung, L; Fluss, M; Tumey, S; Kuntz, J; El-Dasher, B; Wall, M; Choi, W; Kimura, A; Willaime, F; Serruys, Y

    2009-11-02

    Crystal and interfacial structures of oxide nanoparticles and radiation damage in 16Cr-4.5Al-0.3Ti-2W-0.37 Y{sub 2}O{sub 3} ODS ferritic steel have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. Oxide nanoparticles with a complex-oxide core and an amorphous shell were frequently observed. The crystal structure of complex-oxide core is identified to be mainly monoclinic Y{sub 4}Al{sub 2}O{sub 9} (YAM) oxide compound. Orientation relationships between the oxide and the matrix are found to be dependent on the particle size. Large particles (> 20 nm) tend to be incoherent and have a spherical shape, whereas small particles (< 10 nm) tend to be coherent or semi-coherent and have a faceted interface. The observations of partially amorphous nanoparticles and multiple crystalline domains formed within a nanoparticle lead us to propose a three-stage mechanism to rationalize the formation of oxide nanoparticles containing core/shell structures in as-fabricated ODS steels. Effects of nanoparticle size and density on cavity formation induced by (Fe{sup 8+} + He{sup +}) dual-beam irradiation are briefly addressed.

  9. HRTEM Study of the Role of Nanoparticles in ODS Ferritic Steel

    SciTech Connect

    Hsiung, L; Tumey, S; Fluss, M; Serruys, Y; Willaime, F

    2011-08-30

    Structures of nanoparticles and their role in dual-ion irradiated Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y{sub 2}O{sub 3} (K3) ODS ferritic steel produced by mechanical alloying (MA) were studied using high-resolution transmission electron microscopy (HRTEM) techniques. The observation of Y{sub 4}Al{sub 2}O{sub 9} complex-oxide nanoparticles in the ODS steel imply that decomposition of Y{sub 2}O{sub 3} in association with internal oxidation of Al occurred during mechanical alloying. HRTEM observations of crystalline and partially crystalline nanoparticles larger than {approx}2 nm and amorphous cluster-domains smaller than {approx}2 nm provide an insight into the formation mechanism of nanoparticles/clusters in MA/ODS steels, which we believe involves solid-state amorphization and re-crystallization. The role of nanoparticles/clusters in suppressing radiation-induced swelling is revealed through TEM examinations of cavity distributions in (Fe + He) dual-ion irradiated K3-ODS steel. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoparticle/clusters in dual-ion irradiated K3-ODS are presented.

  10. Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4-18 GHz

    NASA Astrophysics Data System (ADS)

    Ohlan, Anil; Singh, Kuldeep; Chandra, Amita; Dhawan, S. K.

    2008-08-01

    Conducting polymer nanocomposites of polyphenyl amine with barium ferrite nanoparticles (50-70nm) have been synthesized via emulsion polymerization. The complex permittivity, permeability, and microwave absorption properties of the composite were studied in the 12.4-18GHz (Ku band) frequency range. The composite has shown high shielding effectiveness due to absorption (SEA) of 28.9dB (˜99.9%), which strongly depends on dielectric loss, magnetic permeability, and volume fraction of barium ferrite nanoparticles. The high value of SEA suggests that these composites can be used as a promising radar absorbing materials.

  11. Influence of spherical assembly of copper ferrite nanoparticles on magnetic properties: orientation of magnetic easy axis.

    PubMed

    Chatterjee, Biplab K; Bhattacharjee, Kaustav; Dey, Abhishek; Ghosh, Chandan K; Chattopadhyay, Kalyan K

    2014-06-01

    The magnetic properties of copper ferrite (CuFe2O4) nanoparticles prepared via sol-gel auto combustion and facile solvothermal method are studied focusing on the effect of nanoparticle arrangement. Randomly oriented CuFe2O4 nanoparticles (NP) are obtained from the sol-gel auto combustion method, while the solvothermal method allows us to prepare iso-oriented uniform spherical ensembles of CuFe2O4 nanoparticles (NS). X-ray diffractometry (XRD), atomic absorption spectroscopy (AAS), infra-red (IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), (57)Fe Mössbauer spectroscopy and vibrating sample magnetometer (VSM) are used to investigate the composition, microstructure and magnetic properties of as-prepared ferrite nanoparticles. The field-dependent magnetization measurement for the NS sample at low temperature exhibits a step-like rectangular hysteresis loop (M(R)/M(S) ~ 1), suggesting cubic anisotropy in the system, whereas for the NP sample, typical features of uniaxial anisotropy (M(R)/M(S) ~ 0.5) are observed. The coercive field (HC) for the NS sample shows anomalous temperature dependence, which is correlated with the variation of effective anisotropy (K(E)) of the system. A high-temperature enhancement of H(C) and K(E) for the NS sample coincides with a strong spin-orbit coupling in the sample as evidenced by significant modification of Cu/Fe-O bond distances. The spherical arrangement of nanocrystals at mesoscopic scale provokes a high degree of alignment of the magnetic easy axis along the applied field leading to a step-like rectangular hysteresis loop. A detailed study on the temperature dependence of magnetic anisotropy of the system is carried out, emphasizing the influence of the formation of spherical iso-oriented assemblies. PMID:24714977

  12. Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: Effect of nickel concentration

    SciTech Connect

    Velhal, Ninad B.; Patil, Narayan D.; Puri, Vijaya R.; Shelke, Abhijeet R.; Deshpande, Nishad G.

    2015-09-15

    Nickel substituted cobalt ferrite nanoparticles with composition Co{sub 1−x}Ni{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 1.0) was synthesized using simple, low temperature auto combustion method. The X-ray diffraction patterns reveal the formation of cubic phase spinel structure. The crystallite size varies from 30-44 nm with the nickel content. Porous and agglomerated morphology of the bulk sample was displayed in the scanning electron microscopy. Micro Raman spectroscopy reveals continuous shift of E{sub g} and E{sub g}(2) stokes line up to 0.8 Ni substitution. The dispersion behavior of the dielectric constant with frequency and the semicircle nature of the impedance spectra show the cobalt nickel ferrite to have high resistance. The ferromagnetic nature is observed in all the samples, however, the maximum saturation magnetization was achieved by the 0.4 Ni substituted cobalt ferrite, which is up to the 92.87 emu/gm at 30K.

  13. Magnetic Properties of Cobalt-Ferrite Nanoparticles Prepared by a Sol-Gel Synthesis Technique

    NASA Astrophysics Data System (ADS)

    Ekiert, Thomas; Unruh, Karl; Carpenter, E.; Pettigrew, K.; Long, J.; Rolison, D.

    2007-03-01

    Cobalt-ferrite nanoparticles have been prepared as highly porous aerogels using a sol-gel technique and characterized by XRD, TEM, and nitrogen-sorption porosimetry measurements. The XRD patterns for calcined Co-ferrite aerogels corresponded to a cubic structure with a lattice parameter near that of bulk Co-ferrite and a particle size of about 6 nm. TEM images indicated a similar particle size and a morphology similar to that of silica aerogels. The magnetic properties of these materials have been studied from 5 K to 340 K. Hysteresis loop measurements indicated that the coercivity and saturation magnetization of these materials evolves from nearly 19 kOe and 56 emu/g at 5 K to less than 10 Oe and 40 emu/g at 340 K. ZFC magnetization curves displayed a broad maximum that smoothly varied between about 300 K in an applied field of 100 Oe to about 180 K in a 10 kOe field. These measurements have been interpreted in terms of a distribution of effective particle sizes arising from a distribution in interparticle interactions.

  14. Structural and morphological studies of manganese substituted CoFe2O4 and NiFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ranjith kumar, E.; Jayaprakash, R.; Patel, Rajesh

    2013-10-01

    Nanocrystalline manganese substituted cobalt and nickel ferrites have been synthesized through the evaporation method by using egg white. These powders were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The XRD pattern of manganese substituted spinel ferrites contains some impurity peaks, which are the decomposition of the ferrites to α-Fe2O3 phase at higher annealing temperature. The microstructure and particle size of the annealed sample analyzed by TEM, which gives the particle size well with XRD. The magnetic properties were measured using Vibrating Sample Magnetometer (VSM). The surface/near-surface chemical states of the nanocrystalline manganese substituted cobalt and nickel ferrites are analyzed by XPS within a range of binding energies of 0-1000 eV.

  15. Manganese-enhanced MRI of rat brain based on slow cerebral delivery of manganese(II) with silica-encapsulated Mn x Fe(1-x) O nanoparticles.

    PubMed

    Chen, Wei; Lu, Fang; Chen, Chiao-Chi V; Mo, Kuan-Chi; Hung, Yann; Guo, Zhi-Xuan; Lin, Chia-Hui; Lin, Ming-Huang; Lin, Yu-Hsuan; Chang, Chen; Mou, Chung-Yuan

    2013-09-01

    In this work, we report a monodisperse bifunctional nanoparticle system, MIO@SiO2 -RITC, as an MRI contrast agent [core, manganese iron oxide (MIO); shell, amorphous silica conjugated with rhodamine B isothiocyanate (RITC)]. It was prepared by thermal decomposition and modified microemulsion methods. The nanoparticles with varying iron to manganese ratios displayed different saturated magnetizations and relaxivities. In vivo MRI of rats injected intravenously with MIO@SiO2-RITC nanoparticles exhibited enhancement of the T1 contrast in brain tissue, in particular a time-delayed enhancement in the hippocampus, pituitary gland, striatum and cerebellum. This is attributable to the gradual degradation of MIO@SiO2-RITC nanoparticles in the liver, resulting in the slow release of manganese(II) [Mn(II)] into the blood pool and, subsequently, accumulation in the brain tissue. Thus, T1-weighted contrast enhancement was clearly detected in the anatomic structure of the brain as time progressed. In addition, T2*-weighted images of the liver showed a gradual darkening effect. Here, we demonstrate the concept of the slow release of Mn(II) for neuroimaging. This new nanoparticle-based manganese contrast agent allows one simple intravenous injection (rather than multiple infusions) of Mn(II) precursor, and results in delineation of the detailed anatomic neuroarchitecture in MRI; hence, this provides the advantage of the long-term study of neural function. PMID:23526743

  16. Cytotoxicity and physicochemical characterization of iron–manganese-doped sulfated zirconia nanoparticles

    PubMed Central

    Al-Fahdawi, Mohamed Qasim; Rasedee, Abdullah; Al-Qubaisi, Mothanna Sadiq; Alhassan, Fatah H; Rosli, Rozita; El Zowalaty, Mohamed Ezzat; Naadja, Seïf-Eddine; Webster, Thomas J; Taufiq-Yap, Yun Hin

    2015-01-01

    Iron–manganese-doped sulfated zirconia nanoparticles with both Lewis and Brønsted acidic sites were prepared by a hydrothermal impregnation method followed by calcination at 650°C for 5 hours, and their cytotoxicity properties against cancer cell lines were determined. The characterization was carried out using X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Brauner–Emmett–Teller (BET) surface area measurements, X-ray fluorescence, X-ray photoelectron spectroscopy, zeta size potential, and transmission electron microscopy (TEM). The cytotoxicity of iron–manganese-doped sulfated zirconia nanoparticles was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays against three human cancer cell lines (breast cancer MDA-MB231 cells, colon carcinoma HT29 cells, and hepatocellular carcinoma HepG2 cells) and two normal human cell lines (normal hepatocyte Chang cells and normal human umbilical vein endothelial cells [HUVECs]). The results suggest for the first time that iron–manganese-doped sulfated zirconia nanoparticles are cytotoxic to MDA-MB231 and HepG2 cancer cells but have less toxicity to HT29 and normal cells at concentrations from 7.8 μg/mL to 500 μg/mL. The morphology of the treated cells was also studied, and the results supported those from the cytotoxicity study in that the nanoparticle-treated HepG2 and MDA-MB231 cells had more dramatic changes in cell morphology than the HT29 cells. In this manner, this study provides the first evidence that iron–manganese-doped sulfated zirconia nanoparticles should be further studied for a wide range of cancer applications without detrimental effects on healthy cell functions. PMID:26425082

  17. Manganese oxide nanoparticle-assisted laser desorption/ionization mass spectrometry for medical applications

    NASA Astrophysics Data System (ADS)

    Taira, Shu; Kitajima, Kenji; Katayanagi, Hikaru; Ichiishi, Eiichiro; Ichiyanagi, Yuko

    2009-06-01

    We prepared and characterized manganese oxide magnetic nanoparticles (d =5.6 nm) and developed nanoparticle-assited laser desorption/ionization (nano-PALDI) mass spectrometry. The nanoparticles had MnO2 and Mn2O3 cores conjugated with hydroxyl and amino groups, and showed paramagnetism at room temperature. The nanoparticles worked as an ionization assisting reagent in mass spectroscopy. The mass spectra showed no background in the low m/z. The nanoparticles could ionize samples of peptide, drug and proteins (approx. 5000 Da) without using matrix, i.e., 2,5-dihydroxybenzoic acid (DHB), 4-hydroxy-α-cinnamic acid (CHCA) and liquid matrix, as conventional ionization assisting reagents. Post source decay spectra by nano-PALDI mass spectrometry will yield information of the chemical structure of analytes.

  18. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1987-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and deformed layers produced in single-crystal Mn-Zn ferrites under three-body abrasion. The abrasion mechanism of Mn-Zn ferrite changes drastically with the size of abrasive grits. With 15-micron (1000-mesh) SiC grits, abrasion of Mn-Zn ferrite is due principally to brittle fracture; while with 4- and 2-micron (4000- and 6000-mesh) SiC grits, abrasion is due to plastic deformation and fracture. Both microcracking and plastic flow produce polycrystalline states on the wear surfaces of single-crystal Mn-Zn ferrites. Coefficient of wear, total thickness of the deformed layers, and surface roughness of the wear surfaces increase markedly with an increase in abrasive grit size. The total thicknesses of the deformed layers are 3 microns for the ferrite abraded by 15-micron SiC, 0.9 microns for the ferrite abraded by 4-micron SiC, and 0.8 microns for the ferrite abraded by 1-micron SiC.

  19. Manganese-containing Prussian blue nanoparticles for imaging of pediatric brain tumors

    PubMed Central

    Dumont, Matthieu F; Yadavilli, Sridevi; Sze, Raymond W; Nazarian, Javad; Fernandes, Rohan

    2014-01-01

    Pediatric brain tumors (PBTs) are a leading cause of death in children. For an improved prognosis in patients with PBTs, there is a critical need to develop molecularly-specific imaging agents to monitor disease progression and response to treatment. In this paper, we describe manganese-containing Prussian blue nanoparticles as agents for molecular magnetic resonance imaging (MRI) and fluorescence-based imaging of PBTs. Our core-shell nanoparticles consist of a core lattice structure that incorporates and retains paramagnetic Mn2+ ions, and generates MRI contrast (both negative and positive). The biofunctionalized shell is comprised of fluorescent avidin, which serves the dual purpose of enabling fluorescence imaging and functioning as a platform for the attachment of biotinylated ligands that target PBTs. The surfaces of our nanoparticles are modified with biotinylated antibodies targeting neuron-glial antigen 2 or biotinylated transferrin. Both neuron-glial antigen 2 and the transferrin receptor are protein markers overexpressed in PBTs. We describe the synthesis, biofunctionalization, and characterization of these multimodal nanoparticles. Further, we demonstrate the MRI and fluorescence imaging capabilities of manganese-containing Prussian blue nanoparticles in vitro. Finally, we demonstrate the potential of these nanoparticles as PBT imaging agents by measuring their organ and brain biodistribution in an orthotopic mouse model of PBTs using ex vivo fluorescence imaging. PMID:24920896

  20. Room temperature optical and dielectric properties of Sr and Ni doped lanthanum ferrite nanoparticles

    SciTech Connect

    Naseem, Swaleha; Khan, Wasi Singh, B. R.; Naqvi, A. H.

    2015-06-24

    Strontium and nickel doped lanthanum ferrite (LaFeO{sub 3}) nanoparticles (NPs) were prepared reverse micelle (RM) and calcinated at 700°C. Microstructural studies were carried by XRD and SEM/EDS techniques. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible spectroscopy and band gap energy was estimated 3.89 eV. Room temperature dielectric constant (ε’) decreases abruptly at lower frequencies owing to the charge transport relaxation time. The observed behavior of the dielectric properties can be attributed on the basis of Koop’s theory based on Maxwell-Wagner’s two layer model in studied nanoparticles.

  1. Screen-printing of ferrite magnetic nanoparticles produced by carbon combustion synthesis of oxides

    NASA Astrophysics Data System (ADS)

    Martirosyan, Karen S.; Dannangoda, Chamath; Galstyan, Eduard; Litvinov, Dmitri

    2012-05-01

    The feasibility of screen-printing process of hard ferrite magnetic nanoparticles produced by carbon combustion synthesis of oxides (CCSO) is investigated. In CCSO, the exothermic oxidation of carbon generates a smolder thermal reaction wave that propagates through the solid reactant mixture converting it to the desired oxides. The complete conversion of hexaferrites occurs using reactant mixtures containing 11 wt. % of carbon. The BaFe12O19 and SrFe12O19 hexaferrites had hard magnetic properties with coercivity of 3 and 4.5 kOe, respectively. It was shown that the synthesized nanoparticles could be used to fabricate permanent magnet structures by consolidating them using screen-printing techniques.

  2. Dielectric properties of polymer composites with the addition of ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kisiel, A.; Konieczny, M.; Zabska, M.

    2016-02-01

    The aim of the work was examination of the dielectric properties of a new type of polymer nanocomposites based on PVDF (polyvinylidene fluoride), or a copolymer P(VDF-HFP) with addition of ferrite nanoparticles. The addition of nanofillers leads not only to the formation of polar ß-phase of PVDF, which shows unique piro-, piezo- and ferroelectric properties used in many applications, but also affects the dielectric and magnetoelectric properties of these nanocomposites. In the work the dielectric properties of polymer composites, such as volume resistivity, permittivity and dielectric loss were investigated Measurements of dielectric parameters were performed in a climate chamber at temperature range of 25-100°C, at selected frequencies in the range 20-200 kHz. The results obtained are valuable not only for an application of this type of nanocomposites in various types of transducers, but also for analysis of the physical phenomena occurring in the polymer composites doped with nanoparticles.

  3. Surface spin-glass in cobalt ferrite nanoparticles dispersed in silica matrix

    NASA Astrophysics Data System (ADS)

    Zeb, F.; Sarwer, W.; Nadeem, K.; Kamran, M.; Mumtaz, M.; Krenn, H.; Letofsky-Papst, I.

    2016-06-01

    Surface effects in cobalt ferrite (CoFe2O4) nanoparticles dispersed in a silica (SiO2) matrix were studied by using AC and DC magnetization. Nanoparticles with different concentration of SiO2 were synthesized by using sol-gel method. Average crystallite size lies in the range 25-34 nm for different SiO2 concentration. TEM image showed that particles are spherical and elongated in shape. Nanoparticles with higher concentration of SiO2 exhibit two peaks in the out-of-phase ac-susceptibility. First peak lies in the high temperature regime and corresponds to average blocking temperature of the nanoparticles. Second peak lies in the low temperature regime and is attributed to surface spin-glass freezing in these nanoparticles. Low temperature peak showed SiO2 concentration dependence and was vanished for large uncoated nanoparticles. The frequency dependence of the AC-susceptibility of low temperature peak was fitted with dynamic scaling law which ensures the presence of spin-glass behavior. With increasing applied DC field, the low temperature peak showed less shift as compared to blocking peak, broaden, and decreased in magnitude which also signifies its identity as spin-glass peak for smaller nanoparticles. M-H loops showed the presence of more surface disorder in nanoparticles dispersed in 60% SiO2 matrix. All these measurements revealed that surface effects become strengthen with increasing SiO2 matrix concentration and surface spins freeze in to spin-glass state at low temperatures.

  4. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles.

    PubMed

    Nonkumwong, Jeeranan; Pakawanit, Phakkhananan; Wipatanawin, Angkana; Jantaratana, Pongsakorn; Ananta, Supon; Srisombat, Laongnuan

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe2O4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe2O4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe2O4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV-visible spectroscopy (UV-vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe2O4 core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV-vis spectra of complete coated MgFe2O4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe2O4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe2O4 core. Both of MgFe2O4 and MgFe2O4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line.

  5. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins

    NASA Astrophysics Data System (ADS)

    Aygar, Gülfem; Kaya, Murat; Özkan, Necati; Kocabıyık, Semra; Volkan, Mürvet

    2015-12-01

    Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni-NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2-CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (-COOH) functional groups were added to the SiO2-CoFe2O4 magnetic nanoparticles through the NH2 groups. After that Nα,Nα-Bis(carboxymethyl)-L-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2-CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3.

  6. Electromagnetic properties of NiZn ferrite nanoparticles and their polymer composites

    SciTech Connect

    Parsons, P.; Duncan, K.; Giri, A. K.; Xiao, J. Q.; Karna, S. P.

    2014-05-07

    The magnetic properties of polycrystalline NiZn ferrite nanoparticles synthesized using a polyol-reduction and coprecipitation reaction methods have been investigated. The effects on magnetization of synthesis approach, chemical composition, processing conditions, and on the size of nanoparticles on magnetization have been investigated. The measured room-temperature magnetization for the as-prepared magnetic nanoparticles (MNP) synthesized via polyol-reduction and coprecipitation is 69 Am{sup 2} kg{sup −1} and 14 Am{sup 2} kg{sup −1}, respectively. X-ray diffraction measurements confirm spinel structure of the particles with an estimated grain size of ∼80 nm obtained from the polyol-reduction and 28 nm obtained from these coprecipitation techniques. Upon calcination under atmospheric conditions at different temperatures between 800 °C and 1000 °C, the magnetization, M, of the coprecipitated MNP increases to 76 Am{sup 2} kg{sup −1} with an estimated grain size of 90 nm. The MNP-polymer nanocomposites made from the synthesized MNP in various loading fraction and high density polyethylene exhibit interesting electromagnetic properties. The measured permeability and permittivity of the magnetic nanoparticle-polymer nanocomposites increases with the loading fractions of the magnetic nanoparticles, suggesting control for impedance matching for antenna applications.

  7. Ultrafast and continuous synthesis of crystalline ferrite nanoparticles in supercritical ethanol.

    PubMed

    Pascu, Oana; Marre, Samuel; Aymonier, Cyril; Roig, Anna

    2013-03-01

    Magnetic nanoparticles (NPs) are of increasing interest in various industrially relevant products. For these, the development of greener and faster approaches facilitating scaling-up production is of paramount importance. Here, we report a novel, green and potentially scalable approach for the continuous and ultrafast (90 s) synthesis of superparamagnetic ferrite NPs (MnFe(2)O(4), Fe(3)O(4)) in supercritical ethanol (scEtOH) at a fairly moderate temperature (260 °C). ScEtOH exhibits numerous advantages such as its production from bio-resources, its lack of toxicity and its relatively low supercritical coordinates (p(c) = 6.39 MPa and T(c) = 243 °C), being therefore appropriate for the development of sustainable technologies. The present study is completed by the investigation of both in situ and ex situ NP surface functionalization. The as-obtained nanoparticles present good crystallinity, sizes below 8 nm, superparamagnetic behavior at room temperature and high saturation magnetization. Moreover, depending on the capping strategy, the ferrite NPs present extended (for in situ coated NPs) or short-term (for ex situ coated NPs) colloidal stability.

  8. Ultrafast and continuous synthesis of crystalline ferrite nanoparticles in supercritical ethanol

    NASA Astrophysics Data System (ADS)

    Pascu, Oana; Marre, Samuel; Aymonier, Cyril; Roig, Anna

    2013-02-01

    Magnetic nanoparticles (NPs) are of increasing interest in various industrially relevant products. For these, the development of greener and faster approaches facilitating scaling-up production is of paramount importance. Here, we report a novel, green and potentially scalable approach for the continuous and ultrafast (90 s) synthesis of superparamagnetic ferrite NPs (MnFe2O4, Fe3O4) in supercritical ethanol (scEtOH) at a fairly moderate temperature (260 °C). ScEtOH exhibits numerous advantages such as its production from bio-resources, its lack of toxicity and its relatively low supercritical coordinates (pc = 6.39 MPa and Tc = 243 °C), being therefore appropriate for the development of sustainable technologies. The present study is completed by the investigation of both in situ and ex situ NP surface functionalization. The as-obtained nanoparticles present good crystallinity, sizes below 8 nm, superparamagnetic behavior at room temperature and high saturation magnetization. Moreover, depending on the capping strategy, the ferrite NPs present extended (for in situ coated NPs) or short-term (for ex situ coated NPs) colloidal stability.

  9. Synthesis of nickel–zinc ferrite magnetic nanoparticle and dye degradation using photocatalytic ozonation

    SciTech Connect

    Mahmoodi, Niyaz Mohammad; Bashiri, Marziyeh; Moeen, Shirin Jebeli

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Nickel–zinc ferrite magnetic nanoparticle (NZFMN) was synthesized and characterized. ► Dye degradation by photocatalytic ozonation using NZFMN was studied. ► Formate, acetate and oxalate were detected as dominant dye degradation aliphatic intermediates. ► Nitrate, sulfate and chloride ions were detected as mineralization products of dyes. ► NZFMN was an effective magnetic nanocatalyst to degrade dyes. -- Abstract: In this paper, nickel–zinc ferrite magnetic nanoparticle (NZFMN) was synthesized and its dye degradation ability using photocatalytic ozonation was investigated. The NZFMN was characterized by X-ray diffraction (XRD), scanning electron microscopic (SEM), Fourier transforms infrared (FTIR) and alternative gradient force magnetometer (AGFM). Reactive Red 198 (RR198) and Direct Green 6 (DG6) were used as dye models. UV–vis and ion chromatography (IC) analyses were employed to study dye degradation. The effects of operational parameters on decolorization such as NZFMN dosage, dye concentration, salt and pH were studied. RR198 and DG6 were completely decolorized (100%) by photocatalytic ozonation using NZFMN. Formate, acetate and oxalate anions were detected as dominant aliphatic intermediates. Nitrate, sulfate and chloride ions were detected as mineralization products of dyes. Results showed that the photocatalytic ozonation using NZFMN was a very effective method for dye degradation.

  10. Mesoporous Silica Nanoparticle-Stabilized and Manganese-Modified Rhodium Nanoparticles as Catalysts for Highly Selective Synthesis of Ethanol and Acetaldehyde from Syngas

    SciTech Connect

    Huang, Yulin; Deng, Weihua; Guo, Enruo; Chung, Po-Wen; Chen, Senniang; Trewyn, Brian; Brown, Robert; Lin, Victor

    2012-03-30

    Well-defined and monodispersed rhodium nanoparticles as small as approximately 2 nm were encapsulated in situ and stabilized in a mesoporous silica nanoparticle (MSN) framework during the synthesis of the mesoporous material. Although both the activity and selectivity of MSN-encapsulated rhodium nanoparticles in CO hydrogenation could be improved by the addition of manganese oxide as expected, the carbon selectivity for C2 oxygenates (including ethanol and acetaldehyde) was unprecedentedly high at 74.5 % with a very small amount of methanol produced if rhodium nanoparticles were modified by manganese oxide with very close interaction.

  11. Magnetic properties of cobalt-ferrite nanoparticles embedded in polystyrene resin

    SciTech Connect

    Vaishnava, P. P.; Senaratne, U.; Buc, E.; Naik, R.; Naik, V. M.; Tsoi, G.; Wenger, L. E.; Boolchand, P.

    2006-04-15

    Samples of maghemite and cobalt-ferrite nanoparticles (sizes, 3-10 nm) were prepared by cross-linking sulfonated polystyrene resin with aqueous solutions of (1) FeCl{sub 2}, (2) 80%FeCl{sub 2}+20%CoCl{sub 2}, (3) FeCl{sub 3}, and (4) 80%FeCl{sub 3}+20%CoCl{sub 2} by volume. Chemical analysis, x-ray powder-diffraction, and {sup 57}Fe Moessbauer spectroscopic measurements show that samples 1 and 3 consist of {gamma}-Fe{sub 2}O{sub 3} nanoparticles (sizes, {approx}10 and 3 nm) and sample 2 and 4 consist of Co{sub x}Fe{sub 3-x}O{sub 4} nanoparticles (sizes, {approx}10 and 4 nm). The temperature dependence of the zero-field-cooled and field-cooled magnetizations at low temperatures, together with a magnetic hysteresis in the M versus H data below blocking temperatures, demonstrate superparamagnetic behavior. The introduction of Co in the iron oxide-resin matrix results in an increase in the blocking temperature of nanoparticles.

  12. Microstructural and Mössbauer properties of low temperature synthesized Ni-Cd-Al ferrite nanoparticles

    PubMed Central

    2011-01-01

    We report the influence of Al3+ doping on the microstructural and Mössbauer properties of ferrite nanoparticles of basic composition Ni0.2Cd0.3Fe2.5 - xAlxO4 (0.0 ≤ x ≤ 0.5) prepared through simple sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray, transmission electron microscopy (TEM), Fourier transformation infrared (FTIR), and Mössbauer spectroscopy techniques were used to investigate the structural, chemical, and Mössbauer properties of the grown nanoparticles. XRD results confirm that all the samples are single-phase cubic spinel in structure excluding the presence of any secondary phase corresponding to any structure. SEM micrographs show the synthesized nanoparticles are agglomerated but spherical in shape. The average crystallite size of the grown nanoparticles was calculated through Scherrer formula and confirmed by TEM and was found between 2 and 8 nm (± 1). FTIR results show the presence of two vibrational bands corresponding to tetrahedral and octahedral sites. Mössbauer spectroscopy shows that all the samples exhibit superparamagnetism, and the quadrupole interaction increases with the substitution of Al3+ ions. PMID:21851597

  13. Effect of surface coating on magnetic properties of cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Chithra, M.; Anumol, C. N.; Sahoo, Subasa C.

    2016-05-01

    Cobalt ferrite nanoparticles were synthesized by coprecipitation method with and without surface coating. Oleic acid and citric acid were used as the surfactant during synthesis of nanoparticles. The sample prepared without coating and with (1M) oleic acid as surfactant showed crystalline nature whereas the sample prepared with (1M) citric acid was X-ray amorphous. The grain size was decreased with the addition of surfactant during synthesis. It was also observed that with the decrease in concentration of citric acid, grain size was increased. The sample prepared with (1M) citric acid was superparamagnetic and the other samples were ferrimagnetic in nature with magnetization value less than the bulk value of 80emu/g at 300K. Magnetization, remanence and coercivity values were decreased in the samples prepared with coating in comparison to the sample prepared without coating. As the temperature decreased from 300K to 60K all the magnetic properties mentioned above were enhanced. The observed magnetic properties of these nanoparticles can be attributed to the grain size, effect of surface coating and magnetic interactions in these nanoparticles.

  14. In-situ high-pressure x-ray diffraction study of zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ferrari, S.; Kumar, R. S.; Grinblat, F.; Aphesteguy, J. C.; Saccone, F. D.; Errandonea, D.

    2016-06-01

    We have studied the high-pressure structural behavior of zinc ferrite (ZnFe2O4) nanoparticles by powder X-ray diffraction measurements up to 47 GPa. We found that the cubic spinel structure of ZnFe2O4 remains up to 33 GPa and a phase transition is induced beyond this pressure. The high-pressure phase is indexed to an orthorhombic CaMn2O4-type structure. Upon decompression the low- and high-pressure phases coexist. The compressibility of both structures was also investigated. We have observed that the lattice parameters of the high-pressure phase behave anisotropically upon compression. Further, we predict possible phase transition around 55 GPa. For comparison, we also studied the compression behavior of magnetite (Fe3O4) nanoparticles by X-ray diffraction up to 23 GPa. Spinel-type ZnFe2O4 and Fe3O4 nanoparticles have a bulk modulus of 172 (20) GPa and 152 (9) GPa, respectively. This indicates that in both cases the nanoparticles do not undergo a Hall-Petch strengthening.

  15. Synthesis of manganese spinel nanoparticles at room temperature by coprecipitation

    SciTech Connect

    Giovannelli, F.; Autret-Lambert, C.; Mathieu, C.; Chartier, T.; Delorme, F.; Seron, A

    2012-08-15

    This paper is focused on a new route to synthesize Mn{sub 3}O{sub 4} nanoparticles by alkalisation by sodium hydroxide on a manganeous solution at room temperature. The precipitates obtained at different pH values have been characterized by XRD and TEM. Since the first addition of sodium hydroxide, a white Mn(OH){sub 2} precipitate appears. At pH=7, {gamma}-MnOOH phase is predominant with needle like shaped particles. At pH=10, hausmanite nanoparticles, which exhibits well defined cubic shape in the range 50-120 nm are obtained. This new precipitation route is a fast and easy environmentally friendly process to obtain well crystallized hausmanite nanoparticles. - Graphical abstract: TEM image showing Mn{sub 3}O{sub 4} particles after a precipitation at pH=10. Highlights: Black-Right-Pointing-Pointer A new route to synthesize Mn{sub 3}O{sub 4} nanoparticles has been demonstrated. Black-Right-Pointing-Pointer Synthesis has been performed by precipitation at room temperature. Black-Right-Pointing-Pointer The size of the Mn{sub 3}O{sub 4} nanoparticles is between 50 and 120 nm.

  16. Plant extract-mediated biogenic synthesis of silver, manganese dioxide, silver-doped manganese dioxide nanoparticles and their antibacterial activity against food- and water-borne pathogens.

    PubMed

    Krishnaraj, Chandran; Ji, Byoung-Jun; Harper, Stacey L; Yun, Soon-Il

    2016-05-01

    Silver nanoparticles (AgNPs), manganese dioxide nanoparticles (MnO₂NPs) and silver-doped manganese dioxide nanoparticles (Ag-doped MnO₂NPs) were synthesized by simultaneous green chemistry reduction approach. Aqueous extract from the leaves of medicinally important plant Cucurbita pepo was used as reducing and capping agents. Various characterization techniques were carried out to affirm the formation of nanoparticles. HR-TEM analysis confirmed the size of nanoparticles in the range of 15-70 nm and also metal doping was confirmed through XRD and EDS analyses. FT-IR analysis confirmed that the presence of biomolecules in the aqueous leaves extract was responsible for nanoparticles synthesis. Further, the concentration of metals and their doping in the reaction mixture was achieved by ICP-MS. The growth curve and well diffusion study of synthesized nanoparticles were performed against food- and water-borne Gram-positive and Gram-negative bacterial pathogens. The mode of interaction of nanoparticles on bacterial cells was demonstrated through Bio-TEM analysis. Interestingly, AgNPs and Ag-doped MnO₂NPs showed better antibacterial activity against all the tested bacterial pathogens; however, MnO₂NPs alone did not show any antibacterial properties. Hence, AgNPs and Ag-doped MnO₂NPs synthesized from aqueous plant leaves extract may have important role in controlling various food spoilage caused by bacteria. PMID:26857369

  17. Nanotoxicological study of polyol-made cobalt-zinc ferrite nanoparticles in rabbit.

    PubMed

    Hanini, Amel; Massoudi, Mohamed El; Gavard, Julie; Kacem, Kamel; Ammar, Souad; Souilem, Ouajdi

    2016-07-01

    The increasing use of engineered nanomaterials in commercial manufacturing and consumer products presents an important toxicological concern. Superparamagnetic zinc-cobalt ferrite nanoparticles (SFN) emerge as a promising tool for early cancer diagnostics and targeted therapy. However, toxicity and biological activities of SFN should be evaluated in vitro and in vivo in animal before any clinical application. In this study we aim to synthesize and characterize such objects using polyol process in order to assess its nanotoxicological profile in vitro as well as in vivo. The produced particles consist of a cobalt-zinc ferrite phase corresponding to the Zn0.8Co0.2Fe2O4 composition. They are isotropic in shape single crystals of 8nm in size. The thermal variation of their dc-magnetization confirms their superparamagnetic behavior. In vitro, acute exposure (4h) to them (100μgmL(-1)) induced an important decrease of healthy Human Umbilical Vein Endothelial Cells (HUVECs) viability. In vivo investigation in New-Zealand rabbits revealed that they lead to tissue toxicities; in lungs, liver and kidneys. Our investigations report, for the first time as far as we know, that SFN exhibit harmful properties in human cells and mammals.

  18. Solar photocatalytic degradation of RB5 by ferrite bismuth nanoparticles synthesized via ultrasound.

    PubMed

    Soltani, T; Entezari, M H

    2013-09-01

    In this paper, the photocatalytic degradation of Reactive Black 5 (RB5) was investigated with ferrite bismuth synthesized via ultrasound under direct sunlight irradiation. The intensity of absorption peaks of RB5 gradually decreased by increasing the irradiation time and finally vanished in 50 min in acidic medium. The formation of new intermediate was observed in basic medium. The relative concentration of RB5 in solution and on the surface of ferrite bismuth (BiFeO3) nanoparticles was considered during the experiment in acidic and basic media. The effects of various parameters such as amount of catalyst, concentration of dye, and pH of the solution have been studied on the dye degradation. The adsorption isotherm and the kinetic of photocatalytic degradation of RB5 were investigated. The adsorption constants in the dark and in the presence of sunlight irradiation were compared. The photocatalytic degradation mechanism of RB5 has been evaluated through the addition of some scavengers to the solution. In addition, the stability and reusability of the catalyst were examined in this work.

  19. Nanotoxicological study of polyol-made cobalt-zinc ferrite nanoparticles in rabbit.

    PubMed

    Hanini, Amel; Massoudi, Mohamed El; Gavard, Julie; Kacem, Kamel; Ammar, Souad; Souilem, Ouajdi

    2016-07-01

    The increasing use of engineered nanomaterials in commercial manufacturing and consumer products presents an important toxicological concern. Superparamagnetic zinc-cobalt ferrite nanoparticles (SFN) emerge as a promising tool for early cancer diagnostics and targeted therapy. However, toxicity and biological activities of SFN should be evaluated in vitro and in vivo in animal before any clinical application. In this study we aim to synthesize and characterize such objects using polyol process in order to assess its nanotoxicological profile in vitro as well as in vivo. The produced particles consist of a cobalt-zinc ferrite phase corresponding to the Zn0.8Co0.2Fe2O4 composition. They are isotropic in shape single crystals of 8nm in size. The thermal variation of their dc-magnetization confirms their superparamagnetic behavior. In vitro, acute exposure (4h) to them (100μgmL(-1)) induced an important decrease of healthy Human Umbilical Vein Endothelial Cells (HUVECs) viability. In vivo investigation in New-Zealand rabbits revealed that they lead to tissue toxicities; in lungs, liver and kidneys. Our investigations report, for the first time as far as we know, that SFN exhibit harmful properties in human cells and mammals. PMID:27375215

  20. Effect of Ni2+ substitution on structural and magnetic properties of Ni-Zn ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinivas, Ch.; Tirupanyam, B. V.; Satish, A.; Seshubai, V.; Sastry, D. L.; Caltun, O. F.

    2015-05-01

    A series of co-precipitated NixZn1-xFe2O4 (x=0.5, 0.6, 0.7) ferrite nanoparticles heat treated at 200 °C were produced in order to understand the influence of substitution level on structural and magnetic properties including magnetocrystalline anisotropy. The XRD, FE-SEM, VSM and FC-ZFC techniques were used to characterize the samples. It is observed that as Ni2+ concentration increases crystallite size (D), saturation magnetization (Ms) and blocking temperature (TB) and decreases coercive field (Hc). All particles exhibit superparamagnetism at room temperature and hence lie in the single domain range. The magnetic anisotropy constant (K) is estimated to be maximum for Ni0.5Zn0.5Fe2O4 sample, whose particle size is the smallest. The results are interpreted presuming the presence of core shell interactions and/or cation redistribution that influence the magnetic properties of these ferrite nano particles.

  1. Influence of Ce-Substitution on Structural, Magnetic and Electrical Properties of Cobalt Ferrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hashhash, A.; Kaiser, M.

    2016-01-01

    Nano-crystalline samples of cerium substituted cobalt ferrites with chemical formula CoCe x Fe2- x O4 (0.0 ≤ x ≤ 0.1) were prepared using the citrate auto-combustion method. The prepared ferrites were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy spectra (FTIR), transmission electron microscopy (TEM), and a vibrating sample magnetometer (VSM). The XRD patterns and FTIR spectra confirm that the prepared samples reveal the formation of a single-phase spinel structure. TEM micrographs showed that the particles are made up of spherical and elongated nano-metric shapes. A limitation of the size of nanoparticles is observed as the Ce3+ concentration increases. VSM measurements showed that the coercivity H c and magnetization values M s are strongly dependent on Ce3+ content and particle size. The values of H c lie in the range of (411-1600 G), which suggest that these samples are convenient for different applications. The alternating current electrical conductivity ( σ), dielectric permittivities ( ɛ', ɛ″), and dielectric loss tangent (tan δ) were studied at different ranges of frequency and temperature. The relation of conductivity with temperature revealed a semiconductor to semi-metallic behavior as cerium concentration increases. The variation in (tan δ) with frequency at different temperature shows abnormal behavior with more than one relaxation peak. The conduction mechanism used in the present study has been discussed in the light of cation-anion-cation interactions over the octahedral B-site.

  2. Solar photocatalytic degradation of RB5 by ferrite bismuth nanoparticles synthesized via ultrasound.

    PubMed

    Soltani, T; Entezari, M H

    2013-09-01

    In this paper, the photocatalytic degradation of Reactive Black 5 (RB5) was investigated with ferrite bismuth synthesized via ultrasound under direct sunlight irradiation. The intensity of absorption peaks of RB5 gradually decreased by increasing the irradiation time and finally vanished in 50 min in acidic medium. The formation of new intermediate was observed in basic medium. The relative concentration of RB5 in solution and on the surface of ferrite bismuth (BiFeO3) nanoparticles was considered during the experiment in acidic and basic media. The effects of various parameters such as amount of catalyst, concentration of dye, and pH of the solution have been studied on the dye degradation. The adsorption isotherm and the kinetic of photocatalytic degradation of RB5 were investigated. The adsorption constants in the dark and in the presence of sunlight irradiation were compared. The photocatalytic degradation mechanism of RB5 has been evaluated through the addition of some scavengers to the solution. In addition, the stability and reusability of the catalyst were examined in this work. PMID:23466007

  3. Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles

    SciTech Connect

    Raut, Anil V.; Kurmude, D.V.; Shengule, D.R.; Jadhav, K.M.

    2015-03-15

    Highlights: • Co–Zn ferrite nanoparticles were examined before and after γ-irradiation. • Single phase cubic spinel structure of Co–Zn was confirmed by XRD data. • The grain size was reported in the range of 52–62 nm after γ-irradiation. • Ms, Hc, n{sub B} were reported to be increased after gamma irradiation. - Abstract: In this work, the structural and magnetic properties of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 1.0) ferrite nanoparticles were studied before and after gamma irradiation. The as-synthesized samples of Co–Zn ferrite nanoparticles prepared by sol–gel auto-combustion technique were analysed by XRD which suggested the single phase; cubic spinel structure of the material. Crystal defects produced in the spinel lattice were studied before and after Co{sup 60} γ-irradiation in a gamma cell with a dose rate of 0.1 Mrad/h in order to report the changes in structural and magnetic properties of the Co–Zn ferrite nanoparticles. The average crystallite size (t), lattice parameter (α) and other structural parameters of gamma-irradiated and un-irradiated Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite system was calculated from XRD data. The morphological characterizations were performed using scanning electron microscopy (SEM). The magnetic properties were measured using pulse field hysteresis loop tracer by applying magnetic field of 1000 Oe, and the analysis of data obtained revealed that the magnetic property such as saturation magnetization (Ms), coecivity (Hc), magneton number (n{sub B}) etc. magnetic parameters were increased after irradiation.

  4. Synergetic effect of size and morphology of cobalt ferrite nanoparticles on proton relaxivity.

    PubMed

    N, Venkatesha; Srivastava, Chandan; Hegde, Veena

    2014-12-01

    Cobalt ferrite nanoparticles with average sizes of 14, 9 and 6 nm were synthesised by the chemical co-precipitation technique. Average particle sizes were varied by changing the chitosan surfactant to precursor molar ratio in the reaction mixture. Transmission electron microscopy images revealed a faceted and irregular morphology for the as-synthesised nanoparticles. Magnetic measurements revealed a ferromagnetic nature for the 14 and 9 nm particles and a superparamagnetic nature for the 6 nm particles. An increase in saturation magnetisation with increasing particle size was noted. Relaxivity measurements were carried out to determine T2 value as a function of particle size using nuclear magnetic resonance measurements. The relaxivity coefficient increased with decrease in particle size and decrease in the saturation magnetisation value. The observed trend in the change of relaxivity value with particle size was attributed to the faceted nature of as-synthesised nanoparticles. Faceted morphology results in the creation of high gradient of magnetic field in the regions adjacent to the facet edges increasing the relaxivity value. The effect of edges in increasing the relaxivity value increases with decrease in the particle size because of an increase in the total number of edges per particle dispersion.

  5. [Preparation and characterization of Mn-Zn ferrite oxygene nanoparticle for tumor thermotherapy].

    PubMed

    Jia, Xiupeng; Zhang, Dongsheng; Zheng, Jie; Gu, Ning; Zhu, Weichang; Fan, Xiangshan; Jin, Liqiang; Wan, Meiling; Li, Qunhui

    2006-12-01

    With the sulfate as the materials and NaOH as precipitator, Mn(0.4)Zn(0.6)Fe2O4 nanoparticles were produced, which are proved to be spinel Mn-Zn ferrite analyzed by X-ray diffraction(XRD). Their shapes are approximately global examined by transmission electron microscopy(TEM) and their average diameter is 50 nm measured with image analysis-system. The Curie temperature was measured and in vitro heating test in a alternating magnetic field was carried out. The results show that the Curie temperature is 105. 407 degrees C, While its magnetic fluid could rise to 43 degrees C - 47 degrees C due to different concentration in a alternating magnetic field. The result provide theoretical and practical evidence to select an appropriate material and concentration for tumor

  6. Fabrication of a glucose biosensor based on citric acid assisted cobalt ferrite magnetic nanoparticles.

    PubMed

    Krishna, Rahul; Titus, Elby; Chandra, Sudeshna; Bardhan, Neel Kanth; Krishna, Rohit; Bahadur, Dhirendra; Gracio, José

    2012-08-01

    A novel and practical glucose biosensor was fabricated with immobilization of Glucose oxidase (GOx) enzyme on the surface of citric acid (CA) assisted cobalt ferrite (CF) magnetic nanoparticles (MNPs). This innovative sensor was constructed with glassy carbon electrode which is represented as (GOx)/CA-CF/(GCE). An explicit high negative zeta potential value (-22.4 mV at pH 7.0) was observed on the surface of CA-CF MNPs. Our sensor works on the principle of detection of H2O2 which is produced by the enzymatic oxidation of glucose to gluconic acid. This sensor has tremendous potential for application in glucose biosensing due to the higher sensitivity 2.5 microA/cm2-mM and substantial increment of the anodic peak current from 0.2 microA to 10.5 microA.

  7. Experimental studies of cobalt ferrite nanoparticles doped silica matrix 3D magneto-photonic crystals

    NASA Astrophysics Data System (ADS)

    Abou Diwan, E.; Royer, F.; Kekesi, R.; Jamon, D.; Blanc-Mignon, M. F.; Neveu, S.; Rousseau, J. J.

    2013-05-01

    In this paper, we present the synthesis and the optical properties of 3D magneto-photonic structures. The elaboration process consists in firstly preparing then infiltrating polystyrene direct opals with a homogeneous solution of sol-gel silica precursors doped by cobalt ferrite nanoparticles, and finally dissolving the polystyrene spheres. Scanning Electron Microscopy (SEM) images of the prepared samples clearly evidence a periodic arrangement. Using a home-made polarimetric optical bench, the transmittance as a function of the wavelength, the Faraday rotation as a function of the applied magnetic field, and the Faraday ellipticity as a function of the wavelength and as a function of the applied magnetic field were measured. The existence of deep photonic band gaps (PBG), the unambiguous magnetic character of the samples and the qualitative modification of the Faraday ellipticity in the area of the PBG are evidenced.

  8. Study Of Structural And Dielectric Properties Of Ni-Mg Ferrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Nongjai, Razia; Batoo, Khalid Mujasam; Khan, Shakeel

    2010-12-01

    Ferrite nanoparticles of basic composition Ni0.7Mg0.3Fe2-xAlxO4 (0.0≤x≤0.5) were prepared through citrate gel method and characterized using XRD, TEM and dielectric spectroscopy techniques. The dielectric properties were studied as a function of frequency (42 Hz-5 MHz) at room temperature. The average particle size has been found between 8-17 nm. The dispersion in dielectric properties and ac conductivity (σac), with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and the hopping of charge between Fe2+ and Fe3+ as well as between Ni2+ and Ni3+ ions at B-sites. The dielectric loss tangent (tan δ) shows abnormal behavior for the compositions 0.3, 0.4 and 0.5 which has been explained in the light of Rezlescue model.

  9. Polyethylene glycol coated CoFe{sub 2}O{sub 4} nanoparticles: A potential spinel ferrite for biomedical applications

    SciTech Connect

    Humbe, Ashok V.; Birajdar, Shankar D.; Jadhav, K. M.; Bhandari, J. M.; Waghule, N. N.; Bhagwat, V. R.

    2015-06-24

    The structural and magnetic properties of the polyethylene glycol (PEG) coated cobalt spinel ferrite (CoFe{sub 2}O{sub 4}) nanoparticles have been reported in the present study. CoFe{sub 2}O{sub 4} nanoparticles were prepared by sol-gel auto-combustion method using citric acid + ethylene glycol as a fuel. The prepared powder of cobalt ferrite nanoparticles was annealed at 600°C for 6h and used for further study. The structural characterization of CoFe{sub 2}O{sub 4} nanoparticles were carried out by X-ray diffraction technique. The X-ray analysis confirmed the formation of single phase cubic spinel structure. The crystallite size, Lattice constant and X-ray density of the PEG coated CoFe{sub 2}O{sub 4} nanoparticles were calculated by using XRD data. The presence of PEG on CoFe{sub 2}O{sub 4} nanoparticles and reduced agglomeration in the CoFe{sub 2}O{sub 4} nanoparticles were revealed by SEM studies. The magnetic properties were studied by pulse field hysteresis loop tracer technique at a room temperature. The magnetic parameters such as saturation magnetization, remanence magnetization, coercivity etc have been obtained. These magnetic parameters were get decreased by PEG coating.

  10. Polyethylene glycol coated CoFe2O4 nanoparticles: A potential spinel ferrite for biomedical applications

    NASA Astrophysics Data System (ADS)

    Humbe, Ashok V.; Birajdar, Shankar D.; Bhandari, J. M.; Waghule, N. N.; Bhagwat, V. R.; Jadhav, K. M.

    2015-06-01

    The structural and magnetic properties of the polyethylene glycol (PEG) coated cobalt spinel ferrite (CoFe2O4) nanoparticles have been reported in the present study. CoFe2O4 nanoparticles were prepared by sol-gel auto-combustion method using citric acid + ethylene glycol as a fuel. The prepared powder of cobalt ferrite nanoparticles was annealed at 600°C for 6h and used for further study. The structural characterization of CoFe2O4 nanoparticles were carried out by X-ray diffraction technique. The X-ray analysis confirmed the formation of single phase cubic spinel structure. The crystallite size, Lattice constant and X-ray density of the PEG coated CoFe2O4 nanoparticles were calculated by using XRD data. The presence of PEG on CoFe2O4 nanoparticles and reduced agglomeration in the CoFe2O4 nanoparticles were revealed by SEM studies. The magnetic properties were studied by pulse field hysteresis loop tracer technique at a room temperature. The magnetic parameters such as saturation magnetization, remanence magnetization, coercivity etc have been obtained. These magnetic parameters were get decreased by PEG coating.

  11. Sapindus mukorossi mediated green synthesis of some manganese oxide nanoparticles interaction with aromatic amines

    NASA Astrophysics Data System (ADS)

    Jassal, Vidhisha; Shanker, Uma; Gahlot, Sweta; Kaith, B. S.; Kamaluddin; Iqubal, Md Asif; Samuel, Pankaj

    2016-04-01

    A green route was successfully used to synthesize some manganese oxides (MO) nanoparticles like MnO2, Mn2O3 and Mn3O4 with varied Mn/O ratio. This approach involved utilization of Sapindus mukorossi (raw reetha)-water as a natural surfactant-solvent system. The most important feature of present work was that during the synthesis of nanoparticles, no harmful toxic solvent or chemicals were used in order to follow the principles of green chemistry. The size of nanoparticles was recorded below 100 nm with different shapes and morphologies. MnO2 nanoparticles were found to have needle shape, Mn2O3: spherical and Mn3O4: cubic shape. The synthesized nanoparticles were characterized by powder X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The synthesized MO nanoparticles were found to act as a solid support cum catalysts for the oxidation and polymerization of some aromatic amines like p-anisidine, p-toluidine, p-chloroaniline and aniline.

  12. The segregation behavior of manganese and silicon at the coherent interfaces of copper precipitates in ferritic steels

    NASA Astrophysics Data System (ADS)

    Xie, Yao-Ping; Zhao, Shi-Jin

    2014-02-01

    We have performed first-principles calculations to study the segregation behavior of Mn and Si at the interfaces of Cu precipitates in ferritic steels. We find that both the segregation energies of substitutional Mn and Si at the interfaces of the Cu precipitates are negligible. However, the energetics indicate that the self-interstitial dumbbells containing Mn or Si (Mn@SI or Si@SI)

  13. The magnetic properties of plasma-sprayed thick-film manganese zinc ferrite (MZF) and nickel iron alloy (Permalloy) composites

    SciTech Connect

    Liang, S.; Gambino, R. J.; Sampath, S.; Raja, M. M.

    2006-04-15

    MnZn ferrite/Permalloy composites have potential in high frequency magnetic applications and can be made into thick-film devices by air plasma spray. The as-sprayed composites have lower saturation magnetization than the starting powder. After annealing below 600 deg. C, the magnetic properties and electrical resistivity improve significantly. The changes in magnetic and electrical properties were correlated to structural changes and studied by x-ray-diffraction analysis, vibrating-sample magnetometer measurements, and microstructural analysis.

  14. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device

    PubMed Central

    Nayek, Prasenjit; Li, Guoqiang

    2015-01-01

    A superior electro-optic (E-O) response has been achieved when multiferroic bismuth ferrite (BiFeO3/BFO) nanoparticles (NPs) were doped in nematic liquid crystal (NLC) host E7 and the LC device was addressed in the large signal regime by an amplitude modulated square wave signal at the frequency of 100 Hz. The optimized concentration of BFO is 0.15 wt%, and the corresponding total optical response time (rise time + decay time) for a 5 μm-thick cell is 2.5 ms for ~7 Vrms. This might be exploited for the construction of adaptive lenses, modulators, displays, and other E-O devices. The possible reason behind the fast response time could be the visco-elastic constant and restoring force imparted by the locally ordered LCs induced by the multiferroic nanoparticles (MNPs). Polarized optical microscopic textural observation shows that the macroscopic dislocation-free excellent contrast have significant impact on improving the image quality and performance of the devices. PMID:26041701

  15. Mössbauer spectroscopy, magnetic characteristics, and reflection loss analysis of nickel-strontium substituted cobalt ferrite nanoparticles

    SciTech Connect

    Ghasemi, Ali; Paesano, Andrea; Cerqueira Machado, Carla Fabiana; Shirsath, Sagar E.; Liu, Xiaoxi; Morisako, Akimitsu

    2014-05-07

    In current research work, Co{sub 1-x}Ni{sub x/2}Sr{sub x/2}Fe{sub 2}O{sub 4} (x = 0–1 in a step of 0.2) ferrite nanoparticles were synthesized by a sol-gel method. According to the evolution in the subspectral areas obtained from Mössbauer spectroscopy, it was found that the relaxing iron belongs mostly to the site B, since the Mössbauer fraction of site A does not vary appreciably. With an increase in Ni-Sr substitution contents in cobalt ferrite, the coercivity and saturation of magnetization decrease. Variation of reflection loss versus frequency in microwave X-band demonstrates that the reflection peak shifts to lower frequency by adding substituted cations and the synthesized nanoparticles can be considered for application in electromagnetic wave absorber technology.

  16. Millimeter-wave magneto-dielectric effects in self-assembled ferrite-ferroelectric core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinivasan, G.; Popov, M.; Sreenivasulu, G.; Petrov, V. M.; Chavez, F.

    2015-05-01

    The magneto-dielectric effect (MDE) involves studies on the influence of an applied magnetic field on the dielectric constant of a material. MDEs in self-assembled core-shell nanoparticles of nickel ferrite and barium titanate have been investigated in the millimeter wave frequencies. The core-shell nanocomposites were synthesized by coating 15 nm nickel ferrite and 100 nm barium titanate nanoparticles with complementary coupling groups and allowing them to self-assemble in the presence of a catalyst forming heterogeneous nanocomposites. Studies on MDE in as-assembled particles have been carried out by measurements of the relative permittivity as a function of frequency f under an applied static magnetic field H over 16-24 GHz. Measurements show an H-induced decrease in permittivity by 0.8% for H = 4 kOe and is much stronger than MDE in single phase multiferroics. A model for the high frequency MDE has been discussed here.

  17. The amazing effects and role of PVP on the crystallinity, phase composition and morphology of nickel ferrite nanoparticles prepared by thermal treatment method

    NASA Astrophysics Data System (ADS)

    Goodarz Naseri, Mahmoud; Saion, Elias; Khalil Zadeh, Nasrin

    2013-04-01

    Nickel ferrite nanocrystals were prepared from an aqueous solution containing metal nitrates and various concentrations of poly(vinylpyrrolidone) followed by calcination temperature. X-ray diffraction (XRD) analysis was performed to determine the degree of crystallinity of the ferrite nanoparticles. By transmission electron microscopy, the morphology and average particle size of the nickel ferrite nanoparticles were evaluated which had good agreement with the XRD results. Fourier transform infrared spectroscopy suggested the presence of metal oxide bands in all samples as well as the effective elimination of organic constituents after calcinations. Measurements of the extent of magnetization of the nickel ferrite nanoparticles synthesized in different concentrations were obtained at room temperature using a vibrating sample magnetometer.

  18. Energy Migration Upconversion in Manganese(II)-Doped Nanoparticles.

    PubMed

    Li, Xiyan; Liu, Xiaowang; Chevrier, Daniel M; Qin, Xian; Xie, Xiaoji; Song, Shuyan; Zhang, Hongjie; Zhang, Peng; Liu, Xiaogang

    2015-11-01

    We report the synthesis and characterization of cubic NaGdF4:Yb/Tm@NaGdF4:Mn core-shell structures. By taking advantage of energy transfer through Yb→Tm→Gd→Mn in these core-shell nanoparticles, we have realized upconversion emission of Mn(2+) at room temperature in lanthanide tetrafluoride based host lattices. The upconverted Mn(2+) emission, enabled by trapping the excitation energy through a Gd(3+) lattice, was validated by the observation of a decreased lifetime from 941 to 532 μs in the emission of Gd(3+) at 310 nm ((6)P(7/2)→(8)S(7/2)). This multiphoton upconversion process can be further enhanced under pulsed laser excitation at high power densities. Both experimental and theoretical studies provide evidence for Mn(2+) doping in the lanthanide-based host lattice arising from the formation of F(-) vacancies around Mn(2+) ions to maintain charge neutrality in the shell layer. PMID:26358961

  19. Magnetic Nanoparticles: Synthesis, Characterization and Magnetic Properties of Cobalt Aluminum Ferrite.

    PubMed

    Zaki, H M; Al-Heniti, Saleh H; Al-Hadeethi, Y; Alsanoosi, A M

    2016-05-01

    Nanoparticles of the ferrite system CoFe(2-x)Al(x)O4 (x = 0.0, 0.3, 0.7 and 1.0) were synthesized through the co-precipitation technique. Thermal decomposition process and formation of a single crystalline phase were followed using thermal differential analysis technique (DTA). X-ray powder diffraction patterns of the samples confirmed the formation of a nano-size single spinel phase. The average crystallite size was found to be in the range 20-63 nm for all samples. This was further confirmed by TEM of one of the samples, with concentration x = 1.0 which was found statistically to be 27 nm. This agrees well with the value of 24 nm deduced by means of X-ray diffraction method for the same sample. A considerable decrease in the intensity of the octahedral bands is observed as the aluminum concentration increases, and even vanishes completely at x = 1.0 indicating the migration of cations between the octahedral and tetrahedral sites. The magnetic hysteresis loops at room temperature showed decrease in both, coercivity and saturation magnetization as the non-magnetic Al3+ ions content increases. The relative values of M(r0/M(s) were found to be between 0.44 and 0.31 for the samples with a remarkable change in the squareness of the loops. This is highly beneficial for the microwave and memory devices applications of these nano sized ferrite system. PMID:27483815

  20. Radiation induced structural and magnetic transformations in nanoparticle MnxZn(1-x)Fe2O4 ferrites

    NASA Astrophysics Data System (ADS)

    Naik, P. P.; Tangsali, R. B.; Sonaye, B.; Sugur, S.

    2015-07-01

    Nanoparticle magnetic materials are suitable for multiple modern high end medical applications like targeted drug delivery, gene therapy, hyperthermia and MR thermometry imaging. Majority of these applications are confined to use of Mn-Zn ferrite nanoparticles. These nanoparticles are normally left in the body after their requisite application. Preparing these nanoparticles is usually a much involved job. However with the development of the simple technique MnxZn1-xFe2O4 nanoparticles could be prepared with much ease. The nanoparticles of MnxZn1-xFe2O4 with (x=1.0, 0.7, 0.5, 0.3, 0.0) were prepared and irradiated with gamma radiation of various intensities ranging between 500 R to 10,000 R, after appropriate structural and magnetic characterization. Irradiated samples were investigated for structural and magnetic properties, as well as for structural stability and cation distribution. The irradiated nanoparticles exhibited structural stability with varied cation distribution and magnetic properties, dependent on gamma radiation dose. Surprisingly samples also exhibited quenching of lattice parameter and particle size. The changes introduced in the cation distribution, lattice constant, particle size and magnetic properties were found to be irreversible with time lapse and were of permanent nature exhibiting good stability even after several months. Thus the useful properties of nanoparticles could be enhanced on modifying the cation distribution inside the nanoparticles by application of gamma radiation.

  1. Comparison effects and electron spin resonance studies of α-Fe2O4 spinel type ferrite nanoparticles.

    PubMed

    Bayrakdar, H; Yalçın, O; Cengiz, U; Özüm, S; Anigi, E; Topel, O

    2014-11-11

    α-Fe2O4 spinel type ferrite nanoparticles have been synthesized by cetyltrimethylammonium bromide (CTAB) and ethylenediaminetetraacetic acid (EDTA) assisted hydrothermal route by using NaOH solution. Electron spin resonance (ESR/EPR) measurements of α-Fe2O4 nanoparticles have been performed by a conventional x-band spectrometer at room temperature. The comparison effect of nanoparticles prepared by using CTAB and EDTA in different α-doping on the structural and morphological properties have been investigated in detail. The effect of EDTA-assisted synthesis for α-Fe2O4 nanoparticles are refined, and thus the spectroscopic g-factor are detected by using ESR signals. These samples can be considered as great benefits for magnetic recording media, electromagnetic and drug delivery applications.

  2. The effect of nano-SiO 2 on the magnetic properties of the low power loss manganese-zinc ferrites

    NASA Astrophysics Data System (ADS)

    Nie, Jianhu; Li, Haihua; Feng, Zekun; He, Huahui

    2003-09-01

    The effect of the addition of nano-SiO 2 on the power losses in the manganese-zinc ferrites has been investigated by measuring the magnetic properties and observing the grain boundary structures. The powders of Mn 0.72Zn 0.21Fe 2.07O 4 composition were prepared by using a conventional ceramic powder processing technique. Toroidal cores were sintered at 1340°C for 4 h using a tube furnace with atmosphere controlled by using the equation for equilibrium oxygen partial pressure. The microstructure of grain boundary was observed by AES and SEM. It has been found that the grain boundaries resistivity and magnetic loss are greatly dependent upon the content of nano-SiO 2. There is an optimum content of nano-SiO 2 to produce uniform grain structure and low magnetic loss. The eddy current losses were reduced by the addition of nano-SiO 2. These losses are thought to originate from the additive effect of Si atoms, which are enriched in grain boundaries to form a high resistivity layer and prevent Ca and Nb atoms being incorporated with the spinel lattice.

  3. L-DOPA-Coated Manganese Oxide Nanoparticles as Dual MRI Contrast Agents and Drug-Delivery Vehicles.

    PubMed

    McDonagh, Birgitte Hjelmeland; Singh, Gurvinder; Hak, Sjoerd; Bandyopadhyay, Sulalit; Augestad, Ingrid Lovise; Peddis, Davide; Sandvig, Ioanna; Sandvig, Axel; Glomm, Wilhelm Robert

    2016-01-20

    Manganese oxide nanoparticles (MONPs) are capable of time-dependent magnetic resonance imaging contrast switching as well as releasing a surface-bound drug. MONPs give T2/T2* contrast, but dissolve and release T1-active Mn(2+) and L-3,4-dihydroxyphenylalanine. Complementary images are acquired with a single contrast agent, and applications toward Parkinson's disease are suggested.

  4. Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application

    NASA Astrophysics Data System (ADS)

    Ahmad, Rabia; Hussain Gul, Iftikhar; Zarrar, Muhammad; Anwar, Humaira; khan Niazi, Muhammad Bilal; Khan, Azim

    2016-05-01

    Cadmium substituted cobalt ferrites with formula CdxCo1-xFe2O4 (x=0.0, 0.2, 0.35, 0.5), have been synthesized by wet chemical co-precipitation technique. Electrical, morphological and Structural properties of the samples have been studied using DC electrical resistivity and Impedance analyzer, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD), respectively. XRD, SEM and AFM have been used to study the structural parameters such as measured density, lattice constant, X-ray density, crystallite size and morphology of the synthesized nano-particles. Debye-Scherrer formula has been used for the estimation of crystallite sizes. The estimated crystallite sizes were to be 15-19±2 nm. Hopping length of octahedral and tetrahedral sites have been calculated using indexed XRD data. The porosity and lattice constant increased as Cd2+concentration increases. DC electrical resistivity was performed using two probe technique. The decrease of resistivity with temperature confirms the semiconducting nature of the samples. The dielectric properties variation has been studied at room temperature as a function of frequency. Variation of dielectric properties from 100 Hz to 5 MHz has been explained on the basis of Maxwell and Wagner's model and hoping of electrons on octahedral sites. To separates the grains boundary and grains of the system CdxCo1-xFe2O4 the impedance analysis were performed.

  5. Study Of Structural And Dielectric Properties Of Ni-Mg Ferrite Nanoparticles

    SciTech Connect

    Nongjai, Razia; Batoo, Khalid Mujasam; Khan, Shakeel

    2010-12-01

    Ferrite nanoparticles of basic composition Ni{sub 0.7}Mg{sub 0.3}Fe{sub 2-x}Al{sub x}O{sub 4}(0.0{<=}x{<=}0.5) were prepared through citrate gel method and characterized using XRD, TEM and dielectric spectroscopy techniques. The dielectric properties were studied as a function of frequency (42 Hz-5 MHz) at room temperature. The average particle size has been found between 8-17 nm. The dispersion in dielectric properties and ac conductivity ({sigma}{sub ac}), with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and the hopping of charge between Fe{sup 2+} and Fe{sup 3+} as well as between Ni{sup 2+} and Ni{sup 3+} ions at B-sites. The dielectric loss tangent (tan {delta}) shows abnormal behavior for the compositions 0.3, 0.4 and 0.5 which has been explained in the light of Rezlescue model.

  6. Observation of magnetic anomalies in one-step solvothermally synthesized nickel-cobalt ferrite nanoparticles.

    PubMed

    Datt, Gopal; Sen Bishwas, Mousumi; Manivel Raja, M; Abhyankar, A C

    2016-03-01

    Magnetic anomalies corresponding to the Verwey transition and reorientation of anisotropic vacancies are observed at 151 K and 306 K, respectively, in NiCoFe2O4 nanoparticles (NPs) synthesized by a modified-solvothermal method followed by annealing. Cationic disorder and spherical shape induced non-stoichiometry suppress the Verwey transition in the as-synthesized NPs. On the other hand, reorientation of anisotropic vacancies is quite robust. XRD and electron microscopy investigations confirm a single phase spinel structure and the surface morphology of the as-synthesized NPs changes from spherical to octahedral upon annealing. Rietveld analysis reveals that the Ni(2+) ions migrate from tetrahedral (A) to octahedral (B) sites upon annealing. The Mössbauer results show canted spins in both the NPs and the strength of superexchange is stronger in Co-O-Fe than Ni-O-Fe. Magnetic force images show that the as-synthesised NPs are single-domain whereas the annealed NPs are multi-domain octahedral particles. The FMR study reveals that both the NPs have a broad FMR line-width; and resonance properties are consistent with the random anisotropy model. The broad inhomogeneous FMR line-width, observation of the Verwey transition, tuning of the magnetic domain structure as well as the magnetic properties suggest that the NiCoFe2O4 ferrite NPs may be promising for future generation spintronics, magneto-electronics, and ultra-high-density recording media as well as for radar absorbing applications.

  7. Assessment of Immunotoxicity of Dextran Coated Ferrite Nanoparticles in Albino Mice

    PubMed Central

    Syama, Santhakumar; Gayathri, Viswanathan; Mohanan, Parayanthala Valappil

    2015-01-01

    In this study, dextran coated ferrite nanoparticles (DFNPs) of size <25 nm were synthesized, characterized, and evaluated for cytotoxicity, immunotoxicity, and oxidative stress by in vitro and in vivo methods. Cytotoxicity was performed in vitro using splenocytes with different concentrations of DFNPs. Gene expression of selected cytokines (IL-1, IL-10, and TNF β) secretion by splenocytes was evaluated. Also, 100 mg of DFNPs was injected intraperitoneally to 18 albino mice for immunological stimulations. Six animals each were sacrificed at the end of 7, 14, and 21 days. Spleen was subjected to immunotoxic response and liver was analyzed for antioxidant parameters (lipid peroxidation, reduced glutathione, glutathione peroxidase, superoxide dismutase, and glutathione reductase). The results indicated that DFNPs failed to induce any immunological reactions and no significant alternation in antioxidant defense mechanism. Also, mRNA expression of the cytokines revealed an increase in IL-10 expression and subsequent decreased expression of IL-1 and TNF β. Eventually, DNA sequencing of liver actin gene revealed base alteration in nonconserved regions (10–20 bases) of all the treated groups when compared to control samples. Hence, it can be concluded that the DFNPs were nontoxic at the cellular level and nonimmunotoxic when exposed intraperitoneally to mice. PMID:26576301

  8. Dielectric study of Al3+ substituted Fe3O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumari, N.; Kumar, Vinod; Singh, S. K.

    2014-07-01

    Al3+ substituted nanoparticles i.e., FeAlxFe2-xO4(x = 0.2, 0.4, 0.6) have been synthesized by the chemical co precipitation method. Crystalline phase of synthesized particles was confirmed by XRD pattern. Particle size of as obtained samples was found in the range of 24-34 nm. Dielectric loss (tan δ, dielectric permittivity (ɛ‧) and ac conductivity (σac) were evaluated as a function of frequency, composition and temperature using impedance analyzer in the frequency range of (1000 Hz-5 MHz) and temperature range of (300-473 K). AC conductivity (σac) was found to decrease with increase in Al3+ doping which has been explained on the basis of hopping mechanism. The variation of dielectric loss (tan δ, dielectric permittivity (ɛ‧), ac conductivity (σac) with temperature and frequency can be explained on the basis of Maxwell-Wagner type of interfacial polarization and hopping mechanism between ferrous and ferric ions at the octahedral site. DC electrical resistivity was found to decrease with increasing temperature indicating that the substituted ferrites have semiconductor like behavior. Activation energy was found to increase with increasing Al3+ ion content.

  9. Magnetic phase transitions in ferrite nanoparticles characterized by electron spin resonance

    SciTech Connect

    Flores-Arias, Yesica Vázquez-Victorio, Gabriela; Ortega-Zempoalteca, Raul; Acevedo-Salas, Ulises; Valenzuela, Raul; Ammar, Souad

    2015-05-07

    Ferrite magnetic nanoparticles in the composition Zn{sub 0.7}Ni{sub 0.3}Fe{sub 2}O{sub 4} were synthesized by the polyol method, with an average size of 8 nm. Electron spin resonance (ESR) measurements were carried out at a frequency of 9.45 GHz in the 100–500 K temperature range. Obtained results exhibited a characteristic ESR signal in terms of resonance field, H{sub res}, linewidth, ΔH, and peak ratio, R, for each magnetic phase. At low temperatures, the ferrimagnetic phase showed low H{sub res}, broad ΔH, and asymmetric R. At high temperatures, these parameters exhibited opposite values: high H{sub res}, small ΔH, and R ∼ 1. For intermediate temperatures, a different phase was observed, which was identified as a superparamagnetic phase by means of zero-field cooling-field cooling and hysteresis loops measurements. The observed differences were explained in terms of the internal fields and especially due to the cubic anisotropy in the ordered phase.

  10. Manifestation of weak ferromagnetism and photocatalytic activity in bismuth ferrite nanoparticles

    SciTech Connect

    Sakar, M.; Balakumar, S.; Saravanan, P.; Jaisankar, S. N.

    2013-02-05

    Bismuth ferrite (BFO) nanoparticles were synthesized by auto-ignition technique with and without adding ignition fuel such as citric acid. The presence of citric acid in the reaction mixture yielded highly-magnetic BFO/{gamma}-Fe{sub 2}O{sub 3} nanocomposite. When this composite was annealed to 650 Degree-Sign C, a single phase BFO was formed with average crystallite size of 50 nm and showed weak ferromagnetic behavior. Conversely, the phase pure BFO prepared without adding citric acid exhibited antiferromagnetism because of its larger crystallite size of around 70 nm. The visible-light driven photocatalytic activity of both the pure BFO and BFO/{gamma}-Fe{sub 2}O{sub 3} nanocomposite were examined by degrading methyl orange dye. The pure BFO showed a moderate photocatalytic activity; while BFO/{gamma}-Fe{sub 2}O{sub 3} nanocomposite showed enhanced activity. This could be probably due to the optimal band gap ratio between BFO and {gamma}-Fe{sub 2}O{sub 3} phases reduced the recombination of electron-hole pairs which aided in the enhancement of photocatalytic activity.

  11. Mechanism of core loss and the grain-boundary structure of niobium-doped manganese-zinc ferrite

    SciTech Connect

    Inaba, Hideaki; Abe, Teruyoshi, Kitano, Yoko

    1996-01-05

    The mechanism of iron loss was investigated for Mn-Zn ferrites with and without Nb{sub 2}O{sub 5} addition by observing the grain-boundary structure and measuring the various properties. Without Nb{sub 2}O{sub 5} addition Ca and Si atoms concentrate near the grain boundary and are incorporated in the spinel lattice. With Nb{sub 2}O{sub 5} addition Nb atoms concentrate in the grain boundary and keep Ca atoms from being incorporated in the spinel lattice. Hysteresis loss was reduced in spite of smaller magnetic permeability by the addition of Nb{sub 2}O{sub 5}. Eddy current loss and residual loss were reduced by the addition of Nb{sub 2}O{sub 5}, especially at high frequencies. The origin of the decrease in these losses was discussed on the basis of the data of the grain-boundary structure, permeability, electrical conductivity, and disaccomodation.

  12. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method

    NASA Astrophysics Data System (ADS)

    Meng, Yuying; Chen, Deyang; Sun, Yitao; Jiao, Dongling; Zeng, Dechang; Liu, Zhongwu

    2015-01-01

    Chitosan-modified Mn ferrite nanoparticles were synthesized by a one-step microwave-assisted hydrothermal method. These Mn ferrite magnetic composite nanoparticles were employed to absorb Cu2+ ions in water. XRD verified the spinel structure of the MnFe2O4 nanoparticles. Chitosan modification does not result in any phase change of MnFe2O4. FTIR and zeta potentials curves for all samples suggest that chitosan can be successfully coated on the Mn ferrites. TEM characterization showed that the modified MnFe2O4 nanoparticles have a cubic shape with a mean diameter of ∼100 nm. For adsorption behavior, the effects of experiment parameters such as solution pH value, contact time and initial Cu2+ ions concentration on the adsorption efficiency were systematically investigated. The results showed that increasing solution pH value and extending contact time are favorable for improving adsorption efficiency. Especially, adsorption efficiency can reach up to 100% and 96.7% after 500 min adsorption at pH 6.5 for the solutions with initial Cu2+ ions concentration of 50 mg/L and 100 mg/L. Adsorption data fits well with the Langmuir isotherm models with a maximum adsorption capacity (qm) and a Langmuir adsorption equilibrium constant (K) of 65.1 mg/g and 0.090 L/mg, respectively. The adsorption kinetic agrees well with pseudo second order model with the pseudo second rate constants (K2) of 0.0468 and 0.00189 g/mg/min for solutions with initial Cu2+ ions of 50 and 100 mg/L, respectively.

  13. Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Yadav, Raghvendra Singh; Havlica, Jaromir; Masilko, Jiri; Kalina, Lukas; Wasserbauer, Jaromir; Hajdúchová, Miroslava; Enev, Vojtěch; Kuřitka, Ivo; Kožáková, Zuzana

    2016-02-01

    Nd3+ doped cobalt ferrite nanoparticles have been synthesized by starch-assisted sol-gel auto-combustion method. The significant role played by Nd3+ added to cobalt ferrite in changing cation distribution and further in influencing structural and magnetic properties, was explored and reported. The crystal structure formation and crystallite size were studied from X-ray diffraction studies. The microstructural features were investigated by field emission scanning electron microscopy and transmission electron microscopy that demonstrates the nanocrystalline grain formation with spherical morphology. An infrared spectroscopy study shows the presence of two absorption bands related to tetrahedral and octahedral group complexes within the spinel ferrite lattice system. The change in Raman modes in synthesized ferrite system were observed with Nd3+ substitution, particle size and cation redistribution. The impact of Nd3+ on cation distribution of Co2+ and Fe3+ at octahedral and tetrahedral sites in spinel ferrite cobalt ferrite nanoparticles was investigated by X-ray photoelectron spectroscopy. Room temperature magnetization measurements showed that the saturation magnetization and coercivity increase with addition of Nd3+ substitution in cobalt ferrite.

  14. Magnetic and Mössbauer spectroscopic studies of NiZn ferrite nanoparticles synthesized by a combustion method

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Vijayanand, S.; Deka, S.; Joy, P. A.

    2008-04-01

    The properties of nanocrystalline Ni0.5Zn0.5Fe2O4 synthesized by an auto-combustion method have been investigated by magnetic measurements and Mössbauer spectroscopy. The as-synthesized single phase nanosized ferrite powder is annealed at different temperatures in the range 673 1,273 K to obtain nanoparticles of different sizes. The powders are characterized by powder X-ray diffraction, vibrating sample magnetometer, transmission electron microscopy and Mössbauer spectroscopy. The as-synthesized powder with average particle size of ~9 nm is superparamagnetic. Magnetic transition temperature increases up to 665 K for the nanosized powder as compared to the transition temperature of 548 K for the bulk ferrite. This has been confirmed as due to the abnormal cation distribution, as evidenced from room temperature Mössbauer spectroscopic studies.

  15. Adsorption of cobalt ferrite nanoparticles within layer-by-layer films: a kinetic study carried out using quartz crystal microbalance.

    PubMed

    Alcantara, Gustavo B; Paterno, Leonardo G; Afonso, André S; Faria, Ronaldo C; Pereira-da-Silva, Marcelo A; Morais, Paulo C; Soler, Maria A G

    2011-12-28

    The paper reports on the successful use of the quartz crystal microbalance technique to assess accurate kinetics and equilibrium parameters regarding the investigation of in situ adsorption of nanosized cobalt ferrite particles (CoFe(2)O(4)--10.5 nm-diameter) onto two different surfaces. Firstly, a single layer of nanoparticles was deposited onto the surface provided by the gold-coated quartz resonator functionalized with sodium 3-mercapto propanesulfonate (3-MPS). Secondly, the layer-by-layer (LbL) technique was used to build multilayers in which the CoFe(2)O(4) nanoparticle-based layer alternates with the sodium sulfonated polystyrene (PSS) layer. The adsorption experiments were conducted by modulating the number of adsorbed CoFe(2)O(4)/PSS bilayers (n) and/or by changing the CoFe(2)O(4) nanoparticle concentration while suspended as a stable colloidal dispersion. Adsorption of CoFe(2)O(4) nanoparticles onto the 3-MPS-functionalized surface follows perfectly a first order kinetic process in a wide range (two orders of magnitude) of nanoparticle concentrations. These data were used to assess the equilibrium constant and the adsorption free energy. Alternatively, the Langmuir adsorption constant was obtained while analyzing the isotherm data at the equilibrium. Adsorption of CoFe(2)O(4) nanoparticles while growing multilayers of CoFe(2)O(4)/PSS was conducted using colloidal suspensions with CoFe(2)O(4) concentration in the range of 10(-8) to 10(-6) (moles of cobalt ferrite per litre) and for different numbers of cycles n = 1, 3, 5, and 10. We found the adsorption of CoFe(2)O(4) nanoparticles within the CoFe(2)O(4)/PSS bilayers perfectly following a first order kinetic process, with the characteristic rate constant growing with the increase of CoFe(2)O(4) nanoparticle concentration and decreasing with the rise of the number of LbL cycles (n). Additionally, atomic force microscopy was employed for assessing the LbL film roughness and thickness. We found the film

  16. Recovery of copper as zero-valent phase and/or copper oxide nanoparticles from wastewater by ferritization.

    PubMed

    Heuss-Aßbichler, Soraya; John, Melanie; Klapper, Daniel; Bläß, Ulrich W; Kochetov, Gennadii

    2016-10-01

    Recently the focus of interest changed from merely purification of the waste water to recover heavy metals. With the slightly modified ferritization process presented here it is possible to decrease initial Cu(2+) concentrations up to 10 g/l to values <0.3 mg/l. The recovery rates of copper of all experiments are in the rage of 99.98 to almost 100%. Copper can be precipitated as oxide or zero valent metal (almost) free of hydroxide. All precipitates are exclusively of nanoparticle size. The phase assemblage depends strongly on experimental conditions as e.g. reaction temperature, pH-value, initial concentration and ageing time and condition. Three different options were developed depending on the reaction conditions. Option 1.) copper incorporation into the ferrite structure ((Cu,Fe)Fe2O4) and/or precipitation as cuprite (Cu2O) and zero-valent copper, option 2.) copper incorporation into the ferrite structure and/or precipitation as cuprite and/or tenorite (CuO) and option 3.) copper precipitation as tenorite. Ferrite is formed by the oxidation of GR in alkaline solution without additional oxygen supply. The chemistry reaches from pure magnetite up to 45% copper ferrite component. First experiments with wastewater from electroplating industry confirm the results obtained from synthetic solutions. In all cases the volume of the precipitates is extremely low compared to typical wastewater treatment by hydroxide precipitation. Therefore, pollution and further dissipation of copper can be avoided using this simple and economic process.

  17. Recovery of copper as zero-valent phase and/or copper oxide nanoparticles from wastewater by ferritization.

    PubMed

    Heuss-Aßbichler, Soraya; John, Melanie; Klapper, Daniel; Bläß, Ulrich W; Kochetov, Gennadii

    2016-10-01

    Recently the focus of interest changed from merely purification of the waste water to recover heavy metals. With the slightly modified ferritization process presented here it is possible to decrease initial Cu(2+) concentrations up to 10 g/l to values <0.3 mg/l. The recovery rates of copper of all experiments are in the rage of 99.98 to almost 100%. Copper can be precipitated as oxide or zero valent metal (almost) free of hydroxide. All precipitates are exclusively of nanoparticle size. The phase assemblage depends strongly on experimental conditions as e.g. reaction temperature, pH-value, initial concentration and ageing time and condition. Three different options were developed depending on the reaction conditions. Option 1.) copper incorporation into the ferrite structure ((Cu,Fe)Fe2O4) and/or precipitation as cuprite (Cu2O) and zero-valent copper, option 2.) copper incorporation into the ferrite structure and/or precipitation as cuprite and/or tenorite (CuO) and option 3.) copper precipitation as tenorite. Ferrite is formed by the oxidation of GR in alkaline solution without additional oxygen supply. The chemistry reaches from pure magnetite up to 45% copper ferrite component. First experiments with wastewater from electroplating industry confirm the results obtained from synthetic solutions. In all cases the volume of the precipitates is extremely low compared to typical wastewater treatment by hydroxide precipitation. Therefore, pollution and further dissipation of copper can be avoided using this simple and economic process. PMID:27290656

  18. Microwave solvothermal synthesis and characterization of manganese-doped ZnO nanoparticles

    PubMed Central

    Mukhovskyi, Roman; Pietrzykowska, Elzbieta; Kusnieruk, Sylwia; Mizeracki, Jan; Lojkowski, Witold

    2016-01-01

    Summary Mn-doped zinc oxide nanoparticles were prepared by using the microwave solvothermal synthesis (MSS) technique. The nanoparticles were produced from a solution of zinc acetate dihydrate and manganese(II) acetate tetrahydrate using ethylene glycol as solvent. The content of Mn2+ in Zn1− xMnxO ranged from 1 to 25 mol %. The following properties of the nanostructures were investigated: skeleton density, specific surface area (SSA), phase purity (XRD), lattice parameters, dopant content, average particle size, crystallite size distribution, morphology. The average particle size of Zn1− xMnxO was determined using Scherrer’s formula, the Nanopowder XRD Processor Demo web application and by converting the specific surface area results. X-ray diffraction of synthesized samples shows a single-phase wurtzite crystal structure of ZnO without any indication of additional phases. Spherical Zn1− xMnxO particles were obtained with monocrystalline structure and average particle sizes from 17 to 30 nm depending on the content of dopant. SEM images showed an impact of the dopant concentration on the morphology of the nanoparticles. PMID:27335761

  19. Microwave solvothermal synthesis and characterization of manganese-doped ZnO nanoparticles.

    PubMed

    Wojnarowicz, Jacek; Mukhovskyi, Roman; Pietrzykowska, Elzbieta; Kusnieruk, Sylwia; Mizeracki, Jan; Lojkowski, Witold

    2016-01-01

    Mn-doped zinc oxide nanoparticles were prepared by using the microwave solvothermal synthesis (MSS) technique. The nanoparticles were produced from a solution of zinc acetate dihydrate and manganese(II) acetate tetrahydrate using ethylene glycol as solvent. The content of Mn(2+) in Zn1- x Mn x O ranged from 1 to 25 mol %. The following properties of the nanostructures were investigated: skeleton density, specific surface area (SSA), phase purity (XRD), lattice parameters, dopant content, average particle size, crystallite size distribution, morphology. The average particle size of Zn1- x Mn x O was determined using Scherrer's formula, the Nanopowder XRD Processor Demo web application and by converting the specific surface area results. X-ray diffraction of synthesized samples shows a single-phase wurtzite crystal structure of ZnO without any indication of additional phases. Spherical Zn1- x Mn x O particles were obtained with monocrystalline structure and average particle sizes from 17 to 30 nm depending on the content of dopant. SEM images showed an impact of the dopant concentration on the morphology of the nanoparticles. PMID:27335761

  20. Manganese Doping of Magnetic Iron Oxide Nanoparticles: Tailoring Surface Reactivity for a Regenerable Heavy Metal Sorbent

    SciTech Connect

    Warner, Cynthia L.; Chouyyok, Wilaiwan; Mackie, Katherine E.; Neiner, Doinita; Saraf, Laxmikant; Droubay, Timothy C.; Warner, Marvin G.; Addleman, Raymond S.

    2012-02-28

    A method for tuning the analyte affinity of magnetic, inorganic nanostructured sorbents for heavy metal contaminants is described. The manganese-doped iron oxide nanoparticle sorbents have a remarkably high affinity compared to the precursor material. Sorbent affinity can be tuned toward an analyte of interest simply by adjustment of the dopant quantity. The results show that following the Mn doping process there is a large increase in affinity and capacity for heavy metals (i.e., Co, Ni, Zn, As, Ag, Cd, Hg, and Tl). Capacity measurements were carried out for the removal of cadmium from river water and showed significantly higher loading than the relevant commercial sorbents tested for comparison. The reduction in Cd concentration from 100 ppb spiked river water to 1 ppb (less than the EPA drinking water limit of 5 ppb for Cd) was achieved following treatment with the Mn-doped iron oxide nanoparticles. The Mn-doped iron oxide nanoparticles were able to load 1 ppm of Cd followed by complete stripping and recovery of the Cd with a mild acid wash. The Cd loading and stripping is shown to be consistent through multiple cycles with no loss of sorbent performance.

  1. Positron annihilation and magnetic properties studies of copper substituted nickel ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kargar, Z.; Asgarian, S. M.; Mozaffari, M.

    2016-05-01

    Single phase copper substituted nickel ferrite Ni1-xCuxFe2O4 (x = 0.0, 0.1, 0.3 and 0.5) nanoparticles were synthesized by the sol-gel method. TEM images of the samples confirm formation of nano-sized particles. The Rietveld refinement of the X-ray diffraction patterns showed that lattice constant increase with increase in copper content from 8.331 for x = 0.0 to 8.355 Å in x = 0.5. Cation distribution of samples has been determined by the occupancy factor, using Rietveld refinement. The positron lifetime spectra of the samples were convoluted into three lifetime components. The shortest lifetime is due to the positrons that do not get trapped by the vacancy defects. The second lifetime is ascribed to annihilation of positrons in tetrahedral (A) and octahedral (B) sites in spinel structure. It is seen that for x = 0.1 and 0.3 samples, positron trapped within vacancies in A sites, but for x = 0.0 and 0.5, the positrons trapped and annihilated within occupied B sites. The longest lifetime component attributed to annihilation of positrons in the free volume between nanoparticles. The obtained results from coincidence Doppler broadening spectroscopy (CDBS) confirmed the results of positron annihilation lifetime spectroscopy (PALS) and also showed that the vacancy clusters concentration for x = 0.3 is more than those in other samples. Average defect density in the samples, determined from mean lifetime of annihilated positrons reflects that the vacancy concentration for x = 0.3 is maximum. The magnetic measurements showed that the saturation magnetization for x = 0.3 is maximum that can be explained by Néel's theory. The coercivity in nanoparticles increased with increase in copper content. This increase is ascribed to the change in anisotropy constant because of increase of the average defect density due to the substitution of Cu2+ cations and magnetocrystalline anisotropy of Cu2+ cations. Curie temperature of the samples reduces with increase in copper content which

  2. Facile synthesis and functionalization of manganese oxide nanoparticles for targeted T1-weighted tumor MR imaging.

    PubMed

    Luo, Yu; Yang, Jia; Li, Jingchao; Yu, Zhibo; Zhang, Guixiang; Shi, Xiangyang; Shen, Mingwu

    2015-12-01

    We report the polyethyleneimine (PEI)-enabled synthesis and functionalization of manganese oxide (Mn3O4) nanoparticles (NPs) for targeted tumor magnetic resonance (MR) imaging in vivo. In this work, monodispersed PEI-coated Mn3O4 NPs were formed by decomposition of acetylacetone manganese via a solvothermal approach. The Mn3O4 NPs with PEI coating were sequentially conjugated with fluorescein isothiocyanate, folic acid (FA)-linked polyethylene glycol (PEG), and PEG monomethyl ether. Followed by final acetylation of the remaining PEI surface amines, multifunctional Mn3O4 NPs were formed and well characterized. We show that the formed multifunctional Mn3O4 NPs with a mean diameter of 8.0 nm possess good water-dispersibility, colloidal stability, and cytocompatibility and hemocompatibility in the given concentration range. Flow cytometry and confocal microscopic observation reveal that the multifunctional Mn3O4 NPs are able to target FA receptor-overexpressing cancer cells in vitro. Importantly, the FA-targeted Mn3O4 NPs can be used as a nanoprobe for efficient T1-weighted MR imaging of cancer cells in vitro and the xenografted tumor model in vivo via an active FA-mediated targeting pathway. With the facile PEI-enabled formation and functionalization, the developed PEI-coated Mn3O4 NPs may be modified with other biomolecules for different biomedical imaging applications. PMID:26454057

  3. Manganese monoxide nanoparticles adhered to mesoporous nitrogen-doped carbons for nonaqueous lithium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Cui, Z. H.; Guo, X. X.

    2014-12-01

    Manganese monoxide nanoparticles adhered to mesoporous nitrogen-doped carbons (MnO-m-N-C) have been synthesized and their influence on cycle performance of nonaqueous lithium-oxygen (Li-O2) batteries is investigated. It is found that the MnO-m-N-C composites promote both oxygen reduction and oxygen evolution reactions. They lead to reduced charge overpotentials through early decomposition of the Li2O2 particles formed on discharge, especially at the limited depth of discharge during the initial several ten cycles. Such superior activity is attributed to the good coupling between the nanosized MnO particles and the conductive mesoporous nitrogen-doped carbons, which is helpful for improving kinetics of both charge and mass transport during the cathode reactions.

  4. Comparing highly ordered monolayers of nanoparticles fabricated using electrophoretic deposition: Cobalt ferrite nanoparticles versus iron oxide nanoparticles

    SciTech Connect

    Dickerson, James H.; Krejci, Alex J.; Garcia, Adriana -Mendoza; Sun, Shouheng; Pham, Viet Hung

    2015-08-01

    Ordered assemblies of nanoparticles remain challenging to fabricate, yet could open the door to many potential applications of nanomaterials. Here, we demonstrate that locally ordered arrays of nanoparticles, using electrophoretic deposition, can be extended to produce long-range order among the constituents. Voronoi tessellations along with multiple statistical analyses show dramatic increases in order compared with previously reported assemblies formed through electric field-assisted assembly. As a result, based on subsequent physical measurements of the nanoparticles and the deposition system, the underlying mechanisms that generate increased order are inferred.

  5. Structural and magnetic characterization of co-precipitated NixZn1-xFe2O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinivas, Ch.; Tirupanyam, B. V.; Meena, S. S.; Yusuf, S. M.; Babu, Ch. Seshu; Ramakrishna, K. S.; Potukuchi, D. M.; Sastry, D. L.

    2016-06-01

    A series of NixZn1-xFe2O4 (x=0.5, 0.6 and 0.7) ferrite nanoparticles have been synthesized using a co-precipitation technique, in order to understand the doping effect of nickel on their structural and magnetic properties. XRD and FTIR studies reveal the formation of spinel phase of ferrite samples. Substitution of nickel has promoted the growth of crystallite size (D), resulting the decrease of lattice strain (η). It was also observed that the lattice parameter (a) increases with the increase of Ni2+ ion concentration. All particles exhibit superparamagnetism at room temperature. The hyperfine interaction increases with the increase of nickel substitution, which can be assumed to the decrease of core-shell interactions present in the nanoparticles. The Mössbauer studies witness the existence of Fe3+ ions and absence of Fe2+ ions in the present systems. These superparamagnetic nanoparticles are supposed to be potential candidates for biomedical applications. The results are interpreted in terms of microstructure, cation redistribution and possible core-shell interactions.

  6. Load partitioning between ferrite/martensite and dispersed nanoparticles of a 9Cr ferritic/martensitic (F/M) ODS steel at high temperatures

    SciTech Connect

    Zhang, Guangming; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Zhou, Zhangjian; Stubbins, James F.

    2015-06-18

    In this study, a high-energy synchrotron radiation X-ray technique was used to investigate the tensile deformation processes of a 9Cr-ODS ferritic/martensitic (F/M) steel at different temperatures. Two minor phases within the 9Cr-ODS F/M steel matrix were identified as Y2Ti2O7 and TiN by the high-energy X-ray diffraction, and confirmed by the analysis using energy dispersive X-ray spectroscopy (EDS) of scanning transmission electron microscope (STEM). The lattice strains of the matrix and particles were measured through the entire tensile deformation process. During the tensile tests, the lattice strains of the ferrite/martensite and the particles (TiN and Y2Ti2O7) showed a strong temperature dependence, decreasing with increasing temperature. Analysis of the internal stress at three temperatures showed that the load partitioning between the ferrite/martensite and the particles (TiN and Y2Ti2O7) was initiated during sample yielding and reached to a peak during sample necking. At three studied temperatures, the internal stress of minor phases (Y2Ti2O7 and TiN) was about 2 times that of F/M matrix at yielding position, while the internal stress of Y2Ti2O7 and TiN reached about 4.5-6 times and 3-3.5 times that of the F/M matrix at necking position, respectively. It indicates that the strengthening of the matrix is due to minor phases (Y2Ti2O7 and TiN), especially Y2Ti2O7 particles. Although the internal stresses of all phases decreased with increasing temperature from RT to 600 degrees C, the ratio of internal stresses of each phase at necking position stayed in a stable range (internal stresses of Y2Ti2O7 and TiN were about 4.5-6 times and 3-3.5 times of that of F/M matrix, respectively). The difference between internal stress of the F/M matrix and the applied stress at 600 degrees C is slightly lower than those at RI and 300 degrees C, indicating that the nanoparticles still have good strengthening effect at 600 degrees C. (C) 2015 Elsevier B.V. All rights reserved.

  7. Synthesis of core/shell spinel ferrite/carbon nanoparticles with enhanced cycling stability for lithium ion battery anodes.

    PubMed

    Jin, Yun-Ho; Seo, Seung-Deok; Shim, Hyun-Woo; Park, Kyung-Soo; Kim, Dong-Wan

    2012-03-30

    Monodispersed core/shell spinel ferrite/carbon nanoparticles are formed by thermolysis of metal (Fe3+, Co2+) oleates followed by carbon coating. The phase and morphology of nanoparticles are characterized by x-ray diffraction and transmission electron microscopy. Pure Fe3O4 and CoFe2O4 nanoparticles are initially prepared through thermal decomposition of metal–oleate precursors at 310 degrees C and they are found to exhibit poor electrochemical performance because of the easy aggregation of nanoparticles and the resulting increase in the interparticle contact resistance. In contrast, uniform carbon coating of Fe3O4 and CoFe2O4 nanoparticles by low-temperature (180 degrees C) decomposition of malic acid allowed each nanoparticle to be electrically wired to a current collector through a conducting percolative path. Core/shell Fe3O4/C and CoFe2O4/C nanocomposite electrodes show a high specific capacity that can exceed 700 mAh g(-1) after 200 cycles, along with enhanced cycling stability.

  8. Manganese (II) Chelate Functionalized Copper Sulfide Nanoparticles for Efficient Magnetic Resonance/Photoacoustic Dual-Modal Imaging Guided Photothermal Therapy.

    PubMed

    Liu, Renfa; Jing, Lijia; Peng, Dong; Li, Yong; Tian, Jie; Dai, Zhifei

    2015-01-01

    The integration of diagnostic and therapeutic functionalities into one nanoplatform shows great promise in cancer therapy. In this research, manganese (II) chelate functionalized copper sulfide nanoparticles were successfully prepared using a facile hydrothermal method. The obtained ultrasmall nanoparticles exhibit excellent photothermal effect and photoaoustic activity. Besides, the high loading content of Mn(II) chelates makes the nanoparticles attractive T1 contrast agent in magnetic resonance imaging (MRI). In vivo photoacoustic imaging (PAI) results showed that the nanoparticles could be efficiently accumulated in tumor site in 24 h after systematic administration, which was further validated by MRI tests. The subsequent photothermal therapy of cancer in vivo was achieved without inducing any observed side effects. Therefore, the copper sulfide nanoparticles functionalized with Mn(II) chelate hold great promise as a theranostic nanomedicine for MR/PA dual-modal imaging guided photothermal therapy of cancer.

  9. Manganese (II) Chelate Functionalized Copper Sulfide Nanoparticles for Efficient Magnetic Resonance/Photoacoustic Dual-Modal Imaging Guided Photothermal Therapy

    PubMed Central

    Liu, Renfa; Jing, Lijia; Peng, Dong; Li, Yong; Tian, Jie; Dai, Zhifei

    2015-01-01

    The integration of diagnostic and therapeutic functionalities into one nanoplatform shows great promise in cancer therapy. In this research, manganese (II) chelate functionalized copper sulfide nanoparticles were successfully prepared using a facile hydrothermal method. The obtained ultrasmall nanoparticles exhibit excellent photothermal effect and photoaoustic activity. Besides, the high loading content of Mn(II) chelates makes the nanoparticles attractive T1 contrast agent in magnetic resonance imaging (MRI). In vivo photoacoustic imaging (PAI) results showed that the nanoparticles could be efficiently accumulated in tumor site in 24 h after systematic administration, which was further validated by MRI tests. The subsequent photothermal therapy of cancer in vivo was achieved without inducing any observed side effects. Therefore, the copper sulfide nanoparticles functionalized with Mn(II) chelate hold great promise as a theranostic nanomedicine for MR/PA dual-modal imaging guided photothermal therapy of cancer. PMID:26284144

  10. Development of optically transparent water oxidation catalysts using manganese pyrophosphate compounds.

    PubMed

    Takashima, Toshihiro; Hotori, Yuki; Irie, Hiroshi

    2015-11-01

    One challenge in artificial photosynthetic systems is the development of active oxygen evolution catalysts composed of abundant elements. The oxygen evolution activities of manganese pyrophosphate compounds were examined in electrochemical and photochemical experiments. Electrocatalysis using calcium-manganese pyrophosphate exhibited good catalytic ability under neutral pH and an oxygen evolution reaction was driven with a small overpotential (η<100 mV). UV-vis diffuse reflectance measurements revealed that manganese pyrophosphates exhibit weak absorption in the visible light region while commonly used oxygen evolution catalysts exhibit intense absorption. Therefore, the efficient light absorption of a photocatalyst was retained even after surface modification with a manganese pyrophosphate, and photochemical oxygen evolution was achieved by using magnesium ferrite modified with manganese pyrophosphate nanoparticles under the illumination of visible light at wavelength of over 420 nm. PMID:25648929

  11. Some patterns of metallic nanoparticles' combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles.

    PubMed

    Katsnelson, Boris A; Minigaliyeva, Ilzira A; Panov, Vladimir G; Privalova, Larisa I; Varaksin, Anatoly N; Gurvich, Vladimir B; Sutunkova, Marina P; Shur, Vladimir Ya; Shishkina, Ekaterina V; Valamina, Irene E; Makeyev, Oleg H

    2015-12-01

    Stable suspensions of NiO and/or Mn3O4 nanoparticles with a mean diameter of 16.7 ± 8.2 nm and 18.4 ± 5.4 nm, respectively, prepared by laser ablation of 99.99% pure metals in de-ionized water were repeatedly injected IP to rats at a dose of 0.50 mg or 0.25 mg 3 times a week up to 18 injections, either separately or in different combinations. Many functional indices as well as histological features of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The accumulation of Ni and Mn in these organs was measured with the help of AES and EPR methods. Both metallic nanoparticles proved adversely bio-active, but those of Mn3O4 were found to be more noxious in most of the non-specific toxicity manifestations. Moreover, they induced a more marked damaging effect in the neurons of the caudate nucleus and hippocampus which may be considered an experimental correlate of manganese-induced parkinsonism. Mathematical analysis based on the Response Surface Methodology (RSM) revealed a diversity of combined toxicity types depending not only on particular effects these types are assessed for but on their level as well. The prognostic power of the RSM model proved satisfactory.

  12. A fast route to obtain manganese spinel nanoparticles by reduction of K-birnessite

    SciTech Connect

    Giovannelli, F.; Chartier, T.; Autret-Lambert, C.; Delorme, F.; Zaghrioui, M.; Seron, A.

    2009-05-15

    The K-birnessite (K{sub x}MnO{sub 2}.yH{sub 2}O) reduction reaction has been tested in order to obtain manganese spinel nanoparticles. The addition of 0.25 weight percent of hydrazine hydrate, the reducing agent, during 24 hours is efficient to transform the birnessite powder in a hausmanite Mn{sub 3}O{sub 4} powder. Well crystallised square shape nanoparticles are obtained. Different birnessite precursors have been tested and the reaction kinetics is strongly correlated to the crystallinity and granulometry of the precursor. The effects of aging time and hydrazine hydrate amount have been studied. Well crystallised Mn{sub 3}O{sub 4} is obtained in one hour. The presence of feitknechtite (MnO(OH)) and amorphous nanorods has been detected as an intermediate phase during birnessite conversion into hausmanite. The conversion mechanism is discussed. - Graphical abstract: TEM image showing Mn{sub 3}O{sub 4} particle after treatment of birnessite with an addition of hydrazine during 24 hours.

  13. X-ray photoelectron spectroscopy and friction studies of nickel-zinc and manganese-zinc ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron spectroscopy analysis and sliding friction experiments were conducted with hot-pressed, polycrystalline Ni-Zn and Mn-Zn ferrites in sliding contact with various transition metals at room temperature in a vacuum of 30 nPa. The results indicate that the coefficients of friction for Ni-Zn and Mn-Zn ferrites in contact with metals are related to the relative chemical activity in these metals: the more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites correlate with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite surfaces increases the coefficients of friction for the Ni-Zn and Mn-Zn ferrite-metal interfaces.

  14. Magnetic properties and densification of Manganese-Zinc soft ferrites (Mn 1-xZn xFe 2O 4) doped with low melting point oxides

    NASA Astrophysics Data System (ADS)

    Shokrollahi, H.

    Mn-Zn ferrites have high electrical resistivity, low power loss and high initial permeability up to several MHz range. Oxide additives can greatly affect the magnetic properties of these ferrites. The effects of the additives on the sintering behaviour and magnetic properties of Mn-Zn ferrites are different. Some low melting point additives such as Bi 2O 3 enhance the sintering by forming a liquid phase in the ferrites. The additive V 2O 5 enhances the sintering by increasing bulk diffusion due to the increased vacancy concentration which is accompanied by the solubility of V 5+ in the ferrites. Some additives are cations that are soluble in the host lattice and enter regular positions on the tetrahedral or octahedral sites. This paper investigates the effect of several low melting point oxides on the magnetic properties, microstructure and densification of Mn-Zn soft ferrites.

  15. Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications

    PubMed Central

    2012-01-01

    Ferrite nanoparticles of basic composition Ni0.7-xZnxCu0.3Fe2O4 (0.0 ≤ x ≤ 0.2, x = 0.05) were synthesized through auto-combustion method and were characterized for structural properties using X-ray diffraction [XRD], scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy [FT-IR]. XRD analysis of the powder samples sintered at 600°C for 4 h showed the cubic spinel structure for ferrites with a narrow size distribution from 28 to 32 nm. FT-IR showed two absorption bands (v1 and v2) that are attributed to the stretching vibration of tetrahedral and octahedral sites. The effect of Zn doping on the electrical properties was studied using dielectric and impedance spectroscopy at room temperature. The dielectric parameters (ε', ε″, tanδ, and σac) show their maximum value for 10% Zn doping. The dielectric constant and loss tangent decrease with increasing frequency of the applied field. The results are explained in the light of dielectric polarization which is similar to the conduction phenomenon. The complex impedance shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume. PACS: 75.50.Gg; 78.20; 77.22.Gm. PMID:22316055

  16. Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications.

    PubMed

    Batoo, Khalid Mujasam; Ansari, Mohammad Shahnawaze

    2012-02-08

    Ferrite nanoparticles of basic composition Ni0.7-xZnxCu0.3Fe2O4 (0.0 ≤ x ≤ 0.2, x = 0.05) were synthesized through auto-combustion method and were characterized for structural properties using X-ray diffraction [XRD], scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy [FT-IR]. XRD analysis of the powder samples sintered at 600°C for 4 h showed the cubic spinel structure for ferrites with a narrow size distribution from 28 to 32 nm. FT-IR showed two absorption bands (v1 and v2) that are attributed to the stretching vibration of tetrahedral and octahedral sites. The effect of Zn doping on the electrical properties was studied using dielectric and impedance spectroscopy at room temperature. The dielectric parameters (ε', ε″, tanδ, and σac) show their maximum value for 10% Zn doping. The dielectric constant and loss tangent decrease with increasing frequency of the applied field. The results are explained in the light of dielectric polarization which is similar to the conduction phenomenon. The complex impedance shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume.PACS: 75.50.Gg; 78.20; 77.22.Gm.

  17. Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications

    NASA Astrophysics Data System (ADS)

    Batoo, Khalid Mujasam; Ansari, Mohammad Shahnawaze

    2012-02-01

    Ferrite nanoparticles of basic composition Ni0.7- x Zn x Cu0.3Fe2O4 (0.0 ≤ x ≤ 0.2, x = 0.05) were synthesized through auto-combustion method and were characterized for structural properties using X-ray diffraction [XRD], scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy [FT-IR]. XRD analysis of the powder samples sintered at 600°C for 4 h showed the cubic spinel structure for ferrites with a narrow size distribution from 28 to 32 nm. FT-IR showed two absorption bands ( v 1 and v 2) that are attributed to the stretching vibration of tetrahedral and octahedral sites. The effect of Zn doping on the electrical properties was studied using dielectric and impedance spectroscopy at room temperature. The dielectric parameters ( ɛ', ɛ″, tan δ, and σ ac) show their maximum value for 10% Zn doping. The dielectric constant and loss tangent decrease with increasing frequency of the applied field. The results are explained in the light of dielectric polarization which is similar to the conduction phenomenon. The complex impedance shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume. PACS: 75.50.Gg; 78.20; 77.22.Gm.

  18. Control of the saturation temperature in magnetic heating by using polyethylene-glycol-coated rod-shaped nickel-ferrite (NiFe2O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Iqbal, Yousaf; Bae, Hongsub; Rhee, Ilsu; Hong, Sungwook

    2016-02-01

    Polyethylene-glycol (PEG)-coated nickel-ferrite nanoparticles were prepared for magnetic hyperthermia applications by using the co-precipitation method. The PEG coating occurred during the synthesis of the nanoparticles. The coated nanoparticles were rod-shaped with an average length of 16 nm and an average diameter of 4.5 nm, as observed using transmission electron microscopy. The PEG coating on the surfaces of the nanoparticles was confirmed from the Fourier-transform infrared spectra. The nanoparticles exhibited superparamagnetic characteristics with negligible coercive force. Further, magnetic heating effects were observed in aqueous solutions of the coated nanoparticles. The saturation temperature could be controlled at 42 ℃ by changing the concentration of the nanoparticles in the aqueous solution. Alternately, the saturation temperature could be controlled for a given concentration of nanoparticles by changing the intensity of the magnetic field. The Curie temperature of the nanoparticles was estimated to be 495 ℃. These results for the PEG-coated nickel-ferrite nanoparticles showed the possibility of utilizing them for controlled magnetic hyperthermia at 42 ℃.

  19. Cell uptake and intracellular fate of phospholipidic manganese-based nanoparticles.

    PubMed

    Costanzo, Manuela; Scolaro, Lucia; Berlier, Gloria; Marengo, Alessandro; Grecchi, Sabrina; Zancanaro, Carlo; Malatesta, Manuela; Arpicco, Silvia

    2016-07-11

    During the last decades, several studies have proposed manganese (Mn) complexes as alternative contrast agents for magnetic resonance imaging (MRI). With the nanotechnology surge in recent years, different types of Mn-based nanoparticles (Nps) have been developed. However, to design effective and safe administration procedures, preliminary studies on target cells, aimed at verifying their full biocompatibility and biodegradability, are mandatory. In this study, MnO containing-Nps encapsulated in a phospholipidic shell (PL-MnO Nps) were tested in cultured cells and flow cytometry; confocal and transmission electron microscopy were combined to understand the Nps uptake mechanism, intracellular distribution and degradation pathways, as well as possible organelle alterations. The results demonstrated that PL-MnO Nps undergo rapid and massive cell internalization, and persist free in the cytoplasm before undergoing lysosomal degradation without being cytotoxic or inducing subcellular damage. Based on the results with this cell model in vitro, PL-MnO Nps thus proved to be suitably biocompatible, and may be envisaged as very promising tools for therapeutic and diagnostic applications, as drug carriers or contrast agent for MRI. PMID:27173822

  20. Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Mameli, V.; Musinu, A.; Ardu, A.; Ennas, G.; Peddis, D.; Niznansky, D.; Sangregorio, C.; Innocenti, C.; Thanh, Nguyen T. K.; Cannas, C.

    2016-05-01

    The possibility to finely control nanostructured cubic ferrites (MIIFe2O4) paves the way to design materials with the desired magnetic properties for specific applications. However, the strict and complex interrelation among the chemical composition, size, polydispersity, shape and surface coating renders their correlation with the magnetic properties not trivial to predict. In this context, this work aims to discuss the magnetic properties and the heating abilities of Zn-substituted cobalt ferrite nanoparticles with different zinc contents (ZnxCo1-xFe2O4 with 0 < x < 0.6), specifically prepared with similar particle sizes (~7 nm) and size distributions having the crystallite size (~6 nm) and capping agent amount of 15%. All samples have high saturation magnetisation (Ms) values at 5 K (>100 emu g-1). The increase in the zinc content up to x = 0.46 in the structure has resulted in an increase of the saturation magnetisation (Ms) at 5 K. High Ms values have also been revealed at room temperature (~90 emu g-1) for both CoFe2O4 and Zn0.30Co0.70Fe2O4 samples and their heating ability has been tested. Despite a similar saturation magnetisation, the specific absorption rate value for the cobalt ferrite is three times higher than the Zn-substituted one. DC magnetometry results were not sufficient to justify these data, the experimental conditions of SAR and static measurements being quite different. The synergic combination of DC with AC magnetometry and 57Fe Mössbauer spectroscopy represents a powerful tool to get new insights into the design of suitable heat mediators for magnetic fluid hyperthermia.The possibility to finely control nanostructured cubic ferrites (MIIFe2O4) paves the way to design materials with the desired magnetic properties for specific applications. However, the strict and complex interrelation among the chemical composition, size, polydispersity, shape and surface coating renders their correlation with the magnetic properties not trivial to predict

  1. Effect of heat treatment on structural and Mössbauer spectroscopic properties of coprecipitated Mn0.5Ni0.5Fe2O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinivas, Ch.; Tirupanyam, B. V.; Meena, S. S.; Babu, Ch. Seshu; Sastry, D. L.

    2015-06-01

    Results obtained in a systamatic study by X-ray diffraction and Mösssbauer spectroscopy on the structural and magnetic properties on Mn0.5Ni0.5Fe2O4 ferrite nanoparticles heat treated at 200 °C, 500 °C and 800 °C are reported. Average crystallite sizes are estimated to be in the range (2.6nm - 12.8nm). It is observed that crystallite sizes increase with increase in sintering temperature and random variation in lattice parameter was observed. At relatively low sintering temperatures the samples exhibit superparamagnetism and complete ferrite phase was observed at higher heat treatment.

  2. Self-Assembly of an Optically-Responsive Polydiacetylene-Coating on Iron Ferrite Magnetic Nanoparticles for Tumor Detection and Targeting

    NASA Astrophysics Data System (ADS)

    Le, Vivian

    Nanoparticles are a promising diagnostic agent with applications in tumor imaging and targeted cancer treatment. They can offer multifunctional properties by combining imaging methods to improve cancer diagnosis, treatment, and disease monitoring. Two such complementary tools are magnetic resonance imaging (MRI) and fluorescence imaging. In this thesis, a dual solvent exchange approach was chosen to facilitate the self-assembly of amphiphilic diacetylene monomers onto hydrophobic iron ferrite magnetic nanoparticles (MNPs). Various concentrations of the diacetylene monomers, 10,12-pentacosadiynoic acid (PCDA) and 10,12-heptacosadiynoic acid (HCDA), were coated onto ˜14 nm iron ferrite MNPs. The diacetylene monomer coating were cross-linked to a stable blue colored polydiacetylene (PDA) coating after applying UV light. The resulting PDA-MNP hybrid displayed characteristic chromogenic and fluorogenic in response to thermal stress. This novel multifunctional nanoparticle system holds exciting potential for dual-modality diagnostics applications.

  3. Structure-property relationships in manganese oxide--mesoporous silica nanoparticles used for T1-weighted MRI and simultaneous anti-cancer drug delivery.

    PubMed

    Chen, Yu; Chen, Hangrong; Zhang, Shengjian; Chen, Feng; Sun, Shikuan; He, Qianjun; Ma, Ming; Wang, Xia; Wu, Huixia; Zhang, Lingxia; Zhang, Linlin; Shi, Jianlin

    2012-03-01

    The extremely low longitudinal relaxivity (r(1)) of manganese oxide has severely impeded their substitution for cytotoxic gadolinium-based contrast agents for safe clinical magnetic resonance imaging (MRI). Here, we report on a synthetic strategy of chemical oxidation/reduction reaction in-situ in mesopores, followed by hydrogen reduction, for the fabrication of non-toxic manganese oxide/MSNs-based MRI-T(1) contrast agents with highly comparable imaging performance to commercial Gd-based agents. This strategy involves a "soft-templating" process to prepare mesoporous silica nanoparticles, in-situ reduction of MnO(4)(-) by the "soft templates" in mesopores and heat treatment under reducing atmosphere, to disperse manganese oxide nanoparticles within mesopores. This special nanostructure combines the merits of nanopores for maximum manganese paramagnetic center accessibility for water molecules for enhanced MRI performance and encapsulation/sustained release/intracellular delivery of drugs. The synthesized manganese oxide/MSNs were successfully assessed as a high performance contrast agent for MRI-T(1) both in intro and in vivo, and meanwhile, was also demonstrated as an effective anti-cancer drug delivery (doxorubicin) vehicle, therefore, a family of manganese-based theranostics was successfully demonstrated based on the manganese oxide/MSNs composite.

  4. Manganese-impregnated mesoporous silica nanoparticles for signal enhancement in MRI cell labelling studies

    NASA Astrophysics Data System (ADS)

    Guillet-Nicolas, Rémy; Laprise-Pelletier, Myriam; Nair, Mahesh M.; Chevallier, Pascale; Lagueux, Jean; Gossuin, Yves; Laurent, Sophie; Kleitz, Freddy; Fortin, Marc-André

    2013-11-01

    Mesoporous silica nanoparticles (MSNs) are used in drug delivery and cell tracking applications. As Mn2+ is already implemented as a ``positive'' cell contrast agent in preclinical imaging procedures (in the form of MnCl2 for neurological studies), the introduction of Mn in the porous network of MSNs would allow labelling cells and tracking them using MRI. These particles are in general internalized in endosomes, an acidic environment with high saline concentration. In addition, the available MSN porosity could also serve as a carrier to deliver medical/therapeutic substances through the labelled cells. In the present study, manganese oxide was introduced in the porous network of MCM-48 silica nanoparticles (Mn-M48SNs). The particles exhibit a narrow size distribution (~140 nm diam.) and high porosity (~60% vol.), which was validated after insertion of Mn. The resulting Mn-M48SNs were characterized by TEM, N2 physisorption, and XRD. Evidence was found with H2-TPR, and XPS characterization, that Mn(ii) is the main oxidation state of the paramagnetic species after suspension in water, most probably in the form of Mn-OOH. The colloidal stability as a function of time was confirmed by DLS in water, acetate buffer and cell culture medium. In NMR data, no significant evidence of Mn2+ leaching was found in Mn-M48SNs in acidic water (pH 6), up to 96 hours after suspension. High longitudinal relaxivity values of r1 = 8.4 mM-1 s-1 were measured at 60 MHz and 37 °C, with the lowest relaxometric ratios (r2/r1 = 2) reported to date for a Mn-MSN system. Leukaemia cells (P388) were labelled with Mn-M48SNs and nanoparticle cell internalization was confirmed by TEM. Finally, MRI contrast enhancement provided by cell labelling with escalated incubation concentrations of Mn-M48SNs was quantified at 1 T. This study confirmed the possibility of efficiently confining Mn into M48SNs using incipient wetness, while maintaining an open porosity and relatively high pore volume. Because

  5. Structural and magnetic properties of magnesium ferrite nanoparticles prepared via EDTA-based sol-gel reaction

    NASA Astrophysics Data System (ADS)

    Hussein, Shaban I.; Elkady, Ashraf S.; Rashad, M. M.; Mostafa, A. G.; Megahid, R. M.

    2015-04-01

    Magnesium ferrite (MgFe2O4) nanoparticles have been prepared, for the first time, by ethylene diamine tetraacetic acid (EDTA)-based sol-gel combustion method. The prepared ferrite system is calcined at 400, 500 and 600 °C. Thermo-gravimetric and differential thermal analysis (TGA-DTA), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometry (VSM) were applied for elucidating the structural and magnetic properties of the prepared system. XRD patterns revealed that the prepared system have two spinel MgFe2O4 structures, namely cubic and tetragonal phases that are dependent on calcination temperature (Tc). The crystallite sizes varied from 8.933 to 41.583 nm, and from 1.379 to 292.565 nm for the cubic and tetragonal phases respectively depending on Tc. The deduced lattice parameters for the cubic and (tetragonal) systems are a=8.368, 8.365 and 8.377 and (a=7.011, 5.922, 5.908 and c=6.622, 8.456, 8.364) Å at Tc=400, 500 and 600 °C respectively. While the cation distribution of the cubic phase is found to be mixed spinel and Tc-dependent, it is an inverse spinel in the tetragonal phase where the Fe3+ ions occupy both the tetrahedral A- and octahedral B-sites in almost equal amount; the Mg2+ ions are found to occupy only the B-sites. The HRTEM and selected-area electron diffraction (SAED) revealed the detailed morphology of the nanoparticles, and confirmed their crystalline spinel structure. VSM indicated the existence of an appreciable fraction of superparamagnetic particles at room temperature, with pure superparamagnetic behavior observed for samples calcined at 400 °C. Besides, the magnetic properties are found to change by thermal treatment as a result of the varied phase concentration, cation distribution and lattice parameters. Thus, the new synthesis route used in this study by applying EDTA as an organic precursor for preparing MgFe2O4 nanoparticles at

  6. Self-assembled organic–inorganic magnetic hybrid adsorbent ferrite based on cyclodextrin nanoparticles

    PubMed Central

    Denadai, Ângelo M L; De Sousa, Frederico B; Passos, Joel J; Guatimosim, Fernando C; Barbosa, Kirla D; Burgos, Ana E; de Oliveira, Fernando Castro; da Silva, Jeann C; Neves, Bernardo R A; Mohallem, Nelcy D S

    2012-01-01

    Summary Organic–inorganic magnetic hybrid materials (MHMs) combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD) at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn) were used as an adsorbent system for Cr3+ and Cr2O7 2− ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer–Emmett–Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions) from aqueous solutions compared to that of Fe-Ni/Zn. PMID:23209524

  7. Enhanced electrical properties in Nd doped cobalt ferrite nano-particles

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Munir, A.; Zahra, F.; Rehman, M. A.

    2016-08-01

    Spinel ferrites are important class of compounds which has variety of electrical, magnetic and catalytic applications. A small amount of rare earth element causes modification in structural, electrical and magnetic properties of ferrite materials for practical applications. Neodymium doped cobalt ferrites with composition CoNdxFe2-xO4 where x is 0.1 has been synthesized by sol-gel method. Sol-gel method was preferred because it has good control over stoichiometry, crystallite size and particle size distribution. Characterization was done by using X-Ray Diffraction (XRD) technique for structural analysis and crystal structure was found to be spinel. Particles like morphology was observed in micrographs obtained by Scanning Electron Microscopy (SEM). Thermal analysis of sample has been done which includes Thermogravimetric analysis (TGA) and Differential Scanning calorimetry (DSC). Fourier transform infra-red spectroscopy (FT-IR) of samples was also performed. DC resistivity as a function of temperature has been studied and its shows direct dependence on temperature and inverse dependence on the concentration of Nd dopant. The studied material is a potential candidate for resistive random access memory application.

  8. An integrated study of thermal treatment effects on the microstructure and magnetic properties of Zn-ferrite nanoparticles

    SciTech Connect

    Antic, Bratislav; Perovic, Marija; Kremenovic, Aleksandar; Blanusa, Jovan; Spasojevic, Vojislav; Vulic, Predrag; Bessais, Lotfi; Bozin, Emil S

    2015-09-30

    The evolution of the magnetic state, crystal structure and microstructure parameters of nanocrystalline zinc–ferrite, tuned by thermal annealing of ~4 nm nanoparticles, was systematically studied by complementary characterization methods. Structural analysis of neutron and synchrotron x-ray radiation data revealed a mixed cation distribution in the nanoparticle samples, with the degree of inversion systematically decreasing from 0.25 in an as-prepared nanocrystalline sample to a non-inverted spinel structure with a normal cation distribution in the bulk counterpart. The results of DC magnetization and Mossbauer spectroscopy experiments indicated a superparamagnetic relaxation in ~4 nm nanoparticles, albeit with different freezing temperatures Tf of 27.5 K and 46 K, respectively. The quadrupole splitting parameter decreases with the annealing temperature due to cation redistribution between the tetrahedral and octahedral sites of the spinel structure and the associated defects. DC magnetization measurements indicated the existence of significant interparticle interactions among nanoparticles (‘superspins’). Additional confirmation for the presence of interparticle interactions was found from the fit of the Tf(H) dependence to the AT line, from which a value of the anisotropy constant of Keff = 5.6 × 105 erg cm-3 was deduced. Further evidence for strong interparticle interactions was found from AC susceptibility measurements, where the frequency dependence of the freezing temperature Tf(ƒ) was satisfactory described by both Vogel–Fulcher and dynamic scaling theory, both applicable for interacting systems. The parameters obtained from these fits suggest collective freezing of magnetic moments at Tf .

  9. Cobalt ferrite nanoparticles with improved aqueous colloidal stability and electrophoretic mobility

    NASA Astrophysics Data System (ADS)

    Munjal, Sandeep; Khare, Neeraj

    2016-04-01

    We have synthesized CoFe2O4 (CFO) nanoparticles of size ˜ 12.2 nm by hydrothermal synthesis method. To control the size of these CFO nanoparticles, oleic acid was used as a surfactant. The inverse spinel phase of the synthesized nanoparticles was confirmed by X-ray diffraction method. As synthesized oleic acid coated CFO (OA@CFO) nanoparticles has very less electrophoretic mobility in the water and are not water dispersible. These OA@CFO nanoparticles were successfully turned into water soluble phase with a better colloidal aqueous stability, through a chemical treatment using citric acid. The modified citric acid coated CFO (CA@CFO) nanoparticles were dispersible in water and form a stable aqueous solution with high electrophoretic mobility.

  10. Influence of size/crystallinity effects on the cation ordering and magnetism of α-lithium ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Jović, N.; Prekajski, M.; Kremenović, A.; Jančar, B.; Kahlenberg, V.; Antić, B.

    2012-02-01

    α-lithium ferrite (Li0.5Fe2.5O4) nanoparticles have been prepared using two synthesis routes: citrate gel decomposition as well as the Pechini method. Analysis of HRTEM images of the particles showed that they have a core/shell structure, an average size of ˜10 nm and stacking faults parallel to the (110) planes. In both samples, the distribution of the Li and Fe cations was found to be partially ordered on the octahedral sites (Wyckoff positions 4b and 12d of space group P4332). According to literature data, Li0.5Fe2.5O4 should adopt a disordered spinel structure (so called β-phase, space group Fd3¯m) for crystallites of 10 nm or less in size. In this study it is shown that (a) the symmetry of the Li0.5Fe2.5O4 nanoparticles depends on the degree of their crystallinity and (b) the ordered crystal structures can be formed even for crystallites of 5-6 nm in size. By fitting the room temperature Mössbauer spectra it was obtained that the hyperfine field values are lower in the sample synthesized by the Pechini method. The Pechini process probably resulted in larger distortions of the cation environments than the citrate gel decomposition method. The saturation magnetization in turn was higher for the material obtained by the gel decomposition approach.

  11. Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions.

    PubMed

    Lu, Le T; Dung, Ngo T; Tung, Le D; Thanh, Cao T; Quy, Ong K; Chuc, Nguyen V; Maenosono, Shinya; Thanh, Nguyen T K

    2015-12-14

    In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(III) and Co(II) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4-30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications.

  12. The synthesis of spinel ferrite nanoparticles using precipitation in microemulsions for ferrofluid applications

    NASA Astrophysics Data System (ADS)

    Makovec, Darko; Košak, Aljoša; Žnidaršič, Andrej; Drofenik, Miha

    2005-03-01

    Magnetic maghemite nanoparticles with a narrow size distribution were prepared in water-CTAB-hexanol-butanol microemulsions. The particle size was controlled with the composition of the microemulsion (water-to-CTAB ratio) and the temperature during synthesis. The saturation magnetization of the nanoparticles depended mainly on their size, ranging from 22 emu/g for a particle size of 3.4 nm to 64 emu/g for a size of 15.3 nm.

  13. Superparamagnetic Particle Size Limit of Mn-Zn Ferrite Nanoparticles Synthesised Through Aqueous Method

    SciTech Connect

    Joseyphus, R. Justin; Narayanasamy, A.; Jeyadevan, B.; Shinoda, K.; Tohji, K.

    2006-05-15

    Mn0.67Zn0.33Fe2O4 nanoparticles with size ranging from 20 to 80 nm have been synthesized using the modified oxidation method. The Curie temperatures for all the samples are found to be within 630 {+-} 5 K suggesting that there is no size-dependent cation distribution. Moessbauer studies on the synthesized nanoparticles suggest that the critical particle size limit for superparamagnetism to be about 25 nm at 293 K.

  14. Interaction of gold nanoparticles mediated by captopril and S-nitrosocaptopril: the effect of manganese ions in mild acid medium.

    PubMed

    Iglesias, Emilia; Prado-Gotor, Rafael

    2015-01-01

    We report herein results regarding reactivity and assembly of citrate-capped gold nanoparticles (AuNPs) mediated by captopril (cap) and S-nitrosocaptopril (NOcap), two angiotensin converting enzyme inhibitors and antihypertensive agents. The results were compared with that of cysteine (Cys), a thiol-containing amino acid found in plasma. The interparticle interactions were characterized by monitoring the evolution of the surface plasmon resonance band using the spectrophotometric method. The original gold nanoparticles were efficiently modified by small amounts of Mn(+2) ions, which are adsorbed onto the surface of 15.4 nm citrate-capped gold nanoparticles, giving rise to manganese-gold nanoparticles (Mn-AuNPs) that, in mild acid medium, have proved to be highly sensitive and a rapid colorimetric detection method for thiols. Depending on the concentration of the Mn(+2) ions the aggregation of AuNPs can be rapidly induced. The kinetics of the assembly process has been studied. Good first-order kinetics has been observed, with the exception of captopril-mediated nanoparticle aggregation at low concentration of either cap or acid. The rate of Cys-mediated assembly of gold nanoparticles in aqueous 10 mM acetic acid is more than 20-times faster than pure AuNPs and concentrations of Cys as low as 34 nM can be detected in less than 40 min under conditions of stable Mn-AuNPs. Similar effects were observed with cap or NOcap. The assembly-disassembly reversibility is shown with cap and NOcap and depends highly on pH.

  15. Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles

    DOE PAGESBeta

    Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; Han, Jinkyu; Zhang, Cheng; Li, Qiang; Shi, Chenyang; Abeykoon, A. M.Milinda; Billinge, Simon J.L.; Stach, Eric; et al

    2015-05-06

    The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. Asmore » such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.« less

  16. Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles

    SciTech Connect

    Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; Han, Jinkyu; Zhang, Cheng; Li, Qiang; Shi, Chenyang; Abeykoon, A. M.Milinda; Billinge, Simon J.L.; Stach, Eric; Thomas, Justin; Guerrero, Kevin; Munayco, Pablo; Munayco, Jimmy; Scorzelli, Rosa B.; Burnham, Philip; Viescas, Arthur J; Tiano, Amanda L.

    2015-05-06

    The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. As such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.

  17. Heat treatment effects on structural and dielectric properties of Mn substituted CuFe2O4 and ZnFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ranjith Kumar, E.; Arunkumar, T.; Prakash, T.

    2015-09-01

    Manganese substituted copper and zinc ferrite nanoparticles were synthesized by an auto-combustion technique using metal nitrates and urea. The nanoparticles were characterized by XRD, SEM, EDX, and TEM techniques. The effect of annealing temperature on structural and dielectric properties of Mn substituted spinel ferrite nanoparticles was analyzed. The presenting elements in the prepared samples are recorded by EDX. TEM analysis clearly showed the particles are in the nanometer range. The dielectric loss and dielectric constant have been measured in the frequency range of 100 kHz-5 MHz. The variation in structural and dielectric properties of the prepared and annealed samples are discussed.

  18. Effects of the synthesis temperature on the crystalline structure and the magnetic properties of cobalt ferrite nanoparticles prepared via coprecipitation

    NASA Astrophysics Data System (ADS)

    Hutamaningtyas, Evangelin; Utari; Suharyana; Purnama, Budi; Wijayanta, Agung Tri

    2016-08-01

    The effects of the synthesis temperature on the crystalline structure and the magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared via coprecipitation are discussed. The synthesis was conducted at temperatures of 75 °C, 85 °C and 95 °C. Fourier transform infrared spectroscopy characterization related to a stretching vibration at a wavenumber of 590 cm-1 indicated the formation of a CoFe2O4 metal oxide. In addition, powder X ray diffraction (XRD) characterization proved that the metal oxide was CoFe2O4. Crystallite sizes calculated using the Scherer formula at the strongest peak of the XRD spectra of the samples synthesized at 75 °C, 85 °C and 95 °C were 32 nm, 43 nm and 50.4 nm, respectively. Finally, the results of the vibrating sample magnetometer characterization showed that the saturation magnetization decreased with increasing synthesis temperature, which is related to the dominant preference of Co2+ over Fe3+ cations at the octahedral sites.

  19. Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery.

    PubMed

    Wu, Huixia; Liu, Gang; Wang, Xue; Zhang, Jiamin; Chen, Yu; Shi, Jianlin; Yang, Hong; Hu, He; Yang, Shiping

    2011-09-01

    Multiwalled carbon nanotube (MWCNT)/cobalt ferrite (CoFe(2)O(4)) magnetic hybrids were synthesized by a solvothermal method. The reaction temperature significantly affected the structure of the resultant MWCNT/CoFe(2)O(4) hybrids, which varied from 6nm CoFe(2)O(4) nanoparticles uniformly coated on the nanotubes at 180°C to agglomerated CoFe(2)O(4) spherical particles threaded by MWCNTs and forming necklace-like nanostructures at 240°C. Based on the superparamagnetic property at room temperature and high hydrophilicity, the MWCNT/CoFe(2)O(4) hybrids prepared at 180°C (MWCNT/CoFe(2)O(4)-180) were further investigated for biomedical applications, which showed a high T(2) relaxivity of 152.8 Fe mM(-1)s(-1) in aqueous solutions, a significant negative contrast enhancement effect on cancer cells and, more importantly, low cytotoxicity and negligible hemolytic activity. The anticancer drug doxorubicin (DOX) can be loaded onto the hybrids and subsequently released in a sustained and pH-responsive way. The DOX-loaded hybrids exhibited notable cytotoxicity to HeLa cancer cells due to the intracellular release of DOX. These results suggest that MWCNT/CoFe(2)O(4)-180 hybrids may be used as both effective magnetic resonance imaging contrast agents and anticancer drug delivery systems for simultaneous cancer diagnosis and chemotherapy.

  20. Facile synthesis of birnessite-type manganese oxide nanoparticles as supercapacitor electrode materials.

    PubMed

    Liu, Lihu; Luo, Yao; Tan, Wenfeng; Zhang, Yashan; Liu, Fan; Qiu, Guohong

    2016-11-15

    Manganese oxides are environmentally benign supercapacitor electrode materials and, in particular, birnessite-type structure shows very promising electrochemical performance. In this work, nanostructured birnessite was facilely prepared by adding dropwise NH2OH·HCl to KMnO4 solution under ambient temperature and pressure. In order to fully exploit the potential of birnessite-type manganese oxide electrode materials, the effects of specific surface area, pore size, content of K(+), and manganese average oxidation state (Mn AOS) on their electrochemical performance were studied. The results showed that with the increase of NH2OH·HCl, the Mn AOS decreased and the corresponding pore sizes and specific surface area of birnessite increased. The synthesized nanostructured birnessite showed the highest specific capacitance of 245Fg(-1) at a current density of 0.1Ag(-1) within a potential range of 0-0.9V, and excellent cycle stability with a capacitance retention rate of 92% after 3000 cycles at a current density of 1.0Ag(-1). The present work implies that specific capacitance is mainly affected by specific surface area and pore volume, and provides a new method for the facile preparation of birnessite-type manganese oxide with excellent capacitive performance.

  1. Effect of Yb substitution on room temperature magnetic and dielectric properties of bismuth ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Remya, K. P.; Amirthapandian, S.; Manivel Raja, M.; Viswanathan, C.; Ponpandian, N.

    2016-10-01

    Effect of the Yb dopant on the structural, magnetic, and electrical properties of the multiferroic BiFeO3 have been studied. The structural properties of sol-gel derived Bi1-xYbxFeO3 (x = 0.0, 0.1, and 0.2) nanoparticles reveal the formation of a rhombohedrally distorted perovskite in XRD and a reduction in the average grain size have been observed with an increase in the Yb concentration. Microstructural studies exhibited the formation of sphere like morphology with decreasing particle size with increase in the dopant concentration. The effective doping also resulted in larger magnetization as well as coercivity with the maximum of 257 Oe and 1.76 emu/g in the Bi0.8Yb0.2FeO3 nanoparticles. Ferroelectric as well as dielectric properties of the nanoparticles were also improved on doping. The best results were obtained for the BiFeO3 nanoparticles having Yb concentration x = 0.2.

  2. Colossal resistivity with diminished tangent loss in Zn-Ni ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Younas, M.; Atif, M.; Nadeem, M.; Siddique, M.; Idrees, M.; Grossinger, R.

    2011-08-01

    We have investigated the electrical and magnetic response of the sol-gel synthesized ZnxNi1-xFe2O4 (x = 0.0, 0.5 and 1) nanoparticles. The ratio of A-site sextet intensity to that of B-site sextet is featured in terms of divergence in coordination of Fe3+ ions from four-fold (A-site) to six-fold (B-site). Canted spin structure and weakening of Fe3+(A)-Fe3+(B) interactions at the surface of the nanoparticles assign the reduced value of room temperature magnetization in these nanoparticles. Shift of the blocking temperature with Zn content is ascribed to the change in the magnetic anisotropy. Colossal resistivity and reduced dielectric constant are discussed on the basis of dangling bond, superparamagnetic character, canted spin structure and polarizability of the cations. Diminished tangent loss is stipulated in terms of decrease in magnetocrystalline anisotropy and collapse of long-range magnetic order. We report colossal resistivity (i.e. 3.15 × 109 Ω cm), reduced dielectric constant (3.97) and diminished tangent loss (0.07) for Ni0.5Zn0.5Fe2O4 nanoparticles.

  3. Effect of Mo substitution on structural and magnetic properties of Zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Heiba, Zein K.; Mohamed, Mohamed Bakr; Wahba, Adel Maher

    2016-03-01

    Nano ferrite ZnFe2-xMoxO4 (x = 0.0, 0.1, 0.2, and 0.3) samples were synthesized by using citrate method. The phase purity and the structure parameters were studied using X-ray diffraction, FT-IR spectroscopy, and magnetic measurements. Rietveld analysis of X-ray diffraction data revealed that Mo doping ZnFe2O4 changes the degree of inversion of Zn2+ cations. The oxidation state of Mo was studied by using FTIR analysis. Mo doped ZnFe2O4 has a ferromagnetic properties. The magnetization decreases by the replacement of Fe3+ ions by non-magnetic Mo3+ ions. Mo doped ZnFe2O4 samples have a very small coercive field (Hc), which changes depending on the amount of Mo in the sample and reach its maximum value for ZnFe1.7Mo0.3O4. Cation distribution is proposed in an attempt to explain the experimental results of XRD, IR, and VSM data. The direct proportion between the coercive field and the Fe2+ content in the samples was studied in detailed.

  4. Structural and Mossbauer spectroscopic studies of heat-treated NixZn1-xFe2O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinivas, Ch.; Meena, S. S.; Tirupanyam, B. V.; Sastry, D. L.; Yusuf, S. M.

    2013-02-01

    NixZn1-xFe2O4(x = 0.5,0.6,0.7) nanoparticles were prepared using coprecipitation method and were heat treated at 200, 500 and 800 °C. Structure and hyperfine interactions were studied by X-ray diffraction and Mössbauer spectroscopic techniques, respectively. The particle size increases with increasing the heat treatment (HT) temperature and Ni ion concentration. Only a quadrupole doublet was observed for Ni0.5Zn0.5Fe2O4 ferrite, heat treated at 200 °C. For higher heat treatment temperatures, hyperfine sextets appear and become predominant in nanoparticles with 800 °C HT. However, the quadrupole doublet remains with reduced intensity. The results interpreted in terms of an existence of size distribution of nanoparticles.

  5. Structural and magnetic properties of manganese zinc ferrite nanoparticles prepared by solution combustion method using mixture of fuels

    NASA Astrophysics Data System (ADS)

    Angadi, V. Jagadeesha; Rudraswamy, B.; Sadhana, K.; Praveena, K.

    2016-07-01

    The structural analysis and magnetic investigation Mn1-xZnxFe2O4 with stoichiometry (x=0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) were synthesized by solution combustion method using mixture of fuel this is first of its kind. As synthesized Mn-Zn nanoferrites were characterized by X-ray Diffractometer (XRD), Transmission electron microscopy (TEM) at room temperature. The magnetic domain relaxation was investigated by inductance spectroscopy (IS) and the observed magnetic domain relaxation frequency (fr) was increased with the increase in grain size. The Room temperature magnetic properties were studied using vibrating sample magnetometer (VSM). It was observed that the real and imaginary part of permeability (μ‧ and μ″), saturation magnetization (Ms), remanance magnetization (Mr) and magneton number (Mr/Ms) were decreases gradually with increasing Zn2+ concentration. The decrease in the saturation magnetization may be explained as, the Zn2+ concentration increases the relative number of ferric ions on the A sites diminishes and this reduces the A-B interaction. Hence synthesized materials are good for high frequency applications.

  6. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance

    PubMed Central

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-01-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe3+/Fe2+ and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m2 g−1). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage. PMID:27373343

  7. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance.

    PubMed

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-01-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe(3+)/Fe(2+) and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m(2 )g(-1)). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage. PMID:27373343

  8. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance

    NASA Astrophysics Data System (ADS)

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-07-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe3+/Fe2+ and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m2 g‑1). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.

  9. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance.

    PubMed

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-07-04

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe(3+)/Fe(2+) and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m(2 )g(-1)). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.

  10. Preparation of manganese doped cadmium sulfide nanoparticles in zincblende phase and their magnetic properties.

    PubMed

    Nakaya, Masafumi; Tanaka, Itaru; Muramatsu, Atsushi

    2012-12-01

    In this study, the random dope of Mn into CdS nanoparticles in zincblende phase has been carried out under the mild reaction condition. The resulting nanoparticles were characterized by energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), X-ray diffractometer (XRD), UV-Vis spectrometer, PL spectrometer, and SQUID. EDX showed that the compositions of Mn doped CdS nanoparticles were readily controlled. TEM showed the particle sizes were not significantly affected by the compositions, retaining to be ca. 3 nm with a narrow size distribution. UV-Vis and PL spectra of the resulting nanoparticles showed the intra-Mn level may be affected by the quantum size effect. SQUID measurement showed that the resulting nanoparticles showed diamagnetism, paramagnetism and superparamagnetism dependent on Mn content. PMID:23447951

  11. Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers

    NASA Astrophysics Data System (ADS)

    Zahraei, M.; Marciello, M.; Lazaro-Carrillo, A.; Villanueva, A.; Herranz, F.; Talelli, M.; Costo, R.; Monshi, A.; Shahbazi-Gahrouei, D.; Amirnasr, M.; Behdadfar, B.; Morales, M. P.

    2016-06-01

    Three biocompatible polymers, polyethylene glycol (PEG), dextran and chitosan, have been used in this work to control the colloidal stability of magnetic nanoparticles (14 ± 5 nm in diameter) and to vary the aggregation state in order to study their effect on relaxometric and heating properties. Two different coating strategies have been deeply developed; one based on the formation of an amide bond between citric acid coated nanoparticles (NPs) and amine groups present on the polymer surface and the other based on the NP encapsulation. Relaxometric properties revealed that proton relaxation rates strongly depend on the coating layer hydrophilicity and the aggregation state of the particles due to the presence of magnetic interactions. Thus, while PEG coating reduces particle aggregation by increasing inter-particle spacing leading to reduction of both T1 and T2 relaxation, dextran and chitosan lead to an increase mainly in T2 values due to the aggregation of particles in bigger clusters where they are in close contact. Dextran and chitosan coated NPs have also shown a remarkable heating effect during the application of an alternating magnetic field. They have proved to be potential candidates as theranostic agents for cancer diagnosis and treatment. Finally, cytotoxicity of PEG conjugated NPs, which seem to be ideal for intravenous administration because of their small hydrodynamic size, was investigated resulting in high cell viability even at 0.2 mg Fe ml‑1 after 24 h of incubation. This suspension can be used as drug/biomolecule carrier for in vivo applications.

  12. Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers

    NASA Astrophysics Data System (ADS)

    Zahraei, M.; Marciello, M.; Lazaro-Carrillo, A.; Villanueva, A.; Herranz, F.; Talelli, M.; Costo, R.; Monshi, A.; Shahbazi-Gahrouei, D.; Amirnasr, M.; Behdadfar, B.; Morales, M. P.

    2016-06-01

    Three biocompatible polymers, polyethylene glycol (PEG), dextran and chitosan, have been used in this work to control the colloidal stability of magnetic nanoparticles (14 ± 5 nm in diameter) and to vary the aggregation state in order to study their effect on relaxometric and heating properties. Two different coating strategies have been deeply developed; one based on the formation of an amide bond between citric acid coated nanoparticles (NPs) and amine groups present on the polymer surface and the other based on the NP encapsulation. Relaxometric properties revealed that proton relaxation rates strongly depend on the coating layer hydrophilicity and the aggregation state of the particles due to the presence of magnetic interactions. Thus, while PEG coating reduces particle aggregation by increasing inter-particle spacing leading to reduction of both T1 and T2 relaxation, dextran and chitosan lead to an increase mainly in T2 values due to the aggregation of particles in bigger clusters where they are in close contact. Dextran and chitosan coated NPs have also shown a remarkable heating effect during the application of an alternating magnetic field. They have proved to be potential candidates as theranostic agents for cancer diagnosis and treatment. Finally, cytotoxicity of PEG conjugated NPs, which seem to be ideal for intravenous administration because of their small hydrodynamic size, was investigated resulting in high cell viability even at 0.2 mg Fe ml-1 after 24 h of incubation. This suspension can be used as drug/biomolecule carrier for in vivo applications.

  13. Effect of Manganese Additive on the Improvement of Low-Temperature Catalytic Activity of VO(x)-WO(x)/TiO2 Nanoparticles for Chlorobenzene Combustion.

    PubMed

    He, Fei; Chen, Chunxiao; Liu, Shantang

    2016-06-01

    In this study, V-W/TiO2, Mn-V-W/TiO2 and Mn-W/TiO2 nanoparticles were prepared by homogeneous precipitation method and investigated for the catalytic combustion of chlorobenzene (CB), which was used as a model compound of chlorinated volatile organic compounds (CVOCs). The samples were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, transmission electron microscope (TEM) and hydrogen temperature-programed reduction (H2-TPR). The average size of the nanoparticles was -20 nm. Manganese species were evenly distributed on the surface of the V-W/TiO2 catalyst, and a small amount of manganese addition did not affect the crystal form, crystallinity and morphology of the V-W/TiO2 catalyst. In addition, low-temperature catalytic activity of V-W/TiO2 catalysts could be effectively improved. When the molar ratio of Mn/(Mn + V) was 0.25 or 0.4, the catalyst displayed the highest low-temperature activity. This was possibly due to Mn (VO3)x formed by the reaction of manganese and vanadium species. Meanwhile, we also found that the addition of oxalic acid was benefit to the improvement of the catalytic activities. When manganese content was high, such as Mn (0.75) VW/Ti, the catalyst activity declined seriously, and the reason was also discussed.

  14. Effect of Manganese Additive on the Improvement of Low-Temperature Catalytic Activity of VO(x)-WO(x)/TiO2 Nanoparticles for Chlorobenzene Combustion.

    PubMed

    He, Fei; Chen, Chunxiao; Liu, Shantang

    2016-06-01

    In this study, V-W/TiO2, Mn-V-W/TiO2 and Mn-W/TiO2 nanoparticles were prepared by homogeneous precipitation method and investigated for the catalytic combustion of chlorobenzene (CB), which was used as a model compound of chlorinated volatile organic compounds (CVOCs). The samples were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, transmission electron microscope (TEM) and hydrogen temperature-programed reduction (H2-TPR). The average size of the nanoparticles was -20 nm. Manganese species were evenly distributed on the surface of the V-W/TiO2 catalyst, and a small amount of manganese addition did not affect the crystal form, crystallinity and morphology of the V-W/TiO2 catalyst. In addition, low-temperature catalytic activity of V-W/TiO2 catalysts could be effectively improved. When the molar ratio of Mn/(Mn + V) was 0.25 or 0.4, the catalyst displayed the highest low-temperature activity. This was possibly due to Mn (VO3)x formed by the reaction of manganese and vanadium species. Meanwhile, we also found that the addition of oxalic acid was benefit to the improvement of the catalytic activities. When manganese content was high, such as Mn (0.75) VW/Ti, the catalyst activity declined seriously, and the reason was also discussed. PMID:27427700

  15. Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro.

    PubMed

    Pradhan, Saheli; Patra, Prasun; Mitra, Shouvik; Dey, Kushal Kumar; Jain, Sneha; Sarkar, Samapd; Roy, Shuvrodeb; Palit, Pratip; Goswami, Arunava

    2014-09-01

    Mung bean plants were grown under controlled conditions and supplemented with macro- and micronutrients. The objective of this study was to determine the response of manganese nanoparticles (MnNP) in nitrate uptake, assimilation, and metabolism compared with the commercially used manganese salt, manganese sulfate (MS). MnNP was modulated to affect the assimilatory process by enhancing the net flux of nitrogen assimilation through NR-NiR and GS-GOGAT pathways. This study was associated with toxicological investigation on in vitro and in vivo systems to promote MnNP as nanofertilizer and can be used as an alternative to MS. MnNP did not impart any toxicity to the mice brain mitochondria except in the partial inhibition of complex II-III activity in ETC. Therefore, mitochondrial dysfunction and neurotoxicity, which were noted by excess usage of elemental manganese, were prevented. This is the first attempt to highlight the nitrogen uptake, assimilation, and metabolism in a plant system using a nanoparticle to promote a biosafe nanomicronutrient-based crop management.

  16. Ligand-induced evolution of intrinsic fluorescence and catalytic activity from cobalt ferrite nanoparticles.

    PubMed

    Pal, Monalisa; Kundu, Anirban; Rakshit, Rupali; Mandal, Kalyan

    2015-06-01

    To develop CoFe(2)O(4) as magneto-fluorescent nanoparticles (NPs) for biomedical applications, it would be advantageous to identify any intrinsic fluorescence of this important magnetic material by simply adjusting the surface chemistry of the NPs themselves. Herein, we demonstrate that intrinsic multicolor fluorescence, covering the whole visible region, can be induced by facile functionalization of CoFe(2)O(4) NPs with Na-tartrate. Moreover, the functionalized CoFe(2)O(4) NPs also show unprecedented catalytic efficiency in the degradation of both biologically and environmentally harmful dyes, pioneering the potential application of these NPs in therapeutics and wastewater treatment. Detailed investigation through various spectroscopic tools unveils the story behind the emergence of this unique optical property of CoFe(2)O(4) NPs upon functionalization with tartrate ligands. We believe our developed multifunctional CoFe(2)O(4) NPs hold great promise for advanced biomedical and technological applications. PMID:25867626

  17. Ligand-induced evolution of intrinsic fluorescence and catalytic activity from cobalt ferrite nanoparticles.

    PubMed

    Pal, Monalisa; Kundu, Anirban; Rakshit, Rupali; Mandal, Kalyan

    2015-06-01

    To develop CoFe(2)O(4) as magneto-fluorescent nanoparticles (NPs) for biomedical applications, it would be advantageous to identify any intrinsic fluorescence of this important magnetic material by simply adjusting the surface chemistry of the NPs themselves. Herein, we demonstrate that intrinsic multicolor fluorescence, covering the whole visible region, can be induced by facile functionalization of CoFe(2)O(4) NPs with Na-tartrate. Moreover, the functionalized CoFe(2)O(4) NPs also show unprecedented catalytic efficiency in the degradation of both biologically and environmentally harmful dyes, pioneering the potential application of these NPs in therapeutics and wastewater treatment. Detailed investigation through various spectroscopic tools unveils the story behind the emergence of this unique optical property of CoFe(2)O(4) NPs upon functionalization with tartrate ligands. We believe our developed multifunctional CoFe(2)O(4) NPs hold great promise for advanced biomedical and technological applications.

  18. Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers.

    PubMed

    Zahraei, M; Marciello, M; Lazaro-Carrillo, A; Villanueva, A; Herranz, F; Talelli, M; Costo, R; Monshi, A; Shahbazi-Gahrouei, D; Amirnasr, M; Behdadfar, B; Morales, M P

    2016-06-24

    Three biocompatible polymers, polyethylene glycol (PEG), dextran and chitosan, have been used in this work to control the colloidal stability of magnetic nanoparticles (14 ± 5 nm in diameter) and to vary the aggregation state in order to study their effect on relaxometric and heating properties. Two different coating strategies have been deeply developed; one based on the formation of an amide bond between citric acid coated nanoparticles (NPs) and amine groups present on the polymer surface and the other based on the NP encapsulation. Relaxometric properties revealed that proton relaxation rates strongly depend on the coating layer hydrophilicity and the aggregation state of the particles due to the presence of magnetic interactions. Thus, while PEG coating reduces particle aggregation by increasing inter-particle spacing leading to reduction of both T1 and T2 relaxation, dextran and chitosan lead to an increase mainly in T2 values due to the aggregation of particles in bigger clusters where they are in close contact. Dextran and chitosan coated NPs have also shown a remarkable heating effect during the application of an alternating magnetic field. They have proved to be potential candidates as theranostic agents for cancer diagnosis and treatment. Finally, cytotoxicity of PEG conjugated NPs, which seem to be ideal for intravenous administration because of their small hydrodynamic size, was investigated resulting in high cell viability even at 0.2 mg Fe ml(-1) after 24 h of incubation. This suspension can be used as drug/biomolecule carrier for in vivo applications.

  19. Degradation of aqueous and soil-sorbed estradiol using a new class of stabilized manganese oxide nanoparticles.

    PubMed

    Han, Bing; Zhang, Man; Zhao, Dongye; Feng, Yucheng

    2015-03-01

    Manganese oxide (MnO₂) was reported to be effective for degrading aqueous pharmaceutical chemicals. However, little is known about its potential use for degrading soil-sorbed contaminants. To bridge this knowledge gap, we synthesized, for the first time, a class of stabilized MnO₂ nanoparticles using carboxymethyl celluloses (CMC) as a stabilizer, and tested their effectiveness for degrading aqueous and soil-sorbed estradiol. The most desired particles (highest reactivity and soil deliverability) were obtained at a CMC/MnO₂ molar ratio of 1.39 × 10(-3), which yielded a mean hydrodynamic size of 39.5 nm and a narrow size distribution (SD = 0.8 nm). While non-stabilized MnO₂ particles rapidly aggregated and were not transportable through a soil column, CMC-stabilized nanoparticles remained fully dispersed in water and were soil deliverable. At typical aquatic pH (6-7), CMC-stabilized MnO₂ exhibited faster degradation kinetics for oxidation of 17β-estradiol than non-stabilized MnO₂. The reactivity advantage becomes more evident when used for treating soil-sorbed estradiol owing to the ability of CMC to complex with metal ions and prevent the reactive sites from binding with inhibitive soil components. A retarded first-order rate model was able to interpret the oxidation kinetics for CMC-stabilized MnO₂. When used for degrading soil-sorbed estradiol, several factors may inhibit the oxidation effectiveness, including desorption rate, soil-MnO₂ interactions, and soil-released metals and reductants. CMC-stabilized MnO₂ nanoparticles hold the potential for facilitating in situ oxidative degradation of various emerging contaminants in soil and groundwater.

  20. Synthesis and photoluminescent and nonlinear optical properties of manganese doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Nazerdeylami, Somayeh; Saievar-Iranizad, Esmaiel; Dehghani, Zahra; Molaei, Mehdi

    2011-01-01

    In this work we synthesized ZnS:Mn 2+ nanoparticles by chemical method using PVP (polyvinylpyrrolidone) as a capping agent in aqueous solution. The structure and optical properties of the resultant product were characterized using UV-vis optical spectroscopy, X-ray diffraction (XRD), photoluminescence (PL) and z-scan techniques. UV-vis spectra for all samples showed an excitonic peak at around 292 nm, indicating that concentration of Mn 2+ ions does not alter the band gap of nanoparticles. XRD patterns showed that the ZnS:Mn 2+ nanoparticles have zinc blende structure with the average crystalline sizes of about 2 nm. The room temperature photoluminescence (PL) spectrum of ZnS:Mn 2+ exhibited an orange-red emission at 594 nm due to the 4T 1- 6A 1 transition in Mn 2+. The PL intensity increased with increase in the Mn 2+ ion concentration. The second-order nonlinear optical properties of nanoparticles were studied using a continuous-wave (CW) He-Ne laser by z-scan technique. The nonlinear refractive indices of nanoparticles were in the order of 10 -8 cm 2/W with negative sign and the nonlinear absorption indices of these nanoparticles were obtained to be about 10 -3 cm/W with positive sign.

  1. Mineral of the month: manganese

    USGS Publications Warehouse

    Corathers, Lisa

    2005-01-01

    Manganese is one of the most important ferrous metals and one of the few for which the United States is totally dependent on imports. It is a black, brittle element predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production, which together provide the largest market for manganese (about 83 percent). It is also used as an alloy with nonferrous metals such as aluminum and copper. Nonmetallurgical applications of manganese include battery cathodes, soft ferrite magnets used in electronics, micronutrients found in fertilizers and animal feed, water treatment chemicals, and a colorant for bricks and ceramics.

  2. Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions

    NASA Astrophysics Data System (ADS)

    Lu, Le T.; Dung, Ngo T.; Tung, Le D.; Thanh, Cao T.; Quy, Ong K.; Chuc, Nguyen V.; Maenosono, Shinya; Thanh, Nguyen T. K.

    2015-11-01

    In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(iii) and Co(ii) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4-30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications.In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(iii) and Co(ii) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4-30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications. Electronic

  3. Visualization of internalization of functionalized cobalt ferrite nanoparticles and their intracellular fate

    PubMed Central

    Bregar, Vladimir B; Lojk, Jasna; Šuštar, Vid; Veranič, Peter; Pavlin, Mojca

    2013-01-01

    In recent years, nanoparticles (NPs) and related applications have become an intensive area of research, especially in the biotechnological and biomedical fields, with magnetic NPs being one of the promising tools for tumor treatment and as MRI-contrast enhancers. Several internalization and cytotoxicity studies have been performed, but there are still many unanswered questions concerning NP interactions with cells and NP stability. In this study, we prepared functionalized magnetic NPs coated with polyacrylic acid, which were stable in physiological conditions and which were also nontoxic short-term. Using fluorescence, scanning, and transmission electron microscopy, we were able to observe and determine the internalization pathways of polyacrylic acid–coated NPs in Chinese hamster ovary cells. With scanning electron microscopy we captured what might be the first step of NPs internalization – an endocytic vesicle in the process of formation enclosing NPs bound to the membrane. With fluorescence microscopy we observed that NP aggregates were rapidly internalized, in a time-dependent manner, via macropinocytosis and clathrin-mediated endocytosis. Inside the cytoplasm, aggregated NPs were found enclosed in acidified vesicles accumulated in the perinuclear region 1 hour after exposure, where they stayed for up to 24 hours. High intracellular loading of NPs in the Chinese hamster ovary cells was obtained after 24 hours, with no observable toxic effects. Thus polyacrylic acid–coated NPs have potential for use in biotechnological and biomedical applications. PMID:23486857

  4. Development of phosphonate modified Fe 1-x MnxFe2O4 mixed ferrite nanoparticles: novel peroxidase mimetics in enzyme linked immunosorbent assay.

    PubMed

    Bhattacharya, Dipsikha; Baksi, Ananya; Banerjee, Indranil; Ananthakrishnan, Rajakumar; Maiti, Tapas K; Pramanik, Panchanan

    2011-10-30

    A highly facile and feasible strategy on the fabrication of advanced intrinsic peroxidase mimetics based on Mn(2+) doped mixed ferrite (Mn(II)(x)Fe(II)(1-x)Fe(III)(2)O(4)) nanoparticles was demonstrated for the quantitative and sensitive detection of mouse IgG (as a model analyte). Mn(2+) doped Fe(1-x)Mn(x)Fe(2)O(4) nanoparticles were synthesized using varying ratios of Mn(2+):Fe(2+) ions and characterized by the well known complementary techniques. The increase of Mn(2+) proportion had remarkably enhanced the peroxidase activity and magnetism. The catalytic activity of mixed ferrites was found to follow Michaelis-Menten kinetics and was noticeably higher than native Fe(3)O(4). The calculated K(m) and K(cat) exhibited strong affinity with substrates which were remarkably higher than similar sized native magnetite nanoparticles and horseradish peroxidase (HRP). These findings stimulated us to develop carboxyl modified Fe(1-x)Mn(x)Fe(2)O(4) nanoparticles using phosphonomethyl immunodiacetic acid (PMIDA) to engineer PMIDA-Fe(1-x)Mn(x)Fe(2)O(4) fabricated enzyme linked immunosorbent assay (ELISA). Results of both PMIDA-Fe(1-x)Mn(x)Fe(2)O(4) linked ELISA revealed that the enhancements in absorbance during the catalysis of enzyme substrate were linearly proportional to the concentration of mouse IgG within the range between 0.1 μg/ml and 2.5 μg/ml. Further, this detection was ten times lower than previous reports and the detection limit of mouse IgG was 0.1 μg/ml. The advantages of our fabricated artificial peroxidase mimetics are combined of low cost, easy to prepare, better stability and tunable catalytic activity. Moreover, this method provides a new horizon for the development of promising analytical tools in the application of biocatalysis, bioassays, and bioseparation.

  5. Synthesis of cobalt ferrite nanoparticles from thermolysis of prospective metal-nitrosonaphthol complexes and their photochemical application in removing methylene blue

    NASA Astrophysics Data System (ADS)

    Tavana, Jalal; Edrisi, Mohammad

    2016-03-01

    In this study, cobalt ferrite (CoFe2O4) nanoparticles were synthesized by two novel methods. The first method is based on the thermolysis of metal-NN complexes. In the second method, a template free sonochemical treatment of mixed cobalt and iron chelates of α-nitroso-β-naphthol (NN) was applied. Products prepared through method 1 were spherical, with high specific surface area (54.39 m2 g-1) and small average crystalline size of 13 nm. However, CoFe2O4 nanoparticles prepared by method 2 were in random shapes, a broad range of crystalline sizes and a low specific surface area of 25.46 m2 g-1 though highly pure. A Taguchi experimental design was implemented in method 1 to determine and obtain the optimum catalyst. The structural and morphological properties of products were investigated by x-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, Brunauer-Emmett-Teller and dynamic laser light scattering. The crystalline size calculations were performed using Williamson-Hall method on XRD spectrum. The photocatalytic activity of the optimum nanocrystalline cobalt ferrite was investigated for degradation of a representative pollutant, methylene blue (MB), and visible light as energy source. The results showed that some 92% degradation of MB could be achieved for 7 h of visible light irradiation.

  6. Superparamagnetic behavior of heat treated Mg0.5Zn0.5Fe2O4 ferrite nanoparticles studied by Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Srinivas, Ch.; Singh, S. B.; Tirupanyam, B. V.; Meena, S. S.; Yusuf, S. M.; Prasad, S. A. V.; Krishna, K. S. Rama; Sastry, D. L.

    2016-05-01

    Nanoparticles of Mg0.5Zn0.5Fe2O4 ferrite have been synthesized by co-precipitation method. XRD and Mössbauer spectroscopic results of Mg0.5Zn0.5Fe2O4 annealed at 200 °C, 500 °C and 800 °C are reported. It was observed that the crystallite size increases and the lattice parameter decreases with increase in annealing temperature. The observed decrease in lattice strain supports the increase in crystallite size. The Mössbauer spectra of the samples annealed at 200 °C and 500 °C exhibits superparamagnetic doublets whereas the Mössbauer spectrum of the sample annealed at 800 °C exhibits paramagnetic doublet along with weak sextet of hyperfine interaction. The values of isomer shift resemble the presence of high spin iron ions. The studied ferrite nanoparticles are suitable for biomedical applications. The results are incorporated employing core-shell model and cation redistribution.

  7. Manganese Phosphate Self-assembled Nanoparticle Surface and Its application for Superoxide Anion Detection

    PubMed Central

    Shen, Xiaohui; Wang, Qi; Liu, Yuhong; Xue, Wenxiao; Ma, Lie; Feng, Shuaihui; Wan, Mimi; Wang, Fenghe; Mao, Chun

    2016-01-01

    Quantitative analysis of superoxide anion (O2·−) has increasing importance considering its potential damages to organism. Herein, a novel Mn-superoxide dismutase (MnSOD) mimics, silica-manganous phosphate (SiO2-Mn3(PO4)2) nanoparticles, were designed and synthesized by surface self-assembly processes that occur on the surface of silica-phytic acid (SiO2-PA) nanoparticles. The composite nanoparticles were characterized by fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electronic microscopy (SEM), electron diffraction pattern, energy dispersive spectroscopy (EDS) and elemental mapping. Then the electrochemical measurements of O2·− based on the incorporation of SiO2-Mn3(PO4)2 onto the surface of electrodes were performed, and some satisfactory results were obtained. This is the first report that manganous phosphate (Mn3(PO4)2) nanoparticles with shape-controlled, but not multilayer sheets, were utilized for O2·− detection. The surface self-assembly technology we proposed will offer the ideal material to construct more types biosensor and catalytic system for its nanosized effect. PMID:27357008

  8. Silica-F127 nanohybrid-encapsulated manganese oxide nanoparticles for optimized T1 magnetic resonance relaxivity.

    PubMed

    Wei Hsu, Benedict You; Wang, Miao; Zhang, Yu; Vijayaragavan, Vimalan; Wong, Siew Yee; Yuang-Chi Chang, Alex; Bhakoo, Kishore Kumar; Li, Xu; Wang, John

    2014-01-01

    To properly engineer MnO nanoparticles (MONPs) of high r1 relaxivity, a nanohybrid coating consisting of silica and F127 (PEO106PPO70PEO106) is designed to encapsulate MONPs. Achieved by an interfacial templating scheme, the nanohybrid encapsulating layer is highly permeable and hydrophilic to allow for an optimal access of water molecules to the encapsulated manganese oxide core. Hence, the efficacy of MONPs as MRI contrast agents is significantly improved, as demonstrated by an enhancement of the MR signal measured with a pre-clinical 7.0 T MRI scanner. The nanohybrid encapsulation strategy also confers high colloidal stability to the hydrophobic MONPs by the surface decoration of PEO chains and a small overall diameter (<100 nm) of the PEO-SiO2 nanohybrid-encapsulated MONPs (PEOMSNs). The PEOMSNs are not susceptible to Mn-ion leaching, and their biocompatibility is affirmed by a low toxicity profile. Moreover, these hybrid nanocapsules exhibit a nano-rattle structure, which would favor the facile loading of various therapeutic reagents for theranostic applications.

  9. Control of Particle Size and Morphology of Cobalt-Ferrite Nanoparticles by Salt-Matrix during Annealing

    NASA Astrophysics Data System (ADS)

    Azizi, A.; Sadrnezhaad, S. K.; Mostafavi, M.

    Salt-matrix annealing of mechanically alloyed Co-ferrite nanopowder was used to modify its particle size and morphology. Efficiency improvement due to suppression of sintering and growth resulted in reduction of average particle size from 100nm for salt-less to 40nm for salt-full annealing procedure. Nanosized single-phase cobalt-ferrite particles were observed after 2h annealing at 750°C in the samples milled for 20 hours both with and without NaCl. NaCl:CoFe2O4 ratio of 10:1 resulted in cabbage-like clusters containing particles smaller than 50 nm.

  10. Synergistic effect of manganese oxide nanoparticles and graphene nanosheets in composite anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Luo, Shu; Yu, Yang; Li, Mengya; Wu, Hengcai; Zhao, Fei; Jiang, Kaili; Wang, Jiaping; Kang, Feiyu; Fan, Shoushan

    2015-01-01

    A graphene-Mn3O4-graphene (GMG) sandwich structure with homogeneous anchoring of Mn3O4 nanoparticles among flexible and conductive graphene nanosheets (GSs) is achieved through dispersion of the GSs in Mn(NO3)2 solution and subsequent calcination. Mn3O4 nanoparticles are 50 ˜ 200 nm clusters consisting of 10 ˜ 20 nm primary particles, and serve as spacers to prevent the re-stacking of the GSs. GSs provide a highly conductive network among Mn3O4 nanoparticles for efficient electron transfer and buffer any volume change during cycling. Due to the strong synergistic effect between Mn3O4 and GSs, the capacity contributions from GSs and Mn3O4 in GMG are much larger than capacities of pure GSs and Mn3O4. Consequently, the GMG composite electrodes show excellent electrochemical properties for lithium ion battery applications, demonstrating a large reversible capacity of 750 mAh g-1 at 0.1 C based on the mass of GMG with no capacity fading after 100 cycles, and high rate abilities of 500 mAh g-1 at 5 C and 380 mAh g-1 at 10 C.

  11. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis.

    PubMed

    Li, Chun; Han, Xiaopeng; Cheng, Fangyi; Hu, Yuxiang; Chen, Chengcheng; Chen, Jun

    2015-06-04

    Spinel-type oxides are technologically important in many fields, including electronics, magnetism, catalysis and electrochemical energy storage and conversion. Typically, these materials are prepared by conventional ceramic routes that are energy consuming and offer limited control over shape and size. Moreover, for mixed-metal oxide spinels (for example, Co(x)Mn(3-x)O4), the crystallographic phase sensitively correlates with the metal ratio, posing great challenges to synthesize active product with simultaneously tuned phase and composition. Here we report a general synthesis of ultrasmall cobalt manganese spinels with tailored structural symmetry and composition through facile solution-based oxidation-precipitation and insertion-crystallization process at modest condition. As an example application, the nanocrystalline spinels catalyse the oxygen reduction/evolution reactions, showing phase and composition co-dependent performance. Furthermore, the mild synthetic strategy allows the formation of homogeneous and strongly coupled spinel/carbon nanocomposites, which exhibit comparable activity but superior durability to Pt/C and serve as efficient catalysts to build rechargeable Zn-air and Li-air batteries.

  12. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis

    PubMed Central

    Li, Chun; Han, Xiaopeng; Cheng, Fangyi; Hu, Yuxiang; Chen, Chengcheng; Chen, Jun

    2015-01-01

    Spinel-type oxides are technologically important in many fields, including electronics, magnetism, catalysis and electrochemical energy storage and conversion. Typically, these materials are prepared by conventional ceramic routes that are energy consuming and offer limited control over shape and size. Moreover, for mixed-metal oxide spinels (for example, CoxMn3−xO4), the crystallographic phase sensitively correlates with the metal ratio, posing great challenges to synthesize active product with simultaneously tuned phase and composition. Here we report a general synthesis of ultrasmall cobalt manganese spinels with tailored structural symmetry and composition through facile solution-based oxidation–precipitation and insertion–crystallization process at modest condition. As an example application, the nanocrystalline spinels catalyse the oxygen reduction/evolution reactions, showing phase and composition co-dependent performance. Furthermore, the mild synthetic strategy allows the formation of homogeneous and strongly coupled spinel/carbon nanocomposites, which exhibit comparable activity but superior durability to Pt/C and serve as efficient catalysts to build rechargeable Zn–air and Li–air batteries. PMID:26040417

  13. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis

    NASA Astrophysics Data System (ADS)

    Li, Chun; Han, Xiaopeng; Cheng, Fangyi; Hu, Yuxiang; Chen, Chengcheng; Chen, Jun

    2015-06-01

    Spinel-type oxides are technologically important in many fields, including electronics, magnetism, catalysis and electrochemical energy storage and conversion. Typically, these materials are prepared by conventional ceramic routes that are energy consuming and offer limited control over shape and size. Moreover, for mixed-metal oxide spinels (for example, CoxMn3-xO4), the crystallographic phase sensitively correlates with the metal ratio, posing great challenges to synthesize active product with simultaneously tuned phase and composition. Here we report a general synthesis of ultrasmall cobalt manganese spinels with tailored structural symmetry and composition through facile solution-based oxidation-precipitation and insertion-crystallization process at modest condition. As an example application, the nanocrystalline spinels catalyse the oxygen reduction/evolution reactions, showing phase and composition co-dependent performance. Furthermore, the mild synthetic strategy allows the formation of homogeneous and strongly coupled spinel/carbon nanocomposites, which exhibit comparable activity but superior durability to Pt/C and serve as efficient catalysts to build rechargeable Zn-air and Li-air batteries.

  14. Magnetic properties of Co1-xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol-gel autocombustion method and its ball milling

    NASA Astrophysics Data System (ADS)

    Yadav, Raghvendra Singh; Havlica, Jaromir; Hnatko, Miroslav; Šajgalík, Pavol; Alexander, Cigáň; Palou, Martin; Bartoníčková, Eva; Boháč, Martin; Frajkorová, Františka; Masilko, Jiri; Zmrzlý, Martin; Kalina, Lukas; Hajdúchová, Miroslava; Enev, Vojtěch

    2015-03-01

    In this article, Co1-xZnxFe2O4 (x=0.0 and 0.5) spinel ferrite nanoparticles were achieved at 800 °C by starch-assisted sol-gel autocombustion method. To further reduce the particle size, these synthesized ferrite nanoparticles were ball-milled for 2 h. X-ray diffraction patterns demonstrated single phase formation of Co1-xZnxFe2O4 (x=0.0 and 0.5) spinel ferrite nanoparticles. FE-SEM analysis indicated the nanosized spherical particles formation with spherical morphology. The change in Raman modes and relative intensity were observed due to ball milling and consequently decrease of particle size and cationic redistribution. An X-ray Photoelectron Spectroscopy (XPS) result indicated that Co2+, Zn2+ and Fe3+ exist in octahedral and tetrahedral sites. The cationic redistribution of Zn2+ and consequently Fe3+ occurred between octahedral and tetrahedral sites after ball-milling. The change in saturation magnetization (Ms) and coercivity (Hc) with decrease of nanocrystalline size and distribution of cations in spinel ferrite were observed.

  15. Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells

    NASA Astrophysics Data System (ADS)

    Hanini, Amel; Lartigue, Lenaic; Gavard, Julie; Kacem, Kamel; Wilhelm, Claire; Gazeau, Florence; Chau, François; Ammar, Souad

    2016-10-01

    In this paper we investigate the ability of zinc rich ferrite nanoparticles to induce hyperthermia on cancer cells using an alternating magnetic field (AMF). First, we synthesized ferrites and then we analyzed their physico-chemical properties by transmission electron microscopy, X-ray diffraction and magnetic and magnetocalorimetric measurements. We found that the polyol-made magnetically diluted particles are of 11 nm in size. They are superparamagnetic at body temperature (310 K) with a low but non-negligible magnetization. Interestingly, as nano-ferrimagnets they exhibit a Curie temperature of 366 K, close to the therapeutic temperature range. Their effect on human healthy endothelial (HUVEC) and malignant glioma (U87-MG) cells was also evaluated using MTT viability assays. Incubated with the two cell lines, at doses ≤100 μg mL-1 and contact times ≤4 h, they exhibit a mild in vitro toxicity. In these same operating biological conditions and coupled to AMF (700 kHz and 34.4 Oe) for 1 h, they rapidly induce a net temperature increase. In the case of tumor cells it reaches 4 K, making the produced particles particularly promising for self-regulated magnetically-induced heating in local glioma therapy.

  16. Effect of UV radiations to control particle size of Mn-Zn spinel ferrite nano-particles

    NASA Astrophysics Data System (ADS)

    Ameen Ramiza, F.; Ajmal, S. K.; Khan, M. B.; Nasim, A.; Jamil, Y.; Kashif, K.; Amira, S.

    2016-08-01

    MnxZn1-xFe2O4 (0.0 < x < 1.0) ferrite nano particles were synthesized for concentration varying from 0.27 to 0.87 to obtain chemically homogenous powder for obtaining fine particle size by co precipitation technique. Keeping in view the interest of scientists for particle size, the present work focus on the impact of UV radiation to control the particle size of prepared fine magnetic particles. The particles were digested for ninety minutes at a temperature of 90oC. The samples were divided into four equal quantities and were subjected to different doses of UV radiation. The chemically produced samples of Mn-Zn ferrite nano particles were analyzed by XRD which confirmed cubic spinel structure of the material. The average crystallite size (t), lattice parameter (a) and other structural parameters of UV-irradiated MnxZni-xFe2O4 spinel ferrite were calculated from XRD data. The spinel peak of the irradiated sample when compared with the control sample, shifted from 35.38 to 35.15. In few samples, additional peaks supporting the ferrite structure were also observed. The variation in the particle sizes observed for various doses of UV irradiation were in the range of 17.6 to 6.2 nm, whereas the particle size of the control was 8.82nm. The experiment was repeated for different concentrations, at the same digestion temperature and time revealed the similar results indicating that UV radiations can have a remarkable effect to control the phase and size of nano size fine magnetic ferrite particles. The present work successfully document the impact of UV to control the particle size.

  17. Nanoparticles of Molybdenum Chlorophyllin Photosensitizer and Magnetic Citrate-Coated Cobalt Ferrite Complex Available to Hyperthermia and Photodynamic Therapy Clinical Trials

    NASA Astrophysics Data System (ADS)

    Primo, Fernando L.; Cordo, Paloma L. A. G.; Neto, Alberto F.; Morais, Paulo C.; Tedesco, Antonio C.

    2010-12-01

    This study report on the synthesis and characterization of molybdenum chlorophyllin (Mo-Chl) compounds associated in a complex with magnetic nanoparticles (citrate-coated cobalt ferrite), the latter prepared as a biocompatible magnetic fluid (MF). The complex material was developed for application as a synergic drug for cancer treatment using Photodynamic Therapy (PDT) and Hyperthermia (HPT). Chlorophyllin was obtained from alkaline extraction of Ilex paraguariensis following molybdenum insertion from hydrolysis with molybdate sodium. Fluorescence quantum yield (Φf) of Mo-Chl/dimethyl-sulphoxide (DMSO) was lower than 0.1, with a lifetime of 5.0 ns, as obtained from time-correlated single-photon counting technique. The oxygen quantum yield of Mo-Chl was carried out using laser flash-photolysis studies in homogeneous medium saturated with O2(g) (ΦΔ = 0.50). Cellular viability was also evaluated via the classical MTT assay using gingival fibroblasts cells as a biological model. Studies performed with the complex Mo-Chl (5.0 μmol.L-1)/MF at different magnetic nanoparticle concentrations (ranging from 1012 to 1015 particle.mL-1) revealed a cellular viability of approximately 95% for the ideal magnetic material concentration of 1×10 particle.mL-1. The present study shows that natural photosensitizers molecules Mo-Chl used in association with magnetic nanoparticles represent a promising generation of drug developed to work synergistically in the treatment of neoplastic tissues using PDT and HPT.

  18. Experimental demonstration of all-optical weak magnetic field detection using beam-deflection of single-mode fiber coated with cobalt-doped nickel ferrite nanoparticles.

    PubMed

    Pradhan, Somarpita; Chaudhuri, Partha Roy

    2015-07-10

    We experimentally demonstrate single-mode optical-fiber-beam-deflection configuration for weak magnetic-field-detection using an optimized (low coercive-field) composition of cobalt-doped nickel ferrite nanoparticles. Devising a fiber-double-slit type experiment, we measure the surrounding magnetic field through precisely measuring interference-fringe yielding a minimum detectable field ∼100  mT and we procure magnetization data of the sample that fairly predicts SQUID measurement. To improve sensitivity, we incorporate etched single-mode fiber in double-slit arrangement and recorded a minimum detectable field, ∼30  mT. To further improve, we redefine the experiment as modulating fiber-to-fiber light-transmission and demonstrate the minimum field as 2.0 mT. The device will be uniquely suited for electrical or otherwise hazardous environments.

  19. Artificial Neural Network Modelling of Photodegradation in Suspension of Manganese Doped Zinc Oxide Nanoparticles under Visible-Light Irradiation

    PubMed Central

    Abdollahi, Yadollah; Sairi, Nor Asrina; Amin Matori, Khamirul; Fard Masoumi, Hamid Reza

    2014-01-01

    The artificial neural network (ANN) modeling of m-cresol photodegradation was carried out for determination of the optimum and importance values of the effective variables to achieve the maximum efficiency. The photodegradation was carried out in the suspension of synthesized manganese doped ZnO nanoparticles under visible-light irradiation. The input considered effective variables of the photodegradation were irradiation time, pH, photocatalyst amount, and concentration of m-cresol while the efficiency was the only response as output. The performed experiments were designed into three data sets such as training, testing, and validation that were randomly splitted by the software's option. To obtain the optimum topologies, ANN was trained by quick propagation (QP), Incremental Back Propagation (IBP), Batch Back Propagation (BBP), and Levenberg-Marquardt (LM) algorithms for testing data set. The topologies were determined by the indicator of minimized root mean squared error (RMSE) for each algorithm. According to the indicator, the QP-4-8-1, IBP-4-15-1, BBP-4-6-1, and LM-4-10-1 were selected as the optimized topologies. Among the topologies, QP-4-8-1 has presented the minimum RMSE and absolute average deviation as well as maximum R-squared. Therefore, QP-4-8-1 was selected as final model for validation test and navigation of the process. The model was used for determination of the optimum values of the effective variables by a few three-dimensional plots. The optimum points of the variables were confirmed by further validated experiments. Moreover, the model predicted the relative importance of the variables which showed none of them was neglectable in this work. PMID:25538962

  20. Artificial neural network modelling of photodegradation in suspension of manganese doped zinc oxide nanoparticles under visible-light irradiation.

    PubMed

    Abdollahi, Yadollah; Zakaria, Azmi; Sairi, Nor Asrina; Matori, Khamirul Amin; Masoumi, Hamid Reza Fard; Sadrolhosseini, Amir Reza; Jahangirian, Hossein

    2014-01-01

    The artificial neural network (ANN) modeling of m-cresol photodegradation was carried out for determination of the optimum and importance values of the effective variables to achieve the maximum efficiency. The photodegradation was carried out in the suspension of synthesized manganese doped ZnO nanoparticles under visible-light irradiation. The input considered effective variables of the photodegradation were irradiation time, pH, photocatalyst amount, and concentration of m-cresol while the efficiency was the only response as output. The performed experiments were designed into three data sets such as training, testing, and validation that were randomly splitted by the software's option. To obtain the optimum topologies, ANN was trained by quick propagation (QP), Incremental Back Propagation (IBP), Batch Back Propagation (BBP), and Levenberg-Marquardt (LM) algorithms for testing data set. The topologies were determined by the indicator of minimized root mean squared error (RMSE) for each algorithm. According to the indicator, the QP-4-8-1, IBP-4-15-1, BBP-4-6-1, and LM-4-10-1 were selected as the optimized topologies. Among the topologies, QP-4-8-1 has presented the minimum RMSE and absolute average deviation as well as maximum R-squared. Therefore, QP-4-8-1 was selected as final model for validation test and navigation of the process. The model was used for determination of the optimum values of the effective variables by a few three-dimensional plots. The optimum points of the variables were confirmed by further validated experiments. Moreover, the model predicted the relative importance of the variables which showed none of them was neglectable in this work.

  1. Size-Dependent Toxicity Differences of Intratracheally Instilled Manganese Oxide Nanoparticles: Conclusions of a Subacute Animal Experiment.

    PubMed

    Máté, Zsuzsanna; Horváth, Edina; Kozma, Gábor; Simon, Tímea; Kónya, Zoltán; Paulik, Edit; Papp, András; Szabó, Andrea

    2016-05-01

    Incomplete information on toxicological differences of micro- and nanometer-sized particles raised concerns about the effects of the latter on health and environment. Besides chemical composition, size and surface-to-volume ratio of nanoparticles (NPs) can affect toxicity. To investigate size-dependent toxicity differences, we used particles made of dioxide of the neurotoxic heavy metal manganese (Mn), typically found in inhaled metal fumes, in three size ranges (size A, 9.14 ± 1.98 nm; size B, 42.36 ± 8.06 nm; size C, 118.31 ± 25.37 nm). For modeling the most frequent route of exposure to Mn, NPs were given to rats for 6 weeks by intratracheal instillation. Of each NP size, 3 or 6 mg/kg body weight was given while control animals were vehicle treated. Neurotoxicity was assessed by measuring spontaneous locomotor activity in an open field and by recording spontaneous and evoked electrical activity from the somatosensory cortical area. Mn content of brain, lung, and blood, measured by ICP-MS, were correlated to the observed functional alterations to see the relationship between Mn load and toxic effects. Body weight gain and organ weights were measured as general toxicological indices. The toxicity of size A and size B NPs proved to be stronger compared to size C NPs, seen most clearly in decreased body weight gain and altered spontaneous cortical activity, which were also well correlated to the internal Mn dose. Our results showed strong effect of size on NP toxicity, thus, beyond inappropriateness of toxicity data of micrometer-sized particles in evaluation of NP exposure, differentiation within the nano range may be necessary.

  2. Seebeck Coefficient of Manganese Oxide Nanoparticles as a Function of Ohmic Resistance

    NASA Astrophysics Data System (ADS)

    Francis, Nicholas; Hedden, Morgan; Constantin, Costel

    2013-03-01

    Due to the ever increasing energy demand and growing global concern over the environmental impact of CO2 emissions, there is an urging need to seek solutions to transit from fossil fuels to sustainable energy. Thermoelectric (TE) materials show great promise for converting waste heat energy into electricity. TE systems have many unique advantages such as silent operationality, time reliability, and dimensional scalability. Most recently, researchers Song et al. found that MnO2 nanoparticles show a giant Seebeck coefficient of S = 20 mV/K, which is100 times higher than bismuth telluride, one of the best TE materials. Song et al. concluded the paper claiming that the giant S is related to the surface density of the electronic states (DOS). However, they provided very little information about the S as a function of Ohmic resistance [R] for different nano particle sizes which can give information about the DOS. Our preliminary results show that there is a sudden increase of S from 0.33-0.63 mV/K as R increases from 80-110 Ohms. This transition has never been seen before and it can give clues as to the existence of the Giant S observed in this material. This work was supported in part by U.S. Department of Energy Grant #DE-EE0003100..

  3. Ultrahigh relaxivity and safe probes of manganese oxide nanoparticles for in vivo imaging.

    PubMed

    Xiao, J; Tian, X M; Yang, C; Liu, P; Luo, N Q; Liang, Y; Li, H B; Chen, D H; Wang, C X; Li, L; Yang, G W

    2013-12-05

    Mn-based nanoparticles (NPs) have emerged as new class of probes for magnetic resonance imaging due to the impressive contrast ability. However, the reported Mn-based NPs possess low relaxivity and there are no immunotoxicity data regarding Mn-based NPs as contrast agents. Here, we demonstrate the ultrahigh relaxivity of water protons of 8.26 mM(-1) s(-1) from the Mn3O4 NPs synthesized by a simple and green technique, which is twice higher than that of commercial gadolinium (Gd)-based contrast agents (4.11 mM(-1) s(-1)) and the highest value reported to date for Mn-based NPs. We for the first time demonstrate these Mn3O4 NPs biocompatibilities both in vitro and in vivo are satisfactory based on systematical studies of the intrinsic toxicity including cell viability of human nasopharyngeal carcinoma cells, normal nasopharyngeal epithelium, apoptosis in cells and in vivo immunotoxicity. These findings pave the way for the practical clinical diagnosis of Mn based NPs as safe probes for in vivo imaging.

  4. Ultrahigh relaxivity and safe probes of manganese oxide nanoparticles for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Tian, X. M.; Yang, C.; Liu, P.; Luo, N. Q.; Liang, Y.; Li, H. B.; Chen, D. H.; Wang, C. X.; Li, L.; Yang, G. W.

    2013-12-01

    Mn-based nanoparticles (NPs) have emerged as new class of probes for magnetic resonance imaging due to the impressive contrast ability. However, the reported Mn-based NPs possess low relaxivity and there are no immunotoxicity data regarding Mn-based NPs as contrast agents. Here, we demonstrate the ultrahigh relaxivity of water protons of 8.26 mM-1s-1 from the Mn3O4 NPs synthesized by a simple and green technique, which is twice higher than that of commercial gadolinium (Gd)-based contrast agents (4.11 mM-1s-1) and the highest value reported to date for Mn-based NPs. We for the first time demonstrate these Mn3O4 NPs biocompatibilities both in vitro and in vivo are satisfactory based on systematical studies of the intrinsic toxicity including cell viability of human nasopharyngeal carcinoma cells, normal nasopharyngeal epithelium, apoptosis in cells and in vivo immunotoxicity. These findings pave the way for the practical clinical diagnosis of Mn based NPs as safe probes for in vivo imaging.

  5. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Lynch, D.; Hepworth, M.T.

    1993-09-01

    The focus of work being performed on Hot Coal Gas Desulfurization is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E.T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}/O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese higher temperatures than zinc ferrite or zinc titanate. This presentation gives the thermodynamic background for consideration of manganese-based sorbents as an alternative to zinc ferrite. To date the work which has been in progress for nine months is limited at this stage to thermogravimetric testing of four formulations of manganese-alumina sorbents to determine the optimum conditions of pelletization and induration to produce reactive pellets.

  6. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Hepworth, M.T.

    1993-06-01

    The focus of work being performed on Hot Coal Gas Desulfurization is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the U.S. Steel Fundamental Research Laboratories in Monroeville, PA, by E.T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion for the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese higher temperatures than zinc ferrite or zinc titanate. This presentation give the thermodynamic background for consideration of manganese-based sorbents as an alternative to zinc ferrite. To date the work which has been in progress for nine months is limited at this stage to thermogravimetric testing of four formulations of manganese-alumina sorbents to determine the optimum conditions of pelletization and induration to produce reactive pellets.

  7. High strength ferritic alloy

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high-strength ferritic alloy useful for fast reactor duct and cladding applications where an iron base contains from about 9% to about 13% by weight chromium, from about 4% to about 8% by weight molybdenum, from about 0.2% to about 0.8% by weight niobium, from about 0.1% to about 0.3% by weight vanadium, from about 0.2% to about 0.8% by weight silicon, from about 0.2% to about 0.8% by weight manganese, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight sulfur, a maximum of about 0.02% by weight phosphorous, and from about 0.04% to about 0.12% by weight carbon.

  8. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Hepworth, M.T.; Ben-Slimane, R.

    1994-12-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This annual topical report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite.

  9. Barium carbonate nanoparticle to enhance oxygen reduction activity of strontium doped lanthanum ferrite for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Hong, Tao; Chen, Fanglin; Xia, Changrong

    2015-03-01

    BaCO3 nanoparticles are demonstrated as outstanding catalysts for high-temperature oxygen reduction reaction (ORR) on the La0.8Sr0.2FeO3-δ (LSF) cathode for solid oxide fuel cells (SOFCs) based on ytrria-stabilized zirconia (YSZ) electrolytes. Thermal gravitational and X-ray diffraction measurements show that BaCO3 is stable and chemically compatible with LSF under the fabrication and operation conditions of intermediate-temperature SOFCs. The BaCO3 nanoparticles can greatly reduce the interfacial polarization resistance; from 2.96 to 0.84 Ω cm2 at 700 °C when 12.9wt% BaCO3 is infiltrated to the porous LSF electrode on the YSZ electrolyte. Electrochemical impedance spectroscopy shows that there is about one order of magnitude decrease in the low-frequency resistance, indicating that BaCO3 nanoparticles can greatly enhance the surface steps for ORR. Electrical conductivity relaxation investigation indicates about one order of magnitude increase in the chemical oxygen surface exchange coefficient when BaCO3 is applied, directly demonstrating significant increase in the kinetics for ORR. In addition, LSF cathodes with infiltrated BaCO3 nanoparticles have shown excellent stability and substantially enhanced cell performance as demonstrated with single cells, suggesting BaCO3 nanoparticles are very effective in enhancing ORR on LSF.

  10. Sol-gel synthesis and characterization of pure and manganese doped TiO2 nanoparticles--a new NLO active material.

    PubMed

    Praveen, P; Viruthagiri, G; Mugundan, S; Shanmugam, N

    2014-01-01

    Pure and Manganese (4%, 8%, 12% and 16%) doped titanium di-oxide (Mn-TiO2) nanoparticles were synthesized by sol-gel technique. The preparation of pure and Mn doped TiO2 nanoparticles were achieved by tetra-isopropyl orthotitanate and 2-propanol as common starting materials and the products were annealed at 450°C and 750°C to get anatase and rutile phases, respectively. The prepared materials were characterized by X-ray diffraction analysis (XRD), Fourier transform infra-red spectroscopy (FT-IR), UV-VIS-Diffuse reflectance spectroscopy (DRS), Photoluminescence (PL) spectroscopy, Scanning electron microscopy (SEM) with Energy dispersive X-ray analysis (EDX) and Kurtz powder second harmonic generation (SHG) test. XRD patterns confirmed the crystalline nature and tetragonal structure of synthesized materials. The functional groups present in the samples were identified by FTIR study. The allowed direct and indirect band gap energies, as well as the crystallite sizes of obtained nanoparticles were calculated from DRS analysis. Microstructures and elemental identification were done by SEM with EDX analysis. The existence of SHG signals was observed using Nd: YAG laser with fundamental wavelength of 1064 nm. The products were found to be transparent in the entire visible region with cut-off wavelengths within the UV region confirms its suitability for device fabrications.

  11. Copper(0) nanoparticles supported on silica-coated cobalt ferrite magnetic particles: cost effective catalyst in the hydrolysis of ammonia-borane with an exceptional reusability performance.

    PubMed

    Kaya, Murat; Zahmakiran, Mehmet; Ozkar, Saim; Volkan, Mürvet

    2012-08-01

    Herein we report the development of a new and cost-effective nanocomposite catalyst for the hydrolysis of ammonia-borane (NH(3)BH(3)), which is considered to be one of the most promising solid hydrogen carriers because of its high gravimetric hydrogen storage capacity (19.6% wt) and low molecular weight. The new catalyst system consisting of copper nanoparticles supported on magnetic SiO(2)/CoFe(2)O(4) particles was reproducibly prepared by wet-impregnation of Cu(II) ions on SiO(2)/CoFe(2)O(4) followed by in situ reduction of the Cu(II) ions on the surface of magnetic support during the hydrolysis of NH(3)BH(3) and characterized by ICP-MS, XRD, XPS, TEM, HR-TEM and N(2) adsorption-desorption technique. Copper nanoparticles supported on silica coated cobalt(II) ferrite SiO(2)/CoFe(2)O(4) (CuNPs@SCF) act as highly active catalyst in the hydrolysis of ammonia-borane, providing an initial turnover frequency of TOF = 2400 h(-1) at room temperature, which is not only higher than all the non-noble metal catalysts but also higher than the majority of the noble metal based homogeneous and heterogeneous catalysts employed in the same reaction. More importantly, they were easily recovered by using a permanent magnet in the reactor wall and reused for up to 10 recycles without losing their inherent catalytic activity significantly, which demonstrates the exceptional reusability of the CuNPs@SCF catalyst. PMID:22856878

  12. Dextrin-coated zinc substituted cobalt-ferrite nanoparticles as an MRI contrast agent: In vitro and in vivo imaging studies.

    PubMed

    Sattarahmady, N; Zare, T; Mehdizadeh, A R; Azarpira, N; Heidari, M; Lotfi, M; Heli, H

    2015-05-01

    Application of superparamagnetic iron oxide nanoparticles (NPs) as a negative contrast agent in magnetic resonance imaging (MRI) has been of widespread interest. These particles can enhance contrast of images by altering the relaxation times of the water protons. In this study, dextrin-coated zinc substituted cobalt-ferrite (Zn0.5Co0.5Fe2O4) NPs were synthesized by a co-precipitation method, and the morphology, size, structure and magnetic properties of the NPs were investigated. These NPs had superparamagnetic behavior with an average size of 3.9 (±0.9, n=200)nm measured by transmission electron microscopy. Measurements on the relaxivities (r2 and r2(*)) of the NPs were performed in vitro by agarose phantom. In addition, after subcutaneous injection of the NPs into C540 cell line in C-57 inbred mice, the relaxivities were measured in vivo by a 1.5T MRI system. These NPs could effectively increase the image contrast in both T2-and T2(*)-weighted samples.

  13. 2-Amino-2-deoxy-glucose conjugated cobalt ferrite magnetic nanoparticle (2DG-MNP) as a targeting agent for breast cancer cells.

    PubMed

    Aşık, Elif; Aslan, Tuğba Nur; Volkan, Mürvet; Güray, N Tülin

    2016-01-01

    In this study, 2-amino-2-deoxy-glucose (2DG) was conjugated to COOH modified cobalt ferrite magnetic nanoparticles (COOH-MNPs), which were designed to target tumor cells as a potential targetable drug/gene delivery agent for cancer treatment. According to our results, it is apparent that, 2DG labeled MNPs were internalized more efficiently than COOH-MNPs under the same conditions in all cell types (MDA-MB-231 and MCF-7 cancer and MCF-10A normal breast cells) (p<0.001). Moreover, the highest amount of uptake was observed in MDA-MB-231, followed by MCF-7 and normal MCF-10A cells for both MNPs. The apoptotic effects of 2DG-MNPs were further evaluated, and it was found that apoptosis was not induced at low concentrations of 2DG-MNPs in all cell types, whereas dramatic cell death was observed at higher concentrations. In addition, the gene expression levels of four drug-metabolizing enzymes, two Phase I (CYP1A1, CYP1B1) and two Phase II (GSTM3, GSTZ1) were also increased with the high concentrations of 2DG-MNPs.

  14. Investigation of structural and magnetic properties of co-precipitated Mn-Ni ferrite nanoparticles in the presence of α-Fe2O3 phase

    NASA Astrophysics Data System (ADS)

    Tirupanyam, B. V.; Srinivas, Ch.; Meena, S. S.; Yusuf, S. M.; Satish Kumar, A.; Sastry, D. L.; Seshubai, V.

    2015-10-01

    A systematic study on structural and magnetic properties of co-precipitated MnxNi1-xFe2O4 (x=0.5, 0.6, 0.7) ferrite nanoparticles annealed at 800 °C was carried out using XRD, FE-SEM, VSM and MÖSSBAUER techniques. Anti-ferromagnetic α-Fe2O3 phase was observed along with the magnetic spinel phase in the XRD patterns. It is observed that both lattice parameter and crystallite size of spinel phase increase with increase in concentration of Mn2+ along with the amount of α-Fe2O3 phase. The saturation magnetization (Ms) decreases while coercivity (Hc) increases with increase of Mn2+ ion concentration. Mössbauer spectra indicate that iron ions present in A and B sites are in the Fe3+ state and Fe2+ is absent. The results are interpreted in terms of observed anti-ferromagnetic α-Fe2O3 phase, core-shell interactions and cation redistribution.

  15. 2-Amino-2-deoxy-glucose conjugated cobalt ferrite magnetic nanoparticle (2DG-MNP) as a targeting agent for breast cancer cells.

    PubMed

    Aşık, Elif; Aslan, Tuğba Nur; Volkan, Mürvet; Güray, N Tülin

    2016-01-01

    In this study, 2-amino-2-deoxy-glucose (2DG) was conjugated to COOH modified cobalt ferrite magnetic nanoparticles (COOH-MNPs), which were designed to target tumor cells as a potential targetable drug/gene delivery agent for cancer treatment. According to our results, it is apparent that, 2DG labeled MNPs were internalized more efficiently than COOH-MNPs under the same conditions in all cell types (MDA-MB-231 and MCF-7 cancer and MCF-10A normal breast cells) (p<0.001). Moreover, the highest amount of uptake was observed in MDA-MB-231, followed by MCF-7 and normal MCF-10A cells for both MNPs. The apoptotic effects of 2DG-MNPs were further evaluated, and it was found that apoptosis was not induced at low concentrations of 2DG-MNPs in all cell types, whereas dramatic cell death was observed at higher concentrations. In addition, the gene expression levels of four drug-metabolizing enzymes, two Phase I (CYP1A1, CYP1B1) and two Phase II (GSTM3, GSTZ1) were also increased with the high concentrations of 2DG-MNPs. PMID:26761626

  16. Intragranular ferrite nucleation in medium-carbon vanadium steels

    SciTech Connect

    Ishikawa, Fusao; Takahashi, Toshihiko ); Ochi, Tatsurou . Muroran R D Lab.)

    1994-05-01

    In this study, the mechanism of intragranular ferrite nucleation is investigated. It is found that intragranular ferrite idiomorphs'' nucleate at vanadium nitrides which precipitate at manganese sulfide particles during cooling in the austenite region. It is observed that intragranular ferrite has the Baker-Nutting orientation relationship with vanadium nitride which precipitated at manganese sulfide. According to classical nucleation theory, the proeutectoid ferrite nucleation rate depends on the following factors: (1) the driving free energy for ferrite nucleation, (2) the diffusivity of carbon atoms in austenite, and (3) the increase in the interfacial energy associated with ferrite nucleation. In the Baker-Nutting orientation relationship, the lattice mismatch across the habit planes is likely to be very small. Depleted zones of solute atoms such as vanadium are assumed to be formed in the austenite matrix around precipitates. The effect of the depleted zones on factors (1) and (2) is estimated thermodynamically and it is proved that those effects are negligibly small. Thus, the authors conclude that the most important factor in nucleation kinetics of intragranular ferrite is the formation of precipitates which can develop coherent, low energy interfaces with ferrite.

  17. A facile and practical biosensor for choline based on manganese dioxide nanoparticles synthesized in-situ at the surface of electrode by one-step electrodeposition.

    PubMed

    Yu, Guangxia; Zhao, Qiang; Wu, Weixiang; Wei, Xiaoyun; Lu, Qing

    2016-01-01

    In this paper, a facile and sensitive biocompatible biosensor based on Nafion/choline oxidase/manganese dioxide composite film was developed for the determination of choline chloride. Manganese dioxide (MnO2) nanoparticles, possessing the advantages of large specific surface areas, good hydrophilicity, great permeability as well as excellent biocompatibility, were synthesized in-situ at the surface of the glassy carbon electrode (GCE) by one-step electrodeposition. And then, choline oxidase (ChOx) was immobilized on the MnO2 modified GCE with coating a Nafion film to hold the ChOx/MnO2 film on the electrode surface firmly. Upon optimized conditions, a linear range of 8.0-1.0 mM was obtained for the sensor in a cyclic voltammetry method, with a detection limit as low as 5.0 µM. Besides, the biosensor was successfully employed to detect choline in milk, milk powder and feedstuff samples, providing a promising alternative for the practical application.

  18. Monitoring the role of Mn and Fe in the As-removal efficiency of tetravalent manganese feroxyhyte nanoparticles from drinking water: An X-ray absorption spectroscopy study.

    PubMed

    Pinakidou, F; Katsikini, M; Paloura, E C; Simeonidis, K; Mitraka, E; Mitrakas, M

    2016-09-01

    The implementation of amorphous tetravalent manganese feroxyhyte (TMFx) nanoparticles, prepared via co-precipitation synthesis, as an efficient As(V)-removal material is investigated using X-ray absorption fine structure (XAFS) spectroscopy at the Fe-, Mn- and As-K-edges. The optimum synthesis conditions and chemical composition of the TMFx adsorbent were determined by the degree of polymerization in the adsorbents' microstructure. Under synthesis into mildly acidic conditions, the change in the polymerization of the metal-oxyhydroxyl chains (metal=Fe, Mn) provides more adsorption sites at edges and corner sites in the bonding environment of Fe and Mn, respectively, thereby enhancing As uptake. After exposure to As-polluted water, similar microstructural changes related to As-bidentate and monodentate geometries are generated: As(V) preferentially occupies the high energy adsorption sites ((2)C complexes) available in the Mn-oxyhydroxyl groups and the low energy edge sites offered by Fe ((2)E complexes). It is revealed that optimum arsenic-removal by TMFx occurs into mildly acidic synthesis pH and for iron to manganese molar ratio equal to 3.

  19. Manganese Intoxication

    PubMed Central

    Hine, Charles H.; Pasi, Aurelio

    1975-01-01

    We have reported two cases of chronic manganese poisoning. Case 1 followed exposure to manganese fumes in cutting and burning manganese steel. Case 2 resulted from exposure to dusts of manganese dioxide, an ingredient used in glazing of ceramics. There were initial difficulties in establishing the correct diagnosis. Prominent clinical features were severe and persistent chronic depressive psychosis (Case 1), transient acute brain syndrome (Case 2) and the presence of various extrapyramidal symptoms in both cases. Manganese intoxication has not previously been reported as occurring in California. With increasing use of the metal, the disease should be considered in the differential diagnosis of neurologic and psychiatric disease. Our observations were made in the period 1964 through 1968. Recently the prognosis of victims of manganese poisoning has been improved dramatically by the introduction of levodopa as a therapeutic agent. PMID:1179714

  20. Cobalt ferrite based magnetostrictive materials for magnetic stress sensor and actuator applications

    NASA Technical Reports Server (NTRS)

    Jiles, David C. (Inventor); Paulsen, Jason A. (Inventor); Snyder, John E. (Inventor); Lo, Chester C. H. (Inventor); Ring, Andrew P. (Inventor); Bormann, Keith A. (Inventor)

    2008-01-01

    Magnetostrictive material based on cobalt ferrite is described. The cobalt ferrite is substituted with transition metals (such manganese (Mn), chromium (Cr), zinc (Zn) and copper (Cu) or mixtures thereof) by substituting the transition metals for iron or cobalt to form substituted cobalt ferrite that provides mechanical properties that make the substituted cobalt ferrite material effective for use as sensors and actuators. The substitution of transition metals lowers the Curie temperature of the material (as compared to cobalt ferrite) while maintaining a suitable magnetostriction for stress sensing applications.

  1. Effect of heat treatment on structural and Mössbauer spectroscopic properties of coprecipitated Mn{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} ferrite nanoparticles

    SciTech Connect

    Srinivas, Ch.; Babu, Ch. Seshu; Tirupanyam, B. V.; Meena, S. S.; Sastry, D. L.

    2015-06-24

    Results obtained in a systamatic study by X-ray diffraction and Mösssbauer spectroscopy on the structural and magnetic properties on Mn{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} ferrite nanoparticles heat treated at 200 °C, 500 °C and 800 °C are reported. Average crystallite sizes are estimated to be in the range (2.6nm – 12.8nm). It is observed that crystallite sizes increase with increase in sintering temperature and random variation in lattice parameter was observed. At relatively low sintering temperatures the samples exhibit superparamagnetism and complete ferrite phase was observed at higher heat treatment.

  2. Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide, application for amperometric determination of NADH and H2O2.

    PubMed

    Ensafi, Ali A; Alinajafi, Hossein A; Jafari-Asl, M; Rezaei, B; Ghazaei, F

    2016-03-01

    Here, cobalt ferrite nanohybrid decorated on exfoliated graphene oxide (CoFe2O4/EGO) was synthesized. The nanohybrid was characterized by different methods such as X-ray diffraction spectroscopy, scanning electron microscopy, energy dispersive X-ray diffraction microanalysis, transmission electron microscopy, FT-IR, Raman spectroscopy and electrochemical methods. The CoFe2O4/EGO nanohybrid was used to modify glassy carbon electrode (GCE). The voltammetric investigations showed that CoFe2O4/EGO nanohybrid has synergetic effect towards the electro-reduction of H2O2 and electro-oxidation of nicotinamide adenine dinucleotide (NADH). Rotating disk chronoamperometry was used for their quantitative analysis. The calibration curves were observed in the range of 0.50 to 100.0 μmol L(-1) NADH and 0.9 to 900.0 μmol L(-1) H2O2 with detections limit of 0.38 and 0.54 μmol L(-1), respectively. The repeatability, reproducibility and selectivity of the electrochemical sensor for analysis of the analytes were studied. The new electrochemical sensor was successfully applied for the determination of NADH and H2O2 in real samples with satisfactory results.

  3. Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe2O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Batoo, Khalid Mujasam; Salah, Dina; Kumar, Gagan; Kumar, Arun; Singh, Mahavir; Abd El-sadek, M.; Mir, Feroz Ahmad; Imran, Ahamad; Jameel, Daler Adil

    2016-08-01

    Ferrimagnetic oxides may contain single or multi domain particles which get converted into superparamagnetic state near a critical size. To explore the existence of these particles, we have made Mössbauer and magnetic studies of Cu2+ substitution effect in CoFe2-xO4 Ferrites (0.0, 0.1, 0.2, 0.3, 0.4, and 0.5). All the samples have a cubic spinel structure with lattice parameters increasing linearly with increase in Cu content. The hysteresis loops yield a saturation magnetization, coercive field, and remanent magnetization that vary significantly with Cu content. The magnetic hysteresis curves shows a reduction in saturation magnetization and an increase in coercitivity with Cu2+ ion substitution. The anisotropy constant, K1, is found strongly dependent on the composition of Cu2+ ions. The variation of saturation magnetization with increasing Cu2+ ion content has been explained in the light of Neel's molecular field theory. Mössbauer spectra at room temperature shows two ferrimagnetically relaxed Zeeman sextets. The dependence of Mössbauer parameters such as isomer shift, quadrupole splitting, line width and hyperfine magnetic field on Cu2+ ion concentration have been discussed.

  4. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants).

    PubMed

    López-Moreno, Martha L; Avilés, Leany Lugo; Pérez, Nitza Guzmán; Irizarry, Bianca Álamo; Perales, Oscar; Cedeno-Mattei, Yarilyn; Román, Félix

    2016-04-15

    Nanoparticles (NPs) have been synthetized and studied to be incorporated in many industrial and medical applications in recent decades. Due to their different physical and chemical properties compared with bulk materials, researchers are focused to understand their interactions with the surroundings. Living organisms such as plants are exposed to these materials and they are able to tolerate different concentrations and types of NPs. Cobalt ferrite (CoFe2O4) NPs are being studied for their application in medical sciences because of their high coercivity, anisotropy, and large magnetostriction. These properties are desirable in magnetic resonance imaging, drug delivery, and cell labeling. This study is aimed to explore the tolerance of Solanum lycopersicum L. (tomato) plants to CoFe2O4 NPs. Tomato plants were grown in hydroponic media amended with CoFe2O4 nanoparticles in a range from 0 to 1000mgL(-1). Exposure to CoFe2O4 NPs did not affect germination and growth of plants. Uptake of Fe and Co inside plant tissues increased as CoFe2O4 nanoparticle concentration was increased in the media. Mg uptake in plant leaves reached its maximum level of 4.9mgg(-1) DW (dry weight) at 125mgL(-1) of CoFe2O4 NPs exposure and decreased at high CoFe2O4 NPs concentrations. Similar pattern was observed for Ca uptake in leaves where the maximum concentration found was 10mgg(-1) DW at 125mgL(-1) of CoFe2O4 NPs exposure. Mn uptake in plant leaves was higher at 62.5mgL(-1) of CoFe2O4 NPs compared with 125 and 250mgL(-1) treatments. Catalase activity in tomato roots and leaves decreased in plants exposed to CoFe2O4 NPs. Tomato plants were able to tolerate CoFe2O4 NPs concentrations up to 1000mgL(-1) without visible toxicity symptoms. Macronutrient uptake in plants was affected when plants were exposed to 250, 500 and 1000mgL(-1) of CoFe2O4 NPs.

  5. Enrichment of magnetic alignment stimulated by γ-radiation in core-shell type nanoparticle Mn-Zn ferrite

    NASA Astrophysics Data System (ADS)

    Naik, P. P.; Tangsali, R. B.; Sonaye, B.; Sugur, S.

    2013-02-01

    Core shell type nanoparticle MnxZn1-xFe2O4 systems with x=0.55, 0.65 & 0.75 were prepared using autocombustion method. The systems were characterized using tools like XRD and IR for structure confirmation. Magnetic parameter measurements like Saturation magnetization and coercivity were obtained from hysteresis loop which exhibited a symmetry shift due to core shell nature of the nanoparticles. Nanoparticles of particle size between 21.2nm to 25.7nm were found to show 20 percent shrinkage after being radiated by the γ-radiation. This is due to variation in the cation distribution which also affects the cell volume of the cubic cell. Lattice constant reduction observed is reflected in the magnetic properties of the samples. A considerable hike in the saturation magnetization of the samples was observed due to enrichment of magnetic alignment in the magnetic core of the particles. Samples under investigation were irradiated with gamma radiation from Co60 source for different time intervals.

  6. Enrichment of magnetic alignment stimulated by {gamma}-radiation in core-shell type nanoparticle Mn-Zn ferrite

    SciTech Connect

    Naik, P. P.; Tangsali, R. B.; Sonaye, B.; Sugur, S.

    2013-02-05

    Core shell type nanoparticle Mn{sub x}Zn{sub 1-x}Fe{sub 2}O{sub 4} systems with x=0.55, 0.65 and 0.75 were prepared using autocombustion method. The systems were characterized using tools like XRD and IR for structure confirmation. Magnetic parameter measurements like Saturation magnetization and coercivity were obtained from hysteresis loop which exhibited a symmetry shift due to core shell nature of the nanoparticles. Nanoparticles of particle size between 21.2nm to 25.7nm were found to show 20 percent shrinkage after being radiated by the {gamma}-radiation. This is due to variation in the cation distribution which also affects the cell volume of the cubic cell. Lattice constant reduction observed is reflected in the magnetic properties of the samples. A considerable hike in the saturation magnetization of the samples was observed due to enrichment of magnetic alignment in the magnetic core of the particles. Samples under investigation were irradiated with gamma radiation from Co{sup 60} source for different time intervals.

  7. Effect of Gd3+- Cr3+ ion substitution on the structural, electrical and magnetic properties of Ni - Zn ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Anupama, M. K.; Rudraswamy, B.

    2016-09-01

    Gd3+ doped nickel zinc nanoceramics with general formula Ni0.4Zn0.6Cr0.5GdxFe1.5 - xO4 (where x=0.00, 0.02, 0.04, 0.06) were synthesized by solution combustion method using oxylyldehydrazine as a fuel. The obtained powder was sintered at 1000°C for 2h. The detailed structural, electrical and magnetic studies were carried out through X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), impedance spectroscopy and vibrating sample magnetometer (VSM). The XRD pattern of as prepared sample confirms the formation of single phase with cubic spinel structure. The average crystallite size was found to be 34 to 19 nm and decreases with increasing Gd3+ ion concentration. The IR spectra exhibited two expected absorption bands between 600 to 300 cm-1 corresponding to the stretching vibrations of tetrahedral (A) and octahedral (B) metal oxygen vibrations. The variation of room temperature real (ε') and imaginary (ε") part of dielectric permittivity as a function of frequency and composition have been studied in the frequency range from 40Hz to 10MHz. The real and imaginary dielectric permittivity decreases with increase in frequency as well as Gd3+ concentration, which is normal behaviour of ferrite material and results have been explained on the basis of Maxwell - Wagner's two layer model. The VSM results showed that the Gd3+ concentration had significant impact on the saturation magnetization and coercivity, x = 0.02 shows the highest value of dielectric constant and saturation magnetization, thus the material is becoming low loss dielectric and highly resistive and soft magnetic material due to Gd-Cr doping.

  8. Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii.

    PubMed

    Asaikkutti, Annamalai; Bhavan, Periyakali Saravana; Vimala, Karuppaiya; Karthik, Madhayan; Cheruparambath, Praseeja

    2016-05-01

    The green synthesized Mn3O4 nanoparticles (manganese-oxide nanoparticles) using Ananas comosus (L.) peel extract was characterized by various techniques. HR-SEM photograph showed that manganese-oxide nanoparticles (Mn-oxide NPs) were spherical in shape, with an average size of 40-50 nm. The Zeta potential revealed the surface charge of Mn-oxide NPs to be negative. Further, the Mn-oxide NPs were dietary supplemented for freshwater prawn Macrobrachium rosenbergii. The experimental basal diets were supplemented with Mn-oxide NPs at the rates of 0 (control), 3.0, 6.0, 9.0, 12, 15 and 18 mg/kg dry feed weight. The as-supplemented Mn-oxide NPs were fed in M. rosenbergii for a period of 90 days. The experimental study demonstrated that prawns fed with diet supplemented with 3-18 mg Mn-oxide NPs/kg shows enhanced (P<0.05) growth performance, including final weight and weight gain (WG). Significant differences (P<0.05) in feed conversion ratio (FCR) were observed in prawn fed with different diets. Additionally, prawns fed with 3.0-18 mg/kg Mn-oxide NPs supplemented diets achieved significant (P<0.05) improvement in growth performance, digestive enzyme activities and muscle biochemical compositions, while, the prawns fed with 16 mg/kg of Mn-oxide NPs showed enhanced performance. Prawns fed on diet supplemented with 16 mg/kg Mn-oxide NPs showed significantly (P<0.05) higher total protein level. The antioxidants enzymatic activity (SOD and CAT) metabolic enzymes status in muscle and hepatopancreas showed no significant (P>0.05) alterations in prawns fed with 3.0-18 mg/kg of Mn-oxide NPs supplemented diets. Consequently, the present work proposed that 16 mg/kg of Mn-oxide NPs could be supplemented for flexible enhanced survival, growth and production of M. rosenbergii. Therefore, the data of the present study recommend the addition of 16 mg/kg of Mn-oxide NPs diet to developed prawn growth and antioxidant defense system. PMID:27049122

  9. Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii.

    PubMed

    Asaikkutti, Annamalai; Bhavan, Periyakali Saravana; Vimala, Karuppaiya; Karthik, Madhayan; Cheruparambath, Praseeja

    2016-05-01

    The green synthesized Mn3O4 nanoparticles (manganese-oxide nanoparticles) using Ananas comosus (L.) peel extract was characterized by various techniques. HR-SEM photograph showed that manganese-oxide nanoparticles (Mn-oxide NPs) were spherical in shape, with an average size of 40-50 nm. The Zeta potential revealed the surface charge of Mn-oxide NPs to be negative. Further, the Mn-oxide NPs were dietary supplemented for freshwater prawn Macrobrachium rosenbergii. The experimental basal diets were supplemented with Mn-oxide NPs at the rates of 0 (control), 3.0, 6.0, 9.0, 12, 15 and 18 mg/kg dry feed weight. The as-supplemented Mn-oxide NPs were fed in M. rosenbergii for a period of 90 days. The experimental study demonstrated that prawns fed with diet supplemented with 3-18 mg Mn-oxide NPs/kg shows enhanced (P<0.05) growth performance, including final weight and weight gain (WG). Significant differences (P<0.05) in feed conversion ratio (FCR) were observed in prawn fed with different diets. Additionally, prawns fed with 3.0-18 mg/kg Mn-oxide NPs supplemented diets achieved significant (P<0.05) improvement in growth performance, digestive enzyme activities and muscle biochemical compositions, while, the prawns fed with 16 mg/kg of Mn-oxide NPs showed enhanced performance. Prawns fed on diet supplemented with 16 mg/kg Mn-oxide NPs showed significantly (P<0.05) higher total protein level. The antioxidants enzymatic activity (SOD and CAT) metabolic enzymes status in muscle and hepatopancreas showed no significant (P>0.05) alterations in prawns fed with 3.0-18 mg/kg of Mn-oxide NPs supplemented diets. Consequently, the present work proposed that 16 mg/kg of Mn-oxide NPs could be supplemented for flexible enhanced survival, growth and production of M. rosenbergii. Therefore, the data of the present study recommend the addition of 16 mg/kg of Mn-oxide NPs diet to developed prawn growth and antioxidant defense system.

  10. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression.

    PubMed

    Tang, Qiu-sha; Zhang, Dong-sheng; Cong, Xiao-ming; Wan, Mei-ling; Jin, Li-qiang

    2008-06-01

    One of the main advantages of gene therapy over traditional therapy is the potential to target the expression of therapeutic genes in desired cells or tissues. To achieve targeted gene expression, we developed a novel heat-inducible gene expression system in which thermal energy generated by Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) under an alternating magnetic field (AMF) was used to activate gene expression. MZF-NPs, obtained by co-precipitation method, were firstly surface modified with cation poly(ethylenimine) (PEI). Then thermodynamic test of various doses of MZF-NPs was preformed in vivo and in vitro. PEI-MZF-NPs showed good DNA binding ability and high transfection efficiency. In AMF, they could rise to a steady temperature. To analyze the heat-induced gene expression under an AMF, we combined P1730OR vector transfection with hyperthermia produced by irradiation of MZF-NPs. By using LacZ gene as a reporter gene and Hsp70 as a promoter, it was demonstrated that expression of a heterogeneous gene could be elevated to 10 to 500-fold over background by moderate hyperthermia (added 12.24 or 25.81 mg MZF-NPs to growth medium) in tissue cultured cells. When injected with 2.6 or 4.6 mg MZF-NPs, the temperature of tumor-bearing nude mice could rise to 39.5 or 42.8 degrees C, respectively, and the beta-gal concentration could increase up to 3.8 or 8.1 mU/mg proteins accordingly 1 day after hyperthermia treatment. Our results therefore supported hyperthermia produced by irradiation of MZF-NPs under an AMF as a feasible approach for targeted heat-induced gene expression. This novel system made use of the relative low Curie point of MZF-NPs to control the in vivo hyperthermia temperature and therefore acquired safe and effective heat-inducible transgene expression.

  11. Tuning the magnetic properties of Co-ferrite nanoparticles through the 1,2-hexadecanediol concentration in the reaction mixture.

    PubMed

    Moya, Carlos; Morales, María del Puerto; Batlle, Xavier; Labarta, Amílcar

    2015-05-21

    This work reports on the effect of the 1,2-hexadecanediol content on the structural and magnetic properties of CoFe2O4 nanoparticles synthesized by thermal decomposition of metal-organic precursors in 1-octadecene. Although pseudo-spherical particles having an average size of about 8 nm and similar stoichiometry have been observed in all studied samples, a high level of variability in the crystal quality and, in turn, in the magnetic properties has been found as a function of the amount of 1,2-hexadecanediol added to the reaction mixture. The magnetic study reveals that samples progress from glassy magnetic behavior to bulk-like, ferrimagnetic order as the crystal quality improves. The analysis of the reaction mixtures by Fourier transform infrared spectroscopy at various stages of the reaction shows the key role of the 1,2-hexadecanediol in favoring the decomposition of the metal-organic precursor, formation of an intermediate Co(2+)Fe(3+)-oleate complex and, finally, the nucleation of nanoparticles at lower temperatures.

  12. Attenuation of Combined Nickel(II) Oxide and Manganese(II, III) Oxide Nanoparticles' Adverse Effects with a Complex of Bioprotectors.

    PubMed

    Minigalieva, Ilzira A; Katsnelson, Boris A; Privalova, Larisa I; Sutunkova, Marina P; Gurvich, Vladimir B; Shur, Vladimir Y; Shishkina, Ekaterina V; Valamina, Irene E; Makeyev, Oleg H; Panov, Vladimir G; Varaksin, Anatoly N; Grigoryeva, Ekaterina V; Meshtcheryakova, Ekaterina Y

    2015-01-01

    Stable suspensions of NiO and Mn₃O₄ nanoparticles (NPs) with a mean (±s.d.) diameter of 16.7±8.2 and 18.4±5.4 nm, respectively, purposefully prepared by laser ablation of 99.99% pure nickel or manganese in de-ionized water, were repeatedly injected intraperitoneally (IP) to rats at a dose of 2.5 mg/kg 3 times a week up to 18 injections, either alone or in combination. A group of rats was injected with this combination with the background oral administration of a "bio-protective complex" (BPC) comprising pectin, vitamins A, C, E, glutamate, glycine, N-acetylcysteine, selenium, iodide and omega-3 PUFA, this composition having been chosen based on mechanistic considerations and previous experience. After the termination of injections, many functional and biochemical indices and histopathological features (with morphometric assessment) of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The Ni and Mn content of these organs was measured with the help of the atomic emission and electron paramagnetic resonance spectroscopies. We obtained blood leukocytes for performing the RAPD (Random Amplified Polymorphic DNA) test. Although both metallic NPs proved adversely bio-active in many respects considered in this study, Mn₃O₄-NPs were somewhat more noxious than NiO-NPs as concerns most of the non-specific toxicity manifestations and they induced more marked damage to neurons in the striatum and the hippocampus, which may be considered an experimental correlate of the manganese-induced Parkinsonism. The comparative solubility of the Mn₃O₄-NPs and NiO-NPs in a biological medium is discussed as one of the factors underlying the difference in their toxicokinetics and toxicities. The BPC has attenuated both the organ-systemic toxicity and the genotoxicity of Mn₃O₄-NPs in combination with NiO-NPs. PMID:26393577

  13. Structural, Optical and Magnetic Properties of Ni-Zn Ferrite Nanoparticles Prepared by a Microwave Assisted Combustion Method.

    PubMed

    Vijaya, J Judith; Bououdina, M

    2016-01-01

    Ni-doped ZnFe₂O₄(Ni(x)Zn₁₋xFe₂O₄; x = 0.0 to 0.5) nanoparticles were synthesized by a simple microwave combustion method. The X-ray diffraction confirms the presence of cubic spinel ZnFe₂O₄for all compositions. The lattice parameter decreases with an increase in Ni content resulting in the reduction of lattice strain. High resolution scanning electron microscope images revealed that the as-prepared samples are crystalline with particle size distribution in 40-50 nm range. Optical properties were determined by UV-Visible diffuse reflectance and photoluminescence spectroscopy respectively. The saturation magnetization (Ms) shows the super paramagnetic nature of the sample for x = 0.0-0.2, whereas for x = 0.3-0.5, it shows ferromagnetic nature. The Ms value is 1.638 emu/g for pure ZnFe₂O₄ sample and it increases with increase in Ni content. PMID:27398508

  14. Structural, Optical and Magnetic Properties of Ni-Zn Ferrite Nanoparticles Prepared by a Microwave Assisted Combustion Method.

    PubMed

    Vijaya, J Judith; Bououdina, M

    2016-01-01

    Ni-doped ZnFe₂O₄(Ni(x)Zn₁₋xFe₂O₄; x = 0.0 to 0.5) nanoparticles were synthesized by a simple microwave combustion method. The X-ray diffraction confirms the presence of cubic spinel ZnFe₂O₄for all compositions. The lattice parameter decreases with an increase in Ni content resulting in the reduction of lattice strain. High resolution scanning electron microscope images revealed that the as-prepared samples are crystalline with particle size distribution in 40-50 nm range. Optical properties were determined by UV-Visible diffuse reflectance and photoluminescence spectroscopy respectively. The saturation magnetization (Ms) shows the super paramagnetic nature of the sample for x = 0.0-0.2, whereas for x = 0.3-0.5, it shows ferromagnetic nature. The Ms value is 1.638 emu/g for pure ZnFe₂O₄ sample and it increases with increase in Ni content.

  15. Sustainable synthesis of monodispersed spinel nano-ferrites

    EPA Science Inventory

    A sustainable approach for the synthesis of various monodispersed spinel ferrite nanoparticles has been developed that occurs at water-toluene interface under both conventional and microwave hydrothermal conditions. This general synthesis procedure utilizes readily available and ...

  16. A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages.

    PubMed

    Fantechi, Elvira; Innocenti, Claudia; Zanardelli, Matteo; Fittipaldi, Maria; Falvo, Elisabetta; Carbo, Miriam; Shullani, Valbona; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Ferretti, Anna Maria; Ponti, Alessandro; Sangregorio, Claudio; Ceci, Pierpaolo

    2014-05-27

    Magnetic nanoparticles, MNPs, mineralized within a human ferritin protein cage, HFt, can represent an appealing platform to realize smart therapeutic agents for cancer treatment by drug delivery and magnetic fluid hyperthermia, MFH. However, the constraint imposed by the inner diameter of the protein shell (ca. 8 nm) prevents its use as heat mediator in MFH when the MNPs comprise pure iron oxide. In this contribution, we demonstrate how this limitation can be overcome through the controlled doping of the core with small amount of Co(II). Highly monodisperse doped iron oxide NPs with average size of 7 nm are mineralized inside a genetically modified variant of HFt, carrying several copies of α-melanocyte-stimulating hormone peptide, which has already been demonstrated to have excellent targeting properties toward melanoma cells. HFt is also conjugated to poly(ethylene glycol) molecules to increase its in vivo stability. The investigation of hyperthermic properties of HFt-NPs shows that a Co doping of 5% is enough to strongly enhance the magnetic anisotropy and thus the hyperthermic efficiency with respect to the undoped sample. In vitro tests performed on B16 melanoma cell line demonstrate a strong reduction of the cell viability after treatment with Co doped HFt-NPs and exposure to the alternating magnetic field. Clear indications of an advanced stage of apoptotic process is also observed from immunocytochemistry analysis. The obtained data suggest this system represents a promising candidate for the development of a protein-based theranostic nanoplatform. PMID:24689973

  17. Ferritic Fe-Mn alloy for cryogenic applications

    DOEpatents

    Hwang, Sun-Keun; Morris, Jr., John W.

    1979-01-01

    A ferritic, nickel-free alloy steel composition, suitable for cryogenic applications, which consists essentially of about 10-13% manganese, 0.002-0.01% boron, 0.1-0.5% titanium, 0-0.05% aluminum, and the remainder iron and incidental impurities normally associated therewith.

  18. Synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe2O4-SiO2) to improve the corrosion protection performance of epoxy coating

    NASA Astrophysics Data System (ADS)

    Gharagozlou, M.; Ramezanzadeh, B.; Baradaran, Z.

    2016-07-01

    This study aimed at studying the effect of an anticorrosive nickel ferrite nanoparticle dispersed in silica matrix (NiFe2O4-SiO2) on the corrosion protection properties of steel substrate. NiFe2O4 and NiFe2O4-SiO2 nanopigments were synthesized and then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscope (TEM). Then, 1 wt.% of nanopigments was dispersed in an epoxy coating and the resultant nanocomposites were applied on the steel substrates. The corrosion inhibition effects of nanopigments were tested by an electrochemical impedance spectroscopy (EIS) and salt spray test. Results revealed that dispersing nickel ferrite nanoparticles in a silica matrix (NiFe2O4-SiO2) resulted in the enhancement of the nanopigment dispersion in the epoxy coating matrix. Inclusion of 1 wt.% of NiFe2O4-SiO2 nanopigment into the epoxy coating enhanced its corrosion protection properties before and after scratching.

  19. Synthesis, characterization, in vitro and in vivo studies of dextrin-coated zinc-iron ferrite nanoparticles (Zn0.5Fe0.5Fe2O4) as contrast agent in MRI

    NASA Astrophysics Data System (ADS)

    Zare, T.; Lotfi, M.; Heli, H.; Azarpira, N.; Mehdizadeh, A. R.; Sattarahmady, N.; Abdollah-dizavandi, M. R.; Heidari, M.

    2015-09-01

    Iron oxide nanoparticles, such as ferrites, offer some attractive possibilities in biomedicine, especially in MRI applications. The objective of this study is to investigate the effectiveness of dextrin-coated zinc-iron ferrite nanoparticles (IFNPs) as an MRI contrast agent in in vivo and in vitro media. IFNPs were synthesized by an aqueous precipitation method in the presence of dextrin. An agarose phantom with different concentrations of dextrin-coated IFNPs was performed on a 1.5-T MRI. For in vivo MRI studies, implanted melanoma tumors in mice were immediately scanned after intra-tumoral injection of dextrin-coated IFNPs. Microscopic studies showed that the average diameter of dextrin-coated IFNPs was 12 ± 2.4 nm and the saturation magnetization for IFNPs was 31.5 emu g-1; r 1 and r 2 relaxivities of these ultrasmall superparamagnetic IFNPs in agarose phantom were obtained as 0.99 and 17.4 mmol L-1 s-1, respectively. The relaxivity measurements revealed that the dextrin-coated IFNPs can serve as a negative contrast agent. In vivo MRI showed that the dextrin-coated IFNPs can be used for tumor detection. The dextrin-coated IFNPs were suggested to be applied for lymph node and targeted imaging.

  20. Comparative study of NiFe{sub 2−x}Al{sub x}O{sub 4} ferrite nanoparticles synthesized by chemical co-precipitation and sol–gel combustion techniques

    SciTech Connect

    Gul, I.H.; Pervaiz, Erum

    2012-06-15

    Graphical abstract: AFM images of NiFe{sub 2}O{sub 4} ferrite nanoparticles at room temperature synthesized by sol–gel technique. Highlights: ► Particle size reduces to less than 30 nm. ► DC electrical resistivity increases with substitution of Cr{sup 3+}. ► Dielectric constant decreases. -- Abstract: A series of aluminum substituted Ni-ferrite nanoparticles have been synthesized by chemical co-precipitation and sol–gel techniques. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM), Fourier transform infrared spectroscopy (FTIR), DC electrical resistivity and dielectric properties. Analysis of the X-ray diffraction pattern of all the samples confirmed the formation of spinel structure. The crystallite sizes remain within the range 25–41 ± 3 nm. FTIR measurements show two fundamental absorption bands, assigned to the vibration of tetrahedral and octahedral sites. DC electrical resistivity increases from 6.60 × 10{sup 7} to 6.9 × 10{sup 10} Ω cm as the Al{sup 3+} concentration increases from 0.00 to 0.50. The dielectric constant and loss tangent decreases with increasing Al{sup 3+} concentration from 22 to 14, 0.354 to 0.27 respectively at 5 MHz for all the samples. Impedance measurements as a function of frequency (1 kHz–5 MHz) at room temperature further helped in analyzing the electrical properties of the prepared samples.

  1. A novel strategy combining magnetic particle hyperthermia pulses with enhanced performance binary ferrite carriers for effective in vitro manipulation of primary human osteogenic sarcoma cells.

    PubMed

    Makridis, Antonios; Tziomaki, Magdalini; Topouridou, Konstantina; Yavropoulou, Maria P; Yovos, John G; Kalogirou, Orestis; Samaras, Theodoros; Angelakeris, Mavroeidis

    2016-11-01

    The present study examines the heating efficiency of a combination of manganese or cobalt ferrites in a binary (Co- or Mn-) ferrite nanoparticle form with magnetite, covered with citric acid to improve biocompatibility. The nanoparticle synthesis is based on the aqueous co-precipitation of proper salts, a facile, low-cost, environmentally friendly and high yield synthetic approach. By detailed structural and magnetic characterisation, the direct influence of structural and magnetic features on magnetic hyperthermia concludes to optimum heating efficiency. At a second stage, best performing magnetic nanoparticles undergo in vitro testing in three cell lines: one cancer cell line and two reference healthy cell lines. Both binary ferrite (MnFe2O4/Fe3O4 and CoFe2O4/Fe3O4) appear to be internalised and well tolerated by the cells while a versatile hyperthermia protocol is attempted in an effort to further improve their in vitro performance. Within this protocol, hyperthermia sequences are split in two runs with an intermediate 48 h time interval cell incubation stage while in each run a variable field mode (single or multiple pulses) is applied. Single-pulse field mode represents a typical hyperthermia application scheme where cells undergo the thermal shock continuously. On the other hand multiple-pulses mode refers to multiple, much shorter in duration AC field changes (field ON/OFFs), at each hyperthermia run, resulting eventually in high heating rate and much more harmful cell treatment. Consequently, we propose a novel series of improved performance heat mediators based on ferrite structures which show maximum efficiency at cancer cells when combined with a versatile multiple-pulse hyperthermia module. PMID:27442884

  2. Lithium manganese oxide (LiMn2O4) nanoparticles synthesized by hydrothermal method as adsorbent of lithium recovery process from geothermal fluid of Lumpur Sidoarjo

    NASA Astrophysics Data System (ADS)

    Noerochim, Lukman; Sapputra, Gede Panca Ady; Widodo, Amien

    2016-04-01

    Lumpur Sidoarjo is one of geothermal fluid types which has a great potential as source of lithium. Adsorption method with Lithium Manganese Oxide (LiMn2O4) as an adsorbent has been chosen for lithium recovery process due to low production cost and environmental friendly. LiMn2O4 was synthesized by hydrothermal method at 200 °C for 24 hrs, 48 hrs, and 72 hrs. As prepared LiMn2O4 powder is treated by acid treatment with 0.5 M HCl solution for 24 hrs. XRD test result reveals that all of as-prepared samples are indexed as spinel structure of LiMn2O4 (JCPDS card no 35-0782) with no impurity peaks detected. SEM images show that LiMn2O4 has nanoparticles morphology with particle size around 25 nm. The highest adsorption efficiency of adsorbent is obtained by sample hydrothermal for 72 hrs with 42.76%.

  3. Novel silver nanoparticle-manganese oxyhydroxide-graphene oxide nanocomposite prepared by modified silver mirror reaction and its application for electrochemical sensing.

    PubMed

    Bai, Wushuang; Nie, Fei; Zheng, Jianbin; Sheng, Qinglin

    2014-04-23

    A gas/liquid interface will be formed when the free volatilized methyl aldehyde gas begins to dissolve in to solution. On the basis of the traditional silver mirror reaction, silver nanoparticle-manganese oxyhydroxide-graphene oxide (Ag-MnOOH-GO) nanocomposite was synthesized at the gas/liquid interface without any protection of inert gas at room temprature. The morphology of the nanocomposites could be controlled by adjusting the reaction temperature and time. The morphology and composition of the nanocomposites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The composites were then applied for electrochemical sensing. The electrochemical investigation for the sensor indicates that it has excellent property to catalyze H2O2, and could detect H2O2 with a low detection limit of 0.2μM and wide linear range of 0.5 μM to 17.8 mM. The present study provides a general platform for the controlled synthesis of nanomaterials and can be extended to other optical, electronic, and magnetic nanocompounds. PMID:24660983

  4. Effect of surfactant/water ratio and reagents' concentration on size distribution of manganese carbonate nanoparticles synthesized by microemulsion mediated route

    NASA Astrophysics Data System (ADS)

    Granata, Giuseppe; Pagnanelli, Francesca; Nishio-Hamane, Daisuke; Sasaki, Takehiko

    2015-03-01

    In this work nanoparticles of manganese carbonate were produced by microemulsion-mediated route at room temperature, without any post-thermal treatment. All produced samples were characterized by XRD and by TEM and obtained images were analyzed in order to evaluate particle size distribution, mean size and polydispersity (variance). The influence of water-surfactant molar ratio and concentration of reagents were investigated in the range 5-7.5 and 0.25-1.0 M, respectively, according to factorial design. Significant effects on particle mean size and polydispersity were assessed by statistical analysis. Results showed that by increasing the water-surfactant molar ratio from 5 to 7.5, the average particle size increased from less than 10 nm to around 100 nm, and the standard deviation increased from less than 5 nm to 35 nm. Statistical analysis put in evidence that water-surfactant molar ratio has significant positive effect on both mean and variance of particle size. Concentration of reactants, in the investigated range, did not influence mean size of particles, while significant changes of variance were observed: passing from 0.25 to 1 M concentration, variances of particle size increased for w = 5 and for w = 6.25, while decreased for w = 7.5.

  5. pH-responsive iron manganese silicate nanoparticles as T1-T2* dual-modal imaging probes for tumor diagnosis.

    PubMed

    Chen, Jian; Zhang, Wei-Jie; Guo, Zhen; Wang, Hai-Bao; Wang, Dong-Dong; Zhou, Jia-Jia; Chen, Qian-Wang

    2015-03-11

    Magnetic resonance imaging (MRI) probes can be concentrated in tumors through grafting targeting agents. However, the clinical application of such targeted MRI probes is largely limited because specific agents are only used to target specific characteristics of cancer cells. The development of the MRI probes that can be used regardless of tumor types or their developmental stages is highly appreciated. The acidic tumor microenvironments and acidic organelles (endosomes/lysosomes) in cancer cells are universal phenomena of solid tumors, and nanoparticles can also accumulate in tumor tissues by enhanced permeability and retention (EPR) effect. Here, we reported the synthesis of pH-responsive T1-T2* dual-modal contrast agents based on iron manganese silicate (FeMn(SiO4)) hollow nanospheres, which can release Mn(2+) ions in acidic environments, exhibiting excellent ability as agents for magnetic resonance and red fluorescence imaging. MRI for mouse models revealed that the nanoprobes could accumulate in tumors via EPR effect and then distinguish tumors from normal tissues with the synergistic effect of T1 and T2* signal only 10 min after intravenous injection. Fluorescence imaging demonstrated that the nanoprobes could be endocytosed into cancer cells and located at their lower pH compartments. Moreover, the hollow nanospheres showed no obvious toxicity and inflammation to the major organs of mice, which made them attractive diagnostic agents for different types of cancers.

  6. Magnetic field directed assembly of superstructures of ferrite-ferroelectric core-shell nanoparticles and studies on magneto-electric interactions

    SciTech Connect

    Srinivasan, G. Sreenivasulu, G.; Benoit, Crystal; Petrov, V. M.; Chavez, F.

    2015-05-07

    Composites of ferromagnetic and ferroelectric are of interest for studies on mechanical strain mediated magneto-electric (ME) interactions and for useful technologies. Here, we report on magnetic-field-assisted-assembly of barium titanate (BTO)-nickel ferrite (NFO) core-shell particles into linear chains and 2D/3D arrays and measurements of ME effects in such assemblies. First, we synthesized the core-shell nano-particles with 50–600 nm BTO and 10–200 nm NFO by chemical self-assembly by coating the ferroic particles with complementary coupling groups and allowing them to self-assemble in the presence of a catalyst via the “click” reaction. The core-shell structure was confirmed with electron microscopy and scanning probe microscopy. We obtained superstructure of the core-shell particles by subjecting them to a magnetic field gradient that exerts an attractive force on the particles and align them toward the regions of high field strengths. At low particle concentration, linear chains were formed and they evolved into 2D and 3D arrays at high particle concentrations. Magnetoelectric characterization on unassembled films and assembled arrays has been performed through measurements of low-frequency ME voltage coefficient (MEVC) by subjecting the sample to a bias magnetic field and an ac magnetic field. The MEVC is higher for field-assembled samples than for unassembled films and is found to be sensitive to field orientation with a higher MEVC for magnetic fields parallel to the array direction than for magnetic fields perpendicular to the array. A maximum MEVC of 20 mV/cm Oe, one of the highest reported for any bulk nanocomposite, is measured across the array thickness. A model is provided for ME coupling in the superstructures of BTO-NFO particulate composites. First, we estimated the MEVC for a free-standing BTO-NFO core-shell particle and then extended the model to include an array of linear chains of the particles. The theoretical estimates are in

  7. Probing the interaction induced conformation transitions in acid phosphatase with cobalt ferrite nanoparticles: Relation to inhibition and bio-activity of Chlorella vulgaris acid phosphatase.

    PubMed

    Ahmad, Farooq; Zhou, Xing; Yao, Hongzhou; Zhou, Ying; Xu, Chao

    2016-09-01

    The present study explored the interaction and kinetics of cobalt ferrite nanoparticles (NPs) with acid phosphatase (ACP) by utilizing diverse range of spectroscopic techniques. The results corroborate, the CoFe2O4 NPs cause fluorescence quenching in ACP by static quenching mechanism. The negative values of van't Hoff thermodynamic expressions (ΔH=-0.3293Jmol(-1)K(-1) and ΔG=-3.960kJmol(-1)K(-1)) corroborate the spontaneity and exothermic nature of static quenching. The positive value of ΔS (13.2893Jmol(-1)K(-1)) corroborate that major contributors of higher and stronger binding affinity among CoFe2O4 NPs with ACP were electrostatic. In addition, FTIR, UV-CD, UV-vis spectroscopy and three dimensional fluorescence (3D) techniques confirmed that CoFe2O4 NPs binding induces microenvironment perturbations leading to secondary and tertiary conformation changes in ACP to a great extent. Furthermore, synchronous fluorescence spectroscopy (SFS) affirmed the comparatively significant changes in microenvironment around tryptophan (Trp) residue by CoFe2O4 NPs. The effect of CoFe2O4 NPs on the activation kinetics of ACP was further examined in Chlorella vulgaris. Apparent Michaelis constant (Km) values of 0.57 and 26.5mM with activation energy values of 0.538 and 3.428kJmol(-1) were determined without and with 200μM CoFe2O4 NPs. Apparent Vmax value of -7Umml(-1) corroborate that enzyme active sites were completely captured by the NPs leaving no space for the substrate. The results confirmed that CoFe2O4 NPs ceased the activity by unfolding of ACP enzyme. This suggests CoFe2O4 NPs perturbed the enzyme activity by transitions in conformation and hence the metabolic activity of ACP. This study provides the pavement for novel and simple approach of using sensitive biomarkers for sensing NPs in environment. PMID:27209386

  8. Predictive Toxicology of cobalt ferrite nanoparticles: comparative in-vitro study of different cellular models using methods of knowledge discovery from data

    PubMed Central

    2013-01-01

    Background Cobalt-ferrite nanoparticles (Co-Fe NPs) are attractive for nanotechnology-based therapies. Thus, exploring their effect on viability of seven different cell lines representing different organs of the human body is highly important. Methods The toxicological effects of Co-Fe NPs were studied by in-vitro exposure of A549 and NCIH441 cell-lines (lung), precision-cut lung slices from rat, HepG2 cell-line (liver), MDCK cell-line (kidney), Caco-2 TC7 cell-line (intestine), TK6 (lymphoblasts) and primary mouse dendritic-cells. Toxicity was examined following exposure to Co-Fe NPs in the concentration range of 0.05 -1.2 mM for 24 and 72 h, using Alamar blue, MTT and neutral red assays. Changes in oxidative stress were determined by a dichlorodihydrofluorescein diacetate based assay. Data analysis and predictive modeling of the obtained data sets were executed by employing methods of Knowledge Discovery from Data with emphasis on a decision tree model (J48). Results Different dose–response curves of cell viability were obtained for each of the seven cell lines upon exposure to Co-Fe NPs. Increase of oxidative stress was induced by Co-Fe NPs and found to be dependent on the cell type. A high linear correlation (R2=0.97) was found between the toxicity of Co-Fe NPs and the extent of ROS generation following their exposure to Co-Fe NPs. The algorithm we applied to model the observed toxicity belongs to a type of supervised classifier. The decision tree model yielded the following order with decrease of the ranking parameter: NP concentrations (as the most influencing parameter), cell type (possessing the following hierarchy of cell sensitivity towards viability decrease: TK6 > Lung slices > NCIH441 > Caco-2 = MDCK > A549 > HepG2 = Dendritic) and time of exposure, where the highest-ranking parameter (NP concentration) provides the highest information gain with respect to toxicity. The validity of the chosen decision tree model J48 was established by

  9. Effect of ferrite powder fineness on the structure and properties of ceramic materials

    SciTech Connect

    Pashchenko, V.P.; Nesterov, A.M.; Litvinova, O.G.

    1995-03-01

    Comprehensive study of the structure and properties of ferrite materials prepared from powders with different specific surface (0.4 M{sup 2}/g < S{sub sp} < 1.2 m{sub 2/g}) shows that the optimum specific surface of manganese-zinc ferrite powders is about 0.6 m{sup 2}1/g. With an increase in the specific surface of nickel-zinc and barium ferrite powders the porous crystalline structure of sintered specimens and most of the main electromagnetic properties of ferrite articles are improved.

  10. Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties.

    PubMed

    Yan, D; Cheng, S; Zhuo, R F; Chen, J T; Feng, J J; Feng, H T; Li, H J; Wu, Z G; Wang, J; Yan, P X

    2009-03-11

    Hydrohausmannite nanoparticles (approximately 10 nm) were prepared by the hydrothermal method at 100 degrees C for 72 h. Subsequent annealing was done in air at 400 degrees C and 800 degrees C for 10 h, Mn(3)O(4) nanoparticles (approximately 25 nm) and 3D Mn(2)O(3) porous networks were obtained, respectively. The products were characterized by XRD, TEM, SAED and FESEM. Time-dependent experiments were carried out to exhibit the formation process of the Mn(2)O(3) networks. Their microwave absorption properties were investigated by mixing the product and paraffin wax with 50 vol%. The Mn(3)O(4) nanoparticles possess excellent microwave absorbing properties with the minimum reflection loss of -27.1 dB at 3.1 GHz. In contrast, the Mn(2)O(3) networks show the weakest absorption of all samples. The absorption becomes weaker with the annealing time increasing at 800 degrees C. The attenuation of microwave can be attributed to dielectric loss and their absorption mechanism was discussed in detail. PMID:19417534

  11. Study of the thermodynamics of chromium(III) and chromium(VI) binding to iron(II/III)oxide or magnetite or ferrite and magnanese(II) iron (III) oxide or jacobsite or manganese ferrite nanoparticles.

    PubMed

    Luther, Steven; Brogfeld, Nathan; Kim, Jisoo; Parsons, J G

    2013-06-15

    Removal of chromium(III) or (VI) from aqueous solution was achieved using Fe3O4, and MnFe2O4 nanomaterials. The nanomaterials were synthesized using a precipitation method and characterized using XRD. The size of the nanomaterials was determined to be 22.4±0.9 nm (Fe3O4) and 15.5±0.5 nm (MnFe2O4). The optimal binding pH for chromium(III) and chromium(VI) were pH 6 and pH 3. Isotherm studies were performed, under light and dark conditions, to determine the capacity of the nanomaterials. The capacities for the light studies with MnFe2O4 and Fe3O4 were determined to be 7.189 and 10.63 mg/g, respectively, for chromium(III). The capacities for the light studies with MnFe2O4 and Fe3O4 were 3.21 and 3.46 mg/g, respectively, for chromium(VI). Under dark reaction conditions the binding of chromium(III) to the MnFe2O4 and Fe3O4 nanomaterials were 5.74 and 15.9 mg/g, respectively. The binding capacity for the binding of chromium(VI) to MnFe2O4 and Fe3O4 under dark reaction conditions were 3.87 and 8.54 mg/g, respectively. The thermodynamics for the reactions showed negative ΔG values, and positive ΔH values. The ΔS values were positive for the binding of chromium(III) and for chromium(VI) binding under dark reaction conditions. The ΔS values for chromium(VI) binding under the light reaction conditions were determined to be negative.

  12. Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5‑x Mg x Fe2O4 nanoparticle ferrites

    NASA Astrophysics Data System (ADS)

    R, M. Rosnan; Z, Othaman; R, Hussin; Ali, A. Ati; Alireza, Samavati; Shadab, Dabagh; Samad, Zare

    2016-04-01

    In this study, nanocrystalline Co–Ni–Mg ferrite powders with composition Co0.5Ni0.5‑x Mg x Fe2O4 are successfully synthesized by the co-precipitation method. A systematic investigation on the structural, morphological and magnetic properties of un-doped and Mg-doped Co–Ni ferrite nanoparticles is carried out. The prepared samples are characterized using x-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and vibrating sample magnetometry (VSM). The XRD analyses of the synthesized samples confirm the formation of single-phase cubic spinel structures with crystallite sizes in a range of ∼ 32 nm to ∼ 36 nm. The lattice constant increases with increasing Mg content. FESEM images show that the synthesized samples are homogeneous with a uniformly distributed grain. The results of IR spectroscopy analysis indicate the formation of functional groups of spinel ferrite in the co-precipitation process. By increasing Mg2+ substitution, room temperature magnetic measurement shows that maximum magnetization and coercivity increase from ∼ 57.35 emu/g to ∼ 61.49 emu/g and ∼ 603.26 Oe to ∼ 684.11 Oe (1 Oe = 79.5775 A·m‑1), respectively. The higher values of magnetization M s and M r suggest that the optimum composition is Co0.5Ni0.4Mg0.1Fe2O4 that can be applied to high-density recording media and microwave devices. Project supported by the Ibnu Sina Institute for Scientific and Industrial Research, Physics Department of Universiti Teknologi Malaysia and the Ministry of Education Malaysia (Grant Nos. Q.J130000.2526.04H65).

  13. Solvothermally Driven Mn Doping and Clustering of Iron Oxide Nanoparticles for Heat Delivery Applications.

    PubMed

    Otero-Lorenzo, Ruth; Fantechi, Elvira; Sangregorio, Claudio; Salgueiriño, Verónica

    2016-05-01

    Direct interactions between nanoparticles of Mn-doped magnetite or maghemite (clearly differentiated by Raman spectroscopy) grouped in spherical clusters minimize the effect related to their characteristic magnetic dead layer at the surface. Hence, the clustering process jointly with the manganese doping renders these ferrite nanostructures very attractive as displaying increased saturation magnetization, offering, consequently, outstanding values of the specific absorption rate (SAR) for heat delivery. The whole picture for bio-related applications has been considered, with issues related to magnetic manipulation, colloidal stability, and biocompatibility. PMID:27009887

  14. Synthesis, optical properties and ultrafast electronic relaxation of metal (silver, gold, platinum) and manganese(2+)-doped zinc sulfide nanoparticles

    NASA Astrophysics Data System (ADS)

    Smith, Brian Ampere

    Ultrafast transient absorption and time-dependent luminescence spectroscopy have been performed on metal (Ag, Au, Pt) and semiconductor (Mn2+ doped ZnS) nanoparticles respectively. In metal nanoparticles it was found that the decay dynamics exhibit a complex size and surface dependence. Specifically, the photoinduced dynamics show an exponential time constant that is longer than the same in bulk for particle sizes of 4-40 nm. When particle size is reduced further the plasmon band is drastically broadened and the relaxation time constant is similar to bulk. Upon reducing the size still further to only 13 atoms per cluster a much longer electronic relaxation is observed. These results are attributed to an intrinsic size dependent reduction in the electron-phonon coupling when particle size is reduced. This slows down the electronic relaxation compared to bulk. The increase in the number of surface collisions for very small particles increases the rate of electronic relaxation relative to larger particles. For particles on the order of 13 atoms the excitation is more singular in nature and the long relaxation is attributed to the fact that the excited species is a molecular as opposed to a fermi system. Also, the synthesis and luminescence decay kinetics of 1.2 nm Mn 2+ doped ZnS nanoclusters grown in reverse micelles are reported. The preparation method produces small particles with narrow size distribution and fluorescence bands near 400-450 nm and 585 nm. Time-dependent fluorescence decay measurements using picosecond, nanosecond and millisecond techniques reveal relaxation processes on all three time scales. In the doped sample, the red emission detected at 600 nm exhibits an 1-2 ms decay in addition to faster decays with time constants on the order of hundreds of ps, a few ns and tens of μs. While the slow decay is the same as that of bulk Mn 2+ doped ZnS, the fast decays are present for both doped and undoped samples and are unique to nanocluster ZnS, which are

  15. Acid-degradable core-shell nanoparticles for reversed tamoxifen-resistance in breast cancer by silencing manganese superoxide dismutase (MnSOD).

    PubMed

    Cho, Soo Kyung; Pedram, Ali; Levin, Ellis R; Kwon, Young Jik

    2013-12-01

    Drug resistance acquired by cancer cells is a significant challenge in the clinic and requires impairing the responsible pathological pathway. Administering chemotherapeutics along with silencing resistance-basis activity using RNA interference (RNAi) is expected to restore the activity of the chemotherapeutic and generate synergistic cancer eradication. This study attempted to reverse tamoxifen (TAM)-resistance in breast cancer by silencing a mitochondrial enzyme, manganese superoxide dismutase (MnSOD), which dismutates TAM-induced reactive oxygen species (ROS) (i.e., superoxide) to less harmful hydrogen peroxide and hampers therapeutic effects. Breast cancer cells were co-treated with TAM and MnSOD siRNA-delivering nanoparticles (NPs) made of a siRNA/poly(amidoamine) (PAMAM) dendriplex core and an acid-degradable polyketal (PK) shell. The (siRNA/PAMAM)-PK NPs were designed for the PK shell to shield siRNA from nucleases, minimize detrimental aggregation in serum, and facilitate cytosolic release of siRNA from endosomal compartments. This method of forming the PK shell around the siRNA/PAMAM core via surface-initiated photo-polymerization enables ease of tuning NPs' size for readily controlled siRNA release kinetics. The resulting NPs were notably homogenous in size, resistant to aggregation in serum, and invulnerable to heparan sulfate-mediated disassembly, compared to siRNA/PAMAM dendriplexes. Gel electrophoresis and confocal microscopy confirmed efficient siRNA release from the (siRNA/PAMAM)-PK NPs upon stimuli-responsive hydrolysis of the PK shell. Sensitization of TAM-resistant MCF7-BK-TR breast cancer cells with (MnSOD siRNA/PAMAM)-PK NPs restored TAM-induced cellular apoptosis in vitro and significantly suppressed tumor growth in vivo, as confirmed by biochemical assays and histological observations. This study implies that combined gene silencing and chemotherapy is a promising strategy to overcoming a significant challenge in cancer therapy. PMID:24055523

  16. Acid-degradable Core-shell Nanoparticles for Reversed Tamoxifen-resistance in Breast Cancer by Silencing Manganese Superoxide Dismutase (MnSOD)

    PubMed Central

    Cho, Soo Kyung; Pedram, Ali; Levin, Ellis R.; Kwon, Young Jik

    2013-01-01

    Drug resistance acquired by cancer cells is a significant challenge in the clinic and requires impairing the responsible pathological pathway. Administering chemotherapeutics along with silencing resistance-basis activity using RNA interference (RNAi) is expected to restore the activity of the chemotherapeutic. generate synergistic cancer eradication. This study attempted to reverse tamoxifen (TAM)-resistance in breast cancer by silencing a mitochondrial enzyme, manganese superoxide dismutase (MnSOD), which dismutates TAM-induced reactive oxygen species (ROS) (i.e., superoxide) to less harmful hydrogen peroxide and hampers therapeutic effects. Breast cancer cells were co-treated with TAM and MnSOD siRNA-delivering nanoparticles (NPs) made of a siRNA/poly(amidoamine) (PAMAM) dendriplex core and an acid-degradable polyketal (PK) shell. The (siRNA/PAMAM)-PK NPs were designed for the PK shell to shield siRNA from nucleases, minimize detrimental aggregation in serum, and facilitate cytosolic release of siRNA from endosomal compartments. This method of forming the PK shell around the siRNA/PAMAM core via surface-initiated photo-polymerization enables ease of tuning NPs’ size for readily controlled siRNA release kinetics. The resulting NPs were notably homogenous in size, resistant to aggregation in serum, and invulnerable to heparan sulfate-mediated disassembly, compared to siRNA/PAMAM dendriplexes. Gel electrophoresis and confocal microscopy confirmed efficient siRNA release from the (siRNA/PAMAM)-PK NPs upon stimuli-responsive hydrolysis of the PK shell. Sensitization of TAM-resistant MCF7-BK-TR breast cancer cells with (MnSOD siRNA/PAMAM)-PK NPs restored TAM-induced cellular apoptosis in vitro and significantly suppressed tumor growth in vivo, as confirmed by biochemical assays and histological observations. This study implies that combined gene silencing and chemotherapy is a promising strategy to overcoming a significant challenge in cancer therapy. PMID:24055523

  17. Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells

    SciTech Connect

    Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Ahmad, Javed; Siddiqui, Maqsood A.; Dwivedi, Sourabh; Khan, Shams T.; Musarrat, Javed

    2013-12-01

    The present study has demonstrated the translocation of zinc ferrite nanoparticles (ZnFe{sub 2}O{sub 4}-NPs) into the cytoplasm of human amnion epithelial (WISH) cells, and the ensuing cytotoxicity and genetic damage. The results suggested that in situ NPs induced oxidative stress, alterations in cellular membrane and DNA strand breaks. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) and neutral red uptake (NRU) cytotoxicity assays indicated 64.48 ± 1.6% and 50.73 ± 2.1% reduction in cell viability with 100 μg/ml of ZnFe{sub 2}O{sub 4}-NPs exposure. The treated WISH cells exhibited 1.2-fold higher ROS level with 0.9-fold decline in membrane potential (ΔΨm) and 7.4-fold higher DNA damage after 48 h of ZnFe{sub 2}O{sub 4}-NPs treatment. Real-time PCR (qPCR) analysis of p53, CASP 3 (caspase-3), and bax genes revealed 5.3, 1.6, and 14.9-fold upregulation, and 0.18-fold down regulation of bcl 2 gene vis-à-vis untreated control. RT{sup 2} Profiler™ PCR array data elucidated differential up-regulation of mRNA transcripts of IL-1b, NFKB1, NOS2 and CCL21 genes in the range of 1.5 to 3.7-folds. The flow cytometry based cell cycle analysis suggested the transfer of 15.2 ± 2.1% (p < 0.01) population of ZnFe{sub 2}O{sub 4}-NPs (100 μg/ml) treated cells into apoptotic phase through intrinsic pathway. Over all, the data revealed the potential of ZnFe{sub 2}O{sub 4}-NPs to induce cellular and genetic toxicity in cells of placental origin. Thus, the significant ROS production, reduction in ΔΨm, DNA damage, and activation of genes linked to inflammation, oxidative stress, proliferation, DNA damage and repair could serve as the predictive toxicity and stress markers for ecotoxicological assessment of ZnFe{sub 2}O{sub 4}-NPs induced cellular and genetic damage. - Highlights: • First report on the molecular toxicity of ZnFe{sub 2}O{sub 4}-NPs in cells of placental origin • WISH cells treated with ZnFe{sub 2}O{sub 4}-NPs exhibited cytoplasmic

  18. Study on the efficiency of nanosized magnetite and mixed ferrites in magnetic hyperthermia.

    PubMed

    Saldívar-Ramírez, M M G; Sánchez-Torres, C G; Cortés-Hernández, D A; Escobedo-Bocardo, J C; Almanza-Robles, J M; Larson, A; Reséndiz-Hernández, P J; Acuña-Gutiérrez, I O

    2014-10-01

    Magnetic materials, which have the potential for application in heating therapy by hyperthermia, were prepared. This alternative treatment is used to eliminate cancer cells. Magnetite, magnesium-calcium ferrites and manganese-calcium ferrites were synthesized by sol-gel method followed by heat treatment at different temperatures for 30 min in air. Materials with superparamagnetic behavior and nanometric sizes were obtained in all the cases. Thus, these nanopowders may be suitable for their use in human tissue. The average sizes were 14 nm for magnetite, 10 nm for both Mg(0.4)Ca(0.6)Fe(2)O(4) and Mg(0.6)Ca(0.4)Fe(2)O(4) and 11 nm for Mn(0.2)Ca(0.8)Fe(2)O(4). Taking into account that the Mg(0.4)Ca(0.6)Fe(2)O(4) and Mg(0.6)Ca(0.4)Fe(2)O(4) treated at 350 °C showed the lower coercivity values, these nanoparticles were selected for heating tests and cell viability. Heating curves of Mg(0.4)Ca(0.6)Fe(2)O(4) subjected to a magnetic field of 195 kHz and 10 kA/m exhibited a temperature increase up to 45 °C in 15 min. A high human osteosarcoma cell viability of 90-99.5% was displayed. The human osteosarcoma cell with magnesium-calcium ferrites exposed to a magnetic field revealed a death cell higher than 80% in all the cases. PMID:24573458

  19. Influence of Carbide Precipitation and Dissolution on the Microstructure of Ultra-Fine-Grained Intercritically Annealed Medium Manganese Steel

    NASA Astrophysics Data System (ADS)

    Lee, Sangwon; De Cooman, Bruno C.

    2016-07-01

    The influence of cementite precipitation and dissolution on the formation of the carbide-free, ultra-fine-grained, ferrite + austenite microstructure of medium manganese steel was analyzed. During heating to the intercritical temperature, cementite nucleates at low-angle lath martensite boundaries, austenite subsequently nucleates at ferrite/cementite boundaries, and the cementite is gradually replaced by the growing austenite grains. The intercritical austenite carbon is therefore due to cementite dissolution, rather than carbon partitioning between ferrite and austenite.

  20. Preparation of manganese(II), chromium(III) and ferric(III) oxides nanoparticles in situ metal citraconate complexes frameworks.

    PubMed

    Refat, Moamen S

    2014-12-10

    The new reactions of some divalent and trivalent transition metal ions (Mn(II), Cr(III), and Fe(III)) with citraconic acid has been studied. The obtained results indicate the formation of citraconic acid compounds with molar ratio of metal to citraconic acid of 2:2 or 2:3 with general formulas Mn2(C5H4O4)2 or M2(C5H4O4)3⋅nH2O where n=6 for Cr, and Fe(III). The thermal decomposition of the crystalline solid complexes was investigated. The IR spectra of citraconate suggested that the carboxylic groups are bidentatically bridging and chelating. In the course of decomposition the complexes are dehydrated and then decompose either directly to oxides in only one step or with intermediate formation of oxocarbonates. This proposal dealing the preparation of MnO2, Fe2O3 and Cr2O3 nanoparticles. The crystalline structure of oxide products were checked by X-ray powder diffraction (XRD), and the morphology of particles by scanning electron microscopy (SEM). PMID:24952090

  1. Hot coal gas desulfurization with manganese based sorbents. Quarterly report, June--September 1994

    SciTech Connect

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of work being performed on hot coal gas desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) appears to be a strong contender to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc; hence, it is not as likely to undergo zinc-depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron; hence, the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Also manganese chlorides are much less stable and volatile than zinc chlorides. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Eighth Quarterly Report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite.

  2. Manganese nodules

    USGS Publications Warehouse

    Hein, James R.; Harff, Jan; Petersen, Sven; Thiede, Jorn

    2014-01-01

    The existence of manganese (Mn) nodules (Fig. 1) has been known since the late 1800s when they were collected during the Challenger expedition of 1873–1876. However, it was not until after WWII that nodules were further studied in detail for their ability to adsorb metals from seawater. Many of the early studies did not distinguish Mn nodules from Mn crusts. Economic interest in Mn nodules began in the late 1950s and early 1960s when John Mero finished his Ph.D. thesis on this subject, which was published...

  3. Thermodynamic Calculation Study on Effect of Manganese on Stability of Austenite in High Nitrogen Stainless Steels

    NASA Astrophysics Data System (ADS)

    Wang, Qingchuan; Zhang, Bingchun; Yang, Ke

    2016-07-01

    A series of high nitrogen steels were studied by using thermodynamic calculations to investigate the effect of manganese on the stability of austenite. Surprisingly, it was found that the austenite stabilizing ability of manganese was strongly weakened by chromium, but it was strengthened by molybdenum. In addition, with an increase of manganese content, the ferrite stabilizing ability of chromium significantly increased, but that of molybdenum decreased. Therefore, strong interactions exist between manganese and the other alloying elements, which should be the main reason for the difference among different constituent diagrams.

  4. Hot coal gas desulfurization with manganese-based sorbents. Progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Hepworth, M.T.

    1993-07-15

    Focus of work is primarily in use of zinc ferrite and zinc titanate sorbents; however, an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc, hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. Thermodynamic analysis of the system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese higher temperatures than zinc ferrite or titanate. This report gives the thermodynamic background for consideration of manganese-based sorbents as an alternative to zinc ferrite. To date the work is limited to thermogravimetric testing of four formulations of manganese-alumina sorbents to determine the optimum conditions of pelletization and enduration to produce reactive pellets.

  5. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  6. Abnormal morphology of nanocrystalline Mn-Zn ferrite sintered by pulse electric current sintering

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhua; Yu, Liming; Yuan, Shujuan; Zhang, Shouhua; Zhao, Xinluo

    2009-11-01

    Nanocrystalline manganese-zinc (Mn-Zn) ferrite powders prepared by the sol-gel auto-combustion method are sintered to form bulk ferrite by pulse electric current sintering technique. The sample phase, before sintering and after sintering, is carried out by X-ray diffraction (XRD). The morphology of the sample is observed by scanning electron microscopy (SEM). The results indicate that the bulk ferrite obtained has a pure spinel structure. With special graphite die, a special morphology is observed, which is explained by pressure, temperature and induced electromagnetic field.

  7. An analytical model for inductively coupled implantable biomedical devices with ferrite rods.

    PubMed

    Theilmann, P T; Asbeck, P M

    2009-02-01

    Using approximations applicable to near field coupled implants simplified expressions for the complex mutual inductance of coaxial aligned coils with and without a cylindrical ferrite rod are derived. Experimental results for ferrite rods of various sizes and permeabilities are presented to verify the accuracy of this expression. An equivalent circuit model for the inductive link between an implant and power coil is then presented and used to investigate how ferrite size, permeability and loss affect the power available to the implant device. Enhancements in coupling provided by high frequency, low permeability nickel zinc rods are compared with low frequency high permeability manganese zinc rods.

  8. Effect of manganese and nitrogen on the solidification mode in austenitic stainless steel welds

    NASA Astrophysics Data System (ADS)

    Suutala, N.

    1982-12-01

    The macrostructures and microstructures of thirty different austenitic stainless welds alloyed with manganese and Jor nitrogen are analyzed. Comparison of the results with those obtained from normal welds of the AISIJAWS 300 series indicates that the solidification mode and Ferrite Number can be predicted adequately using chromium and nickel equivalents. The solidification mode in the normal and nitrogen-alloyed welds can be best described by the equivalents developed by Hammar and Svensson and the Ferrite Number by the conventional Schaeffler-DeLong diagram. Both of these descriptions are invalid at high manganese content values (5 to 8 pct), however, in which case Hull’s equivalents give a better correlation between the composition and the solidification mode or Ferrite Number. The complicated role of manganese and the austenite-favoring effect of nitrogen in austenitic stainless steels are discussed.

  9. Hot Coal Gas Desulfurization with manganese based sorbents. Quarterly report, August 1, 1993--September 30, 1993

    SciTech Connect

    Hepworth, M.T.

    1993-10-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E. T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This report documents progress in pelletizing and testing via thermogravimetric analysis of individual pellet formulations of manganese ore/alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite. Preliminary results indicate that the manganese carbonate material, being of higher purity than the manganese ore, has a higher degree of sulfur capacity and more rapid absorption kinetics. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration.

  10. Hot coal gas desulfurization with manganese-based sorbents. Annual report, September 1992--September 1993

    SciTech Connect

    Hepworth, M.T.

    1993-12-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E. T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Annual Topical Report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/ alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite. It includes the prior Quarterly Technical Reports which indicate that the manganese carbonate material, being of higher purity than the manganese ore, has a higher degree of sulfur capacity and more rapid absorption kinetics. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration.

  11. Effect of Mg substitution on the magnetic properties of NiCuZn ferrite nanoparticles prepared through a novel method using egg white

    NASA Astrophysics Data System (ADS)

    Gabal, M. A.

    2009-10-01

    Nanocrystalline Mg-substituted NiCuZn ferrites were successfully synthesized, for the first time, by using metal nitrates and freshly extracted egg white. The thermal decomposition process of the nitrate-egg white precursors was investigated by thermogravimetric (TG) technique. X-ray diffraction (XRD) revealed that, single-phase cubic ferrites with average particle size of 23.9-35.1 nm were directly formed after ignition at 500 °C. No noticeable variation of lattice parameters with increasing magnesium content was observed, while X-ray densities were found to decrease. This can be explained on the basis of ionic radii and atomic masses of the substituted cation. Transmission electron microscope (TEM) shows that, particles are permanently magnetized and get agglomerated. The saturation magnetization ( M s) and coercivity ( H c) as a function of Mg content were investigated using vibrating sample magnetometer (VSM). It has been found that the M s increases firstly up to x=0.2 and then decreases, while H c continuously decreases. Magnetic susceptibility measurements give results which agree well with those obtained by VSM. The obvious decrease in the Curie temperature ( T C) with increasing Mg indicates that the ferrimagnetic grains are widely separated and enclosed by non-magnetic magnesium ions.

  12. Preparation and magnetic properties of MgZn and MnZn ferrites

    NASA Astrophysics Data System (ADS)

    Skołyszewska, B.; Tokarz, W.; Przybylski, K.; Kaķol, Z.

    2003-05-01

    Synthesis of magnesium-zinc [(Mg 0.63Zn 0.37)(Mn 0.1Fe 1.8)O 3.85] and manganese-zinc [(Mn 0.55Zn 0.35Fe 0.1)Fe 2O 4] ferrites by solid-state reaction method is described. Brunauer-Emmett-Teller (BET) surface areas of the ferrite powders used for synthesis were 2.63 m 2/g for magnesium-zinc ferrite and 2.86 m 2/g for manganese-zinc ferrite respectively. The dense sintered bodies of MgZn and MnZn ferrites obtained at 1250-1300 °C were characterized by the presence of Fe 2O 3 particles uniformly dispersed through a cross-section. Saturation magnetization and hysteresis loops of MgZn and MnZn ferrites were measured using a vibrating magnetometer for both powdered and sintered samples. The samples were distinguished by small core losses and small coercive forces characteristic for soft magnetic materials. The hysteresis loops width for powdered materials were of the order of 15-35 Oe, whereas for sintered specimens they were less than 1 Oe. The saturation magnetization for powders were different from that for sintered samples. The microstructure, chemical, and phase analyses of powders and sintered bodies of ferrites were conducted by scanning electron microscopy (SEM), by energy dispersion X-ray spectroscopy (EDS), and X-ray diffraction (XRD).

  13. Investigation of structural, dielectric, and magnetic properties of hard and soft mixed ferrite composites

    NASA Astrophysics Data System (ADS)

    Kotnala, R. K.; Ahmad, Shahab; Ahmed, Arham S.; Shah, Jyoti; Azam, Ameer

    2012-09-01

    Barium ferrite (hard ferrite) and manganese nickel zinc ferrite (soft ferrite) were successfully synthesized by citrate gel combustion technique. They were used to form the composites by mixing them properly in required compositions (x)BaFe12O19-(1-x)Mn0.2Ni0.4Zn0.4Fe2O4 (0 ≤ x ≤ 1). X-ray diffraction (XRD) and scanning electron microscopy (SEM) were utilized to investigate the different structural and morphological parameters of pure and mixed ferrite composites. XRD and SEM results confirmed the coexistence of both phases in the composite material. Moreover, it has been observed that the composites were constituted by nanosized particles. Structure of pure soft ferrite was found to be cubic and that of pure hard ferrite was hexagonal. Dielectric constant (ɛ' and ɛ″) and dielectric loss (tan δ) were analyzed as a function of frequency and composition and the behaviour is explained on the basis of Maxwell-Wagner model. It was observed that the dielectric loss decreases with the increase of hard ferrite content in the composite material. Magnetic measurements suggest the exchange coupling between the magnetizations of soft and hard ferrite grains. It has been observed that the coercivity increases with the increase of the volume of the hard phase in the composite material after an optimal value.

  14. Structural analysis of emerging ferrite: Doped nickel zinc ferrite

    SciTech Connect

    Kumar, Rajinder; Kumar, Hitanshu; Singh, Ragini Raj; Barman, P. B.

    2015-08-28

    Ni{sub 0.6-x}Zn{sub 0.4}Co{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.033, 0.264) nanoparticles were synthesized by sol-gel method and annealed at 900°C. Structural properties of all prepared samples were examined with X-ray diffraction (XRD). The partial formation of hematite (α-Fe{sub 2}O{sub 3}) secondary phase with spinel phase cubic structure of undoped and cobalt doped nickel zinc ferrite was found by XRD peaks. The variation in crystallite size and other structural parameters with cobalt doping has been calculated for most prominent peak (113) of XRD and has been explained on the basis of cations ionic radii difference.

  15. Solvothermal synthesis of MnFe2O4 nanoparticles: The role of polymer coating on morphology and magnetic properties

    NASA Astrophysics Data System (ADS)

    Aslibeiki, B.; Kameli, P.; Ehsani, M. H.; Salamati, H.; Muscas, G.; Agostinelli, E.; Foglietti, V.; Casciardi, S.; Peddis, D.

    2016-02-01

    Manganese spinel ferrite nanoparticles were synthesized by a solvothermal route based on high temperature decomposition of metal nitrates in the presence of different contents of Triethylene glycol. This simple and low cost method can be applied to prepare large quantities of nanoparticles (tens of grams). Powder X-ray diffraction (PXRD) and Transmission Electron Microscopy (TEM) confirmed that nanoparticles with a good crystalline quality were obtained. A good agreement between the average particle size calculated by PXRD and TEM was observed. Fourier-transform infrared spectra showed that polymer molecules have the tendency to form bonds with the surface of ferrite nanoparticles reducing the surface spin disorder, and then enhancing the saturation magnetization (MS). Therefore, much higher MS value (up to ∼91 emu/g at 5 K) was observed compared with that of bare nanoparticles without surfactant. The blocking temperature showed a remarkable shift to lower values with increasing the polymer starting amount. In addition, by increasing the polymer initial content, a more homogeneous size distribution was obtained and the initial strongly interacting superspin glass behavior changed to a weakly interacting superparamagnetic state.

  16. Synthesis and characterization of PVP-coated Co0.3 Zn0.7 Fe2 O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Jaberolansar, E.; Kameli, P.; Ahmadvand, H.; Salamati, H.

    2016-04-01

    Co0.3 Zn0.7 Fe2 O4 nanoparticles coated with polyvinylpirrolydone (PVP) were synthesized using the two-step chemical method. The structural and magnetic properties of uncoated and PVP -coated nanoparticles were studied by X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), transmission electron microscopy (TEM), ac susceptibility, and vibrating sample magnetometry (VSM). The XRD patterns revealed a single phase cubic spinel structure in both types of nanoparticles. Average crystallite size of the samples decreased from 35 to 16 nm after PVP coating. VSM results indicated no hysteresis in any of the samples, which suggested their supreparamagnetic behaviour at room temperature. Ac susceptibility measurements showed that strong inter-particle magnetic interactions led to a superspin glass-like behaviour at low temperatures. Moreover, inter-particle interactions were found to decrease with increasing PVP content as a result of surface coating of the magnetic nanoparticles. The same measurements showed that the relative sensitivity of the samples to applied frequency increased with increasing PVP content to reach its maximum for a PVP to Co0.3 Zn0.7 Fe2O4 nanoparticle ratio of 0.75.

  17. Superparamagnetic state by linear and non-linear AC magnetic susceptibility in Mn0.5Zn0.5Fe2O4 ferrites nanoparticles.

    PubMed

    Suneetha, T; Kundu, S; Kashyap, Subhash C; Gupta, H C; Nath, T K

    2013-01-01

    The Mn0.5Zn0.5Fe2O4 nanoparticles has been synthesized using citrate-gel-precursor method. The direct mixing of nitrates and acetates yields homogeneous nanoparticles. Phase formation and crystal structure of the synthesized powder were examined through the X-ray diffraction (XRD). Fourier transform infrared (FTIR) spectra of the sample confirm the spinel structure. The average particle size was determined by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The average particle size is found to be about 13 nm. Superparamagnetic-like nature of the nanoparticles of Mn0.5Zn0.5Fe2O4 has been revealed through various dc and linear and non-linear ac magnetization measurements. However, the nanoparticles do not behave like ideal non-interacting superparamagnets. The magnetic particle size is found to be about 8 nm with saturation magnetization about 18.1 emu/g. The blocking temperature (T(B)) of the nanoparticle assembly is found to be about 150 K as observed from dc and ac magnetization measurements. The frequency dependence of the blocking temperature (T(B)) is found to follow Vogel-Fulcher law. The associated characteristic time tau0 is found to be 10(-5) s. This value is different from that generally found for non-interacting superparamagnetic (SPM) systems (tau0 = 10(-9)-10(-10) s).

  18. Bulk Synthesis of Monodisperse Ferrite Nanoparticles at Water-Organic Interfaces under Conventional and Microwave Hydrothermal Treatment and Their Surface Functionalization

    EPA Science Inventory

    Synthesis of monodisperse MFe2O4 (M=, Ni, Co, Mn) and γ-Fe2O3 nanoparticles at a water-toluene interface under conventional as well as microwave hydrothermal conditions using readily available nitrate or chloride salts and oleic acid as the dispersing agent is described. The ens...

  19. Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Kooti, M.; Saiahi, S.; Motamedi, H.

    2013-05-01

    A new silver coated cobalt ferrite nanocomposite, Ag@CoFe2O4, was prepared by a two-step procedure. In the first step, cobalt ferrite nanoparticles were synthesized by a combustion method using glycine as a fuel. This ferrite was then coated with nanosilver via chemical reduction of Ag+ solution. The as-synthesized Ag@CoFe2O4 was characterized by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The antibacterial activity of this composite was investigated against some Gram-positive and Gram-negative bacteria and compared with those of silver nanoparticles and some standard antibacterial drugs.

  20. Chronic manganese intoxication

    SciTech Connect

    Huang, C.C.; Chu, N.S.; Lu, C.S.; Wang, J.D.; Tsai, J.L.; Tzeng, J.L.; Wolters, E.C.; Calne, D.B. )

    1989-10-01

    We report six cases of chronic manganese intoxication in workers at a ferromanganese factory in Taiwan. Diagnosis was confirmed by assessing increased manganese concentrations in the blood, scalp, and pubic hair. In addition, increased manganese levels in the environmental air were established. The patients showed a bradykinetic-rigid syndrome indistinguishable from Parkinson's disease that responded to treatment with levodopa.

  1. Microstructure Evolution of a Medium Manganese Steel During Thermomechanical Processing

    NASA Astrophysics Data System (ADS)

    Sun, Binhan; Aydin, Huseyin; Fazeli, Fateh; Yue, Stephen

    2016-04-01

    An as-cast Fe-0.2C-10Mn-3Si-3Al medium manganese steel with a ferrite plus austenite duplex microstructure was subjected to hot compression tests at deformation temperatures within two-phase ( α + γ) range and various strain rates. The microstructure evolution of the experimental steel during hot deformation was investigated. The flow curves were characterized by a discontinuous yielding at the beginning of plastic deformation, followed by a weak work hardening to a peak and a subsequent mild softening stage. Two restoration processes took place during hot deformation, namely dynamic recrystallization (DRX) of austenite and continuous dynamic recrystallization of ferrite. The DRX of austenite was believed to dominate the softening stage of the flow curves. The discontinuous yielding stemmed from the existing Kurdjumov-Sachs (K-S) orientation relationship between ferrite and austenite in the initial undeformed microstructure, which gradually weakened during subsequent deformation.

  2. The influence of PEG-4000 and silica on crystal structure and magnetic properties of magnesium ferrite (MgFe2O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Puspitarum, Deska Lismawenning; Hermawan, Agung; Suharyadi, Edi

    2016-04-01

    In this paper, reports the influence of polyethylene glycol (PEG-4000) and silica on crystal structure and magnetic properties of MgFe2O4 nanoparticles which is synthesized by the co-precipitation method. The particle size of before coated MgFe2O4 was around 10.5 nm, and became 5.2 nm after PEG-4000 coating and 18.8 nm after silica coating. After coating, there were appeared new phases, α-Fe2O3 (antiferromagnetic), SiO2 and γ-FeO(OH) which are paramagnetics. The second phase sample decreased responses to the external field. Transmission Electron Microscopy (TEM) morphology analysis on nanoparticles which was coated with PEG 4000 showed that the particles become more spherical, more dispersive, and less aglomerated. The magnetic hysteresis loops which was investigated with Vibrating Sample Magnetometer (VSM) indicated that coercivity of MgFe2O4 was 120.7 Oe, and then decreased to 40.9 Oe after coating and 34.7 Oe for coating with PEG-4000 and silica, respectively. At 15 kOe, the magnetization value decreased from 2.69 emu/g to 0.96 emu/g after coating with PEG-4000 and increased 2.82 emu/g after silica coating. The result revealed the coating with both PEG-4000 and silica influence the magnetic properties of MgFe2O4 nanoparticles.

  3. Impedance calculation for ferrite inserts

    SciTech Connect

    Breitzmann, S.C.; Lee, S.Y.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  4. Hot coal gas desulfurization with manganese-based sorbents. Quarterly report, October--December 1993

    SciTech Connect

    Hepworth, M.T.; Slimane, R.B.

    1994-01-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Fifth Quarterly Report documents progress in pellet testing via thermogravimetric analysis of pellet formulation FORM4-A of a manganese ore/alumina combination. This formulation, described more fully in the Quarterly Technical Progress Report of October 15, 1993, consists of manganese carbonate combined with alundum. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration; however, a minor problem has arisen during the regeneration cycle in that sulfur tends to form and plug the exit tube during the early stage of regeneration. This problem is about to be overcome by increasing the flow rate of air during the regeneration cycle resulting in more oxidizing conditions and hence less tendency for sulfide sulfur (S{sup =}) to oxidize to the intermediate elemental form (S{sup o}) rather than to 4-valent (S{sup +4}).

  5. High strength ferritic alloy-D53

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high strength ferritic alloy is described having from about 0.2% to about 0.8% by weight nickel, from about 2.5% to about 3.6% by weight chromium, from about 2.5% to about 3.5% by weight molybdenum, from about 0.1% to about 0.5% by weight vanadium, from about 0.1% to about 0.5% by weight silicon, from about 0.1% to about 0.6% by weight manganese, from about 0.12% to about 0.20% by weight carbon, from about 0.02% to about 0.1% by weight boron, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight phosphorous, a maximum of about 0.02% by weight sulfur, and the balance iron.

  6. Hot Coal Gas Desulfurization with manganese-based sorbents. Quarterly report, April--June 1994

    SciTech Connect

    Hepworth, M.T.; Slimane, R.B.

    1994-06-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) appears to be a strong contender to zincbased sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc; hence, it is not as likely to undergo zinc-depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron; hence, the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Also manganese chlorides are much less stable and volatile than zinc chlorides. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Seventh Quarterly Report documents progress in bench-scale testing of a leading manganese-based sorbent pellets (FORM4-A). This formulation is a high-purity manganese carbonate-based material. This formulation was subjected to 20 consecutive cycles of sulfidation and regeneration at 900{degrees}C in a 2-inch fixed bed reactor. The sulfidation gas was a simulated Tampella U-gas with an increased hydrogen sulfide content of 3% by volume to accelerate the rate of breakthrough, arbitrarily taken as 500 ppmv. Consistent with thermo-gravimetric analysis (TGA) on individual pellets, the fixed bed tests show small improvement in capacity and kinetics with the sulfur-loading capacity being about 22% by weight of the original pellet, which corresponds to approximately 90% bed utilization!

  7. Preferential spin canting in nanosize zinc ferrite

    NASA Astrophysics Data System (ADS)

    Pandey, Brajesh; Litterst, F. J.; Baggio-Saitovitch, E. M.

    2015-07-01

    Zinc ferrite nanoparticles powder with average size of 10.0±0.5 nm was synthesized by the citrate precursor route. We studied the structural and magnetic properties using X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopy. X-ray diffraction patterns show that the synthesized zinc ferrite possesses good spinel structure. Both Mössbauer and magnetization data indicate superparamagnetic ferrimagnetic particles at room temperature. The magnetic behavior is determined by a considerable degree of cation inversion with FeIII in tetrahedral A-sites. Mössbauer spectroscopy at low temperature and in high applied magnetic field reveals that A-site spins are aligned antiparallel to the applied field with some possible angular scatter whereas practically all octahedral B-site spins are canted contrasting some earlier reported partial B-site spin canting in nanosize zinc ferrite. Deviations from the antiferromagnetic arrangement of B-site spins are supposed to be caused by magnetic frustration effects.

  8. Structural and surface changes of copper modified manganese oxides

    NASA Astrophysics Data System (ADS)

    Gac, Wojciech; Słowik, Grzegorz; Zawadzki, Witold

    2016-05-01

    The structural and surface properties of manganese and copper-manganese oxides were investigated. The oxides were prepared by the redox-precipitation method. X-ray diffraction and electron microscopy studies evidenced transformation of cryptomelane-type nanoparticles with 1-D channel structure into the large MnO crystallites with regular rippled-like surface patterns under reduction conditions. The development of Cu/CuO nanorods from strongly dispersed species was evidenced. Coper-modified manganese oxides showed good catalytic performance in methanol steam reforming reaction for hydrogen production. Low selectivity to CO was observed in the wide range of temperatures.

  9. Manganese uptake of imprinted polymers

    SciTech Connect

    Susanna Ventura

    2015-09-30

    Batch tests of manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T=45C . Data on manganese uptake for two consecutive cycles are included.

  10. Study of low loss Mn Zn ferrite by design of experiment

    NASA Astrophysics Data System (ADS)

    Nien, H. H.; Liang, T. J.; Huang, C. K.; Changchien, S. K.

    2006-09-01

    This paper presents a study of low loss manganese-zinc (Mn-Zn) ferrite by design of experiment. A two-stage optimization method is used for reducing the number of trials and allowing the inclusion of more factors and levels. The output responses of permeability and resistivity evaluate the experiments in optimizing the control factors. The power loss of the Mn-Zn ferrite is 350 mW/c.c at 300KHz, 80 °C and 100 mT.

  11. Gadolinium substitution effect on the thermomagnetic properties of Ni ferrite ferrofluids

    NASA Astrophysics Data System (ADS)

    Jacobo, Silvia E.; Arana, Mercedes; Bercoff, Paula G.

    2016-10-01

    This work is focused on the structural and magnetic characterization of Gd-doped Ni ferrite nanoparticles and the preparation of a ferrofluid for applications in heat-transfer devices. For this purpose, spinel ferrites NiFe2O4, and NiFe1.88Gd0.12O4 were prepared by the self-combustion method. The substituted sample was obtained with a small amount of Gd inclusion and the excess appeared as GdFeO3. The smallest nanoparticles of both samples were properly coated and dispersed in kerosene. Thermal conductivities of the produced ferrofluids were measured at 25 °C under an applied magnetic field. There is a significant enhancement in the thermal conductivity of the ferrofluid prepared with NiGd ferrite with respect to the one with Ni ferrite, in presence of a magnetic field. This effect is directly related to the well-known magnetocaloric effect of Gd.

  12. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  13. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  14. Effect of filler loading of nickel zinc ferrite on the tensile properties of PLA nanocomposites

    NASA Astrophysics Data System (ADS)

    Shahdan, Dalila; Ahmad, Sahrim Hj

    2013-05-01

    The mechanical strength of magnetic polymer nanocomposite (MPNC) of nickel zinc (NiZn) ferrite nanoparticles incorporated with polylactic acid (PLA) and liquid natural rubber (LNR) as compatibilizer is reported. The matrix was prepared from PLA and LNR in the ratio of 90:10. The MPNC were prepared at constant mixing temperature at 180°C, mixing time of 15 min. and mixing speed of 100 rpm. In order to achieve a good dispersion of NiZn ferrite in the matrix, firstly an ultrasonic treatment had been employed to mix the LNR and NiZn ferrite for 1 hour. The MPNC of PLA/LNR/NiZn ferrite then were prepared via Thermo Haake internal mixer using melt-blending method from different filler loading from 1-5 wt% NiZn ferrite. The result of tensile tests showed that as the filler loading increases the tensile strength also increases until an optimum value of filler loading was reached. The Young's modulus, tensile strength and elongation at break have also increased. The study proves that NiZn ferrite is excellent reinforcement filler in PLA matrix. Scanning electron micrograph (SEM) and energy dispersive X-ray spectroscopy (EDX) were meant to show the homogeneity dispersion of nanoparticles within the matrix and to confirm the elemental composition of NiZn ferrites-PLA/LNR nanocomposites respectively.

  15. Evolution of Microstructures During Austempering of Ductile Irons Alloyed with Manganese and Copper

    NASA Astrophysics Data System (ADS)

    Dasgupta, Ranjan Kumar; Mondal, Dipak Kumar; Chakrabarti, Ajit Kumar

    2013-03-01

    The influences of relatively high manganese (0.45 through 1.0 wt pct) and copper (0.56 through 1.13 wt pct) contents on microstructure development and phase transformation in three austempered ductile irons have been studied. The experimental ductile irons alloyed with copper and manganese are found to be practically free from intercellular manganese segregation. This suggests that the positive segregation of manganese is largely neutralized by the negative segregation of copper when these alloying elements are added in appropriate proportions. The drop in unreacted austenite volume (UAV) with increasing austempering temperature and time is quite significant in irons alloyed with copper and manganese. The ausferrite morphology also undergoes a transition from lenticular to feathery appearance of increasing coarseness with the increasing austempering temperature and time. SEM micrographs of the austempered samples from the base alloy containing manganese only, as well as copper plus manganese-alloyed irons, clearly reveal the presence of some martensite along with retained austenite and ferrite. X-ray diffraction analysis also confirms the presence of these phases. SEM examination further reveals the presence of twinned martensite in the copper plus manganese-alloyed samples. The possibility of strain-induced transformation of austenite to martensite during austempering heat treatment is suggested.

  16. Oleate Coated Magnetic Cores Based on Magnetite, Zn Ferrite and Co Ferrite Nanoparticles—Preparation, Physical Characterization and Biological Impact on Helianthus Annuus Photosynthesis

    NASA Astrophysics Data System (ADS)

    Ursache-Oprisan, Manuela; Foca-nici, Ecaterina; Cirlescu, Aurelian; Caltun, Ovidiu; Creanga, Dorina

    2010-12-01

    Sodium oleate was used as coating shell for magnetite, Zn ferrite and Co ferrite powders to stabilize them in the form of aqueous magnetic suspensions. The physical characterization was carried out by applying X-ray diffraction and magnetization measurements. Both crystallite size and magnetic core diameter ranged between 7 and 11 nm. The influence of magnetic nanoparticle suspensions (corresponding to magnetic nanoparticle levels of 10-14-10-15/cm3) on sunflower seedlings was studied considering the changes in the photosynthesis pigment levels. Similar responses were obtained for magnetite and cobalt ferrite nanoparticle treatment consisting in the apparent inhibition of chlorophyll biosynthesis while for zinc ferrite nanoparticles some concentrations seemed to have stimulatory effects on the chlorophylls as well as on the carotene levels. But the chlorophyll ratio was diminished in the case of all three types of magnetic nanoparticles meaning their slight negative effect on the light harvesting complex II (LHC II) from the chloroplast membranes and consequently on the photosynthesis efficiency.

  17. Distribution of indium ions in indium substituted Mn-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Rao, K. H.; Mendiratta, R. G.

    1983-04-01

    The variations in dc resistivity and Mossbauer line intensities for various dopant concentrations of indium in a manganese-zinc ferrite have been investigated to analyze the site occupancy of indium ions. The indium ions are observed to occupy both tetrahedral and octahedral sites throughout the whole range of concentration studied. The picture proposed on the basis of resistivity measurements has been confirmed by Mossbauer data.

  18. Antimicrobial Lemongrass Essential Oil-Copper Ferrite Cellulose Acetate Nanocapsules.

    PubMed

    Liakos, Ioannis L; Abdellatif, Mohamed H; Innocenti, Claudia; Scarpellini, Alice; Carzino, Riccardo; Brunetti, Virgilio; Marras, Sergio; Brescia, Rosaria; Drago, Filippo; Pompa, Pier Paolo

    2016-01-01

    Cellulose acetate (CA) nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG) essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs), with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities. PMID:27104514

  19. Ferrite phase shifters using stress insensitive materials. Final report, July 1991-July 1993

    SciTech Connect

    Vaughn, T.; Cox, P.; Harrison, G.; Rodrigue, P.

    1993-10-01

    This RD program sponsored by the Naval Research Laboratory and being conducted by EMS Technologies, Inc., Norcross, Georgia, is focused toward achieving improved performance in microwave switching components via use of stress insensitive' microwave ferrite materials for applications where stable hysteresis characteristics of the materials are critical to the RF performance. The program, therefore, primarily addresses how to relieve or improve the magnetostrictive characteristics of the materials with emphasis on the specific application and demonstration of these materials in microwave switching components, particularly ferrite toroidal phase shifters. Material investigations were focused on Mn+3 substitutions in Yttrium-gadolinium iron garnet. These compounds were evaluated in dual toroid waveguide phase shifter structures with temperature, pressure Rf power as variables Manganese substitution per formula unit for Fe+3 of 0.11 to 0.13 (2.2 to 2.6%) produced compounds which exhibited stable performance from magnetostrictive stresses in phaser structures. Ferrite phase shifters, Stress insensitive materials Manganese substitution in garnets, Magnetostrictive, Stresses in ferrite phasers.

  20. Hyaluronic acid-modified manganese-chelated dendrimer-entrapped gold nanoparticles for the targeted CT/MR dual-mode imaging of hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhi; Luo, Yu; Yang, Shuohui; Lin, Jiang; Gao, Dongmei; Zhao, Yan; Liu, Jinguo; Shi, Xiangyang; Wang, Xiaolin

    2016-09-01

    Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver. The early and effective diagnosis has always been desired. Herein, we present the preparation and characterization of hyaluronic acid (HA)-modified, multifunctional nanoparticles (NPs) targeting CD44 receptor-expressing cancer cells for computed tomography (CT)/magnetic resonance (MR) dual-mode imaging. We first modified amine-terminated generation 5 poly(amidoamine) dendrimers (G5.NH2) with an Mn chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), fluorescein isothiocyanate (FI), and HA. Then, gold nanoparticles (AuNPs) were entrapped within the above raw product, denoted as G5.NH2-FI-DOTA-HA. The designed multifunctional NPs were formed after further Mn chelation and purification and were denoted as {(Au0)100G5.NH2-FI-DOTA(Mn)-HA}. These NPs were characterized via several different techniques. We found that the {(Au0)100G5.NH2-FI-DOTA(Mn)-HA} NPs exhibited good water dispersibility, stability under different conditions, and cytocompatibility within a given concentration range. Because both AuNPs and Mn were present in the product, {(Au0)100G5.NH2-FI-DOTA(Mn)-HA} displayed a high X-ray attenuation intensity and favorable r1 relaxivity, which are advantageous properties for targeted CT/MR dual-mode imaging. This approach was used to image HCC cells in vitro and orthotopically transplanted HCC tumors in a unique in vivo model through the CD44 receptor-mediated endocytosis pathway. This work introduces a novel strategy for preparing multifunctional NPs via dendrimer nanotechnology.

  1. Hyaluronic acid-modified manganese-chelated dendrimer-entrapped gold nanoparticles for the targeted CT/MR dual-mode imaging of hepatocellular carcinoma

    PubMed Central

    Wang, Ruizhi; Luo, Yu; Yang, Shuohui; Lin, Jiang; Gao, Dongmei; Zhao, Yan; Liu, Jinguo; Shi, Xiangyang; Wang, Xiaolin

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver. The early and effective diagnosis has always been desired. Herein, we present the preparation and characterization of hyaluronic acid (HA)-modified, multifunctional nanoparticles (NPs) targeting CD44 receptor-expressing cancer cells for computed tomography (CT)/magnetic resonance (MR) dual-mode imaging. We first modified amine-terminated generation 5 poly(amidoamine) dendrimers (G5.NH2) with an Mn chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), fluorescein isothiocyanate (FI), and HA. Then, gold nanoparticles (AuNPs) were entrapped within the above raw product, denoted as G5.NH2-FI-DOTA-HA. The designed multifunctional NPs were formed after further Mn chelation and purification and were denoted as {(Au0)100G5.NH2-FI-DOTA(Mn)-HA}. These NPs were characterized via several different techniques. We found that the {(Au0)100G5.NH2-FI-DOTA(Mn)-HA} NPs exhibited good water dispersibility, stability under different conditions, and cytocompatibility within a given concentration range. Because both AuNPs and Mn were present in the product, {(Au0)100G5.NH2-FI-DOTA(Mn)-HA} displayed a high X-ray attenuation intensity and favorable r1 relaxivity, which are advantageous properties for targeted CT/MR dual-mode imaging. This approach was used to image HCC cells in vitro and orthotopically transplanted HCC tumors in a unique in vivo model through the CD44 receptor-mediated endocytosis pathway. This work introduces a novel strategy for preparing multifunctional NPs via dendrimer nanotechnology. PMID:27653258

  2. Effective performance for undoped and boron-doped double-layered nanoparticles-copper telluride and manganese telluride on tungsten oxide photoelectrodes for solar cell devices.

    PubMed

    Srathongluan, Pornpimol; Vailikhit, Veeramol; Teesetsopon, Pichanan; Choopun, Supab; Tubtimtae, Auttasit

    2016-11-01

    This work demonstrates the synthesis of a novel double-layered Cu2-xTe/MnTe structure on a WO3 photoelectrode as a solar absorber for photovoltaic devices. Each material absorber is synthesized using a successive ionic layer adsorption and reaction (SILAR) method. The synthesized individual particle sizes are Cu2-xTe(17) ∼5-10nm and MnTe(3) ∼2nm, whereas, the aggregated particle sizes of undoped and boron-doped Cu2-xTe(17)/MnTe(11) are ∼50 and 150nm, respectively. The larger size after doping is due to the interconnecting of nanoparticles as a network-like structure. A new alignment of the energy band is constructed after boron/MnTe(11) is coated on boron/Cu2-xTe nanoparticles (NPs), leading to a narrower Eg equal to 0.58eV. Then, the valence band maximum (VBM) and conduction band minimum (CBM) with a trap state are also up-shifted to near the CBM of WO3, leading to the shift of a Fermi level for ease of electron injection. The best efficiency of 1.41% was yielded for the WO3/boron-doped [Cu2-xTe(17)/MnTe(11)] structure with a photocurrent density (Jsc)=16.43mA/cm(2), an open-circuit voltage (Voc)=0.305V and a fill factor (FF)=28.1%. This work demonstrates the feasibility of this double-layered structure with doping material as a solar absorber material. PMID:27451035

  3. [Function and disease in manganese].

    PubMed

    Kimura, Mieko

    2016-07-01

    Manganese is a metal that has been known named a Greek word "Magnesia" meaning magnesia nigra from Roman Empire. Manganese provide the wide range of metablic function and the multiple abnomalities from its deficiency or toxicity. In 1931, the essentiality of manganese was demonstrated with the authoritative poor growth and declined reproduction in its deficiency. Manganese deficiency has been recognized in a number of species and its signs are impaired growth, impaired reproduction, ataxia, skeletal abnormalities and disorders in lipid and carbohydrate metabolism. Manganese toxicity is also acknowledged as health hazard for animals and humans. Here manganese nutrition, metabolism and metabolic function are summarized. PMID:27455810

  4. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2015-03-01

    The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on the surface of Mn-Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz-1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite.

  5. Ferrous sulfate based low temperature synthesis and magnetic properties of nickel ferrite nanostructures

    SciTech Connect

    Tejabhiram, Y.; Pradeep, R.; Helen, A.T.; Gopalakrishnan, C.; Ramasamy, C.

    2014-12-15

    Highlights: • Novel low temperature synthesis of nickel ferrite nanoparticles. • Comparison with two conventional synthesis techniques including hydrothermal method. • XRD results confirm the formation of crystalline nickel ferrites at 110 °C. • Superparamagnetic particles with applications in drug delivery and hyperthermia. • Magnetic properties superior to conventional methods found in new process. - Abstract: We report a simple, low temperature and surfactant free co-precipitation method for the preparation of nickel ferrite nanostructures using ferrous sulfate as the iron precursor. The products obtained from this method were compared for their physical properties with nickel ferrites produced through conventional co-precipitation and hydrothermal methods which used ferric nitrate as the iron precursor. X-ray diffraction analysis confirmed the synthesis of single phase inverse spinel nanocrystalline nickel ferrites at temperature as low as 110 °C in the low temperature method. Electron microscopy analysis on the samples revealed the formation of nearly spherical nanostructures in the size range of 20–30 nm which are comparable to other conventional methods. Vibrating sample magnetometer measurements showed the formation of superparamagnetic particles with high magnetic saturation 41.3 emu/g which corresponds well with conventional synthesis methods. The spontaneous synthesis of the nickel ferrite nanoparticles by the low temperature synthesis method was attributed to the presence of 0.808 kJ mol{sup −1} of excess Gibbs free energy due to ferrous sulfate precursor.

  6. Occupational exposure to manganese.

    PubMed

    Sarić, M; Markićević, A; Hrustić, O

    1977-05-01

    The relationship between the degree of exposure and biological effects of manganese was studied in a group of 369 workers employed in the production of ferroalloys. Two other groups of workers, from an electrode plant and from an aluminium rolling mill, served as controls. Mean manganese concentrations at work places where ferroalloys were produced varied from 0-301 to 20-442 mg/m3. The exposure level of the two control groups was from 2 to 30 microgram/m3 and from 0-05 to 0-07 microgram/m3, in the electrode plant and rolling mill respectively. Sixty-two (16-8%) manganese alloy workers showed some signs of neurological impairment. These signs were noticeably less in the two control groups (5-8% and 0%) than in the occupationally exposed group. Subjective symptoms, which are nonspecific but may be symptoms of subclinical manganism, were not markedly different in the three groups. However, in the manganese alloy workers some of the subjective symptoms occurred more frequently in heavier smokers than in light smokers or nonsmokers. Heavier smokers engaged in manganese alloy production showed some of the subjective symptoms more often than heavier smokers from the control groups.

  7. Manganese As a Metal Accumulator

    EPA Science Inventory

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  8. Manganese in silicon carbide

    NASA Astrophysics Data System (ADS)

    Linnarsson, M. K.; Hallén, A.

    2012-02-01

    Structural disorder and relocation of implanted Mn in semi-insulating 4H-SiC has been studied. Subsequent heat treatment of Mn implanted samples has been performed in the temperature range 1400-2000 °C. The depth distribution of manganese is recorded by secondary ion mass spectrometry. Rutherford backscattering spectrometry has been employed for characterization of crystal disorder. Ocular inspection of color changes of heat-treated samples indicates that a large portion of the damage has been annealed. However, Rutherford backscattering shows that after heat treatment, most disorder from the implantation remains. Less disorder is observed in the [0 0 0 1] channel direction compared to [ 1 1 2¯ 3] channel direction. A substantial rearrangement of manganese is observed in the implanted region. No pronounced manganese diffusion deeper into the sample is recorded.

  9. Magnetic and magnetostrictive properties of Cu substituted Co-ferrites

    NASA Astrophysics Data System (ADS)

    Chandra Sekhar, B.; Rao, G. S. N.; Caltun, O. F.; Dhana Lakshmi, B.; Parvatheeswara Rao, B.; Subba Rao, P. S. V.

    2016-01-01

    Copper substituted cobalt ferrite, Co1-xCuxFe2O4 (x=0.00-0.25), nanoparticles were synthesized by sol-gel autocombustion method. X-ray diffraction analysis on the samples was done to confirm the cubic spinel structures and Scherrer equation was used to estimate the mean crystallite size as 40 nm. Using the obtained nanoparticles, fabrication of the sintered pellets was done by standard ceramic technique. Magnetic and magnetostrictive measurements on the samples were made by strain gauge and vibrating sample magnetometer techniques, respectively. Maximum magnetostriction and strain derivative values were deduced from the field dependent magnetostriction curves while the magnetic parameters such as saturation magnetization (51.7-61.9 emu/g) and coercivity (1045-1629 Oe) on the samples were estimated from the obtained magnetic hysteresis loops. Curie temperature values (457-315 °C) were measured by a built in laboratory set-up. Copper substituted cobalt ferrites have shown improved strain derivative values as compared to the pure cobalt ferrite and thus making them suitable for stress sensing applications. The results have been explained on the basis of cationic distributions, strength of exchange interactions and net decreased anisotropic contributions due to the increased presence of Co2+ ions in B-sites as a result of Cu substitutions.

  10. nanoparticles

    NASA Astrophysics Data System (ADS)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  11. Facile synthesis of cobalt ferrite nanotubes using bacterial nanocellulose as template.

    PubMed

    Menchaca-Nal, S; Londoño-Calderón, C L; Cerrutti, P; Foresti, M L; Pampillo, L; Bilovol, V; Candal, R; Martínez-García, R

    2016-02-10

    A facile method for the preparation of cobalt ferrite nanotubes by use of bacterial cellulose nanoribbons as a template is described. The proposed method relays on a simple coprecipitation operation, which is a technique extensively used for the synthesis of nanoparticles (either isolated or as aggregates) but not for the synthesis of nanotubes. The precursors employed in the synthesis are chlorides, and the procedure is carried out at low temperature (90 °C). By the method proposed a homogeneous distribution of cobalt ferrite nanotubes with an average diameter of 217 nm in the bacterial nanocellulose (BC) aerogel (3%) was obtained. The obtained nanotubes are formed by 26-102 nm cobalt ferrite clusters of cobalt ferrite nanoparticles with diameters in the 9-13 nm interval. The nanoparticles that form the nanotubes showed to have a certain crystalline disorder, which could be attributed in a greater extent to the small crystallite size, and, in a lesser extent, to microstrains existing in the crystalline lattice. The BC-templated-CoFe2O4 nanotubes exhibited magnetic behavior at room temperature. The magnetic properties showed to be influenced by a fraction of nanoparticles in superparamagnetic state.

  12. Facile synthesis of cobalt ferrite nanotubes using bacterial nanocellulose as template.

    PubMed

    Menchaca-Nal, S; Londoño-Calderón, C L; Cerrutti, P; Foresti, M L; Pampillo, L; Bilovol, V; Candal, R; Martínez-García, R

    2016-02-10

    A facile method for the preparation of cobalt ferrite nanotubes by use of bacterial cellulose nanoribbons as a template is described. The proposed method relays on a simple coprecipitation operation, which is a technique extensively used for the synthesis of nanoparticles (either isolated or as aggregates) but not for the synthesis of nanotubes. The precursors employed in the synthesis are chlorides, and the procedure is carried out at low temperature (90 °C). By the method proposed a homogeneous distribution of cobalt ferrite nanotubes with an average diameter of 217 nm in the bacterial nanocellulose (BC) aerogel (3%) was obtained. The obtained nanotubes are formed by 26-102 nm cobalt ferrite clusters of cobalt ferrite nanoparticles with diameters in the 9-13 nm interval. The nanoparticles that form the nanotubes showed to have a certain crystalline disorder, which could be attributed in a greater extent to the small crystallite size, and, in a lesser extent, to microstrains existing in the crystalline lattice. The BC-templated-CoFe2O4 nanotubes exhibited magnetic behavior at room temperature. The magnetic properties showed to be influenced by a fraction of nanoparticles in superparamagnetic state. PMID:26686185

  13. Synthesis, magnetic and optical properties of core/shell Co1-xZnxFe2O4/SiO2 nanoparticles

    PubMed Central

    2011-01-01

    The optical properties of multi-functionalized cobalt ferrite (CoFe2O4), cobalt zinc ferrite (Co0.5Zn0.5Fe2O4), and zinc ferrite (ZnFe2O4) nanoparticles have been enhanced by coating them with silica shell using a modified Stöber method. The ferrites nanoparticles were prepared by a modified citrate gel technique. These core/shell ferrites nanoparticles have been fired at temperatures: 400°C, 600°C and 800°C, respectively, for 2 h. The composition, phase, and morphology of the prepared core/shell ferrites nanoparticles were determined by X-ray diffraction and transmission electron microscopy, respectively. The diffuse reflectance and magnetic properties of the core/shell ferrites nanoparticles at room temperature were investigated using UV/VIS double-beam spectrophotometer and vibrating sample magnetometer, respectively. It was found that, by increasing the firing temperature from 400°C to 800°C, the average crystallite size of the core/shell ferrites nanoparticles increases. The cobalt ferrite nanoparticles fired at temperature 800°C; show the highest saturation magnetization while the zinc ferrite nanoparticles coated with silica shell shows the highest diffuse reflectance. On the other hand, core/shell zinc ferrite/silica nanoparticles fired at 400°C show a ferromagnetic behavior and high diffuse reflectance when compared with all the uncoated or coated ferrites nanoparticles. These characteristics of core/shell zinc ferrite/silica nanostructures make them promising candidates for magneto-optical nanodevice applications. PMID:21774807

  14. Manganese, Metallogenium, and Martian Microfossils

    NASA Technical Reports Server (NTRS)

    Stein, L. Y.; Nealson, K. H.

    1999-01-01

    Manganese could easily be considered an abundant element in the Martian regolith, assuming that the composition of martian meteorites reflects the composition of the planet. Mineralogical analyses of 5 SNC meteorites have revealed an average manganese oxide concentration of 0.48%, relative to the 0.1% concentration of manganese found in the Earth's crust. On the Earth, the accumulation of manganese oxides in oceans, soils, rocks, sedimentary ores, fresh water systems, and hydrothermal vents can be largely attributed to microbial activity. Manganese is also a required trace nutrient for most life forms and participates in many critical enzymatic reactions such as photosynthesis. The wide-spread process of bacterial manganese cycling on Earth suggests that manganese is an important element to both geology and biology. Furthermore, there is evidence that bacteria can be fossilized within manganese ores, implying that manganese beds may be good repositories for preserved biomarkers. A particular genus of bacteria, known historically as Metallogenium, can form star-shaped manganese oxide minerals (called metallogenium) through the action of manganese oxide precipitation along its surface. Fossilized structures that resemble metallogenium have been found in Precambrian sedimentary formations and in Cretaceous-Paleogene cherts. The Cretaceous-Paleogene formations are highly enriched in manganese and have concentrations of trace elements (Fe, Zn, Cu, and Co) similar to modern-day manganese oxide deposits in marine environments. The appearance of metallogenium-like fossils associated with manganese deposits suggests that bacteria may be preserved within the minerals that they form. Additional information is contained in the original extended abstract.

  15. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Hepworth, M.T.; Ben-Slimane, R.

    1995-11-01

    The primary major deposit of manganese in the US which can be readily mined by an in situ process is located in the Emily district of Minnesota. The US Bureau of Mines Research Centers at both the Twin Cities and Salt Lake City have developed a process for extracting and refining manganese in the form of a high-purity carbonate product. This product has been formulated into pellets by a multi-step process of drying, calcination, and induration to produce relatively high-strength formulations which are capable of being used for hot fuel gas desulfurization. These pellets, which have been developed at the University of Minnesota under joint sponsorship of the US Department of Energy and the US Bureau of Mines, appear superior to other, more expensive, formulations of zinc titanate and zinc ferrite which have previously been studied for multi-cycle loading (desulfurization) and regeneration (evolution of high-strength SO{sub 2} and restoration of pellet reactivity). Although these other formulations have been under development for the past twelve years, their prices still exceed $7 per pound. If manganese pellets perform as predicted in fixed bed testing, and if a significant number of utilities which burn high-sulfur coals incorporate combined-cycle gasification with hot coal gas desulfurization as a viable means of increasing conversion efficiencies, then the potential market for manganese pellets may be as high as 200,000 tons per year at a price not less than $3 per pound. This paper discusses the role of manganese pellets in the desulfurization process with respect to the integrated gasification combined-cycle (IGCC) for power generation.

  16. Processing and application of nanosized ferrite powders

    SciTech Connect

    Drofenik, M.; Rozman, M.

    1995-09-01

    Crystalline MnZn ferrite of nanosize was prepared by the hydrothermal synthesis. The pH value of the starting suspension was found to influence substantially the ferrite composition. The nanosized ferrite powder is very sensitive to oxidation and sinters to nearly theoretical density in nitrogen. The correlation between the eddy-current loss and microstructure is given.

  17. 21 CFR 184.1449 - Manganese citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Manganese citrate. 184.1449 Section 184.1449 Food... Specific Substances Affirmed as GRAS § 184.1449 Manganese citrate. (a) Manganese citrate (Mn3(C6H5O7)2, CAS... manganese carbonate from manganese sulfate and sodium carbonate solutions. The filtered and...

  18. 21 CFR 184.1449 - Manganese citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Manganese citrate. 184.1449 Section 184.1449 Food... Specific Substances Affirmed as GRAS § 184.1449 Manganese citrate. (a) Manganese citrate (Mn3(C6H5O7)2, CAS... manganese carbonate from manganese sulfate and sodium carbonate solutions. The filtered and...

  19. 21 CFR 184.1449 - Manganese citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Manganese citrate. 184.1449 Section 184.1449 Food... Specific Substances Affirmed as GRAS § 184.1449 Manganese citrate. (a) Manganese citrate (Mn3(C6H5O7)2, CAS... manganese carbonate from manganese sulfate and sodium carbonate solutions. The filtered and...

  20. High power ferrite microwave switch

    NASA Technical Reports Server (NTRS)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  1. Articles comprising ferritic stainless steels

    DOEpatents

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  2. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation.

    PubMed

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra

    2013-05-28

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.

  3. Reducing the inversion degree of MnFe2O4 nanoparticles through synthesis to enhance magnetization: evaluation of their (1)H NMR relaxation and heating efficiency.

    PubMed

    Vamvakidis, K; Katsikini, M; Sakellari, D; Paloura, E C; Kalogirou, O; Dendrinou-Samara, C

    2014-09-01

    Manganese ferrite (MnFe2O4) nanoparticles of identical size (9 nm) and with different inversion degrees were synthesized under solvothermal conditions as a candidate theranostic system. In this facile approach, a long-chain amine, oleylamine, was utilized as a reducing and surface-functionalizing agent. The synthesized nanoparticles were shown to have a cubic-spinel structure as characterized by TEM and XRD patterns. Control over their inversion degree was achieved by a simple change of manganese precursor from Mn(acac)2 to Mn(acac)3. The variation in the inversion degree is ascribed to the partial oxidation of Mn(2+) to Mn(3+), as was evidenced by X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy at both the Fe and Mn K-edges. The reduction of the inversion degree from 0.42 to 0.22 is close to the corresponding bulk value of 0.20 and led to elevated magnetization (65.7 emu g(-1)), in contrast to the Néel temperature, which was decreased owing to the weaker superexchange interactions between the tetrahedral and octahedral sites within the spinel structure. In order to evaluate the performance of these nanoprobes as a possible bifunctional targeting system, the (1)H NMR relaxation of the samples was tested together with their specific loss power under an alternating magnetic field as a function of concentration. The hydrophobic as prepared MnFe2O4 nanoparticles converted to hydrophilic nanoparticles with cetyltrimethylammonium bromide (CTAB). The MnFe2O4 nanoparticles, well-dispersed in aqueous media, were shown to have r2 relaxivity of up to 345.5 mM(-1) s(-1) and heat release of up to 286 W g(-1), demonstrating their potential use for bioapplications. PMID:25014470

  4. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    SciTech Connect

    Jha, M.C.; Blandon, A.E.; Hepworth, M.T.

    1988-03-22

    A durable, pelletized and indurated sorbent for removing hydrogen sulfide from hot coal gas is described which consists essentially of zinc ferrite, has a surface area of about 0.5 to about 5 m./sup 2/gram, and is prepared by mixing fine iron oxide and fine zinc oxide, each having a particle size of less than about 1 micron in substantially equi-molar amounts with an inorganic binder in an amount greater than zero and up to about 15%, by weight, and an organic binder in an amount greater than zero and up to about 5%, by weight, up to about 5%, by weight, of manganese oxide, up to about 0.2%, by weight, of an alkali metal carbonate and up to about 0.2%, by weight, of molybdenite. The inorganic binder is capable of a strong bridging action between zinc ferrite particles during induration and the organic binder is capable of burning away during induration to form a porous structure, pelletizing the resulting mixture with water, drying the resulting pellets and indurating the dried pellets and a temperature of about 1600/sup 0/F to about 2000/sup 0/F to form strong, porous sorbent pellets having a crush strength of about 5 to about 20 lbs. Dead Weight Load.

  5. Size dependence of magnetorheological properties of cobalt ferrite ferrofluid

    NASA Astrophysics Data System (ADS)

    Radhika, B.; Sahoo, Rasmita; Srinath, S.

    2015-06-01

    Cobalt Ferrite nanoparticles were synthesized using co-precipitation method at reaction temperatures of 40°C and 80°C. X-Ray diffraction studies confirm cubic phase formation. The average crystallite sizes were found to be ˜30nm and ˜48nm for 40°C sample and 80°C sample respectively. Magnetic properties measured using vibrating sample magnetometer show higher coercivety and magnetization for sample prepared at 80°C. Magnetorheological properties of CoFe2O4 ferrofluids were measured and studied.

  6. Size dependence of magnetorheological properties of cobalt ferrite ferrofluid

    SciTech Connect

    Radhika, B.; Sahoo, Rasmita; Srinath, S.

    2015-06-24

    Cobalt Ferrite nanoparticles were synthesized using co-precipitation method at reaction temperatures of 40°C and 80°C. X-Ray diffraction studies confirm cubic phase formation. The average crystallite sizes were found to be ∼30nm and ∼48nm for 40°C sample and 80°C sample respectively. Magnetic properties measured using vibrating sample magnetometer show higher coercivety and magnetization for sample prepared at 80°C. Magnetorheological properties of CoFe2O4 ferrofluids were measured and studied.

  7. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2, CAS Reg. No. 7773-01-5) is a pink... manganous oxide, pyrolusite ore (MnO2), or reduced manganese ore in hydrochloric acid. The...

  8. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Specific Substances Affirmed as GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2, CAS Reg.... It is prepared by dissolving manganous oxide, pyrolusite ore (MnO2), or reduced manganese ore...

  9. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Specific Substances Affirmed as GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2, CAS Reg.... It is prepared by dissolving manganous oxide, pyrolusite ore (MnO2), or reduced manganese ore...

  10. RF cavities with transversely biased ferrite tuning

    SciTech Connect

    Smythe, W.R.; Brophy, T.G.; Carlini, R.D.; Friedrichs, C.C.; Grisham, D.L.; Spalek, G.; Wilkerson, L.C.

    1985-10-01

    Earley et al. suggested that ferrite tuned rf cavities have lower ferrite power dissipation if the ferrite bias field is perpendicular rather than parallel to the rf magnetic field. A 50-84 MHz cavity has been constructed in which ferrite can be biased either way. Low power measurements of six microwave ferrites show that the magnetic Q's of these ferrites under perpendicular bias are much higher than under parallel bias, and that the high Q region extends over a much wider range of rf permeability. TDK Y-5 ferrite was found to have a magnetic Q of 10,800, 4,800, 1,200 and 129 at rf permeabilities of 1.2, 2.4, 3.7 and 4.5, respectively. Measurements of perpendicularly biased ferrite at various power levels were made in a coaxial line cavity. The Q of Y-5 ferrite was found to decrease by less than a factor of 2 as the power density in the ferrite was increased to 1.3 W/cmT. A cavity design for a 6 GeV, high current, rapid cycling synchrotron using transversely biased ferrite tuning is described.

  11. Effect of austempering time on mechanical properties of a low manganese austempered ductile iron

    SciTech Connect

    Putatunda, S.K.; Gadicherla, P.K.

    2000-04-01

    An investigation was carried out to examine the influence of austempering time on the resultant microstructure and the room-temperature mechanical properties of an unalloyed and low manganese ductile cast iron with initially ferritic as-cast structure. The effect of austempering time on the plane strain fracture toughness of this material was also studied. Compact tension and round cylindrical tensile specimens were prepared from unalloyed ductile cast iron with low manganese content and with a ferritic as-cast (solidified) structure. These specimens were then austempered in the upper (371 C) and lower (260 C) bainitic temperature ranges for different time periods, ranging from 30 min. to 3 h. Microstructural features such as type of bainite and the volume fraction of ferrite and austenite and its carbon content were evaluated by X-ray diffraction to examine the influence of microstructure on the mechanical properties and fracture toughness of this material. The results of the present investigation indicate that for this low manganese austempered ductile iron (ADI), upper ausferritic microstructures exhibit higher fracture toughness than lower ausferritic microstructures. Yield and tensile strength of the material was found to increase with an increase in austempering time in a lower bainitic temperature range, whereas in the upper bainitic temperature range, time has no significant effect on the mechanical properties. A retained austenite content between 30 to 35% was found to provide optimum fracture toughness. Fracture toughness was found to increase with the parameter (X{gamma}C{gamma}/d){sup 1/2}, where X{gamma} is the volume fraction of austenite, C{gamma} is the carbon content of the austenite, and d is the mean free path of dislocation motion in ferrite.

  12. Effect of austempering time on mechanical properties of a low manganese austempered ductile iron

    NASA Astrophysics Data System (ADS)

    Putatunda, Susil K.; Gadicherla, Pavan K.

    2000-04-01

    An investigation was carried out to examine the influence of austempering time on the resultant microstructure and the room-temperature mechanical properties of an unalloyed and low manganese ductile cast iron with initially ferritic as-cast structure. The effect of austempering time on the plane strain fracture toughness of this material was also studied. Compact tension and round cylindrical tensile specimens were prepared from unalloyed ductile cast iron with low manganese content and with a ferritic as-cast (solidified) structure. These specimens were then austempered in the upper (371 °C) and lower (260 °C) bainitic temperature ranges for different time periods, ranging from 30 min. to 4 h. Microstructural features such as type of bainite and the volume fraction of ferrite and austenite and its carbon content were evaluated by X-ray diffraction to examine the influence of microstructure on the mechanical properties and fracture toughness of this material. The results of the present investigation indicate that for this low manganese austempered ductile iron (ADI), upper ausferritic microstructures exhibit higher fracture toughness than lower ausferritic microstructures. Yield and tensile strength of the material was found to increase with an increase in austempering time in a lower bainitic temperature range, whereas in the upper bainitic temperature range, time has no significant effect on the mechanical properties. A retained austenite content between 30 to 35% was found to provide optimum fracture toughness. Fracture toughness was found to increase with the parameter ( XγCγ/d)1/2, where Xγ is the volume fraction of austenite, Cγ is the carbon content of the austenite, and d is the mean free path of dislocation motion in ferrite.

  13. Controlling of optical energy gap of Co-ferrite quantum dots in poly (methyl methacrylate) matrix

    NASA Astrophysics Data System (ADS)

    El-Sayed, H. M.; Agami, W. R.

    2015-07-01

    Different crystallite sizes of Co-ferrite nanoparticles were prepared and dispersed in the matrix of poly (methyl methacrylate) (PMMA) polymer. The effect of crystallite size on the structure and optical energy gap of Co-nanoferrite/PMMA composite has been studied. The optical energy gap of Co-ferrite was greatly affected by the crystallite size. This result was discussed in terms of the formation of electron-hole exciton using particle in a box model. The effective mass and the Bohr radius of the formed exciton have been calculated from the spectroscopic measurements.

  14. Method for dehydrating manganese dioxide

    SciTech Connect

    Marincic, N.; Fuksa, R.

    1987-05-05

    A method is described for preparing a water-free lithium-manganese dioxide battery comprising: assembling the battery comprising lithium anode, a cathode comprising carbon and manganese dioxide, and a cell container; adding to the cell container a fluid containing a dehydrating agent which reacts with water bound to the manganese dioxide to form a reaction product that is extractable from the manganese dioxide; removing the fluid from the cell container; hermetically sealing and connecting the container to a vacuum source; establishing a vacuum within the compartment to pull off any remaining amount of the fluid and any volatile reaction product from the manganese dioxide; releasing the vacuum; and adding anhydrous electrolyte and hermetically sealing the cell.

  15. Influence of V 2O 5 addition on the grain growth and magnetic properties of Mn-Zn high permeability ferrites

    NASA Astrophysics Data System (ADS)

    Janghorban, K.; Shokrollahi, H.

    2007-01-01

    Effects of V 2O 5 addition on the grain growth and magnetic properties of a high permeability manganese-zinc (Mn-Zn) ferrite were studied. The results showed that small additions of V 2O 5 of <0.03 wt% increased the permeability of Mn-Zn ferrites while higher amounts decreased it. The permeability of these samples showed pronounced secondary maxima in permeability versus V 2O 5 content. V 2O 5 up to a certain percentage increased Curie temperature, saturation magnetic flux density and then decreased it, and also decreased specimen shrinkage noticeably.

  16. Development of a monolithic ferrite memory array

    NASA Technical Reports Server (NTRS)

    Heckler, C. H., Jr.; Bhiwandker, N. C.

    1972-01-01

    The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.

  17. High-Q ferrite-tuned cavity

    SciTech Connect

    Earley, L.M.; Thiessen, H.A.; Carlini, R.D.; Potter, J.M.

    1983-08-01

    Rapid-cycling proton synchrotrons, such as the proposed LAMPF II accelerator, require approximately 10 MV per turn rf with 17% tuning range near 50 MHz. The traditional approach to ferrite-tuned cavities uses a ferrite which is longitudinally biased (rf magnetic field parallel to bias field). This method leads to unacceptably high losses in the ferrite. At Los Alamos, we are developing a cavity with transverse bias (rf magnetic field perpendicular to the bias field) that makes use of the tensor permeability of the ferrite. Initial tests of a small (10-cm-diam) quarter-wave singly re-entrant cavity tuned by several different ferrites indicate that the losses in the ferrite can be made negligible compared with the losses due to the surface resistivity of the copper cavity.

  18. Electrical and optical properties of nickel ferrite/polyaniline nanocomposite

    PubMed Central

    Khairy, M.; Gouda, M.E.

    2014-01-01

    Polyaniline–NiFe2O4 nanocomposites (PANI–NiFe2O4) with different contents of NiFe2O4 (2.5, 5 and 50 wt%) were prepared via in situ chemical oxidation polymerization, while the nanoparticles nickel ferrite were synthesized by sol–gel method. The prepared samples were characterized using some techniques such as Fourier transforms infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Moreover, the electrical conductivity and optical properties of the nanocomposites were investigated. Pure (PANI) and the composites containing 2.5 and 5 wt% NiFe2O4 showed amorphous structures, while the one with 50 wt% NiFe2O4 showed a spinel crystalline structure. The SEM images of the composites showed different aggregations for the different nickel ferrite contents. FTIR spectra revealed to the formation of some interactions between the PANI macromolecule and the NiFe2O4 nanoparticles, while the thermal analyses indicated an increase in the composites stability for samples with higher NiFe2O4 nanoparticles contents. The electrical conductivity of PANI–NiFe2O4 nanocomposite was found to increase with the rise in NiFe2O4 nanoparticle content, probably due to the polaron/bipolaron formation. The optical absorption experiments illustrate direct transition with an energy band gap of Eg = 1.0 for PANI–NiFe2O4 nanocomposite. PMID:26199745

  19. 21 CFR 184.1452 - Manganese gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Manganese gluconate. 184.1452 Section 184.1452... Listing of Specific Substances Affirmed as GRAS § 184.1452 Manganese gluconate. (a) Manganese gluconate... manganese carbonate with gluconic acid in aqueous medium and then crystallizing the product. (b)...

  20. 21 CFR 184.1452 - Manganese gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Manganese gluconate. 184.1452 Section 184.1452... Listing of Specific Substances Affirmed as GRAS § 184.1452 Manganese gluconate. (a) Manganese gluconate... manganese carbonate with gluconic acid in aqueous medium and then crystallizing the product. (b)...

  1. 21 CFR 184.1452 - Manganese gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese gluconate. 184.1452 Section 184.1452 Food... Specific Substances Affirmed as GRAS § 184.1452 Manganese gluconate. (a) Manganese gluconate (C12H22MnO14... manganese carbonate with gluconic acid in aqueous medium and then crystallizing the product. (b)...

  2. 21 CFR 184.1452 - Manganese gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Manganese gluconate. 184.1452 Section 184.1452... Listing of Specific Substances Affirmed as GRAS § 184.1452 Manganese gluconate. (a) Manganese gluconate... manganese carbonate with gluconic acid in aqueous medium and then crystallizing the product. (b)...

  3. Irradiation effects in ferritic steels

    NASA Astrophysics Data System (ADS)

    Lechtenberg, Thomas

    1985-08-01

    Since 1979 the Alloy Development for Irradiation Performance (ADIP) task funded by the US Department of Energy has been studying the 2-12Cr class of ferritic steels to establish the feasibility of using them in fusion reactor first wall/breeding blanket (FW/B) applications. The advantages of ferritic steels include superior swelling resistance, low thermal stresses compared to austenitic stainless steels, attractive mechanical properties up to 600°C. and service histories exceeding 100 000 h. These steels are commonly used in a range of microstructural conditions which include ferritic, martensitic. tempered martensitic, bainitic etc. Throughout this paper where the term "ferritic" is used it should be taken to mean any of these microstructures. The ADIP task is studying several candidate alloy systems including 12Cr-1MoWV (HT-9), modified 9Cr-1MoVNb, and dual-phased steels such as EM-12 and 2 {1}/{4}Cr-Mo. These materials are ferromagnetic (FM), body centered cubic (bcc), and contain chromium additions between 2 and 12 wt% and molybdenum additions usually below 2%. The perceived issues associated with the application of this class of steel to fusion reactors are the increase in the ductile-brittle transition temperature (DBTT) with neutron damage, the compatibility of these steels with liquid metals and solid breeding materials, and their weldability. The ferromagnetic character of these steels can also be important in reactor design. It is the purpose of this paper to review the current understanding of these bcc steels and the effects of irradiation. The major points of discussion will be irradiation-induced or -enhanced dimensional changes such as swelling and creep, mechanical properties such as tensile strength and various measurements of toughness, and activation by neutron interactions with structural materials.

  4. Multifunctionality of nanocrystalline lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.

  5. Rapidly reversible redox transformation in nanophase manganese oxides at room temperature triggered by changes in hydration

    PubMed Central

    Birkner, Nancy; Navrotsky, Alexandra

    2014-01-01

    Chemisorption of water onto anhydrous nanophase manganese oxide surfaces promotes rapidly reversible redox phase changes as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Surface reduction of bixbyite (Mn2O3) to hausmannite (Mn3O4) occurs in nanoparticles under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Additionally, transformation does not occur on nanosurfaces passivated by at least 2% coverage of what is likely an amorphous manganese oxide layer. The transformation is due to thermodynamic control arising from differences in surface energies of the two phases (Mn2O3 and Mn3O4) under wet and dry conditions. Such reversible and rapid transformation near room temperature may affect the behavior of manganese oxides in technological applications and in geologic and environmental settings. PMID:24733903

  6. Rapidly reversible redox transformation in nanophase manganese oxides at room temperature triggered by changes in hydration.

    PubMed

    Birkner, Nancy; Navrotsky, Alexandra

    2014-04-29

    Chemisorption of water onto anhydrous nanophase manganese oxide surfaces promotes rapidly reversible redox phase changes as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Surface reduction of bixbyite (Mn2O3) to hausmannite (Mn3O4) occurs in nanoparticles under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Additionally, transformation does not occur on nanosurfaces passivated by at least 2% coverage of what is likely an amorphous manganese oxide layer. The transformation is due to thermodynamic control arising from differences in surface energies of the two phases (Mn2O3 and Mn3O4) under wet and dry conditions. Such reversible and rapid transformation near room temperature may affect the behavior of manganese oxides in technological applications and in geologic and environmental settings.

  7. Manganese status, gut endogenous losses of manganese, and antioxidant enzyme activity in rats fed varying levels of manganese and fat.

    PubMed

    Malecki, E A; Huttner, D L; Greger, J L

    1994-07-01

    We hypothesized that manganese deficient animals fed high vs moderate levels of polyunsaturated fat would either manifest evidence of increased oxidative stress or would experience compensatory changes in antioxidant enzymes and/or shifts in manganese utilization that result in decreased endogenous gut manganese losses. Rats (females in Study 1, males in Study 2, n = 8/treatment) were fed diets that contained 5 or 20% corn oil by weight and either 0.01 or 1.5 mumol manganese/g diet. In study 2, 54Mn complexed to albumin was injected into the portal vein to assess gut endogenous losses of manganese. The manganese deficient rats: 1. Had 30-50% lower liver, tibia, kidney, spleen, and pancreas manganese concentrations than manganese adequate rats; 2. Conserved manganese through approximately 70-fold reductions in endogenous fecal losses of manganese; 3. Had lower heart manganese superoxide dismutase (MnSOD) activity; and 4. Experienced only two minor compensatory changes in the activity of copper-zinc superoxide dismutase (CuZnSOD) and catalase. Gut endogenous losses of manganese tended to account for a smaller proportion of absorbed manganese in rats fed high-fat diets; otherwise fat intake had few effects on tissue manganese concentrations. PMID:7986658

  8. Manganese oxidation model for rivers

    USGS Publications Warehouse

    Hess, Glen W.; Kim, Byung R.; Roberts, Philip J.W.

    1989-01-01

    The presence of manganese in natural waters (>0.05 mg/L) degrades water-supply quality. A model was devised to predict the variation of manganese concentrations in river water released from an impoundment with the distance downstream. The model is one-dimensional and was calibrated using dissolved oxygen, biochemical oxygen demand, pH, manganese, and hydraulic data collected in the Duck River, Tennessee. The results indicated that the model can predict manganese levels under various conditions. The model was then applied to the Chattahoochee River, Georgia. Discrepancies between observed and predicted may be due to inadequate pH data, precipitation of sediment particles, unsteady flow conditions in the Chattahoochee River, inaccurate rate expressions for the low pH conditions, or their combinations.

  9. Beam induced heating of ferrite magnets

    SciTech Connect

    van Asselt, W.K.; Lee, Y.Y.

    1991-01-01

    Alerted by impedance measurements of ferrite kicker magnets and by apparent beam induced pressure increase in the neighborhood of window frame kicker magnets, bench measurements of magnet heating have been done. They confirmed the necessity of interrupting the ferrite yoke. Another method, which can be applied for existing magnets, will be described. 1 ref., 4 figs.

  10. Exchange coupled ferrite nanocomposites through chemical synthesis.

    PubMed

    Dai, Qilin; Patel, Ketan; Ren, Shenqiang

    2016-08-16

    Exchange coupling between magnetically hard and soft phases has the potential to yield a large gain in the energy product. In this work, we present a scalable chemical synthetic route to produce magnetic iron oxide based nanocomposites, consisting of cobalt ferrite (CoFe2O4) and strontium ferrite (SrFe12O19) components. PMID:27476744

  11. Application of copper nanoparticles as additions to a grinding fluid to increase the quality of grinding of magnetic ceramic materials

    NASA Astrophysics Data System (ADS)

    Krevchik, V. D.; Skryabin, V. A.; Sokolov, A. V.; Men'shova, S. B.; Artemov, I. I.; Prokof'ev, M. V.; Karasev, N. Ya.

    2015-12-01

    The influence of copper nanoparticles in a grinding fluid (GF) used for grinding on the characteristics of the surface layer of ferrite parts and their service properties is studied. Profilograms of the ground surfaces and their roughness are measured. The electromagnetic losses of 10000NN ferrite parts ground in an GF medium with copper nanoparticles are estimated. The use of metal nanoparticles as additions to a grinding fluid is shown to be useful for processing of brittle nonmetallic materials.

  12. Probing the Chemical Stability of Mixed Ferrites: Implications for Magnetic Resonance Contrast Agent Design

    SciTech Connect

    Schultz-Sikma, Elise A.; Joshi, Hrushikesh M.; Ma, Qing; MacRenaris, Keith W.; Eckermann, Amanda L.; Dravid, Vinayak P.; Meade, Thomas J.

    2011-09-16

    Nanomaterials with mixed composition, in particular magnetic spinel ferrites, are emerging as efficient contrast agents for magnetic resonance imaging. Many factors, including size, composition, atomic structure, and surface properties, are crucial in the design of such nanoparticle-based probes because of their influence on the magnetic properties. Silica-coated iron oxide (IO-SiO{sub 2}) and cobalt ferrite (CoIO-SiO{sub 2}) nanoparticles were synthesized using standard high-temperature thermal decomposition and base-catalyzed water-in-oil microemulsion techniques. Under neutral aqueous conditions, it was found that 50-75% of the cobalt content in the CoIO-SiO{sub 2} nanoparticles leached out of the core structure. Leaching caused a 7.2-fold increase in the longitudinal relaxivity and an increase in the saturation magnetization from {approx}48 to {approx}65 emu/g of the core. X-ray absorption fine structure studies confirmed that the atomic structure of the ferrite core was altered following leaching, while transmission electron microscopy and dynamic light scattering confirmed that the morphology and size of the nanoparticle remained unchanged. The CoIO-SiO{sub 2} nanoparticles converted from a partially inverted spinel cation arrangement (unleached state) to an inverse spinel arrangement (leached state). The control IO-SiO{sub 2} nanoparticles remained stable with no change in the structure and negligible changes in the magnetic behavior. This detailed analysis highlights how important understanding the properties of nanomaterials is in the development of reliable agents for diagnostic and therapeutic applications.

  13. Exsolution of Fe and SrO Nanorods and Nanoparticles from Lanthanum Strontium Ferrite La0.6Sr0.4FeO3−δ Materials by Hydrogen Reduction

    PubMed Central

    2015-01-01

    Formation of uniform Fe and SrO rods as well as nanoparticles following controlled reduction of La0.6Sr0.4FeO3−δ (LSF) and Ni-LSF samples in dry and moist hydrogen is studied by aberration-corrected electron microscopy. Metallic Fe and SrO precipitate from the perovskite lattice as rods of several tenths of nm and thicknesses up to 20 nm. Based on a model of Fe whisker growth following reduction of pure iron oxides, Fe rod exsolution from LSF proceeds via rate-limiting lattice oxygen removal. This favors the formation of single iron metal nuclei at the perovskite surface, subsequently growing as isolated rods. The latter is only possible upon efficient removal of reduction-induced water and, subsequently, reduction of Fe +III/+IV to Fe(0). If water remains in the system, no reduction or rod formation occurs. In contrast, formation of SrO rods following reduction in dry hydrogen is a catalytic process aided by Ni particles. It bears significant resemblance to surface diffusion-controlled carbon whisker growth on Ni, leading to similar extrusion rods and filaments. In addition to SrO rod growth, the exsolution of Fe nanoparticles and, subsequently, Ni–Fe alloy particles is observed. The latter have also been observed under static hydrogen reduction. Under strict control of the experimental parameters, the presented data therefore open an attractive chemically driven pathway to metal nanoarchitectures beyond the formation of “simple” nanoparticles. PMID:26435764

  14. Manganese exposure, essentiality & toxicity.

    PubMed

    Santamaria, A B

    2008-10-01

    Manganese (Mn) is an essential element present in all living organisms and is naturally present in rocks, soil, water, and food. Exposure to high oral, parenteral, or ambient air concentrations of Mn can result in elevations in Mn tissue levels and neurological effects. However, current understanding of the impact of Mn exposure on the nervous system leads to the hypothesis that there should be no adverse effects at low exposures, because Mn is an essential element; therefore, there should be some threshold for exposure above which adverse effects may occur and adverse effects may increase in frequency with higher exposures beyond that threshold. Data gaps regarding Mn neurotoxicity include what the clinical significance is of the neurobehavioural, neuropsychological, or neurological endpoints measured in many of the occupational studies that have evaluated cohorts exposed to relatively low levels of Mn. Specific early biomarkers of effect, such as subclinical neurobehavioural or neurological changes or magnetic resonance imaging (MRI) changes have not been established or validated for Mn, although some studies have attempted to correlate biomarkers with neurological effects. Experimental studies with rodents and monkeys provide valuable information about the absorption, bioavailability, and tissue distribution of various Mn compounds with different solubilities and oxidation states in different age groups. Studies have shown that rodents and primates maintain stable tissue manganese levels as a result of homeostatic mechanisms that tightly regulate absorption and excretion. In addition, physiologically based pharmacokinetic (PBPK) models are being developed to provide for the ability to conduct route-to-route extrapolations, evaluate nasal uptake to the CNS, and evaluate lifestage differences in Mn pharmacokinetics. Such models will facilitate more rigorous quantitative analysis of the available pharmacokinetic data for Mn and will be used to identify situations

  15. Magnetic and Mössbauer studies of Ti 4+-substituted soft Mn-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Neamtu, Jenica; Spinu, Viorica; Filoti, George

    1994-05-01

    The present work reports the magnetic properties and Mössbauer spectra of soft ferrites Mn aZn bFe 2+1- a- bFe 3+2O 4 with Ti 4+ substitutions. The addition of Ti 4+ to manganese-zinc ferrites induces considerable improvements of properties such as the linear dependence of permeability versus temperature, and small disaccommodation of the permeability. Samples with Mn 0.57Zn 0.34Fe 2+0.09+ xTi xFe 3+2-2 xO 4 composition (where x = 0.00, 0.02, 0.04, 0.06, 0.08, 1.00) were prepared by the usual ceramic technology. The presence of Ti ions strongly influences the magnetic anisotropy, as evidenced by the temperature dependence of the permeability. A sublattice assigned to Ti 4+Fe 2+ pairs appeared in the Mössbauer spectra, which also gave information on the local surroundings of iron ions. The appearance of a secondary maximum of permeability (SMP) at negative temperatures or a constant slope over a wide temperature range is typical for μ i( t) curves. Increasing Ti 4+ contents shift the SMP to higher temperatures because of a positive contribution to K1 of the Ti 4+Fe 2+ pairs at octahedral sites, in agreement with the hyperfine magnetic fields observed for ferrites with large titanium substitutions.

  16. Observation of dimension dependent magnetic ordering in bismuth ferrite particulate and fiber nanostructures

    SciTech Connect

    Sakar, M.; Bharathkumar, S.; Balakumar, S.; Saravanan, P.

    2015-06-24

    Nanoparticles and nanofibers of bismuth ferrite were fabricated by sol-gel and electrospinning methods respectively. The structural and morphological analysis was carried out by XRD and FESEM techniques respectively. The magnetic measurements were carried out by SQUID magnetometer. The BFO nanofibers showed an enhanced magnetic property compared to nanoparticles. The observed magnetic properties were found to be associated with their magnetic ordering in the system where the antiferromagnetic/ferromagnetic core/shell like nature and ‘canted’ spin structure ordering was found to be the magnetic origin in the particulate and fiber nanostructures respectively.

  17. Bog Manganese Ore: A Resource for High Manganese Steel Making

    NASA Astrophysics Data System (ADS)

    Pani, Swatirupa; Singh, Saroj K.; Mohapatra, Birendra K.

    2016-06-01

    Bog manganese ore, associated with the banded iron formation of the Iron Ore Group (IOG), occurs in large volume in northern Odisha, India. The ore is powdery, fine-grained and soft in nature with varying specific gravity (2.8-3.9 g/cm3) and high thermo-gravimetric loss, It consists of manganese (δ-MnO2, manganite, cryptomelane/romanechite with minor pyrolusite) and iron (goethite/limonite and hematite) minerals with sub-ordinate kaolinite and quartz. It shows oolitic/pisolitic to globular morphology nucleating small detritus of quartz, pyrolusite/romanechite and hematite. The ore contains around 23% Mn and 28% Fe with around 7% of combined alumina and silica. Such Mn ore has not found any use because of its sub-grade nature and high iron content, and is hence considered as waste. The ore does not respond to any physical beneficiation techniques because of the combined state of the manganese and iron phases. Attempts have been made to recover manganese and iron value from such ore through smelting. A sample along with an appropriate charge mix when processed through a plasma reactor, produced high-manganese steel alloy having 25% Mn within a very short time (<10 min). Minor Mn content from the slag was recovered through acid leaching. The aim of this study has been to recover a value-added product from the waste.

  18. Hot coal gas desulfurization with manganese-based sorbents. Quarterly report, January--March 1994

    SciTech Connect

    Hepworth, M.T.; Slimane, R.B.

    1994-04-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2},O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc; hence, it is not as likely to undergo zinc-depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron; hence, the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Sixth Report documents progress in pellet testing two leading formulations; namely FORM 4-A and FORM 1-A via thermogravimetric analysis (TGA). The former is a high-purity carbonate-based material, and the latter is ore-based. Also fixed bed testing of formulation FORM 1-A is described. Included with this report is an Appendix which describes the formulations and the loading tests as performed via TGA. A 2-inch fixed-bed reactor is being utilized to subject a bed of FORM 4-A pellets to cyclic loading and regeneration. Preliminary results indicate that FORM 1-A can be loaded to approximately 12 per cent of its weight in sulfur prior to breakthrough up through sixteen cycles of loading and regeneration. The sulfur loading level drops from 18.2% for fresh pellets to 11.8% after the sixteenth cycle; however, there is no significant decrease in pellet sulfur-capacity after the ninth cycle. The kinetics during the loading and regeneration cycles are rapid.

  19. Water-Soluble Spinel Ferrites by a Modified Polyol Process as Contrast Agents in MRI

    SciTech Connect

    Basina, Georgia; Tzitzios, Vasilis; Niarchos, Dimitris; Li Wanfeng; Khurshid, Hafsa; Hadjipanayis, George; Mao Hui; Hadjipanayis, Costas

    2010-12-02

    Magnetic nanoparticles have recently been very attractive for biomedical applications. In this study, we have synthesized ferrite nanoparticles for application as contrast agents in MRI experiments. Fe{sub 3}O{sub 4} and MnFe{sub 2}O{sub 4} spinel ferrites with a mean size of 11-12 nm, were prepared by a modified polyol route in commercially available polyethylene glycol with molecular weight 600 (PEG-600). The reaction takes place in the presence of water soluble and non-toxic tri-block copolymer known as Pluronic registered F-127 (PEO{sub 100}-PPO{sub 65}-PEO{sub 100}). The nanoparticles have saturation magnetization values of 52 and 68 emu/g for MnFe{sub 2}O{sub 4} and Fe{sub 3}O{sub 4}, respectively. Both the Fe{sub 3}O{sub 4}, and MnFe{sub 2}O{sub 4} nanoparticles make stable solutions in water known as ferrofluids. Preliminary data demonstrated the capability of these nanoparticles to induce imaging contrast in T{sub 2} weighted MRI experiments, making these materials suitable for biomedical applications such as medical MRI.

  20. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders.

    PubMed

    Rus, S F; Vlazan, P; Herklotz, A

    2016-01-01

    Nanocrystalline ferrites; CoFe₂O₄ (CFO) and CoFe₁.₉Zr₀.₁O₄ (CFZO) have been synthesized through chemical coprecipitation method. The role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. The increase in the saturation magnetization with the substitution of Zr suggests the preferential occupation of Zr⁴⁺ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. In the present study the investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials. PMID:27398535

  1. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders

    SciTech Connect

    Rus, S. F.; Vlazan, P.; Herklotz, A.

    2016-01-01

    Nanocrystalline ferrites; CoFe2O4 (CFO) and CoFe1.9Zr0.1O4 (CFZO) have been synthesized through chemical coprecipitation method. Moreover, the role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. An increase in the saturation magnetization with the substitution of Zr suggests the preferential occupation of Zr4+ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. We investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials.

  2. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders

    DOE PAGESBeta

    Rus, S. F.; Vlazan, P.; Herklotz, A.

    2016-01-01

    Nanocrystalline ferrites; CoFe2O4 (CFO) and CoFe1.9Zr0.1O4 (CFZO) have been synthesized through chemical coprecipitation method. Moreover, the role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. An increase in the saturation magnetization with the substitution of Zr suggests themore » preferential occupation of Zr4+ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. We investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials.« less

  3. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders.

    PubMed

    Rus, S F; Vlazan, P; Herklotz, A

    2016-01-01

    Nanocrystalline ferrites; CoFe₂O₄ (CFO) and CoFe₁.₉Zr₀.₁O₄ (CFZO) have been synthesized through chemical coprecipitation method. The role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. The increase in the saturation magnetization with the substitution of Zr suggests the preferential occupation of Zr⁴⁺ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. In the present study the investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials.

  4. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use....

  5. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use....

  6. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of...

  7. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use....

  8. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use....

  9. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use....

  10. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use....

  11. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of...

  12. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use....

  13. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use....

  14. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use....

  15. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use....

  16. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use....

  17. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use....

  18. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use....

  19. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use....

  20. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of...

  1. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of...

  2. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use....

  3. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use....

  4. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use....

  5. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use....

  6. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use....

  7. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use....

  8. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of...

  9. Effect of the Preparation Method on the Oxidation-Reduction Mechanism and the Cation Distribution of Mn-Zn Ferrites

    NASA Astrophysics Data System (ADS)

    Gillot, B.; El Guendouzi, M.

    1993-10-01

    The cation distribution of manganese-zinc ferrite Mn 0.50Zn 0.15Fe 2.05O 4 prepared by a ceramic route and wet method was investigated by derivative thermogravimetry (DTG) and X-ray diffraction analyses. Below about 500°C, these ferrites which are oxidized in cation deficient spinels show an incomplete oxidation of tetrahedral Mn 2+ ions leading to a cation distribution (Zn 2+0.43 Mn 2+0.15Fe 3+0.42) A (Fe 3+1.54Mn 3+0.32 □ 0.14) BO 2-4. With increasing temperature further oxidation of Mn 2+ ions results in the appearance of a rhombohedral phase α-(Fe 2- zMn z)O 3 rich in iron accompanied by a spinel phase containing the totality of zinc.

  10. Biomarkers of manganese intoxication.

    PubMed

    Zheng, Wei; Fu, Sherleen X; Dydak, Ulrike; Cowan, Dallas M

    2011-01-01

    Manganese (Mn), upon absorption, is primarily sequestered in tissue and intracellular compartments. For this reason, blood Mn concentration does not always accurately reflect Mn concentration in the targeted tissue, particularly in the brain. The discrepancy between Mn concentrations in tissue or intracellular components means that blood Mn is a poor biomarker of Mn exposure or toxicity under many conditions and that other biomarkers must be established. For group comparisons of active workers, blood Mn has some utility for distinguishing exposed from unexposed subjects, although the large variability in mean values renders it insensitive for discriminating one individual from the rest of the study population. Mn exposure is known to alter iron (Fe) homeostasis. The Mn/Fe ratio (MIR) in plasma or erythrocytes reflects not only steady-state concentrations of Mn or Fe in tested individuals, but also a biological response (altered Fe homeostasis) to Mn exposure. Recent human studies support the potential value for using MIR to distinguish individuals with Mn exposure. Additionally, magnetic resonance imaging (MRI), in combination with noninvasive assessment of γ-aminobutyric acid (GABA) by magnetic resonance spectroscopy (MRS), provides convincing evidence of Mn exposure, even without clinical symptoms of Mn intoxication. For subjects with long-term, low-dose Mn exposure or for those exposed in the past but not the present, neither blood Mn nor MRI provides a confident distinction for Mn exposure or intoxication. While plasma or erythrocyte MIR is more likely a sensitive measure, the cut-off values for MIR among the general population need to be further tested and established. Considering the large accumulation of Mn in bone, developing an X-ray fluorescence spectroscopy or neutron-based spectroscopy method may create yet another novel non-invasive tool for assessing Mn exposure and toxicity. PMID:20946915

  11. 21 CFR 184.1449 - Manganese citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Manganese citrate. 184.1449 Section 184.1449 Food... GRAS § 184.1449 Manganese citrate. (a) Manganese citrate (Mn3(C6H5O7)2, CAS Reg. No. 10024-66-5) is a pale orange or pinkish white powder. It is obtained by precipitating manganese carbonate from...

  12. 21 CFR 184.1452 - Manganese gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Manganese gluconate. 184.1452 Section 184.1452... GRAS § 184.1452 Manganese gluconate. (a) Manganese gluconate (C12H22MnO14·2H2O, CAS Reg. No. 648-0953-0998) is a slightly pink colored powder. It is obtained by reacting manganese carbonate with...

  13. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS Reg. No. 7785-0987-097) is a pale pink, granular, odorless powder. It is obtained by reacting manganese compounds with sulfuric...

  14. Synthesis and characterization of Fe0.6Zn0.4Fe2O4 ferrite magnetic nanoclusters using simple thermal decomposition method

    NASA Astrophysics Data System (ADS)

    Sharifi, Ibrahim; Zamanian, Ali; Behnamghader, Aliasghar

    2016-08-01

    This paper presents experimental results regarding the effect of the quantity of solvent on formation of the Fe-Zn ferrite nanoparticles during thermal decomposition. A ternary system of Fe0.6Zn0.4Fe2O4 has been synthesized by a thermal decomposition method using metal acetylacetonate in high temperature boiling point solvent and oleic acid. The X-ray diffraction study was used to determine phase purity, crystal structure, and average crystallite size of iron-zinc ferrite nanoparticles. The average crystallite size of nanoparticles was increased from 13 nm to 37 nm as a result of reducing the solvent from 30 ml to 10 ml in a synthesis batch. The diameter of particles and morphology of the particles were determined by transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM). Mid and far Fourier transform infrared (FT-IR) measurement confirmed monophasic spinel structure of ferrite. Furthermore, the DC magnetic properties of the samples were studied using the vibrating sample magnetometer (VSM). The largest Fe-Zn ferrite nanoparticles exhibited a relatively high saturation magnetization of 96 emu/g. Moreover, Low-field AC susceptibility measurement indicated blocking temperature of nanoparticles around 170-200 K.

  15. Lanthana-bearing nanostructured ferritic steels via spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Pasebani, Somayeh; Charit, Indrajit; Wu, Yaqiao; Burns, Jatuporn; Allahar, Kerry N.; Butt, Darryl P.; Cole, James I.; Alsagabi, Sultan F.

    2016-03-01

    A lanthana-containing nanostructured ferritic steel (NFS) was processed via mechanical alloying (MA) of Fe-14Cr-1Ti-0.3Mo-0.5La2O3 (wt.%) and consolidated via spark plasma sintering (SPS). In order to study the consolidation behavior via SPS, sintering temperature and dwell time were correlated with microstructure, density, microhardness and shear yield strength of the sintered specimens. A bimodal grain size distribution including both micron-sized and nano-sized grains was observed in the microstructure of specimens sintered at 850, 950 and1050 °C for 45 min. Significant densification occurred at temperatures greater than 950 °C with a relative density higher than 98%. A variety of nanoparticles, some enriched in Fe and Cr oxides and copious nanoparticles smaller than 10 nm with faceted morphology and enriched in La and Ti oxides were observed. After SPS at 950 °C, the number density of Cr-Ti-La-O-enriched nanoclusters with an average radius of 1.5 nm was estimated to be 1.2 × 1024 m-3. The La + Ti:O ratio was close to 1 after SPS at 950 and 1050 °C; however, the number density of nanoclusters decreased at 1050 °C. With SPS above 950 °C, the density improved but the microhardness and shear yield strength decreased due to partial coarsening of the grains and nanoparticles.

  16. Magnetic and ultrasonic studies on stable cobalt ferrite magnetic nanofluid.

    PubMed

    Nabeel Rashin, M; Hemalatha, J

    2014-03-01

    Stable cobalt ferrite nanofluids of various concentrations have been prepared through co-precipitation method. Structural and morphological studies of nanoparticles are made with the help of X-ray diffraction technique and Transmission Electron Microscope respectively and it is found that the particles exhibit face centered cubic structure with an average size of 14 nm. The magnetic properties of the nanofluids have been analyzed at room temperature which revealed ferromagnetic behavior and also the very low value of coupling constant which ensures the negligible interparticle interaction in the absence of magnetic field. Ultrasonic investigations have been made for the nanofluids at different temperatures and magnetic fields. The temperature effects are explained with the help of open and close-packed water structure. The inter particle interactions of surface modified CoFe2O4 particles and the cluster formation at higher concentrations are realized through the variations in ultrasonic parameters. PMID:24188514

  17. Unveiling the Origin of Work Hardening Behavior in an Ultrafine-Grained Manganese Transformation-Induced Plasticity Steel by Hydrogen Investigation

    NASA Astrophysics Data System (ADS)

    Zhu, Xu; Li, Wei; Zhao, Hongshan; Han, Qihang; Wang, Li; Jiao, Huisheng; Jin, Xuejun

    2016-09-01

    To reveal the origin of work hardening behavior in an ultrafine-grained manganese transformation-induced plasticity (TRIP) steel, specific experiments were designed with the assistance of hydrogen. Although the effect of hydrogen on the austenite transformation was negligible, the work hardening rate ( Θ) was apparently reduced for hydrogenated samples, indicating that TRIP effect cannot account for the high Θ alone. The collaborative effect of dislocation accumulation in ferrite and austenite transformation is proposed to explain the responsible mechanism.

  18. Manganese depresses rat heart muscle respiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has previously been reported that moderately high dietary manganese (Mn) in combination with marginal magnesium (Mg) resulted in ultrastructural damage to heart mitochondria. Manganese may replace Mg in biological functions, including the role of enzyme cofactor. Manganese may accumulate and subs...

  19. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5455 Manganese glycerophosphate. (a) Product. Manganese glycerophosphate....

  20. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5455 Manganese glycerophosphate. (a) Product. Manganese glycerophosphate....