Science.gov

Sample records for manganese iron copper

  1. Interactions of manganese, iron, and copper in healthy human subjects

    SciTech Connect

    Lin, Paohwa.

    1989-01-01

    In study I, plasma levels of manganese and iron were measured after an oral load was ingested. Four hourly samples of plasma were collected postdose. The ingestion of a dose of 40 mg Mn alone produced a typical response in plasma manganese, which peaked at either the first or second hour postdose. When a combined dose of 40 mg inorganic Fe plus 40 mg Mn was given, the plasma uptake of manganese was substantially inhibited when compared to a dose of 40 mg Mn alone. When the same quantity of heme Fe was substituted for the inorganic Fe in the load of inorganic Fe plus Mn, no depression in plasma manganese was observed. In study II, eight healthy female subjects were fed a baseline Mn-adequate diet of conventional foods for 18 days, followed by a Mn-deficient semi-purified diet for 41 days. Dietary levels of iron and copper averaged 17.7 mg and 4.3 mg/day, respectively, for both diets. Mean iron balance increased significantly from initial levels of 2.20 {plus minus} 1.07 mg/d to 5.02 {plus minus} 1.14 mg/d at the end of the Mn-deficient period. Parameters of iron status were not influenced by the variations of dietary manganese. In contrast, mean copper balance decreased from 2.61 {plus minus} 0.1 mg/d to 0.91 {plus minus} 0.4 mg/d at the end of the Mn-deficient period. Correspondingly, plasma copper and serum ceruloplasmin decreased from 18.57 {plus minus} 1.1 {mu}mol/L to 15.27 {plus minus} 0.94 {mu}mol/L and 269.1 {plus minus} 14.6 mg/L to 205.6 {plus minus} 17.8 mg/L., respectively.

  2. Evolution of Microstructures During Austempering of Ductile Irons Alloyed with Manganese and Copper

    NASA Astrophysics Data System (ADS)

    Dasgupta, Ranjan Kumar; Mondal, Dipak Kumar; Chakrabarti, Ajit Kumar

    2013-03-01

    The influences of relatively high manganese (0.45 through 1.0 wt pct) and copper (0.56 through 1.13 wt pct) contents on microstructure development and phase transformation in three austempered ductile irons have been studied. The experimental ductile irons alloyed with copper and manganese are found to be practically free from intercellular manganese segregation. This suggests that the positive segregation of manganese is largely neutralized by the negative segregation of copper when these alloying elements are added in appropriate proportions. The drop in unreacted austenite volume (UAV) with increasing austempering temperature and time is quite significant in irons alloyed with copper and manganese. The ausferrite morphology also undergoes a transition from lenticular to feathery appearance of increasing coarseness with the increasing austempering temperature and time. SEM micrographs of the austempered samples from the base alloy containing manganese only, as well as copper plus manganese-alloyed irons, clearly reveal the presence of some martensite along with retained austenite and ferrite. X-ray diffraction analysis also confirms the presence of these phases. SEM examination further reveals the presence of twinned martensite in the copper plus manganese-alloyed samples. The possibility of strain-induced transformation of austenite to martensite during austempering heat treatment is suggested.

  3. Iron, Manganese and Copper Release from Synthetic Hydroxyapatite

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Hossner, L. R.; Ming, Douglas W.

    1999-01-01

    Kinetic stir-flow dissolution experiments were performed on iron- (Fe-SHA), manganese- (Mn-SHA), and copper- (Cu-SHA) containing synthetic hydroxyapatites. Solution treatments consisted of de-ionized water, citric acid and DTPA. Initially, Mn concentrations were higher than Cu concentrations and Fe concentrations were the lowest in all treatments. At later times Mn and Cu concentrations dropped in the DTPA treatment while Fe rose to the concentration similar to Mn and Cu. At all times, metal release concentrations in the water and citric acid treatments followed the trend of Mn>Cu>Fe. Rietveld analysis of x-ray diffraction data and ^31P NMR indicated that the metals substituted for Ca in the SHA structure. However, EPR data suggested that a metal (hydr)oxide phase existed either on the SHA surface or between the SHA crystallites. The metal concentration trend of Mn>Cu>Fe suggested that the initial solution metal concentrations are dependent on the dissolution of (hydr)oxides from SHA surfaces or between SHA crystallites. Similar metal concentrations at later times in the DTPA experiments suggests that metal concentrations were controlled by the release of Mn, Cu, or Fe from the SHA structure.

  4. The effect of high dose oral manganese exposure on copper, iron and zinc levels in rats.

    PubMed

    Mercadante, Courtney J; Herrera, Carolina; Pettiglio, Michael A; Foster, Melanie L; Johnson, Laura C; Dorman, David C; Bartnikas, Thomas B

    2016-06-01

    Manganese is an essential dietary nutrient and trace element with important roles in mammalian development, metabolism, and antioxidant defense. In healthy individuals, gastrointestinal absorption and hepatobiliary excretion are tightly regulated to maintain systemic manganese concentrations at physiologic levels. Interactions of manganese with other essential metals following high dose ingestion are incompletely understood. We previously reported that gavage manganese exposure in rats resulted in higher tissue manganese concentrations when compared with equivalent dietary or drinking water manganese exposures. In this study, we performed follow-up evaluations to determine whether oral manganese exposure perturbs iron, copper, or zinc tissue concentrations. Rats were exposed to a control diet with 10 ppm manganese or dietary, drinking water, or gavage exposure to approximately 11.1 mg manganese/kg body weight/day for 7 or 61 exposure days. While manganese exposure affected levels of all metals, particularly in the frontal cortex and liver, copper levels were most prominently affected. This result suggests an under-appreciated effect of manganese exposure on copper homeostasis which may contribute to our understanding of the pathophysiology of manganese toxicity. PMID:26988220

  5. Content of total iron, copper and manganese in liver of animals during hypokinesia, muscle activity and process of recovery

    NASA Technical Reports Server (NTRS)

    Potapovich, G. M.; Taneyeva, G. V.; Uteshev, A. B.

    1980-01-01

    It is shown that the content of total iron, copper and manganese in the liver of animals is altered depending on the intensity and duration of their swimming. Hypodynamia for 7 days does not alter the concentration of iron, but sufficiently increases the content of copper and manganese. The barometric factor effectively influences the maintenance of constancy in the content of microelements accumulated in the liver after intensive muscle activity.

  6. Recovering iron, manganese, copper, cobalt, and high-purity nickel from sea nodules

    NASA Astrophysics Data System (ADS)

    Kohga, Tetsuyoshi; Imamura, Masaki; Takahashi, Junichi; Tanaka, Nobuhiro; Nishizawa, Tokuo

    1995-12-01

    Many studies have investigated methods of recovering valuable metals from sea nodules. Recently, a research group in Japan developed a smelting and chlorine process after investigating a variety of existing processes and comparing their respective efficiencies with the same nodules. The best results were obtained by combining pyrometallurgical and hydrometallurgical treatments, which enabled the efficient recovery of manganese, nickel, copper, and cobalt. High-purity nickel can be also produced through further solvent extraction.

  7. Zinc, iron, manganese, and magnesium accumulation in crayfish populations near copper-nickel smelters at Sudbury, Ontario, Canada

    SciTech Connect

    Bagatto, G.; Alikhan, M.A.

    1987-06-01

    The Sudbury basin has been subjected to extreme ecological disturbances from logging, mining and smelting activities. Elevated concentrations of copper, cadmium, and nickel have been reported in crayfish populations close to the Sudbury smelting works. The present study compares concentrations of zinc (Zn), iron (Fe), manganese (Mn) and magnesium (Mg) in freshwater crayfish at selected distances of the habitat from the emission source. These metals were selected since they are known to be emitted in moderately high quantities into the Sudbury environment as byproduct of the smelting process. Various tissue concentrations in crayfish were also examined to determined specific tissue sites for these accumulations.

  8. Effects of sulfur, zinc, iron, copper, manganese, and boron applications on sunflower yield and plant nutrient concentration

    SciTech Connect

    Hilton, B.R.; Zubriski, J.C.

    1985-01-01

    Sulfur, zinc, iron, copper, manganese, and boron application did not affect the seed yield or oil percentage of sunflower (Helianthus annuus L.) on both dryland and irrigated soils in North Dakota in 1981. Field averages indicated significant Zn, Mn, and B uptake by sunflower at the 12-leaf stage as a result of fertilization with these elements. Increased Zn uptake was also observed in the uppermost mature leaf at anthesis from zinc fertilization. Although sunflower yield from boron fertilization was not significantly different from the check, a trend was observed in which boron fertilization seemed to decrease sunflower yield. Sunflower yields from the boron treatment were the lowest out of seven treatments in three out of four fields. Also, sunflower yield from the boron treatment was significantly lower than both iron and sulfur treatments when all fields were combined.

  9. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.

    PubMed

    Ribeiro, Thales P; Fernandes, Christiane; Melo, Karen V; Ferreira, Sarah S; Lessa, Josane A; Franco, Roberto W A; Schenk, Gerhard; Pereira, Marcos D; Horn, Adolfo

    2015-03-01

    Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities. PMID:25511255

  10. Effect of chronic cadmium administration on liver and kidney concentrations of zinc, copper, iron, manganese, and chromium

    SciTech Connect

    Friel, J.K.; Borgman, R.F.; Chandra, R.K.

    1987-04-01

    Chronic Cd exposure in animals brings about significant morphological and functional changes in both liver and kidney. Most studies of cadmium effects on essential metal tissue distribution involve large concentrations of either Cd or essential metals added to the diet. The effect of Cd ingestion on trace metal metabolism of animals consuming usual diets may be marked, as elements whose physical and chemical properties are enough alike...will act antagonistically to each other biologically. Therefore, the purpose of the present study was to observe the effects of a chronic low dose of Cd added to an otherwise normal diet on the liver and kidney accumulation of zinc, copper, iron, manganese and chromium in the mouse at different times after the cessation of cadmium ingestion.

  11. Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese.

    PubMed

    Shawki, Ali; Anthony, Sarah R; Nose, Yasuhiro; Engevik, Melinda A; Niespodzany, Eric J; Barrientos, Tomasa; Öhrvik, Helena; Worrell, Roger T; Thiele, Dennis J; Mackenzie, Bryan

    2015-10-15

    Divalent metal-ion transporter-1 (DMT1) is a widely expressed iron-preferring membrane-transport protein that serves a critical role in erythroid iron utilization. We have investigated its role in intestinal metal absorption by studying a mouse model lacking intestinal DMT1 (i.e., DMT1(int/int)). DMT1(int/int) mice exhibited a profound hypochromic-microcytic anemia, splenomegaly, and cardiomegaly. That the anemia was due to iron deficiency was demonstrated by the following observations in DMT1(int/int) mice: 1) blood iron and tissue nonheme-iron stores were depleted; 2) mRNA expression of liver hepcidin (Hamp1) was depressed; and 3) intraperitoneal iron injection corrected the anemia, and reversed the changes in blood iron, nonheme-iron stores, and hepcidin expression levels. We observed decreased total iron content in multiple tissues from DMT1(int/int) mice compared with DMT1(+/+) mice but no meaningful change in copper, manganese, or zinc. DMT1(int/int) mice absorbed (64)Cu and (54)Mn from an intragastric dose to the same extent as did DMT1(+/+) mice but the absorption of (59)Fe was virtually abolished in DMT1(int/int) mice. This study reveals a critical function for DMT1 in intestinal nonheme-iron absorption for normal growth and development. Further, this work demonstrates that intestinal DMT1 is not required for the intestinal transport of copper, manganese, or zinc.

  12. Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese

    PubMed Central

    Shawki, Ali; Anthony, Sarah R.; Nose, Yasuhiro; Engevik, Melinda A.; Niespodzany, Eric J.; Barrientos, Tomasa; Öhrvik, Helena; Worrell, Roger T.; Thiele, Dennis J.

    2015-01-01

    Divalent metal-ion transporter-1 (DMT1) is a widely expressed iron-preferring membrane-transport protein that serves a critical role in erythroid iron utilization. We have investigated its role in intestinal metal absorption by studying a mouse model lacking intestinal DMT1 (i.e., DMT1int/int). DMT1int/int mice exhibited a profound hypochromic-microcytic anemia, splenomegaly, and cardiomegaly. That the anemia was due to iron deficiency was demonstrated by the following observations in DMT1int/int mice: 1) blood iron and tissue nonheme-iron stores were depleted; 2) mRNA expression of liver hepcidin (Hamp1) was depressed; and 3) intraperitoneal iron injection corrected the anemia, and reversed the changes in blood iron, nonheme-iron stores, and hepcidin expression levels. We observed decreased total iron content in multiple tissues from DMT1int/int mice compared with DMT1+/+ mice but no meaningful change in copper, manganese, or zinc. DMT1int/int mice absorbed 64Cu and 54Mn from an intragastric dose to the same extent as did DMT1+/+ mice but the absorption of 59Fe was virtually abolished in DMT1int/int mice. This study reveals a critical function for DMT1 in intestinal nonheme-iron absorption for normal growth and development. Further, this work demonstrates that intestinal DMT1 is not required for the intestinal transport of copper, manganese, or zinc. PMID:26294671

  13. Fast ultrasound-assisted extraction of copper, iron, manganese and zinc from human hair samples prior to flow injection flame atomic absorption spectrometric detection.

    PubMed

    Yebra-Biurrun, M C; Cespón-Romero, R M

    2007-06-01

    A dynamic ultrasound-assisted extraction procedure utilizing diluted nitric acid was developed for the determination of copper, iron, manganese and zinc in human hair taken from workers in permanent contact with a polluted environment. The extraction unit of the dynamic ultrasound-assisted extraction system contains a minicolumn into which a specified amount of hair (5-50 mg) is placed. Once inserted into the continuous manifold, trace metals were extracted at 3 mL min(-1) with 3 mol L(-1) nitric acid under the action of ultrasound for 2 min for zinc and 3 min for copper, iron and manganese determination, and using an ultrasonic water-bath temperature of 70 degrees C for zinc and 80 degrees C for copper, iron and manganese determination. The system permits the direct analysis of hair and yields concentrations with relative standard deviations of <3% (n = 11). The applicability of the procedure was verified by analysing human hair samples from workers exposed to welding fumes, and its accuracy was assessed through comparison with a conventional sample dissolution procedure and the use of a certified reference material (BCR 397, human hair).

  14. Effect of dietary phytic acid and cadmium on the availability of cadmium, zinc, copper, iron, and manganese to rats

    SciTech Connect

    Turecki, T.; Ewan, R.C.; Stahr, H.M.

    1995-05-01

    The main route of cadmium intake for general population, both human and animal, is via ingestion. The intestinal absorption of cadmium is relatively low, 6% of a single oral dose for humans and less than 2% for various animal species. However, due to poor excretion, accumulation of cadmium occurs, primarily in kidney. The chronic exposure even to low levels of dietary cadmium can lead to the development of renal disturbances. Fox (1988) suggests that phytic acid might be a dietary component capable to influence the intestinal absorption of cadmium. Phytic acid naturally occurs as the major phosphorus storage constituent of most cereals, legumes, and oilseeds. At physiological pH, phytic acid is ionized and has a strong affinity for divalent cations. The potential of phytic acid to decrease the availability of Zn has been for long time of concern for nutritionists. Phytic acid has also been reported to decrease the availability of other trace metals. For nonessential elements, reduced availability of lead has been observed. The experimental data concerning the effect of dietary phytic acid on the availability of dietary cadmium are limited to the work of Rose and Quarterman (1984). The objective of this experiment was to examine: (1) the effect of dietary phytic acid on the availability of cadmium under conditions of chronic dietary exposure of rats to cadmium, and (2) the effect of dietary phytic acid and of chronic dietary exposure to cadmium on the availability of zinc, copper, iron, and manganese to rats. 19 refs., 4 tabs.

  15. Inductively coupled plasma atomic fluorescence spectrometric determination of cadmium, copper, iron, lead, manganese and zinc

    USGS Publications Warehouse

    Sanzolone, R.F.

    1986-01-01

    An inductively coupled plasma atomic fluorescence spectrometric method is described for the determination of six elements in a variety of geological materials. Sixteen reference materials are analysed by this technique to demonstrate its use in geochemical exploration. Samples are decomposed with nitric, hydrofluoric and hydrochloric acids, and the residue dissolved in hydrochloric acid and diluted to volume. The elements are determined in two groups based on compatibility of instrument operating conditions and consideration of crustal abundance levels. Cadmium, Cu, Pb and Zn are determined as a group in the 50-ml sample solution under one set of instrument conditions with the use of scatter correction. Limitations of the scatter correction technique used with the fluorescence instrument are discussed. Iron and Mn are determined together using another set of instrumental conditions on a 1-50 dilution of the sample solution without the use of scatter correction. The ranges of concentration (??g g-1) of these elements in the sample that can be determined are: Cd, 0.3-500; Cu, 0.4-500; Fe, 85-250 000; Mn, 45-100 000; Pb, 5-10 000; and Zn, 0.4-300. The precision of the method is usually less than 5% relative standard deviation (RSD) over a wide concentration range and acceptable accuracy is shown by the agreement between values obtained and those recommended for the reference materials.

  16. Effect of chronic ethanol ingestion on the metabolism of copper, iron, manganese, selenium, and zinc in an animal model of alcoholic cardiomyopathy

    SciTech Connect

    Bogden, J.D.; Al-Rabiai, S.; Gilani, S.H.

    1984-01-01

    Alcoholic cardiomyopathy (AC) is one of the diseases caused by alcohol abuse, and there has been considerable debate about the possibility that nutritional factors may be important in the etiology of AC. In addition, there is evidence that ethanol may affect the metabolism of trace elements. The purpose of this investigation was to determine if chronic ethanol administration produces changes in the metabolism of the essential metals copper, iron, manganese, zinc, and selenium using an animal model of AC. Eighteen male Sprague-Dawley rats were divided into three groups; an ad libitum control group (AL), a pair-fed control group (PF), and an ethanol-dosed group (ETOH). The latter group received gradually increasing concentrations (5-25%) of ethanol in the drinking water for 15 wk. Food intake was monitored and urine and feces collected for a 4-d period during the study to determine ethanol effects on trace-element balance. Growth of both the PF and ETOH animals was inhibited. Ethanol produced substantial increases in liver manganese and decreases in liver copper and zinc. Metal concentrations in heart and concentrations in other tissues studied (spleen, testes, brain, bone, kidney, and muscle) did not differ significantly among the groups, except for testes selenium and kidney zinc. Reduced food intake and ethanol ingestion were associated with a reduced percentage of ingested selenium excreted in the urine. Deficiencies of copper, iron, manganese, selenium, and zinc in myocardial tissue are not likely to be involved in the pathogenesis of AC in the rat. 38 references, 1 figure, 4 tables.

  17. Solid state 31phosphorus nuclear magnetic resonance of iron-, manganese-, and copper-containing synthetic hydroxyapatites

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Taylor, R. E.; Hossner, L. R.; Ming, D. W.

    2002-01-01

    The incorporation of micronutrients into synthetic hydroxyapatite (SHA) is proposed for slow release of these nutrients to crops in the National Aeronautics and Space Administration's (NASA's) Advanced Life Support (ALS) program for Lunar or Martian outposts. Solid state 31P nuclear magnetic resonance (NMR) was utilized to examine the paramagnetic effects of Fe3+, Mn2+, and Cu2+ to determine if they were incorporated into the SHA structure. Separate Fe3+, Mn2+, and Cu2+ containing SHA materials along with a transition metal free SHA (pure-SHA) were synthesized using a precipitation method. The proximity (<1 nm) of the transition metals to the 31P nuclei of SHA were apparent when comparing the integrated 31P signal intensities of the pure-SHA (87 arbitrary units g-1) with the Fe-, Mn-, and Cu-SHA materials (37-71 arbitrary units g-1). The lower integrated 31P signal intensities of the Fe-, Mn-, and Cu-SHA materials relative to the pure-SHA suggested that Fe3+, Mn2+, and Cu2+ were incorporated in the SHA structure. Further support for Fe3+, Mn2+, and Cu2+ incorporation was demonstrated by the reduced spin-lattice relaxation constants of the Fe-, Mn-, and Cu-SHA materials (T'=0.075-0.434s) relative to pure-SHA (T1=58.4s). Inversion recovery spectra indicated that Fe3+, Mn2+, and Cu2+ were not homogeneously distributed about the 31P nuclei in the SHA structure. Extraction with diethylene-triamine-penta-acetic acid (DTPA) suggested that between 50 and 80% of the total starting metal concentrations were incorporated in the SHA structure. Iron-, Mn-, and Cu-containing SHA are potential slow release sources of Fe, Mn, and Cu in the ALS cropping system.

  18. KEY COMPARISON: Final report on key comparison CCQM-K42: Determination of chromium, copper, iron, manganese and zinc in aluminium alloy

    NASA Astrophysics Data System (ADS)

    Noack, Siegfried; Matschat, Ralf

    2008-01-01

    The CCQM key comparison K42 was organized by the inorganic analysis working group of CCQM to test the abilities of metrological institutes to measure the mass fractions of the components of an aluminium alloy. Chosen elements were chromium (Cr), copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn). The BAM Federal Institute for Materials Research and Testing (BAM Bundesanstalt für Materialforschung und -prüfung) in Berlin, Germany acted as the pilot laboratory. CCQM-K42 demonstrates the abilities of metrological institutes to measure the mass fractions of minor and trace components (mass content about 0.05% to 0.2%) of an aluminium alloy for chromium (Cr), copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn). The analytical methods used were neutron activation analysis (NAA), x-ray fluorescence spectrometry (XRF) using the reconstitution technique, ICP-OES and ICP-MS. The scope of the key comparison extends to non-ferrous alloys comprising the same or similar constituents when analysed using the technique(s) applied by a participant in obtaining the results submitted for CCQM-K42. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  19. Identical flow injection spectrophotometric manifold for determination of protein, phosphorus, calcium, chloride, copper, manganese, iron, and zinc in feeds or premixes.

    PubMed

    Liu, J F; Feng, Y D; Jiang, G B

    2001-01-01

    A simple procedure using an identical manifold was developed for determination of nitrogen (protein) phosphorus, calcium, chloride, copper, manganese, iron, and zinc in feeds and feedstuffs. By changing appropriate reagents and detection wavelength, these 8 elements were determined successively with a simple identical double-line flow injection (FI) manifold. Fl spectrophotometric determinations were made by the blue indophenol reaction for ammonium, the molybdenum blue method for phosphate, the cresolphthalein complexone procedure for calcium, and the mercuric thiocyanate procedure for chloride. The chromogenic reagents for copper, iron, manganese, and zinc determination were bis(cyclohexanone)oxalydihydrazone (Cuprizone), 1,10-phenanthroline, formaldoxime, and xylenol orange, respectively. Sample digestion catalyst, Fl manifold, and some chemical parameters were optimized. The proposed procedure had a sampling rate of 90/h for each analyte. The determination ranges (mg/L) were 10-60 for N, 1-15 for P and Ca, 540 for Cl, and 0.5-15 for Cu, Fe, Mn, and Zn, respectively. Results of the analyses of animal feed and feedstuff samples by this procedure did not differ significantly from those obtained by proven manual methods.

  20. Study on determination of iron, cobalt, nickel, copper, zinc and manganese in drinking water by solid-phase extraction and RP-HPLC with 2-(2-quinolinylazo)-5-diethylaminophenol as precolumn derivatizing reagent.

    PubMed

    Hu, Qiufen; Yang, Guanyu; Yang, Jihong; Yin, Jiayuan

    2002-12-01

    A new method for the determination of iron, cobalt, nickel, copper, zinc and manganese in drinking water by the reversed-phase high-performance liquid chromatography (RP-HPLC) with 2-(2-quinolinylazo)-5-diethylaminophenol (QADEAP) as precolumn derivatizing reagent was studied in this paper. The iron, cobalt, nickel, copper, zinc, and manganese ions react with QADEAP to form color chelates in the presence of cetyl trimethylammonium bromide (CTMAB) and acetic acid-sodium acetic buffer solution medium of pH 4.0. These chelates were enriched by solid-phase extraction with a Waters Nova-Pak C18 cartridge and eluted the retained chelates from the cartridge with tetrahydrofuran (THF). The enrichment factor of 100 was achieved. Then the chelates were separated on a Waters Nova-Pak C18 column (3.9 x 150 mm, 5 microm) by gradient elution with methanol (containing 0.2% of acetic acid and 0.1% of CTMAB) and 0.05 mol L(-1) acetic acid-sodium acetic buffer solution (containing 0.1% of CTMAB) (pH 4.0) as mobile phase at a flow rate of 0.5 ml min(-1), and monitored with a photodiode array detector from 450 approximately 700 nm. The detection limits (S/N = 3) of iron, cobalt, nickel, copper, zinc and manganese are 0.8, 1.1, 0.9, 1.1, 1.5 and 2.0 ng L(-1), respectively, in the original sample. This method can be applied to determination at the microg L(-1) level of iron, cobalt, nickel, copper, zinc and manganese in drinking water with good results. PMID:12509050

  1. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes. PMID:26830585

  2. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes.

  3. Battles with iron: manganese in oxidative stress protection.

    PubMed

    Aguirre, J Dafhne; Culotta, Valeria C

    2012-04-20

    The redox-active metal manganese plays a key role in cellular adaptation to oxidative stress. As a cofactor for manganese superoxide dismutase or through formation of non-proteinaceous manganese antioxidants, this metal can combat oxidative damage without deleterious side effects of Fenton chemistry. In either case, the antioxidant properties of manganese are vulnerable to iron. Cellular pools of iron can outcompete manganese for binding to manganese superoxide dismutase, and through Fenton chemistry, iron may counteract the benefits of non-proteinaceous manganese antioxidants. In this minireview, we highlight ways in which cells maximize the efficacy of manganese as an antioxidant in the midst of pro-oxidant iron.

  4. Manganese

    MedlinePlus

    ... Taking manganese by mouth in combination with calcium, zinc, and copper seems to help reduce spinal bone ... Vitrum osteomag) containing manganese, calcium, vitamin D, magnesium, zinc, copper, and boron for one year seems to ...

  5. Interactive effects of manganese and/or iron supplementation in adult women

    SciTech Connect

    Davis, C.D.; Greger, J.L. )

    1991-03-15

    Evaluation of the practical significance of manganese-iron interactions has been hampered by the limited methodologies available to assess manganese status. Manganese status has not been monitored longitudinally in control studies with humans. Forty-eight women were recruited for a double blind 125-day supplementation study. After an initial 5-day baseline period, subjects were assigned to one of four treatments: placebo; 30 mg iron as ferrous fumarate daily; 15 mg manganese as an amino acid chelated manganese supplement daily or both the iron and manganese supplements daily. Dietary information, blood and 3-day urine samples were collected during the baseline period and after 20, 55, 85 and 120 days of consuming the supplements. Urinary manganese excretion ranged from 0.11 to 1.40 {mu}g/day. Serum manganese ranged from 0.16 to 1.92 {mu}g/l. Serum was also analyzed for iron, zinc, copper, ferritin and transferrin concentrations. Lymphocytes were isolated and manganese-dependent superoxide dismutase activity was determined as a new method to assess manganese status. Plasma cholesterol ranged from 126 to 229 mg/dl and HDL cholesterol ranged from 31 to 84 mg/dl. Plasma triglycerides were determined and LDL cholesterol was calculated by difference.

  6. [Analysis of the copper and manganese body allowances of athletes].

    PubMed

    Rusin, V Ia; Nasolodin, V V; Vorob'ev, V A

    1979-01-01

    Forty-eight sportswomen of various qualification and 19 women not engaged in the sports were under observation. The total losses of copper and manganese excreted with feces, urine and sweat in the sportswomen under conditions of muscular training proved higher than in the untrained women. During summer the copper and manganese content in a day diet of the sportswomen corresponded to the recommended standards while during winter the copper content was below the normal. Starting the active training in the beginner sportswomen is attended by the copper and manganese accumulation in the blood cells. Meat and weat food stuffs in the Yaroslavi region are rich in copper, with vegetable products showing the highest content of manganese, and dairy products having a low content of copper and manganese.

  7. Occupational Exposure to Welding Fume among Welders: Alterations of Manganese, Iron, Zinc, Copper, and Lead in Body Fluids and the Oxidative Stress Status

    PubMed Central

    Li, Guojun Jane; Zhang, Long-Lian; Lu, Ling; Wu, Ping; Zheng, Wei

    2014-01-01

    Welders in this study were selected from a vehicle manufacturer; control subjects were from a nearby food factory. Airborne manganese levels in the breathing zones of welders and controls were 1.45 ± SD1.08 mg/m3 and 0.11 ± 0.07 μg/m3, respectively. Serum levels of manganese and iron in welders were 4.3-fold and 1.9-fold, respectively, higher than those of controls. Blood lead concentrations in welders increased 2.5-fold, whereas serum zinc levels decreased 1.2-fold, in comparison with controls. Linear regression revealed the lack of associations between blood levels of five metals and welder’s age. Furthermore, welders had erythrocytic superoxide dismutase activity and serum malondialdehyde levels 24% less and 78% higher, respectively, than those of controls. These findings suggest that occupational exposure to welding fumes among welders disturbs the homeostasis of trace elements in systemic circulation and induces oxidative stress. PMID:15091287

  8. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence

    PubMed Central

    Porcheron, Gaëlle; Garénaux, Amélie; Proulx, Julie; Sabri, Mourad; Dozois, Charles M.

    2013-01-01

    For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese, and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC) virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect. PMID:24367764

  9. Low copper and high manganese levels in prion protein plaques

    USGS Publications Warehouse

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  10. Low Copper and High Manganese Levels in Prion Protein Plaques

    PubMed Central

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecht, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; Aiken, Judd M.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system. PMID:23435237

  11. Low copper and high manganese levels in prion protein plaques.

    PubMed

    Johnson, Christopher J; Gilbert, P U P A; Abrecht, Mike; Baldwin, Katherine L; Russell, Robin E; Pedersen, Joel A; Aiken, Judd M; McKenzie, Debbie

    2013-02-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  12. Interactions among dietary manganese, heme iron, and nonheme iron in women.

    PubMed

    Davis, C D; Malecki, E A; Greger, J L

    1992-11-01

    The relationship among dietary intake of heme iron, nonheme iron, and manganese on indexes of hematological and nutritional status in regard to manganese of 47 women consuming their typical diets was investigated. Increasing dietary iron intake, by consuming more nonheme iron in the diet, had questionable effects on hematological status (hematocrit values and ferritin and transferrin concentrations) and negative effects on nutritional status in regard to manganese (serum manganese, urine manganese, and lymphocyte manganese-dependent superoxide dismutase activity). In contrast, heme-iron intake was positively correlated with hematological status and had no consistent effect on nutritional status in regard to manganese. Differences in dietary manganese intake had no consistent effect on indices of manganese or iron status, possibly because foods that contain significant amounts of manganese (green vegetables, breads, and cereals) often contain significant amounts of nonheme iron. Thus, increasing dietary manganese intake by consuming these foods is apt to have limited impact on manganese status because of the interaction between nonheme iron and manganese. PMID:1415012

  13. Determination of calcium, copper, iron, magnesium, manganese, potassium, phosphorus, sodium, and zinc in fortified food products by microwave digestion and inductively coupled plasma-optical emission spectrometry: single-laboratory validation and ring trial.

    PubMed

    Poitevin, Eric

    2012-01-01

    A single-laboratory validation (SLV) and a ring trial (RT) were undertaken to determine nine nutritional elements in food products by inductively coupled plasma-optical emission spectrometry in order to modernize AOAC Official Method 984.27. The improvements involved extension of the scope to all food matrixes (including infant formula), optimized microwave digestion, selected analytical lines, internal standardization, and ion buffering. Simultaneous determination of nine elements (calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc) was made in food products. Sample digestion was performed through wet digestion of food samples by microwave technology with either closed- or open-vessel systems. Validation was performed to characterize the method for selectivity, sensitivity, linearity, accuracy, precision, recovery, ruggedness, and uncertainty. The robustness and efficiency of this method was proven through a successful RT using experienced independent food industry laboratories. Performance characteristics are reported for 13 certified and in-house reference materials, populating the AOAC triangle food sectors, which fulfilled AOAC criteria and recommendations for accuracy (trueness, recovery, and z-scores) and precision (repeatability and reproducibility RSD, and HorRat values) regarding SLVs and RTs. This multielemental method is cost-efficient, time-saving, accurate, and fit-for-purpose according to ISO 17025 Norm and AOAC acceptability criteria, and is proposed as an extended updated version of AOAC Official Method 984.27 for fortified food products, including infant formula. PMID:22468357

  14. Manganese and copper in the root plaque of Phragmites australis (cav. ) trin. ex steudel

    SciTech Connect

    St-Cyr, L.; Crowder, A.A. )

    1990-04-01

    Manganese and copper were found in the iron oxide plaque on roots of Phragmites australis collected at six sampling sites in southern Quebec and Ontario, Canada. Manganese concentration in the plaque, like that of Fe, is correlated with Mn-bound-to-carbonates fraction of the soil/sediment. The Fe:Mn ratio of the plaque resemble the same ratio of Fe:Mn-bound-to-carbonates in the substrate. The ratio changes with environmental conditions, increasing with percentage of water and decreasing with pH. Plants located near flowing water accumulate more Mn (and Fe) in the plaque than plants in other habitats through the summer. Copper concentration in the plaque than plants in other habitats through the summer. Copper concentration in the plaque is pH-dependent and is positively correlated with the amount of Fe and Mn of the plaque, but appears to be related more closely to Mn.

  15. Iron and manganese diagenesis in constructed wetlands receiving mine drainage

    SciTech Connect

    Tarutis, W.J. Jr.

    1993-01-01

    The chemical diagenesis of iron and manganese was studied in two constructed wetlands receiving coal mine drainage and in laboratory wetland mesocosms exposed to synthetic acidic mine waters, and the release of soluble metals from natural and synthetic metal oxides of differing crystallinity was studied in laboratory incubations in the presence and absence of bacterial sulfate reduction. Soil chemical characterization indicated that the formation of potentially reducible, oxide-bound precipitates accounted for the majority of iron and manganese removed in the two wetlands studied. Depth profiles revealed diagenetic remobilization of iron and manganese to the soil interstitial water due to the reductive dissolution of oxidized metals initially deposited on the wetland surface. Sulfate reduction and pyrite formation contributed little to metal removal due to organic carbon limitation in the subsurface soils. Iron and manganese in synthetic acidic mine water added to anoxic wetland mesocosms acted synergistically with respect to metal removal. The inclusion of sulfate in synthetic mine water caused a slightly greater, but statistically significant, iron removal in mesocosms relative to mesocosms not receiving sulfate. Sulfate addition had no effect on manganese removal. Iron was much more reactive than manganese towards sulfide in laboratory incubations in which sulfate reduction was allowed to occur. Liberation of iron and manganese in the absence of sulfate reduction decreased with increasing crystallinity of each metal oxide tested and was attributed to higher activation energies characteristic of a surface-reaction-controlled dissolution mechanisms.

  16. Thermochemistry of iron manganese oxide spinels

    SciTech Connect

    Guillemet-Fritsch, Sophie; Navrotsky, Alexandra . E-mail: anavrotsky@ucdavis.edu; Tailhades, Philippe; Coradin, Herve; Wang Miaojun

    2005-01-15

    Oxide melt solution calorimetry has been performed on iron manganese oxide spinels prepared at high temperature. The enthalpy of formation of (Mn{sub x}Fe{sub 1-x}){sub 3}O{sub 4} at 298K from the oxides, tetragonal Mn{sub 3}O{sub 4} (hausmannite) and cubic Fe{sub 3}O{sub 4} (magnetite), is negative from x=0 to x=0.67 and becomes slightly positive for 0.670.6) spinels of intermediate compositions. The enthalpies of formation are discussed in terms of three factors: oxidation-reduction relative to the end-members, cation distribution, and tetragonality. A combination of measured enthalpies and Gibbs free energies of formation in the literature provides entropies of mixing. {delta}S{sub mix}, consistent with a cation distribution in which all trivalent manganese is octahedral and all other ions are randomly distributed for x>0.5, but the entropy of mixing appears to be smaller than these predicted values for x<0.4.

  17. Structural and surface changes of copper modified manganese oxides

    NASA Astrophysics Data System (ADS)

    Gac, Wojciech; Słowik, Grzegorz; Zawadzki, Witold

    2016-05-01

    The structural and surface properties of manganese and copper-manganese oxides were investigated. The oxides were prepared by the redox-precipitation method. X-ray diffraction and electron microscopy studies evidenced transformation of cryptomelane-type nanoparticles with 1-D channel structure into the large MnO crystallites with regular rippled-like surface patterns under reduction conditions. The development of Cu/CuO nanorods from strongly dispersed species was evidenced. Coper-modified manganese oxides showed good catalytic performance in methanol steam reforming reaction for hydrogen production. Low selectivity to CO was observed in the wide range of temperatures.

  18. Manganese, Iron, and sulfur cycling in Louisiana continental shelf sediments

    EPA Science Inventory

    Sulfate reduction is considered the primary pathway for organic carbon remineralization on the northern Gulf of Mexico Louisiana continental shelf (LCS) where bottom waters are seasonally hypoxic, yet limited information is available on the importance of iron and manganese cyclin...

  19. Iron-Responsive Olfactory Uptake of Manganese Improves Motor Function Deficits Associated with Iron Deficiency

    PubMed Central

    Kim, Jonghan; Li, Yuan; Buckett, Peter D.; Böhlke, Mark; Thompson, Khristy J.; Takahashi, Masaya; Maher, Timothy J.; Wessling-Resnick, Marianne

    2012-01-01

    Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI). Manganese accumulation in the brain of iron-deficient rats was doubled after intranasal administration of MnCl2 for 1- or 3-week. Enhanced manganese level was observed in specific brain regions of iron-deficient rats, including the striatum, hippocampus, and prefrontal cortex. Iron-deficient rats spent reduced time on a standard accelerating rotarod bar before falling and with lower peak speed compared to controls; unexpectedly, these measures of motor function significantly improved in iron-deficient rats intranasally-instilled with MnCl2. Although tissue dopamine concentrations were similar in the striatum, dopamine transporter (DAT) and dopamine receptor D1 (D1R) levels were reduced and dopamine receptor D2 (D2R) levels were increased in manganese-instilled rats, suggesting that manganese-induced changes in post-synaptic dopaminergic signaling contribute to the compensatory effect. Enhanced olfactory manganese uptake during iron deficiency appears to be a programmed “rescue response” with beneficial influence on motor impairment due to low iron status. PMID:22479410

  20. Iron and manganese oxide mineralization in the Pacific

    USGS Publications Warehouse

    Hein, J. R.; Koschinsky, A.; Halbach, P.; Manheim, F. T.; Bau, M.; Jung-Keuk, Kang; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. These processes are discussed.

  1. Manganese and iron oxidation by fungi isolated from building stone.

    PubMed

    de la Torre, M A; Gomez-Alarcon, G

    1994-01-01

    Acid and nonacid generating fungal strains isolated from weathered sandstone, limestone, and granite of Spanish cathedrals were assayed for their ability to oxidize iron and manganese. In general, the concentration of the different cations present in the mineral salt media directly affected Mn(IV) oxide formation, although in some cases, the addition of glucose and nitrate to the culture media was necessary. Mn(II) oxidation in acidogenic strains was greater in a medium containing the highest concentrations of glucose, nitrate, and manganese. High concentrations of Fe(II), glucose, and mineral salts were optimal for iron oxidation. Mn(IV) precipitated as oxides or hydroxides adhered to the mycelium. Most of the Fe(III) remained in solution by chelation with organic acids excreted by acidogenic strains. Other metabolites acted as Fe(III) chelators in nonacidogenic strains, although Fe(III) deposits around the mycelium were also detected. Both iron and manganese oxidation were shown to involve extracellular, hydrosoluble enzymes, with maximum specific activities during exponential growth. Strains able to oxidize manganese were also able to oxidize iron. It is concluded that iron and manganese oxidation reported in this work were biologically induced by filamentous fungi mainly by direct (enzymatic) mechanisms.

  2. Effects of methionine chelate- or yeast proteinate-based supplement of copper, iron, manganese and zinc on broiler growth performance, their distribution in the tibia and excretion into the environment.

    PubMed

    Singh, Abhay Kumar; Ghosh, Tapan Kumar; Haldar, Sudipto

    2015-04-01

    A straight-run flock of 1-day-old Cobb 400 chicks (n = 432) was distributed into four treatment groups (9 replicate pens in each group, 12 birds in a pen) for a 38-day feeding trial evaluating the effects of a methionine chelate (Met-TM)- or a yeast proteinate (Yeast-TM)-based supplement of copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) on growth performance, bone criteria and some metabolic indices in commercial broiler chickens. The diets were either not supplemented with any trace elements at all (negative control, NC) or supplemented with an inorganic (sulphate) trace element premix (inorganic TM (ITM), 1 g/kg feed), the Met-TM (1 g/kg feed) and the Yeast-TM (0.5 g/kg feed). Body weight, feed conversion ratio and dressed meat yield at 38 days were better in the Yeast-TM-supplemented group as compared with the NC, ITM and Met-TM groups (p < 0.01). The birds supplemented with Met-TM and Yeast-TM consumed less feed than the NC and ITM-supplemented group (p < 0.001). Supplementation of trace elements irrespective of source increased the total ash content in the tibia (p < 0.001). However, concentration of Cu was lower in the Met-TM and Yeast-TM groups compared with the NC and the ITM groups (p < 0.05) although that of Fe, Mn and Zn was not affected at all by the dietary treatments. Total protein concentration in serum increased when either Met-TM or Yeast-TM was supplemented (p < 0.05) to the birds. Serum alkaline phosphatase activity, however, increased when the trace elements from either inorganic or organic sources were supplemented (p < 0.05). Compared with the ITM-supplemented group, excretion of Cu, Fe, Mn and Zn was lower in the birds supplemented with Met-TM or Yeast-TM, especially in the latter group (p < 0.05). The present experiment revealed that supplementation of broilers with methionine chelates or yeast proteinate forms of Cu, Fe, Mn and Zn improved body weight and feed conversion ratio (FCR) and markedly reduced

  3. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  4. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  5. Simultaneous determination of arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in fertilizers by microwave acid digestion and inductively coupled plasma-optical emission spectrometry detection: single-laboratory validation of a modification and extension of AOAC 2006.03.

    PubMed

    Webb, Sharon; Bartos, James; Boles, Rhonda; Hasty, Elaine; Thuotte, Ethel; Thiex, Nancy J

    2014-01-01

    A single-laboratory validation study was conducted for the simultaneous determination of arsenic, cadmium, calcium, cobalt, copper, chromium, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in all major types of commercial fertilizer products by microwave digestion and inductively coupled plasma-optical emission spectroscopy analysis. This validation study proposes an extension and modification of AOAC 2006.03. The extension is the inclusion of calcium, copper, iron, magnesium, manganese, and zinc, and the modification is incorporation of hydrochloric acid in the digestion system. This dual acid digestion utilizes both hydrochloric and nitric acids in a 3 to 9 mL volume ratio/100 mL. In addition to 15 of the 30 original validation materials used in the 2006.03 collaborative study, National Institute of Standards and Technology Standard Reference Material 695 and Magruder 2009-06 were incorporated as accuracy materials. The main benefits of this proposed method are a significant increase in laboratory efficiency when compared to the use of both AOAC Methods 965.09 and 2006.03 to achieve the same objective and an enhanced recovery of several metals.

  6. Nickel, Manganese, Cobalt, and Iron-Catalyzed Deprotonative Arene Dimerization

    PubMed Central

    Truong, Thanh; Alvarado, Joseph; Tran, Ly Dieu; Daugulis, Olafs

    2010-01-01

    A number of first-row transition metal salts catalyze deprotonative dimerization of acidic arenes. Under the atmosphere of oxygen, nickel, manganese, cobalt, and iron chlorides have been shown to dimerize five- and six-membered ring heterocycles as well as electron-poor arenes. Both tetramethylpiperidide and dicyclohexylamide bases can be employed; however, the former afford slightly higher yields. PMID:20192197

  7. Elements of the iron and manganese cycles in Lake Baikal

    USGS Publications Warehouse

    Granina, L.Z.; Callender, E.

    2007-01-01

    Using data obtained in recent years, we considered the external mass balance and characteristics of internal iron and manganese cycles in Lake Baikal (biological uptake, remineralization, sedimentary and diffusive fluxes, accumulation in sediments, time of renewal, etc.). Some previous results and common concepts were critically reevaluated. ?? Pleiades Publishing, Ltd. 2007.

  8. Manganese, iron, and total particulate exposures to welders.

    PubMed

    Flynn, Michael R; Susi, Pam

    2010-02-01

    Welders are exposed to a variety of metal fumes, including manganese, that may elevate the risk for neurological disease. This study examines several large data sets to characterize manganese, iron, and total particulate mass exposures resulting from welding operations. The data sets contained covariates for a variety of exposure modifiers, including the presence of ventilation, the degree of confinement, and the location of the personal sampler (i.e., behind or in front of the welding helmet). The analysis suggests that exposures to manganese are frequently at or above the current ACGIH(R) threshold limit value of 0.2 mg/m(3). In addition, there is evidence that local exhaust ventilation can control the exposures to manganese and total fume but that mechanical ventilation may not. The data suggest that higher exposures are associated with a greater degree of enclosure, particularly when local exhaust ventilation is absent. Samples taken behind the helmet were, in general, lower than those measured outside of it. There were strong correlations among manganese, iron, and total particulate mass exposures, suggesting simple equations to estimate one fume component from any of the others.

  9. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide

    USGS Publications Warehouse

    Balistrieri, L.S.; Chao, T.T.

    1990-01-01

    This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites

  10. Iron and manganese oxide mineralization in the Pacific

    USGS Publications Warehouse

    Hein, J.R.; Koschinsky, A.; Halbach, P.; Manheim, F. T.; Bau, M.; Kang, J.-K.; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. Iron and manganese deposits occur in five forms: nodules, crusts, cements, mounds and sediment-hosted stratabound layers. Seafloor oxides show a wide range of compositions from nearly pure iron to nearly pure manganese end members. Fe/Mn ratios vary from about 24 000 (up to 58% elemental Fe) for hydrothermal seamount ironstones to about 0.001 (up to 52% Mn) for hydrothermal stratabound manganese oxides from active volcanic arcs. Hydrogenetic Fe-Mn crusts that occur on most seamounts in the ocean basins have a mean Fe/Mn ratio of 0.7 for open-ocean seamount crusts and 1.2 for continental margin seamount crusts. Fe-Mn nodules of potential economic interest from the Clarion-Clipperton Zone have a mean Fe/Mn ratio of 0.3, whereas the mean ratio for nodules from elsewhere in the Pacific is about 0.7. Crusts are enriched in Co, Ni and Pt and nodules in Cu and Ni, and both have significant concentrations of Pb, Zn, Ba, Mo, V and other elements. In contrast, hydrothermal deposits commonly contain only minor trace metal contents, although there are many exceptions, for example, with Ni contents up to 0.66%, Cr to 1.2%, and Zn to 1.4%. Chondrite-normalized REE patterns generally show a positive Ce anomaly and abundant ??REEs for hydrogenetic and mixed hydrogenetic-diagenetic deposits, whereas the Ce anomaly is negative for hydrothermal deposits and ??REE contents are low. However, the Ce anomaly in crusts may vary from strongly positive in East Pacific crusts to slightly negative in West Pacific crusts, which may reflect

  11. [Influence of manganese on iron accumulation and flavinogenesis in yeast Debaryomyces hansenii].

    PubMed

    Sydorovych, I B; Fedorovych, D V

    2002-01-01

    In response to MnCl2 introduction the yeast Debaryomyces hansenii shows the increase of intracellular iron content and riboflavin biosynthesis level. Under iron deficiency the yeast cells sensitivity to manganese ions increases in spite of redundant synthesis of riboflavin. High concentration of iron in the culture results in the lower toxicity of Mn2+. Iron accumulation favours the cell resistance to manganese. Manganese causes the redundant synthesis of riboflavin as well as iron accumulation in streptonigrin-resistant mutants with a lowered iron content in cells. The Mn(2+)-resistant strains are phenotypically similar to the previously described Rib80(-)-mutants of D. hansenii with high iron content and riboflavin biosynthesis level. This suggests that riboflavin redundant synthesis and iron accumulation in the yeast cells are regulated by a common Mn(2+)-depending factor. A new method for isolation of the Rib80(-)-mutants is described. The method is based on the positive selection of manganese-resistant clones. PMID:12557493

  12. Manganese, iron, and sulfur cycling in Louisiana continental shelf sediments

    NASA Astrophysics Data System (ADS)

    Devereux, Richard; Lehrter, John C.; Beddick, David L.; Yates, Diane F.; Jarvis, Brandon M.

    2015-05-01

    Sulfate reduction is considered the primary pathway for organic carbon remineralization on the northern Gulf of Mexico Louisiana continental shelf (LCS) where bottom waters are seasonally hypoxic, yet limited information is available on the importance of iron and manganese cycling in the region. Sedimentary manganese, iron, and sulfur cycling were investigated on the LCS using a combined chemical analysis and sediment diagenesis modeling approach. Three stations situated 320 km across the LCS along the 20 m isobath were sampled up to five times between the spring of 2006 and summer of 2007. Bottom water oxygen levels at the stations ranged from 203 mmol m-3 in spring to 2.5 mmol m-3 in summer. Porewater Mn and Fe2+ concentrations (up to 275 and 300 μmol L-1, respectively), sulfate reduction rates (1.0-8.4 mmol m-2 d-1), and the fraction of total oxalate extracted iron obtained as Fe(II) (0.25-0.52) differed between station and season. Sediments at station Z02 on the eastern LCS, south of Terrebonne Bay, had higher organic matter content and sulfate reduction rates than sediments at Z03, 160 km further west. Sulfate reduction rates were higher in summer than spring at station Z02 but not at Z03 where porewater Mn and Fe concentrations were highest in summer. Porewater Fe2+ concentrations, solid phase oxalate-extractable Fe concentrations, and sediment incubation experiments suggested iron reduction at Z03 may account for 20% or more of organic carbon remineralization. LCS Fe(III) concentrations decreased and sulfate reduction rates increased in model simulations by lowering interfacial dissolved oxygen levels and increasing the rates of organic matter deposited on the sediment surface. Results from this study demonstrate that LCS sedimentary metal oxide cycling may be more important in organic carbon mineralization pathways than previously recognized.

  13. Voltammetric determination of arsenic in high iron and manganese groundwaters.

    PubMed

    Gibbon-Walsh, Kristoff; Salaün, Pascal; Uroic, M Kalle; Feldmann, Joerg; McArthur, John M; van den Berg, Constant M G

    2011-09-15

    Determination of the speciation of arsenic in groundwaters, using cathodic stripping voltammetry (CSV), is severely hampered by high levels of iron and manganese. Experiments showed that the interference is eliminated by addition of EDTA, making it possible to determine the arsenic speciation on-site by CSV. This work presents the CSV method to determine As(III) in high-iron or -manganese groundwaters in the field with only minor sample treatment. The method was field-tested in West-Bengal (India) on a series of groundwater samples. Total arsenic was subsequently determined after acidification to pH 1 by anodic stripping voltammetry (ASV). Comparative measurements by ICP-MS as reference method for total As, and by HPLC for its speciation, were used to corroborate the field data in stored samples. Most of the arsenic (78±0.02%) was found to occur as inorganic As(III) in the freshly collected waters, in accordance with previous studies. The data shows that the modified on-site CSV method for As(III) is a good measure of water contamination with As. The EDTA was also found to be effective in stabilising the arsenic speciation for longterm sample storage at room temperature. Without sample preservation, in water exposed to air and sunlight, the As(III) was found to become oxidised to As(V), and Fe(II) oxidised to Fe(III), removing the As(V) by adsorption on precipitating Fe(III)-hydroxides within a few hours.

  14. Manganese and copper fluxes from continental margin sediments

    SciTech Connect

    Heggie, D.; Klinkhammer, G.; Cullen, D.

    1987-05-01

    Total dissolvable Cu and Mn have been measured in sea water collected from the continental shelf of the eastern Bering Sea. Copper concentrations of <3 nmole kg/sup -1/ were measured over the shelf break but concentrations increased to >4 nmole kg/sup -1/ inshore of a hydrographic front over the 100 m isobath. Manganese concentrations also were low over the shelf break, <10 nmole kg/sup -1/, and increased systematically to concentrations >10 nmole kg/sup -1/ inshore of the hydrographic front. Depth distributions of Mn at all continental shelf stations showed gradients into the sediments, with concentrations typically >20 nmole kg/sup -1/ in a bottom layer extending about 30 m off the bottom. Benthic Cu and Mn fluxes are indicated by cross-shelf pore water profiles that show interfacial concentrations more than an order of magnitude greater than in bottom water. These data and the results of a model of metal transport across the shelf suggest that Cu and Mn fluxes, estimated at 2 and 18 nmole cm/sup -2/y/sup -1/, respectively, from continental shelf sediments may be one source of these metals to the deep sea.

  15. Distributions of Manganese, Iron, and Manganese-Oxidizing Bacteria In Lake Superior Sediments of Different Organic Carbon Content

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Nealson, Kenneth H.

    1989-01-01

    Profiles of oxygen, soluble and particulate manganese and iron, organic carbon and nitrogen were examined in Lake Superior sediment cores, along with the distribution and abundance of heterotrophic and manganese oxidizing bacteria. Analyses were performed using cores collected with the submersible Johnson Sea Link II. Three cores, exhibiting a range of organic carbon content, were collected from the deepest basin in Lake Superior and the north and south ends of the Caribou trough, and brought to the surface for immediate analysis. Minielectrode profiles of oxygen concentration of the three cores were carried out using a commercially available minielectrode apparatus. Oxygen depletion to less than 1% occurred within 4 cm of the surface for two of the cores, but not until approximately 15 cm for the core from the south basin of the Caribou trough. The three cores exhibited very different profiles of soluble, as well as leachable, manganese and iron, suggesting different degrees of remobilization of these metals in the sediments. Vertical profiles of viable bacteria and Mn oxidizing bacteria, determined by plating and counting, showed that aerobic (and facultatively aerobic) heterotrophic bacteria were present at the highest concentrations near the surface and decreased steadily with depth, while Mn oxidizing bacteria were concentrations primarily at and above the oxic/anoxic interface. Soluble manganese in the pore waters, along with abundant organic carbon, appeared to enhance the presence of manganese oxidizing bacteria, even below the oxic/anoxic interface. Profiles of solid-phase leachable manganese suggested a microbial role in manganese reprecipitation in these sediments.

  16. Distributions of manganese, iron, and manganese-oxidizing bacteria in Lake Superior sediments of different organic carbon content

    SciTech Connect

    Richardson, L.L.; Nealson, K.H.

    1989-01-01

    Profiles of oxygen, soluble and particulate manganese and iron, organic carbon and nitrogen were examined in Lake Superior sediment cores, along with the distribution and abundance of heterotrophic and manganese oxidizing bacteria. Analyses were performed using cores collected with the submersible Johnson Sea Link II. Three cores, exhibiting a range of organic carbon content, were collected from the deepest basin in Lake Superior and the north and south ends of the Caribou trough, and brought to the surface for immediate analysis. Minielectrode profiles of oxygen concentration of the three cores were carried out using a commercially available minielectrode apparatus. Oxygen depletion to less than 1% occurred within 4 cm of the surface for two of the cores, but not until approximately 15 cm for the core from the south basin of the Caribou trough. The three cores exhibited very different profiles of soluble, as well as leachable, manganese and iron, suggesting different degrees of remobilization of these metals in the sediments. Vertical profiles of viable bacterial and Mn oxidizing bacteria, determined by plating and counting, showed that aerobic heterotrophic bacteria were present at the highest concentrations near the surface and decreased steadily with depth, while Mn oxidizing bacteria were concentrated primarily at and above the oxic/anoxic interface. Soluble manganese in the pore waters, along with abundant organic carbon, appeared to enhance the presence of manganese oxidizing bacteria, even below the oxic/anoxic interface. Profiles of solid-phase leachable manganese suggested a microbial role in manganese reprecipitation in these sediments.

  17. [Ecological stability on biological removal of iron and manganese filter under poor nutritional conditions].

    PubMed

    Yang, Hong; Xiong, Xiao-Li; Duan, Xiao-Dong; Song, Li-Xin; Yu, Ping-Bo; Li, Wei; Zhang, Jie

    2010-01-01

    To supply necessary bacteria and available nutrients, a method of returning backwashing wastewater to the bio-filter for removal of iron and manganese was used. The ecological stability of bio-filter was investigated from 3 aspects: iron and manganese removal efficiency, micro-ecological characteristics and the quantity distribution of dominant bacteria. The results indicated that, the bio-filter held strong antishock loading capability, when the system was operated at high filtration rate (10-13.9 m/h) and high manganese concentration (3.5-4.5 mg/L), a removal rate more than 98.9% of iron and manganese was achieved. Iron and manganese oxidizing bacteria are the dominant microflora in biological filtering layer, they not only adhere on filter sand materials (4.3 x 10(6) MPN/mL) to form compact biofilm, but also exist among filter materials void (6.5 x 10(6) MPN/mL) to form suspended flocs, which is very important to complete removal of iron and manganese. In the past 5 years, the bio-filter realized a continuous and stable operation and kept a high removal efficiency of iron and manganese without adding any nutrients.

  18. 40 CFR 721.10253 - Butanedioic acid, 2-methylene-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated. 721...+) sodium zinc salt, hydrogen peroxide-initiated. (a) Chemical substance and significant new uses subject to... furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated (PMN P-09-388; CAS...

  19. 40 CFR 721.10253 - Butanedioic acid, 2-methylene-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated. 721...+) sodium zinc salt, hydrogen peroxide-initiated. (a) Chemical substance and significant new uses subject to... furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated (PMN P-09-388; CAS...

  20. 40 CFR 721.10253 - Butanedioic acid, 2-methylene-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated. 721...+) sodium zinc salt, hydrogen peroxide-initiated. (a) Chemical substance and significant new uses subject to... furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated (PMN P-09-388; CAS...

  1. Iron and copper release in drinking-water distribution systems.

    PubMed

    Shi, Baoyou; Taylor, James S

    2007-09-01

    A large-scale pilot study was carried out to evaluate the impacts of changes in water source and treatment process on iron and copper release in water distribution systems. Finished surface waters, groundwaters, and desalinated waters were produced with seven different treatment systems and supplied to 18 pipe distribution systems (PDSs). The major water treatment processes included lime softening, ferric sulfate coagulation, reverse osmosis, nanofiltration, and integrated membrane systems. PDSs were constructed from PVC, lined cast iron, unlined cast iron, and galvanized pipes. Copper pipe loops were set up for corrosion monitoring. Results showed that surface water after ferric sulfate coagulation had low alkalinity and high sulfates, and consequently caused the highest iron release. Finished groundwater treated by conventional method produced the lowest iron release but the highest copper release. The iron release of desalinated water was relatively high because of the water's high chloride level and low alkalinity. Both iron and copper release behaviors were influenced by temperature.

  2. Iron versus Copper II. Principles and Applications in Bioinorganic Chemistry.

    ERIC Educational Resources Information Center

    Ochiai, Ei-Ichiro

    1986-01-01

    Discusses the differences between iron and copper. Describes various aspects of the behaviors of these two elements, including those of biological and environmental significance. Addresses the evolution of the atmosphere and sedimentary ore formation, the phylogeny of iron and copper, and some anthropological notes regarding the use of the metals.…

  3. Tuning the redox properties of manganese(II) and its implications to the electrochemistry of manganese and iron superoxide dismutases.

    PubMed

    Sjödin, Martin; Gätjens, Jessica; Tabares, Leandro C; Thuéry, Pierre; Pecoraro, Vincent L; Un, Sun

    2008-04-01

    Superoxide dismutases (SODs) catalyze the disproportionation of superoxide to dioxygen and hydrogen peroxide. The active metal sites of iron and manganese superoxide dismutases are structurally indistinguishable from each other. Despite the structural homology, these enzymes exhibit a high degree of metal selective activity suggesting subtle redox tuning of the active site. The redox tuning model, however, up to now has been challenged by the existence of so-called cambialistic SODs that function with either metal ion. We have prepared and investigated two sets of manganese complexes in which groups of varying electron-withdrawing character, as measured by their Hammett constants sigma Para, have been introduced into the ligands. We observed that the Mn(III)/Mn(II) reduction potential for the series based on 4'-X-terpyridine ligands together with the corresponding values for the iron-substituted 4'-X-terpyridine complexes changed linearly with sigma Para. The redox potential of the iron and manganese complexes could be varied by as much as 600 mV by the 4'-substitution with the manganese complexes being slightly more sensitive to the substitution than iron. The difference was such that in the case where the 4'-substituent was a pyrrolidine group both the manganese and the iron complex were thermodynamically competent to catalytically disproportionate superoxide, making this particular ligand "cambialistic". Taking our data and those available from the literature together, it was found that in addition to the electron-withdrawing capacity of the 4'-substituents the overall charge of the Mn(II) complexes plays a major role in tuning the redox potential, about 600 mV per charge unit. The ion selectivity in Mn and FeSODs and the occurrence of cambialistic SODs are discussed in view of these results. We conclude that the more distant electrostatic contributions may be the source of metal specific enzymatic activity. PMID:18271528

  4. Role of manganese in protection against oxidative stress under iron starvation in cyanobacterium Anabaena 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Verma, Ekta; Mishra, Arun Kumar

    2015-06-01

    The cyanobacterium Anabaena sp. PCC 7120 was grown in presence and absence of iron to decipher the role of manganese in protection against the oxidative stress under iron starvation and growth, manganese uptake kinetics, antioxidative enzymes, lipid peroxidation, electrolyte leakage, thiol content, total peroxide, proline and NADH content was investigated. Manganese supported the growth of cyanobacterium Anabaena 7120 under iron deprived conditions where maximum uptake rate of manganese was observed with lower K(m) and higher V(max) values. Antioxidative enzymes were also found to be elevated in iron-starved conditions. Estimation of lipid peroxidation and electrolyte leakage depicted the role of manganese in stabilizing the integrity of the membrane which was considered as the prime target of oxygen free radicals in oxidative stress. The levels of total peroxide, thiol, proline and NADH content, which are the representative of oxidative stress response in Anabaena 7120, were also showed increasing trends in iron starvation. Hence, the results discerned, clearly suggested the role of manganese in protection against the oxidative stress in cyanobacterium Anabaena 7120 under iron starvation either due to its antioxidative properties or involvement as cofactor in a number of antioxidative enzymes.

  5. Copper, iron and the organic ligands that bind them - updates from San Francisco Bay and beyond

    NASA Astrophysics Data System (ADS)

    Buck, K. N.; Bundy, R.; Biller, D.; Bruland, K. W.; Barbeau, K.

    2015-12-01

    Building on more than 30 years of measurements in San Francisco Bay by Russ Flegal and others, the concentrations of dissolved manganese, iron, cobalt, nickel, copper, zinc, cadmium and lead were determined from a suite of water quality monitoring program stations in North, Central and South Bay using inductively coupled plasma- mass spectrometry following preconcentration on a Nobias-chelate PA1 resin. Given the importance of organic ligands in governing iron solubility and copper bioavailability in natural waters, the organic complexation of dissolved iron and copper in these samples was determined from multiple analytical windows applied to competitive ligand exchange- adsorptive cathodic stripping voltammetry. This study constitutes the first dataset of iron speciation in San Francisco Bay and expands upon prior work evaluating the potential for copper toxicity in this urbanized estuary. Recent advances in voltammetric techniques emerging from a Scientific Committee on Oceanic Research (SCOR) working group on metal-binding ligands in the marine environment, and insights gained from high-resolution ligand measurements from the U.S. GEOTRACES program, highlight how metal-binding ligands in San Francisco Bay compare with those of the coastal and open ocean.

  6. Hawaiian submarine manganese-iron oxide crusts - A dating tool?

    USGS Publications Warehouse

    Moore, J.G.; Clague, D.A.

    2004-01-01

    Black manganese-iron oxide crusts form on most exposed rock on the ocean floor. Such crusts are well developed on the steep lava slopes of the Hawaiian Ridge and have been sampled during dredging and submersible dives. The crusts also occur on fragments detached from bedrock by mass wasting, on submerged coral reefs, and on poorly lithified sedimentary rocks. The thickness of the crusts was measured on samples collected since 1965 on the Hawaiian Ridge from 140 dive or dredge localities. Fifty-nine (42%) of the sites were collected in 2001 by remotely operated vehicles (ROVs). The thinner crusts on many samples apparently result from post-depositional breakage, landsliding, and intermittent burial of outcrops by sediment. The maximum crust thickness was selected from each dredge or dive site to best represent crusts on the original rock surface at that site. The measurements show an irregular progressive thickening of the crusts toward the northwest-i.e., progressive thickening toward the older volcanic features with increasing distance from the Hawaiian hotspot. Comparison of the maximum crust thickness with radiometric ages of related subaerial features supports previous studies that indicate a crust-growth rate of about 2.5 mm/m.y. The thickness information not only allows a comparison of the relative exposure ages of two or more features offshore from different volcanoes, but also provides specific age estimates of volcanic and landslide deposits. The data indicate that some of the landslide blocks within the south Kona landslide are the oldest exposed rock on Mauna Loa, Kilauea, or Loihi volcanoes. Crusts on the floors of submarine canyons off Kohala and East Molokai volcanoes indicate that these canyons are no longer serving as channelways for downslope, sediment-laden currents. Mahukona volcano was approximately synchronous with Hilo Ridge, both being younger than Hana Ridge. The Nuuanu landslide is considerably older than the Wailau landslide. The Waianae

  7. [The complexes of copper, manganese and chromium with enzymatic hydrolysate of pig spleen: research in vitro].

    PubMed

    Zorin, S N; Sidorova, Yu S; Pleten, A P; Mazo, V K

    2016-01-01

    This report describes the preparation and the results of physical and chemical analysis of complexes of enzymatic hydrolysate of pig spleen (EHPS) with manganese, copper and chromium. The complexes were prepared using schemes including the reaction of complexation of inorganic cations with EHPS-peptides structures and application of membrane technology. The process of microfiltration of the resulting mixtures was carried out in tangential flow and low molecular weight fractions were collected. Solutions of copper and manganese complexes with EHPS were subjected to nanofiltration to remove inorganic ions from the reaction mixture. The obtained preparations were lyophilic dried and the molecular weight distribution of the protein fractions in Cu-EHPS, Mn-EHPS and Cr-EHPS complexes was analyzed by exclusion medium pressure liquid chromatography. The percentage relation of fractions with specific molecular weight range was calculated by applying the weighted integration of chromatograms. The determination of copper, manganese and chromium levels in the complexes was performed by atomic absorption method. The content of microelements in the preparations is for copper 16.5 ± 0.3 mg/g, for manganese--24.9 ± 0.5 mg/g and for chromium--2.5 ± 0.2 mg/g.

  8. Neutron activation analysis of fluid inclusions for copper, manganese, and zinc

    USGS Publications Warehouse

    Czamanske, G.K.; Roedder, E.; Burns, F.C.

    1963-01-01

    Microgram quantities of copper, manganese, and zinc, corresponding to concentrations greater than 100 parts per million, were found in milligram quantities of primary inclusion fluid extracted from samples of quartz and fluorite from two types of ore deposits. The results indicate that neutron activation is a useful analytical method for studying the content of heavy metal in fluid inclusions.

  9. [The complexes of copper, manganese and chromium with enzymatic hydrolysate of pig spleen: research in vitro].

    PubMed

    Zorin, S N; Sidorova, Yu S; Pleten, A P; Mazo, V K

    2016-01-01

    This report describes the preparation and the results of physical and chemical analysis of complexes of enzymatic hydrolysate of pig spleen (EHPS) with manganese, copper and chromium. The complexes were prepared using schemes including the reaction of complexation of inorganic cations with EHPS-peptides structures and application of membrane technology. The process of microfiltration of the resulting mixtures was carried out in tangential flow and low molecular weight fractions were collected. Solutions of copper and manganese complexes with EHPS were subjected to nanofiltration to remove inorganic ions from the reaction mixture. The obtained preparations were lyophilic dried and the molecular weight distribution of the protein fractions in Cu-EHPS, Mn-EHPS and Cr-EHPS complexes was analyzed by exclusion medium pressure liquid chromatography. The percentage relation of fractions with specific molecular weight range was calculated by applying the weighted integration of chromatograms. The determination of copper, manganese and chromium levels in the complexes was performed by atomic absorption method. The content of microelements in the preparations is for copper 16.5 ± 0.3 mg/g, for manganese--24.9 ± 0.5 mg/g and for chromium--2.5 ± 0.2 mg/g. PMID:27228705

  10. The influence of high iron diet on rat lung manganese absorption

    SciTech Connect

    Thompson, Khristy; Molina, Ramon; Donaghey, Thomas; Brain, Joseph D.; Wessling-Resnick, Marianne . E-mail: wessling@hsph.harvard.edu

    2006-01-15

    Individuals chronically exposed to manganese are at high risk for neurotoxic effects of this metal. A primary route of exposure is through respiration, although little is known about pulmonary uptake of metals or factors that modify this process. High dietary iron levels inversely affect intestinal uptake of manganese, and a major goal of this study was to determine if dietary iron loading could increase lung non-heme iron levels and alter manganese absorption. Rats were fed a high iron (1% carbonyl iron) or control diet for 4 weeks. Lung non-heme iron levels increased {approx}2-fold in rats fed the high iron diet. To determine if iron-loading affected manganese uptake, {sup 54}Mn was administered by intratracheal (it) instillation or intravenous (iv) injection for pharmacokinetic studies. {sup 54}Mn absorption from the lungs to the blood was lower in it-instilled rats fed the 1% carbonyl iron diet. Pharmacokinetics of iv-injected {sup 54}Mn revealed that the isotope was cleared more rapidly from the blood of iron-loaded rats. In situ analysis of divalent metal transporter-1 (DMT1) expression in lung detected mRNA in airway epithelium and bronchus-associated lymphatic tissue (BALT). Staining of the latter was significantly reduced in rats fed the high iron diet. In situ analysis of transferrin receptor (TfR) mRNA showed staining in BALT alone. These data demonstrate that manganese absorption from the lungs to the blood can be modified by iron status and the route of administration.

  11. Daily Copper and Manganese Intakes and Their Relation to Blood Pressure in Normotensive Adults

    PubMed Central

    Lee, Yeon-Kyung; Lyu, Eun-Soon; Oh, Se-Young; Park, Hae-Ryun; Ro, Hee-Kyong; Heo, Young-Ran; Hyun, Taisun

    2015-01-01

    Although it has been proposed that trace minerals have anti-oxidative functions and are related to the control of blood pressure, only a limited number of studies directly address the issue. Thus, the purpose of our study was to assess the intake of copper and manganese, which are trace minerals, and to clarify their relation to blood pressure. In a cross-sectional study, the blood pressure of 640 normotensive adults, from 19 to 69 year-old (320 males and 320 females), was measured, and its correlation with the intake of copper and manganese was assessed using a 24-hour dietary recall method. The average value of the blood pressure was 126.4/80.2 mmHg for the males and 117.8/75.8 mmHg for the females. The daily copper intake was 1.3 mg/day for the males and 1.2 mg/day for the females. For manganese, the daily intake was 4.2 mg/day for the males and 4.1 mg/day for the females. Although the copper intake of all subjects showed a positive correlation with the systolic and diastolic blood pressures, there was no significant correlation when the potential confounding factors were adjusted. The manganese intake of the male subjects had a significantly negative correlation with the systolic blood pressure after adjusting for gender, age, body mass index, and energy intake. In conclusion, the daily manganese intake of the normotensitve adults showed a significantly negative correlation with the systolic blood pressure indicating a possibility of a positive effect of manganese on blood pressure. PMID:26566521

  12. Simultaneous determination of iron and manganese in water using artificial neural network catalytic spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Ji, Hongwei; Xu, Yan; Li, Shuang; Xin, Huizhen; Cao, Hengxia

    2012-09-01

    A new analytical method using Back-Propagation (BP) artificial neural network and kinetic spectrophotometry for simultaneous determination of iron and magnesium in tap water, the Yellow River water and seawater is established. By conditional experiments, the optimum analytical conditions and parameters are obtained. Levenberg-Marquart (L-M) algorithm is used for calculation in BP neural network. The topological structure of three-layer BP ANN network architecture is chosen as 15-16-2 (nodes). The initial value of gradient coefficient µ is fixed at 0.001 and the increase factor and reduction factor of µ take the default values of the system. The data are processed by computers with our own programs written in MATLAB 7.0. The relative standard deviation of the calculated results for iron and manganese is 2.30% and 2.67% respectively. The results of standard addition method show that for the tap water, the recoveries of iron and manganese are in the ranges of 98.0%-104.3% and 96.5%-104.5%, and the RSD is in the range of 0.23%-0.98%; for the Yellow River water (Lijin district of Shandong Province), the recoveries of iron and manganese are in the ranges of 96.0%-101.0% and 98.7%-104.2%, and the RSD is in the range of 0.13%-2.52%; for the seawater in Qingdao offshore, the recoveries of iron and manganese are in the ranges of 95.3%-104.8% and 95.3%-104.7%, and the RSD is in the range of 0.14%-2.66%. It is found that 21 common cations and anions do not interfere with the determination of iron and manganese under the optimum experimental conditions. This method exhibits good reproducibility and high accuracy in the determination of iron and manganese and can be used for the simultaneous determination of iron and manganese in tap water and natural water. By using the established ANN-catalytic spectrophotometric method, the iron and manganese concentrations of the surface seawater at 11 sites in Qingdao offshore are determined and the level distribution maps of iron and

  13. Reduction of copper sulphate with elemental iron for preparation of copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Nazim, Muhammad

    Reduction of copper sulphate with elemental iron also known as cementation is a well known process used for the recovery of copper for a long time. In this study, the kinetics of the reaction of copper sulphate with iron wire and iron powder has been investigated. The reaction kinetics was studied as a function of different process parameters such as initial concentration, temperature and pH. In this research work, the effects of the above three parameters were studied for both types of iron substrates. It was found that with the iron wire the reaction obeys first order kinetics with respect to copper concentration whereas with the iron powder the order was found to be 1.5. The initial concentration was found to have considerable effect on the reaction kinetics of copper sulphate with elemental iron. The rate of reaction increases with an increase in the initial copper concentration up to a certain level and then decreases for the case of iron wire. However, for the reaction of copper sulphate with iron powder, the reaction rate decreases with an increase in the initial copper concentration. The effect of temperature on the reaction rate of copper sulphate for both types iron substrates (iron wire and iron powder) has also been studied in the temperature range of 23-54ºC. In both the cases, the reaction rate increases with an increase in temperature according to Arrhenius law. The activation energy for the reactions of copper sulphate with iron wire and iron powder was found to be 25.36 kJ/mol and 26.32 kJ/mol, respectively. The copper cementation reaction was found to be suitable to operate at a pH of 2.5-3 for iron wire and a pH of 3-4 for iron powder considering possible inhibition by copper hydroxyl complex formation at higher pH and the possible excess iron consumption by hydrogen reduction at lower pH. The copper particles were produced by the reduction of copper sulphate with elemental iron. The produced copper particles were obtained in the micro to nano

  14. Effects of iron on Vitamin C/copper-induced hydroxyl radical generation in bicarbonate-rich water.

    PubMed

    Jansson, Patric J; Del Castillo, Urko; Lindqvist, Christer; Nordström, Tommy

    2005-05-01

    The aim of this study was to evaluate whether iron, like copper, could support Vitamin C mediated hydroxyl radical formation in bicarbonate-rich water. By using the hydroxyl radical indicator coumarin-3-carboxylic acid, we found that iron, in contrast to copper, was not capable to support Vitamin C induced hydroxyl radical formation. However, when 0.2 mg/l iron and 0.1 mg/l copper were both added to bicarbonate supplemented Milli-Q water, the Vitamin C induced formation of 7-hydroxycoumarin, as measured by HPLC analysis, was inhibited by 47.5%. The inhibition of hydroxyl radical formation by iron was also evident in the experiments performed on copper contaminated bicarbonate-rich household drinking water samples. In the presence of 0.2 mg/l of ferric iron the ascorbic acid induced hydroxyl radical formation was inhibited by 36.0-44.6%. This inhibition was even more significant, 47.0-59.2%, when 0.8 mg/l of ferric iron was present. None of the other redox-active metals, e.g. manganese, nickel or cobalt, could support ascorbic acid induced hydroxyl radical formation and did not have any impact on the ascorbic acid/copper-induced hydroxyl radical generation. Our results show, that iron cannot by itself produce hydroxyl radicals in bicarbonate rich water but can significantly reduce Vitamin C/copper-induced hydroxyl radical formation. These findings might partly explain the mechanism for the iron-induced protective effect on various copper related degenerative disorders that earlier has been observed in animal model systems. PMID:16036332

  15. The scavenging of silver by manganese and iron oxides in stream sediments collected from two drainage areas of Colorado

    USGS Publications Warehouse

    Chao, T.T.; Anderson, B.J.

    1974-01-01

    Stream sediments of two well-weathered and aerated drainage areas of Colorado containing anomalous amounts of silver were allowed to react by shaking with nitric acid of different concentrations (1-10M). Silver, manganese, and iron simultaneously dissolved were determined by atomic absorption. The relationship between silver dissolution and the dissolution of manganese and/or iron was evaluated by linear and multiple regression analyses. The highly significant correlation coefficient (r = 0.913) between silver and manganese dissolution suggests that manganese oxides are the major control on the scavenging of silver in these stream sediments, whereas iron oxides only play a secondary role in this regard. ?? 1974.

  16. Adsorption of iron cyanide complexes onto clay minerals, manganese oxide, and soil.

    PubMed

    Kang, Dong-Hee; Schwab, A Paul; Johnston, C T; Banks, M Katherine

    2010-09-01

    The adsorption characteristics of an iron cyanide complex, soluble Prussian blue KFe(III)[Fe(II)(CN)(6)], were evaluated for representative soil minerals and soil at pH 3.7, 6.4 and 9.7. Three specimen clay minerals (kaolinite, montmorillonite, and illite), two synthesized manganese oxides (birnessite and cryptomelane), and a Drummer soil from Indiana were used as the adsorbents. Surface protonation of variable charge sites increased with decreasing pH yielding positively charged sites on crystal edges and enhancing the attractive force between minerals and iron cyanide complexes. Anion adsorption on clays often is correlated to the metal content of the adsorbent, and a positive relationship was observed between iron or aluminum content and Prussian blue adsorption. Illite had high extractable iron and adsorbed more ferro-ferricyande anion, while kaolinite and montmorillonite had lower extractable iron and adsorbed less. However, less pH effect was observed on the adsorption of iron cyanide to manganese oxides. This may due to the manganese oxide mediated oxidation of ferrocyanide [Fe(II)(CN)(6)(4-)], to ferricyanide [Fe(III)(CN)(6)(3-)], which has a low affinity for manganese oxides.

  17. Magnetic properties of iron minerals produced by natural iron- and manganese-reducing groundwater bacteria

    NASA Astrophysics Data System (ADS)

    Abrajevitch, Alexandra; Kondratyeva, Lubov M.; Golubeva, Evgeniya M.; Kodama, Kazuto; Hori, Rie S.

    2016-06-01

    Understanding the contribution of biogenic magnetic particles into sedimentary assemblages is a current challenge in paleomagnetism. It has been demonstrated recently that magnetic particles produced through biologically controlled mineralization processes, such as magnetosomes from magnetotactic bacteria, contribute to the recording of natural remanent magnetization in marine and lacustrian sediments. Contributions from other, biologically induced, mineralization types, which are known from multiple laboratory experiments to include magnetic minerals, remain largely unknown. Here, we report magnetic properties of iron minerals formed by a community of iron- and manganese-reducing bacteria isolated from a natural groundwater deposit during a two year long incubation experiment. The main iron phases of the biomineralized mass are lepidocrocite, goethite and magnetite, each of which has environmental significance. Unlike the majority of the previous studies that reported superparamagnetic grain size, and thus no remanence carrying capacity of biologically induced magnetite, hysteresis and first order reversal curves measurements in our study have not detected significant superparamagnetic contribution. The biomineralized mass, instead, contains a mixture of single-domain to pseudo-single-domain and multi-domain magnetite particles that are capable of carrying a stable chemical remanent magnetization. Isothermal remanent magnetization acquisition parameters and first order reversal curves signatures of the biomineralized samples deviate from previously proposed criteria for the distinction of extracellular (biologically induced) magnetic particles in mixtures. Given its potential significance as a carrier of natural remanent magnetization, environmental requirements, distribution in nature and the efficiency in the geomagnetic field recording by biologically induced mineralization need comprehensive investigation.

  18. Magnetic properties of iron minerals produced by natural iron- and manganese-reducing groundwater bacteria

    NASA Astrophysics Data System (ADS)

    Abrajevitch, Alexandra; Kondratyeva, Lubov M.; Golubeva, Evgeniya M.; Kodama, Kazuto; Hori, Rie S.

    2016-08-01

    Understanding the contribution of biogenic magnetic particles into sedimentary assemblages is a current challenge in palaeomagnetism. It has been demonstrated recently that magnetic particles produced through biologically controlled mineralization processes, such as magnetosomes from magnetotactic bacteria, contribute to the recording of natural remanent magnetization in marine and lacustrian sediments. Contributions from other, biologically induced, mineralization types, which are known from multiple laboratory experiments to include magnetic minerals, remain largely unknown. Here, we report magnetic properties of iron minerals formed by a community of iron- and manganese-reducing bacteria isolated from a natural groundwater deposit during a 2 yr long incubation experiment. The main iron phases of the biomineralized mass are lepidocrocite, goethite and magnetite, each of which has environmental significance. Unlike the majority of the previous studies that reported superparamagnetic grain size, and thus no remanence carrying capacity of biologically induced magnetite, hysteresis and first-order reversal curves measurements in our study have not detected significant superparamagnetic contribution. The biomineralized mass, instead, contains a mixture of single-domain to pseudo-single-domain and multidomain magnetite particles that are capable of carrying a stable chemical remanent magnetization. Isothermal remanent magnetization acquisition parameters and first-order reversal curves signatures of the biomineralized samples deviate from previously proposed criteria for the distinction of extracellular (biologically induced) magnetic particles in mixtures. Given its potential significance as a carrier of natural remanent magnetization, environmental requirements, distribution in nature and the efficiency in the geomagnetic field recording by biologically induced mineralization need comprehensive investigation.

  19. Determination of urinary trace elements (arsenic, copper, cadmium, manganese, lead, zinc, selenium) in patients with Blackfoot disease.

    PubMed

    Tsai, Jin-Lian; Horng, Pin-Hua; Hwang, Tzung-Jeng; Hsu, John W; Horng, Ching-Jyi

    2004-12-01

    To determine the relationship of arsenic, copper, cadmium, manganese, lead, zinc and selenium to Blackfoot disease (BFD, a peripheral vascular disorder endemic to areas of Taiwan, which has been linked to arsenic in drinking water) the authors measured the amount of these substances in urine from BFD patients, using atomic absorption spectrometry. Results indicate significantly higher amounts of urinary arsenic, copper, cadmium, manganese, and lead for BFD patients than for normal controls, also significantly lower urinary zinc and selenium.

  20. Western Pacific coastal sources of iron, manganese, and aluminum to the Equatorial Undercurrent

    NASA Astrophysics Data System (ADS)

    Slemons, Lia O.; Murray, James W.; Resing, Joseph; Paul, Barbara; Dutrieux, Pierre

    2010-09-01

    We present results from the first zonal transect of iron, aluminum, and manganese conducted from the western source region of the Equatorial Undercurrent (EUC) to the central equatorial Pacific. Trace metals were elevated along the slope of Papua New Guinea and within the New Guinea Coastal Undercurrent (NGCU), which is the primary Southern Hemisphere entry path of water to the EUC. Subsurface maxima in total acid-soluble iron, aluminum, and manganese were evident in the EUC. These maxima were generally greatest in the western equatorial Pacific and decreased in magnitude eastward. Maxima in iron and aluminum persisted to 140°W; maxima in manganese extended to 175°W. Iron and manganese maxima were deeper (25-75 m) than aluminum maxima and located in the lower EUC, which undergoes less interior ocean mixing than shallower waters. The depth of the aluminum subsurface maxima correlated strongly (r = 0.88) with the depth of the EUC velocity maximum. Surface waters were enriched in aluminum and manganese offshore of Papua New Guinea. Surface metal concentrations decreased eastward throughout the western warm pool up to the longitude (˜180°W) of the salinity front. Detrital sediment input from either direct riverine input or sediment resuspension appeared to be the primary mechanism of supplying metals to the NGCU. We estimated eastward fluxes of metals in the EUC and found greatest fluxes in the western equatorial Pacific between 160°E and 165°E, except for aluminum. Fluxes of aluminum and, to a lesser extent, manganese increased concurrently with water volume transport in the central equatorial Pacific. Iron transport in the EUC remained constant east of the dateline, apparently due to the combined effects of dilution by meridional entrainment and scavenging. Iron was mobilized in a highly active western boundary current region and transported eastward in the lower EUC.

  1. Effect of olfactory manganese exposure on anxiety-related behavior in a mouse model of iron overload hemochromatosis.

    PubMed

    Ye, Qi; Kim, Jonghan

    2015-07-01

    Manganese in excess promotes unstable emotional behavior. Our previous study showed that olfactory manganese uptake into the brain is altered in Hfe(-/-) mice, a model of iron overload hemochromatosis, suggesting that Hfe deficiency could modify the neurotoxicity of airborne manganese. We determined anxiety-related behavior and monoaminergic protein expression after repeated intranasal instillation of MnCl2 to Hfe(-/-) mice. Compared with manganese-instilled wild-type mice, Hfe(-/-) mice showed decreased manganese accumulation in the cerebellum. Hfe(-/-) mice also exhibited increased anxiety with decreased exploratory activity and elevated dopamine D1 receptor and norepinephrine transporter in the striatum. Moreover, Hfe deficiency attenuated manganese-associated impulsivity and modified the effect of manganese on the expression of tyrosine hydroxylase, vesicular monoamine transporter and serotonin transporter. Together, our data indicate that loss of HFE function alters manganese-associated emotional behavior and further suggest that HFE could be a potential molecular target to alleviate affective disorders induced by manganese inhalation.

  2. Mineral resource of the month: manganese

    USGS Publications Warehouse

    Corathers, Lisa

    2012-01-01

    Manganese is a silver-colored metal resembling iron and often found in conjunction with iron. The earliest-known human use of manganese compounds was in the Stone Age, when early humans used manganese dioxide as pigments in cave paintings. In ancient Rome and Egypt, people started using it to color or remove the color from glass - a practice that continued to modern times. Today, manganese is predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production. Steel and cast iron together provide the largest market for manganese (historically 85 to 90 percent), but it is also alloyed with nonferrous metals such as aluminum and copper. Its importance to steel cannot be overstated, as almost all types of steel contain manganese and could not exist without it.

  3. The "manganese(III)-containing" purple acid phosphatase from sweet potatoes is an iron enzyme.

    PubMed

    Hefler, S K; Averill, B A

    1987-08-14

    An improved purification of the purple acid phosphatase from sweet potatoes has been developed, and the properties of the enzyme have been reexamined. Contrary to previous reports, (e.g., Y. Sugiura, et al., J. Biol. Chem., 256, 10664-10670 (1981) ), the enzyme contains two moles of iron and insignificant amounts of manganese. The specific activity of the iron-containing preparations is ca. 14 times higher than that reported previously for the purported "Mn(III)" enzyme. The sweet potato purple acid phosphatase does indeed bind manganese, but it can be removed by dialysis with no changes in specific activity or spectral properties.

  4. Zinc, copper, manganese, and selenium metabolism in patients with human growth hormone deficiency or acromegaly.

    PubMed

    Aihara, K; Nishi, Y; Hatano, S; Kihara, M; Ohta, M; Sakoda, K; Uozumi, T; Usui, T

    1985-08-01

    This study was designed to evaluate trace metal metabolism in patients with known abnormalities of human growth hormone (hGH). The mean concentration of zinc in plasma and urine decreased in patients with hGH deficiency after hGH injection, whereas, after adenomectomy, in patients with acromegaly, zinc increased in plasma, remained the same in erythrocytes, and decreased in urine. There was a negative correlation between plasma zinc and serum hGH levels and a positive correlation between urinary zinc excretion and serum hGH levels in acromegaly. In hGH deficiency, the copper content remained unchanged in plasma and erythrocytes and rose in urine after treatment; however, in acromegaly, the copper content increased in plasma and remained unchanged in erythrocytes and urine after surgery. The mean concentration of erythrocyte manganese did not change significantly after treatment in patients with hGH deficiency or acromegaly, but the pre-hGH treatment level of erythrocyte manganese in hGH deficiency was lower than in the controls. Plasma selenium concentrations were decreased in hGH deficiency and increased in acromegaly patients after therapy. These results suggest that hGH affects the metabolism of zinc, copper, manganese, and selenium.

  5. Geological reconnaissance of some Uruguayan iron and manganese deposits in 1962

    USGS Publications Warehouse

    Wallace, Roberts Manning

    1976-01-01

    Three mineralized areas lie in an area near the town of Minas de Corrales in the Departamento de Rivera; they are the Cerro Amelia, the Cerro de Papagayo, and the Cerro Iman. The Cerro Amelia is composed of small bands of iron-rich rock separated by an amphibolitic or mafic rock. Selective mining would be necessary to extract the 31,000 tons per meter of depth of iron-rich rock that ranges from 15 to 40 percent metallic iron. The Cerro de Papagayo district contains many small, rich deposits of ferruginous manganese ore. The ratio of Mn to Fe varies widely within each small deposit as well as from deposit to deposit. Some ferruginous manganese ore contains 50-55 percent manganese dioxide. Although there are many thousands of tons of ore in the district, small-scale mining operations are imperative. One deposit, the Cerro Avestuz manganese mine, was visited. The manganese ore body lies within contorted highly metamorphosed itabirite that contains both hard low grade and soft high grade ferruginous manganese ores estimated to average 40 percent Mn. About 38,000 tons of manganese ore is present in this deposit. The Cerro Iman is a large block of itabirite that contains about 40 percent Fe. The grade is variable and probably runs from less than 35 percent Fe to more than 50 percent Fe. No exploration has been done on this deposit. It is recommended that the Cerro de Iman area be geologically mapped in detail, and that a geological reconnaissance be made of the area that is between the Cuchilla de Corrales and the Cuchilla de Areycua/Cuchilla del Cerro Pelado area.

  6. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: arsenic, manganese, fluoride, iron, and uranium.

    PubMed

    Bacquart, Thomas; Frisbie, Seth; Mitchell, Erika; Grigg, Laurie; Cole, Christopher; Small, Colleen; Sarkar, Bibudhendra

    2015-06-01

    In South Asia, the technological and societal shift from drinking surface water to groundwater has resulted in a great reduction of acute diseases due to water borne pathogens. However, arsenic and other naturally occurring inorganic toxic substances present in groundwater in the region have been linked to a variety of chronic diseases, including cancers, heart disease, and neurological problems. Due to the highly specific symptoms of chronic arsenic poisoning, arsenic was the first inorganic toxic substance to be noticed at unsafe levels in the groundwater of West Bengal, India and Bangladesh. Subsequently, other inorganic toxic substances, including manganese, uranium, and fluoride have been found at unsafe levels in groundwater in South Asia. While numerous drinking water wells throughout Myanmar have been tested for arsenic, relatively little is known about the concentrations of other inorganic toxic substances in Myanmar groundwater. In this study, we analyzed samples from 18 drinking water wells (12 in Myingyan City and 6 in nearby Tha Pyay Thar Village) and 2 locations in the Ayeyarwaddy River for arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, fluoride, iron, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, uranium, vanadium, and zinc. Concentrations of arsenic, manganese, fluoride, iron, or uranium exceeded health-based reference values in most wells. In addition, any given well usually contained more than one toxic substance at unsafe concentrations. While water testing and well sharing could reduce health risks, none of the wells sampled provide water that is entirely safe with respect to inorganic toxic substances. It is imperative that users of these wells, and users of other wells that have not been tested for multiple inorganic toxic substances throughout the region, be informed of the need for drinking water testing and the health consequences of drinking water contaminated with inorganic toxic

  7. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: arsenic, manganese, fluoride, iron, and uranium.

    PubMed

    Bacquart, Thomas; Frisbie, Seth; Mitchell, Erika; Grigg, Laurie; Cole, Christopher; Small, Colleen; Sarkar, Bibudhendra

    2015-06-01

    In South Asia, the technological and societal shift from drinking surface water to groundwater has resulted in a great reduction of acute diseases due to water borne pathogens. However, arsenic and other naturally occurring inorganic toxic substances present in groundwater in the region have been linked to a variety of chronic diseases, including cancers, heart disease, and neurological problems. Due to the highly specific symptoms of chronic arsenic poisoning, arsenic was the first inorganic toxic substance to be noticed at unsafe levels in the groundwater of West Bengal, India and Bangladesh. Subsequently, other inorganic toxic substances, including manganese, uranium, and fluoride have been found at unsafe levels in groundwater in South Asia. While numerous drinking water wells throughout Myanmar have been tested for arsenic, relatively little is known about the concentrations of other inorganic toxic substances in Myanmar groundwater. In this study, we analyzed samples from 18 drinking water wells (12 in Myingyan City and 6 in nearby Tha Pyay Thar Village) and 2 locations in the Ayeyarwaddy River for arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, fluoride, iron, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, uranium, vanadium, and zinc. Concentrations of arsenic, manganese, fluoride, iron, or uranium exceeded health-based reference values in most wells. In addition, any given well usually contained more than one toxic substance at unsafe concentrations. While water testing and well sharing could reduce health risks, none of the wells sampled provide water that is entirely safe with respect to inorganic toxic substances. It is imperative that users of these wells, and users of other wells that have not been tested for multiple inorganic toxic substances throughout the region, be informed of the need for drinking water testing and the health consequences of drinking water contaminated with inorganic toxic

  8. Alteration of Serum Concentrations of Manganese, Iron, Ferritin, and Transferrin Receptor Following Exposure to Welding Fumes Among Career Welders

    PubMed Central

    Lu, Ling; Zhang, Long-lian; Li, G. Jane; Guo, Wenrui; Liang, Wannian; Zheng, Wei

    2014-01-01

    This study was performed to determine airborne manganese levels during welding practice and to establish the relationship between long-term, low-level exposure to manganese and altered serum concentrations of manganese, iron, and proteins associated with iron metabolism in career welders. Ninety-seven welders (average age of 36 years) who have engaged in electric arc weld in a vehicle manufacturer were recruited as the exposed group. Welders worked 7–8 h per day with employment duration of 1–33 years. Control subjects consisted of 91 employees (average age of 35 years) in the same factory but not in the welding profession. Ambient manganese levels in welders’ breathing zone were the highest inside the vehicle (1.5 ± 0.7 mg/m3), and the lowest in the center of the workshop (0.2 ± 0.05 mg/m3). Since the filter size was 0.8 μm, it is possible that these values may be likely an underestimation of the true manganese levels. Serum levels of manganese and iron in welders were about three-fold (p < 0.01) and 1.2-fold (p < 0.01), respectively, higher than those of controls. Serum concentrations of ferritin and transferrin were increased among welders, while serum transferrin receptor levels were significantly decreased in comparison to controls. Linear regression analyses revealed a lack of association between serum levels of manganese and iron. However, serum concentrations of iron and ferritin were positively associated with years of welder experience (p < 0.05). Moreover, serum transferrin receptor levels were inversely associated with serum manganese concentrations (p < 0.05). These findings suggest that exposure to welding fume among welders disturbs serum homeostasis of manganese, iron, and the proteins associated with iron metabolism. Serum manganese may serve as a reasonable biomarker for assessment of recent exposure to airborne manganese. PMID:15713346

  9. Chesterton soil concretions: ilmenite and not iron-manganese cementing matrix.

    PubMed

    White, K L

    1979-06-01

    Dark reddish-brown spherules are common in soils of the Chesterton soil series of a high marine terrace in southern California. The spherules are concretionary in structure and are bound by ilmenite rather than by an iron-manganese complex. The spherules have been mislabeled both with respect to structure and mineralogy.

  10. Oxidant Selection for the Treatment of Manganese (II), Iron (II), and Arsenic (III) in Groundwaters

    EPA Science Inventory

    In order to comply with the United States Environmental Protection Agency’s (U.S. EPA’s) arsenic standard and the manganese and iron secondary maximum contaminant levels (MCLs) in water (10µg/L, 50µg/L, and 300µg/L, respectively), many Midwestern water utilities must add a strong...

  11. Magnetic particles extracted from manganese nodules: Suggested origin from stony and iron meteorites

    USGS Publications Warehouse

    Finkelman, R.B.

    1970-01-01

    On the basis of x-ray diffraction and electron microprobe data, spherical and ellipsoidal particles extracted from manganese nodules were divided into three groups. Group I particles are believed to be derived from iron meteorites, and Group II particles from stony meteorites. Group III particles are believed to be volcanic in origin.

  12. Effect of excess iron and copper on physiology of aquatic plant Spirodela polyrrhiza (L.) Schleid.

    PubMed

    Xing, Wei; Huang, Wenmin; Liu, Guihua

    2010-04-01

    To elucidate effect of chemical reagents addition on growth of aquatic plants in restoration of aquatic ecosystem, Spirodela polyrrhiza (L.) Schleid was used to evaluate its physiological responses to excess iron (Fe(3+)) and copper (Cu(2+)) in the study. Results showed that accumulation of iron and copper both reached maximum at 100 mg L(-1) iron or copper after 24 h short-term stress, but excess iron and copper caused plants necrosis or death and colonies disintegration as well as roots abscission at excess metal concentrations except for 1 mg L(-1) iron. Significant differences in chlorophyll fluorescence (Fv/Fm) were observed at 1-100 mg L(-1) iron or copper. The synthesis of chlorophyll and protein as well as carbohydrate and the uptake of phosphate and nitrogen were inhibited seriously by excess iron and copper. Proline content decreased with increasing iron or copper concentration, however, MDA content increased with increasing iron or copper concentration.

  13. The effect of copper on iron reduction and its application to the determination of total iron content in iron and copper ores by potassium dichromate titration.

    PubMed

    Hu, Hanjun; Tang, Yang; Ying, Haisong; Wang, Minghai; Wan, Pingyu; Jin Yang, X

    2014-07-01

    The International Standard Organization (ISO) specifies two titrimetric methods for the determination of total iron content in iron ores using potassium dichromate as titrant after reduction of the iron(III) by tin(II) chloride and/or titanium(III) chloride. These two ISO methods (ISO2597-1 and ISO2597-2) require nearly boiling-point temperature for iron(III) reduction and suffer from copper interference and/or mercury pollution. In this study, potassium borohydride was used for reduction of iron(III) catalyzed by copper ions at ambient temperatures. In the absence of copper, iron(III) reduction by potassium borohydride was sluggish while a trace amount of copper significantly accelerated the reduction and reduced potassium borohydride consumption. The catalytic mechanism of iron(III) reduction in sulfuric acid and hydrochloric acid was investigated. Potassium borohydride in sodium hydroxide solution was stable without a significant degradation within 24h at ambient conditions and the use of potassium borohydride prepared in sodium hydroxide solution was safe and convenient in routine applications. The applicability of potassium borohydride reduction for the determination of total iron content by potassium dichromate titration was demonstrated by comparing with the ISO standard method using iron and copper ore reference materials and iron ore samples. PMID:24840467

  14. The effect of copper on iron reduction and its application to the determination of total iron content in iron and copper ores by potassium dichromate titration.

    PubMed

    Hu, Hanjun; Tang, Yang; Ying, Haisong; Wang, Minghai; Wan, Pingyu; Jin Yang, X

    2014-07-01

    The International Standard Organization (ISO) specifies two titrimetric methods for the determination of total iron content in iron ores using potassium dichromate as titrant after reduction of the iron(III) by tin(II) chloride and/or titanium(III) chloride. These two ISO methods (ISO2597-1 and ISO2597-2) require nearly boiling-point temperature for iron(III) reduction and suffer from copper interference and/or mercury pollution. In this study, potassium borohydride was used for reduction of iron(III) catalyzed by copper ions at ambient temperatures. In the absence of copper, iron(III) reduction by potassium borohydride was sluggish while a trace amount of copper significantly accelerated the reduction and reduced potassium borohydride consumption. The catalytic mechanism of iron(III) reduction in sulfuric acid and hydrochloric acid was investigated. Potassium borohydride in sodium hydroxide solution was stable without a significant degradation within 24h at ambient conditions and the use of potassium borohydride prepared in sodium hydroxide solution was safe and convenient in routine applications. The applicability of potassium borohydride reduction for the determination of total iron content by potassium dichromate titration was demonstrated by comparing with the ISO standard method using iron and copper ore reference materials and iron ore samples.

  15. Effects of copper on the photosynthesis of intact chloroplasts: interaction with manganese.

    PubMed

    Pádua, Mário; Cavaco, Ana M; Aubert, Serge; Bligny, Richard; Casimiro, Adalcina

    2010-03-01

    Highly purified, intact chloroplasts were prepared from pea (Pisum sativum L.) and spinach (Spinacia oleracea L.) following an identical procedure, and were used to investigate the cupric cation inhibition on the photosynthetic activity. In both species, copper inhibition showed a similar inhibitor concentration that decreases the enzyme activity by 50% (IC(50) approximately 1.8 microM) and did not depend on the internal or external phosphate (Pi) concentration, indicating that copper did not interact with the Pi translocator. Fluorescence analysis suggested that the presence of copper did not facilitate photoinhibition, because there were no changes in maximal fluorescence (F(m)) nor in basal fluorescence (F(o)) of copper-treated samples. The electron transport through the photosystem II (PSII) was also not affected (operating efficiency of PSII-F'v/F'm similar in all conditions). Yet, under Cu(2+) stress, the proportion of open PSII reaction centers was dramatically decreased, and the first quinone acceptor (Q(A)) reoxidation was fully inhibited, as demonstrated by the constant photochemical quenching (q(P)) along experiment time. The quantum yield of PSII electron transport (Phi(PSII)) was also clearly affected by copper, and therefore reduced the photochemistry efficiency. Manganese, when added simultaneously with copper, delayed the inhibition, as measured by oxygen evolution and chlorophyll fluorescence, but neither reversed the copper effect when added to copper-inhibited plastids, nor prevented the inhibition of the Hill activity of isolated copper-treated thylakoids. Our results suggest that manganese competed with copper to penetrate the chloroplast envelope. This competition seems to be specific because other divalent cations e.g. magnesium and calcium, did not interfere with the copper action in intact chloroplasts. All results do suggest that, under these conditions, the stroma proteins, such as the Calvin-Benson cycle enzymes or others are the most

  16. Copper-Based Electrochemical Sensor with Palladium Electrode for Cathodic Stripping Voltammetry of Manganese

    PubMed Central

    2015-01-01

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River. PMID:25476591

  17. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese.

    PubMed

    Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2014-12-16

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River.

  18. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese.

    PubMed

    Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2014-12-16

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River. PMID:25476591

  19. Effect of oxygen, methyl mercaptan, and methyl chloride on friction behavior of copper-iron contacts

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with an iron rider on a copper disk and a copper rider on an iron disk. The sputter cleaned iron and copper disk surfaces were saturated with oxygen, methyl mercaptan, and methyl chloride at atmospheric pressure. Auger emission spectroscopy was used to monitor the surfaces. Lower friction was obtained in all experiments with the copper rider sliding on the iron disk than when the couple was reversed. For both iron and copper disks, methyl mercaptan gave the best surface coverage and was most effective in reducing friction. For both iron and copper disks, methyl chloride was the least effective in reducing friction. With sliding, copper transferred to iron and iron to copper.

  20. Discrete Responses to Limitation for Iron and Manganese in Agrobacterium tumefaciens: Influence on Attachment and Biofilm Formation

    PubMed Central

    Hibbing, Michael E.; Xu, Jing; Natarajan, Ramya; Buechlein, Aaron M.

    2015-01-01

    ABSTRACT Transition metals such as iron and manganese are crucial trace nutrients for the growth of most bacteria, functioning as catalytic cofactors for many essential enzymes. Dedicated uptake and regulatory systems have evolved to ensure their acquisition for growth, while preventing toxicity. Transcriptomic analysis of the iron- and manganese-responsive regulons of Agrobacterium tumefaciens revealed that there are discrete regulatory networks that respond to changes in iron and manganese levels. Complementing earlier studies, the iron-responsive gene network is quite large and includes many aspects of iron-dependent metabolism and the iron-sparing response. In contrast, the manganese-responsive network is restricted to a limited number of genes, many of which can be linked to transport and utilization of the transition metal. Several of the target genes predicted to drive manganese uptake are required for growth under manganese-limited conditions, and an A. tumefaciens mutant with a manganese transport deficiency is attenuated for plant virulence. Iron and manganese limitation independently inhibit biofilm formation by A. tumefaciens, and several candidate genes that could impact biofilm formation were identified in each regulon. The biofilm-inhibitory effects of iron and manganese do not rely on recognized metal-responsive transcriptional regulators, suggesting alternate mechanisms influencing biofilm formation. However, under low-manganese conditions the dcpA operon is upregulated, encoding a system that controls levels of the cyclic di-GMP second messenger. Mutation of this regulatory pathway dampens the effect of manganese limitation. IMPORTANCE Responses to changes in transition metal levels, such as those of manganese and iron, are important for normal metabolism and growth in bacteria. Our study used global gene expression profiling to understand the response of the plant pathogen Agrobacterium tumefaciens to changes of transition metal availability

  1. Zebrafish in the sea of mineral (iron, zinc, and copper) metabolism

    PubMed Central

    Zhao, Lu; Xia, Zhidan; Wang, Fudi

    2014-01-01

    Iron, copper, zinc, and eight other minerals are classified as essential trace elements because they present in minute in vivo quantities and are essential for life. Because either excess or insufficient levels of trace elements can be detrimental to life (causing human diseases such as iron-deficiency anemia, hemochromatosis, Menkes syndrome and Wilson's disease), the endogenous levels of trace minerals must be tightly regulated. Many studies have demonstrated the existence of systems that maintain trace element homeostasis, and these systems are highly conserved in multiple species ranging from yeast to mice. As a model for studying trace mineral metabolism, the zebrafish is indispensable to researchers. Several large-scale mutagenesis screens have been performed in zebrafish, and these screens led to the identification of a series of metal transporters and the generation of several mutagenesis lines, providing an in-depth functional analysis at the system level. Moreover, because of their developmental advantages, zebrafish have also been used in mineral metabolism-related chemical screens and toxicology studies. Here, we systematically review the major findings of trace element homeostasis studies using the zebrafish model, with a focus on iron, zinc, copper, selenium, manganese, and iodine. We also provide a homology analysis of trace mineral transporters in fish, mice and humans. Finally, we discuss the evidence that zebrafish is an ideal experimental tool for uncovering novel mechanisms of trace mineral metabolism and for improving approaches to treat mineral imbalance-related diseases. PMID:24639652

  2. Bioavailability of zinc, copper, and manganese from infant diets

    SciTech Connect

    Bell, J.G.

    1987-01-01

    A series of trace element absorption experiments were performed using the Sprague-Dawley suckling rat put and infant rhesis monkey (Macaca mulatta) with extrinsic radiolabeling to assess the bioavailability of Zn, Cu, and Mn from infant diets and to examine specific factors that affect absorption of these essential nutrients. Bioavailability of Cu as assessed by 6 h liver uptake (% of /sup 64/Cu dose) was highest from human milk and cow milk based formula and significantly lower from cow milk and soy based formula. Copper bioavailability from infant cereal products as assessed by whole body uptake (% of /sup 64/Cu dose) in d 20 rats, 9 h postintubation, was low compared to the bioavailability from cow milk or human milk alone. /sup 65/Zn uptake in d 20 rats, 9 h postintubation, was significantly lower from cereals fed alone or in combination with cow or human milk as compared to the uptake from the milks fed alone. Zn bioavailability varied among cereal diets, (lowest from cereals containing phytate and highest from cereal/fruit products). Mn bioavailability from infant diets was assessed using a modified suckling rat pup model. Bioavailability (24 h whole body retention of /sup 54/Mn) was high from all milks and commercial formulas tested.

  3. Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver

    PubMed Central

    Aigner, Elmar; Weiss, Günter; Datz, Christian

    2015-01-01

    Elevated iron stores as indicated by hyperferritinemia with normal or mildly elevated transferrin saturation and mostly mild hepatic iron deposition are a characteristic finding in subjects with non-alcoholic fatty liver disease (NAFLD). Excess iron is observed in approximately one third of NAFLD patients and is commonly referred to as the “dysmetabolic iron overload syndrome”. Clinical evidence suggests that elevated body iron stores aggravate the clinical course of NAFLD with regard to liver-related and extrahepatic disease complications which relates to the fact that excess iron catalyses the formation of toxic hydroxyl-radicals subsequently resulting in cellular damage. Iron removal improves insulin sensitivity, delays the onset of type 2 diabetes mellitus, improves pathologic liver function tests and likewise ameliorates NAFLD histology. Several mechanisms contribute to pathologic iron accumulation in NAFLD. These include impaired iron export from hepatocytes and mesenchymal Kupffer cells as a consequence of imbalances in the concentrations of iron regulatory factors, such as hepcidin, cytokines, copper or other dietary factors. This review summarizes the knowledge about iron homeostasis in NAFLD and the rationale for its therapeutic implications. PMID:25729473

  4. Mechanism of Mineral Phase Reconstruction for Improving the Beneficiation of Copper and Iron from Copper Slag

    NASA Astrophysics Data System (ADS)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jan; Zhang, Feng

    2016-08-01

    To maximize the recovery of iron and copper from copper slag, the modification process by adding a compound additive (a mixture of hematite, pyrite and manganous oxide) and optimizing the cooling of the slag was studied. The phase reconstruction mechanism of the slag modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that the synergy between the burnt lime and the compound additive promotes the generation of target minerals, such as magnetite and copper matte. In addition, the multifunctional compound additive is able to improve the fluidity of the molten slag, which facilitates the coalescence and growth of fine particles of the target minerals. As a result, the percentage of iron distributed in the form of magnetite increased from 32.9% to 65.1%, and that of the copper exiting in the form of metallic copper and copper sulfide simultaneously increased from 80.0% to 90.3%. Meanwhile, the grains of the target minerals in the modified slag grew markedly to a mean size of over 50 μm after slow cooling. Ultimately, the beneficiation efficiency of copper and iron was improved because of the ease with which the target minerals could be liberated.

  5. Mechanism of Mineral Phase Reconstruction for Improving the Beneficiation of Copper and Iron from Copper Slag

    NASA Astrophysics Data System (ADS)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jan; Zhang, Feng

    2016-09-01

    To maximize the recovery of iron and copper from copper slag, the modification process by adding a compound additive (a mixture of hematite, pyrite and manganous oxide) and optimizing the cooling of the slag was studied. The phase reconstruction mechanism of the slag modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that the synergy between the burnt lime and the compound additive promotes the generation of target minerals, such as magnetite and copper matte. In addition, the multifunctional compound additive is able to improve the fluidity of the molten slag, which facilitates the coalescence and growth of fine particles of the target minerals. As a result, the percentage of iron distributed in the form of magnetite increased from 32.9% to 65.1%, and that of the copper exiting in the form of metallic copper and copper sulfide simultaneously increased from 80.0% to 90.3%. Meanwhile, the grains of the target minerals in the modified slag grew markedly to a mean size of over 50 μm after slow cooling. Ultimately, the beneficiation efficiency of copper and iron was improved because of the ease with which the target minerals could be liberated.

  6. Iron may play a role in pancreatic atrophy in copper deficiency

    SciTech Connect

    Fields, M.; Lewis, C.G.; Lure, M.D. Dept. of Agriculture, Beltsville, MD Univ. of Maryland, College Park )

    1991-03-15

    The present study was undertaken to determine if pancreatic atrophy in copper deficient rats fed fructose is associated with excessive iron deposition. Weanling male and female rats were fed a copper deficient or copper adequate diet containing 62% carbohydrate as either fructose or starch. Another group of weanling rats consumed a copper deficient diet containing fructose that was low in iron. After consuming their respective diets for five weeks, the highest pancreatic iron concentration was seen in male rats consuming the copper deficient diet containing fructose. These animals also exhibited pancreatic atrophy. In contrast, neither copper deficient female rats fed fructose nor males fed starch exhibited pancreatic atrophy and their pancreata did not contain high levels of iron. In addition, reducing the availability of dietary iron in copper deficient rats fed fructose decreased pancreatic iron concentration and ameliorated the pathology. The data suggest that pancreatic atrophy in copper deficiency may be related to iron deposition in that tissue.

  7. Investigating relationships between biomarkers of exposure and environmental copper and manganese levels in house dusts from a Portuguese industrial city.

    PubMed

    Reis, A P; Costa, S; Santos, I; Patinha, C; Noack, Y; Wragg, J; Cave, M; Sousa, A J

    2015-08-01

    This study reports on data obtained from a pilot survey focusing on house dust and toenail metal(loids) concentrations in residents living in the industrial city of Estarreja. The study design hereby described aims at investigating relationships between human toenails and both copper and manganese levels in settled house dusts. A total of 21 households and 30 individuals were recruited for the pilot study: 19 households corresponding to 27 residents living near the industrial complex, forming the exposed group, plus 2 households and 3 residents from residential areas with no anticipated environmental contaminants that were used for comparison. Factorial analysis was used for source identification purposes. Investigation on the potential influence of environmental factors over copper and manganese levels in the toenails was carried out via questionnaire data and multiple correspondence analysis. The results show that copper concentrations are more elevated in the indoor dusts, while manganese concentrations are more elevated in the outdoor dust samples. The geometrical relationships in the datasets suggest that the backyard soil is a probable source of manganese to the indoor dust. Copper and manganese contents in the toenail clippings are more elevated in children than in adults, but the difference between the two age groups is not statistically significant (p > 0.05). Investigation of environmental factors influencing the exposure-biomarker association indicates a probable relationship between manganese contents in indoor dust and manganese levels in toenail clippings, a result that is partially supported by the bioaccessibility estimates. However, for copper, no relationship was found between indoor dusts and the biomarkers of exposure.

  8. Molecular characterization of microbial populations in full-scale biofilters treating iron, manganese and ammonia containing groundwater in Harbin, China.

    PubMed

    Li, Xiang-kun; Chu, Zhao-rui; Liu, Ya-jun; Zhu, Meng-ting; Yang, Liu; Zhang, Jie

    2013-11-01

    In iron and manganese-containing groundwater treatment for drinking water production, biological filter is an effective process to remove such pollutants. Until now the exact microbial mechanism of iron and manganese removal, especially coupled with other pollutants, such as ammonia, has not been clearly understood. To assess this issue, the performance of a full-scale biofilter located in Harbin, China was monitored over four months. Microbial populations in the biofilter were investigated using T-RFLP and clone library technique. Results suggested that Gallionella, Leptothrix, Nitrospira, Hyphomicrobium and Pseudomonas are dominant in the biofilter and play major roles in the removal of iron, manganese and ammonia. The spatial distribution of microbial populations along the depth of the biofilter demonstrated the stratification of the removal of iron, manganese and ammonia. Additionally, the absence of ammonia-oxidizing bacteria in the biofilter implicated that ammonia-oxidizing archaea might be responsible for the oxidation of ammonia to nitrite. PMID:23994965

  9. Molecular characterization of microbial populations in full-scale biofilters treating iron, manganese and ammonia containing groundwater in Harbin, China.

    PubMed

    Li, Xiang-kun; Chu, Zhao-rui; Liu, Ya-jun; Zhu, Meng-ting; Yang, Liu; Zhang, Jie

    2013-11-01

    In iron and manganese-containing groundwater treatment for drinking water production, biological filter is an effective process to remove such pollutants. Until now the exact microbial mechanism of iron and manganese removal, especially coupled with other pollutants, such as ammonia, has not been clearly understood. To assess this issue, the performance of a full-scale biofilter located in Harbin, China was monitored over four months. Microbial populations in the biofilter were investigated using T-RFLP and clone library technique. Results suggested that Gallionella, Leptothrix, Nitrospira, Hyphomicrobium and Pseudomonas are dominant in the biofilter and play major roles in the removal of iron, manganese and ammonia. The spatial distribution of microbial populations along the depth of the biofilter demonstrated the stratification of the removal of iron, manganese and ammonia. Additionally, the absence of ammonia-oxidizing bacteria in the biofilter implicated that ammonia-oxidizing archaea might be responsible for the oxidation of ammonia to nitrite.

  10. Removal of Arsenic, Iron, Manganese, and Ammonia in Drinking Water: Nagaoka International Corporation CHEMILES NCL Series Water Treatment System

    EPA Science Inventory

    The Nagaoka International Corporation CHEMILES NCL Series system was tested to verify its performance for the reduction of multiple contaminants including: arsenic, ammonia, iron, and manganese. The objectives of this verification, as operated under the conditions at the test si...

  11. Synthesis of phase pure praseodymium barium copper iron oxide.

    PubMed

    Konne, Joshua L; Davis, Sean A; Glatzel, Stefan; Hall, Simon R

    2013-06-18

    The control of crystallization of praseodymium barium copper iron oxide, an intermediate temperature solid oxide fuel cell cathode material, has been demonstrated for the first time using a biotemplated sol-gel synthesis technique. The results obtained showed significant improvement in purity, synthesis time, surface area and simplicity over that previously reported.

  12. [Analysis on the variation characteristics of iron and manganese concentration and its genesis in Changtan Reservoir in Taizhou, Zhejiang Province].

    PubMed

    Liu, Shu-Yuan; Zheng, Chen; Yuan, Qi; Wang, Xian-Bing; Wang, Zi-Yan

    2014-10-01

    Changtan Reservoir in Taizhou City Zhejiang Province and its inflow rivers were surveyed in January and from April to December in 2013. Based on those data and the water quality monitoring data in Changtan Reservoir collected in previous years, the change characteristics of iron and manganese concentrations in source water reservoir were investigated. Furthermore, the causes of water pollution by iron and manganese were discussed based on the variation of water temperature, dissolved oxygen (DO) in reservoir with water depth. The results showed that the seasonal variation characteristics of iron and the manganese concentrations in reservoir were much in evidence. Their concentrations were high from June to August and the highest values over the years at the outlet of Changtan Reservoir were 2.38 mg · L(-1) and 1.24 mg · L(-1), respectively. The iron and the manganese concentrations exceeded the Surface Water Environment Quality Standard (GB 383822002) of 0.3 mg · L(-1) and 0.1 mg · L(-1) from May to October. And in 2013, their highest values in the reservoir outlet exceeded the standard by 5. 6 times and 12. 4 times, respectively. The maxima of iron and manganese concentrations in the major rivers were 0.89 mg · L(-1) and 0.56 mg · L(-1), which were lower than those in the reservoir outlet. The comprehensive analysis result indicated that the exogenous pollution was not the major source of iron and manganese in the reservoir. The iron and manganese concentration at the bottom of the reservoir reached the maximum in July, 2.42 mg · L(-1) and 1.20 mg · L(-1), respectively. The typical vertical distribution of temperature, DO and iron and manganese concentrations in the reservoir in summer showed that seasonal anoxic environment caused by the thermal stratification led to the release of iron manganese from the deposits. The endogenous pollution caused by thermal stratification effect was the direct cause for the high iron and manganese concentrations in water

  13. Manganese

    Integrated Risk Information System (IRIS)

    Manganese ; CASRN 7439 - 96 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  14. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

    NASA Astrophysics Data System (ADS)

    Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang

    2016-08-01

    In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.

  15. Low-temperature nitridation of manganese and iron oxides using NaNH2 molten salt.

    PubMed

    Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro

    2013-10-21

    Manganese and iron nitrides are important functional materials, but their synthesis processes from oxides often require high temperatures. Herein, we show a novel meta-synthesis method for manganese and iron nitrides by low-temperature nitridation of their oxides using NaNH2 molten salt as the nitrogen source in an autoclave at 240 °C. With this method, nitridation of micrometer-sized oxide particles kept their initial morphologies, but the size of the primary particles decreased. The thermodynamic driving force is considered to be the conversion of oxides to sodium hydroxide, and the kinetic of nitridation is improved by the decrease of particle size and the low melting point of NaNH2. This technique as developed here has the advantages of low reaction temperature, reduced consumption of ammonia, employing nonspecialized equipment, and providing facile control of the reactions for producing nitrides from oxides.

  16. Regional Distribution of Copper, Zinc and Iron in Brain of Wistar Rat Model for Non-Wilsonian Brain Copper Toxicosis.

    PubMed

    Pal, Amit; Prasad, Rajendra

    2016-03-01

    In previous studies, we have reported first in vivo evidence of copper deposition in the choroid plexus, cognitive impairments, astrocytes swelling (Alzheimer type II cells) and astrogliosis (increase in number of astrocytes), and degenerated neurons coupled with significant increase in the hippocampus copper and zinc content in copper-intoxicated Wistar rats. Nonetheless, hippocampus iron levels were not affected by chronic copper-intoxication. Notwithstanding information on distribution of copper, zinc and iron status in different regions of brain due to chronic copper exposure remains fragmentary. In continuation with our previous study, the aim of this study was to investigate the effects of intraperitoneally injected copper lactate (0.15 mg Cu/100 g body weight) daily for 90 days on copper, zinc and iron levels in different regions of the brain using atomic absorption spectrophotometry. Copper-intoxicated group showed significantly increased cortex, cerebellum and striatum copper content (76, 46.8 and 80.7 % increase, respectively) compared to control group. However, non-significant changes were observed for the zinc and iron content in cortex, cerebellum and striatum due to chronic copper exposure. In conclusion, the current study demonstrates that chronic copper toxicity causes differential copper buildup in cortex, cerebellum and striatum region of central nervous system of male Wistar rats; signifying the critical requirement to discretely evaluate the effect of copper neurotoxicity in different brain regions, and ensuing neuropathological and cognitive dysfunctions. PMID:26855494

  17. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Saffarini, D.

    1994-01-01

    Dissimilatory iron and/or manganese reduction is known to occur in several organisms, including anaerobic sulfur-reducing organisms such as Geobacter metallireducens or Desulfuromonas acetoxidans, and facultative aerobes such as Shewanella putrefaciens. These bacteria couple both carbon oxidation and growth to the reduction of these metals, and inhibitor and competition experiments suggest that Mn(IV) and Fe(III) are efficient electron acceptors similar to nitrate in redox abilities and capable of out-competing electron acceptors of lower potential, such as sulfate (sulfate reduction) or CO2 (methanogenesis). Field studies of iron and/or manganese reduction suggest that organisms with such metabolic abilities play important roles in coupling the oxidation of organic carbon to metal reduction under anaerobic conditions. Because both iron and manganese oxides are solids or colloids, they tend to settle downward in aquatic environments, providing a physical mechanism for the movement of oxidizing potential into anoxic zones. The resulting biogeochemical metal cycles have a strong impact on many other elements including carbon, sulfur, phosphorous, and trace metals.

  18. Abu Zenima synthetic zeolite for removing iron and manganese from Assiut governorate groundwater, Egypt

    NASA Astrophysics Data System (ADS)

    Farrag, Abd El Hay Ali; Abdel Moghny, Th.; Mohamed, Atef Mohamed Gad; Saleem, Saleem Sayed; Fathy, Mahmoud

    2016-06-01

    Groundwater in Upper Egypt especially in Assiut Governorate is considered the second source of fresh water and used for drinking, agriculture, domestic and industrial purposes. Unfortunately, it is characterized by high concentrations of iron and manganese ions. The study aimed at synthesizing zeolite-4A from kaolinite for removing the excess iron and manganese ions from Assiut Governorate groundwater wells. Therefor, the kaolinite was hydrothermally treated through the metakaolinization and zeolitization processes to produce crystalline zeolite-4A. The chemical composition of crystalline zeolite-4A and its morphology were then characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Then the column experiments were conducted to study the performance of crystalline salt-4A as ion exchange and investigate their operating parameters and regeneration conditions. Thomas and Yoon-Nelson models were applied to predict adsorption capacity and the time required for 50 % breakthrough curves. The effects of initial concentrations of 600 and 1000 mg L-1 for Fe2+ and Mn2+, feed flow rate of 10-30 ml/min, and height range of 0.4-1.5 cm on the breakthrough behavior of the adsorption system were determined. The obtained results indicated that the synthesized zeolite-A4 can remove iron and manganese ions from groundwater to the permissible limit according to the standards drinking water law.

  19. Mineral of the month: manganese

    USGS Publications Warehouse

    Corathers, Lisa

    2005-01-01

    Manganese is one of the most important ferrous metals and one of the few for which the United States is totally dependent on imports. It is a black, brittle element predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production, which together provide the largest market for manganese (about 83 percent). It is also used as an alloy with nonferrous metals such as aluminum and copper. Nonmetallurgical applications of manganese include battery cathodes, soft ferrite magnets used in electronics, micronutrients found in fertilizers and animal feed, water treatment chemicals, and a colorant for bricks and ceramics.

  20. Sorption of ferric iron from ferrioxamine B to synthetic and biogenic layer type manganese oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, Owen W.; Bargar, John R.; Sposito, Garrison

    2008-07-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments that increase the bioavailability of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but scant information appears to be available about the potential roles of layer type manganese oxides, which are relatively abundant in soils and the oligotrophic marine water column. To probe the effects of layer type manganese oxides on the stability of aqueous Fe-siderophore complexes, we studied the sorption of ferrioxamine B [Fe(III)HDFOB +, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] to two synthetic birnessites [layer type Mn(III,IV) oxides] and a biogenic birnessite produced by Pseudomonas putida GB-1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB + at pH 8. Analysis of Fe K-edge EXAFS spectra indicated that a dominant fraction of Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to the mineral structure at multiple sites, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that layer type manganese oxides, including biogenic minerals, may sequester iron from soluble ferric complexes. We conclude that the sorption of iron-siderophore complexes may play a significant role in the bioavailability and biogeochemical cycling of iron in marine and terrestrial environments.

  1. A novel zerovalent manganese for removal of copper ions: synthesis, characterization and adsorption studies

    NASA Astrophysics Data System (ADS)

    Dada, A. O.; Adekola, F. A.; Odebunmi, E. O.

    2015-11-01

    Synthesis of nanoscale zerovalent manganese (nZVMn) by chemical reduction was carried out in a single pot system under inert environment. nZVMn was characterized using a combination of analytical techniques: Ultraviolet-Visible Spectroscopy, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersive X-ray, BET surface area and Point of Zero Charge. The adsorption physicochemical factors: pH, contact time, adsorbent dose, agitation speed, initial copper ion concentration and temperature were optimized. The kinetic data fitted better to Pseudo second-order, Elovich, fractional power and intraparticle diffusion models and their validity was tested by three statistical models: sum of square error, Chi-square (χ 2) and normalized standard deviation (Δq). Seven of the two-parameter isotherm models [Freundlich, Langmuir, Temkin, Dubinin-Kaganer-Raduskevich (DKR), Halsey, Harkin-Jura and Flory-Huggins] were used to analyse the equilibrium adsorption data. The Langmuir monolayer adsorption capacity (Q max = 181.818 mg/g) obtained is greater than other those of nano-adsorbents utilized in adsorption of copper ions. The equilibrium adsorption data were better described by Langmuir, Freundlich, Temkin, DKR and Halsey isotherm models considering their coefficient of regression (R 2 > 0.90). The values of the thermodynamic parameters: standard enthalpy change ∆H° (+50.27848 kJ mol-1), standard entropy change ∆S° (203.5724 J mol-1 K-1) and the Gibbs free energy change ∆G° revealed that the adsorption process was feasible, spontaneous, and endothermic in nature. The performance of this novel nanoscale zerovalent manganese (nZVMn) suggested that it has a great potential for effective removal of copper ions from aqueous solution.

  2. Occurrence and Distribution of Iron, Manganese, and Selected Trace Elements in Ground Water in the Glacial Aquifer System of the Northern United States

    USGS Publications Warehouse

    Groschen, George E.; Arnold, Terri L.; Morrow, William S.; Warner, Kelly L.

    2009-01-01

    Dissolved trace elements, including iron and manganese, are often an important factor in use of ground water for drinking-water supplies in the glacial aquifer system of the United States. The glacial aquifer system underlies most of New England, extends through the Midwest, and underlies portions of the Pacific Northwest and Alaska. Concentrations of dissolved trace elements in ground water can vary over several orders of magnitude across local well networks as well as across regions of the United States. Characterization of this variability is a step toward a regional screening-level assessment of potential human-health implications. Ground-water sampling, from 1991 through 2003, of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey determined trace element concentrations in water from 847 wells in the glacial aquifer system. Dissolved iron and manganese concentrations were analyzed in those well samples and in water from an additional 743 NAWQA land-use and major-aquifer survey wells. The samples are from monitoring and water-supply wells. Concentrations of antimony, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, selenium, strontium, thallium, uranium, and zinc vary as much within NAWQA study units (local scale; ranging in size from a few thousand to tens of thousands of square miles) as over the entire glacial aquifer system. Patterns of trace element concentrations in glacial aquifer system ground water were examined by using techniques suitable for a dataset with zero to 80 percent of analytical results reported as below detection. During the period of sampling, the analytical techniques changed, which generally improved the analytical sensitivity. Multiple reporting limits complicated the comparison of detections and concentrations. Regression on Order Statistics was used to model probability distributions and estimate the medians and other quantiles of the trace element

  3. Expanding the menu for carnivorous plants: uptake of potassium, iron and manganese by carnivorous pitcher plants.

    PubMed

    Adlassnig, Wolfram; Steinhauser, Georg; Peroutka, Marianne; Musilek, Andreas; Sterba, Johannes H; Lichtscheidl, Irene K; Bichler, Max

    2009-12-01

    Carnivorous plants use animals as fertiliser substitutes which allow them to survive on nutrient deficient soils. Most research concentrated on the uptake of the prey's nitrogen and phosphorus; only little is known on the utilisation of other elements. We studied the uptake of three essential nutrients, potassium, iron and manganese, in three species of carnivorous pitcher plants (Cephalotus follicularis LaBilladiere, Sarracenia purpureaL., Heliamphora nutans Bentham). Using relatively short-lived and gamma-emitting radiotracers, we significantly improved the sensitivity compared to conventional protocols and gained the following results. We demonstrated the uptake of trace elements like iron and manganese. In addition, we found direct evidence for the uptake of potassium into the pitcher tissue. Potassium and manganese were absorbed to virtually 100% if offered in physiological concentrations or below in Cephalotus. Analysis of pitcher fluid collected in the natural habitat showed that uptake was performed here as efficiently as in the laboratory. The absorption of nutrients is an active process depending on living glandular cells in the pitcher epidermis and can be inhibited by azide. Unphysiologically high amounts of nutrients were taken up for a short time, but after a few hours the absorbing cells were damaged, and uptake stopped. Absorption rates of pitcher leaves from plants under controlled conditions varied highly, indicating that each trap is functionally independent. The comparison of minerals in typical prey with the plants' tissues showed that a complete coverage of the plants' needs by prey capture is improbable.

  4. Expanding the menu for carnivorous plants: uptake of potassium, iron and manganese by carnivorous pitcher plants.

    PubMed

    Adlassnig, Wolfram; Steinhauser, Georg; Peroutka, Marianne; Musilek, Andreas; Sterba, Johannes H; Lichtscheidl, Irene K; Bichler, Max

    2009-12-01

    Carnivorous plants use animals as fertiliser substitutes which allow them to survive on nutrient deficient soils. Most research concentrated on the uptake of the prey's nitrogen and phosphorus; only little is known on the utilisation of other elements. We studied the uptake of three essential nutrients, potassium, iron and manganese, in three species of carnivorous pitcher plants (Cephalotus follicularis LaBilladiere, Sarracenia purpureaL., Heliamphora nutans Bentham). Using relatively short-lived and gamma-emitting radiotracers, we significantly improved the sensitivity compared to conventional protocols and gained the following results. We demonstrated the uptake of trace elements like iron and manganese. In addition, we found direct evidence for the uptake of potassium into the pitcher tissue. Potassium and manganese were absorbed to virtually 100% if offered in physiological concentrations or below in Cephalotus. Analysis of pitcher fluid collected in the natural habitat showed that uptake was performed here as efficiently as in the laboratory. The absorption of nutrients is an active process depending on living glandular cells in the pitcher epidermis and can be inhibited by azide. Unphysiologically high amounts of nutrients were taken up for a short time, but after a few hours the absorbing cells were damaged, and uptake stopped. Absorption rates of pitcher leaves from plants under controlled conditions varied highly, indicating that each trap is functionally independent. The comparison of minerals in typical prey with the plants' tissues showed that a complete coverage of the plants' needs by prey capture is improbable. PMID:19428263

  5. Methods for making a supported iron-copper catalyst

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald

    1986-01-01

    A catalyst is described for the synthesis of hydrocarbons from CO+H.sub.2 utilizing a porous Al.sub.2 O.sub.3 support impregnated with iron and copper and optionally promoted with an alkali metal. The use of an Al.sub.2 O.sub.3 support results in the suppression of heavy waxes (C.sub.26 + hydrocarbons), particularly in slurry phase operation, when compared to unsupported or co-precipitated catalysts.

  6. In situ observations of dissolved iron and manganese in hydrothermal vent plumes, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Chin, Carol S.; Coale, Kenneth H.; Elrod, Virginia A.; Johnson, Kenneth S.; Massoth, Gary J.; Baker, Edward T.

    1994-03-01

    In situ mesaurements of dissolved manganese and total dissolved iron were conducted in hydrothermal plumes over the Juan de Fuca Ridge using a submersible chemical analyzer (Scanner). The Scanner was deployed as part of a conductivity, temperature, depth (CTD)/transmissometer rosette instrument package on both tow-yos and vertical casts during the VENTS Leg I cruise in 1989. Dissolved manganese and total dissolved iron concentrations, along with temperature and light attenuation anomalies, were determined over the ridge crest every 5 s. Discrete samples for laboratory analyses of dissolved iron II, total dissolved iron II+III and manganese were also collected. Metal to heat ratios (Me:Q) measured in situ were extremely variable in one steady state plume, while an event plume had constant Me:Q. Uniform values of Mn:Q in the event plume demonstrate that Mn behaves conservatively in the near-field plume. Variability in the Mn:Q ratios in a steady state plume indicated the presence of at least two hydrothermal sources with distinct Me:Q values. A simple mixing model shows that the contribution of Mn from high Me:Q sources, with a composition characteristic of black smoker vents, varies between 1% and 99% within the core of the steady state plume with an average value of 55%. On average, over 50% of the excess heat within the plume originates from low Me:Q ratio sources, with a composition characteristic of low-temperature, diffuse flow vent fluids. Less than 4% of the volume of hydrothermal fluids in the plume originates from black smokers. The Fe II concentrations were used to provide an estimate of plume age on a transect across the ridge axis. Plume ages were about 2.5 days on axis and greater than 12 days off axis. These plume ages were modeled to provide estimates of plume transport and horizontal diffusion and show excellent agreement with ages determined using Rn-222.

  7. Application of chromatography and mass spectrometry to the characterization of cobalt, copper, manganese and molybdenum in Morinda citrifolia.

    PubMed

    Rybak, Justyna; Ruzik, Lena

    2013-03-15

    An analytical procedure was proposed to determine the manganese species and to study the fractionation of microelements such as copper, cobalt and molybdenum in Noni juice. Morinda citrifolia is known as a noni fruit, Indian mulberry, nunaakai, dog dumpling, mengkudu, beach mulberry, vomit fruit and cheese fruit. It is a tropical plant with a long tradition of medicinal use in Polynesia and tropical parts of eastern Asia and Australia. This article covers the determination of manganese species in Noni juice and established by fractionation by size exclusion chromatography inductively coupled plasma mass spectrometry (SEC ICP MS) and next characterization of species by electrospray ionization mass spectrometry (ESI MS). Also presented the fractionation analysis of copper, cobalt and molybdenum in Noni juice sample using SEC ICP MS - juice was treated with buffer and enzymatic extraction media and analyzed. For the evaluation of the amounts of the metal fractions distinguished, the ICP MS was used off-line prior to the determination of copper, cobalt, molybdenum and manganese concentrations in the juice. It was established that elements are present in the analyzed samples in different species and their concentration is μg mL(-1) and ng mL(-1) range in fruit. The accuracy of the entire fractionation scheme and sample preparation procedures involved was verified by the performance of the recovery test. For the information about the bioavailability of these elements, in vitro bioavailability investigation was used by SEC ICP MS technique. Two step digestion model simulating gastric (pepsin digestion) and intestinal (pancreatin digestion) juices. In Noni juice, manganese is complexed from flavonoids - rutin, from dye like anthraquinone (alizarin) and glycosides - asperulosidic acid (ESI MS - characterization). The study shows that copper and molybdenum contained in Noni juice are complexed by peptides, and cobalt by organic acids (which are 3.6% of juice). Molybdenum in

  8. Iron and copper catalysis of PCDD/F formation.

    PubMed

    Liao, Junhong; Buekens, Alfons; Olie, Kees; Yang, Jie; Chen, Tong; Li, Xiaodong

    2016-02-01

    The formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) was explored during de novo tests designed to compare the catalytic activity of copper (II) chloride (CuCl2) with that of iron (III) oxide (Fe2O3) and to test some synergistic effect between these two catalytic compounds. Both copper chloride (CuCl2) and iron oxide (Fe2O3) were earlier proposed as catalysts to explain the PCDD/F emissions from, e.g. municipal solid waste incineration (MSWI). In addition, haematite (Fe2O3) is the main iron ore and could be responsible for the typical iron ore sintering plant fingerprint. A total of nine model fly ash (MFA) samples were prepared by mixing and grinding of sodium chloride (NaCl), activated carbon and a powder matrix of silica (SiO2) with the selected metal compound(s). The conditions of these de novo tests were 1 h in duration, 350 °C in a flow of synthetic combustion gas (10 vol.% oxygen in nitrogen). The effect of Fe-Cu catalyst concentration on yield and distribution pattern of PCDD/F was systematically explored; three strongly differing ratios of [Fe]:[Cu] were considered (1:1, 10:1 and 100:1) to study the potential interactions of Fe2O3 and CuCl2 suggested earlier. The results show some slight rise of PCDD/F formed with raising iron concentration from 0 to 10.1 wt% (no Cu added; 0.1 wt% Cu), as well as strong surging of both amount and average chlorination level of PCDD/F when rising amounts of copper (0 to 1.1 wt%) are introduced. The resulting fingerprints are compared with those from sintering and from MSWI. PMID:26416123

  9. The photochemistry of manganese and the origin of banded iron formations

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Holland, H. D.

    1992-01-01

    The origin of the deposition of superior-type Precambrian banded iron formations (BIFs) is investigated in experiments where the effect of UV radiation on dissolved manganese was studied to determine if the commonly accepted photochemical model for BIF formation is consistent with the distribution of Mn in BIFs. Solutions containing 0.56 M NaCl and about 180 microM MnCl2, with or without 3 to 200 microM FeCl2 were irradiated with filtered and unfiltered UV light for up to 8 hrs; the solutions were deaerated and buffered to a pH of 7, and the experiments were conducted under oxygen-free atmosphere. Data on the rate of manganese photooxidation confirmed that a photochemical model for the origin of oxide facies BIFs is consistent with field observations.

  10. Effect of olfactory manganese exposure on anxiety-related behavior in a mouse model of iron overload hemochromatosis

    PubMed Central

    Ye, Qi; Kim, Jonghan

    2015-01-01

    Manganese in excess promotes unstable emotional behavior. Our previous study showed that olfactory manganese uptake into the brain is altered in Hfe−/− mice, a model of iron overload hemochromatosis, suggesting that Hfe deficiency could modify the neurotoxicity of airborne manganese. We determined anxiety-related behavior and monoaminergic protein expression after repeated intranasal instillation of MnCl2 to Hfe−/− mice. Compared with manganese-instilled wild-type mice, Hfe−/− mice showed decreased manganese accumulation in the cerebellum. Hfe−/− mice also exhibited increased anxiety with decreased exploratory activity and elevated dopamine D1 receptor and norepinephrine transporter in the striatum. Moreover, Hfe deficiency attenuated manganese-associated impulsivity and modified the effect of manganese on the expression of tyrosine hydroxylase, vesicular monoamine transporter and serotonin transporter. Together, our data indicate that loss of HFE function alters manganese-associated emotional behavior and further suggest that HFE could be a potential molecular target to alleviate affective disorders induced by manganese inhalation. PMID:26189056

  11. Magnetic, dielectric and sensing properties of manganese substituted copper ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, E. Ranjith; Jayaprakash, R.; Devi, G. Sarala; Reddy, P. Siva Prasada

    2014-04-01

    Manganese substituted copper ferrite nanoparticles were synthesized by an auto-combustion technique using metal nitrates and urea for gas sensor application. The products were characterized by XRD, SEM, EDX, TEM and VSM techniques. The effect of annealing temperature on the particle size, magnetic and dielectric properties of Mn-Cu ferrite nanoparticles was analyzed. The size of the particles are in the range of ~9-45 nm. The effect of annealing on the magnetic properties is discussed with the help of variation in saturation magnetization (Ms) and coercivity (Hc) by vibrating sample magnetometer (VSM). The dielectric loss and dielectric constant have been measured in the frequency range of 100 kHz-5 MHz. Furthermore, Conductance response of Mn-Cu ferrite nanomaterial was measured by exposing the material to reducing gas like liquefied petroleum gas (LPG).

  12. Highly Efficient Elimination of Carbon Monoxide with Binary Copper-Manganese Oxide Contained Ordered Nanoporous Silicas.

    PubMed

    Lee, Jiho; Kim, Hwayoun; Lee, Hyesun; Jang, Seojun; Chang, Jeong Ho

    2016-12-01

    Ordered nanoporous silicas containing various binary copper-manganese oxides were prepared as catalytic systems for effective carbon monoxide elimination. The carbon monoxide elimination efficiency was demonstrated as a function of the [Mn]/[Cu] ratio and reaction time. The prepared catalysts were characterized by Brunauer-Emmett-Teller (BET) method, small- and wide-angle X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM) for structural analysis. Moreover, quantitative analysis of the binary metal oxides within the nanoporous silica was achieved by inductively coupled plasma (ICP). The binary metal oxide-loaded nanoporous silica showed high room temperature catalytic efficiency with over 98 % elimination of carbon monoxide at higher concentration ratio of [Mn]/[Cu].

  13. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    NASA Astrophysics Data System (ADS)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  14. Structure and Properties of Cast Near-Congruent Copper-Manganese Alloys

    NASA Astrophysics Data System (ADS)

    Chaput, Kevin; Trumble, Kevin P.

    2014-10-01

    Microstructure development in the casting of copper-manganese alloys based on the congruent point at 34.6 wt pct Mn and 1146 K (873 °C) has been studied. The alloys were prepared by induction melting of electrolytic Cu and Mn in clay-graphite crucibles in open air. Under conventional casting conditions, the alloys exhibit fine cellular (non-dendritic) solidification morphology with a distinct absence of solidification shrinkage microporosity, and they maintain these attributes over a composition range of approximately 3 wt pct Mn about the congruent point. The high Mn concentration in the alloy admits carbon into solution in the melt, resulting in formation of manganese carbide Mn7C3 particles having two different forms (globular and angular) in the cast microstructure. The Mn carbide was eliminated or controlled to low levels by melting in an alumina or a silicon carbide crucible, or in a clay-graphite crucible at lower temperatures. Microstructure development in casting the alloy was analyzed in terms of the available phase diagrams and thermochemical data. Hardness and tensile testing indicated a potent solid solution strengthening effect of Mn and high ductility in the as-cast condition, with additional hardness (strength) when the alloy contains the Mn carbide phase.

  15. The photochemistry of manganese and the origin of Banded Iron Formations.

    PubMed

    Anbar, A D; Holland, H D

    1992-07-01

    The photochemical oxidation of Fe(2+) -hydroxide complexes dissolved in anoxic Precambrian oceans has been suggested as a mechanism to explain the deposition of Banded Iron Formations (BIFs). Photochemical studies have not yet addressed the low levels of manganese in many of these deposits, which probably precipitated from solutions bearing similar concentrations of Fe2+ and Mn2+. Depositional models must also explain the stratigraphic separation of iron and manganese ores in manganiferous BIFs. In this study, solutions containing 0.56 M NaCl and approximately 180 micromoles MnCl2 with or without 3 to 200 micromoles FeCl2 were irradiated with filtered and unfiltered UV light from a medium-pressure mercury-vapor lamp for up to 8 hours. The solutions were deaerated and buffered to pH approximately 7, and all experiments were conducted under O2-free (< 1 ppm) atmospheres. In experiments with NaCl + MnCl2, approximately 20% of the Mn2+ was oxidized and precipitated as birnessite in 8 hours. Manganese precipitation was only observed when light with lambda < 240 nm was used. In experiments with NaCl + MnCl2 + FeCl2, little manganese was lost from solution, while Fe2+ was rapidly oxidized to Fe3+ and precipitated as gamma-FeOOH or as amorphous ferric hydroxide. The Mn:Fe ratio of these precipitates was approximately 1:50, similar to the ratios observed in BIFs. A strong upper limit on the rate of manganese photo-oxidation during the Precambrian is estimated to be 0.1 mg cm-2 yr-1, a factor of 10(3) slower than the rate of iron photo-oxidation considered reasonable in BIF depositional basins. Thus, a photochemical model for the origin of oxide facies BIFs is consistent with field observations, although models that invoke molecular O2 as the oxidant of Fe2+ and Mn2+ are not precluded. Apparently, oxide facies BIFs could have formed under anoxic, as well as under mildly oxygenated atmospheres. PMID:11537803

  16. Influences of water treatment process on iron and copper release in distribution system.

    PubMed

    Shi, Baoyou; Xiao, Weizhong; Taylor, James S

    2006-01-01

    A pilot study was conducted to assess the effect of water quality changes on iron and copper release in distribution systems. Three finished waters were prepared from groundwater source by conventional treatment, lime softening and reverse osmosis (RO). To mimic desalinated seawater, sea salts were added to RO treated water. Both lime softening and RO treatment significantly decreased the calcium concentration and alkalinity of groundwater. During a yearlong investigation, the impact of seasonal changes on iron and copper release was also evaluated. The results showed that groundwater after lime softening slightly increased iron release potential but significantly decreased copper release. Desalination water caused much higher iron release but lower copper release than conventionally treated groundwater. Blended water with conventional groundwater and desalination water resulted in intermediate iron release but much high copper release. Both iron and copper release could be accelerated by temperature increase.

  17. Growth and Dissolution of Iron and Manganese Oxide Films

    SciTech Connect

    Scot T. Martin

    2008-12-22

    Growth and dissolution of Fe and Mn oxide films are key regulators of the fate and transport of heavy metals in the environment, especially during changing seasonal conditions of pH and dissolved oxygen. The Fe and Mn are present at much higher concentrations than the heavy metals, and, when Fe and Mn precipitate as oxide films, heavy metals surface adsorb or co-precipitate and are thus essentially immobilized. Conversely, when the Fe and Mn oxide films dissolve, the heavy metals are released to aqueous solution and are thus mobilized for transport. Therefore, understanding the dynamics and properties of Fe and Mn oxide films and thus on the uptake and release of heavy metals is critically important to any attempt to develop mechanistic, quantitative models of the fate, transport, and bioavailablity of heavy metals. A primary capability developed in our earlier work was the ability to grow manganese oxide (MnO{sub x}) films on rhodochrosite (MnCO{sub 3}) substrate in presence of dissolved oxygen under mild alkaline conditions. The morphology of the films was characterized using contact-mode atomic force microscopy. The initial growth began by heteroepitaxial nucleation. The resulting films had maximum heights of 1.5 to 2 nm as a result of thermodynamic constraints. Over the three past years, we have investigated the effects of MnO{sub x} growth on the interactions of MnCO{sub 3} with charged ions and microorganisms, as regulated by the surface electrical properties of the mineral. In 2006, we demonstrated that MnO{sub x} growth could induce interfacial repulsion and surface adhesion on the otherwise neutral MnCO{sub 3} substrate under environmental conditions. Using force-volume microscopy (FVM), we measured the interfacial and adhesive forces on a MnO{sub x}/MnCO{sub 3} surface with a negatively charged silicon nitride tip in a 10-mM NaNO3 solution at pH 7.4. The interfacial force and surface adhesion of MnOx were approximately 40 pN and 600 pN, respectively

  18. Effect of austempering time on mechanical properties of a low manganese austempered ductile iron

    SciTech Connect

    Putatunda, S.K.; Gadicherla, P.K.

    2000-04-01

    An investigation was carried out to examine the influence of austempering time on the resultant microstructure and the room-temperature mechanical properties of an unalloyed and low manganese ductile cast iron with initially ferritic as-cast structure. The effect of austempering time on the plane strain fracture toughness of this material was also studied. Compact tension and round cylindrical tensile specimens were prepared from unalloyed ductile cast iron with low manganese content and with a ferritic as-cast (solidified) structure. These specimens were then austempered in the upper (371 C) and lower (260 C) bainitic temperature ranges for different time periods, ranging from 30 min. to 3 h. Microstructural features such as type of bainite and the volume fraction of ferrite and austenite and its carbon content were evaluated by X-ray diffraction to examine the influence of microstructure on the mechanical properties and fracture toughness of this material. The results of the present investigation indicate that for this low manganese austempered ductile iron (ADI), upper ausferritic microstructures exhibit higher fracture toughness than lower ausferritic microstructures. Yield and tensile strength of the material was found to increase with an increase in austempering time in a lower bainitic temperature range, whereas in the upper bainitic temperature range, time has no significant effect on the mechanical properties. A retained austenite content between 30 to 35% was found to provide optimum fracture toughness. Fracture toughness was found to increase with the parameter (X{gamma}C{gamma}/d){sup 1/2}, where X{gamma} is the volume fraction of austenite, C{gamma} is the carbon content of the austenite, and d is the mean free path of dislocation motion in ferrite.

  19. Effect of austempering time on mechanical properties of a low manganese austempered ductile iron

    NASA Astrophysics Data System (ADS)

    Putatunda, Susil K.; Gadicherla, Pavan K.

    2000-04-01

    An investigation was carried out to examine the influence of austempering time on the resultant microstructure and the room-temperature mechanical properties of an unalloyed and low manganese ductile cast iron with initially ferritic as-cast structure. The effect of austempering time on the plane strain fracture toughness of this material was also studied. Compact tension and round cylindrical tensile specimens were prepared from unalloyed ductile cast iron with low manganese content and with a ferritic as-cast (solidified) structure. These specimens were then austempered in the upper (371 °C) and lower (260 °C) bainitic temperature ranges for different time periods, ranging from 30 min. to 4 h. Microstructural features such as type of bainite and the volume fraction of ferrite and austenite and its carbon content were evaluated by X-ray diffraction to examine the influence of microstructure on the mechanical properties and fracture toughness of this material. The results of the present investigation indicate that for this low manganese austempered ductile iron (ADI), upper ausferritic microstructures exhibit higher fracture toughness than lower ausferritic microstructures. Yield and tensile strength of the material was found to increase with an increase in austempering time in a lower bainitic temperature range, whereas in the upper bainitic temperature range, time has no significant effect on the mechanical properties. A retained austenite content between 30 to 35% was found to provide optimum fracture toughness. Fracture toughness was found to increase with the parameter ( XγCγ/d)1/2, where Xγ is the volume fraction of austenite, Cγ is the carbon content of the austenite, and d is the mean free path of dislocation motion in ferrite.

  20. Structural studies of iron and manganese in photosynthetic reaction centers

    SciTech Connect

    McDermott, A.E.

    1987-11-01

    Electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) were used to characterize components involved in the light reactions of photosynthetic reaction centers from spinach and a thermophilic cyanobacterium, Synechococcus sp.: center X, the low electron potential acceptor in Photosystem I (PS I) and the Mn complex involved in water oxidation and oxygen evolution. The dependence of its EPR amplitude on microwave power and temperature indicate an Orbach spin relaxation mechanism involving an excited state at 40 cm/sup -1/. This low energy contributes to its unusually anisotropic g-tensor. XAS of iron in PS I preparations containing ferredoxins A, B and X are consistent with a model with (4Fe-4S) ferredoxins, which are presumably centers A and B and (2Fe-2S) ferredoxins, which would be X. Illumination of dark-adapted Synechococcus PS II samples at 220 to 240 K results in the formation of the multiline EPR signal previously assigned as a Mn S/sub 2/ species, and g = 1.8 and 1.9 signals of Fe/sup 2 +/ Q/sub A//sup -/. In contrast to spinach, illumination at 110 to 160 K produces only a new EPR signal at g = 1.6 which we assign to another configuration of Fe/sup 2+ - Q/sup -/. Following illumination of a S/sub 1/ sample at 140 K or 215 K, the Mn x-ray absorption edge inflection energy changes from 6550 eV to 6551 eV, indicating an oxidation of Mn, and average valences greater than Mn(II). Concomitant changes in the shape of the pre-edge spectrum indicate oxidation of Mn(III) to Mn(IV). The Mn EXAFS spectrum of PS II from Synechococcus is similar in the S/sub 1/ and S/sub 2/ states, indicating O or N ligands at 1.75 +- 0.05 A, transition metal neighbor(s) at 2.75 +- 0.05 A, and N and O ligands at 2.2 A with heterogeneous bond lengths; these data demonstrate the presence of a di-..mu..-oxo bridged Mn structure. 202 refs., 40 figs., 7 tabs.

  1. Promotion of atherogenesis by copper or iron-Which is more likely?

    SciTech Connect

    Rajendran, Reshmi; Ren, Minqin; Ning, Pan; Tan Kwong Huat, Benny; Halliwell, Barry . E-mail: bchbh@nus.edu.sg; Watt, Frank

    2007-02-02

    Iron levels increase in atherosclerotic lesions in cholesterol fed-rabbits and play a role in atherosclerosis. We investigated whether copper also rises. Male New Zealand White rabbits were fed high-cholesterol diets for 8 weeks. After sacrifice, lesion sizes were determined, and elemental analyses of the lesion and unaffected artery wall performed using nuclear microscopy. Unlike iron, lesion copper is decreased by about half compared with the unaffected artery wall, and much less copper than iron is present. Our data suggest that iron may be more likely to play a role in the promotion of atherosclerosis than copper.

  2. Effects of Exogenous Gibberellic Acid3 on Iron and Manganese Plaque Amounts and Iron and Manganese Uptake in Rice

    PubMed Central

    Guo, Yue; Zhu, Changhua; Gan, Lijun; Ng, Denny; Xia, Kai

    2015-01-01

    Gibberellins (GA) regulate various components of plant development. Iron and Mn plaque result from oxiding and hydroxiding Fe and Mn, respectively, on the roots of aquatic plant species such as rice (Oryza sativa L.). In this study, we found that exogenous gibberellic acid3 (GA3) spray decreased Fe plaque, but increased Mn plaque, with applications of Kimura B nutrient solution. Similar effects from GA3, leading to reduced Fe plaque and increased Mn plaque, were also found by scanning electron microscopy and energy dispersive X-ray spectrometric microanalysis. Reduced Fe plaque was observed after applying GA3 to the groups containing added Fe2+ (17 and 42 mg•L-1) and an increasing trend was detected in Mn plaques of the Mn2+ (34 and 84 mg•L-1) added treatments. In contrast, an inhibitor of GA3, uniconazole, reversed the effects of GA3. The uptake of Fe or Mn in rice plants was enhanced after GA3 application and Fe or Mn plaque production. Strong synergetic effects of GA3 application on Fe plaque production were detected. However, no synergetic effects on Mn plaque production were detected. PMID:25710173

  3. Protective value of dietary copper and iron against some toxic effects of lead in rats.

    PubMed Central

    Klauder, D S; Petering, H G

    1975-01-01

    Both dietary iron and copper were inversely related to lead absorption as indicated by erythrocyte and kidney lead levels, dietary iron having the greatest effect. Kidney copper values were depressed when dietary iron was low, a condition which was worsened by lead. Lead tended to lower heart cytochrome c oxidase especially when dietary copper was low, but also when dietary copper and zinc were high. Lead interfered with hematopoiesis when dietary copper and/or iron were low, the effect being expecially severe when both essential nutrients were low. These results show the importance of copper and iron nutriture and metabolism as factors which reduce lead toxicity, and emphasize the necessity of considering nutritional status in evaluating lead toxicity. PMID:179804

  4. Isoflavones Reduce Copper with Minimal Impact on Iron In Vitro

    PubMed Central

    Karlíčková, Jana; Macáková, Kateřina; Říha, Michal; Pinheiro, Liliane Maria Teixeira; Filipský, Tomáš; Horňasová, Veronika; Hrdina, Radomír; Mladěnka, Přemysl

    2015-01-01

    Isoflavones are commonly consumed in many Asian countries and have potentially positive effects on human being. Only a few and rather controversial data on their interactions with copper and iron are available to date. 13 structurally related isoflavones were tested in the competitive manner for their Cu/Fe-chelating/reducing properties. Notwithstanding the 5-hydroxy-4-keto chelation site was associated with ferric, ferrous, and cupric chelation, the chelation potential of isoflavones was low and no cuprous chelation was observed. None of isoflavones was able to substantially reduce ferric ions, but the vast majority reduced cupric ions. The most important feature for cupric reduction was the presence of an unsubstituted 4′-hydroxyl; contrarily the presence of a free 5-hydroxyl decreased or abolished the reduction due to chelation of cupric ions. The results from this study may enable additional experiments which might clarify the effects of isoflavones on human being and/or mechanisms of copper absorption. PMID:26273421

  5. Mobilisation processes responsible for iron and manganese contamination of groundwater in Central Adriatic Italy.

    PubMed

    Palmucci, William; Rusi, Sergio; Di Curzio, Diego

    2016-06-01

    Iron and manganese are two of the most common contaminants that exceed the threshold imposed by international and national legislation. When these contamination occurs in groundwater, the use of the water resource is forbidden for any purposes. Several studies investigated these two metals in groundwater, but research focused in the Central Adriatic area are still lacking. Thus, the objective of this study is to identify the origin of Fe and Mn contamination in groundwater and the hydrogeochemical processes that can enrich aquifers with these metals. This work is based on hydrogeochemical and multivariate statistical analysis of analytical results undertaken on soils and groundwater. Fe and Mn contamination are widespread in the alluvial aquifers, and their distribution is regulated by local conditions (i.e. long residence time, presence of peat or organic-rich fine sediments or anthropic pollution) that control redox processes in the aquifers and favour the mobilisation of these two metals in groundwater. The concentration of iron and manganese identified within soil indicates that the latter are a concrete source of the two metals. Anthropic impact on Fe and Mn contamination of groundwater is not related to agricultural activities, but on the contrary, the contribution of hydrocarbons (e.g. spills) is evident.

  6. Iron depletion increases manganese uptake and potentiates apoptosis through ER stress.

    PubMed

    Seo, Young Ah; Li, Yuan; Wessling-Resnick, Marianne

    2013-09-01

    Iron deficiency is a risk factor for manganese (Mn) accumulation. Excess Mn promotes neurotoxicity but the mechanisms involved and whether iron depletion might affect these pathways is unknown. To study Mn intoxication in vivo, iron deficient and control rats were intranasally instilled with 60mg MnCl2/kg over 3 weeks. TUNEL staining of olfactory tissue revealed that Mn exposure induced apoptosis and that iron deficiency potentiated this effect. In vitro studies using the dopaminergic SH-SY5Y cell line confirmed that Mn-induced apoptosis was enhanced by iron depletion using the iron chelator desferrioxamine. Mn has been reported to induce apoptosis through endoplasmic reticulum stress. In SH-SY5Y cells, Mn exposure induced the ER stress genes glucose regulated protein 94 (GRP94) and C/EBP homologous protein (CHOP). Increased phosphorylation of the eukaryotic translation initiation factor 2α (phospho-eIF2α) was also observed. These effects were accompanied by the activation of ER resident enzyme caspase-12, and the downstream apoptotic effector caspase-3 was also activated. All of the Mn-induced responses were enhanced by DFO treatment. Inhibitors of ER stress and caspases significantly blocked Mn-induced apoptosis and its potentiation by DFO, indicating that ER stress and subsequent caspase activation underlie cell death. Taken together, these data reveal that Mn induces neuronal cell death through ER stress and the UPR response pathway and that this apoptotic effect is potentiated by iron deficiency most likely through upregulation of DMT1. PMID:23764342

  7. Radiation induced chemical activity at iron and copper oxide surfaces

    NASA Astrophysics Data System (ADS)

    Reiff, Sarah C.

    The radiolysis of three iron oxides, two copper oxides, and aluminum oxide with varying amounts of water were performed using gamma-rays and 5 MeV 4He ions. The adsorbed water on the surfaces was characterized using temperature programmed desorption and diffuse reflectance infrared spectroscopy, which indicated that all of the oxides had chemisorbed water on the surface. Physisorbed water was observed on the Fe2O 3 and Al2O3 surfaces as well. Molecular hydrogen was produced from adsorbed water only on Fe2O3 and Al 2O3, while the other compounds did not show any hydrogen production due to the low amounts of water on the surfaces. Slurries of varying amounts of water were also examined for hydrogen production, and they showed yields that were greater than the yield for bulk water. However, the yields of hydrogen from the copper compounds were much lower than those of the iron suggesting that the copper oxides are relatively inert to radiation induced damage to nearby water. X-ray diffraction measurements did not show any indication of changes to the bulk crystal structure due to radiolysis for any of the oxides. The surfaces of the oxides were analyzed using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). For the iron samples, FeO and Fe3O4, Raman spectroscopy revealed areas of Fe2O3 had formed following irradiation with He ions. XPS indicated the formation of a new oxygen species on the iron oxide surfaces. Raman spectroscopy of the copper oxides did not reveal any changes in the surface composition, however, XPS measurements showed a decrease in the amount of OH groups on the surface of Cu2O, while for the CuO samples the amount of OH groups were found to increase following radiolysis. Pristine Al2O3 showed the presence of a surface oxyhydroxide layer which was observed to decrease following radiolysis, consistent with the formation of molecular hydrogen.

  8. Coprecipitation and redox reactions of manganese oxides with copper and nickel

    USGS Publications Warehouse

    Hem, J.D.; Lind, Carol J.; Roberson, C.E.

    1989-01-01

    Open-system, continuous-titration experiments have been done in which a slow flux of ???0.02 molar solution of Mn2+ chloride, nitrate, or perchlorate with Cu2+ or Ni2+ in lesser concentrations was introduced into an aerated reactor solution held at constant temperature and at constant pH by a pH-stat titrator that added dilute NaOH. The resulting mixtures of metal oxyhydroxides and their native solutions were aged for periods as long as 2 1/2 years. Fresh and aged precipitates were characterized by chemical analysis, oxidation state determinations, X-ray and electron diffraction, and electron microscopy. The precipitates can be described as mixtures of oxide and oxyhydroxide species, using concepts of equilibrium and nonequilibrium chemical thermodynamics. The metal-ion content of the aged precipitates in systems that contained copper is distributed among three principal components. One of these is a mixed oxide Cu2Mn3O8 in which all Mn is in the 4+ oxidation state. A major component in all precipitates is feitknechtite, ??MnOOH. These forms are supplemented by CuO or by birnessite or ramsdellite forms of MnO2 where stoichiometry and thermodynamic calculations predict them. In systems that contained nickel and manganese, identifiable components included ??MnOOH, Ni(OH)2, and the same two forms of MnO2. The oxidation number of the precipitated manganese increased during aging, and the pH of the supernatant solution decreased. The maximum Mn oxidation number observed was 3.55 in an Mn + Cu precipitate aged for 18 months. Concentrations of Cu2+ and Ni2+ generally decreased to values substantially below those predicted by oxide or hydroxide equilibrium. Scavenging effects of this type are common in natural aqueous systems. ?? 1989.

  9. Coprecipitation and redox reactions of manganese oxides with copper and nickel

    NASA Astrophysics Data System (ADS)

    Hem, J. D.; Lind, C. J.; Roberson, C. E.

    1989-11-01

    Open-system, continuous-titration experiments have been done in which a slow flux of ˜0.02 molar solution of Mn 2+ chloride, nitrate, or perchlorate with Cu 2+ or Ni 2+ in lesser concentrations was introduced into an aerated reactor solution held at constant temperature and at constant pH by a pH-stat titrator that added dilute NaOH. The resulting mixtures of metal oxyhydroxides and their native solutions were aged for periods as long as 2 1/2 years. Fresh and aged precipitates were characterized by chemical analysis, oxidation state determinations, X-ray and electron diffraction, and electron microscopy. The precipitates can be described as mixtures of oxide and oxyhydroxide species, using concepts of equilibrium and nonequilibrium chemical thermodynamics. The metal-ion content of the aged precipitates in systems that contained copper is distributed among three principal components. One of these is a mixed oxide Cu 2Mn 3O 8 in which all Mn is in the 4+ oxidation state. A major component in all precipitates is feitknechtite, βMnOOH. These forms are supplemented by CuO or by birnessite or ramsdellite forms of MnO 2 where stoichiometry and thermodynamic calculations predict them. In systems that contained nickel and manganese, identifiable components included βMnOOH, Ni(OH) 2, and the same two forms of MnO 2. The oxidation number of the precipitated manganese increased during aging, and the pH of the supernatant solution decreased. The maximum Mn oxidation number observed was 3.55 in an Mn + Cu precipitate aged for 18 months. Concentrations of Cu 2+ and Ni 2+ generally decreased to values substantially below those predicted by oxide or hydroxide equilibrium. Scavenging effects of this type are common in natural aqueous systems.

  10. VAPOR PHASE MERCURY SORPTION BY ORGANIC-SULFIDE COATED BIMETALLIC IRON-COPPER NANOPARTICLE AGGREGATES

    EPA Science Inventory

    Tetra sulfide silane coated iron-copper nano-particle aggregates are found to be potentially very high capacity sorbents for vapor phase mercury capture. High equilibrium capacities were obtained for the silane coated iron copper nano-aggregate sorbent at 70 oC and 120 oC. Even a...

  11. Borrelia burgdorferi, a pathogen that lacks iron, encodes manganese-dependent superoxide dismutase essential for resistance to streptonigrin.

    PubMed

    Troxell, Bryan; Xu, Haijun; Yang, X Frank

    2012-06-01

    Borrelia burgdorferi, the causative agent of Lyme disease, exists in nature through a complex life cycle involving ticks of the Ixodes genus and mammalian hosts. During its life cycle, B. burgdorferi experiences fluctuations in oxygen tension and may encounter reactive oxygen species (ROS). The key metalloenzyme to degrade ROS in B. burgdorferi is SodA. Although previous work suggests that B. burgdorferi SodA is an iron-dependent superoxide dismutase (SOD), later work demonstrates that B. burgdorferi is unable to transport iron and contains an extremely low intracellular concentration of iron. Consequently, the metal cofactor for SodA has been postulated to be manganese. However, experimental evidence to support this hypothesis remains lacking. In this study, we provide biochemical and genetic data showing that SodA is a manganese-dependent enzyme. First, B. burgdorferi contained SOD activity that is resistant to H(2)O(2) and NaCN, characteristics associated with Mn-SODs. Second, the addition of manganese to the Chelex-treated BSK-II enhanced SodA expression. Third, disruption of the manganese transporter gene bmtA, which significantly lowers the intracellular manganese, greatly reduced SOD activity and SodA expression, suggesting that manganese regulates the level of SodA. In addition, we show that B. burgdorferi is resistant to streptonigrin, a metal-dependent redox cycling compound that produces ROS, and that SodA plays a protective role against the streptonigrin. Taken together, our data demonstrate the Lyme disease spirochete encodes a manganese-dependent SOD that contributes to B. burgdorferi defense against intracellular superoxide.

  12. Copper Accumulates in Hemosiderins in Livers of Patients with Iron Overload Syndromes.

    PubMed

    Ono, Yukiya; Ishigami, Masatoshi; Hayashi, Kazuhiko; Wakusawa, Shinya; Hayashi, Hisao; Kumagai, Kotaro; Morotomi, Natsuko; Yamashita, Tetsuji; Kawanaka, Miwa; Watanabe, Minemori; Ozawa, Hiroaki; Tai, Mayumi; Miyajima, Hiroaki; Yoshioka, Kentarou; Hirooka, Yoshiki; Goto, Hidemi

    2015-06-28

    In biology, redox reactions are essential and sometimes harmful, and therefore, iron metabolism is tightly regulated by cuproproteins. Since the state of copper in iron overload syndromes remains unclear, we investigated whether copper metabolism is altered in these syndromes. Eleven patients with iron overload syndromes participated in this study. The clinical diagnoses were aceruloplasminemia (n=2), hemochromatosis (n=5), ferroportin disease (n=2), and receiving excess intravenous iron supplementation (n=2). Liver specimens were analyzed using a light microscope and transmission electron microscope equipped with an X-ray analyzer. In addition to a large amount of iron associated with oxygen and phosphorus, the iron-rich hemosiderins of hepatocytes and Kupffer cells contained small amounts of copper and sulfur, regardless of disease etiology. Two-dimensional imaging clearly showed that cuproproteins were distributed homogenously with iron complexes within hemosiderins. Copper stasis was unlikely in noncirrhotic patients. The enhanced induction of cuproproteins by excess iron may contribute to copper accumulation in hemosiderins. In conclusion, we have demonstrated that copper accumulates in hemosiderins in iron overload conditions, perhaps due to alterations in copper metabolism. PMID:26356991

  13. Interface driven magnetic interactions in nanostructured thin films of iron nanocrystallites embedded in a copper matrix

    SciTech Connect

    Desautels, R. D. Lierop, J. van; Shueh, C.; Lin, K.-W.; Freeland, J. W.

    2015-05-07

    We have fabricated thin films of iron nanocrystallites embedded in a copper matrix using a dual ion beam assisted deposition technique. A secondary End-Hall ion beam bombarded the iron atoms during deposition altering significantly the morphology of the films and allowing for control of the intermixing between iron and copper components. Cross-sectional transmission electron microscopy and x-ray reflectometry experiments indicated that the morphology of the films was that of iron nanocrystallites embedded in a copper matrix. Rietveld refinements of the diffraction pattern identified fcc-copper and amorphous iron. An increased amount of disorder was observed with a reduction in the amount of deposited iron from a 1:1 Fe:Cu ratio to 0.25:0.75 Fe:Cu ratio. Interfacial copper-iron alloys were identified by DC susceptibility experiments through their reduced T{sub C,Alloy} (370, 310, and 280 K) compared with that of bulk iron (∼1000 K). Element specific x-ray absorption and x-ray magnetic circular dichroism experiments were performed to identify the contributions to the magnetism from the iron and the copper-iron alloy.

  14. Total antioxidant status of zinc, manganese, copper and selenium levels in rats exposed to premium motor spirit fumes

    PubMed Central

    Okuonghae, Patrick O.; Aberare, Lewis O.; Mukoro, Nathaniel; Osazuwa, Favour; Dirisu, John O.; Ogbuzulu, Johanna; Omoregie, Richard; Igbinuwen, Moses

    2011-01-01

    Background: Frequent exposure to premium motor spirit (PMS) is common and could be a risk factor for liver dysfunction in those occupationally exposed. A possible association between PMS fumes and plasma total antioxidant status as well as plasma levels of zinc, manganese, copper and selenium using a rodent model could provide new insights into the pathology of the liver where cellular dysfunction is an established risk factor. Aim: This study aimed to determine the total antioxidant status and plasma levels of zinc, copper, selenium and manganese in those occupationally exposed using rodent model. Materials and Methods: 25 albino Wistar rats of both sexes were used for this study. The animals were divided into five groups of five rats in each group. Group 1 rats were not exposed to PMS fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the determination of plasma total antioxidant status as well as plasma levels of zinc, manganese, copper and selenium. Results: Results showed significant increases in means of plasma copper (69.70±0.99 for test and 69.20±1.02 for control, P < 0.05) and selenium (72.70±1.58 for test and 68.20±0.86 for control, P < 0.05) in the exposed rats when respective mean values were compared with those of corresponding controls. Mean body weight index (BWI) and percentage weight increase (PWI) were significantly lower (P < 0.05) in exposed rats when compared with the unexposed group. The mean plasma levels of zinc (137.40±4.06 for test and 147.80±2.52 for control) and manganese (65.75±1.02 for test and 70.00±0.71 for control) showed significant decrease (P < 0.05) when compared with control. Plasma level of total antioxidant status (TAS) did not differ significantly in exposed rats when compared with the

  15. [Content of iron, copper and zinc in plasma of women with leiomyoma of the uterus].

    PubMed

    Tantchev, L; Tantchev, S; Mutaftchiev, K

    2011-01-01

    The aim of this investigation was to determine the plasma iron, copper and zinc concentration in group of 22 women with leiomyoma of the uterus (group A) and control group of 25 women (group B). The plasma iron and copper concentrations were significantly decreased in group A compared to the group B. No significantly difference was observed between plasma copper concentration of the groups A and B.

  16. 77 FR 36980 - Migratory Bird Hunting; Application for Approval of Copper-Clad Iron Shot as Nontoxic for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... of Copper-Clad Iron Shot as Nontoxic for Waterfowl Hunting AGENCY: Fish and Wildlife Service... composed of copper and iron as nontoxic for waterfowl hunting in the United States. The shot contains a maximum of 44.1 percent copper by weight, with iron composing the rest of the shot. We have...

  17. Response of plasma copper, ceruloplasmin, iron and ions in carp, Cyprinus carpio to waterborne copper ion and nanoparticle exposure.

    PubMed

    Hedayati, Aliakbar; Hoseini, Seyyed Morteza; Hoseinifar, Seyed Hossein

    2016-01-01

    In this study, Cyprinus carpio was exposed to 0.25mgL(-1) copper as either copper sulfate (CuSO4) or copper oxide nanoparticles (nano-Cu), and 25mgL(-1) copper as nano-Cu for 14days. CuSO4 and high concentration of nano-Cu led to a significant increase in plasma total copper levels. Plasma free copper levels increased significantly in all copper-exposed treatments. Except for low concentration of nano-Cu after 7 and 14days, copper exposure generally led to a significant decrease in plasma ceruloplasmin levels. Plasma iron levels increased significantly in CuSO4 (all times) and nano-Cu (7th and 14th days) treatments. A significant elevation in plasma total iron binding capacity (TIBC) was observed after 3days in the fish exposed to low concentration nano-Cu, and after 14days in all copper-exposed treatments. Transferrin saturation (TSA) ratio showed significant increase in CuSO4 (3rd and 7th days) and the high concentration nano-Cu (7th day) treatments. Decrease in plasma chloride (7th and 14th days) and sodium (14th days) was observed in CuSO4 treatment. In conclusion, the results suggest that ionic copper is mainly absorbed via fish gill, whereas, nano-copper are more likely absorbed via gut. Also, data suggest that ionic copper has more adverse effects on the examined plasma biochemical characteristics compared to the equivalent nano-copper concentration, which may be due to the lower copper absorption by fish in the nano-copper suspension. PMID:26408942

  18. Response of plasma copper, ceruloplasmin, iron and ions in carp, Cyprinus carpio to waterborne copper ion and nanoparticle exposure.

    PubMed

    Hedayati, Aliakbar; Hoseini, Seyyed Morteza; Hoseinifar, Seyed Hossein

    2016-01-01

    In this study, Cyprinus carpio was exposed to 0.25mgL(-1) copper as either copper sulfate (CuSO4) or copper oxide nanoparticles (nano-Cu), and 25mgL(-1) copper as nano-Cu for 14days. CuSO4 and high concentration of nano-Cu led to a significant increase in plasma total copper levels. Plasma free copper levels increased significantly in all copper-exposed treatments. Except for low concentration of nano-Cu after 7 and 14days, copper exposure generally led to a significant decrease in plasma ceruloplasmin levels. Plasma iron levels increased significantly in CuSO4 (all times) and nano-Cu (7th and 14th days) treatments. A significant elevation in plasma total iron binding capacity (TIBC) was observed after 3days in the fish exposed to low concentration nano-Cu, and after 14days in all copper-exposed treatments. Transferrin saturation (TSA) ratio showed significant increase in CuSO4 (3rd and 7th days) and the high concentration nano-Cu (7th day) treatments. Decrease in plasma chloride (7th and 14th days) and sodium (14th days) was observed in CuSO4 treatment. In conclusion, the results suggest that ionic copper is mainly absorbed via fish gill, whereas, nano-copper are more likely absorbed via gut. Also, data suggest that ionic copper has more adverse effects on the examined plasma biochemical characteristics compared to the equivalent nano-copper concentration, which may be due to the lower copper absorption by fish in the nano-copper suspension.

  19. Joint toxic action of binary metal mixtures of copper, manganese and nickel to Paronychiurus kimi (Collembola).

    PubMed

    Son, Jino; Lee, Yun-Sik; Kim, Yongeun; Shin, Key-Il; Hyun, Seunghun; Cho, Kijong

    2016-10-01

    The joint toxic effects of binary metal mixtures of copper (Cu), manganese (Mn) and nickel (Ni) on reproduction of Paronhchiurus kimi (Lee) was evaluated using a toxic unit (TU) approach by judging additivity across a range of effect levels (10-90%). For all metal mixtures, the joint toxic effects of metal mixtures on reproduction of P. kimi decreased in a TU-dependent manner. The joint toxic effects of metal mixtures also changed from less than additive to more than additive at an effect level lower than or equal to 50%, while a more than additive toxic effects were apparent at higher effect levels. These results indicate that the joint toxicity of metal mixtures is substantially different from that of individual metals based on additivity. Moreover, the close relationship of toxicity to effect level suggests that it is necessary to encompass a whole range of effect levels rather than a specific effect level when judging mixture toxicity. In conclusion, the less than additive toxicity at low effect levels suggests that the additivity assumption is sufficiently conservative to warrant predicting joint toxicity of metal mixtures, which may give an additional margin of safety when setting soil quality standards for ecological risk assessment. PMID:27318557

  20. Manganese and copper imbalance in the food chain constituents in relation to Creutzfeldt-Jakob disease.

    PubMed

    Masánová, Vlasta; Mitrova, Eva; Ursinyova, Monika; Uhnakova, Iveta; Slivarichova, Dana

    2007-12-01

    The objective of the study was to investigate the possible role of manganese and copper (Mn/Cu) imbalance of the food chain in the focally increased occurrence of Creutzfeldt-Jakob disease (CJD). Mn and Cu concentrations in soil, drinking water and foodstuffs collected from households in the region of focal accumulation of CJD patients and the control region were measured by FAAS. Considerably higher Mn/Cu ratios in the studied region than those in the control region were found for soil (49.3 vs. 21.1), honey (8.05 vs. 4.86), and for the main local food items: potatoes (2.09 vs. 1.07) and bread (5.85 vs. 5.35), however, only soil and potatoes were of statistical significance. The results could indicate a rare coincidence of the verified endogenous CJD risk (genetic) with a very probable exogenous CJD risk factor (Mn/Cu dietary/environmental imbalance), but whether and how this coincidence may contribute to the unique, continual temporo-spatial clustering of genetic CJD should be investigated in further studies. PMID:18027195

  1. Joint toxic action of binary metal mixtures of copper, manganese and nickel to Paronychiurus kimi (Collembola).

    PubMed

    Son, Jino; Lee, Yun-Sik; Kim, Yongeun; Shin, Key-Il; Hyun, Seunghun; Cho, Kijong

    2016-10-01

    The joint toxic effects of binary metal mixtures of copper (Cu), manganese (Mn) and nickel (Ni) on reproduction of Paronhchiurus kimi (Lee) was evaluated using a toxic unit (TU) approach by judging additivity across a range of effect levels (10-90%). For all metal mixtures, the joint toxic effects of metal mixtures on reproduction of P. kimi decreased in a TU-dependent manner. The joint toxic effects of metal mixtures also changed from less than additive to more than additive at an effect level lower than or equal to 50%, while a more than additive toxic effects were apparent at higher effect levels. These results indicate that the joint toxicity of metal mixtures is substantially different from that of individual metals based on additivity. Moreover, the close relationship of toxicity to effect level suggests that it is necessary to encompass a whole range of effect levels rather than a specific effect level when judging mixture toxicity. In conclusion, the less than additive toxicity at low effect levels suggests that the additivity assumption is sufficiently conservative to warrant predicting joint toxicity of metal mixtures, which may give an additional margin of safety when setting soil quality standards for ecological risk assessment.

  2. Validation of In-Situ Iron-Manganese Oxide Coated Stream Pebbles as Sensors for Arsenic Source Monitoring

    NASA Astrophysics Data System (ADS)

    Blake, J.; Peters, S. C.; Casteel, A.

    2013-12-01

    Locating nonpoint source contaminant fluxes can be challenging due to the inherent heterogeneity of source and of the subsurface. Contaminants such as arsenic are a concern for drinking water quality and ecosystem health. Arsenic contamination can be the result of several natural and anthropogenic sources, and therefore it can be difficult to trace and identify major areas of arsenic in natural systems. Identifying a useful source indicator for arsenic is a crucial step for environmental remediation efforts. Previous studies have found iron-manganese oxide coated streambed pebbles as useful source indicators due to their high attraction for heavy metals in water. In this study, pebbles, surface water at baseflow and nearby rocks were sampled from the Pennypack Creek and its tributaries, in southwestern Pennsylvania, to test the ability of coated streambed pebbles as environmental source indicators for arsenic. Quartz pebbles, 5-7 cm in diameter, were sampled to minimize elemental contamination from rock chemistry. In addition, quartz provides an excellent substrate for iron and manganese coatings to form. These coatings were leached from pebbles using 4M nitric acid with 0.1% concentrated hydrochloric acid. Following sample processing, analyses were performed using an ICP-MS and the resulting data were spatially organized using ArcGIS software. Arsenic, iron and manganese concentrations in the leachate are normalized to pebble surface area and each location is reported as a ratio of arsenic to iron and manganese. Results suggest that iron-manganese coated stream pebbles are useful indicators of arsenic location within a watershed.

  3. The possible crucial role of iron accumulation combined with low tryptophan, zinc and manganese in carcinogenesis.

    PubMed

    Johnson, S

    2001-11-01

    Iron can react with citric acid, interfering with the Krebs cycle, hence with oxidative phosphorylation. Free iron (Fe) can cause considerable oxidative damage both through Fenton reactions and by activating xanthine oxidase, which produces both superoxide (O(2-)) and uric acid (abundant in many cancers). It can also react with lactic acid, reducing its elimination and increasing the acidity of the cytoplasm. Fe can also wreak havoc by reacting with tryptophan, the least abundant and most delicate essential amino acid, which is necessary for the production of serotonin and other substances required by the immune system to fight cancer. On the other hand, in the presence of iron, the tryptophan metabolite quinolinate causes intense lipid peroxidation. Similarly, several other carcinogenic metabolites of tryptophan are particularly dangerous in the presence of Fe. Excess Fe may also interfere with manganese superoxide dismutase and impair the initiation of apoptosis by the mitochondrion, rendering the cells impervious to all the signals to undergo apoptosis from without and from within the cell. Moreover, Fe may also play a crucial role on telomere repair, by activating telomerase. Therefore, by inhibiting apoptosis and enhancing chromosome repair, Fe may bestow immortality upon the cancer cell. Furthermore, Fe is one of the triggers for mitosis. Therefore, increased Fe levels may be essential for the rapid growth characteristic of many malignancies. In turn, the rapid growth further depletes resources from the healthy tissues, exacerbating the deficiencies of the other elements and reducing the ability to fight the malignancy. PMID:11735307

  4. Manganese Doping of Magnetic Iron Oxide Nanoparticles: Tailoring Surface Reactivity for a Regenerable Heavy Metal Sorbent

    SciTech Connect

    Warner, Cynthia L.; Chouyyok, Wilaiwan; Mackie, Katherine E.; Neiner, Doinita; Saraf, Laxmikant; Droubay, Timothy C.; Warner, Marvin G.; Addleman, Raymond S.

    2012-02-28

    A method for tuning the analyte affinity of magnetic, inorganic nanostructured sorbents for heavy metal contaminants is described. The manganese-doped iron oxide nanoparticle sorbents have a remarkably high affinity compared to the precursor material. Sorbent affinity can be tuned toward an analyte of interest simply by adjustment of the dopant quantity. The results show that following the Mn doping process there is a large increase in affinity and capacity for heavy metals (i.e., Co, Ni, Zn, As, Ag, Cd, Hg, and Tl). Capacity measurements were carried out for the removal of cadmium from river water and showed significantly higher loading than the relevant commercial sorbents tested for comparison. The reduction in Cd concentration from 100 ppb spiked river water to 1 ppb (less than the EPA drinking water limit of 5 ppb for Cd) was achieved following treatment with the Mn-doped iron oxide nanoparticles. The Mn-doped iron oxide nanoparticles were able to load 1 ppm of Cd followed by complete stripping and recovery of the Cd with a mild acid wash. The Cd loading and stripping is shown to be consistent through multiple cycles with no loss of sorbent performance.

  5. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    PubMed

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate. PMID:12870945

  6. Existing and emerging mechanisms for transport of iron and manganese to the brain.

    PubMed

    Malecki, E A; Devenyi, A G; Beard, J L; Connor, J R

    1999-04-15

    The metals iron (Fe) and manganese (Mn) are essential for normal functioning of the brain. This review focuses on recent developments in the literature pertaining to Fe and Mn transport. These metals are treated together because they appear to share several transport mechanisms. In addition, several neurological diseases such as Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease are all associated with Fe mismanagement in the brain, particularly in the striatum and basal ganglia. Similarly, Mn accumulation in brain also appears to target the same brain regions. Therefore, stringent regulation of the concentration of these metals in the brain is essential. The homeostatic mechanisms for these metals must be understood in order to design neurotoxicity prevention strategies. PMID:10777372

  7. Oxidation of manganese and iron by Leptothrix discophora: Use of N,N,N prime ,N prime -tetramethyl-p-phenylenediamine as an indicator of metal oxidation

    SciTech Connect

    de Vrind-de Jong, E.W.; Corstjens, P.L.A.M.; Kempers, E.S.; Westbroek, P.; de Vrind, J.P.M. )

    1990-11-01

    A new method for the quantification and characterization of manganese-oxidizing activity by spent culture medium of Leptothrix discophora SS-1 was developed. It is based on the formation of the dye Wurster blue from N,N,N{prime},N{prime}-tetramethyl-p-phenylenediamine by oxidized manganese generated in the spent medium. The kinetic parameters thus obtained agreed well with data obtained with other methods. It was also possible to demonstrate iron oxidation by spent culture medium. The kinetics of the process and inhibition by enzyme poisons suggest that iron oxidation is enzymatically catalyzed. Probably two different factors are involved in manganese and iron oxidation.

  8. Oxidation of Manganese and Iron by Leptothrix discophora: Use of N,N,N',N'-Tetramethyl-p-Phenylenediamine as an Indicator of Metal Oxidation.

    PubMed

    de Vrind-de Jong, E W; Corstjens, P L; Kempers, E S; Westbroek, P; de Vrind, J P

    1990-11-01

    A new method for the quantification and characterization of manganese-oxidizing activity by spent culture medium of Leptothrix discophora SS-1 was developed. It is based on the formation of the dye Wurster blue from N,N,N',N'-Tetramethyl-p-phenylenediamine by oxidized manganese generated in the spent medium. The kinetic parameters thus obtained agreed well with data obtained with other methods. It was also possible to demonstrate iron oxidation by spent culture medium. The kinetics of the process and inhibition by enzyme poisons suggest that iron oxidation is enzymatically catalyzed. Probably two different factors are involved in manganese and iron oxidation. PMID:16348351

  9. Low iron stores are related to higher blood concentrations of manganese, cobalt and cadmium in non-smoking, Norwegian women in the HUNT 2 study

    SciTech Connect

    Margrete Meltzer, Helle; Lise Brantsaeter, Anne; Borch-Iohnsen, Berit; Ellingsen, Dag G.; Alexander, Jan; Thomassen, Yngvar; Stigum, Hein; Ydersbond, Trond A.

    2010-07-15

    Low iron (Fe) stores may influence absorption or transport of divalent metals in blood. To obtain more knowledge about such associations, the divalent metal ions cadmium (Cd), manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn) and lead (Pb) and parameters of Fe metabolism (serum ferritin, haemoglobin (Hb) and transferrin) were investigated in 448 healthy, menstruating non-smoking women, age 20-55 years (mean 38 years), participating in the Norwegian HUNT 2 study. The study population was stratified for serum ferritin: 257 were iron-depleted (serum ferritin <12 {mu}g/L) and 84 had iron deficiency anaemia (serum ferritin <12 {mu}g/L and Hb<120 g/L). The low ferritin group had increased blood concentrations of Mn, Co and Cd but normal concentrations of Cu, Zn and Pb. In multiple regression models, ferritin emerged as the main determinant of Mn, Co and Cd (p<0.001), while no significant associations with Cu, Zn and Pb were found. Adjusted r{sup 2} for the models were 0.28, 0.48 and 0.34, respectively. Strong positive associations between blood concentrations of Mn, Co and Cd were observed, also when controlled for their common association with ferritin. Apart from these associations, the models showed no significant interactions between the six divalent metals studied. Very mild anaemia (110{<=}Hb<120 g/L) did not seem to have any effect independent of low ferritin. Approximately 26% of the women with iron deficiency anaemia had high concentrations of all of Mn, Co and Cd as opposed to 2.3% of iron-replete subjects. The results confirm that low serum ferritin may have an impact on body kinetics of certain divalent metal ions, but not all. Only a fraction of women with low iron status exhibited an increased blood concentration of divalent metals, providing indication of complexities in the body's handling of these metals.

  10. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution

    PubMed Central

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments. PMID:27729845

  11. Effects of zinc, iron, cobalt, and manganese on Fusarium moniliforme NRRL 13616 growth and fusarin C biosynthesis in submerged cultures

    SciTech Connect

    Jackson, M.A.; Slininger, P.J.; Bothast, R.J. )

    1989-03-01

    The influence of zinc, iron, cobalt, and manganese on submerged cultures of Fusarium moniliforme NRRL 13616 was assessed by measuring dry weight accumulation, fusarin C biosynthesis, and ammonia assimilation. Shake flask cultures were grown in a nitrogen-limited defined medium supplemented with various combinations of metal ions according to partial-factorial experimental designs. Zinc (26 to 3,200 ppb (26 to 3,200 ng/ml)) inhibited fusarin C biosynthesis, increased dry weight accumulation, and increased ammonia assimilation. Carbohydrate was found to be the principal component of the increased dry weight in zinc-supplemented cultures. Zinc-deficient cultures synthesized more lipid and lipidlike compounds, such as fusarin C, than did zinc-supplemented cultures. Microscopic examination showed that zinc-deficient hyphae contained numerous lipid globules which were not present in zinc-supplemented cultures. Addition of zinc (3,200 ppb) to 2- and 4-day-old cultures inhibited further fusarin C biosynthesis but did not stimulate additional dry weight accumulation. Iron (10.0 ppm) and cobalt (9.0 ppm) did not affect fusarin C biosynthesis or dry weight accumulation. Manganese (5.1 ppm) did not affect dry weight accumulation but did increase fusarin C biosynthesis in the absence of zinc. Maximum fusarin C levels, 32.3 {mu}g/mg (dry weight), were produced when cultures were supplied manganese, whereas minimum fusarin C levels, 0.07 {mu}g/mg (dry weight), were produced when zinc, iron, cobalt, and manganese were supplied.

  12. Foliar-applied glyphosate substantially reduced uptake and transport of iron and manganese in sunflower (Helianthus annuus L.) plants.

    PubMed

    Eker, Selim; Ozturk, Levent; Yazici, Atilla; Erenoglu, Bulent; Romheld, Volker; Cakmak, Ismail

    2006-12-27

    Evidence clearly shows that cationic micronutrients in spray solutions reduce the herbicidal effectiveness of glyphosate for weed control due to the formation of metal-glyphosate complexes. The formation of these glyphosate-metal complexes in plant tissue may also impair micronutrient nutrition of nontarget plants when exposed to glyphosate drift or glyphosate residues in soil. In the present study, the effects of simulated glyphosate drift on plant growth and uptake, translocation, and accumulation (tissue concentration) of iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were investigated in sunflower (Helianthus annuus L.) plants grown in nutrient solution under controlled environmental conditions. Glyphosate was sprayed on plant shoots at different rates between 1.25 and 6.0% of the recommended dosage (i.e., 0.39 and 1.89 mM glyphosate isopropylamine salt). Glyphosate applications significantly decreased root and shoot dry matter production and chlorophyll concentrations of young leaves and shoot tips. The basal parts of the youngest leaves and shoot tips were severely chlorotic. These effects became apparent within 48 h after the glyphosate spray. Glyphosate also caused substantial decreases in leaf concentration of Fe and Mn while the concentration of Zn and Cu was less affected. In short-term uptake experiments with radiolabeled Fe (59Fe), Mn (54Mn), and Zn (65Zn), root uptake of 59Fe and 54Mn was significantly reduced in 12 and 24 h after application of 6% of the recommended dosage of glyphosate, respectively. Glyphosate resulted in almost complete inhibition of root-to-shoot translocation of 59Fe within 12 h and 54Mn within 24 h after application. These results suggest that glyphosate residues or drift may result in severe impairments in Fe and Mn nutrition of nontarget plants, possibly due to the formation of poorly soluble glyphosate-metal complexes in plant tissues and/or rhizosphere interactions.

  13. Sorption of Ferric Iron from Ferrioxamine B to Synthetic and Biogenic Layer Type Manganese Oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, O.; John, B.; Sposito, G.

    2006-12-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effects of predominantly Mn(IV) oxides, we studied the sorption reaction of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(III, IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over at pH 8. After 72 hours equilibration time, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the EXAFS spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to into the mineral structure at multiple sites with no evidence of DFOB complexation, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron in marine and terrestrial environments.

  14. Removal of copper from carbon-saturated steel with an aluminum sulfide/iron sulfide slag

    SciTech Connect

    Cohen, A.; Blander, M.

    1995-12-01

    Scrap iron and steel has long been considered a resource in the steel-making industry, and its value is largely determined by its impurity content. As the mini-mills, the major consumers of scrap iron and steel, expand into producing flat-rolled sheet, the demand for high-quality scrap will increase. Of the impurities present in scrap, copper is particularly troublesome because of its role in causing hot shortness. Therefore, the copper content of scrap should be kept below {approx} 0.1 wt%. A method for removing copper from steel could be used to improve the quality of scrap and make it more available for use by mini-mills. To determine the effectiveness of a binary slag consisting of aluminum sulfide and iron sulfide on the removal of copper from steel and iron, the distribution coefficient of copper between the slag and a carbon-saturated iron melt was investigated at 1,365 C. The composition of the slag was varied from nearly pure aluminum sulfide to pure iron sulfide. A maximum distribution coefficient of 30 was found, and the copper level in the iron melt was reduced to as low as 0.07 wt.% with a 4:1 ratio of iron to slag.

  15. Hereditary iron and copper deposition: diagnostics, pathogenesis and therapeutics.

    PubMed

    Aaseth, Jan; Flaten, Trond Peder; Andersen, Ole

    2007-06-01

    Hereditary deposition of iron (primary haemochromatosis) or copper (Wilson's disease) are autosomal recessive metabolic disease characterized by progressive liver pathology and subsequent involvement of various other organs. The prevalence of primary haemochromatosis is approximately 0.5%, about 200 times higher than the prevalence of Wilson's disease. The two diseases are characterized by homozygous occurrences of mutations in the HFE gene on chromosome 6 (primary haemochromatosis) and the ATP7B gene on chromosome 13 (Wilson's disease). Unlike most other inherited conditions, these diseases can be successfully treated, emphasizing the importance of early diagnosis. Serum ferritin values, transferrin saturation and genetic analysis are used when diagnosing haemochromatosis. The diagnostics of Wilson's disease depends on the use of urinary copper values, serum ceruloplasmin and liver biopsy. If untreated, both of these genetic diseases result in rapidly progressing multiorgan damage and early death. The key treatment for haemochromatosis is phlebotomy, for Wilson's disease chelation or Zn treatment. Although the present treatments considerably improve the prognosis of patients, they may be inadequate in patients diagnosed so late that extensive body deposits of metal have been developed. The main research needs in this field are to further clarify molecular mechanisms of disease progression and to develop new chelators that are more effective and less toxic than those presently available.

  16. Regulation of Copper Transport Crossing Brain Barrier Systems by Cu-ATPases: Effect of Manganese Exposure

    PubMed Central

    Fu, Xue; Zhang, Yanshu; Jiang, Wendy; Monnot, Andrew Donald; Bates, Christopher Alexander; Zheng, Wei

    2014-01-01

    Regulation of cellular copper (Cu) homeostasis involves Cu-transporting ATPases (Cu-ATPases), i.e., ATP7A and ATP7B. The question as to how these Cu-ATPases in brain barrier systems transport Cu, i.e., toward brain parenchyma, cerebrospinal fluid (CSF), or blood, remained unanswered. This study was designed to characterize roles of Cu-ATPases in regulating Cu transport at the blood-brain barrier (BBB) and blood-CSF barrier (BCB) and to investigate how exposure to toxic manganese (Mn) altered the function of Cu-ATPases, thereby contributing to the etiology of Mn-induced parkinsonian disorder. Studies by quantitative real-time RT-PCR (qPCR), Western blot, and immunocytochemistry revealed that both Cu-ATPases expressed abundantly in BBB and BCB. Transport kinetic studies by in situ brain infusion and ventriculo-cisternal (VC) perfusion in Sprague Dawley rat suggested that the BBB was a major site for Cu entry into brain, whereas the BCB was a predominant route for Cu efflux from the CSF to blood. Confocal evidence showed that the presence of excess Cu or Mn in the choroid plexus cells led to ATP7A relocating toward the apical microvilli facing the CSF, but ATP7B toward the basolateral membrane facing blood. Mn exposure inhibited the production of both Cu-ATPases. Collectively, these data suggest that Cu is transported by the BBB from the blood to brain, which is mediated by ATP7A in brain capillary. By diffusion, Cu ions move from the interstitial fluid into the CSF, where they are taken up by the BCB. Within the choroidal epithelial cells, Cu ions are transported by ATP7B back to the blood. Mn exposure alters these processes, leading to Cu dyshomeostasis-associated neuronal injury. PMID:24614235

  17. Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb.

    PubMed

    Zhang, Long-Lian; Lu, Ling; Pan, Ya-Juan; Ding, Chun-Guang; Xu, Da-Yong; Huang, Chuan-Feng; Pan, Xing-Fu; Zheng, Wei

    2015-07-01

    Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12-60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu, Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 µg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17-30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46-60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80-25.2 μg/L; for blood Cu, 541-1475 μg/L; for blood Zn, 2349-9492 μg/L; for blood Pb, <100 μg/L; and for blood Cd, <5.30 μg/L in the general population living in Beijing suburbs.

  18. Baseline Blood Levels of Manganese, Lead, Cadmium, Copper, and Zinc in Residents of Beijing Suburb

    PubMed Central

    Zhang, Long-Lian; Lu, Ling; Pan, Ya-Juan; Ding, Chun-Guang; Xu, Da-Yong; Huang, Chuan-Feng; Pan, Xing-Fu; Zheng, Wei

    2015-01-01

    Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12–60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu, Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 μg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17–30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46–60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80–25.2 μ/L; for blood Cu, 541–1475 μ/L; for blood Zn, 2349–9492 μ/L; for blood Pb, <100 μ/L; and for blood Cd, <5.30 μ/L in the general population living in Beijing suburbs. PMID:25836720

  19. The commercialization of the FENIX iron control system for purifying copper electrowinning electrolytes

    NASA Astrophysics Data System (ADS)

    Shaw, D. R.; Dreisinger, D. B.; Lancaster, T.; Richmond, G. D.; Tomlinson, M.

    2004-07-01

    The FENIX Hydromet Iron Control System was installed at Western Metals Copper Ltd.’s Mt. Gordon Operations in Queensland, Australia. The system uses a novel and patented ion-exchange resin to selectively remove iron from copper electrolyte at the solvent extraction/electrowinning plant. At Mt. Gordon, the system delivered significant savings in reagent consumption (acid and cobalt sulfate for electrowinning and lime for neutralization of the raffinate bleed) and has the potential to deliver higher current efficiencies in copper electrowinning, leading to increased copper production.

  20. Spectroscopic studies of the iron and manganese reconstituted tyrosyl radical in Bacillus cereus ribonucleotide reductase R2 protein.

    PubMed

    Tomter, Ane B; Zoppellaro, Giorgio; Bell, Caleb B; Barra, Anne-Laure; Andersen, Niels H; Solomon, Edward I; Andersson, K Kristoffer

    2012-01-01

    Ribonucleotide reductase (RNR) catalyzes the rate limiting step in DNA synthesis where ribonucleotides are reduced to the corresponding deoxyribonucleotides. Class Ib RNRs consist of two homodimeric subunits: R1E, which houses the active site; and R2F, which contains a metallo cofactor and a tyrosyl radical that initiates the ribonucleotide reduction reaction. We studied the R2F subunit of B. cereus reconstituted with iron or alternatively with manganese ions, then subsequently reacted with molecular oxygen to generate two tyrosyl-radicals. The two similar X-band EPR spectra did not change significantly over 4 to 50 K. From the 285 GHz EPR spectrum of the iron form, a g(1)-value of 2.0090 for the tyrosyl radical was extracted. This g(1)-value is similar to that observed in class Ia E. coli R2 and class Ib R2Fs with iron-oxygen cluster, suggesting the absence of hydrogen bond to the phenoxyl group. This was confirmed by resonance Raman spectroscopy, where the stretching vibration associated to the radical (C-O, ν(7a) = 1500 cm(-1)) was found to be insensitive to deuterium-oxide exchange. Additionally, the (18)O-sensitive Fe-O-Fe symmetric stretching (483 cm(-1)) of the metallo-cofactor was also insensitive to deuterium-oxide exchange indicating no hydrogen bonding to the di-iron-oxygen cluster, and thus, different from mouse R2 with a hydrogen bonded cluster. The HF-EPR spectrum of the manganese reconstituted RNR R2F gave a g(1)-value of ∼2.0094. The tyrosyl radical microwave power saturation behavior of the iron-oxygen cluster form was as observed in class Ia R2, with diamagnetic di-ferric cluster ground state, while the properties of the manganese reconstituted form indicated a magnetic ground state of the manganese-cluster. The recent activity measurements (Crona et al., (2011) J Biol Chem 286: 33053-33060) indicates that both the manganese and iron reconstituted RNR R2F could be functional. The manganese form might be very important, as it has 8 times

  1. Metals, Oxidative Stress and Neurodegeneration: A focus on Iron, Manganese and Mercury

    PubMed Central

    Farina, Marcelo; Avila, Daiana Silva; da Rocha, João Batista Teixeira

    2013-01-01

    Essential metals are crucial for the maintenance of cell homeostasis. Among the 23 elements that have known physiological functions in humans, 12 are metals, including iron (Fe) and manganese (Mn). Nevertheless, excessive exposure to these metals may lead to pathological conditions, including neurodegeneration. Similarly, exposure to metals that do not have known biological functions, such as mercury (Hg), also present great health concerns. This reviews focuses on the neurodegenerative mechanisms and effects of Fe, Mn and Hg. Oxidative stress (OS), particularly in mitochondria, is a common feature of Fe, Mn and Hg toxicity. However, the primary molecular targets triggering OS are distinct. Free cationic iron is a potent pro-oxidant and can initiate a set of reactions that form extremely reactive products, such as OH•. Mn can oxidize dopamine (DA), generating reactive species and also affect mitochondrial function, leading to accumulation of metabolites and culminating with OS. Cationic Hg forms have strong affinity for nucleophiles, such as –SH and –SeH. Therefore, they target critical thiol- and selenol-molecules with antioxidant properties. Finally, we address the main sources of exposure to these metals, their transport mechanisms into the brain, and therapeutic modalities to mitigate their neurotoxic effects. PMID:23266600

  2. High-Iron Consumption Impairs Growth and Causes Copper-Deficiency Anemia in Weanling Sprague-Dawley Rats.

    PubMed

    Ha, Jung-Heun; Doguer, Caglar; Wang, Xiaoyu; Flores, Shireen R; Collins, James F

    2016-01-01

    Iron-copper interactions were described decades ago; however, molecular mechanisms linking the two essential minerals remain largely undefined. Investigations in humans and other mammals noted that copper levels increase in the intestinal mucosa, liver and blood during iron deficiency, tissues all important for iron homeostasis. The current study was undertaken to test the hypothesis that dietary copper influences iron homeostasis during iron deficiency and iron overload. We thus fed weanling, male Sprague-Dawley rats (n = 6-11/group) AIN-93G-based diets containing high (~8800 ppm), adequate (~80) or low (~11) iron in combination with high (~183), adequate (~8) or low (~0.9) copper for 5 weeks. Subsequently, the iron- and copper-related phenotype of the rats was assessed. Rats fed the low-iron diets grew slower than controls, with changes in dietary copper not further influencing growth. Unexpectedly, however, high-iron (HFe) feeding also impaired growth. Furthermore, consumption of the HFe diet caused cardiac hypertrophy, anemia, low serum and tissue copper levels and decreased circulating ceruloplasmin activity. Intriguingly, these physiologic perturbations were prevented by adding extra copper to the HFe diet. Furthermore, higher copper levels in the HFe diet increased serum nonheme iron concentration and transferrin saturation, exacerbated hepatic nonheme iron loading and attenuated splenic nonheme iron accumulation. Moreover, serum erythropoietin levels, and splenic erythroferrone and hepatic hepcidin mRNA levels were altered by the dietary treatments in unanticipated ways, providing insight into how iron and copper influence expression of these hormones. We conclude that high-iron feeding of weanling rats causes systemic copper deficiency, and further, that copper influences the iron-overload phenotype. PMID:27537180

  3. High-Iron Consumption Impairs Growth and Causes Copper-Deficiency Anemia in Weanling Sprague-Dawley Rats

    PubMed Central

    Ha, Jung-Heun; Doguer, Caglar; Wang, Xiaoyu; Flores, Shireen R.; Collins, James F.

    2016-01-01

    Iron-copper interactions were described decades ago; however, molecular mechanisms linking the two essential minerals remain largely undefined. Investigations in humans and other mammals noted that copper levels increase in the intestinal mucosa, liver and blood during iron deficiency, tissues all important for iron homeostasis. The current study was undertaken to test the hypothesis that dietary copper influences iron homeostasis during iron deficiency and iron overload. We thus fed weanling, male Sprague-Dawley rats (n = 6-11/group) AIN-93G-based diets containing high (~8800 ppm), adequate (~80) or low (~11) iron in combination with high (~183), adequate (~8) or low (~0.9) copper for 5 weeks. Subsequently, the iron- and copper-related phenotype of the rats was assessed. Rats fed the low-iron diets grew slower than controls, with changes in dietary copper not further influencing growth. Unexpectedly, however, high-iron (HFe) feeding also impaired growth. Furthermore, consumption of the HFe diet caused cardiac hypertrophy, anemia, low serum and tissue copper levels and decreased circulating ceruloplasmin activity. Intriguingly, these physiologic perturbations were prevented by adding extra copper to the HFe diet. Furthermore, higher copper levels in the HFe diet increased serum nonheme iron concentration and transferrin saturation, exacerbated hepatic nonheme iron loading and attenuated splenic nonheme iron accumulation. Moreover, serum erythropoietin levels, and splenic erythroferrone and hepatic hepcidin mRNA levels were altered by the dietary treatments in unanticipated ways, providing insight into how iron and copper influence expression of these hormones. We conclude that high-iron feeding of weanling rats causes systemic copper deficiency, and further, that copper influences the iron-overload phenotype. PMID:27537180

  4. Manganese oxide shuttling in pre-GOE oceans - evidence from molybdenum and iron isotopes

    NASA Astrophysics Data System (ADS)

    Kurzweil, Florian; Wille, Martin; Gantert, Niklas; Beukes, Nicolas J.; Schoenberg, Ronny

    2016-10-01

    The local occurrence of oxygen-rich shallow marine water environments has been suggested to significantly predate atmospheric oxygenation, which occurred during the Great Oxidation Event (GOE) ca. 2.4 billion years ago. However, the potential influence of such 'oxygen oases' on the mobility, distribution and isotopic composition of redox sensitive elements remains poorly understood. Here, we provide new molybdenum and iron isotopic data from shallow marine carbonate and silicate iron formations of the Koegas Subgroup, South Africa, that confirm local ocean redox stratification prior to the GOE. Mn concentrations correlate negatively with both δ98 Mo and δ56 Fe values, which highlights the substantial role of particulate manganese for the cycling of Mo and Fe in the Paleoproterozoic oceans. Based on these trends we propose that pore water molybdate was recharged (1) by the diffusional transport of seawater molybdate with high δ98 Mo and (2) by the re-liberation of adsorbed molybdate with low δ98 Mo during Mn oxide dissolution within the sediment. The relative contribution of isotopically light Mo is highest close to a Mn chemocline, where the flux of Mn oxides is largest, causing the negative correlation of Mn concentrations and δ98 Mo values in the Koegas sediments. The negative correlation between δ56 Fe values and Mn concentrations is likely related to Fe isotope fractionation during Fe(II) oxidation by Mn oxides, resulting in lower δ56 Fe values in the uppermost water column close to a Mn chemocline. We argue that the preservation of these signals within Paleoproterozoic sediments implies the existence of vertically extended chemoclines with a smoother gradient, probably as a result of low atmospheric oxygen concentrations. Furthermore, we suggest that abiotic oxidation of Fe(II) by a Mn oxide particle shuttle might have promoted the deposition of the Koegas iron formations.

  5. Overlap of copper and iron uptake systems in mitochondria in Saccharomyces cerevisiae.

    PubMed

    Vest, Katherine E; Wang, Jing; Gammon, Micah G; Maynard, Margaret K; White, Olivia L; Cobine, Jai A; Mahone, Wilkerson K; Cobine, Paul A

    2016-01-01

    In Saccharomyces cerevisiae, the mitochondrial carrier family protein Pic2 imports copper into the matrix. Deletion of PIC2 causes defects in mitochondrial copper uptake and copper-dependent growth phenotypes owing to decreased cytochrome c oxidase activity. However, copper import is not completely eliminated in this mutant, so alternative transport systems must exist. Deletion of MRS3, a component of the iron import machinery, also causes a copper-dependent growth defect on non-fermentable carbon. Deletion of both PIC2 and MRS3 led to a more severe respiratory growth defect than either individual mutant. In addition, MRS3 expressed from a high copy number vector was able to suppress the oxygen consumption and copper uptake defects of a strain lacking PIC2. When expressed in Lactococcus lactis, Mrs3 mediated copper and iron import. Finally, a PIC2 and MRS3 double mutant prevented the copper-dependent activation of a heterologously expressed copper sensor in the mitochondrial intermembrane space. Taken together, these data support a role for the iron transporter Mrs3 in copper import into the mitochondrial matrix.

  6. Overlap of copper and iron uptake systems in mitochondria in Saccharomyces cerevisiae

    PubMed Central

    Wang, Jing; Gammon, Micah G.; Maynard, Margaret K.; White, Olivia L.; Cobine, Jai A.; Mahone, Wilkerson K.

    2016-01-01

    In Saccharomyces cerevisiae, the mitochondrial carrier family protein Pic2 imports copper into the matrix. Deletion of PIC2 causes defects in mitochondrial copper uptake and copper-dependent growth phenotypes owing to decreased cytochrome c oxidase activity. However, copper import is not completely eliminated in this mutant, so alternative transport systems must exist. Deletion of MRS3, a component of the iron import machinery, also causes a copper-dependent growth defect on non-fermentable carbon. Deletion of both PIC2 and MRS3 led to a more severe respiratory growth defect than either individual mutant. In addition, MRS3 expressed from a high copy number vector was able to suppress the oxygen consumption and copper uptake defects of a strain lacking PIC2. When expressed in Lactococcus lactis, Mrs3 mediated copper and iron import. Finally, a PIC2 and MRS3 double mutant prevented the copper-dependent activation of a heterologously expressed copper sensor in the mitochondrial intermembrane space. Taken together, these data support a role for the iron transporter Mrs3 in copper import into the mitochondrial matrix. PMID:26763345

  7. [The serum copper/serum iron ratio in malignant tumors of the female genitalia].

    PubMed

    Maas, D H; Hinckers, H J

    1975-08-01

    Copper and iron in blood of 83 women with maligne tumors of the genitalia were regulary controled before, during and till 69 weeks after therapy. The relation between the copper/iron-ratio and the expansion and histology of the tumors, the success of the therapy and the incidence of a recurrence was checked for any significancy. Our results show the improtance of the ratio in the diagnosis and differentialdiagnosis of the ovarian-cancer and the corpus-uteri-cancer, and in the success-controll during tumor-therapy. In the group of the patients with collum-uteri-cancer we found a significant difference in the copper/iron-ratio of the patients with and without a recurrence during the controllperiod after therapy, which emphasizes the importance of this copper/iron-ratio.

  8. Manganese (II) Chelate Functionalized Copper Sulfide Nanoparticles for Efficient Magnetic Resonance/Photoacoustic Dual-Modal Imaging Guided Photothermal Therapy.

    PubMed

    Liu, Renfa; Jing, Lijia; Peng, Dong; Li, Yong; Tian, Jie; Dai, Zhifei

    2015-01-01

    The integration of diagnostic and therapeutic functionalities into one nanoplatform shows great promise in cancer therapy. In this research, manganese (II) chelate functionalized copper sulfide nanoparticles were successfully prepared using a facile hydrothermal method. The obtained ultrasmall nanoparticles exhibit excellent photothermal effect and photoaoustic activity. Besides, the high loading content of Mn(II) chelates makes the nanoparticles attractive T1 contrast agent in magnetic resonance imaging (MRI). In vivo photoacoustic imaging (PAI) results showed that the nanoparticles could be efficiently accumulated in tumor site in 24 h after systematic administration, which was further validated by MRI tests. The subsequent photothermal therapy of cancer in vivo was achieved without inducing any observed side effects. Therefore, the copper sulfide nanoparticles functionalized with Mn(II) chelate hold great promise as a theranostic nanomedicine for MR/PA dual-modal imaging guided photothermal therapy of cancer.

  9. Manganese (II) Chelate Functionalized Copper Sulfide Nanoparticles for Efficient Magnetic Resonance/Photoacoustic Dual-Modal Imaging Guided Photothermal Therapy

    PubMed Central

    Liu, Renfa; Jing, Lijia; Peng, Dong; Li, Yong; Tian, Jie; Dai, Zhifei

    2015-01-01

    The integration of diagnostic and therapeutic functionalities into one nanoplatform shows great promise in cancer therapy. In this research, manganese (II) chelate functionalized copper sulfide nanoparticles were successfully prepared using a facile hydrothermal method. The obtained ultrasmall nanoparticles exhibit excellent photothermal effect and photoaoustic activity. Besides, the high loading content of Mn(II) chelates makes the nanoparticles attractive T1 contrast agent in magnetic resonance imaging (MRI). In vivo photoacoustic imaging (PAI) results showed that the nanoparticles could be efficiently accumulated in tumor site in 24 h after systematic administration, which was further validated by MRI tests. The subsequent photothermal therapy of cancer in vivo was achieved without inducing any observed side effects. Therefore, the copper sulfide nanoparticles functionalized with Mn(II) chelate hold great promise as a theranostic nanomedicine for MR/PA dual-modal imaging guided photothermal therapy of cancer. PMID:26284144

  10. Evaluation of iron and manganese-coated pumice application for the removal of as(v) from aqueous solutions

    PubMed Central

    2012-01-01

    Arsenic contamination of water has been recognized as a serious environmental issue and there are reports on its epidemiological problems to human health. The objective of this study was to evaluate the performances of iron-coated pumice and manganese-coated pumice as the adsorbents for removing arsenate from aqueous solutions. The effect of various parameters such as adsorbent dose, contact time, pH and initial concentration on removal efficiency of arsenate were evaluated in batch mode. The data obtained from the kinetic studies were analyzed using kinetic models of pseudo-first-order and pseudo-second-order. In addition, two isotherm models of Freundlich and Langmuir were used to fit the experimental data. The results showed that the optimum dosage of iron-coated pumice and manganese-coated pumice for arsenate removal were 40 and 80 g/L whereas the adsorption process reached equilibrium after 80 and 100 min, respectively. The maximum removal efficiency of arsenate using the two adsorbents were both recorded in pH=3 as the removal efficiency gradually declined following every increase in pH values of the solution. Iron-coated pumice also showed to have high removal efficiency when the initial concentration of arsenate was high while the low concentration of arsenate was efficiently removed by manganese-coated pumice. Moreover, it was depicted that the adsorption kinetics by both adsorbents followed pseudo-second order equation and the uptake data of arsenate were well fitted with Langmuir isotherm model. Therefore, it could be concluded that iron and manganese-coated pumice could be considered as suitable adsorbents for arsenate removal from aqueous solutions. PMID:23369510

  11. Mononuclear nonheme iron(IV)-oxo and manganese(IV)-oxo complexes in oxidation reactions: experimental results prove theoretical prediction.

    PubMed

    Chen, Junying; Cho, Kyung-Bin; Lee, Yong-Min; Kwon, Yoon Hye; Nam, Wonwoo

    2015-08-25

    Reactivities of mononuclear nonheme iron(IV)-oxo and manganese(IV)-oxo complexes bearing a pentadentate N4Py ligand, [M(IV)O(N4Py)](2+) (M = Fe and Mn), are compared in hydrogen atom transfer (HAT) and oxygen atom transfer (OAT) reactions; theoretical and experimental results show that Fe(IV)O is more reactive than Mn(IV)O. The latter is shown to react through excited state reactivity (ESR).

  12. Evaluation of iron and manganese-coated pumice application for the removal of as(v) from aqueous solutions.

    PubMed

    Far, Leila Babaie; Souri, Bubak; Heidari, Masoumeh; Khoshnavazi, Roshan

    2012-12-10

    Arsenic contamination of water has been recognized as a serious environmental issue and there are reports on its epidemiological problems to human health. The objective of this study was to evaluate the performances of iron-coated pumice and manganese-coated pumice as the adsorbents for removing arsenate from aqueous solutions. The effect of various parameters such as adsorbent dose, contact time, pH and initial concentration on removal efficiency of arsenate were evaluated in batch mode. The data obtained from the kinetic studies were analyzed using kinetic models of pseudo-first-order and pseudo-second-order. In addition, two isotherm models of Freundlich and Langmuir were used to fit the experimental data. The results showed that the optimum dosage of iron-coated pumice and manganese-coated pumice for arsenate removal were 40 and 80 g/L whereas the adsorption process reached equilibrium after 80 and 100 min, respectively. The maximum removal efficiency of arsenate using the two adsorbents were both recorded in pH=3 as the removal efficiency gradually declined following every increase in pH values of the solution. Iron-coated pumice also showed to have high removal efficiency when the initial concentration of arsenate was high while the low concentration of arsenate was efficiently removed by manganese-coated pumice. Moreover, it was depicted that the adsorption kinetics by both adsorbents followed pseudo-second order equation and the uptake data of arsenate were well fitted with Langmuir isotherm model. Therefore, it could be concluded that iron and manganese-coated pumice could be considered as suitable adsorbents for arsenate removal from aqueous solutions.

  13. Evaluation of iron and manganese-coated pumice application for the removal of as(v) from aqueous solutions.

    PubMed

    Far, Leila Babaie; Souri, Bubak; Heidari, Masoumeh; Khoshnavazi, Roshan

    2012-01-01

    Arsenic contamination of water has been recognized as a serious environmental issue and there are reports on its epidemiological problems to human health. The objective of this study was to evaluate the performances of iron-coated pumice and manganese-coated pumice as the adsorbents for removing arsenate from aqueous solutions. The effect of various parameters such as adsorbent dose, contact time, pH and initial concentration on removal efficiency of arsenate were evaluated in batch mode. The data obtained from the kinetic studies were analyzed using kinetic models of pseudo-first-order and pseudo-second-order. In addition, two isotherm models of Freundlich and Langmuir were used to fit the experimental data. The results showed that the optimum dosage of iron-coated pumice and manganese-coated pumice for arsenate removal were 40 and 80 g/L whereas the adsorption process reached equilibrium after 80 and 100 min, respectively. The maximum removal efficiency of arsenate using the two adsorbents were both recorded in pH=3 as the removal efficiency gradually declined following every increase in pH values of the solution. Iron-coated pumice also showed to have high removal efficiency when the initial concentration of arsenate was high while the low concentration of arsenate was efficiently removed by manganese-coated pumice. Moreover, it was depicted that the adsorption kinetics by both adsorbents followed pseudo-second order equation and the uptake data of arsenate were well fitted with Langmuir isotherm model. Therefore, it could be concluded that iron and manganese-coated pumice could be considered as suitable adsorbents for arsenate removal from aqueous solutions. PMID:23369510

  14. Charge state mapping of mixed valent iron and manganese mineral particles using Scanning Transmission X-ray Microscopy (STXM)

    NASA Astrophysics Data System (ADS)

    Pecher, K.; Kneedler, E.; Rothe, J.; Meigs, G.; Warwick, T.; Nealson, K.; Tonner, B.

    2000-05-01

    The interfaces between solid mineral particles and water play a crucial role in partitioning and chemical transformation of many inorganic as well as organic pollutants in environmental systems. Among environmentally significant minerals, mixed-valent oxides and hydroxides of iron (e.g. magnetite, green rusts) and manganese (hausmanite, birnessite) have been recognized as particularly strong sorbents for metal ions. In addition, minerals containing Fe(II) have recently been proven to be powerful reductants for a wide range of pollutants. Chemical properties of these minerals strongly depend on the distribution and availability of reactive sites and little is known quantitatively about the nature of these sites. We have investigated the bulk distribution of charge states of manganese (Mn (II, III, IV)) and iron (Fe(II, III)) in single particles of natural manganese nodules and synthetic green rusts using Scanning Transmission X-ray SpectroMicroscopy (STXM). Pixel resolved spectra (XANES) extracted from stacks of images taken at different wave lengths across the metal absorption edge were fitted to total electron yield (TEY) spectra of single valent reference compounds. Two dimensional maps of bulk charge state distributions clearly reveal domains of different oxidation states within single particles of Mn-nodules and green rust precipitates. Changes of oxidation states of iron were followed as a result of reductive transformation of an environmental contaminant (CCl4) using green rust as the only reductant.

  15. The effect of induced anoxia and reoxygenation on benthic fluxes of organic carbon, phosphate, iron, and manganese.

    PubMed

    Skoog, Annelie C; Arias-Esquivel, Victor A

    2009-11-15

    Eutrophication causes seasonally anoxic bottom waters in coastal environments, but we lack information on effects of onset of anoxia and subsequent reoxygenation on benthic fluxes of redox-sensitive minerals and associated organic carbon (OC). As the first study, we determined the effect of inducing anoxia and subsequently restoring oxic conditions in mesocosms with surface sediment and water from a coastal environment. These concentration changes were compared with those in an oxygenated control. We determined water column concentrations of dissolved organic carbon (DOC), particulate organic carbon (POC), iron, manganese, and phosphate. Benthic fluxes of DOC, POC, and iron increased at the onset of anoxia in oxygen-depleted treatments. DOC and iron concentrations increased concomitantly towards maxima, which may have indicated reductive dissolution of FeOOH and release of associated OC. The subsequent concomitant concentration decreases may have been the result of coprecipitation of OC with iron-containing minerals. In contrast, the phosphate-concentration increase occurred several days after the onset of anoxia and the manganese concentration was not affected by the onset of anoxia. Restoring oxic conditions resulted in a decrease in DOC, POC, and phosphate concentrations, which may indicate coprecipitation of OC with phosphate-containing minerals. The high DOC fluxes at the onset of anoxia indicate that redox oscillations may be important in OC degradation. Further, our results indicate a close coupling between OC cycling and dissolution/precipitation of iron-containing minerals in intermittently anoxic sediments.

  16. Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb

    SciTech Connect

    Zhang, Long-Lian; Lu, Ling; Pan, Ya-Juan; Ding, Chun-Guang; Xu, Da-Yong; Huang, Chuan-Feng; Pan, Xing-Fu; Zheng, Wei

    2015-07-15

    Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12–60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu, Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 µg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17–30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46–60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80–25.2 μg/L; for blood Cu, 541–1475 μg/L; for blood Zn, 2349–9492 μg/L; for blood Pb, <100 μg/L; and for blood Cd, <5.30 μg/L in the general population living in Beijing suburbs. - Highlights: • Baseline blood levels of metals in residents of Beijing suburb are investigated. • BMn and BPb in this cohort are higher than those in other developed countries. • Remarkably lower blood levels of Cu and Zn in this Chinese cohort are noticed. • The reference values for blood levels of Mn, Cu, Zn, Pb, and Cd are established.

  17. Copper, manganese, cobalt and selenium concentrations in liver samples from African buffalo (Syncerus caffer) in the Kruger National Park.

    PubMed

    Webb, E C; van Ryssen, J B; Erasmus, M E; McCrindle, C M

    2001-12-01

    Animals may act as bio-indicators for the pollution of soil, air and water. In order to monitor changes over time, a baseline status should be established for a particular species in a particular area. The concentration of minerals in soil is a poor indicator of mineral uptake by plants and thus their availability to animals. The chemical composition of body tissue, particularly the liver, is a better reflection of the dietary status of domestic and wild animals. Normal values for copper, manganese and cobalt in the liver have been established for cattle but not for African buffalo. As part of the bovine tuberculosis (BTB) monitoring programme in the Kruger National Park (KNP) in South Africa, 660 buffalo were culled. Livers (n = 311) were randomly sampled in buffered formalin for mineral analysis. The highest concentrations of copper were measured in the northern and central parts of the KNP, which is downwind of mining and refining activities. Manganese, cobalt and selenium levels in liver samples indicated neither excess nor deficiency; however, there were some significant area, age and gender differences. The results will be useful as a baseline reference when monitoring variations in the level and extent of mineral pollution on natural pastures close to mines and refineries.

  18. Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides, iron (hydr)oxides, and their mixtures.

    PubMed

    Nelson, Yarrow M; Lion, Leonard W; Shuler, Michael L; Ghiorse, William C

    2002-02-01

    The effects of iron and manganese (hydr)oxide formation processes on the trace metal adsorption properties of these metal (hydr)oxides and their mixtures was investigated by measuring lead adsorption by iron and manganese (hydr)oxides prepared by a variety of methods. Amorphous iron (hydr)oxide formed by fast precipitation at pH 7.5 exhibited greater Pb adsorption (gamma(max) = 50 mmol of Pb/mol of Fe at pH 6.0) than iron (hydr)oxide formed by slow, diffusion-controlled oxidation of Fe(II) at pH 4.5-7.0 or goethite. Biogenic manganese(III/IV) (hydr)oxide prepared by enzymatic oxidation of Mn(II) by the bacterium Leptothrix discophora SS-1 adsorbed five times more Pb (per mole of Mn) than an abiotic manganese (hydr)oxide prepared by oxidation of Mn(II) with permanganate, and 500-5000 times more Pb than pyrolusite oxides (betaMnO2). X-ray crystallography indicated that biogenic manganese (hydr)oxide and iron (hydr)oxide were predominantly amorphous or poorly crystalline and their X-ray diffraction patterns were not significantly affected by the presence of the other (hydr)oxide during formation. When iron and manganese (hydr)oxides were mixed after formation, or for Mn biologically oxidized with iron(III) (hydr)oxide present, observed Pb adsorption was similar to that expected for the mixture based on Langmuir parameters for the individual (hydr)oxides. These results indicate that interactions in iron/manganese (hydr)oxide mixtures related to the formation process and sequence of formation such as site masking, alterations in specific surface area, or changes in crystalline structure either did not occur or had a negligible effect on Pb adsorption by the mixtures. PMID:11871557

  19. Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides, iron (hydr)oxides, and their mixtures.

    PubMed

    Nelson, Yarrow M; Lion, Leonard W; Shuler, Michael L; Ghiorse, William C

    2002-02-01

    The effects of iron and manganese (hydr)oxide formation processes on the trace metal adsorption properties of these metal (hydr)oxides and their mixtures was investigated by measuring lead adsorption by iron and manganese (hydr)oxides prepared by a variety of methods. Amorphous iron (hydr)oxide formed by fast precipitation at pH 7.5 exhibited greater Pb adsorption (gamma(max) = 50 mmol of Pb/mol of Fe at pH 6.0) than iron (hydr)oxide formed by slow, diffusion-controlled oxidation of Fe(II) at pH 4.5-7.0 or goethite. Biogenic manganese(III/IV) (hydr)oxide prepared by enzymatic oxidation of Mn(II) by the bacterium Leptothrix discophora SS-1 adsorbed five times more Pb (per mole of Mn) than an abiotic manganese (hydr)oxide prepared by oxidation of Mn(II) with permanganate, and 500-5000 times more Pb than pyrolusite oxides (betaMnO2). X-ray crystallography indicated that biogenic manganese (hydr)oxide and iron (hydr)oxide were predominantly amorphous or poorly crystalline and their X-ray diffraction patterns were not significantly affected by the presence of the other (hydr)oxide during formation. When iron and manganese (hydr)oxides were mixed after formation, or for Mn biologically oxidized with iron(III) (hydr)oxide present, observed Pb adsorption was similar to that expected for the mixture based on Langmuir parameters for the individual (hydr)oxides. These results indicate that interactions in iron/manganese (hydr)oxide mixtures related to the formation process and sequence of formation such as site masking, alterations in specific surface area, or changes in crystalline structure either did not occur or had a negligible effect on Pb adsorption by the mixtures.

  20. Induction of superoxide dismutases in Escherichia coli by manganese and iron

    SciTech Connect

    Pugh, S.Y.R.; DiGuiseppi, J.L.; Fridovich, I.

    1984-10-01

    Growth of Escherichia coli B in simple media enriched with Mn(II) resulted in the elevation of the manganese-containing superoxide dismutase, whereas growth in such medium enriched with iron caused increased content of the iron-containing superoxide dismutase. Enrichment of the medium with Co(II), Cu(II), Mo(VI), Zn(II), or Ni(II) had no effect. The inductions of superoxide dismutase by Mn(II) or by Fe(II) were dioxygen dependent, but these metals did not affect the CN/sup -/-resistant respiration of E. coli B and did not influence the increase in the CN/sup -/-resistant respiration caused by paraquat. Mn(II) and paraquat acted synergistically in elevating the superoxide dismutase content, and Mn(II) reduced the growth inhibition imposed by paraquat. E. coli grown in the complex 3% Trypticase soy broth (BBL Microbiology Systems)-0.5% yeast extract-0.2% glucose medium contained more superoxide dismutase than did cells grown in the simple media and were less responsive to enrichment of the medium with Mn(II) or Fe(II). Nevertheless, in the presence of paraquat, induction of superoxide dismutase by these metals could be seen even in the Trypticase-yeast extract-glucose medium. On the basis of these observations, the authors propose that the apo-superoxide dismutases may act as autogenous repressors and that Mn(II) and Fe(II) increase the cell content of the corresponding enzymes by speeding the conversion of the apo- to the holoenzymes.

  1. Geochemistry and Microbial Communities in Iron- and Manganese-Enriched Cold Groundwater Biofiltration Units

    NASA Astrophysics Data System (ADS)

    Chang, W.; Dangeti, S.; Roshani, B.; McBeth, J. M.

    2015-12-01

    Exploring how to enhance the microbially mediated oxidization of iron (Fe) and manganese (Mn) in natural and engineered environments in cold climates requires an understanding of the interactive relationships between the geochemistry of cold groundwater and Fe- and Mn-oxidizing bacteria. This study precisely measured geochemical and microbial communities in a scaled-up biofiltration system using synchrotron-based X-ray Absorption Near-Edge Spectroscopy (XANES) analyses coupled with next-generation sequencing (Illumina Miseq). Two pilot-scale biofiltration columns for Fe (Filter 1) and Mn (Filter 2) were connected in series and installed at the Langham Water Treatment Plant in Saskatoon, Canada. The groundwater temperature ranged from 4 to 8 °C. The pilot-scale study showed that successful treatment (99% removal) of both Fe and Mn was achieved in the biofilters. However, the Mn removal was significantly retarded for four months, likely due to the slow growth of Mn-oxidizing bacteria (MnOB) in Filter 2. The removal of Mn was accelerated once the redox potential in Filter 2 exceeded +300 mV. At that point, the XANES analyses showed that the oxidization states of Mn in Filter 2 were mainly +3 and +4, confirming that Mn oxidization had occurred. Geochemical analyses (PHREEQCi) also indicated changed geochemical conditions that favoured the formation of Mn-oxides during biofiltration. Next-generation sequencing analyses indicated the enrichment of iron-oxidizing bacteria (FeOB), including Gallionella sp. and Sideroxydans sp., in Filter 1. There were high read numbers for MnOB relatives, including Pseudomonas sp., Hydrogenophaga sp., Bdellovibrio sp., and Leptothrix sp., in Filter 2. Furthermore, the addition of anthracite (coal-based filter media) positively affected the growth MnOB and enhanced Mn oxidization. The evidence obtained in this study provides insight into how Mn oxidization can be accelerated in cold groundwater treatment systems.

  2. Preparation and evaluation of aminopropyl-functionalized manganese-loaded SBA-15 for copper removal from aqueous solution.

    PubMed

    Lei, Di; Zheng, Qianwen; Wang, Yili; Wang, Hongjie

    2015-02-01

    A novel material, aminopropyl-functionalized manganese-loaded SBA-15 (NH2-Mn-SBA-15), was synthesized by bonding 3-aminopropyl trimethoxysilane (APTMS) onto manganese-loaded SBA-15 (Mn-SBA-15) and used as a Cu2+ adsorbent in aqueous solution. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectra (XRD), N2 adsorption/desorption isotherms, high resolution field emission scanning electron microscopy (FESEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the NH2-Mn-SBA-15. The ordered mesoporous structure of SBA-15 was remained after modification. The manganese oxides were mainly loaded on the internal surface of the pore channels while the aminopropyl groups were mainly anchored on the external surface of SBA-15. The adsorption of Cu2+ on NH2-Mn-SBA-15 was fitted well by the Langmuir equation and the maximum adsorption capacity of NH2-Mn-SBA-15 for Cu2+ was over two times higher than that of Mn-SBA-15 under the same conditions. The Elovich equation gave a good fit for the adsorption process of Cu2+ by NH2-Mn-SBA-15 and Mn-SBA-15. Both the loaded manganese oxides and the anchored aminopropyl groups were found to contribute to the uptake of Cu2+. The NH2-Mn-SBA-15 showed high selectivity for copper ions. Consecutive adsorption-desorption experiments showed that the NH2-Mn-SBA-15 could be regenerated by acid treatment without altering its properties.

  3. Variations in structure and electrochemistry of iron- and titanium-doped lithium nickel manganese oxyfluoride spinels

    NASA Astrophysics Data System (ADS)

    Höweling, Andres; Stenzel, David; Gesswein, Holger; Kaus, Maximilian; Indris, Sylvio; Bergfeldt, Thomas; Binder, Joachim R.

    2016-05-01

    Doping of cathode materials can considerably improve electrochemical performance and stability. Here, the high-voltage LiNi0.5Mn1.5O4 spinel is used as a candidate material. It is high-voltage cycling at a potential of approximately 4.7 V and the ability to host 2 eq. Li, thus leading to a theoretical capacity of 294 mAh g-1, that makes this material interesting. In order to improve stability and electronic conductivity, the spinel is doped with titanium and iron. Cycling in a voltage range of 2.0-5.0 V leads to a cooperative Jahn-Teller distortion accompanied by a phase transformation from cubic to tetragonal symmetry. This causes a severe capacity fade. To improve capacity retention, the as-prepared spinel is post-doped with fluorine. Influence of different fluorine amounts in LiNi0.5Mn1.4Fe0.1Ti0.027O4-xFx (x = 0-0.3) on the capacity and stability is analyzed. The initial capacities decrease with increasing fluorine content but the low voltage capacity is stabilized. Best electrochemical results are obtained with a fluorine content of x = 0.15. Furthermore, an additional redox couple is found. The intensity of this depends on the fluorine content. It is assumed that manganese, either in the tetrahedral sites or in octahedral sites, bound to fluorine lead to a higher voltage.

  4. Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia.

    PubMed

    Torres, Natascha T; Och, Lawrence M; Hauser, Peter C; Furrer, Gerhard; Brandl, Helmut; Vologina, Elena; Sturm, Michael; Bürgmann, Helmut; Müller, Beat

    2014-04-01

    Distinct layers of iron(III) and manganese(IV) (Fe/Mn) oxides are found buried within the reducing part of the sediments in Lake Baikal and cause considerable complexity and steep vertical gradients with respect to the redox sequence. For the on-site investigation of the responsible biogeochemical processes, we applied filter tube samplers for the extraction of sediment porewater combined with a portable capillary electrophoresis instrument for the analyses of inorganic cations and anions. On the basis of the new results, the sequence of diagenetic processes leading to the formation, transformation, and dissolution of the Fe/Mn layers was investigated. With two exemplary cores we demonstrate that the dissolution of particulate Fe and Mn is coupled to the anaerobic oxidation of CH₄ (AOM) either via the reduction of sulphate (SO₄(2-)) and the subsequent generation of Fe(II) by S(-II) oxidation, or directly coupled to Fe reduction. Dissolved Fe(II) diffuses upwards to reduce particulate Mn(IV) thus forming a sharp mineral boundary. An alternative dissolution pathway is indicated by the occurrence of anaerobic nitrification of NH₄(+) observed at locations with Mn(IV). Furthermore, the reasons and consequences of the non-steady-state sediment pattern and the resulting redox discontinuities are discussed and a suggestion for the burial of active Fe/Mn layers is presented.

  5. Chromium Mobilization by Microbially-Driven Iron and Manganese Redox Cycling

    NASA Astrophysics Data System (ADS)

    Garcia Arredondo, M.; Hausladen, D.; Ying, S.; Fendorf, S. E.

    2014-12-01

    Chromium, a naturally occurring contaminant, poses a significant threat to California groundwater quality when ultramafic rocks weather leaving Cr-enriched serpentine soils. Benign and of limited solubility, Cr(III) can oxidize into soluble and carcinogenic Cr(VI). Under most environmental conditions, Mn-oxides are the principal oxidant of Cr(III). Here we investigate Cr(III) oxidation by both abiotically synthesized birnessite and biogenically produced Mn-oxides. Further, we explore chromium dynamics within artificial soil aggregates composed of Cr(OH)3- and Cr0.25Fe0.75(OH)3-coated quartz grains surrounded by aerated solute flow. Abiotic aggregates contained synthetic birnessite, while biotic aggregates were inoculated with Leptothrix cholodnii, a manganese-oxidizing bacterium, and Shewanella putrefaciens, an iron-reducing bacterium. Results show aqueous Cr(VI) concentrations scaling with Cr-mineral solubility. When Leptothrix sp.-inoculated Cr(III),Fe(III)-aggregates are supplied with aqueous Mn(II), Mn-oxides precipitate in the aerobic aggregate. Cr(VI) production occurs similar to that via synthetic birnessite. With the addition of Shewanella sp., coupled biotic and abiotic processes occur causing the reduction, and subsequent immobilization, of chromium by microbial metabolites (e.g., Fe(II)). This study shows the importance of microbial community composition on chromium dynamics within diffusion-limited zones, and suggests the potential for biological immobilization of Cr even in the presence of Mn-oxidizing bacteria.

  6. Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia.

    PubMed

    Torres, Natascha T; Och, Lawrence M; Hauser, Peter C; Furrer, Gerhard; Brandl, Helmut; Vologina, Elena; Sturm, Michael; Bürgmann, Helmut; Müller, Beat

    2014-04-01

    Distinct layers of iron(III) and manganese(IV) (Fe/Mn) oxides are found buried within the reducing part of the sediments in Lake Baikal and cause considerable complexity and steep vertical gradients with respect to the redox sequence. For the on-site investigation of the responsible biogeochemical processes, we applied filter tube samplers for the extraction of sediment porewater combined with a portable capillary electrophoresis instrument for the analyses of inorganic cations and anions. On the basis of the new results, the sequence of diagenetic processes leading to the formation, transformation, and dissolution of the Fe/Mn layers was investigated. With two exemplary cores we demonstrate that the dissolution of particulate Fe and Mn is coupled to the anaerobic oxidation of CH₄ (AOM) either via the reduction of sulphate (SO₄(2-)) and the subsequent generation of Fe(II) by S(-II) oxidation, or directly coupled to Fe reduction. Dissolved Fe(II) diffuses upwards to reduce particulate Mn(IV) thus forming a sharp mineral boundary. An alternative dissolution pathway is indicated by the occurrence of anaerobic nitrification of NH₄(+) observed at locations with Mn(IV). Furthermore, the reasons and consequences of the non-steady-state sediment pattern and the resulting redox discontinuities are discussed and a suggestion for the burial of active Fe/Mn layers is presented. PMID:24619231

  7. Molecular-Level Processes Governing the Interaction of Contaminants with Iron and Manganese Oxides - Final Report

    SciTech Connect

    Brown Jr., G. E.; Chambers, S. A.

    1999-10-31

    Many of the inorganic and organic contaminants present in sediments at DOE sites can be altered or destroyed by reduction and oxidation (redox) reactions occurring at mineral surfaces. A fundamental understanding of such redox processes provided by molecular-level studies on structurally and compositionally well-defined mineral surfaces will lead to: (i) improved models of contaminant fate and transport in geochemical systems, and (ii) optimized manipulation of these processes for remediation purposes. To contribute to this understanding, we will study, both experimentally and theoretically, redox processes involving three important contaminants - chromate ion, carbon tetrachloride, and trichloroethene TCE, on the following iron and manganese oxides - hematite, magnetite, maghemite, and pyrolusite. These oxides and their hydroxylated analogs commonly occur as coatings on minerals or as interfaces in the subsurface environment. Single-crystal surfaces of these oxides will be synthesized in carefully controlled fashion by molecular beam epitaxy. These surfaces, as well as high surface are powdered samples of these oxides, will be used in spectroscopic and kinetic experiments in both aqueous and gas phases. Our goal is to identify products and to determine the kinetics and mechanisms of surface-catalyzed redox reaction of Cr(VI) and CR(III), and the reductive dechlorination of carbon tetrachloride and TCE. The combination of theory and experiment will provide the base information needed to scale from the molecular level to the microscopic grain level minerals.

  8. Role of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium in carcinogenesis.

    PubMed Central

    Kazantzis, G

    1981-01-01

    The possible carcinogenicity of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium is reviewed, taking into account epidemiological data, the results of animal experimental studies, data on mutagenic effects and on other in vitro test systems. Of the great variety of occupations where exposure to one of these metals may occur, only haematite mining has been clearly shown to involve an increased human cancer risk. While the possibility that haematite might in some way act as a carcinogen has to be taken into consideration it is more likely that other carcinogens are responsible. Certain platinum coordination complexes are used in cancer chemotherapy, are mutagenic, and likely to be carcinogenic. Cobalt, its oxide and sulfide, certain lead salts, one organomanganese, and one organotitanium compound have been shown to have a limited carcinogenic effect in experimental animal studies, and except for titanium appear to be mutagenic. Certain mercury compounds are mutagenic but none have been shown to be carcinogenic. The presently available data are inadequate to assess the possible carcinogenicity of selenium compounds, but a few observations suggest that selenium may suppress the effect of other carcinogens administered to experimental animals and may even be associated with lower cancer mortality rates in man. Epidemiological observations are essential for the assessment of a human cancer risk, but the difficulty in collecting past exposure data in occupational groups and the complexity of multiple occupational exposures with changes over time, limits the usefulness of retrospective epidemiological studies. PMID:7023929

  9. Synthesis, crystal structure and magnetism of iron(III) and manganese(III) dipicolinates with pyridinemethanols

    NASA Astrophysics Data System (ADS)

    Uhrecký, Róbert; Pavlik, Ján; Růžičková, Zdeňka; Dlháň, Ľubor; Koman, Marian; Boča, Roman; Moncoľ, Ján

    2014-11-01

    Four ionic iron(III) and manganese(III) dipicolinato complexes of the formula (2-pymeH) [FeIII(dipic)2]ṡ[FeIII(H2O)2Cl(dipic)]ṡ2H2O, (3-pymeH)[MnIII(dipic)2]ṡ1.5H2O, (4-pymeH)[FeIII(dipic)2]ṡ2H2O and (4-pymeH)[MnIII(dipic)2]ṡ2H2O, where H2dipic = pyridine-2,6-dicarboxylic acid, 2-pyme = 2-pyridinemethanol, 3-pyme = 3-pyridinemethanol, 4-pyme = 4-pyridinemethanol, have been prepared and characterized by the single-crystal X-ray structure analysis, infrared spectroscopy and magnetic measurements. The magnetic data were fitted to a zero-field splitting model revealing a slight magnetic anisotropy for Mn(III) systems. The molecular field correction was consistently formulated and included in the analysis for both, magnetic susceptibility and magnetization data.

  10. Methane monooxygenase: functionalizing methane at iron and copper.

    PubMed

    Sazinsky, Matthew H; Lippard, Stephen J

    2015-01-01

    Methane monooxygenases (MMOs) catalyze the conversion of methane to methanol as the first committed step in the assimilation of this hydrocarbon into biomass and energy by methanotrophs, thus playing a significant role in the biogeochemistry of this potent greenhouse gas. Two distinct enzymes, a copper-dependent membrane protein, particulate methane monooxygenase (pMMO), and an iron-dependent cytosolic protein, soluble methane monooxygenase (sMMO), carry out this transformation using large protein scaffolds that help to facilitate the timely transport of hydrocarbon, O₂, proton, and electron substrates to buried dimetallic active sites. For both enzymes, reaction of the reduced metal centers with O₂leads to intermediates that activate the relatively inert C-H bonds of hydrocarbons to yield oxidized products. Among synthetic and biological catalysts, MMOs are unique because they are the only ones known to hydroxylate methane at ambient temperatures. As a need for new industrial catalysts and green chemical transformations increases, understanding how the different MMO metal centers efficiently accomplish this challenging chemistry has become the focus of intense study. This chapter examines current understanding of the sMMO and pMMO protein structures, their methods for substrate channeling, and mechanisms for the dimetallic activation of O₂and C-H bonds. PMID:25707469

  11. Theoretical technique for predicting the cumulative impact of iron and manganese oxidation in streams receiving discharge from coal mines

    USGS Publications Warehouse

    Bobay, Keith E.

    1986-01-01

    Two U.S. Geological Survey computer programs are modified and linked to predict the cumulative impact of iron and manganese oxidation in coal-mine discharge water on the dissolved chemical quality of a receiving stream. The coupled programs calculate the changes in dissolved iron, dissolved manganese, and dissolved oxygen concentrations; alkalinity; and, pH of surface water downstream from the point of discharge. First, the one-dimensional, stead-state stream, water quality program uses a dissolved oxygen model to calculate the changes in concentration of elements as a function of the chemical reaction rates and time-of-travel. Second, a program (PHREEQE) combining pH, reduction-oxidation potential, and equilibrium equations uses an aqueous-ion association model to determine the saturation indices and to calculate pH; it then mixes the discharge with a receiving stream. The kinetic processes of the first program dominate the system, whereas the equilibrium thermodynamics of the second define the limits of the reactions. A comprehensive test of the technique was not possible because a complete set of data was unavailable. However, the cumulative impact of representative discharges from several coal mines on stream quality in a small watershed in southwestern Indiana was simulated to illustrate the operation of the technique and to determine its sensitivity to changes in physical, chemical, and kinetic parameters. Mine discharges averaged 2 cu ft/sec, with a pH of 6.0, and concentrations of 7.0 mg/L dissolved iron, 4.0 mg/L dissolved manganese, and 8.08 mg/L dissolved oxygen. The receiving stream discharge was 2 cu ft/sec, with a pH of 7.0, and concentrations of 0.1 mg/L dissolved iron, 0.1 mg/L dissolved manganese, and 8.70 mg/L dissolved oxygen. Results of the simulations indicated the following cumulative impact on the receiving stream from five discharges as compared with the effect from one discharge: 0.30 unit decrease in pH, 1.82 mg/L increase in dissolved

  12. Biochemical Evolution of Iron and Copper Proteins, Substances Vital to Life

    ERIC Educational Resources Information Center

    Frieden, Earl

    1974-01-01

    Summarizes studies in the area of biochemical evolution of iron, copper, and heme proteins to provide an historical outline. Included are lists of major kinds of proteins and enzymes and charts illustrating electron flow in a cytochrome electron transport system and interconversion of jerrous to ferric ion in iron metabolism. (CC)

  13. The diverse roles of FRO family metalloreductases in iron and copper homeostasis

    PubMed Central

    Jain, Anshika; Wilson, Grandon T.; Connolly, Erin L.

    2014-01-01

    Iron and copper are essential for plants and are important for the function of a number of protein complexes involved in photosynthesis and respiration. As the molecular mechanisms that control uptake, trafficking and storage of these nutrients emerge, the importance of metalloreductase-catalyzed reactions in iron and copper metabolism has become clear. This review focuses on the ferric reductase oxidase (FRO) family of metalloreductases in plants and highlights new insights into the roles of FRO family members in metal homeostasis. Arabidopsis FRO2 was first identified as the ferric chelate reductase that reduces ferric iron-chelates at the root surface-rhizosphere interface. The resulting ferrous iron is subsequently transported across the plasma membrane of root epidermal cells by the ferrous iron transporter, IRT1. Recent work has shown that two other members of the FRO family (FRO4 and FRO5) function redundantly to reduce copper to facilitate its uptake from the soil. In addition, FROs appear to play important roles in subcellular compartmentalization of iron as FRO7 is known to contribute to delivery of iron to chloroplasts while mitochondrial family members FRO3 and FRO8 are hypothesized to influence mitochondrial metal ion homeostasis. Finally, recent studies have underscored the importance of plasma membrane-localized ferric reductase activity in leaves for photosynthetic efficiency. Taken together, these studies highlight a number of diverse roles for FROs in both iron and copper metabolism in plants. PMID:24711810

  14. Evolution of Texture and Microstructure in Deformed and Annealed Copper-Iron Multilayer

    NASA Astrophysics Data System (ADS)

    Suresh, K. S.; Rollett, A. D.; Suwas, Satyam

    2016-02-01

    The effect of multiple phases on the evolution of texture during cold rolling and annealing of a copper-iron multilayer, fabricated by accumulative roll bonding, has been studied. The presence of an iron layer affects the deformation texture of the copper layer only at very large strains. On the other hand, a strong effect of copper on iron is observed at both small and large strains. At smaller strains, the larger deformation carried by the copper suppresses the texture development in the iron, whereas, at higher strains, selection of specific orientation relationship at the interface influences the texture of the iron layer. Shear banding and continuous dynamic recrystallization were found to influence the evolution of texture in the copper layer. The influence of large plastic deformation on the recrystallization behavior of copper is demonstrated with the suppression of typical fcc annealing texture components, described as constrained recrystallization. Evolution of typical annealing texture component is suppressed because of the multilayer microstructure. The plane of the interface formed during deformation is determined by a combination of the rolling texture of individual phases, constrained annealing, and the tendency to form a low-energy interface between the two phases during annealing.

  15. Effects of vanadium- and iron-doping on crystal morphology and electrochemical properties of 1D nanostructured manganese oxides

    NASA Astrophysics Data System (ADS)

    Yoo, Ha Na; Park, Dae Hoon; Hwang, Seong-Ju

    One-dimensional (1D) nanostructures of vanadium- and iron-doped manganese oxides, Mn 1- xM xO 2 (M = V and Fe), are synthesized via one-pot hydrothermal reactions. The results of X-ray diffraction studies and electron microscopic analyses demonstrate that all the present 1D nanostructured materials possess α-MnO 2-type structure. While the vanadium dopants produce 1D nanorods with a smaller aspect ratio of ∼3-5, iron dopants produce 1D nanowires with a high aspect ratio of >20. X-ray absorption spectroscopy clearly shows that the dopant vanadium ions are stabilized in tetravalent oxidation state with distorted octahedral symmetry, while the iron ions are stabilized in trivalent oxidation state with regular octahedral symmetry. Significant local structural distortion and size mismatch of dopant vanadium ions are responsible for the low aspect ratio of the vanadium-doped nanorods through the less effective growth of a 1D nanostructure. According to electrochemical measurements, doping with Fe and V can improve the electrode performance of 1D nanostructured manganate and such a positive effect is much more prominent for the iron dopant. The present study clearly indicates that doping with Fe and V provides an effective way of tailoring the crystal dimension and electrochemical properties of 1D nanostructured manganese oxides.

  16. A thermodynamic study of silica-saturated iron silicate slags in equilibrium with liquid copper

    NASA Astrophysics Data System (ADS)

    Oishi, Toshio; Kamuo, Morinori; Ono, Katsutoshi; Moriyama, Joichiro

    1983-03-01

    The thermodynamic properties of silica-saturated iron silicate slags in equilibrium with liquid copper have been studied from oxygen partial pressure measurements in the temperature range from 1490 to 1580 K by means of a solid electrolyte galvanic cell. The following cells were used: Pt, Ni-NiO/O=/slag-Cu(l), Cr2O3, Pt; Pt, Fe-FeO/O=/slag-Cu(Fe sat.), Fe. A strong correlation was found between oxygen pressure and the copper content of the slag; the copper content increased from less than 1 pct near iron saturation to about 4 pct at an oxygen partial pressure of 7.2 x 10-3 Pa. A similar correlation was found between the ferric iron/total iron ratio and the oxygen pressure. The oxygen content in liquid copper decreased with increasing iron content in liquid copper and increased slightly near iron saturation. This behavior could be explained qualitatively by using the standard free energy of formation of FeO and the activities of components.

  17. Influence of indigenous and added iron on copper extraction from soil.

    PubMed

    Di Palma, Luca

    2009-10-15

    Experimental tests of copper leaching from a low permeability soil are presented and discussed. The objective of the experiments was to investigate the influence of indigenous and added iron in the soil towards copper mobilization. Metals' leaching was performed by flushing (column tests) or washing (batch tests) the soil with an aqueous solution of ethylenediaminetetraacetic acid, EDTA. An excess of EDTA was used in flushing tests (up to a EDTA:Cu molar ratio of about 26.2:1), while, in washing tests, the investigated EDTA vs. copper molar ratios were in the range between 1 (equimolar tests) and 8. Copper extraction yield in flushing tests (up to about 85%) was found to depend upon contact time between the soil and the leaching solution and the characteristics of the conditioning solution. The saturation of the soil with a NaNO(3) solution before the treatment, favoured the flushing process reducing the time of percolation, but resulted in a lower metal extraction during the following percolation of EDTA. The indigenous iron was competitive with copper to form EDTA complexes only when it was present in the organic and oxides-hydroxides fractions. Artificial iron addition to the soil resulted in an increase of both the exchangeable iron and the iron bonded to the organic fraction of the soil, thus increasing the overall amount of iron available to extraction. In both batch and continuous tests, the mechanism of copper extraction was found to involve the former dissolution of metal salts, that lead to an initial high concentration of both copper and selected competitive cations (essentially Ca(2+)), and the following EDTA exchange reaction between calcium and copper complexes. The initial metal salts dissolution was found to be pH-dependant.

  18. Recovery of iron from copper slag by deep reduction and magnetic beneficiation

    NASA Astrophysics Data System (ADS)

    Li, Ke-qing; Ping, Shuo; Wang, Hong-yu; Ni, Wen

    2013-11-01

    Aiming at recovering iron from high-iron-content copper slag, this article introduced a combination technology of deep reduction and magnetic beneficiation, investigated the iron recovery efficiency and optimized the technical conditions. When coke powder with 86wt% fixed carbon was used as a reductant, iron was successfully extracted from the copper slag. Under the optimized condition of the coke powder content of 14wt%, the calcium-to-silicon mass ratio (Ca/Si) of 0.2, the roasting temperature of 1300°C, the roasting time of 3 h, the grinding time of 20 min, and the magnetic field intensity of 61 kA·m-1, the iron recovery rate of the copper slag can reach 91.82%, and the extracted iron powder has an iron grade of 96.21%. With the characteristics of high iron grade and low impurity content, the extracted iron powder can be used as high-quality raw materials of weathering steel.

  19. Substituted benzeneseleninic acids as bidentate ligands. Synthesis and spectroscopic studies of manganese(II) and iron(II) complexes

    NASA Astrophysics Data System (ADS)

    Candrini, Giovanni; Malavasi, Wanda; Preti, Carlo; Tosi, Giuseppe; Zannini, Paolo

    The para- and meta-substituted seleninato anion, XC 6H 4SeO -2, forms complexes with manganese(II) and iron(II) of the type [M(XC 6H 4SeO 2) 2(H 2O) 2], which have been shown to contain the bidentate ligand in seleninato- O, O' derivatives, the water molecules being coordinated to the metals. From the electronic absorption spectra and from the magnetic susceptibility data we have proposed for all the complexes a distorted octahedral D4 h symmetry. The structure of the anhydrous para- and meta-substituted benzeneseleninato complexes of manganese(II) and iron(II) have been investigated by means of electrical conductance measurements, spectral (electronic and i.r.) studies and magnetic susceptibility measurements. The anhydrous complexes are always of the seleninato- O, O' type with the ligands tetrahedrally coordinated to the central atom. The wavelengths of the principal absorption peaks have been accounted for quantitatively in terms of the crystal field theory for manganese(II) derivatives. The nephelauxetic parameters are all indicative of an appreciable metal-ligand covalency.

  20. Synthesis, characterization and chemical properties of 1-((E)-2-pyridinylmethylidene)semicarbazone manganese(II) and iron(II) complexes

    NASA Astrophysics Data System (ADS)

    Garbelini, Ellery Regina; Martin, Maria da Graça M. B.; Back, Davi Fernando; Evans, David John; Müller-Santos, Marcelo; Ribeiro, Ronny Rocha; Lang, Ernesto Schulz; Nunes, Fábio Souza

    2012-01-01

    Manganese(II) perchlorate and iron(II) chloride react with 2-formylpyridine semicarbazone (HCSpy) in boiling ethanol to produce [Mn II(HSCpy) 2](ClO 4) 2·C 2H 5OH and [Fe IICl(HSCpy)]Cl. The distorted octahedral manganese complex crystallizes in the triclinic system with space group P(-1). The ligand HSCpy is tridentate and is coordinated through two nitrogen and one oxygen atoms. Comparison of the bond distances with analogous transition metal complexes that have the same geometry revealed longer bonds for the manganese derivative, an outcome that correlates well with the radius of the metal ions. The iron(II) ion is tetracoordinated to one semicarbazone and one chloride. Mass spectrometry, conductivity measurements, Mössbauer, UV-VIS, FTIR and elemental analysis were all in accordance with the proposed composition and the plausible geometry of [FeCl(HSCpy)]Cl. Mass spectrometry unequivocally detected the presence of the [FeCl(HSCpy)] + ion with a m/ z of 254.97 and intensity of 2 × 10 5.

  1. Evidence that intrinsic iron but not intrinsic copper determines S-nitrosocysteine decomposition in buffer solution.

    PubMed

    Vanin, Anatoly F; Muller, Bernard; Alencar, Jacicarlos L; Lobysheva, Irina I; Nepveu, Françoise; Stoclet, Jean-Claude

    2002-11-01

    The present experiments were designed to analyze the influence of copper and iron ions on the process of decomposition of S-nitrosocysteine (cysNO), the most labile species among S-nitrosothiols (RSNO). CysNO fate in buffer solution was evaluated by optical and electron paramagnetic resonance (EPR) spectroscopy, and the consequences on its vasorelaxant effect were studied on noradrenaline-precontracted rat aortic rings. The main results are the following: (i) copper or iron ions, especially in the presence of the reducing agent ascorbate, accelerated the decomposition of cysNO and markedly attenuated the amplitude and duration of the relaxant effect of cysNO; (ii) by contrast, the iron and copper chelators bathophenantroline disulfonic acid (BPDS) and bathocuproine disulfonic acid (BCS) exerted a stabilizing effect on cysNO, prolonged its vasorelaxant effect, and abolished the influence of ascorbate; (iii) in the presence of ascorbate, BPDS displayed a selective inhibitory effect toward the influence of iron ions (but not toward copper ions) on cysNO decomposition and vasorelaxant effect, while BCS prevented the effects of both copper and iron ions; (iv) L-cysteine enhanced stability and prolonged the relaxant effect of cysNO; (v) the process of iron-induced decomposition of cysNO was associated with the formation of EPR-detectable dinitrosyl-iron complexes (DNIC) either with non-thiol- or thiol-containing ligands (depending on the presence of L-cysteine), both of which exhibiting vasorelaxant properties. From these data, it is concluded that the amount of intrinsic copper was probably too low to produce a destabilizing effect even on the most labile RSNO, cysNO, and that only intrinsic iron, through the formation of DNIC, was responsible for the process of cysNO decomposition and thus influenced its vasorelaxant properties. PMID:12381416

  2. Iron, copper and zinc isotopic fractionation up mammal trophic chains

    NASA Astrophysics Data System (ADS)

    Jaouen, Klervia; Pons, Marie-Laure; Balter, Vincent

    2013-07-01

    There is a growing body of evidence that some non-traditional elements exhibit stable isotope compositions that are distinct in botanical and animal products, providing potential new tracers for diet reconstructions. Here, we present data for iron (Fe), copper (Cu) and zinc (Zn) stable isotope compositions in plants and bones of herbivores and carnivores. The samples come from trophic chains located in the Western Cape area and in the Kruger National Park in South Africa. The Fe, Cu and Zn isotope systematics are similar in both parks. However, local Cu, and possibly Zn, isotopic values of soils influence that of plants and of higher trophic levels. Between plants and bones of herbivores, the Zn isotope compositions are 66Zn-enriched by about 0.8‰ whereas no significant trophic enrichment is observed for Fe and Cu. Between bones of herbivores and bones of carnivores, the Fe isotope compositions are 56Fe-depleted by about 0.6‰, the Cu isotope compositions are 65Cu-enriched by about 1.0‰, and the Zn isotope compositions are slightly 66Zn-depleted by about 0.2‰. The isotopic distributions of the metals in the body partly explain the observed trophic isotopic systematics. However, it is also necessary to invoke differential intestinal metal absorption between herbivores and carnivores to account for the observed results. Further studies are necessary to fully understand how the Fe, Cu and Zn isotope values are regulated within the ecosystem's trophic levels, but the data already suggests significant potential as new paleodietary and paleoecological proxies.

  3. Phytoavailability and fractions of iron and manganese in calcareous soil amended with composted urban wastes.

    PubMed

    Gallardo-Lara, Francisco; Azcón, Mariano; Polo, Alfredo

    2006-01-01

    Little is known about the effects of applying composted urban wastes on the phytoavailability and distribution of iron (Fe) and manganese (Mn) among chemical fractions in soil. In order to study this concern several experiments in pots containing calcareous soil were carried out. The received treatments by adding separately two rates (20 and 80 Mg ha-1) of municipal solid waste (MSW) compost and/or municipal solid waste and sewage sludge (MSW-SS) co-compost. The cropping sequence was a lettuce crop followed by a barley crop. It was observed that treatments amended with composted urban wastes tended to promote slight increases in lettuce yield compared to the control. The highest Fe levels in lettuce were found when higher rates of MSW-SS co-compost were applied; these values were significant compared to those obtained in the other treatments. In all cases, the application of organic materials increased the concentration and uptake of Mn in lettuce compared to the control; however, these increases were significant only when higher rates of MSW compost were applied. The organic amendments had beneficial delayed effects on barley yields, showing, in most cases, significant increases compared to the control. In this context, treatments with MSW compost were found to be more effective than the equivalent treatments amended with MSW-SS co-compost. Compared to the control, composted urban wastes increased Fe concentration in straw and rachis, and decreased Fe concentration in barley grain. Similarly, a decreased concentration of Mn in the dry matter of barley crop grown in soils treated with composted urban wastes was observed. PMID:16923600

  4. Substitution of manganese and iron into hydroxyapatite: Core/shell nanoparticles

    SciTech Connect

    Pon-On, Weeraphat; Meejoo, Siwaporn; Tang, I.-Ming

    2008-08-04

    The bioceramics, hydroxyapatite (HAP), is a material which is biocompatible to the human body and is well suited to be used in hyperthermia applications for the treatment of bone cancer. We investigate the substitution of iron and manganese into the hydroxyapatite to yield ceramics having the empirical formula Ca{sub 9.4}Fe{sub 0.4}Mn{sub 0.2}(PO{sub 4}){sub 6}(OH){sub 2}. The samples were prepared by the co-precipitation method. The formation of the nanocrystallites in the HAP structure as the heating temperatures were raised to obtain a glass-ceramic system are confirmed by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and electron spin resonance (ESR). TEM images show the core/shell structure of the nanoparticles, with the core being formed by the ferrites and the shell by the hydroxyapatite. The ED patterns indicate the nanoparticles formed at 500 deg. C have an amorphous structure while the nanoparticles formed at 1000 deg. C are crystalline. ESR spectroscopy indicated that the Fe{sup 3+} ions have a g-factor of 4.23 and the Mn{sup 2+} ions have a g-factor of 2.01. The values of the parameters in the spin Hamiltonian which describes the interaction between the transition metal ions and the Ca{sup 2+} ions, indicate that the Mn{sup 2+} ion substitute into the Ca{sup 2+} sites which are ninefold coordinated, i.e., the Ca(1) sites.

  5. Calcium carbonate-based permeable reactive barriers for iron and manganese groundwater remediation at landfills.

    PubMed

    Wang, Yu; Pleasant, Saraya; Jain, Pradeep; Powell, Jon; Townsend, Timothy

    2016-07-01

    High concentrations of iron (Fe(II)) and manganese (Mn(II)) reductively dissolved from soil minerals have been detected in groundwater monitoring wells near many municipal solid waste landfills. Two in situ permeable reactive barriers (PRBs), comprised of limestone and crushed concrete, were installed downgradient of a closed, unlined landfill in Florida, USA, to remediate groundwater containing high concentrations of these metals. Influent groundwater to the PRBs contained mean Fe and Mn concentrations of approximately 30mg/L and 1.62mg/L, respectively. PRBs were constructed in the shallow aquifer (maximum depth 4.6m below land surface) and groundwater was sampled from a network of nearby monitoring wells to evaluate barrier performance in removing these metals. PRBs significantly (p<0.05) removed dissolved Fe and Mn from influent groundwater; Fe was removed from influent water at average rates of 91% and 95% (by mass) for the limestone and crushed concrete PRBs, respectively, during the first year of the study. The performance of the PRBs declined after 3years of operation, with Fe removal efficiency decreasing to 64% and 61% for limestone and concrete PRBs, respectively. A comparison of water quality in shallow and deep monitoring wells showed a more dramatic performance reduction in the deeper section of the concrete PRB, which was attributed to an influx of sediment into the barrier and settling of particulates from the upper portions of the PRBs. Although removal of Fe and Mn from redox impacts was achieved with the PRBs, the short time frame of effectiveness relative to the duration of a full-scale remediation effort may limit the applicability of these systems at some landfills because of the construction costs required.

  6. Stability Behavior and Thermodynamic States of Iron and Manganese in Sandy Soil Aquifer, Manukan Island, Malaysia

    SciTech Connect

    Lin, Chin Yik; Abdullah, Mohd. Harun; Musta, Baba; Praveena, Sarva Mangala; Aris, Ahmad Zaharin

    2011-03-15

    A total of 20 soil samples were collected from 10 boreholes constructed in the low lying area, which included ancillary samples taken from the high elevation area. Redox processes were investigated in the soil as well as groundwater in the shallow groundwater aquifer of Manukan Island, Sabah, Malaysia. Groundwater samples (n = 10) from each boreholes were also collected in the low lying area to understand the concentrations and behaviors of Fe and Mn in the dissolved state. This study strives to obtain a general understanding of the stability behaviors on Fe and Mn at the upper unsaturated and the lower-saturated soil horizons in the low lying area of Manukan Island as these elements usually play a major role in the redox chemistry of the shallow groundwater. Thermodynamic calculations using PHREEQC showed that the groundwater samples in the study area are oversaturated with respect to goethite, hematite, Fe(OH){sub 3} and undersaturated with respect to manganite and pyrochroite. Low concentrations of Fe and Mn in the groundwater might be probably due to the lack of minerals of iron and manganese oxides, which exist in the sandy aquifer. In fact, high organic matters that present in the unsaturated horizon are believed to be responsible for the high Mn content in the soil. It was observed that the soil samples collected from high elevation area (BK) comprises considerable amount of Fe in both unsaturated (6675.87 mg/kg) and saturated horizons (31440.49 mg/kg) compared to the low Fe content in the low lying area. Based on the stability diagram, the groundwater composition lies within the stability field for Mn{sup 2+} and Fe{sup 2+} under suboxic condition and very close to the FeS/Fe{sup 2+} stability boundary. This study also shows that both pH and Eh values comprise a strong negative value thus suggesting that the redox potential is inversely dependent on the changes of pH.

  7. Developmental manganese exposure in combination with developmental stress and iron deficiency: Effects on behavior and monoamines.

    PubMed

    Amos-Kroohs, Robyn M; Davenport, Laurie L; Gutierrez, Arnold; Hufgard, Jillian R; Vorhees, Charles V; Williams, Michael T

    2016-01-01

    Manganese (Mn) is an essential element but neurotoxic at higher exposures, however, Mn exposure seldom occurs in isolation. It often co-occurs in populations with inadequate dietary iron (Fe) and limited resources that result in stress. Subclinical FeD affects up to 15% of U.S. children and exacerbates Mn toxicity by increasing Mn bioavailability. Therefore, we investigated Mn overexposure (MnOE) in rats in combination with Fe deficiency (FeD) and developmental stress, for which we used barren cage rearing. For barren cage rearing (BAR), rats were housed in cages with a wire grid floor or standard bedding material (STD) from embryonic day (E)7 through postnatal day (P)28. For FeD, dams were fed a 90% Fe-deficient NIH-07 diet from E15 through P28. Within each litter, different offspring were treated with 100mg/kg Mn (MnOE) or vehicle (VEH) by gavage every other day from P4-28. Behavior was assessed at two ages and consisted of: open-field, anxiety tests, acoustic startle response (ASR) with prepulse inhibition (PPI), sociability, sucrose preference, tapered beam crossing, and the Porsolt's forced swim test. MnOE had main effects of decreasing activity, ASR, social preference, and social novelty. BAR and FeD transiently modified MnOE effects. BAR groups weighed less and showed decreased anxiety in the elevated zero maze, had increased ASR and decreased PPI, and exhibited reduced sucrose preference compared with the STD groups. FeD animals also weighed less and had increased slips on the tapered beam. Most of the monoamine effects were dopaminergic and occurred in the MnOE groups. The results showed that Mn is a pervasive developmental neurotoxin, the effects of which are modulated by FeD and/or BAR cage rearing. PMID:27302314

  8. Basin-Scale Transport of Hydrothermal Iron, Manganese and Aluminum Across the Eastern South Pacific

    NASA Astrophysics Data System (ADS)

    Sedwick, P. N.; Resing, J. A.; Sohst, B. M.; Jenkins, W. J.; German, C. R.; Moffett, J. W.

    2014-12-01

    The U.S. GEOTRACES Eastern Pacific Zonal Transect cruise (GEOTRACES GP06) examined the water-column distribution of trace elements between Peru and Tahiti, crossing the southern East Pacific Rise (EPR) midway along the cruise track. Shipboard measurements made along this ocean section reveal the mid-depth lateral transport of hydrothermal dissolved iron (dFe), manganese (dMn) and aluminum (dAl) over a distance of more than 4,000 km, from the EPR westward into the deep South Pacific basin. Post-cruise measurements of the conservative hydrothermal tracer helium-3 indicate the loss of at least 85% of the hydrothermal dFe over a distance of ~80 km west from the ridge axis, presumably as a result of oxidation, scavenging and precipitation. Further west of the ridge axis, dFe and excess helium-3 (3Hexs) are linearly correlated (r2 = 0.99), showing a more than 4-fold conservative dilution of hydrothermal dFe over a distance of ~4000 km. This behavior may reflect the lateral transport of iron as relatively unreactive, colloidal oxyhydroxides; ongoing analyses of cruise samples by other groups will provide data to test this hypothesis. The loss of hydrothermal dMn relative to 3Hexs extends over a greater distance than for dFe, as far as ~250 km to the west of the ridge axis, beyond which dMn exhibits nearly conservative behavior. The hydrothermal dAl anomaly appears to extend over 3,000 km west of the EPR, and is not readily explained based on the known composition of ridge-axis vent fluids. The linear dFe versus 3Hexs relationship in the off-axis hydrothermal plume has a slope of 5.6 x 106 mol/mol, which falls roughly between values estimated for the western South Pacific and the South Atlantic basins. If we assume that our dFe and 3He data are generally representative of mid-ocean ridge hydrothermal emissions, then the estimated global hydrothermal 3He efflux of 530 mol/y yields an effective hydrothermal dFe input of 2.9 Gmol/y to the ocean interior.

  9. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity.

    PubMed

    Macomber, Lee; Imlay, James A

    2009-05-19

    Excess copper is poisonous to all forms of life, and copper overloading is responsible for several human pathologic processes. The primary mechanisms of toxicity are unknown. In this study, mutants of Escherichia coli that lack copper homeostatic systems (copA cueO cus) were used to identify intracellular targets and to test the hypothesis that toxicity involves the action of reactive oxygen species. Low micromolar levels of copper were sufficient to inhibit the growth of both WT and mutant strains. The addition of branched-chain amino acids restored growth, indicating that copper blocks their biosynthesis. Indeed, copper treatment rapidly inactivated isopropylmalate dehydratase, an iron-sulfur cluster enzyme in this pathway. Other enzymes in this iron-sulfur dehydratase family were similarly affected. Inactivation did not require oxygen, in vivo or with purified enzyme. Damage occurred concomitant with the displacement of iron atoms from the solvent-exposed cluster, suggesting that Cu(I) damages these proteins by liganding to the coordinating sulfur atoms. Copper efflux by dedicated export systems, chelation by glutathione, and cluster repair by assembly systems all enhance the resistance of cells to this metal. PMID:19416816

  10. Time-of-flight study of photoinduced dynamics of copper and manganese phthalocyanine thin films on Si(111)

    NASA Astrophysics Data System (ADS)

    Ramonova, A. G.; Butkhuzi, T. G.; Abaeva, V. V.; Tvauri, I. V.; Khubezhov, S. A.; Turiev, A. M.; Tsidaeva, N. I.; Magkoev, T. T.

    2013-11-01

    Photoinduced fragmentation and desorption of species from copper phthalocyanine (CuPc) and manganese phthalocyanine 80 nm thick films deposited on Si(111) have been studied by means of atomic force microscopy and time-of-flight mass spectroscopy in an ultra-high vacuum chamber. The main fragments formed under the effect of low-fluence (1-3 mJ cm-2) nanosecond laser light with photon energies of 2.34 and 1.17 eV are the entire phthalocyanine molecule, molecular fragments, atomic Cu and Mn and a Si-substituted CuPc. The latter is presumably due to migration of the Si atom of the underlying support to the vacancy formed after photoejection of the metallic atom out of the phthalocyanine molecule. The mechanism of photofragmentation and desorption is essentially non-thermal involving the metal atom as a key factor.

  11. Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling.

    PubMed

    Perea-García, Ana; Garcia-Molina, Antoni; Andrés-Colás, Nuria; Vera-Sirera, Francisco; Pérez-Amador, Miguel A; Puig, Sergi; Peñarrubia, Lola

    2013-05-01

    Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops.

  12. Herbal infusions as a source of calcium, magnesium, iron, zinc and copper in human nutrition.

    PubMed

    Suliburska, Joanna; Kaczmarek, Karolina

    2012-03-01

    The study material consisted of five herbs: chamomile (flowers), mint (leaves), St John's wort (flowers and leaves), sage (leaves) and nettle (leaves), sourced from three producers. The calcium, magnesium, iron, zinc and copper contents were determined for both dried herb samples and prepared infusions, and the extraction rates were calculated. Mineral components were determined using atomic absorption spectrometry. Analysis showed that the contents of individual elements in herbs and infusions depended on the type of raw material, as well as on its origin. Moreover, it was found that iron penetrated the herbal infusions to the lowest degree (4.4-12.4%), while copper did so to the highest (26.7-50.7%). It is felt that in average consumption the herbal infusions are not important as calcium, magnesium, iron, zinc and copper sources in human nutrition. PMID:21916535

  13. [Serum iron and serum copper balance in the early diagnosis of metastases of breast cancer].

    PubMed

    Wöllgens, P; Kuhne-Velte, H J; Franke-Lompa, C

    1980-02-01

    In a study made in the follow-up clinic on 684 patients with mammary carcinoma it was found that there were 64 cases of local recurrence and 244 cases of distant metastases. In both groups the serum iron and the serum copper balance in blood tests, in relation to the clinical proof of local recurrence and/or distant metastases, was investigated. It was found that there were 43.7% pathological serum iron and serum copper findings with local recurrences and 62.7% with distant metastases. The drift apart tendency of the blood serum values in patients with distant metastases could be proved in 78.7% of the cases and in 77.5% of the cases before any clinical proof. Thus, these observations allow the statement that the blood serum iron and serum copper imbalance in blood tests is of very real value in the early diagnosis of distant metastases.

  14. Chronic administration of iron and copper potentiates adipogenic effect of high fat diet in Wistar rats.

    PubMed

    Tinkov, Alexey A; Polyakova, Valentina S; Nikonorov, Alexandr A

    2013-06-01

    The primary objective of this research project is explore a possible adipogenic effect of iron and/or copper in albino Wistar rats kept on standard (STD) and high-fat (HFD) diets. The female Wistar rats in the study were divided into eight experimental groups (n = 6). Rats maintained on STD and HFD received 3 mg/l FeSO₄∙7H₂O, 4.88 mg/l CuSO₄ and a combination of 1.5 mg/l FeSO₄∙7H₂O and 2.44 mg/l CuSO₄ with drinking water. Control groups were kept on STD and HFD and received pure water without metal salts. Consumption of iron and copper in the groups of rats maintained on an STD did not produce a significant increase in weight, adipose tissue content or body mass index. However, the adipocyte size and infiltration were increased in the adipose tissue of STD-fed rats receiving a mixture of iron and copper with drinking water. The rats fed iron and copper and, especially, their combination on a HFD background had a significantly higher weight gain, adipose tissue content, morphometric parameters values and adipocyte size compared to STD- and HFD-fed controls. Iron and copper consumption produced their accumulation in the rats' adipose tissue. Moreover, the studied metals reduced adipose tissue concentration of chromium and vanadium. The lipoprotein profile and serum oxidative stress biomarkers were affected in the rats receiving the metals and STD. Hyperglycemia was observed in the rats receiving the studied metals on HFD-background. Based on the analysis of the test subjects, the study suggests that iron and copper administration, especially combined, may potentiate adipogenic effect of HFD.

  15. Ferromagnets based on diamond-like semiconductors GaSb, InSb, Ge, and Si supersaturated with manganese or iron impurities during laser-plasma deposition

    SciTech Connect

    Demidov, E. S. Podol'skii, V. V.; Lesnikov, V. P.; Sapozhnikov, M. V.; Druzhnov, D. M.; Gusev, S. N.; Gribkov, B. A.; Filatov, D. O.; Stepanova, Yu. S.; Levchuk, S. A.

    2008-01-15

    Properties of thin (30-100 nm) layers of diluted magnetic semiconductors based on diamond-like compounds III-V (InSb and GaSb) and elemental semiconductors Ge and Si doped with 3d impurities of manganese and iron up to 15% were measured and discussed. The layers were grown by laser-plasma deposition onto heated single-crystal gallium arsenide or sapphire substrates. The ferromagnetism of layers with the Curie temperature up to 500 K appeared in observations of the ferromagnetic resonance, anomalous Hall effect, and magneto-optic Kerr effect. The carrier mobility of diluted magnetic semiconductors is a hundred times larger than that of the previously known highest temperature magnetic semiconductors, i.e., copper and chromium chalcogenides. The difference between changes in the magnetization with temperature in diluted semiconductors based on III-V, Ge, and Si was discussed. A complex structure of the ferromagnetic resonance spectrum in Si:Mn/GaAs was observed. The results of magnetic-force microscopy showed a weak correlation between the surface relief and magnetic inhomogeneity, which suggests that the ferromagnetism is caused by the 3d-impurity solid solution, rather than ferromagnetic phase inclusions.

  16. Manganese: it turns iron into steel (and does so much more)

    USGS Publications Warehouse

    Cannon, William F.

    2014-01-01

    Manganese is a common ferrous metal with atomic weight of 25 and the chemical symbol Mn. It constitutes roughly 0.1 percent of the Earth’s crust, making it the 12th most abundant element. Its early uses were limited largely to pigments and oxidants in chemical processes and experiments, but the significance of manganese to human societies exploded with the development of modern steelmaking technology in the 1860s. U.S consumption of manganese is about 500,000 metric tons each year, predominantly by the steel industry. Because manganese is essential and irreplaceable in steelmaking and its global mining industry is dominated by just a few nations, it is considered one of the most critical mineral commodities for the United States.

  17. Some new chromogens for iron, cobalt, and copper Substituted hydrazidines and 1,2,4-triazines containing the ferroin group.

    PubMed

    Schilt, A A

    1966-07-01

    The spectral characteristics and solution conditions requisite for formation of the iron(II), cobalt(II), and copper(I) complexes of some newly synthesised compounds containing the ferroin functional grouping have been determined. These properties are useful for evaluation of the possible analytical effectiveness of the compounds as spectrophotometric reagents for the determination of iron, cobalt, and copper. PMID:18959951

  18. Some new chromogens for iron, cobalt, and copper Substituted hydrazidines and 1,2,4-triazines containing the ferroin group.

    PubMed

    Schilt, A A

    1966-07-01

    The spectral characteristics and solution conditions requisite for formation of the iron(II), cobalt(II), and copper(I) complexes of some newly synthesised compounds containing the ferroin functional grouping have been determined. These properties are useful for evaluation of the possible analytical effectiveness of the compounds as spectrophotometric reagents for the determination of iron, cobalt, and copper.

  19. Iron and copper in male reproduction: a double-edged sword.

    PubMed

    Tvrda, Eva; Peer, Rohan; Sikka, Suresh C; Agarwal, Ashok

    2015-01-01

    Iron and copper are essential trace nutrients playing important roles in general health and fertility. However, both elements are highly toxic when accumulating in large quantities. Their direct or indirect impact on the structure and function of male gonads and gametes is not completely understood yet. Excess or deficiency of either element may lead to defective spermatogenesis, reduced libido, and oxidative damage to the testicular tissue and spermatozoa, ultimately leading to fertility impairment. This review will detail the complex information currently available on the dual roles iron and copper play in male reproduction.

  20. The dietary significance of adventitious iron, zinc, copper and lead in domestically prepared food.

    PubMed

    Reilly, C

    1985-01-01

    The uptake of iron, zinc, copper and lead by food cooked under domestic conditions in utensils made of different metals (cast iron, aluminium, plain and tinned copper) was investigated. It was found that the metal content of the food was generally related to the metal in immediate contact with the food during cooking. Daily dietary intake could vary from 11 to 6 mg of iron, 11 to 9 mg of zinc, 2 to 1 mg of copper and 0.4 to 0.1 mg of lead, depending on the cooking utensils used. Dietary intake of the metals was also related to sources and domestic practices regarding water supply. Consistent use of municipal water from a domestic hot water system could contribute a daily intake of 32 mg iron, 29 mg zinc and 12 mg copper. Rainwater stored in a galvanized iron tank could provide 23 mg of zinc per day when used for domestic purposes. The nutritional and toxicological significance of such adventitious sources of metals in the diet are discussed. The need to consider them when investigating the metal intake of individuals is stressed.

  1. Microwave digestion techniques in the sequential extraction of calcium, iron, chromium, manganese, lead, and zinc in sediments

    SciTech Connect

    Mahan, K.I.; Foderaro, T.A.; Garza, T.L.; Martinez, R.M.; Maroney, G.A.; Trivisonno, M.R.; Willging, E.M.

    1987-04-01

    The sequential extraction scheme of Tessier partitions metals in sediments into exchangeable, carbonate bound iron-manganese oxide bound, organic bound, and residual binding fractions. Extraction rate experiments using conventional and microwave heating showed that microwave heating produces results comparable to the conventional procedure. Sequential microwave extraction procedures were established from the results of the extraction rate experiments. Recoveries of total metals from NBS SRM 1645 ranged from 76% to 120% for the conventional procedure and 62% to 120% for the microwave procedure. Recoveries of total metals using the microwave and conventional techniques were reasonably comparable except for iron (62% by microwave vs. 76% by conventional). Substitution of an aqua regia/HF extraction for total/residual metals results in essentially complete recovery of metals. Precision obtained from 31 replicate samples of the California Gulch, Colorado, sediment yielded about an average 11% relative standard deviation excluding the exchangeable fraction which was more variable.

  2. Influence of biofilms on iron and manganese deposition in drinking water distribution systems.

    PubMed

    Ginige, Maneesha P; Wylie, Jason; Plumb, Jason

    2011-02-01

    Although health risk due to discoloured water is minimal, such water continues to be the source of one of the major complaints received by most water utilities in Australia. Elevated levels of iron (Fe) and/or manganese (Mn) in bulk water are associated with discoloured water incidents. The accumulation of these two elements in distribution systems is believed to be one of the main causes for such elevated levels. An investigation into the contribution of pipe wall biofilms towards Fe and Mn deposition, and discoloured water events is reported in this study. Eight laboratory-scale reactors were operated to test four different conditions in duplicate. Four reactors were exposed to low Fe (0.05 mg l(-1)) and Mn (0.02 mg l(-1)) concentrations and the remaining four were exposed to a higher (0.3 and 0.4 mg l(-1) for Fe and Mn, respectively) concentration. Two of the four reactors which received low and high Fe and Mn concentrations were chlorinated (3.0 mg l(-1) of chlorine). The biological activity (measured in terms of ATP) on the glass rings in these reactors was very low (∼1.5 ng cm(-2) ring). Higher concentrations of Fe and Mn in bulk water and active biofilms resulted in increased deposition of Fe and Mn on the glass rings. Moreover, with an increase in biological activity, an increase in Fe and Mn deposition was observed. The observations in the laboratory-scale experiments were in line with the results of field observations that were carried out using biofilm monitors. The field data additionally demonstrated the effect of seasons, where increased biofilm activities observed on pipe wall biofilms during late summer and early autumn were found to be associated with increased deposition of Fe and Mn. In contrast, during the cooler months, biofilm activities were a magnitude lower and the deposited metal concentrations were also significantly less (ie a drop of 68% for Fe and 86% for Mn). Based on the laboratory-scale investigations, detachment of pipe wall

  3. Chemical and structural investigations of the incorporation of metal manganese into ruthenium thin films for use as copper diffusion barrier layers

    SciTech Connect

    McCoy, A. P.; Casey, P.; Bogan, J.; Hughes, G.; Lozano, J. G.; Nellist, P. D.

    2012-12-03

    The incorporation of manganese into a 3 nm ruthenium thin-film is presented as a potential mechanism to improve its performance as a copper diffusion barrier. Manganese ({approx}1 nm) was deposited on an atomic layer deposited Ru film, and the Mn/Ru/SiO{sub 2} structure was subsequently thermally annealed. X-ray photoelectron spectroscopy studies reveal the chemical interaction of Mn with the SiO{sub 2} substrate to form manganese-silicate (MnSiO{sub 3}), implying the migration of the metal through the Ru film. Electron energy loss spectroscopy line profile measurements of the intensity of the Mn signal across the Ru film confirm the presence of Mn at the Ru/SiO{sub 2} interface.

  4. Microelectrodes Based investigation of the Impacts of Water Chemistry on Copper and Iron Corrosion

    EPA Science Inventory

    The effect of bulk drinking water quality on copper and iron pipe corrosion has been extensively studied. Despite past research, many have argued that bulk water quality does not necessarily reflect water quality near the water-metal interface and that such knowledge is necessary...

  5. VAPOR PHASE MERCURY SORPTION BY ORGANIC SULFIDE MODIFIED BIMETALLIC IRON-COPPER NANOPARTICLE AGGREGATES

    EPA Science Inventory

    Novel organic sulfide modified bimetallic iron-copper nanoparticle aggregate sorbent materials have been synthesized for removing elemental mercury from vapor streams at elevated temperatures (120-140 °C). Silane based (disulfide silane and tetrasulfide silane) and alkyl sulfide ...

  6. Replacement of a cytosolic copper/zinc superoxide dismutase by a novel cytosolic manganese superoxide dismutase in crustaceans that use copper (haemocyanin) for oxygen transport.

    PubMed Central

    Brouwer, Marius; Hoexum Brouwer, Thea; Grater, Walter; Brown-Peterson, Nancy

    2003-01-01

    The blue crab, Callinectes sapidus, which uses the copper-dependent protein haemocyanin for oxygen transport, lacks the ubiquitous cytosolic copper-dependent enzyme copper/zinc superoxide dismutase (Cu,ZnSOD) as evidenced by undetectable levels of Cu,ZnSOD activity, protein and mRNA in the hepatopancreas (the site of haemocyanin synthesis) and gills. Instead, the crab has an unusual cytosolic manganese SOD (cytMnSOD), which is retained in the cytosol, because it lacks a mitochondrial transit peptide. A second familiar MnSOD is present in the mitochondria (mtMnSOD). This unique phenomenon occurs in all Crustacea that use haemocyanin for oxygen transport. Molecular phylogeny analysis suggests the MnSOD gene duplication is as old as the origin of the arthropod phylum. cytMnSOD activity in the hepatopancreas changes during the moulting cycle of the crab. Activity is high in intermoult crabs and non-detectable in postmoult papershell crabs. mtMnSOD is present in all stages of the moulting cycle. Despite the lack of cytCu,ZnSOD, crabs have an extracellular Cu,ZnSOD (ecCu,ZnSOD) that is produced by haemocytes, and is part of a large, approx. 160 kDa, covalently-linked protein complex. ecCu,ZnSOD is absent from the hepatopancreas of intermoult crabs, but appears in this tissue at premoult. However, no ecCu,ZnSOD mRNA can be detected, suggesting that the protein is recruited from the haemolymph. Screening of different taxa of the arthropod phylum for Cu,ZnSOD activity shows that those crustaceans that use haemoglobin for oxygen transport have retained cytCu,ZnSOD. It appears, therefore, that the replacement of cytCu,ZnSOD with cytMnSOD is part of an adaptive response to the dynamic, haemocyanin-linked, fluctuations in copper metabolism that occur during the moulting cycle of the crab. PMID:12769817

  7. [Effect of selenium on the uptake and translocation of manganese, iron, phosphorus and selenium in rice (Oryza sativa L.)].

    PubMed

    Hu, Ying; Huang, Yi-Zong; Huang, Yan-Chao; Liu, Yun-Xia; Liang, Jian-Hong

    2013-10-01

    A pot experiment was conducted to clarify the effect of selenium on the uptake and translocation of manganese (Mn), iron (Fe) , phosphorus (P) and selenium (Se) in rice ( Oryza sativa L.). The results showed that addition of Se led to the significant increase of Se concentration in iron plaque on the root surface, root, shoot, husk and brown rice, and significant decrease of Mn concentration in shoot, husk and brown rice. At the Se concentrations of 0.5 and 1.0 mg.kg-1 in soil, Mn concentrations in rice shoot decreased by 32. 2% and 35.0% respectively, in husk 22.0% and 42.6% , in brown rice 27.5% and 28.5% , compared with the Se-free treatment. There was no significant effect of Se on the P and Fe concentrations in every parts of rice, except for Fe concentrations in husk. The translocation of P and Fe from iron plaque, root, shoot and husk to brown rice was not significantly affected by Se addition, but Mn translocation from iron plaque and root to brown rice was significantly inhibited by Se addition. Addition of 1.0 mg.kg-1. Se resulted in the decrease of translocation factor from iron plaque and root to brown rice by 38.9% and 37.9%, respectively, compared with the control treatment. The distribution ratios of Mn, Fe, P and Se in iron plaque, root, shoot, husk and brown rice were also affected by Se addition. The results indicated that Mn uptake, accumulation and translocation in rice could be decreased by the addition of Se in soil, therefore, Se addition could reduce the Mn harm to human health through food chain.

  8. Iron and manganese homeostasis in chronic liver disease: relationship to pallidal T1-weighted magnetic resonance signal hyperintensity.

    PubMed

    Malecki, E A; Devenyi, A G; Barron, T F; Mosher, T J; Eslinger, P; Flaherty-Craig, C V; Rossaro, L

    1999-08-01

    The hyperintense signal in the globus pallidus of cirrhotic patients on T1-weighted magnetic resonance (MR) imaging has been postulated to arise from deposition of paramagnetic manganese2+ (Mn). Intestinal absorption of both iron and Mn are increased in iron deficiency; iron deficiency may therefore increase susceptibility to Mn neurotoxicity. To investigate the relationships between MR signal abnormalities and Mn and Fe status, 21 patients with chronic liver disease were enrolled (alcoholic liver disease, 5; primary biliary cirrhosis, 9; primary sclerosing cholangitis, 3; hepatitis B virus, 2; hepatitis C virus, 1; alpha1-antitrypsin deficiency, 1). Signal hyperintensity in the pallidum on axial T1 weighted images (repetition time/evolution time: 500 ms/15 ms) was observed in 13 of 21 subjects: four patients had mild hyperintensity, three moderate, and six exhibited marked hyperintensity. Erythrocyte Mn concentrations were positively correlated with the degree of the MR hyperintensity (Kendall's tau-b=0.52, P<0.005). The log of erythrocyte Mn concentration was also inversely correlated with all measures of iron status: hemoglobin (Pearson's R=-0.73, P<0.0005); hematocrit (R=-0.62, P<0.005); serum Fe concentrations (R=-0.65, P<0.005); and TIBC saturation (R=-0.62, P<0.005). These findings confirm the association of Mn with the development of pallidal hyperintensity in patients with liver disease. We further found that iron deficiency is an exacerbating factor, probably because of increased intestinal absorption of Mn. We therefore recommend that patients with chronic liver disease avoid Mn supplements without concurrent iron supplementation. PMID:10499363

  9. The Structure and Properties of Cast Iron Alloyed with Copper

    NASA Astrophysics Data System (ADS)

    Razumakov, A. A.; Stepanova, N. V.; Bataev, I. A.; Lenivtseva, O. G.; Riapolova, Iu Iu; Emurlaev, K. I.

    2016-04-01

    Cast iron with 3 wt. % Cu was prepared by induction melting and casting in sand molds. The structure of the samples was studied using light microscopy (LM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The addition of Cu promoted formation of pearlite and slightiy decreased the volume fraction of graphite. No Cu inclusions were found by LM and SEM. The nanoprecipitations of ε-Cu in lamellar pearlite were observed by TEM. The properties of the Cu-alloyed cast iron were compared with the properties of cast iron not alloyed with Cu. The hardness of cast iron after alloying with Cu increased and the friction coefficient decreased in comparison with the reference sample.

  10. Transferrin response in normal and iron-deficient mice heterozygotic for hypotransferrinemia; effects on iron and manganese accumulation.

    PubMed

    Malecki, E A; Devenyi, A G; Beard, J L; Connor, J R

    1998-09-01

    Hypotransferrinemia is a genetic defect in mice resulting < 1% of normal plasma transferrin (Tf) concentrations; heterozygotes for this mutation (+/hpx) have low circulating Tf concentrations. These mice provide a unique opportunity to examine the developmental pattern and response of Tf to iron-deficient diets, and furthermore, to address the controversial role of Tf in Mn transport. Twenty-three weanling +/hpx mice and forty-five wild-type BALB/cJ mice were either killed at weaning or fed diets containing either 13 or 72 mg kg-1 Fe, and killed after four or eight weeks. Plasma Tf concentrations were lower in +/hpx mice, plasma Tf nearly doubled and liver Tf was only 50% of normal in response to iron deficiency. Brain iron concentration did not correlate significantly with either plasma Tf or TIBC. However, iron accumulation into brain continued with iron deficiency whereas most other organs had less iron. These results imply that either there is a selected targeting of iron to the brain by plasma Tf or there is an alternative iron delivery system to the brain. Furthermore, we observed no differences in tissue distribution of 54Mn despite the differences in circulating Tf concentrations and body iron stores; this suggests that there are non-Tf dependent mechanisms for Mn transport. PMID:9850571

  11. Iron-copper metallization for flexible solar/cell arrays

    NASA Technical Reports Server (NTRS)

    Lavendel, H. W.

    1983-01-01

    The feasibility of a copper-base metallization for shallow-junction cells applied in flexible solar arrays in space is discussed. This type of metallization will reduce usage of precious metals (such as silver), increase case of bonding (by welding or by soldering) and eliminate heavy high Z interconnects (such as molybdenum). The main points of concern are stability against thermally induced diffusion of copper into silicon which causes degradation of shallow cell junctions, and low series resistance of the contact with semiconductor which promotes cell efficiency.

  12. MD description of damage production in displacement cascades in copper and α-iron.

    SciTech Connect

    Bacon, David J; Osetskiy, Yury N; Stoller, Roger E; Voskoboinikov, Roman E

    2003-01-01

    Molecular dynamics computer simulation was applied for an extensive study of primary damage creation in displacement cascades in copper and {alpha}-iron. Primary knock-on atom energy, E{sub p}, of up to 25 keV in copper and 100 keV in iron was considered for irradiation temperatures in the range 100-900 K. Special attention was paid to comprehensive statistical treatment of the number and type of defects created in cascades by conducting multiple simulations for each value of energy and temperature. The total number of point defects per cascade is significantly lower than that predicted by the NRT model and rather similar in the two metals. The fraction of self-interstitial atoms (SIAs) and vacancies that agglomerate in clusters in the cascade process was analysed in detail. The clustered fraction of SIAs increases with temperature increase and is larger in copper than iron. SIA clusters have a variety of forms in both metals and, although most are glissile clusters of parallel crowdions, a significant fraction are sessile. The latter include Frank dislocation loops in copper. Tightly packed arrangements of vacancies do not form in iron, and so the fraction of clustered vacancies depends strongly on the range within which point defects are defined to be near-neighbours. Arrangements of vacancies in first-neighbour sites are common in copper. Most are irregular stacking fault tetrahedra (SFTs). In 53 simulations of cascades with E{sub p} = 25 keV at 100 K, the largest cluster formed contained 89 vacancies. The size spectrum of SFT-like clusters is similar to that found experimentally in neutron-irradiated copper, suggesting that the SFTs observed in experiment are formed directly in the cascade process.

  13. Iron mitigates DMT1-mediated manganese cytotoxicity via the ASK1-JNK signaling axis: Implications of iron supplementation for manganese toxicity

    PubMed Central

    Tai, Yee Kit; Chew, Katherine C. M.; Tan, Bryce W. Q.; Lim, Kah-Leong; Soong, Tuck Wah

    2016-01-01

    Manganese (Mn2+) neurotoxicity from occupational exposure is well documented to result in a Parkinson-like syndrome. Although the understanding of Mn2+ cytotoxicity is still incomplete, both Mn2+ and Fe2+ can be transported via the divalent metal transporter 1 (DMT1), suggesting that competitive uptake might disrupt Fe2+ homeostasis. Here, we found that DMT1 overexpression significantly enhanced Mn2+ cytoplasmic accumulation and JNK phosphorylation, leading to a reduction in cell viability. Although a robust activation of autophagy was observed alongside these changes, it did not trigger autophagic cell death, but was instead shown to be essential for the degradation of ferritin, which normally sequesters labile Fe2+. Inhibition of ferritin degradation through the neutralization of lysosomal pH resulted in increased ferritin and enhanced cytoplasmic Fe2+ depletion. Similarly, direct Fe2+ chelation also resulted in aggravated Mn2+-mediated JNK phosphorylation, while Fe2+ repletion protected cells, and this occurs via the ASK1-thioredoxin pathway. Taken together, our study presents the novel findings that Mn2+ cytotoxicity involves the depletion of the cytoplasmic Fe2+ pool, and the increase in autophagy-lysosome activity is important to maintain Fe2+ homeostasis. Thus, Fe2+ supplementation could have potential applications in the prevention and treatment of Mn2+-mediated toxicity. PMID:26878799

  14. A Green Analytical Method Using Ultrasound in Sample Preparation for the Flow Injection Determination of Iron, Manganese, and Zinc in Soluble Solid Samples by Flame Atomic Absorption Spectrometry

    PubMed Central

    Yebra, M. Carmen

    2012-01-01

    A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5–30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2–4.6%) and a sample throughput of ca. 25 samples h–1 were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4–25.61 μg g−1 for iron, 5.74–18.30 μg g−1 for manganese, and 33.27–57.90 μg g−1 for zinc in soluble solid food samples and 3.75–9.90 μg g−1 for iron, 0.47–5.05 μg g−1 for manganese, and 1.55–15.12 μg g−1 for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors. PMID:22567553

  15. A green analytical method using ultrasound in sample preparation for the flow injection determination of iron, manganese, and zinc in soluble solid samples by flame atomic absorption spectrometry.

    PubMed

    Yebra, M Carmen

    2012-01-01

    A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5-30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2-4.6%) and a sample throughput of ca. 25 samples h(-1) were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4-25.61 μg g(-1) for iron, 5.74-18.30 μg g(-1) for manganese, and 33.27-57.90 μg g(-1) for zinc in soluble solid food samples and 3.75-9.90 μg g(-1) for iron, 0.47-5.05 μg g(-1) for manganese, and 1.55-15.12 μg g(-1) for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors. PMID:22567553

  16. Effects of Copper and Austempering on Corrosion Behavior of Ductile Iron in 3.5 Pct Sodium Chloride

    NASA Astrophysics Data System (ADS)

    Hsu, Cheng-Hsun; Lin, Kuan-Ting

    2013-10-01

    Although alloying and heat treatments are common industrial practices to obtain ductile irons with desired mechanical properties, related information on how the two practices affect corrosion behavior is scarce. In this study, two ductile irons—with and without 1 wt pct copper addition—were austempered to obtain austempered ductile irons (ADIs). Polarization tests and salt spray tests were conducted to explore how both copper-alloying and austempering heat treatments influenced the corrosion behavior of ductile irons. The results showed that the corrosion resistance of 1 wt pct copper-alloyed ductile iron was better than that of the unalloyed one, while ADI had improved corrosion resistance compared with the as-cast. In particular, the ductile iron combined with the copper-alloying and austempering treatments increased the corrosion inhibition efficiency up to 84 pct as tested in 3.5 wt pct NaCl solution.

  17. Zinc pyrithione inhibits yeast growth through copper influx and inactivation of iron-sulfur proteins.

    PubMed

    Reeder, Nancy L; Kaplan, Jerry; Xu, Jun; Youngquist, R Scott; Wallace, Jared; Hu, Ping; Juhlin, Kenton D; Schwartz, James R; Grant, Raymond A; Fieno, Angela; Nemeth, Suzanne; Reichling, Tim; Tiesman, Jay P; Mills, Tim; Steinke, Mark; Wang, Shuo L; Saunders, Charles W

    2011-12-01

    Zinc pyrithione (ZPT) is an antimicrobial material with widespread use in antidandruff shampoos and antifouling paints. Despite decades of commercial use, there is little understanding of its antimicrobial mechanism of action. We used a combination of genome-wide approaches (yeast deletion mutants and microarrays) and traditional methods (gene constructs and atomic emission) to characterize the activity of ZPT against a model yeast, Saccharomyces cerevisiae. ZPT acts through an increase in cellular copper levels that leads to loss of activity of iron-sulfur cluster-containing proteins. ZPT was also found to mediate growth inhibition through an increase in copper in the scalp fungus Malassezia globosa. A model is presented in which pyrithione acts as a copper ionophore, enabling copper to enter cells and distribute across intracellular membranes. This is the first report of a metal-ligand complex that inhibits fungal growth by increasing the cellular level of a different metal. PMID:21947398

  18. Effect of space flight on sodium, copper, manganese and magnesium content in the skeletal bones

    NASA Technical Reports Server (NTRS)

    Prokhonchukov, A. A.; Taitsev, V. P.; Shakhunov, B. A.; Zhizhina, V. A.; Kolesnik, A. G.; Komissarova, N. A.

    1979-01-01

    Sodium content decreased in the human skeletal bones and rose in the rat bones following space flight. In man copper content rose in the femoral bone and decreased in the vertebral body and the sternum, but was unchanged in the rest of the bones. Magnesium content was decreased in the femoral bone and the sternum, and in the vertebrae, but remained unchanged in the rest of the bones. Possible mechanisms of the changes detected are discussed.

  19. sup 210 Po and sup 210 Pb remobilization from lake sediments in relation to iron and manganese cycling

    SciTech Connect

    Benoit, G.; Hemond, H.F. )

    1990-08-01

    The behavior of {sup 210}Po and {sup 210}Pb was studied in the water column of an oligotrophic, dimictic lake. Direct uptake of the radionuclides by sediments was negligible compared to removal on particles, and {sup 210}Pb scavenging was 4 times that of {sup 210}Po. Both nuclides were found to be significantly remobilized from sediments into the stratified, anoxic water column. Releases seem to be linked to the cycling of the transition metals, iron and possibly manganese. The distribution of both iron and {sup 210}Pb in stratified, anoxic waters can be modeled as constant release and rapid horizontal mixing/dilution; vertical turbulent transport had a negligible effect on element distributions. Upon contact with oxygen, iron rapidly reprecipitates, forming a particulate maximum and rescavenging {sup 210}Pb. Unlike {sup 210}Pb, much {sup 210}Po is released from sediments before overlying water becomes completely anoxic, leading to unsupported {sup 210}Po. {sup 210}Po cycling in the stratified water column is more complex than that of {sup 210}Pb, and additional removal mechanism(s) may be active, including perhaps oxidation of soluble Po(II) to insoluble Po(IV).

  20. Effect of copper and manganese ions on activities of laccase and peroxidases in three Pleurotus species grown on agricultural wastes.

    PubMed

    Stajic, Mirjana; Persky, Limor; Hadar, Yitzhak; Friesem, Dana; Duletic-Lausevic, Sonja; Wasser, Solomon P; Nevo, Eviatar

    2006-01-01

    Copper (Cu2+) and manganese (Mn2+) ions influenced laccase (Lac) and peroxidase production in Pleurotus eryngii, Pleurotus ostreatus, and Pleurotus pulmonarius. In P. eryngii, the optimum Cu2+ concentration for Lac production was 1 mM and for peroxidases 10 mM, and Mn2+ concentration of 5 mM led to peaks of Lac and peroxidase activity. In P. ostreatus HAI 493, the highest level of Lac activity was at Cu2+ concentrations of 1 and 10 mM and Mn2+ concentration of 1 mM, respectively. The absence of Cu2+ and Mn2+ caused the highest levels of peroxidase production. In P. ostreatus HAI 494, the highest level of Lac activity was at a Cu2+ concentration of 5 mM and at Mn2+ concentration of 1 mM, respectively. High levels of peroxidase activity were found in the medium without and with 1 mM Cu2+, and at 1 and 5 mM Mn2+, respectively. In P. pulmonarius, the highest Lac activity was found in the presence of 5 mM Cu2+ and 5 mM Mn2+, respectively. The absence of Cu2+ and Mn2+ as well as their presence at a concentration of 1 mM led to the peaks of peroxidase activities. PMID:16415481

  1. Serum levels of copper, selenium and manganese in forestry workers testing IgG positive for Brucella, Borrelia, and Rickettsia.

    PubMed

    Abbate, Simona; Giorgianni, Concetto; D'Arrigo, Graziella; Brecciaroli, Renato; Catanoso, Rosaria; Alibrando, Carmela; Spatari, Giovanna; Gangemi, Silvia; Abbate, Carmelo

    2013-09-01

    The aim of this study is to measure the alterations in the trace levels of serum copper (Cu), selenium (Se), and manganese (Mn) in forestry workers testing immunoglobulin G (IgG)-positive for Brucella, Borrelia, and Rickettsia. The study was conducted on a sample of 758 subjects (560 male and 198 female). All the subjects underwent medical examinations, which investigated particularly the presence of clinical signs compatible with zoonoses, and routine blood tests from venous blood sample, which tested previous immunisation versus cited microorganisms and serum concentration of Cu, Se, and Mn. The subjects were divided according to IgG positivity versus the cited microorganisms. The group of subjects with IgG positive versus Brucella showed statistically significant higher Cu levels than controls, while the Mn levels were not; the group of subjects with IgG positive versus Rickettsia showed higher levels of all three tested metals. The concentration of the examined metals did not show statistically significant difference between IgG-positive subjects versus subjects with Borrelia compared to controls. These data could confirm the role of both Cu and Se  in the regulation of immune response.

  2. Deriving freshwater quality criteria for copper, cadmium, aluminum and manganese for protection of aquatic life in Malaysia.

    PubMed

    Shuhaimi-Othman, M; Nadzifah, Y; Nur-Amalina, R; Umirah, N S

    2013-03-01

    Freshwater quality criteria for copper (Cu), cadmium (Cd), aluminum (Al), and manganese (Mn) were developed with particular reference to aquatic biota in Malaysia, and based on USEPA's guidelines. Acute toxicity tests were performed on eight different freshwater domestic species in Malaysia, which were Macrobrachiumlanchesteri (prawn), two fish -Poeciliareticulata and Rasborasumatrana, Melanoidestuberculata (snail), Stenocyprismajor (ostracod), Chironomusjavanus (midge larvae), Naiselinguis (annelid), and Duttaphrynusmelanostictus (tadpole), to determine 96-h LC50 values for Cu, Cd, Al, and Mn. The final acute values (FAVs) for Cu, Cd, Al, and Mn were 2.5, 3.0, 977.8, and 78.3 μgL(-1), respectively. Using an estimated acute-to-chronic ratio (ACR) of 8.3, the value for final chronic value (FCV) was derived. Based on FAV and FCV, a Criterion Maximum Concentration (CMC) and a criterion Continuous Concentration (CCC) for Cu, Cd, Al, and Mn of 1.3, 1.5, 488.9, and 39.1 μgL(-1) and 0.3, 0.36, 117.8, and 9.4 μgL(-1), respectively, were derived. The results of this study provide useful data for deriving national or local water quality criteria for Cu, Cd, Al, and Mn based on aquatic biota in Malaysia. Based on LC50 values, this study indicated that R.sumatrana, M.lanchesteri, C.javanus, and N.elinguis were the most sensitive to Cu, Cd, Al, and Mn, respectively.

  3. Possibility of using a lithotrophic iron-oxidizing microbial fuel cell as a biosensor for detecting iron and manganese in water samples.

    PubMed

    Tran, Phuong Hoang Nguyen; Luong, Tha Thanh Thi; Nguyen, Thuy Thu Thi; Nguyen, Huy Quang; Duong, Hop Van; Kim, Byung Hong; Pham, Hai The

    2015-10-01

    Iron-oxidizing bacterial consortia can be enriched in microbial fuel cells (MFCs) operated with ferrous iron as the sole electron donor. In this study, we investigated the possibility of using such lithotrophic iron-oxidizing MFC (LIO-MFC) systems as biosensors to monitor iron and manganese in water samples. When operated with anolytes containing only ferrous iron as the sole electron donor, the experimented LIO-MFCs generated electrical currents in response to the presence of Fe(2+) in the anolytes. For the concentrations of Fe(2+) in the range of 3-20 mM, a linear correlation between the current and the concentration of Fe(2+) could be achieved (r(2) = 0.98). The LIO-MFCs also responded to the presence of Mn(2+) in the anolytes but only when the Mn(2+) concentration was less than 3 mM. The presence of other metal ions such as Ni(2+) or Pb(2+) in the anolytes reduced the Fe(2+)-associated electricity generation of the LIO-MFCs at various levels. Organic compounds, when present at a non-excessive level together with Fe(2+) in the anolytes, did not affect the generation of electricity, although the compounds might serve as alternative electron donors for the anode bacteria. The performance of the LIO-MFCs was also affected to different degrees by operational parameters, including surrounding temperature, pH of the sample, buffer strength and external resistance. The results proved the potential of LIO-MFCs as biosensors sensing Fe(2+) in water samples with a significant specificity. However, the operation of the system should be in compliance with an optimal procedure to ensure reliable performance.

  4. Chemiluminescent photon yields measured in the flame photometric detector on chromatographic peaks containing sulfur, phosphorus, manganese, ruthenium, iron or selenium

    NASA Astrophysics Data System (ADS)

    Aue, Walter A.; Singh, Hameraj

    2001-05-01

    Photon yields — the number of photons generated per analyte atom — are of obvious analytical and mechanistic importance in flame chemiluminescence. However, such numbers are unavailable for spectral detectors in gas chromatography (as well as for most conventional spectroscopic systems). In this study, photon yields have been determined for the chemiluminescence of several elements in the flame photometric detector (FPD). The number of photons generated per atom of FPD-active element was 2×10 -3 for sulfur (emitter S 2*, test compound thianaphthene), 3×10 -3 for phosphorus [HPO*, tris(pentafluorophenyl)phosphine], 8×10 -3 for manganese (Mn*, methylcyclopentadienyl manganese tricarbonyl), 3×10 -3 for ruthenium (emitter unknown, ruthenocene), 4×10 -5 for iron (Fe*, ferrocene) and 2×10 -4 for selenium (Se 2*, dimethylbenzselenazole). Total flows, maximum thermocouple temperatures, and visible flame volumes have also been estimated for each element under signal/noise-optimized conditions in order to provide a database for kinetic calculations.

  5. Adsorption and transformation of selected human-used macrolide antibacterial agents with iron(III) and manganese(IV) oxides.

    PubMed

    Feitosa-Felizzola, Juliana; Hanna, Khalil; Chiron, Serge

    2009-04-01

    The adsorption/transformation of two members (clarithromycin and roxithromycin) of the macrolide (ML) antibacterial agents on the surface of three environmental subsurface sorbents (clay, iron(III) and manganese(IV) oxy-hydroxides) was investigated. The adsorption fitted well to the Freundlich model with a high sorption capacity. Adsorption probably occurred through a surface complexation mechanism and was accompanied by slow degradation of the selected MLs. Transformation proceeded through two parallel pathways: a major pathway was the hydrolysis of the cladinose sugar, and to a lesser extent the hydrolysis of the lactone ring. A minor pathway was the N-dealkylation of the amino sugar. This study indicates that Fe(III) and Mn(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of MLs. Such an attenuation route yields a range of intermediates that might retain some of their biological activity.

  6. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease.

    PubMed

    Robert, Anne; Liu, Yan; Nguyen, Michel; Meunier, Bernard

    2015-05-19

    With the increase of life expectancy of humans in more than two-thirds of the countries in the World, aging diseases are becoming the frontline health problems. Alzheimer's disease (AD) is now one of the major challenges in drug discovery, since, with the exception of memantine in 2003, all clinical trials with drug candidates failed over the past decade. If we consider that the loss of neurons is due to a high level of oxidative stress produced by nonregulated redox active metal ions like copper linked to amyloids of different sizes, regulation of metal homeostasis is a key target. The difficulty for large copper-carrier proteins to directly extract copper ions from metalated amyloids might be considered as being at the origin of the rupture of the copper homeostasis regulation in AD brains. So, there is an urgent need for new specific metal chelators that should be able to regulate the homeostasis of metal ions, specially copper and iron, in AD brains. As a consequence of that concept, chelators promoting metal excretion from brain are not desired. One should favor ligands able to extract copper ions from sinks (amyloids being the major one) and to transfer these redox-active metal ions to copper-carrier proteins or copper-containing enzymes. Obviously, the affinity of these chelators for the metal ion should not be a sufficient criterion, but the metal specificity and the ability of the chelators to release the metal under specific biological conditions should be considered. Such an approach is still largely unexplored. The requirements for the chelators are very high (ability to cross the brain-blood barrier, lack of toxicity, etc.), few chemical series were proposed, and, among them, biochemical or biological data are scarce. As a matter of fact, the bioinorganic pharmacology of AD represents less than 1% of all articles dedicated to AD drug research. The major part of these articles deals with an old and rather toxic drug, clioquinol and related analogs, that

  7. Effects of iron and copper overload on the human liver: an ultrastructural study.

    PubMed

    Fanni, D; Fanos, V; Gerosa, C; Piras, M; Dessi, A; Atzei, A; Van, Eyken P; Gibo, Y; Faa, G

    2014-01-01

    Iron and copper ions play important roles in many physiological functions of our body, even though the exact mechanisms regulating their absorption, distribution and excretion are not fully understood. Metal-related human pathology may be observed in two different clinical settings: deficiency or overload. The overload in liver cells of both trace elements leads to multiple cellular lesions. Here we report the main pathological changes observed at transmission electron microscopy in the liver of subjects affected by Beta-thalassemia and by Wilson's disease. The hepatic iron overload in beta-thalassemia patients is associated with haemosiderin storage both in Kupffer cells and in the cytoplasm of hepatocytes. Haemosiderin granules are grouped inside voluminous lysosomes, also called siderosomes. Other ultrastructural changes are fat droplets, proliferation of the smooth endoplasmic reticulum and fibrosis. Apoptosis of hepatocytes and infiltration of sinusoids by polymorphonucleates is also detected in beta-thalassemia. Ultrastructural changes in liver biopsies from Wilson's disease patients are characterized by severe mitochondrial changes, associated with an increased number of perossisomes, cytoplasmic lipid droplets and the presence of lipolysosomes, characteristic cytoplasmic bodies formed by lipid vacuoles surrounded by electron-dense lysosomes. In patients affected by Wilson's disease, nuclei are frequently involved, with disorganization of the nucleoplasm and with glycogen inclusions. On the contrary, no significant changes are detected in Kupffer cells. Our data show that iron and copper, even though are both transition metals, are responsible of different pathological changes at ultrastructural level. In particular, copper overload is associated with mitochondrial damage, whereas iron overload only rarely may cause severe mitochondrial changes. These differences underlay the need for further studies in which biochemical analyses should be associated with

  8. Deoxidation Equilibria of Manganese, Silicon, and Aluminum in Iron-Nickel-Chromium Melts

    NASA Astrophysics Data System (ADS)

    Dashevskii, Viktor; Aleksandrov, Aleksandr; Kanevskii, Akim; Leont'ev, Leopold

    2016-06-01

    Oxygen solution in Fe-Ni-Cr melts containing manganese, silicon, and aluminum has been thermodynamically analyzed and experimentally studied at 1873 K (1600 °C). The Fe-10 pctNi-20 pctCr and Fe-40 pctNi-15 pctCr compositions were studied as examples of the most frequently used alloys. Manganese is not a deoxidizer in these alloys, since manganese and chromium have similar affinities for oxygen. At low contents, silicon is also not a deoxidizer. However, above 0.358 pct for the Fe-10 pctNi-20 pctCr alloy and 0.261 pct for the Fe-40 pctNi-15 pctCr alloy, silicon decreases the oxygen concentration in the melts. Aluminum is an effective deoxidizer in the Fe-Ni-Cr melts. It decreases the oxygen concentration when its content is higher than 2.914 × 10-4 pct in the Fe-10 pctNi-20 pctCr alloy and 2.109 × 10-3 pct in the Fe-40 pctNi-15 pctCr alloy. Minimum oxygen concentrations are observed at aluminum contents of about 0.24 pct in the Fe-10 pctNi-20 pctCr alloy and at about 0.23 pct in the Fe-40 pctNi-15 pctCr alloy. The combined deoxidation of Fe-10 pctNi-20 pctCr and Fe-40 pctNi-15 pctCr alloys with silicon and manganese and also with aluminum and silicon was studied. The lower oxygen concentrations were reached as a result of complex deoxidation in comparison with the cases when deoxidized separately by each element at the same concentration levels.

  9. Alaskan malamute chondrodysplasia IV. Concentrations of zinc, copper and iron in various tissues.

    PubMed

    Brown, R G; Hoag, G N; Smart, M E; Boechner, G; Subden, R E

    1977-09-01

    Trace mineral concentrations in various tissues of the chondrodysplastic (dwarf) Alaskan Malamute are remarkably different as compared to normal. The zinc level in heart tissue was depressed in dwarf animals (26 weeks). Copper concentration in the liver is elevated two to four fold in 26 week old dwarf animals and iron levels are significantly elevated in kidney, liver and pancreas of these animals. These observations suggest that the dwarf Alaskan Malamutes suffer from a genetic defect in trace mineral metabolism. If this is the case, then many of the skeletal lesions reported for these animals may be attributed to disorders in either zinc or copper metabolism.

  10. Copper, nickel, and iron in plumage of three upland gamebird species from non-contaminated environments

    SciTech Connect

    Parker, G.H.

    1985-12-01

    High levels of atmospheric contamination and particulate fallout characterizing the Industrial Basin of the copper-nickel smelting operations at Sudbury, Ontario, were shown to be reflected in the feather chemistry of resident ruffed grouse populations. Of considerable concern, however, is the paucity of information on background concentrations of elemental metals that could be considered normal for non-contaminated environments. The present report examines concentrations of copper, nickel and iron in the plumage of three tetraonid species collected from remote and undisturbed areas in Northern Ontario and Quebec.

  11. Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging.

    PubMed

    Fitsanakis, Vanessa A; Zhang, Na; Anderson, Joel G; Erikson, Keith M; Avison, Malcolm J; Gore, John C; Aschner, Michael

    2008-05-01

    Chronic exposure to manganese (Mn) may lead to a movement disorder due to preferential Mn accumulation in the globus pallidus and other basal ganglia nuclei. Iron (Fe) deficiency also results in increased brain Mn levels, as well as dysregulation of other trace metals. The relationship between Mn and Fe transport has been attributed to the fact that both metals can be transported via the same molecular mechanisms. It is not known, however, whether brain Mn distribution patterns due to increased Mn exposure vs. Fe deficiency are the same, or whether Fe supplementation would reverse or inhibit Mn deposition. To address these questions, we utilized four distinct experimental populations. Three separate groups of male Sprague-Dawley rats on different diets (control diet [MnT], Fe deficient [FeD], or Fe supplemented [FeS]) were given weekly intravenous Mn injections (3 mg Mn/kg body mass) for 14 weeks, whereas control (CN) rats were fed the control diet and received sterile saline injections. At the conclusion of the study, both blood and brain Mn and Fe levels were determined by atomic absorption spectroscopy and magnetic resonance imaging. The data indicate that changes in dietary Fe levels (either increased or decreased) result in regionally specific increases in brain Mn levels compared with CN or MnT animals. Furthermore, there was no difference in either Fe or Mn accumulation between FeS or FeD animals. These data suggest that dietary Fe manipulation, whether increased or decreased, may contribute to brain Mn deposition in populations vulnerable to increased Mn exposure.

  12. Nanostructures design by plasma afterglow-assisted oxidation of iron-copper thin films

    NASA Astrophysics Data System (ADS)

    Imam, A.; Boileau, A.; Gries, T.; Ghanbaja, J.; Mangin, D.; Hussein, K.; Sezen, H.; Amati, M.; Belmonte, T.

    2016-05-01

    Oxidizing thin films made of Fe-Cu alloy with an Ar-O2 micro-afterglow operated at atmospheric pressure shows remarkable growth processes. The presence of iron in copper up to about 50% leads to the synthesis of CuO nanostructures (nanowalls, nanotowers and nanowires). Nanotowers show the presence of an amorphous phase trapped between crystalline domains. Beyond 50%, Fe2O3 iron nanoblades are also found. CuO nanowires as small as 5 nm in diameter can be synthesized. Thanks to the presence of patterned domains induced by buckling, it was possible to show that the stress level decreases when the iron content in the alloy increases. Iron blades grow from the inner Fe2O3 layer through the overlying CuO if it is thin enough.

  13. Chemically bonded phosphate ceramics of trivalent oxides of iron and manganese

    DOEpatents

    Wagh, Arun S.; Jeong, Seung-Young

    2002-01-01

    A new method for combining elemental iron and other metals to form an inexpensive ceramic to stabilize arsenic, alkaline red mud wastes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast.

  14. Trace Element Distributions In San Diego Bay: Copper, zinc, manganese, and the rare earth elements

    NASA Astrophysics Data System (ADS)

    Gieskes, J. M.; Mahn, C. L.; Rivera-Duarte, I.; Chadwick, B.

    2002-12-01

    San Diego Bay is characterized by the occurrence of large concentration increases in copper and zinc, often related to the inputs of ships in this important harbor (Katz, 1998; Zirino et al, 1978, 1998; Esser and Volpe, 2002). In this paper we report the first data on the distribution of rare earth elements (REE) in the waters of San Diego Bay. The combination of the rare earths data set as well as the other trace element distributions allow us to determine the importance of sediment recycling on trace metals in the Bay. The data suggest that remobilization of trace metals at or near the sediment water interface is of importance (Leather et al., 1995; Chadwick, personal communication). Relevant data from both sedimentary pore fluids and benthic flux measurements that support these interpretations will also be shown.

  15. Thermal chemistry of Mn{sub 2}(CO){sub 10} during deposition of thin manganese films on silicon oxide and on copper surfaces

    SciTech Connect

    Qin Xiangdong; Sun Huaxing; Zaera, Francisco

    2012-01-15

    The surface chemistry of dimanganese decacarbonyl on the native oxide of Si(100) wafers was characterized with the aid of x-ray photoelectron spectroscopy. Initial experiments in a small stainless-steel reactor identified a narrow range of temperatures, between approximately 445 and 465 K, in which the deposition of manganese could be achieved in a self-limiting fashion, as is desirable for atomic layer deposition. Deposition at higher temperatures leads to multilayer growth, but the extent of this Mn deposition reverses at even higher temperatures (about 625 K), and also ifhydrogen is added to the reaction mixture. Extensive decarbonylation takes place below room temperature, but limited C-O bond dissociation and carbon deposition are still seen after high exposures at 625 K. The films deposited at low ({approx}450 K) temperatures are mostly in the form of MnO, but at 625 K that converts to a manganese silicate, and upon higher doses a manganese silicide forms at the SiO{sub 2}/Si(100) interface as well. No metallic manganese could be deposited with this precursor on either silicon dioxide or copper surfaces.

  16. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding.

    PubMed

    Tottey, Steve; Waldron, Kevin J; Firbank, Susan J; Reale, Brian; Bessant, Conrad; Sato, Katsuko; Cheek, Timothy R; Gray, Joe; Banfield, Mark J; Dennison, Christopher; Robinson, Nigel J

    2008-10-23

    Metals are needed by at least one-quarter of all proteins. Although metallochaperones insert the correct metal into some proteins, they have not been found for the vast majority, and the view is that most metalloproteins acquire their metals directly from cellular pools. However, some metals form more stable complexes with proteins than do others. For instance, as described in the Irving-Williams series, Cu(2+) and Zn(2+) typically form more stable complexes than Mn(2+). Thus it is unclear what cellular mechanisms manage metal acquisition by most nascent proteins. To investigate this question, we identified the most abundant Cu(2+)-protein, CucA (Cu(2+)-cupin A), and the most abundant Mn(2+)-protein, MncA (Mn(2+)-cupin A), in the periplasm of the cyanobacterium Synechocystis PCC 6803. Each of these newly identified proteins binds its respective metal via identical ligands within a cupin fold. Consistent with the Irving-Williams series, MncA only binds Mn(2+) after folding in solutions containing at least a 10(4) times molar excess of Mn(2+) over Cu(2+) or Zn(2+). However once MncA has bound Mn(2+), the metal does not exchange with Cu(2+). MncA and CucA have signal peptides for different export pathways into the periplasm, Tat and Sec respectively. Export by the Tat pathway allows MncA to fold in the cytoplasm, which contains only tightly bound copper or Zn(2+) (refs 10-12) but micromolar Mn(2+) (ref. 13). In contrast, CucA folds in the periplasm to acquire Cu(2+). These results reveal a mechanism whereby the compartment in which a protein folds overrides its binding preference to control its metal content. They explain why the cytoplasm must contain only tightly bound and buffered copper and Zn(2+). PMID:18948958

  17. Direct Functionalization of (Un)protected Tetrahydroisoquinoline and Isochroman under Iron and Copper Catalysis: Two Metals, Two Mechanisms

    PubMed Central

    2011-01-01

    A highly facile, straightforward synthesis of 1-(3-indolyl)-tetrahydroisoquinolines was developed using either simple copper or iron catalysts. N-protected and unprotected tetrahydroisoquinolines (THIQ) could be used as starting materials. Extension of the substrate scope of the pronucleophile from indoles to pyrroles and electron-rich arenes was realized. Additionally, methoxyphenylation is not limited to THIQ but can be carried out on isochroman as well, again employing iron and copper catalysis. PMID:21902275

  18. Serum ceruloplasmin protein expression and activity increases in iron-deficient rats and is further enhanced by higher dietary copper intake

    PubMed Central

    Ranganathan, Perungavur N.; Lu, Yan; Jiang, Lingli; Kim, Changae

    2011-01-01

    Increases in serum and liver copper content are noted during iron deficiency in mammals, suggesting that copper-dependent processes participate during iron deprivation. One point of intersection between the 2 metals is the liver-derived, multicopper ferroxidase ceruloplasmin (Cp) that is important for iron release from certain tissues. The current study sought to explore Cp expression and activity during physiologic states in which hepatic copper loading occurs (eg, iron deficiency). Weanling rats were fed control or low iron diets containing low, normal, or high copper for ∼ 5 weeks, and parameters of iron homeostasis were measured. Liver copper increased in control and iron-deficient rats fed extra copper. Hepatic Cp mRNA levels did not change; however, serum Cp protein was higher during iron deprivation and with higher copper consumption. In-gel and spectrophotometric ferroxidase and amine oxidase assays demonstrated that Cp activity was enhanced when hepatic copper loading occurred. Interestingly, liver copper levels strongly correlated with Cp protein expression and activity. These observations support the possibility that liver copper loading increases metallation of the Cp protein, leading to increased production of the holo enzyme. Moreover, this phenomenon may play an important role in the compensatory response to maintain iron homeostasis during iron deficiency. PMID:21768302

  19. Generation of oxidant response to copper and iron nanoparticles and salts: Stimulation by ascorbate

    PubMed Central

    Rice, Robert H.; Vidrio, Edgar A.; Kumfer, Benjamin M.; Qin, Qin; Willits, Neil H.; Kennedy, Ian M.; Anastasio, Cort

    2009-01-01

    The present work describes a two-stage approach to analyzing combustion-generated samples for their potential to produce oxidant stress. This approach is illustrated with the two commonly encountered transition metals, copper and iron. First, their abilities to generate hydroxyl radical were measured in a cell-free, phosphate-buffered saline solution containing ascorbate and/or citrate. Second, their abilities to induce heme oxygenase-1 in cultured human epidermal keratinocytes were assessed in cell culture. Combustion-generated copper oxide nanoparticles were active in both assays and were found to be soluble in culture medium. Depletion of glutathione in the cells or loading the cells with ascorbate greatly increased heme oxygenase-1 induction in the presence of copper. By contrast, iron oxide nanoparticles were active in the phosphate buffered saline but not in cell culture, and they aggregated in culture medium. Soluble salts of copper and iron exhibited the same contrast in activities as the respective combustion-generated particles. The results suggest that the capability of combustion-generated environmental samples to produce oxidant stress can be screened effectively in a two step process, first in phosphate buffered saline with ascorbate and subsequently in epithelial cell culture for those exhibiting activity initially. The results also point to an unanticipated interaction in cells of oxidant stress-generating metals with an anti-oxidant (ascorbate) that is usually missing in culture medium formulations. Thus, ascorbate supplementation of cultured human cells is likely to improve their ability to model the in vivo effects of particulate matter containing copper and other redox-active metals. PMID:19683516

  20. Copper and iron are mobilized following myocardial ischemia: possible predictive criteria for tissue injury.

    PubMed Central

    Chevion, M; Jiang, Y; Har-El, R; Berenshtein, E; Uretzky, G; Kitrossky, N

    1993-01-01

    Direct evidence for substantial mobilization of copper in the coronary flow immediately following prolonged, but not short, cardiac ischemia is presented. In the first coronary flow fraction (CFF) of reperfusion (0.15 ml), after 35 min of ischemia, the level of copper (as well as of iron) was 8- to 9-fold higher than the preischemic value. The levels in subsequent CFFs decreased and reached the preischemic value, indicating that both metals appear in a burst at the resumption of coronary flow. When the first CFF was used in a reaction mixture containing ascorbate and salicylate, the latter underwent chemical hydroxylation and was converted to its dihydroxybenzoate derivatives. Likewise, this CFF promoted the ascorbate-driven DNA degradation. Subsequent 150 CFFs were serially collected and demonstrated low activities. Following 18 min of ischemia, the copper level in the first CFF of reperfusion was only 15% over the preischemic value. In contrast, the mobilization of iron into coronary flow was significant but markedly lower than after 35 min. The levels of copper and the redox activity of the first CFF correlated well with the degree of loss of cardiac function, after 18 and 35 min of ischemia, respectively. After 18 min of ischemia, cardiac function was about 50% and the damage is considered reversible, whereas after 35 min the functional loss exceeded 80% and is considered irreversible. These results are in accord with the causative role that copper and iron can play in heart injury following ischemia, by virtue of their capacity to catalyze the production of hydroxyl radicals, and could lead to the development of new modalities for intervention in tissue injury. Images PMID:8430081

  1. Toxicological characterization of bio-active drugs on basis of Iron Fe, Co, and Copper Cu nanopowders

    NASA Astrophysics Data System (ADS)

    Polishuk, S.; Nazarova, A.; Stepanova, I.

    2015-11-01

    The article presents investigations of toxicological parameters (acute and chronic toxicity, cumulative coefficient) of iron, cobalt, copper and copper oxide nanoparticles with white rats in labs. We have estimated the optimal concentrations of the above mentioned substances with rabbits. We have also studied morphological, physiological and biochemical parameters of the animals when adding the optimal doses to the diet for a long term.

  2. Characterization of vanadium, manganese and iron model clusters by vibrational and optical spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Ji, Wenbin

    1999-12-01

    The active ferryl intermediates in the catalytic cycles of heme proteins are subject to interactions from the proximal and distal amino acid residues which control their activities and affect the ν(FeIVO) frequency. The effects of sixth axial ligation, hydrogen bonding, and solvent induced polarization on the resonance Raman (RR) spectra of the ferryl porphyrin analogs, vanadyl (VIVO) porphyrins and their π-cation radicals, are characterized. ν(VIVO) stretching bands for (VO)TMPyP and (VO)PPIX are observed to be sensitive to the pH value of the aqueous solutions, and reveal a number of coexisting 5-coordinate (c) and 6- c vanadyl porphyrins in solution. Moreover, the ν(VIVO) bands for (VO)TMP and (VO)TPP porphyrins upshift to higher frequencies with the formation of their π-cation radicals, in agreement with that of the (VO)OEP radical. For both a1u (OEP) and a2u (TPP, TMP) type radicals, an increased positive charge on the porphyrin reduces the porphyrin --> vanadium electron donation, but enhances the oxo --> V donation. The UV-Vis absorption and RR spectroscopic studies on a series of oxo-bridged vanadium(III) and manganese (III, IV) complexes established spectrostructural correlations that are useful as monitors of the structure of vanadium(III) and manganese(III, IV) centers in biological systems. The linear and bent V-O-V dimers display distinctive RR and absorption spectra. The linear V-O-V bridge displays an intense μ-O --> V charge transfer (CT) absorption band and a strongly enhanced symmetric (νs) or antisymmetric (νas) V-O-V stretching band in RR spectra, depending upon terminal ligands. In contrast, the bent bridge shows two μ-O --> V CT bands and both νs and νas V- O-V stretches are observed in RR spectra. These νs and νas vibrations are used to indicate that the vanadium(III) oxo-bridged dimer intercalates with DNA. The Mn-O-Mn vibrational frequencies in the 400-700 cm -1 region of the oxo-bridged manganese(III, IV) dimers, trimers, and

  3. Presence of acute phase changes in zinc, iron, and copper metabolism in turkey embryos

    SciTech Connect

    Klasing, K.C.; Richards, M.P.; Darcey, S.E.; Laurin, D.E.

    1987-01-01

    Acute phase changes in trace mineral metabolism were examined in turkey embryos. An endotoxin injection resulted in increased concentrations of serum copper and liver zinc and decreased concentrations of serum zinc in embryos incubated either in ovo or ex ovo. Changes in zinc and copper metabolism occurred when endotoxin either was injected intramuscularly, into the amnionic fluid, or administered onto the chorioallantoic membrane. Unlike poults, embryos did not respond to an inflammatory challenge with decreased serum iron concentrations. Acute phase changes in embryo serum zinc and copper as well as liver zinc concentrations were similar to those in poults. Increased liver zinc concentrations were associated with increased zinc in metallothionein (MT). An injection of a crude interleukin 1 preparation into embryos resulted in similar increases in hepatic zinc and MT concentrations as an endotoxin injection, suggesting a role for this cytokine in mediating the acute phase changes in embryonic zinc metabolism.

  4. Blood concentrations of selenium, zinc, iron, copper and calcium in patients with hepatocellular carcinoma.

    PubMed

    Chin-Thin, Wang; Wei-Tun, Chang; Tzu-Ming, Pan; Ren-Tse, Wang

    2002-11-01

    We used an atomic absorption spectrophotometric method to determine the concentration of selenium, zinc, iron, copper and calcium in the whole blood of patients with hepatocellular carcinoma. The results demonstrate that these patients have a lower concentration of selenium (0.18 +/- 0.02 microg/ml vs. 0.28 +/- 0.06 microg/ml) and zinc (11.2 +/- 2.75 microg/ml vs. 18.2 +/- 7.33 microg/ml) than healthy controls (p < 0.05). On the other hand, the hepatocellular carcinoma patients have higher mean concentrations of iron (651.9+/-66.2 microg/ml vs.473.0 +/- 88.0 microg/ml; p < 0.05), copper (1.43 +/- 0.33 microg/ml vs. 0.95 +/- 0.19 microg/ml; p < 0.05) and calcium (75.0 +/- 13.1 microg/ml vs. 39.9 +/- 12.3 microg/ml; p < 0.01) than healthy controls. Thus, hepatocellular carcinoma seems to be associated with the changes in the whole blood concentrations of selenium, zinc, iron, copper and calcium.

  5. Influence of orange juice in the levels and in the genotoxicity of iron and copper.

    PubMed

    Franke, Silvia Isabel Rech; Prá, Daniel; Giulian, Raquel; Dias, Johnny Ferraz; Yoneama, Maria Lúcia; da Silva, Juliana; Erdtmann, Bernardo; Henriques, João Antonio Pêgas

    2006-03-01

    World consumption of natural juices is increasing as a consequence of the human search for a healthier life. The juice production industry, especially for orange juice, is expanding in several countries and particularly in Brazil. Despite scientific data reporting beneficial properties derived from juice consumption, some components of juices have been identified as mutagenic or carcinogenic. Carcinogenic or genotoxic effects may be mediated by the interaction of juice components with transition metals or by sub-products of juice auto-oxidation. In this study, the mutagenic potential of orange juice and two metallic agents used in dietary supplementation, FeSO(4) and CuSO(4), were investigated using the comet assay in mouse blood cells (in vivo). Both metal compounds were genotoxic for eukaryotic cells after 24h treatment at the doses used. Significant damage repair was observed after 48h of treatment with the same compounds. Orange juice had a modulating effect on the action of metallic sulfates. In the case of iron treatment, the presence of the orange juice had a preventive, but not restorative, effect. On the other hand, in the case of copper treatment, the effects were both preventive and restorative. PIXE (particle induced X-ray emission) analysis indicated a positive correlation between DNA damage and the hepatic levels of iron and a negative correlation between whole blood copper and DNA damage. A negative correlation between hepatic iron and whole blood copper content was also seen in the treatment with both ferrous and cupric sulfates. PMID:16263202

  6. Retronasal perception and flavour thresholds of iron and copper in drinking water.

    PubMed

    Omur-Ozbek, Pinar; Dietrich, Andrea M

    2011-03-01

    Drinking water flavour has a strong role in water quality perception, service satisfaction, willingness to pay and selection of water sources. Metallic flavours are often caused by the dissolved iron and copper, commonly found in groundwater or introduced to tap water by corroding infrastructure. Taste thresholds of iron and copper have been investigated by several studies; however, reported results and test methods vary considerably. This study determined the taste thresholds of ferrous and cuprous ions in room temperature reagent water by using the one-of-five test with multi-nation panellists in the United States. For ferrous and cuprous ions, individual thresholds ranged from 0.003 to >5 mg l(-1) and 0.035 to >5 mg l(-1), respectively. Population thresholds were determined by logistic regression and geometric mean methods as 0.031 and 0.05 mg l(-1) for ferrous ion, and 0.61 mg l(-1) for cuprous ion by both methods. The components of metallic sensation were investigated by use of nose-clips while panellists ingested iron and copper solutions. Results showed that metallic sensation has a significant odour component and should be treated as a flavour instead of a taste. Ferrous, cuprous and cupric ions also produced weak bitter and salty tastes as well as astringent mouthfeel. In comparison, ferric ion produced no sensation.

  7. Effects of Copper and Malleablizing Time on Mechanical Properties of Austempered Malleable Iron

    NASA Astrophysics Data System (ADS)

    Hsu, Cheng-Hsun; Lu, Jung-Kai; Chen, Fan-Shiong

    2007-10-01

    In this study, both the unalloyed and 1 wt pct copper alloyed white irons were successively treated with a duplex heating process consisting of malleablizing and austempering, and then the effects of copper and processing variables on microstructure and mechanical properties of the austempered malleable iron (AMI) were investigated. The results showed that AMI could effectively shorten malleablizing time to obtain the constituents of irregular graphite, acicular ferrite, and retained austenite in the microstructure. Moreover, 1 pct Cu-AMI had a higher retained austenite content than unalloyed AMI. This is because copper is an austenite stabilizer and acts to delay the start of the transformation into ausferrite. In the case of mechanical properties, AMI increased tensile strength (1083 to 1190 MPa) and impact toughness (16 to 22 J) by 2 to 3 times after 930 °C 20 hours malleablizing treatment as compared to as-cast (572 to 580 MPa and 5 to 6 J). In particular, 1 pct Cu-AMI had better performance than unalloyed AMI except for hardness. In comparison with conventional malleable irons, AMI was found to possess better tensile and impact properties.

  8. Elevated adult neurogenesis in brain subventricular zone following in vivo manganese exposure: roles of copper and DMT1.

    PubMed

    Fu, Sherleen; O'Neal, Stefanie; Hong, Lan; Jiang, Wendy; Zheng, Wei

    2015-02-01

    The brain subventricular zone (SVZ) is a source of neural precursor cells; these cells travel along the rostral migratory stream (RMS) to destination areas in the process of adult neurogenesis. Recent x-ray fluorescence (XRF) studies reveal an extensive accumulation of copper (Cu) in the SVZ. Earlier human and animal studies also suggest an altered Cu homeostasis after manganese (Mn) exposure. This study was designed to test the hypothesis that Mn exposure by acting on the divalent metal transporter-1 (DMT1) altered Cu levels in SVZ and RMS, thereby affecting adult neurogenesis. Adult rats received intraperitoneal (i.p.) injections of 6 mg Mn/kg as MnCl2 once daily for 4 weeks with concomitant injections of bromodeoxyuridine (BrdU) for 5 days in the last week. In control rats, Cu levels were significantly higher in the SVZ than other brain regions examined. Mn exposure significantly reduced Cu concentrations in the SVZ (P < 0.01). Immunohistochemical data showed that in vivo Mn exposure significantly increased numbers of BrdU(+) cells, which were accompanied with increased GFAP(+) astrocytic stem cells and DCX(+) neuroblasts in SVZ and RMS. Quantitative RT-PCR and Western blot confirmed the increased expression of DMT1 in SVZ following in vivo Mn exposure, which contributed to Mn accumulation in the neurogenesis pathway. Taken together, these results indicate a clear disruptive effect of Mn on adult neurogenesis; the effect appears due partly to Mn induction of DMT1 and its interference with cellular Cu regulation in SVZ and RMS. The future research directions based on these observations are also discussed. PMID:25575534

  9. Nickel, manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate ratio.

    PubMed

    Barbosa, L P; Costa, P F; Bertolino, S M; Silva, J C C; Guerra-Sá, R; Leão, V A; Teixeira, M C

    2014-08-01

    The use of sulfate-reducing bacteria (SRB) in passive treatments of acidic effluents containing heavy metals has become an attractive alternative biotechnology. Treatment efficiency may be linked with the effluent conditions (pH and metal concentration) and also to the amount and nature of the organic substrate. Variations on organic substrate and sulfate ratios clearly interfere with the biological removal of this ion by mixed cultures of SRB. This study aimed to cultivate a mixed culture of SRB using different lactate concentrations at pH 7.0 in the presence of Ni, Mn and Cu. The highest sulfate removal efficiency obtained was 98 %, at a COD/sulfate ratio of 2.0. The organic acid analyses indicated an acetate accumulation as a consequence of lactate degradation. Different concentrations of metals were added to the system at neutral pH conditions. Cell proliferation and sulfate consumption in the presence of nickel (4, 20 and 50 mg l(-1)), manganese (1.5, 10 and 25 mg l(-1)) and copper (1.5, 10 and 25 mg l(-1)) were measured. The presence of metals interfered in the sulfate biological removal however the concentration of sulfide produced was high enough to remove over 90 % of the metals in the environment. The molecular characterization of the bacterial consortium based on dsrB gene sequencing indicated the presence of Desulfovibrio desulfuricans, Desulfomonas pigra and Desulfobulbus sp. The results here presented indicate that this SRB culture may be employed for mine effluent bioremediation due to its potential for removing sulfate and metals, simultaneously.

  10. Elevated Adult Neurogenesis in Brain Subventricular Zone Following In vivo Manganese Exposure: Roles of Copper and DMT1

    PubMed Central

    Fu, Sherleen; O'Neal, Stefanie; Hong, Lan; Jiang, Wendy; Zheng, Wei

    2015-01-01

    The brain subventricular zone (SVZ) is a source of neural precursor cells; these cells travel along the rostral migratory stream (RMS) to destination areas in the process of adult neurogenesis. Recent x-ray fluorescence (XRF) studies reveal an extensive accumulation of copper (Cu) in the SVZ. Earlier human and animal studies also suggest an altered Cu homeostasis after manganese (Mn) exposure. This study was designed to test the hypothesis that Mn exposure by acting on the divalent metal transporter-1 (DMT1) altered Cu levels in SVZ and RMS, thereby affecting adult neurogenesis. Adult rats received intraperitoneal (i.p.) injections of 6 mg Mn/kg as MnCl2 once daily for 4 weeks with concomitant injections of bromodeoxyuridine (BrdU) for 5 days in the last week. In control rats, Cu levels were significantly higher in the SVZ than other brain regions examined. Mn exposure significantly reduced Cu concentrations in the SVZ (P < 0.01). Immunohistochemical data showed that in vivo Mn exposure significantly increased numbers of BrdU(+) cells, which were accompanied with increased GFAP(+) astrocytic stem cells and DCX(+) neuroblasts in SVZ and RMS. Quantitative RT-PCR and Western blot confirmed the increased expression of DMT1 in SVZ following in vivo Mn exposure, which contributed to Mn accumulation in the neurogenesis pathway. Taken together, these results indicate a clear disruptive effect of Mn on adult neurogenesis; the effect appears due partly to Mn induction of DMT1 and its interference with cellular Cu regulation in SVZ and RMS. The future research directions based on these observations are also discussed. PMID:25575534

  11. Liver and kidney concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium and lead in cats

    PubMed Central

    2014-01-01

    Background In order to provide new knowledge on the storage of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se) and lead (Pb) in the feline organism, we measured the concentrations of these elements in the liver, renal cortex and renal medulla, evaluating also the impact of age, sex or the occurrence of a chronic kidney disease (CKD). The element concentrations in the tissues of 47 cats (22 male; 25 female; aged between 2 months and 18 years) were measured using inductively coupled plasma mass spectrometry. Results Cu, Zn and Mn were the highest in the liver, followed by the renal cortex and the renal medulla. The Cd concentrations were lower in the renal medulla compared to the renal cortex and the liver, and Sr was higher in the renal medulla compared to the liver. The Se concentrations in the cortex of the kidneys were higher than in the medulla of the kidneys and in the liver. Higher Cd concentrations were measured in the renal cortex of female cats, while no further gender-related differences were observed. Except for Cr, Sb and Se, age-dependencies were detected for the storage of all elements. The occurrence of a CKD also affected the storage of the elements, with lower concentrations of Ba (renal medulla), Zn (renal cortex; renal medulla) and Mn (liver; renal medulla), but higher Cd concentrations (liver; renal cortex) in diseased cats. Conclusions In conclusion, the present results provide new information on the accumulation of specific elements in the feline liver and kidneys, demonstrating a dependency on age and an impaired kidney function, but not on the sex of the animals. PMID:25030305

  12. Nickel, manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate ratio.

    PubMed

    Barbosa, L P; Costa, P F; Bertolino, S M; Silva, J C C; Guerra-Sá, R; Leão, V A; Teixeira, M C

    2014-08-01

    The use of sulfate-reducing bacteria (SRB) in passive treatments of acidic effluents containing heavy metals has become an attractive alternative biotechnology. Treatment efficiency may be linked with the effluent conditions (pH and metal concentration) and also to the amount and nature of the organic substrate. Variations on organic substrate and sulfate ratios clearly interfere with the biological removal of this ion by mixed cultures of SRB. This study aimed to cultivate a mixed culture of SRB using different lactate concentrations at pH 7.0 in the presence of Ni, Mn and Cu. The highest sulfate removal efficiency obtained was 98 %, at a COD/sulfate ratio of 2.0. The organic acid analyses indicated an acetate accumulation as a consequence of lactate degradation. Different concentrations of metals were added to the system at neutral pH conditions. Cell proliferation and sulfate consumption in the presence of nickel (4, 20 and 50 mg l(-1)), manganese (1.5, 10 and 25 mg l(-1)) and copper (1.5, 10 and 25 mg l(-1)) were measured. The presence of metals interfered in the sulfate biological removal however the concentration of sulfide produced was high enough to remove over 90 % of the metals in the environment. The molecular characterization of the bacterial consortium based on dsrB gene sequencing indicated the presence of Desulfovibrio desulfuricans, Desulfomonas pigra and Desulfobulbus sp. The results here presented indicate that this SRB culture may be employed for mine effluent bioremediation due to its potential for removing sulfate and metals, simultaneously. PMID:24710619

  13. An aqueous method for the controlled manganese (Mn(2+)) substitution in superparamagnetic iron oxide nanoparticles for contrast enhancement in MRI.

    PubMed

    Ereath Beeran, Ansar; Nazeer, Shaiju S; Fernandez, Francis Boniface; Muvvala, Krishna Surendra; Wunderlich, Wilfried; Anil, Sukumaran; Vellappally, Sajith; Ramachandra Rao, M S; John, Annie; Jayasree, Ramapurath S; Varma, P R Harikrishna

    2015-02-14

    Despite the success in the use of superparamagnetic iron oxide nanoparticles (SPION) for various scientific applications, its potential in biomedical fields has not been exploited to its full potential. In this context, an in situ substitution of Mn(2+) was performed in SPION and a series of ferrite particles, MnxFe1-xFe2O4 with a varying molar ratio of Mn(2+) : Fe(2+) where 'x' varies from 0-0.75. The ferrite particles obtained were further studied in MRI contrast applications and showed appreciable enhancement in their MRI contrast properties. Manganese substituted ferrite nanocrystals (MnIOs) were synthesized using a novel, one-step aqueous co-precipitation method based on the use of a combination of sodium hydroxide and trisodium citrate (TSC). This approach yielded the formation of highly crystalline, superparamagnetic MnIOs with good control over their size and bivalent Mn ion crystal substitution. The presence of a TSC hydrophilic layer on the surface facilitated easy dispersion of the materials in an aqueous media. Primary characterizations such as structural, chemical and magnetic properties demonstrated the successful formation of manganese substituted ferrite. More significantly, the MRI relaxivity of the MnIOs improved fourfold when compared to SPION crystals imparting high potential for use as an MRI contrast agent. Further, the cytocompatibility and blood compatibility evaluations demonstrated excellent cell morphological integrity even at high concentrations of nanoparticles supporting the non-toxic nature of nanoparticles. These results open new horizons for the design of biocompatible water dispersible ferrite nanoparticles with good relaxivity properties via a versatile and easily scalable co-precipitation route. PMID:25586703

  14. Mineralogical and chemical characterization of iron-, manganese-, and copper-containing synthetic hydroxyapatites.

    PubMed

    Sutter, B; Ming, D W; Clearfield, A; Hossner, L R

    2003-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program is evaluating the use of Fe-, Mn-, and Cu-containing synthetic hydroxyapatite (SHA) as a slow release fertilizer for crops that might be grown on the International Space Station or at Lunar and Martian outposts. Separate Fe-, Mn-, and Cu-containing SHA materials along with a transition-metal free SHA (pure-SHA) were synthesized using a precipitation method. Chemical and mineralogical analyses determined if and how Fe, Mn, and Cu were incorporated into the SHA structure. X-ray diffraction (XRD), Rietveld refinement, and transmission electron microscopy (TEM) confirmed that SHA materials with the apatite structure were produced. Chemical analyses indicated that the metal containing SHA materials were deficient in Ca relative to pure-SHA. The shift in the infrared PO4-mu 3 vibrations, smaller unit cell parameters, smaller particle size, and greater structural strain for Fe-, Mn-, and Cu-containing SHA compared with pure-SHA suggested that Fe, Mn, and Cu were incorporated into SHA structure. Rietveld analyses revealed that Fe, Mn, and Cu substituted into the Ca2 site of SHA. An Fe-rich phase was detected by TEM analyses and backscattered electron microscopy in the Fe-containing SHA material with the greatest Fe content. The substitution of metals into SHA suggests that metal-SHA materials are potential slow-release sources of micronutrients for plant uptake in addition to Ca and P. PMID:14740607

  15. Characterization of iron, manganese, and copper synthetic hydroxyapatites by electron paramagnetic resonance spectroscopy

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Wasowicz, T.; Howard, T.; Hossner, L. R.; Ming, D. W.

    2002-01-01

    The incorporation of micronutrients (e.g., Fe, Mn, Cu) into synthetic hydroxyapatite (SHA) is proposed for slow release of these nutrients to crops in NASA's Advanced Life Support (ALS) program for long-duration space missions. Separate Fe3+ (Fe-SHA), Mn2+ (Mn-SHA), and Cu2+ (Cu-SHA) containing SHA materials were synthesized by a precipitation method. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the location of Fe3+, Mn2+, and Cu2+ ions in the SHA structure and to identify other Fe(3+)-, Mn(2+)-, and Cu(2+)-containing phases that formed during precipitation. The EPR parameters for Fe3+ (g=4.20 and 8.93) and for Mn2+ (g=2.01, A=9.4 mT, D=39.0 mT and E=10.5 mT) indicated that Fe3+ and Mn2+ possessed rhombic ion crystal fields within the SHA structure. The Cu2+ EPR parameters (g(z)=2.488, A(z)=5.2 mT) indicated that Cu2+ was coordinated to more than six oxygens. The rhombic environments of Fe3+ and Mn2+ along with the unique Cu2+ environment suggested that these metals substituted for the 7 or 9 coordinate Ca2+ in SHA. The EPR analyses also detected poorly crystalline metal oxyhydroxides or metal-phosphates associated with SHA. The Fe-, Mn-, and Cu-SHA materials are potential slow release sources of Fe, Mn, and Cu for ALS and terrestrial cropping systems.

  16. Mineralogical and chemical characterization of iron-, manganese-, and copper-containing synthetic hydroxyapatites

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Ming, D. W.; Clearfield, A.; Hossner, L. R.

    2003-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program is evaluating the use of Fe-, Mn-, and Cu-containing synthetic hydroxyapatite (SHA) as a slow release fertilizer for crops that might be grown on the International Space Station or at Lunar and Martian outposts. Separate Fe-, Mn-, and Cu-containing SHA materials along with a transition-metal free SHA (pure-SHA) were synthesized using a precipitation method. Chemical and mineralogical analyses determined if and how Fe, Mn, and Cu were incorporated into the SHA structure. X-ray diffraction (XRD), Rietveld refinement, and transmission electron microscopy (TEM) confirmed that SHA materials with the apatite structure were produced. Chemical analyses indicated that the metal containing SHA materials were deficient in Ca relative to pure-SHA. The shift in the infrared PO4-mu 3 vibrations, smaller unit cell parameters, smaller particle size, and greater structural strain for Fe-, Mn-, and Cu-containing SHA compared with pure-SHA suggested that Fe, Mn, and Cu were incorporated into SHA structure. Rietveld analyses revealed that Fe, Mn, and Cu substituted into the Ca2 site of SHA. An Fe-rich phase was detected by TEM analyses and backscattered electron microscopy in the Fe-containing SHA material with the greatest Fe content. The substitution of metals into SHA suggests that metal-SHA materials are potential slow-release sources of micronutrients for plant uptake in addition to Ca and P.

  17. Dissolution kinetics of iron-, manganese-, and copper-containing synthetic hydroxyapatites

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Hossner, L. R.; Ming, D. W.

    2005-01-01

    Micronutrient-substituted synthetic hydroxyapatite (SHA) is being evaluated by the National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program for crop production on long-duration human missions to the International Space Station or for future Lunar or Martian outposts. The stirred-flow technique was utilized to characterize Ca, P, Fe, Mn, and Cu release characteristics from Fe-, Mn-, and Cu-containing SHA in deionized (DI) water, citric acid, and diethylene-triamine-pentaacetic acid (DTPA). Initially, Ca and P release rates decreased rapidly with time and were controlled by a non-SHA calcium phosphate phase(s) with low Ca/P solution molar ratios (0.91-1.51) relative to solid SHA ratios (1.56-1.64). At later times, Ca/P solution molar ratios (1.47-1.79) were near solid SHA ratios and release rates decreased slowly indicating that SHA controlled Ca and P release. Substituted SHA materials had faster dissolution rates relative to unsubstituted SHA. The initial metal release rate order was Mn >> Cu > Fe which followed metal-oxide/phosphate solubility suggesting that poorly crystalline metal-oxides/phosphates were dominating metal release. Similar metal release rates for all substituted SHA (approximately 0.01 cmol kg-1 min-1) at the end of the DTPA experiment indicated that SHA dissolution was supplying the metals into solution and that poorly crystalline metal-oxide/phosphates were not controlling metal release. Results indicate that non-SHA Ca-phosphate phases and poorly crystalline metal-oxide/phosphates will contribute Ca, P, and metals. After these phases have dissolved, substituted SHA will be the source of Ca, P, and metals for plants.

  18. Mineralogical and chemical characterization of iron-, manganese-, and copper-containing synthetic hydroxyapatites.

    PubMed

    Sutter, B; Ming, D W; Clearfield, A; Hossner, L R

    2003-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program is evaluating the use of Fe-, Mn-, and Cu-containing synthetic hydroxyapatite (SHA) as a slow release fertilizer for crops that might be grown on the International Space Station or at Lunar and Martian outposts. Separate Fe-, Mn-, and Cu-containing SHA materials along with a transition-metal free SHA (pure-SHA) were synthesized using a precipitation method. Chemical and mineralogical analyses determined if and how Fe, Mn, and Cu were incorporated into the SHA structure. X-ray diffraction (XRD), Rietveld refinement, and transmission electron microscopy (TEM) confirmed that SHA materials with the apatite structure were produced. Chemical analyses indicated that the metal containing SHA materials were deficient in Ca relative to pure-SHA. The shift in the infrared PO4-mu 3 vibrations, smaller unit cell parameters, smaller particle size, and greater structural strain for Fe-, Mn-, and Cu-containing SHA compared with pure-SHA suggested that Fe, Mn, and Cu were incorporated into SHA structure. Rietveld analyses revealed that Fe, Mn, and Cu substituted into the Ca2 site of SHA. An Fe-rich phase was detected by TEM analyses and backscattered electron microscopy in the Fe-containing SHA material with the greatest Fe content. The substitution of metals into SHA suggests that metal-SHA materials are potential slow-release sources of micronutrients for plant uptake in addition to Ca and P.

  19. Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the subarctic Pacific

    SciTech Connect

    Coale, K.H. )

    1991-12-01

    Natural plankton populations from subarctic Pacific surface waters were incubated in 7-d experiments with added concentrations of Fe, Mn, Cu, and Zn. Small additions of metals were used to simulate natural perturbations in metal concentrations potentially experienced by marine plankton. Trace metal concentrations, phytoplankton productivity, Chl a, and the species composition of phytoplankton and microzooplankton were measured over the course of the experiment. Although the controls indicated little growth, increases in phytoplankton productivity, Chl a, and cell densities were dramatic after the addition of 0.89 nM Fe, indicating that it may limit the rates of algal production in these waters. Similar increases were observed in experiments with 3.9 nM Cu added. The Cu effect is attributed to a decrease in the grazing activities of the microzooplankton and increases in the rates of production. Mn enrichment had its greatest effect on diatom biomass, whereas Zn enrichment had its greatest effect on other autofluorescent organisms. The extent of trace metal adsorption onto carboy walls was also evaluated. These results imply that natural systems may be affected as follows: natural levels of Fe and Cu may influence phytoplankton productivity and trophic structure in open-ocean, high-nutrient, low-biomass systems; rates of net production are not limited by one micronutrient alone.

  20. In situ laser Raman spectra of iron phthalocyanine adsorbed on copper and gold electrodes. [Electronic structure

    SciTech Connect

    Melendres, C.A.; Rios, C.B.; Feng, X.; McMasters, R.

    1983-01-01

    Raman spectra of iron phthalocyanine (FePc) and its tetrasulfonated derivative (FeTSPc) adsorbed on copper and gold electrodes have been observed in situ in 0.05 M H/sub 2/SO/sub 4/ solution. Results confirm the authors previous finding on the coordination of FePc to water molecules to solution. Evidence suggests that the iron phthalocyanines are probably oriented with their planes parallel to the electrode surface even in immersed electrodes. A decrease in intensity and broadening of some vibrational bands are observed on increasing cathodic polarization; these are attributed to a lifting of the degeneracy of the vibrational modes due to a change in symmetry of the adsorbed molecules brought about by polarization induced by the double-layer field. The effect of carbon on the Raman spectra is discussed. The iron phthalocyanines appear to be stable at potentials close to hydrogen evolution in the absence of oxygen. 18 references, 8 figures.

  1. In situ laser Raman spectra of iron phthalocyanine adsorbed on copper and gold electrodes

    SciTech Connect

    Melendres, C.A.; Rios, C.B.; Feng, X.; McMasters, R.

    1983-09-01

    Raman spectra of iron phthalocyanine (FePc) and its tetrasulfonated derivative (FeTSPc) adsorbed on copper and gold electrodes have been observed in situ in 0.05 M H/sub 2/SO/sub 4/ solution. Results confirm our previous finding on the coordination of FePc to water molecules to solution. Evidence suggests that the iron phthalocyanines are probably oriented with their planes parallel to the electrode surface even in immersed electrodes. A decrease in intensity and broadening of some vibrational bands are observed on increasing cathodic polarization; these are attributed to a lifting of the degeneracy of the vibrational modes due to a change in symmetry of the adsorbed molecules brought about by polarization induced by the double-layer field. The effect of carbon on the Raman spectra is discussed. The iron phthalocyanines appear to be stable at potentials close to hydrogen evolution in the absence of oxygen. 8 figures.

  2. Tensile properties of copper alloyed austempered ductile iron: Effect of austempering parameters

    NASA Astrophysics Data System (ADS)

    Batra, U.; Ray, S.; Prabhakar, S. R.

    2004-10-01

    A ductile iron containing 0.6% copper as the main alloying element was austenitized at 850 °C for 120 min and was subsequently austempered for 60 min at austempering temperatures of 270, 330, and 380 °C. The samples were also austempered at 330 °C for austempering times of 30 150 min. The structural parameters for the austempered alloy austenite (X γ ), average carbon content (C γ ), the product X γ C γ , and the size of the bainitic ferrite needle (d α ) were determined using x-ray diffraction. The effect of austempering temperature and time has been studied with respect to tensile properties such as 0.2% proof stress, ultimate tensile strength (UTS), percentage of elongation, and quality index. These properties have been correlated with the structural parameters of the austempered ductile iron microstructure. Fracture studies have been carried out on the tensile fracture surfaces of the austempered ductile iron (ADI).

  3. Trithiocyanurate complexes of iron, manganese and nickel and their anticholinesterase activity.

    PubMed

    Kopel, Pavel; Dolezal, Karel; Langer, Vratislav; Jun, Daniel; Adam, Vojtech; Kuca, Kamil; Kizek, Rene

    2014-04-08

    The complexes of Fe(II), Mn(II) and Ni(II) with a combination of a Schiff base, nitrogen-donor ligand or macrocyclic ligand and trithiocyanuric acid (ttcH3) were prepared and characterized by elemental analysis and spectroscopies. Crystal and molecular structures of the iron complex of composition [Fe(L1)](ttcH2)(ClO4)·EtOH·H2O (1), where L1 is Schiff base derived from tris(2-aminoethyl)amine and 2-pyridinecarboxaldehyde, were solved. It was found that the Schiff base is coordinated to the central iron atom by six nitrogens forming deformed octahedral arrangement, whereas trithiocyanurate(1-) anion, perchlorate and solvent molecules are not coordinated. The X-ray structure of the Schiff base sodium salt is also presented and compared with the iron complex. The anticholinesterase activity of the complexes was also studied.

  4. Influence of diet on iron, copper, and zinc status in children under 24 months of age.

    PubMed

    Taylor, Andrew; Redworth, Edward Wallis; Morgan, Jane B

    2004-03-01

    The objective of the study was to determine whether iron and micronutrient status is improved with an increased amount of meat in the diet. To this end, a longitudinal prospective study with infants recruited at 4 mo and followed until 24 mo of age was undertaken. One hundred ninety-eight infants formed the original study cohort; 48 withdrew before the end of the study. Subjects were classified as nonmeat eaters or as mixed (red and white)-meat eaters subgrouped into tertiles depending on the meat content reported in diet diaries. Seven-day weighed food records were recorded at 4, 8, 12, 16, 20, and 24 mo. Blood samples taken at 4, 12, and 24 mo were analyzed for parameters of iron and micronutrient status. Iron intake increased during the first year, thereafter remaining constant. The percentages of subjects with hemoglobin values below 110 g/L were 34.1, 23.1, and 13.4 at 4, 12, and 24 mo, respectively. For parameters of iron status, the number of results below the reference range was determined for each diet group and a significant negative relationship between serum iron and meat intake at 12 mo of age was seen (p<0.023). There was a trend for hemoglobin concentrations to be inversely related to the meat intake, at the same age (p<0.068). No effects on zinc or copper status were seen. We conclude that a weak association between dietary meat and iron/Hb suggests a positive role for red meat. There was no disadvantage to the nonmeat-eating infants with respect to zinc or copper.

  5. Elevated Airborne Exposures of Teenagers to Manganese, Chromium, and Iron from Steel Dust and New York City’s Subway System

    PubMed Central

    CHILLRUD, STEVEN N.; EPSTEIN, DAVID; ROSS, JAMES M.; SAX, SONJA N.; PEDERSON, DEE; SPENGLER, JOHN D.; KINNEY, PATRICK L.

    2011-01-01

    There is increasing interest in potential health effects of airborne exposures to hazardous air pollutants at relatively low levels. This study focuses on sources, levels, and exposure pathways of manganese, chromium, and iron among inner-city high school students in New York City (NYC) and the contribution of subways. Samples of fine particulate matter (PM2.5) were collected during winter and summer over 48 h periods in a variety of settings including inside homes, outdoors, and personal samples (i.e., sampling packs carried by subjects). PM2.5 samples were also collected in the NYC subway system. For NYC, personal samples had significantly higher concentrations of iron, manganese, and chromium than did home indoor and ambient samples. The ratios and strong correlations between pairs of elements suggested steel dust as the source of these metals for a large subset of the personal samples. Time–activity data suggested NYC subways as a likely source of these elevated personal metals. In duplicate PM2.5 samples that integrated 8 h of underground subway exposure, iron, manganese, and chromium levels (>2 orders of magnitude above ambient levels) and their ratios were consistent with the elevated personal exposures. Steel dust in the NYC subway system was the dominant source of airborne exposures to iron, manganese, and chromium for many young people enrolled in this study, with the same results expected for other NYC subway riders who do not have occupational exposures to these metals. However, there are currently no known health effects at the exposure levels observed in this study. PMID:14968857

  6. Iron and manganese in oxide minerals and in glasses: preliminary consideration of Eh buffering potential at Yucca Mountain, Nevada

    SciTech Connect

    Caporuscio, F.A.; Vaniman, D.T.

    1985-04-01

    The tuffs of Yucca Mountain at the Nevada Test Site are currently under investigation as a possible deep burial site for high-level radioactive waste disposal. One of the main concerns is the effect of oxidizing groundwater on the transport of radionuclides. Rock components that may affect the oxygen content of groundwater include Fe-Ti oxides, Mn oxides, and glasses that contain ferrous iron. Some phenocryst Fe-Ti oxides at Yucca Mountain are in reduced states, whereas groundmass Fe-Ti oxides have been oxidized to hematite, rutile, and pseudobrookite (Fe{sup 3+}-bearing phases) exclusively. Estimates of Fe{sup 2+}-bearing oxides indicate that less than 0.33 vol% phenocrysts is available to act as solid buffering agents of Eh. Of this percentage, significant amounts of Fe-Ti oxides are isolated from effective interaction with groundwater because they occur in densely welded, devitrified tuffs that have low interstitial permeability. Manganese oxides occur primarily along fractures in the ash-flow tuffs. Because the Mn oxides are concentrated along the same pathways (fractures) where transport has occurred in the past, these small volume percentages could act as buffers. However, the oxidation states of actual Mn-oxide phases are high (Mn{sup 4+}), and these minerals have virtually no potential for reducing groundwater Eh. Manganese oxides may even act as oxidizing agents. However, regardless of their poor capabilities as reducing agents, the Mn oxides could be important as sorbents of heavy metals at Yucca Mountain. The lack of accessible, pristine Fe-Ti oxides and the generally high oxidation states of Mn oxides seem to rule out these oxides as Eh buffers of the Yucca Mountain groundwater system. Reduction of ferrous iron within glassy tuffs may have some effect on Eh, but further study is needed. At present it is prudent to assume that minerals and glasses have little or no capacity for reducing oxygen-rich groundwater at Yucca Mountain. 25 refs., 3 figs., 12

  7. Impact of orchard and tillage management practices on soil leaching of atrazine, potassium, magnesium, manganese, iron, ammonium, nitrates and phosphates

    NASA Astrophysics Data System (ADS)

    Szajdak, L.; Lipiec, J.; Siczek, A.; Kotowska, U.; Nosalewicz, A.

    2009-04-01

    The experiments were carried out on an Orthic Luvisol developed from loess, over limestone, at the experimental field of Lublin Agricultural University in Felin (51o15'N, 22o35'E), Poland. The investigation deals with the problems of leaching's rate of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,2,3-triazine), potassium, magnesium, manganese, iron, ammonium, nitrates and phosphates from two management systems of soil: (i) conventionally tilled field with main tillage operations including stubble cultivator (10 cm) + harrowing followed by mouldboard ploughing to 20 cm depth, and crop rotation including selected cereals, root crops and papillionaceous crops, (ii) 35-year-old apple orchard field (100x200m) with a permanent sward that was mown in the inter-rows during the growing season. The conventionally tilled plot was under the current management practice for approximately 30 years. Field sites were close to each other (about 150 m). Core samples of 100 cm3 volume and 5 cm diameter were taken from two depths 0-10 cm and 10-20 cm, and were used to determine the soil water characteristic curve. It was observed that management practices impacted on the physic-chemical properties of soils. pH (in H2O) in tilled soil ranged from 5.80 to 5.91. However soil of orchard soil revealed higher values of pH than tilled soil and ranged from 6.36 to 6.40. The content of organic carbon for tilled soil ranged from 1.13 to 1.17%, but in orchard soil from 1.59 to 1.77%. Tillled soil showed broader range of bulk density 1.38-1.62 mg m-3, than orchard soil 1.33-134 mg m-3. The first-order kinetic reaction model was fitted to the experimental atrazine, potassium, magnesium, manganese, iron, nitrates, ammonium and phosphates leaching vs. time data. The concentrations of leached chemical compounds revealed linear curves. The correlation coefficients ranged from -0.873 to -0.993. The first-order reaction constants measured for the orchard soils were from 3.8 to 19 times higher than

  8. Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study

    PubMed Central

    Cotruvo, Joseph A.; Stubbe, JoAnne

    2012-01-01

    How cells ensure correct metallation of a given protein and whether a degree of promiscuity in metal binding has evolved are largely unanswered questions. In a classic case, iron- and manganese-dependent superoxide dismutases (SODs) catalyze the disproportionation of superoxide using highly similar protein scaffolds and nearly identical active sites. However, most of these enzymes are active with only one metal, although both metals can bind in vitro and in vivo. Iron(II) and manganese(II) bind weakly to most proteins and possess similar coordination preferences. Their distinct redox properties suggest that they are unlikely to be interchangeable in biological systems except when they function in Lewis acid catalytic roles, yet recent work suggests this is not always the case. This review summarizes the diversity of ways in which iron and manganese are substituted in similar or identical protein frameworks. As models, we discuss (1) enzymes, such as epimerases, thought to use FeII as a Lewis acid under normal growth conditions but which switch to MnII under oxidative stress; (2) extradiol dioxygenases, which have been found to use both FeII and MnII, the redox role of which in catalysis remains to be elucidated; (3) SODs, which use redox chemistry and are generally metal-specific; and (4) the class I ribonucleotide reductases (RNRs), which have evolved unique biosynthetic pathways to control metallation. The primary focus is the class Ib RNRs, which can catalyze formation of a stable radical on a tyrosine residue in their β2 subunits using either a di-iron or a recently characterized dimanganese cofactor. The physiological roles of enzymes that can switch between iron and manganese cofactors are discussed, as are insights obtained from the studies of many groups regarding iron and manganese homeostasis and the divergent and convergent strategies organisms use for control of protein metallation. We propose that, in many of the systems discussed,

  9. Assessing of plasma levels of iron, zinc and copper in Iranian Parkinson's disease

    PubMed Central

    Meamar, Rokhsareh; Nikyar, Hamidreza; Dehghani, Leila; Basiri, Keivan; Ghazvini, Mohammad Reza Aghaye

    2016-01-01

    Background: Trace elements have long been suspected to be involved in Parkinson's disease (PD) pathogenesis, but their exact roles have been remained controversial. In this study, we assessed the levels of copper (Cu), iron (Fe) and zinc (Zn) in different stage of PD patients. Materials and Methods: Serum concentrations of iron, copper and zinc were measured in 109 patients with PD by colorimetric methods. Staging of the disease was evaluated according to Hoehn and Yahr (H and Y) and Unified PD Rating Scale III (UPDRS). Results: Severity values of PD measured by UPRDSIII and HY stages with mean ± SD were 22.9 ± 1.81 and 1.8 ± 1.1, respectively. Mean ± SD values of iron, zinc and copper are 100.7 ± 289.2, 68.3 ± 5.32, and 196.8 ± 162.1 μg/dl, respectively. Serum iron level in most of the patients was normal (76.6%). Whereas zinc concentration in most participants was below the normal range (64.5%) and serum Cu in the majority of patients had a high normal concentration (42.7%) and did not significantly differ among various PD stages. Conclusion: The result of this study does not confirm strong correlation between PD stages and serum levels of tested trace elements. The actual correlations between these elements and PD and whether modulating of these agents levels could be an effective approach in the treatment of this disease remain to be elucidated. PMID:27099844

  10. Distribution and genetic diversity of the microorganisms in the biofilter for the simultaneous removal of arsenic, iron and manganese from simulated groundwater.

    PubMed

    Yang, Liu; Li, Xiangkun; Chu, Zhaorui; Ren, Yuhui; Zhang, Jie

    2014-03-01

    A biofilter was developed in this study, which showed an excellent performance with the simultaneous removal of AsIII from 150 to 10mg L(-1) during biological iron and manganese oxidation. The distribution and genetic diversity of the microorganisms along the depth of the biofilter have been investigated using DGGE. Results suggested that Iron oxidizing bacteria (IOB, such as Gallionella, Leptothrix), Manganese oxidizing bacteria (MnOB, such as Leptothrix, Pseudomonas, Hyphomicrobium, Arthrobacter) and AsIII-oxidizing bacteria (AsOB, such as Alcaligenes, Pseudomonas) are dominant in the biofilter. The spatial distribution of IOB, MnOB and AsOB at different depths of the biofilter determined the removal zone of FeII, MnII and AsIII, which site at the depths of 20, 60 and 60cm, respectively, and the corresponding removal efficiencies were 86%, 84% and 87%, respectively. This process shows great potential to the treatment of groundwater contaminated with iron, manganese and arsenic due to its stable performance and significant cost-savings. PMID:24507582

  11. Extracting iron and manganese from bacteria with ionophores - a mechanism against competitors characterized by increased potency in environments low in micronutrients.

    PubMed

    Raatschen, Nadja; Wenzel, Michaela; Ole Leichert, Lars Ingo; Düchting, Petra; Krämer, Ute; Bandow, Julia Elisabeth

    2013-04-01

    To maintain their metal ion homeostasis, bacteria critically depend on membrane integrity and controlled ion translocation. Terrestrial Streptomyces species undermine the function of the cytoplasmic membrane as diffusion barrier for metal cations in competitors using ionophores. Although the properties of the divalent cation ionophores calcimycin and ionomycin have been characterized to some extent in vitro, their effects on bacterial ion homeostasis, the factors leading to bacterial cell death, and their ecological role are poorly understood. To gain insight into their antibacterial mechanism, we determined the metal ion composition of the soil bacterium Bacillus subtilis after treatment with calcimycin and ionomycin. Within 15 min the cells lost approximately half of their cellular iron and manganese content whereas calcium levels increased. The proteomic response of B. subtilis provided evidence that disturbance of metal cation homeostasis is accompanied by intracellular oxidative stress, which was confirmed with a ROS-specific fluorescent probe. B. subtilis showed enhanced sensitivity to the ionophores in medium lacking iron or manganese. Furthermore, in the presence of ionophores bacteria were sensitive to high calcium levels. These findings suggest that divalent cation ionophores are particularly effective against competing microorganisms in soils rich in available calcium and low in available iron and manganese.

  12. Corynebacterium glutamicum superoxide dismutase is a manganese-strict non-cambialistic enzyme in vitro.

    PubMed

    El Shafey, H M; Ghanem, S; Merkamm, M; Guyonvarch, A

    2008-01-01

    Superoxide dismutase (SOD) of Corynebacterium glutamicum was purified and characterized. The enzyme had a native molecular weight of about 80kDa, whereas a monomer with molecular weight of 24kDa was found on SDS-PAGE suggesting it to be homotetramer. The native SOD activity stained gel revealed a unique cytosolic enzyme. Supplementing growth media with manganese increased the specific activity significantly, while adding iron did not result in significant difference. No growth perturbation was observed with the supplemented media. In vitro metal removal and replacement studies revealed conservation of about 85% of the specific activity by substitution with manganese, while substitution with copper, iron, nickel or zinc did not restore any significant specific activity. Manganese was identified by atomic absorption spectrometer, while no signals corresponding to fixing other metallic elements were detected. Thus, C. glutamicum SOD could be considered a strict (non-cambialistic) manganese superoxide dismutase (MnSOD). PMID:16809027

  13. Distribution of iron, manganese, zinc and atrazine in groundwater in parts of Palar and Cheyyar river basins, South India.

    PubMed

    Rajmohan, N; Elango, L

    2005-08-01

    A study was carried out in a part of Palar and Cheyyar river basin to evaluate the current status of iron, manganese, zinc and atrazine concentrations, their origin and distribution in groundwater. Groundwater samples were collected during post-monsoon (March 1998 and February 1999) and pre-monsoon (June 1999) periods from 41 sampling wells distributed throughout the study area. The groundwater samples were analyzed for trace metals using AAS and atrazine using HPLC. The concentration of the trace elements in groundwater is predominant during pre-monsoon period. Distribution pattern indicates that the concentration of these elements increases from west to northeast and towards Palar river. Lower concentrations in the central part may be due to recharge of fresh water from the lakes located here. During most of the months, as there is no flow in Palar river, the concentrations of trace elements in groundwater are high. Drinking water standards indicate that Mn and Zn cross the permissible limit recommended by EPA during the pre-monsoon period. A comparison of groundwater data with trace element chemistry of rock samples shows the abundance of trace elements both in the rock and water in the order of Fe > Mn > Zn and Fe > Zn > Mn. This indicates that iron in groundwater is derived from lithogenic origin. Further, Fe, Mn and Zn have good correlation in rock samples, while it is reverse in the case of water samples, indicating the non-lithogenic origin of Mn and Zn. Atrazine (a herbicide) was not detected in any of the groundwater samples in the study area, perhaps due to low-application rate and adsorption in the soil materials.

  14. Electrodeposition of iron-cobalt-nickel-copper quaternary system

    NASA Astrophysics Data System (ADS)

    Huang, Qiang

    Electrodeposition is a cost-effective method to produce thin film materials, which have been used widely in the microelectronic industry, and is advantageous to fabricate metal deposits into recessed and curved areas. In this dissertation, a FeCoNiCu quaternary alloy system was investigated, both experimentally and theoretically, for fabrication of multilayers, grating structures, and nanowires. Multilayer structures are composed of alternating ferromagnetic and nonmagnetic nanometric layers, and are of interest due to the giant magnetoresistance (GMR) property it possesses, a change in electric resistance in the presence of an external magnetic field. In addition, the compositional modulation, or the composition contrast, in multilayer structures can be used to develop a grating structured mold for the development of a novel nanoimprinting process. FeCoNiCu was investigated as a more general alloy system containing iron-group metals and a nonmagnetic element, Cu, which can be simplified and adapted to any binary or ternary systems. With a dilute tartrate sulfate bath nanometric multilayers were successfully fabricated with pulse plating and GMR value was reported for this electrodeposited system for the first time. A value of -6% was achieved on rotating disk electrode (RDE) and this maximum occurred when the structure had no preferred crystal phase. Over 40% GMR has been achieved when the multilayer was plated onto a polycrystalline Cu foil. A mathematical model was developed to tailor the deposition process on RDE, and both steady state and nonsteady state cases were simulated. A compositional gradient, which is inherent to a nonsteady state deposition process when the layer size is of nanometer scale was predicted. The quaternary system was explored for other applications. Selective etching of electrodeposited multilayer structures was investigated for different etching solutions. A diluted K2Cr2O 7/H2SO4 solution was successfully developed to produce grating

  15. Picosecond X-Ray Diffraction from Laser-Shocked Copper and Iron

    SciTech Connect

    Wark, J. S.; Hawreliak, J.; Higginbotham, A.; Rosolankova, K.; Sheppard, J.; Belak, J. F.; Collins, G. W.; Colvin, J. D.; Duchaineau, M.; Eggert, J. H.; Kalantar, D. H.; Lorenzana, H. E.; Remington, B. A.; Rudd, R. E.; Stolken, J. S.; Davies, H. M.; Germann, T. C.; Holian, B. L.; Kadau, K.; Lomdahl, P. S.

    2006-07-28

    In situ X-ray diffraction allows the determination of the structure of transient states of matter. We have used laser-plasma generated X-rays to study how single crystals of metals (copper and iron) react to uniaxial shock compression. We find that copper, as a face-centred-cubic material, allows rapid generation and motion of dislocations, allowing close to hydrostatic conditions to be achieved on sub-nanosecond timescales. Detailed molecular dynamics calculations provide novel information about the process, and point towards methods whereby the dislocation density might be measured during the passage of the shock wave itself. We also report on recent experiments where we have obtained diffraction images from shock-compressed single-crystal iron. The single crystal sample transforms to the hcp phase above a critical pressure, below which it appears to be uniaxially compressed bcc, with no evidence of plasticity. Above the transition threshold, clear evidence for the hcp phase can be seen in the diffraction images, and via a mechanism that is also consistent with recent multi- million atom molecular dynamics simulations that use the Voter- Chen potential. We believe these data to be of import, in that they constitute the first conclusive in situ evidence of the transformed structure of iron during the passage of a shock wave.

  16. The copper-iron connection in biology: Structure of the metallo-oxidase Fet3p

    SciTech Connect

    Taylor, A. B.; Stoj, C. S.; Ziegler, L.; Kosman, D. J.; Hart, P. J.

    2005-10-17

    Fet3p is a multicopper-containing glycoprotein localized to the yeast plasma membrane that catalyzes the oxidation of Fe(II) to Fe(III). This ferrous iron oxidation is coupled to the reduction of O2 to H2O and is termed the ferroxidase reaction. Fet3p-produced Fe(III) is transferred to the permease Ftr1p for import into the cytosol. The posttranslational insertion of four copper ions into Fet3p is essential for its activity, thus linking copper and iron homeostasis. The mammalian ferroxidases ceruloplasmin and hephaestin are homologs of Fet3p. Loss of the Fe(II) oxidation catalyzed by these proteins results in a spectrum of pathological states, including death. Here, we present the structure of the Fet3p extracellular ferroxidase domain and compare it with that of human ceruloplasmin and other multicopper oxidases that are devoid of ferroxidase activity. The Fet3p structure delineates features that underlie the unique reactivity of this and homologous multicopper oxidases that support the essential trafficking of iron in diverse eukaryotic organisms. The findings are correlated with biochemical and physiological data to cross-validate the elements of Fet3p that define it as both a ferroxidase and cuprous oxidase.

  17. Intracellular localization and subsequent redistribution of metal transporters in a rat choroid plexus model following exposure to manganese or iron

    SciTech Connect

    Wang Xueqian; Miller, David S.

    2008-07-15

    Confocal microscopy was used to investigate the effects of manganese (Mn) and iron (Fe) exposure on the subcellular distribution of metal transporting proteins, i.e., divalent metal transporter 1 (DMT1), metal transporter protein 1 (MTP1), and transferrin receptor (TfR), in the rat intact choroid plexus which comprises the blood-cerebrospinal fluid barrier. In control tissue, DMT1 was concentrated below the apical epithelial membrane, MTP1 was diffuse within the cytosol, and TfR was distributed in vesicles around nuclei. Following Mn or Fe treatment (1 and 10 {mu}M), the distribution of DMT1 was not affected. However, MTP1 and TfR moved markedly toward the apical pole of the cells. These shifts were abolished when microtubules were disrupted. Quantitative RT-PCR and Western blot analyses revealed a significant increase in mRNA and protein levels of TfR but not DMT1 and MTP1 after Mn exposure. These results suggest that early events in the tissue response to Mn or Fe exposure involve microtubule-dependent, intracellular trafficking of MTP1 and TfR. The intracellular trafficking of metal transporters in the choroid plexus following Mn exposure may partially contribute to Mn-induced disruption in Fe homeostasis in the cerebrospinal fluid (CSF) following Mn exposure.

  18. Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Jilbert, Tom; Slomp, Caroline P.

    2013-04-01

    Microanalysis of epoxy resin-embedded sediments is used to demonstrate the presence of authigenic iron (Fe) (II) phosphates and manganese (Mn)-calcium (Ca)-carbonate-phosphates in the deep euxinic basins of the Baltic Sea. These minerals constitute major burial phases of phosphorus (P) in this area, elevating the total P burial rate above that expected for a euxinic depositional environment. Particle shuttles of Fe and Mn oxides into the deep euxinic basins act as drivers for P-bearing mineral authigenesis. While Fe(II) phosphates are formed continuously in the upper sediments following the sulfidization of Fe-oxyhydroxides and release of associated P, Mn-Ca-carbonate-phosphates are formed intermittently following inflow events of oxygenated North Sea water into the deep basins. The mechanism of Fe(II) phosphate formation differs from previously reported occurrences of vivianite formation in marine sediments, by occurring within, rather than below, the sulfate-methane transition zone. The spatial distribution of both authigenic phases in Baltic sediments varies in accordance with the periodic expansion of anoxia on centennial to millennial timescales. The results highlight the potential importance of authigenic P-bearing minerals other than carbonate fluorapatite for total P burial in euxinic basins.

  19. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir.

    PubMed

    Greene, A C; Patel, B K; Sheehy, A J

    1997-04-01

    A thermophilic anaerobic bacterium, designated strain BMAT (T = type strain), was isolated from the production water of Beatrice oil field in the North Sea (United Kingdom). The cells were straight to bent rods (1 to 5 by 0.3 to 0.5 microns) which stained gram negative. Strain BMAT obtained energy from the reduction of manganese (IV), iron(III), and nitrate in the presence of yeast extract, peptone, Casamino Acids, tryptone, hydrogen, malate, acetate, citrate, pyruvate, lactate, succinate, and valerate. The isolate grew optimally at 60 degrees C (temperature range for growth, 50 to 65 degrees C) and in the presence of 2% (wt/vol) NaCl (NaCl range for growth, 0 to 5% [wt/vol]). The DNA base composition was 34 mol% G + C. Phylogenetic analyses of the 16S rRNA gene indicated that strain BMAT is a member of the domain Bacteria. The closest known bacterium is the moderate thermophile Flexistipes sinusarabici (similarity value, 88%). Strain BMAT possesses phenotypic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, we propose that this isolate should be described as a member of a novel species of a new genus, Deferribacter thermophilus gen. nov., sp. nov.

  20. Iron and manganese-related magnetic centers in hexagonal silicon carbide: A possible roadmap for spintronic devices

    SciTech Connect

    Machado, W. V. M.; Assali, L. V. C.; Justo, J. F.

    2015-07-28

    The electronic and magnetic properties of manganese- and iron-doped 4H-SiC were investigated by first-principles calculations, using an all electron methodology. The results on stability, spin configurations, formation and transition energies, local magnetic moments, and hyperfine parameters were compared to available theoretical and experimental data. The results indicated that transition metal impurities are energetically more favorable in lattice sites with carbon atoms as their first nearest neighbors, in both substitutional and interstitial configurations, which results from the larger electronegativity of carbon with respect to that of silicon. The analysis of the electronic properties of those impurity centers showed that they could stay in several stable charge states, depending on the Fermi energy level position within the host SiC bandgap. Additionally, by computing the p-d exchange coupling constant, which is related to a spin polarization in the SiC valence band top, we explored the possibility of achieving macroscopic magnetism in SiC. The results indicated that some centers, in both substitutional and interstitial configurations, present reasonably strong magnetic couplings to mediate macroscopic magnetism at high temperatures, which may generate spin polarized currents, leading to applications in spintronic devices.

  1. Dynamic Coupling of Iron, Manganese, and Phosphorus Behavior in Water and Sediment of Shallow Ice-Covered Eutrophic Lakes.

    PubMed

    Schroth, Andrew W; Giles, Courtney D; Isles, Peter D F; Xu, Yaoyang; Perzan, Zachary; Druschel, Gregory K

    2015-08-18

    Decreasing duration and occurrence of northern hemisphere ice cover due to recent climate warming is well-documented; however, biogeochemical dynamics underneath the ice are poorly understood. We couple time-series analyses of water column and sediment water interface (SWI) geochemistry with hydrodynamic data to develop a holistic model of iron (Fe), manganese (Mn), and phosphorus (P) behavior underneath the ice of a shallow eutrophic freshwater bay. During periods of persistent subfreezing temperatures, a highly reactive pool of dissolved and colloidal Fe, Mn, and P develops over time in surface sediments and bottom waters due to reductive dissolution of Fe/Mn(oxy)hydroxides below the SWI. Redox dynamics are driven by benthic O2 consumption, limited air-water exchange of oxygen due to ice cover, and minimal circulation. During thaw events, the concentration, distribution and size partitioning of all species changes, with the highest concentrations of P and "truly dissolved" Fe near the water column surface, and a relatively well-mixed "truly dissolved" Mn and "colloidal" Fe profile due to the influx of geochemically distinct river water and increased circulation. The partitioning and flux of trace metals and phosphorus beneath the ice is dynamic, and heavily influenced by climate-dependent physical processes that vary in both time and space.

  2. [Colloid effects on temporal-spatial variability of iron and manganese in shallow groundwater of garbage contaminated sites].

    PubMed

    Ma, Jie; Li, Hai-Ming; Gu, Xiao-Ming; Li, Yun

    2011-03-01

    Simulation tank experiment was conducted to elucidate the temporal-spatial variability of Iron and Manganese in leachate pollution plumes of water-bearing media. Colloid effects on transport and transformation of Fe and Mn in water-bearing media were determined emphatically. Moreover, the mechanism of Fe and Mn transport and transformation were discussed by the convection-dispersion, dissolution and transport-deposition of colloid. The results show that the total Fe and Mn in leachate pollution plume was 2.82 times and 7.51 times of infiltration leachate due to the dissolution of water-bearing medium. Along the flow direction, Fe and Mn pollution plumes spread, and the central region of plumes gradually widened by the convection-dispersion and dissolution. In the presence of colloid, the average transport velocity of Fe and Mn plumes central axis from 1.17 cm/d and 1.75 cm/d increased to 1.83 cm/d and 2.5 cm/d respectively, colloid had obvious facilitation to the migration of Fe and Mn.

  3. [Colloid effects on temporal-spatial variability of iron and manganese in shallow groundwater of garbage contaminated sites].

    PubMed

    Ma, Jie; Li, Hai-Ming; Gu, Xiao-Ming; Li, Yun

    2011-03-01

    Simulation tank experiment was conducted to elucidate the temporal-spatial variability of Iron and Manganese in leachate pollution plumes of water-bearing media. Colloid effects on transport and transformation of Fe and Mn in water-bearing media were determined emphatically. Moreover, the mechanism of Fe and Mn transport and transformation were discussed by the convection-dispersion, dissolution and transport-deposition of colloid. The results show that the total Fe and Mn in leachate pollution plume was 2.82 times and 7.51 times of infiltration leachate due to the dissolution of water-bearing medium. Along the flow direction, Fe and Mn pollution plumes spread, and the central region of plumes gradually widened by the convection-dispersion and dissolution. In the presence of colloid, the average transport velocity of Fe and Mn plumes central axis from 1.17 cm/d and 1.75 cm/d increased to 1.83 cm/d and 2.5 cm/d respectively, colloid had obvious facilitation to the migration of Fe and Mn. PMID:21634196

  4. Shelf-to-basin shuttling of iron and manganese as a driver of phosphorus burial in the Landsort Deep during past periods of hypoxia

    NASA Astrophysics Data System (ADS)

    Dijkstra, Nikki; Slomp, Caroline P.; Ash, Jeanine; Bauersachs, Thorsten; Hardisty, Dalton; Martin, Ellen; Riedinger, Natascha

    2015-04-01

    Bottom water hypoxia (i.e. low oxygen conditions) in coastal systems is an increasing world-wide problem. Enhanced external phosphorus inputs may contribute to the development of hypoxia by increasing primary production in the water column. The associated elevated flux of organic matter to the seafloor may then result in an oxygen demand in bottom waters that outpaces supply. The mechanisms leading to removal of phosphorus from the Baltic Sea system through burial in the sediment are still incompletely understood. The Baltic Sea is currently hypoxic and has experienced two earlier periods of hypoxia during the Holocene. These are the Holocene Thermal Maximum (ca 8000-4000 yrs ago) and the Medieval Climate Anomaly (ca 700-1000 yrs ago) (Zillen et al., 2008). Based on sediment records for the Gotland Deep area, Jilbert and Slomp (2013) suggest that particle shuttles of iron and manganese oxides from the shelves act as drivers for authigenesis of phosphorus-bearing minerals in the deep euxinic basins. Here, we present geochemical results for a long sediment record (0 - 90 mbsf) from the deepest basin in the Baltic Sea (Landsort Deep, 451 m, Site M0063), which was retrieved during the International Ocean Discovery Programme (IODP) Baltic Sea Paleoenvironment Expedition 347 in 2013. Bulk sediment and pore water geochemical analyses, results of sequential extractions for phosphorus, iron and sulfur, and various micro-analyses are combined to assess whether shelf-to-basin shuttling of manganese and iron affects the long-term burial of phosphorus in the Landsort Deep. We find that highly organic-rich sediments were deposited in the Landsort Deep following the transition from a lacustrine to a brackish/marine environment. This is reflected, for example, in the organic carbon content and pore water geochemistry. Elevated molybdenum and organic carbon/phosphorus ratios in the sediment allow the two major hypoxic periods during the early and mid-Holocene to be identified. All

  5. Evaluation of air sparging and vadose zone aeration for remediation of iron and manganese-impacted groundwater at a closed municipal landfill.

    PubMed

    Pleasant, Saraya; O'Donnell, Amanda; Powell, Jon; Jain, Pradeep; Townsend, Timothy

    2014-07-01

    High concentrations of iron (Fe(II)) and manganese (Mn(II)) reductively dissolved from soil minerals have been detected in groundwater monitoring wells near many municipal solid waste landfills. Air sparging and vadose zone aeration (VZA) were evaluated as remedial approaches at a closed, unlined municipal solid waste landfill in Florida, USA. The goal of aeration was to oxidize Fe and Mn to their respective immobile forms. VZA and shallow air sparging using a partially submerged well screen were employed with limited success (Phase 1); decreases in dissolved iron were observed in three of nine monitoring wells during shallow air sparging and in two of 17 wells at VZA locations. During Phase 2, where deeper air sparging was employed, dissolved iron levels decreased in a significantly greater number of monitoring wells surrounding injection points, however no radial pattern was observed. Additionally, in wells affected positively by air sparging (mean total iron (FeTOT) <4.2mg/L, after commencement of air sparging), rising manganese concentrations were observed, indicating that the redox potential of the groundwater moved from an iron-reducing to a manganese-reducing environment. The mean FeTOT concentration observed in affected monitoring wells throughout the study was 1.40 mg/L compared to a background of 15.38 mg/L, while the mean Mn concentration was 0.60 mg/L compared to a background level of 0.27 mg/L. Reference wells located beyond the influence of air sparging areas showed little variation in FeTOT and Mn, indicating the observed effects were the result of air injection activities at study locations and not a natural phenomenon. Air sparging was found effective in intercepting plumes of dissolved Fe surrounding municipal landfills, but the effect on dissolved Mn was contrary to the desired outcome of decreased Mn groundwater concentrations.

  6. Determination of copper, scandium, molybdenum, tin, lead, and iron group elements in lunar surface materials

    NASA Technical Reports Server (NTRS)

    Pavlenko, L. I.; Simonova, L. V.; Karyakin, A. V.

    1974-01-01

    Distribution regularities of copper, scandium, molybdenum, tin, lead, and iron group elements were investigated in basaltoid rocks of lunar and terrestrial origin. Samples of various regolith zones taken in the area of the Sea of Fertility were analyzed, along with samples of basic and ultrabasic rocks of the East African Rift for their content of the trace admixtures listed. Data obtained on the abundance of copper, scandium, molybdenum, tin, lead, cobalt, nickel, chromium, and vanadium in Luna 16 lunar surface material were compared with the abundance of these elements in samples of lunar rocks returned by Apollo 11, Apollo 12, and Apollo 14, with the exception of scandium; its content in the latter samples was considerably higher.

  7. Osmotically induced changes in copper and iron concentrations in three euryhaline crustacean species

    NASA Astrophysics Data System (ADS)

    Spaargaren, D. H.

    Marine crustaceans strongly accumulate copper and iron. Internal concentrations of both elements are usually found to be very variable; in whole animal homogenates of Palaemon serratus and Penaeus japonicus high levels were found at moderate salinities and high temperature; towards extreme salinities and at a lower temperatures the concentrations of Cu and Fe fall. Blood concentrations of Cu and Fe in Carcinus maenas show a reversed pattern. This suggest mobilization from tissue stores ( e.g. the hepatopancreas) but increased copper levels in the blood under salinity stress are accompanied by reduced blood Fe levels, suggesting increased uptake of Fe by the tissues ( e.g. by ceruloplasmin). The results show that Cu and Fe distribution is closely related to osmotic conditions.

  8. Synergistic interaction between oxides of copper and iron for production of fatty alcohols from fatty acids

    DOE PAGES

    Kandel, Kapil; Chaudhary, Umesh; Nelson, Nicholas C.; Slowing, Igor I.

    2015-10-08

    In this study, the selective hydrogenation of fatty acids to fatty alcohols can be achieved under moderate conditions (180 °C, 30 bar H2) by simultaneously supporting copper and iron oxides on mesoporous silica nanoparticles. The activity of the cosupported oxides is significantly higher than that of each supported metal oxide and of a physical mixture of both individually supported metal oxides. A strong interaction between both metal oxides is evident from dispersion, XRD, TPR, and acetic acid TPD measurements, which is likely responsible for the synergistic behavior of the catalyst. Copper oxide is reduced in situ to its metallic formmore » and thereby activates hydrogen.« less

  9. Synergistic interaction between oxides of copper and iron for production of fatty alcohols from fatty acids

    SciTech Connect

    Kandel, Kapil; Chaudhary, Umesh; Nelson, Nicholas C.; Slowing, Igor I.

    2015-10-08

    In this study, the selective hydrogenation of fatty acids to fatty alcohols can be achieved under moderate conditions (180 °C, 30 bar H2) by simultaneously supporting copper and iron oxides on mesoporous silica nanoparticles. The activity of the cosupported oxides is significantly higher than that of each supported metal oxide and of a physical mixture of both individually supported metal oxides. A strong interaction between both metal oxides is evident from dispersion, XRD, TPR, and acetic acid TPD measurements, which is likely responsible for the synergistic behavior of the catalyst. Copper oxide is reduced in situ to its metallic form and thereby activates hydrogen.

  10. Corrosion of iron, aluminum and copper-base alloys in glycols under simulated solar collector conditions

    SciTech Connect

    Beavers, J.A.; Diegle, R.B.

    1981-10-01

    The corrosion behavior of iron, aluminum and copperbase alloys was studied in uninhibited glycol solutions under conditions that simulate those found in non-concentrating solar collectors. It was found that only Type 444 stainless steel exhibited adequate corrosion resistance; there was no evidence of pitting, crevice corrosion, or galvanic attack, and general corrosion rates were low. The general corrosion rate of CDA 122 copper was high (greater than 200 ..mu..m/y) under some test conditions, but copper was resistant to pitting and crevice attack. General corrosion rates of the aluminum alloys (1100, 3003 and 6061) were low, but these alloys were susceptible to pitting and crevice attack. The propensity for pitting was greatest in the presence of chlorides but it also was severe in the absence of chlorides following long exposures. The onset of pitting of the aluminum alloys in chloride-free solutions was attributed to degradation of the glycols.

  11. Iron and Copper Act Synergistically To Delay Anaerobic Growth of Bacteria

    PubMed Central

    Bird, Lina J.; Coleman, Maureen L.

    2013-01-01

    Transition metals are known to cause toxic effects through their interaction with oxygen, but toxicity under anoxic conditions is poorly understood. Here we investigated the effects of iron (Fe) and copper (Cu) on the anaerobic growth and gene expression of the purple phototrophic bacterium Rhodopseudomonas palustris TIE-1. We found that Fe(II) and Cu(II) act synergistically to delay anaerobic growth at environmentally relevant metal concentrations. Cu(I) and Cu(II) had similar effects both alone and in the presence of ascorbate, a Cu(II) reductant, indicating that reduction of Cu(II) to Cu(I) by Fe(II) is not sufficient to explain the growth inhibition. Addition of Cu(II) increased the toxicity of Co(II) and Ni(II); in contrast, Ni(II) toxicity was diminished in the presence of Fe(II). The synergistic anaerobic toxicity of Fe(II) and Cu(II) was also observed for Escherichia coli MG1655, Shewanella oneidensis MR-1, and Rhodobacter capsulatus SB1003. Gene expression analyses for R. palustris identified three regulatory genes that respond to Cu(II) and not to Fe(II): homologs of cueR and cusR, two known proteobacterial copper homeostasis regulators, and csoR, a copper regulator recently identified in Mycobacterium tuberculosis. Two P-type ATPase efflux pumps, along with an FoF1 ATP synthase, were also upregulated by Cu(II) but not by Fe(II). An Escherichia coli mutant deficient in copA, cus, and cueO showed a smaller synergistic effect, indicating that iron might interfere with one or more of the copper homeostasis systems. Our results suggest that interactive effects of transition metals on microbial physiology may be widespread under anoxic conditions, although the molecular mechanisms remain to be more fully elucidated. PMID:23563938

  12. Relationship between Paratuberculosis and the microelements Copper, Zinc, Iron, Selenium and Molybdenum in Beef Cattle

    PubMed Central

    Paolicchi, F.; Perea, J.; Cseh, S.; Morsella, C.

    2013-01-01

    To study the deficiency of minerals and its relationship with Paratuberculosis, blood, serum, and fecal samples were obtained from 75 adult bovines without clinical symptoms of the disease and from two bovines with clinical symptoms of the disease, from two beef herds with a previous history of Paratuberculosis in the Province of Buenos Aires, Argentina. Serum samples were processed by ELISA and feces were cultured in Herrolds medium. Copper, zinc and iron in serum were quantified by spectrophotometry and selenium was measured by the activity of glutathione peroxidase. We also determined copper, zinc, iron and molybdenum concentrations in pastures and the concentration of sulfate in water. Mycobacterium avium subsp paratuberculosis (Map) was isolated from 17.3% of fecal samples of asymptomatic animals and from the fecal samples from the two animals with clinical symptoms. All the Map-positive animals were also ELISA-positive or suspect, and among them, 84.6% presented low or marginal values of selenium and 69.2% presented low or marginal values of copper. The two animals with clinical symptoms, and isolation of Map from feces and organs were selenium-deficient and had the lowest activity of glutathione peroxidase of all the animals from both herds. All the animals negative to Map in feces and negative to ELISA had normal values of Se, while 13.8% of animals with positive ELISA or suspect and culture negative presented low levels of Se. Half of the animals that were negative both for ELISA and culture in feces were deficient in copper but none of them presented low values of selenium. The content of molybdenum and iron in pasture was high, 2.5 ppm and 1.13 ppm in one herd and 2.5 ppm and 2.02 ppm in the other, respectively, whereas the copper:molybdenum ratio was 1.5 and 5.2, respectively. These results do not confirm an interaction between imbalances of the micronutrients and clinical Paratuberculosis, but show evidence of the relationship between selenium

  13. Kinetic investigation of the rate-limiting step of manganese- and iron-lipoxygenases.

    PubMed

    Wennman, Anneli; Karkehabadi, Saeid; Oliw, Ernst H

    2014-08-01

    Lipoxygenases (LOX) oxidize polyunsaturated fatty acids to hydroperoxides, which are generated by proton coupled electron transfer to the metal center with FeIIIOH- or MnIIIOH-. Hydrogen abstraction by FeIIIOH- of soybean LOX-1 (sLOX-1) is associated with a large deuterium kinetic isotope effect (D-KIE). Our goal was to compare the D-KIE and other kinetic parameters at different temperatures of sLOX-1 with 13R-LOX with catalytic manganese (13R-MnLOX). The reaction rate and the D-KIE of sLOX-1 with unlabeled and [11-2H2]18:2n-6 were almost temperature independent with an apparent D-KIE of ∼56 at 30°C, which is in agreement with previous studies. In contrast, the reaction rate of 13R-MnLOX increased 7-fold with temperature (8-50°C), and the apparent D-KIE decreased linearly from ∼38 at 8°C to ∼20 at 50°C. The kinetic lag phase of 13R-MnLOX was consistently extended at low temperatures. The Phe337Ile mutant of 13R-MnLOX, which catalyzes antarafacial hydrogen abstraction and oxygenation in analogy with sLOX-1, retained the large D-KIE and its temperature-dependent reaction rate. The kinetic differences between 13R-MnLOX and sLOX-1 may be due to protein dynamics, hydrogen donor-acceptor distances, and to the metal ligands, which may not equalize the 0.7V-gap between the redox potentials of the free metals.

  14. Properties of iron sulphides from a copper mine in southern Brazil

    NASA Astrophysics Data System (ADS)

    Mussel, Wagner N.; Murad, Enver; Magalhães, Natalie C.; Abrahão, Walter A. P.; Mello, Jaime W. V.; Fabris, José D.

    2010-03-01

    Chemical analysis, X-ray diffraction and Mössbauer spectroscopy showed two iron sulphide samples from a copper mine in Camaquã, Rio Grande do Sul, Brazil, to consist of essentially pure pyrite and chalcopyrite associated with a minor amount of pyrite and possibly some cubanite. While the pyrite was well crystallized and of simple mineralogy, Mössbauer data indicated the chalcopyrite contained in the second sample to consist of coexisting tetragonal and (remnant) cubic modifications, as has been previously described for another sample from this locality.

  15. The effect of dietary cadmium on zinc, copper and iron levels in the bone of rats.

    PubMed

    Bonner, F W; King, L J; Parke, D V

    1980-02-01

    The effect of continuous oral administration of cadium (Cd) (75 ppm) on the concentrations of zinc (ZN), Copper (CU) and iron (Fe) in the bone of rats was investigated. Accumulation of Cd in the femur was low but increased with time. After 8 weeks of Cd exposure, femur Zn and Fe levels were significantly decreased and remained low throughout the period of cadmium treatment. After 48 weeks, Cd exposed animals had Zn and Fe concentrations in the femur of 63% and 51% of controls, respectively. The femur Cu concentration was unchanged at 36 weeks but at 48 weeks it was 76% of control animals.

  16. Contact Killing of Bacteria on Copper Is Suppressed if Bacterial-Metal Contact Is Prevented and Is Induced on Iron by Copper Ions

    PubMed Central

    Mathews, Salima; Hans, Michael

    2013-01-01

    Bacteria are rapidly killed on copper surfaces, and copper ions released from the surface have been proposed to play a major role in the killing process. However, it has remained unclear whether contact of the bacteria with the copper surface is also an important factor. Using laser interference lithography, we engineered copper surfaces which were covered with a grid of an inert polymer which prevented contact of the bacteria with the surface. Using Enterococcus hirae as a model organism, we showed that the release of ionic copper from these modified surfaces was not significantly reduced. In contrast, killing of bacteria was strongly attenuated. When E. hirae cells were exposed to a solid iron surface, the loss of cell viability was the same as on glass. However, exposing cells to iron in the presence of 4 mM CuSO4 led to complete killing in 100 min. These experiments suggest that contact killing proceeds by a mechanism whereby the metal-bacterial contact damages the cell envelope, which, in turn, makes the cells susceptible to further damage by copper ions. PMID:23396344

  17. Effect of adsorbed chlorine and oxygen on shear strength of iron and copper junctions

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1975-01-01

    Static friction experiments were performed in ultrahigh vacuum at room temperature on copper, iron, and steel contacts selectively contaminated with oxygen and chlorine in submonolayer amounts. The concentration of the adsorbates was determined with Auger electron spectroscopy and was measured relative to the saturation concentration of oxygen on iron (concentration 1.0). The coefficient of static friction decreased with increasing adsorbate concentration. It was independent of the metal and the adsorbate. The results compared satisfactorily with an extension of the junction growth theory to heterogeneous interfaces. The reduction in interfacial shear strength was measured by the ratio sub a/sub m where sub a is the shear strength of the interface with an adsorbate concentration of 1.0, and sub m is the strength of the clean metal interface. This ratio was 0.835 + or - 0.012 for all the systems tested.

  18. Effect of adsorbed chlorine and oxygen on the shear strength of iron and copper junctions

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1976-01-01

    Static-friction experiments were performed in ultrahigh vacuum at room temperature on copper, iron, and steel contacts selectively contaminated with oxygen and chlorine in submonolayer amounts. The concentration of the adsorbates was determined with Auger electron spectroscopy and was measured relative to the saturation concentration of oxygen on iron (concentration, 1.0). The coefficient of static friction decreased with increasing adsorbate concentration; however, it was independent of the type of metal and the adsorbate species. The results compared satisfactorily with an extension of the junction growth theory to heterogeneous interfaces. The reduction in interfacial shear strength was measured by the ratio of the shear strength of the interface with an adsorbate concentration of 1.0 and the strength of the clean metal interface. This ratio was about 0.835 for all the systems tested.

  19. The Abundance of Iron-Peak Elements and the Dust Composition in eta Carinae: Manganese

    NASA Technical Reports Server (NTRS)

    Bautista, M. A.; Melendez, M.; Hartman, H.; Gull, T. R.; Lodders, K.

    2010-01-01

    We study the chemical abundances of the Strontium Filament found in the ejecta of (eta) Carinae. In particular, we derive the abundances of iron-peak elements front spectra of their singly ionized ions present in the optical/IR spectra. In this paper we analyze the spectrum of Mn II using a new non-LTE model for this system. In constructing this models we carried out theoretical calculations of radiative transition rates and electron impact excitation rate coefficients. We find that relative to Ni the gas phase abundance ratio of Mn is roughly solar, similar to the Cr abundance but in contrast to the large enhancements in the abundances of Sc and Ti. NVe interpret this result as an indication of non-equilibrium condensation in the ejecta of (eta) Carinae.

  20. Association of Maternal Diet With Zinc, Copper, and Iron Concentrations in Transitional Human Milk Produced by Korean Mothers.

    PubMed

    Choi, Yun Kyung; Kim, Ji-Myung; Lee, Ji-Eun; Cho, Mi Sook; Kang, Bong Soo; Choi, Hyeon; Kim, Yuri

    2016-01-01

    The aims of this study were to evaluate zinc, copper, and iron concentrations in the transitory milk of Korean lactating mothers and to investigate the relationship between these concentrations and maternal diet. Human milk samples were collected between 5 and 15 days postpartum from 96 healthy, lactating mothers in postpartum care centers in Seoul, Korea. Dietary intake during lactation was determined based on a 3-day dietary record. The mean zinc, copper, and iron concentrations in the human milk samples collected were 3.88 ± 1.74 mg/L, 0.69 ± 0.25 mg/L, and 5.85 ± 8.53 mg/L, respectively. The mothers who consumed alcoholic beverages during pregnancy had tended to have lower concentrations of zinc and copper, as well as significantly lower concentrations of iron, in their milk (p < 0.047). In contrast, the mothers who took daily supplements had much higher iron concentrations in their milk (p = 0.002). Dietary intakes of zinc, copper, and iron during lactation did not affect the concentrations of zinc, copper, and iron in the milk samples analyzed. Intakes of vitamin C, selenium, and iodine were associated with the concentration of copper in the milk samples analyzed, and consumption of food categorized as 'meat and meat products' was positively associated with the concentration of zinc. Consumption of rice was the top contributor to the concentrations of all three minerals. In conclusion, associations between maternal diet and nutrient concentrations in transitory human milk can provide useful information, particularly in regard to infant growth. PMID:26839873

  1. Wet oxidation process concentration of iron and copper steam generator cleaning solvents

    SciTech Connect

    Baldwin, P.N. Jr.; Nakashima, T.

    1995-11-01

    The use of ethylene diamine tetraacetic acid (EDTA) metal cleaning formulations is broadly based. Usually the form of the EDTA used is the tetra ammonium salt. These formulations were developed by the power industry for specific use in maintaining steam generators. When these powerful cleaning solutions are used, they attract not only the key metals of interest, iron and copper, but also can and do remove small levels of other available metals such as chrome. A reduction in the volume of these cleaners is required in order to meet waste management and disposal standards. This paper deals with one method of volume reduction, concentration through evaporation. Once volume reduced, the waste can then be further treated through the use of Wet Oxidation. The effect of this process on the Total Organic Carbon (TOC) contained in the copper as well as the iron spent cleaning solutions is reviewed, including regression analysis of selected data. A regressive comparison is made between the EDTA and the TOC analyzed in the Wet Oxidation batch residuals.

  2. Arsenic, iron, lead, manganese, and uranium concentrations in private bedrock wells in southeastern New Hampshire, 2012-2013

    USGS Publications Warehouse

    Flanagan, Sarah M.; Belaval, Marcel; Ayotte, Joseph D.

    2014-01-01

    Trace metals, such as arsenic, iron, lead, manganese, and uranium, in groundwater used for drinking have long been a concern because of the potential adverse effects on human health and the aesthetic or nuisance problems that some present. Moderate to high concentrations of the trace metal arsenic have been identified in drinking water from groundwater sources in southeastern New Hampshire, a rapidly growing region of the State (Montgomery and others, 2003). During the past decade (2000–10), southeastern New Hampshire, which is composed of Hillsborough, Rockingham, and Strafford Counties, has grown in population by nearly 48,700 (or 6.4 percent) to 819,100. These three counties contain 62 percent of the State’s population but encompass only about 22 percent of the land area (New Hampshire Office of Energy and Planning, 2011). According to a 2005 water-use study (Hayes and Horn, 2009), about 39 percent of the population in these three counties in southeastern New Hampshire uses private wells as sources of drinking water, and these wells are not required by the State to be routinely tested for trace metals or other contaminants. Some trace metals have associated human-health benchmarks or nonhealth guidelines that have been established by the U.S. Environmental Protection Agency (EPA) to regulate public water supplies. The EPA has established a maximum contaminant level (MCL) of 10 micrograms per liter (μg/L) for arsenic (As) and a MCL of 30 μg/L for uranium (U) because of associated health risks (U.S. Environmental Protection Agency, 2012). Iron (Fe) and manganese (Mn) are essential for human health, but Mn at high doses may have adverse cognitive effects in children (Bouchard and others, 2011; Agency for Toxic Substances and Disease Registry, 2012); therefore, the EPA has issued a lifetime health advisory (LHA) of 300 μg/L for Mn. Recommended secondary maximum contaminant levels (SMCLs) for Fe (300 μg/L) and Mn (50 μg/L) were established primarily as

  3. Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical looping combustion

    SciTech Connect

    Siriwardane, Ranjani; Tian, Hanjing; Simonyi, Thomas; Poston, James

    2013-06-01

    Chemical looping combustion (CLC) is an emerging technology for clean energy production from fuels. CLC produces sequestration-ready CO{sub 2}-streams without a significant energy penalty. Development of efficient oxygen carriers is essential to successfully operate a CLC system. Copper and iron oxides are promising candidates for CLC. Copper oxide possesses high reactivity but it has issues with particle agglomeration due to its low melting point. Even though iron oxide is an inexpensive oxygen carrier it has a slower reactivity. In this study, mixed metal oxide carriers containing iron and copper oxides were evaluated for coal and methane CLC. The components of CuO and Fe{sub 2}O{sub 3} were optimized to obtain good reactivity while maintaining physical and chemical stability during cyclic reactions for methane-CLC and solid-fuel CLC. Compared with single metal oxygen carriers, the optimized Cu–Fe mixed oxide oxygen carriers demonstrated high reaction rate, better combustion conversion, greater oxygen usage and improved physical stability. Thermodynamic calculations, XRD, TGA, flow reactor studies and TPR experiments suggested that there is a strong interaction between CuO and Fe{sub 2}O{sub 3} contributing to a synergistic effect during CLC reactions. The amount of oxygen release of the mixed oxide carrier in the absence of a fuel was similar to that of the single metal oxides. However, in the presence of fuels, the oxygen consumption and the reaction profiles of the mixed oxide carriers were significantly better than that of the single metal oxides. The nature of the fuel not only influenced the reactivity, but also the final reduction status of the oxygen carriers during chemical looping combustion. Cu oxide of the mixed oxide was fully reduced metallic copper with both coal and methane. Fe oxide of the mixed oxide was fully reduced Fe metal with methane but it was reduced to only FeO with coal. Possible mechanisms of how the presence of CuO enhances the

  4. Friction and transfer of copper, silver, and gold to iron in the presence of various adsorbed surface films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with the noble metals copper, silver, and gold and two binary alloys of these metals contacting iron in the presence of various adsorbates including, oxygen, methyl mercaptan, and methyl chloride. A pin on disk specimen configuration was used with a load of 100 grams, sliding velocity of 60 mm/min; at 25 C with the surfaces saturated with the adsorbates. Auger emission spectroscopy was used to monitor surface films. Results of the experiments indicate that friction and transfer characteristics are highly specific with respect to both the noble metal and surface film present. With all three metals and films transfer of the noble metal to iron occurred very rapidly. With all metals and films transfer of the noble metal to iron continuously increased with repeated passes except for silver and copper sliding on iron sulfide.

  5. Iron oxide/manganese oxide co-loaded hybrid nanogels as pH-responsive magnetic resonance contrast agents.

    PubMed

    Wang, Xia; Niu, Dechao; Wu, Qing; Bao, Song; Su, Teng; Liu, Xiaohang; Zhang, Shengjian; Wang, Qigang

    2015-01-01

    This work described a proof of concept study of hybrid nanogel-based magnetic resonance contrast agents, SPIO@GCS/acryl/biotin@Mn-gel, abb. as SGM, for highly efficient, pH-responsive T1 and T2 dual-mode magnetic resonance imaging (MRI). SGM have been synthesized by assembling superparamagnetic iron oxide particles into polysaccharide nanoclusters, followed by in-situ reduction of the manganese species on the clusters and a final mild polymerization. The dual-mode SGM showed an interesting pH-responsiveness in in vitro MRI, with both T1 and T2 relaxivities turned "ON" in the acidic environment, along with an increase in the r1 and r2 relaxivity values by 1.7-fold (from 8.9 to 15.3 mM(-1) S(-1)) and 4.9-fold (from 45.7 to 226 mM(-1) S(-1)), due to desirable silencing and de-silencing effects. This interesting acidic-responsiveness was further verified in vivo with both significantly brightened signal of tumor tissue in T1-weighted MR images and a darkened signal in T2-weighted MR images 50 min post-injection of SGM. This smart hybrid nanogel may serve as a promising candidate for further studies of dual-mode (T1 and T2) contrast agents in MRI, due to its high stability, interesting pH-response mechanism and indicative imaging of tumors.

  6. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    SciTech Connect

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.; Gates, B.C.

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part from coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.

  7. Reactive iron and manganese distributions in seabed sediments near small mountainous rivers off Oregon and California (USA)

    NASA Astrophysics Data System (ADS)

    Roy, Moutusi; McManus, James; Goñi, Miguel A.; Chase, Zanna; Borgeld, Jeffry C.; Wheatcroft, Robert A.; Muratli, Jesse M.; Megowan, Meghan R.; Mix, Alan

    2013-02-01

    We examined the spatial distribution of sedimentary reactive iron (FeR) and manganese (MnR) along the continental shelf near the mouth of the Umpqua River, Oregon (USA). A well-defined muddy (silt+clay) depocenter of fluvial origin characterizes this part of the Oregon margin. Reactive Fe and Mn contents are elevated within the silt-rich landward edge of the depocenter. Away from this depocenter, sediments are predominantly sandy both along the inner-shelf (<˜100 m depth) and mid-shelf (˜100-150 m depth) and have lower concentrations of reactive metals compared to the depocenter. Sediments are also muddy along the slope (>˜150 m depth) and have elevated FeR and MnR. Based on their correlation with sediment grain size, it appears that FeR and to a lesser extent MnR, are associated with mud size sediments. Reactive metal concentration is also positively correlated with organic carbon (OC) content, indicating a potentially common source. Seabed sediments from five other small, mountainous river systems (Klamath, Eel, Navarro, Russian, and Salinas) located south of Umpqua show the same general relationship between FeR and OC. Although both FeR and MnR exhibit similar relationships to grain size and OC, the relationships with MnR exhibit considerable scatter. Comparison of Umpqua River suspended sediment data with the seabed data suggests that MnR is more prone to loss from sediment particles during transit to the seabed as compared to FeR, and this difference explains why FeR maintains a reasonably tight relationship with organic carbon and particle size along the seafloor relative to MnR.

  8. The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron Deficiency-Induced Chlorosis in Arabidopsis1[OPEN

    PubMed Central

    2016-01-01

    Iron (Fe) deficiency is a widespread nutritional disorder on calcareous soils. To identify genes involved in the Fe deficiency response, Arabidopsis (Arabidopsis thaliana) transfer DNA insertion lines were screened on a high-pH medium with low Fe availability. This approach identified METAL TOLERANCE PROTEIN8 (MTP8), a member of the Cation Diffusion Facilitator family, as a critical determinant for the tolerance to Fe deficiency-induced chlorosis, also on soil substrate. Subcellular localization to the tonoplast, complementation of a manganese (Mn)-sensitive Saccharomyces cerevisiae yeast strain, and Mn sensitivity of mtp8 knockout mutants characterized the protein as a vacuolar Mn transporter suitable to prevent plant cells from Mn toxicity. MTP8 expression was strongly induced on low-Fe as well as high-Mn medium, which were both strictly dependent on the transcription factor FIT, indicating that high-Mn stress induces Fe deficiency. mtp8 mutants were only hypersensitive to Fe deficiency when Mn was present in the medium, which further suggested an Mn-specific role of MTP8 during Fe limitation. Under those conditions, mtp8 mutants not only translocated more Mn to the shoot than did wild-type plants but suffered in particular from critically low Fe concentrations and, hence, Fe chlorosis, although the transcriptional Fe deficiency response was up-regulated more strongly in mtp8. The diminished uptake of Fe from Mn-containing low-Fe medium by mtp8 mutants was caused by an impaired ability to boost the ferric chelate reductase activity, which is an essential process in Fe acquisition. These findings provide a mechanistic explanation for the long-known interference of Mn in Fe nutrition and define the molecular processes by which plants alleviate this antagonism. PMID:26668333

  9. Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries

    SciTech Connect

    Zhou, Hui; Upreti, Shailesh; Chernova, Natasha A.; Hautier, Geoffroy; Ceder, Gerbrand; Whittingham, M. Stanley

    2015-10-15

    The mixed-metal phases, (Li{sub 2}Mn{sub 1-y}Fe{sub y}P{sub 2}O{sub 7}, 0 {le} y {le} 1), were synthesized using a 'wet method', and found to form a solid solution in the P2{sub 1}/a space group. Both thermogravimetric analysis and magnetic susceptibility measurements confirm the 2+ oxidation state for both the Mn and Fe. The electrochemical capacity improves as the Fe concentration increases, as do the intensities of the redox peaks of the cyclic voltammogram, indicating higher lithium-ion diffusivity in the iron phase. The two Li{sup +} ions in the three-dimensional tunnel structure of the pyrophosphate phase allows for the cycling of more than one lithium per redox center. Cyclic voltammograms show a second oxidation peak at 5 V and 5.3 V, indicative of the extraction of the second lithium ion, in agreement with ab initio computation predictions. Thus, electrochemical capacities exceeding 200 Ah/kg may be achieved if a stable electrolyte is found.

  10. Acute Copper and Ascorbic Acid Supplementation Inhibits Non-heme Iron Absorption in Humans.

    PubMed

    Olivares, Manuel; Figueroa, Constanza; Pizarro, Fernando

    2016-08-01

    The objective of the study is to determine the effect of copper (Cu) plus the reducing agent ascorbic acid (AA) on the absorption of non-heme iron (Fe). Experimental study with block design in which each subject was his own control. After signing an informed consent, 14 adult women using an effective method of contraception and negative pregnancy test received 0.5 mg Fe, as ferrous sulfate, alone or with Cu, as copper sulfate, plus ascorbic acid (AA/Cu 2/1 molar ratio) at 4/1; 6/1 and 8/1 Cu/Fe molar ratios as an aqueous solution on days 1, 2, 14, and 15 of the study. Fe absorption was assessed by erythrocyte incorporation of iron radioisotopes (55)Fe and (59)Fe. Geometric mean (range ± SD) absorption of Fe at 4/1 and 6/1 Cu/Fe molar ratios (and AA/Cu 2/1 molar ratio) and Fe alone was 57.4 % (35.7-92.1 %), 64.2 % (45.8-89.9 %), and 38.8 % (20.4-73.8 %), respectively (ANOVA for repeated measures p < 0.001; post hoc test Scheffé, p < 0.05). This is attributable to the enhancing effect of AA on non-heme Fe absorption; however, Fe absorption at Cu/Fe 8/1 molar ratio was 47.3 % (27.7-80.8) (p = NS compared with Fe alone). It was expected that Fe absorption would have been equal or greater than at 4/1 and 6/1 molar ratios. Copper in the presence of ascorbic acid inhibits non-heme Fe absorption at Cu/Fe 8/1 molar ratio.

  11. Adsorption/desorption properties of copper ions on the surface of iron-coated sand using BET and EDAX analyses.

    PubMed

    Lai, C H; Lo, S L; Chiang, H L

    2000-10-01

    This study was conducted to develop a heating process for coating hydrated iron oxide on the sand surface to utilise the adsorbent properties of the coating and the filtration properties of the sand. BET and scanning electron microscope (SEM) analyses were used to investigate the surface properties of the coated layer. An energy dispersive X-ray (EDAX) technique of analysis was used for characterising metal adsorption sites on the iron-coated sand surface. The results indicated that the iron-coated sand had more micropores and higher specific surface area because of the attachment of iron oxide. Copper ions could penetrate into the micropores and mesopores of iron oxide on sand surface, and the regeneration of the iron-coated sand could be achieved by soaking with pH = 3.0 acid solution. Besides, the results of EDAX analysis showed that copper ions were chemisorbed on the surface of iron-coated sand. Results of the study developed an innovative technology for coating iron oxide on sand surface for the treatment of heavy metal in water.

  12. Micronutrient Status in Female University Students: Iron, Zinc, Copper, Selenium, Vitamin B12 and Folate

    PubMed Central

    Fayet-Moore, Flavia; Petocz, Peter; Samman, Samir

    2014-01-01

    Young women are at an increased risk of micronutrient deficiencies, particularly due to higher micronutrient requirements during childbearing years and multiple food group avoidances. The objective of this study was to investigate biomarkers of particular micronutrients in apparently healthy young women. Female students (n = 308; age range 18–35 year; Body Mass Index 21.5 ± 2.8 kg/m2; mean ± SD) were recruited to participate in a cross-sectional study. Blood samples were obtained from participants in the fasted state and analysed for biomarkers of iron status, vitamin B12, folate, homocysteine, selenium, zinc, and copper. The results show iron deficiency anaemia, unspecified anaemia, and hypoferritinemia in 3%, 7% and 33.9% of participants, respectively. Low vitamin B12 concentrations (<120 pmol/L) were found in 11.3% of participants, while 4.7% showed sub-clinical deficiency based on serum methylmalonic acid concentrations >0.34 μmol/L. Folate concentrations below the reference range were observed in 1.7% (serum) or 1% (erythrocytes) of participants, and 99.7% of the participant had erythrocyte-folate concentrations >300 nmol/L. Serum zinc concentrations <10.7 μmol/L were observed in 2% of participants. Serum copper and selenium concentrations were below the reference range in 23% and 11% of participants, respectively. Micronutrient deficiencies including iron and vitamin B12, and apparent excess of folate are present in educated Australian female students of childbearing age, including those studying nutrition. The effects of dietary behaviours and food choices on markers of micronutrient status require further investigation. PMID:25401503

  13. Thermochemistry of perovskites in the lanthanum-strontium-manganese-iron oxide system

    NASA Astrophysics Data System (ADS)

    Marinescu, Cornelia; Vradman, Leonid; Tanasescu, Speranta; Navrotsky, Alexandra

    2015-10-01

    The enthalpies of formation from binary oxides of perovskites (ABO3) based on lanthanum strontium manganite La(Sr)MnO3 (LSM) and lanthanum strontium ferrite La(Sr)FeO3 (LSF) and mixed lanthanum strontium manganite ferrite La(Sr)Mn(Fe)O3 (LSMF) were measured by high temperature oxide melt solution calorimetry. Using iodometric titration, the oxygen content was derived. The perovskites with A-site cation deficiency have greater oxygen deficiency than the corresponding A-site stoichiometric series. Stability of LSMF decreases with increasing iron content. Increasing oxygen deficiency clearly destabilizes the perovskites. The results suggest an enthalpy of oxygen incorporation that is approximately independent of composition. 0.35La2O3 (xl, 25 °C)+Mn2O3 (xl, 25 °C)+0.3SrO (xl, 25 °C)+Fe2O3 (xl, 25 °C)+O2 (g, 25 °C)→La0.7Sr0.3Mn1-yFeyO3-δ (xl, 25 °C). (b) ∆ Hf,ox* (La0.7Sr0.3Mn1-yFeyO3-δ) .0.35 La2O3 (xl, 25 ººC) + (0.7-y+ 2δ)/2 Mn2O3 (xl, 25 ºC) + 0.3 SrO (xl, 25 ºC) + y/2Fe2O3 (xl, 25 ºC) + (0.3-2δ) MnO2 (xl, 25 ºC)→La0.7Sr0.3Mn1-yFeyO3-δ (xl, 25 ºC).

  14. Development and application of 16S rRNA-targeted probes for detection of iron- and manganese-oxidizing sheathed bacteria in environmental samples.

    PubMed Central

    Siering, P L; Ghiorse, W C

    1997-01-01

    Comparative sequence analysis of the 16S rRNA genes from several Leptothrix and Sphaerotilus strains led to the design of an oligonucleotide probe (PS-1) based on a sequence within the hypervariable region 1 specific for four Leptothrix strains and for one of the four Sphaerotilus natans strains examined. Another probe (PSP-6) was based on a sequence within the hypervariable region 2. PSP-6 was specific for one of the two evolutionary lineages previously described for Leptothrix spp. (P. L. Siering and W. C. Ghiorse, Int. J. Syst. Bacteriol. 46:173-182, 1996). Fluorescein-labeled oligonucleotide probes were synthesized, and their specificity for fluorescence in situ hybridization identification was confirmed by a laser scanning microscopy technique (W. C. Ghiorse, D. N. Miller, R. L. Sandoli, and P. L. Siering, Microsc. Res. Tech. 33:73-86, 1996) to compare whole-cell hybridizations of closely related bacteria. Probe specificity was also tested in dot blot against total RNA isolated from four Leptothrix strains, four Sphaerotilus strains, and 15 other members of the class Proteobacteria. When the probes were tested on samples from the Sapsucker Woods wetland habitat where Leptothrix spp. are thought to play a role in manganese and iron oxidation, positive signals were obtained from several sheathed filamentous bacteria including some that were morphologically similar to previously isolated strains of "Leptothrix discophora." Other unknown filamentous sheathed bacteria also gave strong positive signals. This work provides a foundation for future studies correlating the presence of members of the Leptothrix-Sphaerotilus group of sheathed bacteria with manganese and iron oxidation activity in habitats where biological iron and manganese oxidation are important environmental processes. PMID:9023942

  15. Development and application of 16S rRNA-targeted probes for detection of iron- and manganese-oxidizing sheathed bacteria in environmental samples.

    PubMed

    Siering, P L; Ghiorse, W C

    1997-02-01

    Comparative sequence analysis of the 16S rRNA genes from several Leptothrix and Sphaerotilus strains led to the design of an oligonucleotide probe (PS-1) based on a sequence within the hypervariable region 1 specific for four Leptothrix strains and for one of the four Sphaerotilus natans strains examined. Another probe (PSP-6) was based on a sequence within the hypervariable region 2. PSP-6 was specific for one of the two evolutionary lineages previously described for Leptothrix spp. (P. L. Siering and W. C. Ghiorse, Int. J. Syst. Bacteriol. 46:173-182, 1996). Fluorescein-labeled oligonucleotide probes were synthesized, and their specificity for fluorescence in situ hybridization identification was confirmed by a laser scanning microscopy technique (W. C. Ghiorse, D. N. Miller, R. L. Sandoli, and P. L. Siering, Microsc. Res. Tech. 33:73-86, 1996) to compare whole-cell hybridizations of closely related bacteria. Probe specificity was also tested in dot blot against total RNA isolated from four Leptothrix strains, four Sphaerotilus strains, and 15 other members of the class Proteobacteria. When the probes were tested on samples from the Sapsucker Woods wetland habitat where Leptothrix spp. are thought to play a role in manganese and iron oxidation, positive signals were obtained from several sheathed filamentous bacteria including some that were morphologically similar to previously isolated strains of "Leptothrix discophora." Other unknown filamentous sheathed bacteria also gave strong positive signals. This work provides a foundation for future studies correlating the presence of members of the Leptothrix-Sphaerotilus group of sheathed bacteria with manganese and iron oxidation activity in habitats where biological iron and manganese oxidation are important environmental processes. PMID:9023942

  16. The Significance of Diagenesis versus Riverine Input in Contributing to the Sediment Geochemical Matrix of Iron and Manganese in an Intertidal Region

    NASA Astrophysics Data System (ADS)

    Thomas, C. A.; Bendell-Young, L. I.

    1999-06-01

    Summer porewater and spring and summer surficial sediment samples were collected from 26 locations in the intertidal region of the Fraser River estuary. Porewaters were analysed for dissolved iron and manganese (as defined by species <0·2μm in diameter) to assess the contribution of diagenesis to concentrations of iron and manganese oxides at the sediment-water interface. Surficial sediment samples were geochemically characterized as: % organic matter (% LOI); reducible iron (RED Fe, iron oxides) and easily reducible manganese (ER Mn, manganese oxides). Grain size at each site was also determined. The sediment geochemical matrix, as defined by the above four parameters, was highly heterogeneous throughout the intertidal region (three-way ANOVA; P<0·0001). For RED Fe and ER Mn, this heterogeneity could be explained by either diagenetic processes (RED Fe) or by a combination of the proximity of the sample sites to the mouth of the Fraser River estuary plus diagenetic processes (ER Mn). Correlation (Spearman Rank Correlation Test (r s), of dissolved iron within the subsurface sediments with amounts of RED Fe recovered from the associated surface sediments was highly significant (r s=0·80, P<0·0001); high concentrations of RED Fe at the sediment-water interface co-occurred with high concentrations of dissolved iron, regardless of the proximity of the sample locations to riverine input. Compared with iron, the relationship between dissolved manganese and ER Mn from surface sediments was lower (r s=0·58; P<0·0008). Locations most strongly influenced by the Fraser River contained greater concentrations of ER Mn at the sediment-water interface than that which would be expected based on the contribution from diagenesis alone. Sediment grain size and organic matter were also influenced by the proximity to riverine input. Surficial sediment of sites close to the river mouth were comprised primarily of percent silt (2·0μm-50μm) whereas sites not influenced by

  17. 77 FR 59158 - Migratory Bird Hunting; Application for Approval of Copper-Clad Iron Shot and Fluoropolymer Shot...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... approval for copper-clad iron shot in the Federal Register on June 20, 2012 (77 FR 36980), and one for the fluoropolymer shot coatings on July 6, 2012 (77 FR 39983). Having completed our review of the application..., 1994, ``Government-to-Government Relations with Native American Tribal Governments'' (59 FR 22951),...

  18. [Interactive relations between copper, iron, zinc, arsenic, cadmium and lead in the liver in sheep after experimental poisoning with copper oxide].

    PubMed

    Bíres, J

    1989-11-01

    The interactions between copper, iron, zinc, arsenic, cadmium and lead were studied in the livers of 12 ewes of the Improved Wallachian breed after experimentally induced intoxication with cuprous oxide from industrial emission. The highest correlation coefficient was recorded between the concentrations of copper and zinc in the livers of the experimental ewes (r = 0.916) and its value was at a significance level of p less than 0.05. The interaction between copper and arsenic in the liver of the experimental animals corresponded to a correlation coefficient of r = 0.359 and that between copper and cadmium corresponded to r = 0.129. The lowest correlation coefficient in the livers of the experimental animals was recorded between copper and lead (r = 0.073). As to the relationships between the remaining elements, the highest correlation coefficient (r = 0.667) was obtained between the contents of zinc and cadmium in the livers of the experimental ewes. The interaction of copper with the other risky metals after experimental intoxication was limited by the concentration of the studied elements in the industrial emission as well as by the course of the disease itself.

  19. Manganese deposition in drinking water distribution systems.

    PubMed

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality.

  20. A photo-oxidation procedure using UV radiation/H 2O 2 for decomposition of wine samples — Determination of iron and manganese content by flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    dos Santos, Walter N. L.; Brandão, Geovani C.; Portugal, Lindomar A.; David, Jorge M.; Ferreira, Sérgio L. C.

    2009-06-01

    This paper proposes the use of photo-oxidation with UV radiation/H 2O 2 as sample pretreatment for the determination of iron and manganese in wines by flame atomic absorption spectrometry (FAAS). The optimization involved the study of the following variables: pH and concentration of buffer solution, concentrated hydrogen peroxide volume and irradiation time. The evaluation of sample degradation was monitored by measuring the absorbance at the maximum wavelength of red wine (530 nm). Using the experimental conditions established during the optimization (irradiation time of 30 min, oxidant volume of 2.5 mL, pH 10, and a buffer concentration of 0.15 mol L - 1 ), this procedure allows the determination of iron and manganese with limits of detection of 30 and 22 μg L - 1 , respectively, for a 5 mL volume of digested sample. The precision levels, expressed as relative standard deviation (RSD), were 2.8% and 0.65% for iron and 2.7% and 0.54% for manganese for concentrations of 0.5 and 2.0 mg L - 1 , respectively. Addition/recovery tests for evaluation of the accuracy were in the ranges of 90%-111% and 95%-107% for iron and manganese, respectively. This digestion procedure has been applied for the determination of iron and manganese in six wine samples. The concentrations varied from 1.58 to 2.77 mg L - 1 for iron and from 1.30 to 1.91 mg L - 1 for manganese. The results were compared with those obtained by an acid digestion procedure and determination of the elements by FAAS. There was no significant difference between the results obtained by the two methods based on a paired t-test (at 95% confidence level).

  1. Field trials to assess the use of iron-bearing industrial by-products for stabilisation of chromated copper arsenate-contaminated soil.

    PubMed

    Lidelöw, Sofia; Ragnvaldsson, Daniel; Leffler, Per; Tesfalidet, Solomon; Maurice, Christian

    2007-11-15

    Two industrial by-products with high iron contents were tested for their effectiveness in the stabilisation of arsenic and trace metals in chromated copper arsenate (CCA)-contaminated soil. Steel abrasive (SA; 97% Fe(0)) and oxygen scarfing granulate (OSG; 69% Fe(3)O(4)) were applied at levels of 1% and 8% (w/w) respectively to two soils with different organic matter contents. Field lysimeter measurements indicated that SA and OSG treatments decreased the arsenic concentration in pore water by 68% and 92%, respectively, for the soil with low organic matter content, and by about 30% in pore water of soil with high organic matter content. At pH < or =6, the amended soil with low organic content contained elevated levels of manganese and nickel in their pore water, which were sufficient to induce cytotoxic effects in L-929 mouse fibroblast cells. The industrial by-products have significant potential for soil amendment at field-scale, but caution is required because of the potential release of their chemical contaminants and their reduced capacity for sorption of arsenic in organic-rich soils. PMID:17804040

  2. Field trials to assess the use of iron-bearing industrial by-products for stabilisation of chromated copper arsenate-contaminated soil.

    PubMed

    Lidelöw, Sofia; Ragnvaldsson, Daniel; Leffler, Per; Tesfalidet, Solomon; Maurice, Christian

    2007-11-15

    Two industrial by-products with high iron contents were tested for their effectiveness in the stabilisation of arsenic and trace metals in chromated copper arsenate (CCA)-contaminated soil. Steel abrasive (SA; 97% Fe(0)) and oxygen scarfing granulate (OSG; 69% Fe(3)O(4)) were applied at levels of 1% and 8% (w/w) respectively to two soils with different organic matter contents. Field lysimeter measurements indicated that SA and OSG treatments decreased the arsenic concentration in pore water by 68% and 92%, respectively, for the soil with low organic matter content, and by about 30% in pore water of soil with high organic matter content. At pH < or =6, the amended soil with low organic content contained elevated levels of manganese and nickel in their pore water, which were sufficient to induce cytotoxic effects in L-929 mouse fibroblast cells. The industrial by-products have significant potential for soil amendment at field-scale, but caution is required because of the potential release of their chemical contaminants and their reduced capacity for sorption of arsenic in organic-rich soils.

  3. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    NASA Astrophysics Data System (ADS)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and

  4. ESR of copper and iron complexes with antitumor and cytotoxic properties.

    PubMed

    Antholine, W E; Kalyanaraman, B; Petering, D H

    1985-12-01

    The relatively few iron and copper metal complexes which have been examined in cells and tissues for their redox properties, radical generation properties, and antitumor activity are discussed for studies which utilized electron spin resonance spectroscopy (ESR). A common property of a number of metal complexes, which include bleomycin, adriamycin, and thiosemicarbazones described in this review, is that they are readily reduced by thiol compounds and oxidized by oxygen or reduced species of oxygen to produce radicals. Structural features of these reactions are identified by ESR spectroscopy in model systems and often in cells. Furthermore, ESR spectroscopy has been most useful to probe the environment of the complexes in cells and to measure the rate of reduction of their oxidized forms. As a result of these studies, it is anticipated that more attention will be given to the exploration of redox-active metal complexes as drugs.

  5. Photometric and spectrochemical determination of gold in iron pyrites, copper and lead concentrates.

    PubMed

    Jordanov, N; Mareva, S; Krasnobaeva, N; Nedyalkova, N

    1968-09-01

    A photometric and a spectrochemical method have been developed for determining gold in iron pyrites, copper and lead concentrates. In both, the sample is dissolved and gold is extracted from 1M hydrochloric add solution with a mixture of ethyl methyl ketone and chloroform (1:1). Gold was determined photometrically with N,N'-tetramethyl-o-tolidine. Conditions have been found for satisfactorily sensitive and reproducible spectral determination of gold. For this purpose the effect of various collectors and buffers on the evaporation curves of gold has been studied, as well as excitation conditions, form of the electrodes, optimum slit-width, and photographic variables. The sensitivity and precision of both methods have been evaluated. PMID:18960389

  6. Three-dimensional atlas of iron, copper, and zinc in the mouse cerebrum and brainstem.

    PubMed

    Hare, Dominic J; Lee, Jason K; Beavis, Alison D; van Gramberg, Amanda; George, Jessica; Adlard, Paul A; Finkelstein, David I; Doble, Philip A

    2012-05-01

    Atlases depicting molecular and functional features of the brain are becoming an integral part of modern neuroscience. In this study we used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) to quantitatively measure iron (Fe), copper (Cu), and zinc (Zn) levels in a serially sectioned C57BL/6 mouse brain (cerebrum and brainstem). Forty-six sections were analyzed in a single experiment of approximately 158 h in duration. We constructed a 46-plate reference atlas by aligning quantified images of metal distribution with corresponding coronal sections from the Allen Mouse Brain Reference Atlas. The 46 plates were also used to construct three-dimensional models of Fe, Cu, and Zn distribution. This atlas represents the first reconstruction of quantitative trace metal distribution through the brain by LA-ICPMS and will facilitate the study of trace metals in the brain and help to elucidate their role in neurobiology.

  7. Photometric and spectrochemical determination of gold in iron pyrites, copper and lead concentrates.

    PubMed

    Jordanov, N; Mareva, S; Krasnobaeva, N; Nedyalkova, N

    1968-09-01

    A photometric and a spectrochemical method have been developed for determining gold in iron pyrites, copper and lead concentrates. In both, the sample is dissolved and gold is extracted from 1M hydrochloric add solution with a mixture of ethyl methyl ketone and chloroform (1:1). Gold was determined photometrically with N,N'-tetramethyl-o-tolidine. Conditions have been found for satisfactorily sensitive and reproducible spectral determination of gold. For this purpose the effect of various collectors and buffers on the evaporation curves of gold has been studied, as well as excitation conditions, form of the electrodes, optimum slit-width, and photographic variables. The sensitivity and precision of both methods have been evaluated.

  8. Selective nucleation of iron phthalocyanine crystals on micro-structured copper iodide.

    PubMed

    Rochford, Luke A; Ramadan, Alexandra J; Heutz, Sandrine; Jones, Tim S

    2014-12-14

    Morphological and structural control of organic semiconductors through structural templating is an efficient route by which to tune their physical properties. The preparation and characterisation of iron phthalocyanine (FePc)-copper iodide (CuI) bilayers at elevated substrate temperatures is presented. Thin CuI(111) layers are prepared which are composed of isolated islands rather than continuous films previously employed in device structures. Nucleation in the early stages of FePc growth is observed at the edges of islands rather than on the top (111) faces with the use of field emission scanning electron microscopy (FE-SEM). Structural measurements show two distinct polymorphs of FePc, with CuI islands edges nucleating high aspect ratio FePc crystallites with modified intermolecular spacing. By combining high substrate temperature growth and micro-structuring of the templating CuI(111) layer structural and morphological control of the organic film is demonstrated. PMID:25340949

  9. Hot gas desulfurization with sorbents containing oxides of zinc, iron, vanadium and copper

    SciTech Connect

    Akyurtlu, A.; Akyurtlu, J.F.

    1992-01-01

    The main objective of this research is to evaluate the desulfurization performance of novel sorbents consisting of different combinations of zinc, iron, vanadium and copper oxides; and to develop a sorbent which can reduce H{sub 2}S levels to less than 1 ppmv, which can stabilize zinc, making operations above 650{degrees}C possible, and which can produce economically recoverable amounts of elemental sulfur during regeneration. This objective will be accomplished by evaluating the sorbent performance using fixed-bed and TGA experiments supported by sorbent characterization at various reaction extents. In the seventh quarter, the screening of the promoted sorbents in the packed bed reactor was continued. The results of this work were presented at the 1992 University Coal Research Contractors, Review Conference at Pittsburgh, PA.

  10. Iron, copper, and zinc absorption and turnover; the use of stable isotopes.

    PubMed

    Aggett, P J

    1997-08-01

    This overview demonstrates the increasing use of low natural abundance stable isotopes in the investigation of mineral metabolism. There are many practical problems associated with their use and analysis and their expense has limited their application in some areas such as studies in adults. Undoubtedly we will have to assess our ideas and protocols as the practical problems and their metabolic implications become better appreciated but none the less, the use of such isotopes will certainly refine our understanding of the way the body uses elements such as zinc, copper, iron and selenium and other essential elements and will enable us to determine our dietary requirements for these nutrients and to find ways of detecting more efficiently early deficiency and toxicity states.

  11. Correlations between lead, cadmium, copper, zinc, and iron concentrations in frozen tuna fish

    SciTech Connect

    Galindo, L.; Hardisson, A.; Montelongo, F.G.

    1986-04-01

    The presence of metallic pollutants in marine ecosystems has promoted wide research plans in order to evaluate pollution levels in marine organisms. However, little is known concerning environmental and physiological processes that regulate the concentration of trace metals in marine organisms. Even though the toxicity of lead and cadmium is well established, copper, zinc and iron are considered as essential elements for mammals. Little is known about heavy metals, other than mercury, concentrations in fresh and frozen tuna fish. Fifty samples obtained at the entrance of a canning factory in Santa Cruz de Tenerife (Canary Islands), were analyzed by atomic absorption spectrophotometry. Results were treated by applying the Statistical Package for the Social Sciences compiled and linked in the software of a Digital VAX/VMS 11/780 computer.

  12. ESR of copper and iron complexes with antitumor and cytotoxic properties.

    PubMed Central

    Antholine, W E; Kalyanaraman, B; Petering, D H

    1985-01-01

    The relatively few iron and copper metal complexes which have been examined in cells and tissues for their redox properties, radical generation properties, and antitumor activity are discussed for studies which utilized electron spin resonance spectroscopy (ESR). A common property of a number of metal complexes, which include bleomycin, adriamycin, and thiosemicarbazones described in this review, is that they are readily reduced by thiol compounds and oxidized by oxygen or reduced species of oxygen to produce radicals. Structural features of these reactions are identified by ESR spectroscopy in model systems and often in cells. Furthermore, ESR spectroscopy has been most useful to probe the environment of the complexes in cells and to measure the rate of reduction of their oxidized forms. As a result of these studies, it is anticipated that more attention will be given to the exploration of redox-active metal complexes as drugs. PMID:2420582

  13. Selenium, copper and iron in veterinary medicine-From clinical implications to scientific models.

    PubMed

    Humann-Ziehank, Esther

    2016-09-01

    Diseases related to copper, selenium or iron overload or deficiency are common and well-described in large animal veterinary medicine. Some of them certainly have the potential to serve as useful animal models for ongoing research in the field of trace elements. Obvious advantages of large animal models compared to laboratory animal models like rats and mice are the option of long-term, consecutive examinations of progressive deficient or toxic stages and the opportunity to collect various, high volume samples for repeated measurements. Nevertheless, close cooperation between scientific disciplines is necessary as scientists using high sophisticated analytical methods and equipment are not regularly in touch with scientists working with large animal diseases. This review will give an introduction into some typical animal diseases related to trace elements and will present approaches where the animal diseases were used already as a model for interdisciplinary research.

  14. Analytical electron microscopy and focused ion beam: complementary tool for the imaging of copper sorption onto iron oxide aggregates.

    PubMed

    Mavrocordatos, D; Steiner, M; Boller, M

    2003-04-01

    Nanometre-scale electron spectroscopic imaging has been applied to characterize the operation of a copper filtration plant in environmental science. Copper washed off from roofs and roads is considered to be a major contributor to diffuse copper pollution of urban environments. A special adsorber system has been suggested to control the diffusion of copper fluxes by retaining Cu with a granulated iron hydroxide. The adsorber was tested over an 18-month period on facade runoff. The concentrations range of Cu in the runoff water was measured between 10 and 1000 p.p.m. and could be reduced by between 96% and 99% in the adsorption ditch. Before the analysis of the adsorber, the suspended material from the inflow was ultracentrifuged onto TEM grids and analysed by energy-filtered transmission electron microscopy (EFTEM). Copper was found either as small precipitates 5-20 nm in size or adsorbed onto organic and inorganic particles. This Cu represents approximately 30% of the total dissolved Cu, measured by atomic emission spectrometry. To locate where the copper sorption takes place within the adsorber, the granulated iron oxide was analysed by analytical electron microscopy after exposure to the roof run-off water. A section of the granulated iron hydroxide was prepared by focused ion beam milling. The thickness of the lamina was reduced to 100 nm and analysed by EFTEM. The combination of these two techniques allowed us to observe the diffusion of Cu into the aggregate of Fe. Elemental maps of Fe and Cu revealed that copper was not only present at the surface of the granules but was also sorbed onto the fine particles inside the adsorber.

  15. Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process

    PubMed Central

    Bellusci, Mariangela; La Barbera, Aurelio; Padella, Franco; Mancuso, Mariateresa; Pasquo, Alessandra; Grollino, Maria Giuseppa; Leter, Giorgio; Nardi, Elisa; Cremisini, Carlo; Giardullo, Paola; Pacchierotti, Francesca

    2014-01-01

    Superparamagnetic iron oxide nanoparticles are candidate contrast agents for magnetic resonance imaging and targeted drug delivery. Biodistribution and toxicity assessment are critical for the development of nanoparticle-based drugs, because of nanoparticle-enhanced biological reactivity. Here, we investigated the uptake, in vivo biodistribution, and in vitro and in vivo potential toxicity of manganese ferrite (MnFe2O4) nanoparticles, synthesized by an original high-yield, low-cost mechanochemical process. Cultures of murine Balb/3T3 fibroblasts were exposed for 24, 48, or 72 hours to increasing ferrofluid concentrations. Nanoparticle cellular uptake was assessed by flow-cytometry scatter-light measurements and microscopy imaging after Prussian blue staining; cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony-forming assays. After a single intravenous injection, in vivo nanoparticle biodistribution and clearance were evaluated in mice by Mn spectrophotometric determination and Prussian blue staining in the liver, kidneys, spleen, and brain at different posttreatment times up to 21 days. The same organs were analyzed for any possible histopathological change. The in vitro study demonstrated dose-dependent nanoparticle uptake and statistically significant cytotoxic effects from a concentration of 50 μg/mL for the MTT assay and 20 μg/mL for the colony-forming assay. Significant increases in Mn concentrations were detected in all analyzed organs, peaking at 6 hours after injection and then gradually declining. Clearance appeared complete at 7 days in the kidneys, spleen, and brain, whereas in the liver Mn levels remained statistically higher than in vehicle-treated mice up to 3 weeks postinjection. No evidence of irreversible histopathological damage to any of the tested organs was observed. A comparison of the lowest in vitro toxic concentration with the intravenously injected dose and the administered dose of

  16. Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process.

    PubMed

    Bellusci, Mariangela; La Barbera, Aurelio; Padella, Franco; Mancuso, Mariateresa; Pasquo, Alessandra; Grollino, Maria Giuseppa; Leter, Giorgio; Nardi, Elisa; Cremisini, Carlo; Giardullo, Paola; Pacchierotti, Francesca

    2014-01-01

    Superparamagnetic iron oxide nanoparticles are candidate contrast agents for magnetic resonance imaging and targeted drug delivery. Biodistribution and toxicity assessment are critical for the development of nanoparticle-based drugs, because of nanoparticle-enhanced biological reactivity. Here, we investigated the uptake, in vivo biodistribution, and in vitro and in vivo potential toxicity of manganese ferrite (MnFe2O4) nanoparticles, synthesized by an original high-yield, low-cost mechanochemical process. Cultures of murine Balb/3T3 fibroblasts were exposed for 24, 48, or 72 hours to increasing ferrofluid concentrations. Nanoparticle cellular uptake was assessed by flow-cytometry scatter-light measurements and microscopy imaging after Prussian blue staining; cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony-forming assays. After a single intravenous injection, in vivo nanoparticle biodistribution and clearance were evaluated in mice by Mn spectrophotometric determination and Prussian blue staining in the liver, kidneys, spleen, and brain at different posttreatment times up to 21 days. The same organs were analyzed for any possible histopathological change. The in vitro study demonstrated dose-dependent nanoparticle uptake and statistically significant cytotoxic effects from a concentration of 50 μg/mL for the MTT assay and 20 μg/mL for the colony-forming assay. Significant increases in Mn concentrations were detected in all analyzed organs, peaking at 6 hours after injection and then gradually declining. Clearance appeared complete at 7 days in the kidneys, spleen, and brain, whereas in the liver Mn levels remained statistically higher than in vehicle-treated mice up to 3 weeks postinjection. No evidence of irreversible histopathological damage to any of the tested organs was observed. A comparison of the lowest in vitro toxic concentration with the intravenously injected dose and the administered dose of

  17. Reactive iron and manganese in estuarine sediments of the Baltic Sea: Impacts of flocculation and redox shuttling

    NASA Astrophysics Data System (ADS)

    Jilbert, Tom; Tiihonen, Rosa; Myllykangas, Jukka-Pekka; Asmala, Eero; Hietanen, Susanna

    2016-04-01

    Iron (Fe) and manganese (Mn) play important roles in sedimentary carbon cycling in both freshwater and marine systems. Dissimilatory reduction of Fe and Mn oxides is known to be a major pathway of suboxic organic matter remineralization in surface sediments, while recent studies have shown that Fe and Mn oxides may be involved in the anaerobic oxidation of methane deeper in the sediment column (e.g., Egger et al., 2015). Estuaries are transitional environments, characterized by gradients of salinity and redox conditions which impact on the mobility of Fe and Mn. In turn, the distribution of Fe and Mn in estuarine sediments, and the role of the two metals in carbon cycling, is expected to be spatially heterogeneous. However, few studies have attempted to describe the sedimentary distribution of Fe and Mn in the context of processes occurring in the estuarine water column. In particular, salinity-driven flocculation and redox shuttling are two key processes whose relative impacts on sedimentary Fe and Mn have not been clearly demonstrated. In this study we investigated the coupled water column and sedimentary cycling of Fe and Mn along a 60km non-tidal estuarine transect in the Gulf of Finland, Baltic Sea. We show that riverine Fe entering the estuary as colloidal oxides associated with dissolved organic matter (DOM) is quickly flocculated and sedimented within 5 km of the river mouth, despite the shallow lateral salinity gradient. Sediments within this range are enriched in Fe (up to twice the regional average), principally in the form of crystalline Fe oxides as determined by sequential extractions. The high crystallinity implies relative maturity of the oxide mineralogy, likely due to sustained oxic conditions and long residence time in the river catchment. Despite the reducing conditions below the sediment-water interface, Fe is largely retained in the sediments close to the river mouth. In contrast, sedimentary Mn concentrations are highest in a deep silled

  18. Spatial Distribution of Iron in Soils and Vegetation Cover Close to an Abandoned Manganese Oxide Ore Mine, Botswana

    NASA Astrophysics Data System (ADS)

    Ekosse, Georges Ivo E.

    This study aimed at establishing the spatial distribution of iron (Fe) in soils and vegetation cover within the periphery of the Kgwakgwe Manganese (Mn) oxides ore abandoned mine in Botswana. Four hundred soil samples and two hundred vegetation samples were obtained from a 4 km2 area close to the mine. Determination of Fe concentrations after acid digestion of samples was performed using an atomic absorption spectrometer equipped with a deuterium background correction. Tests for soil pH and soil colour were complementary to soil chemical analysis. Results were processed using Geographical Information Systems (GIS) and Remote Sensing (RS) techniques with integrated Land and Water Information System (ILWIS), Geosoft Oasis Montaj, ArcGIS and Microsoft Excel software packages. Concentrations of Fe in soils was from 1116.59 to 870766.00 μg g-1 with a mean of 17593.52 μg g-1 and for leaves, levels were from 101.2 to 3758.09 μg g-1 with a mean of 637.07 μg g-1. Soil pH values ranged from 2.92 to 7.26 and soil colour shades ranged from yellowish red to very dark grey. Gridded soils and vegetation maps show Fe anomalies in different parts of the study area. Values were low in areas located at the mine workings and in the Northwestern part of the study area and high in the north and southern part. Where concentrations of Fe were high in soils, correspondingly high figures were obtained for vegetation cover. Similar trends were obtained for soil pH distribution in the study area. Bedrock geology, topography, Mn mineralization, soil acidity and prevailing oxidizing conditions were governing factors that influenced the concentration and spatial distribution of Fe in the soils and vegetation. The findings further confirm that Fe distribution and its chemistry in the soils and environment around the Kgwakgwe abandoned Mn oxides ore mine have affected the vegetation cover.

  19. The precipitation of aluminum, iron and manganese at the junction of Deer Creek with the Snake River in Summit County, Colorado

    USGS Publications Warehouse

    Theobald, P.K.; Lakin, H.W.; Hawkins, D.B.

    1963-01-01

    The oxidation of disseminated pyrite in relatively acid schists and gneisses of the Snake River drainage basin provides abundant iron sulfate and sulfuric acid to ground and surface water. This acid water dissolves large quantities of many elements, particularly aluminum and surprisingly large quantities of elements, such as magnesium and zinc, not expected to be abundant in the drainage basin. The adjoining drainage to the west, Deer Creek, is underlain by basic rocks, from which the water inherits a high pH. Despite the presence of base- and precious- metal veins in the drainage basin of Deer Creek, it carries less metal than the Snake River. The principal precipitate on the bed of the Snake River is hydrated iron oxide with small quantities of the other metals. In Deer Creek manganese oxide is precipitated with iron oxide and large quantities of other metals are carried down with this precipitate. Below the junction of these streams the pH stabilizes at a near-neutral value. Iron is removed from the Snake River water at the junction, and aluminum is precipitated for some distance downstream. The aluminum precipitate carries down other metals in concentrations slightly less than that in the manganese precipitate on Deer Creek. The natural processes observed in this junction if carried to a larger scale could provide the mechanism described by Ansheles (1927) for the formation of bauxite. In the environment described, geochemical exploration by either water or stream sediment techniques is difficult because of (1) the extreme pH differential between the streams above their junction and (2) the difference in the precipitates formed on the streambeds. ?? 1963.

  20. Three histidine residues of amyloid-beta peptide control the redox activity of copper and iron.

    PubMed

    Nakamura, M; Shishido, N; Nunomura, Akihiko; Smith, Mark A; Perry, George; Hayashi, Y; Nakayama, K; Hayashi, T

    2007-11-01

    Zinc, iron and copper are concentrated in senile plaques of Alzheimer disease. Copper and iron catalyze the Fenton-Haber-Weiss reaction, which likely contributes to oxidative stress in neuronal cells. In this study, we found that ascorbate oxidase activity and the intensity of ascorbate radicals measured using ESR spectroscopy, generated by free Cu(II), was decreased in the presence of amyloid-beta (Abeta), the major component of senile plaques. Specifically, the ascorbate oxidase activity was strongly inhibited (85% decrease) in the presence of Abeta1-16 or Abeta1-42, whereas it was only slightly inhibited in the presence of Abeta1-12 or Abeta25-35 (<20% inhibition). Ascorbate-dependent hydroxyl radical generation by free Cu(II) decreased in the presence of Abeta in the identical order of Abeta1-42, Abeta1-16 > Abeta1-12 and was abolished in the presence of 2-fold molar excess glycylhystidyllysine (GHK). Ascorbate oxidase activity and ascorbate-dependent hydroxyl radical generation by free Fe(III) were inhibited by Abeta1-42, Abeta1-16, and Abeta1-12. Although Cu(II)-Abeta shows a significant SOD-like activity, the rate constant for the reaction of superoxide with Cu(II)-Abeta was much slower than that with SOD. Overall, our results suggest that His6, His13, and His14 residues of Abeta1-42 control the redox activity of transition metals present in senile plaques. PMID:17929832

  1. Aluminum, copper, iron and zinc differentially alter amyloid-Aβ(1-42) aggregation and toxicity.

    PubMed

    Bolognin, Silvia; Messori, Luigi; Drago, Denise; Gabbiani, Chiara; Cendron, Laura; Zatta, Paolo

    2011-06-01

    Amyloid-β(1-42) (Aβ) is believed to play a crucial role in the ethiopathogenesis of Alzheimer's Disease (AD). In particular, its interactions with biologically relevant metal ions may lead to the formation of highly neurotoxic complexes. Here we describe the species that are formed upon reacting Aβ with several biometals, namely copper, zinc, iron, and with non-physiological aluminum to assess whether different metal ions are able to differently drive Aβ aggregation. The nature of the resulting Aβ-metal complexes and of the respective aggregates was ascertained through a number of biophysical techniques, including electrospray ionization mass spectrometry, dynamic light scattering, fluorescence, transmission electron microscopy and by the use of conformation-sensitive antibodies (OC, αAPF). Metal binding to Aβ is shown to confer highly different chemical properties to the resulting complexes; accordingly, their overall aggregation behaviour was deeply modified. Both aluminum(III) and iron(III) ions were found to induce peculiar aggregation properties, ultimately leading to the formation of annular protofibrils and of fibrillar oligomers. Notably, only Aβ-aluminum was characterized by the presence of a relevant percentage of aggregates with a mean radius slightly smaller than 30 nm. In contrast, both zinc(II) and copper(II) ions completely prevented the formation of soluble fibrillary aggregates. The biological effects of the various Aβ-metal complexes were studied in neuroblastoma cell cultures: Aβ-aluminum turned out to be the only species capable of triggering amyloid precursor and tau181 protein overproduction. Our results point out that Al can effectively interact with Aβ, forming "structured" aggregates with peculiar biophysical properties which are associated with a high neurotoxicity.

  2. Serum and plasma zinc, copper and iron concentrations in Aboriginal communities of North Western Australia.

    PubMed

    Holt, A B; Spargo, R M; Iveson, J B; Faulkner, G S; Cheek, D B

    1980-01-01

    Two aboriginal communities situated in the tropical north-west of the Australian continent have been investigated in regard to trace metal status (zinc, copper, and iron) and other laboratory and epidemiological information. A total of 364 persons, ranging in age from 5 to 77 years were studied. The incidence of hypozincemia (serum or plasma zinc concentration less than 0.71 micrograms/ml) of the two communities when combined was 24.4%, while hypercupremia (defined as serum or plasma copper levels greater than 1.38 micrograms/ml) was 47.9%. Depressed serum iron levels were demonstrated in more than 50% of the Aborigines studied. Hypozincemia was most prevalent (incidence 31 to 67%) in children at the time of the important pre- and postadolescent growth period (10 to 15 years) and in women beyond 60 years of age (incidence 33 to 64%). Serum total protein and vitamin B12 levels tended to be increased. Mild anemia was seen in approximately one in five persons aged less than 20 years. Intestinal parasites and pathogenic enterobacteria were frequently isolated in fecal specimens. In one community, half of the persons examined had positive isolates of enteric pathogens. Intestinal parasites predominated and were more frequently isolated from persons aged less than 20 years. Ancylostoma duodenale accounted for 32% of the pathogens isolated. Evidence is presented that suggests that both communities are exposed to numerous bacterial, viral, and parasitic infections. The diet consumed in these communities is predominately white flour and refined sugar. Geophagia is practiced in this area of Australia. It is emphasied that all the etiological prerequisites and many of the laboratory findings ascribed to the zinc deficiency syndrome appear to be operating in the two Aboriginal communities studied.

  3. Predicting copper-, iron-, and zinc-binding proteins in pathogenic species of the Paracoccidioides genus

    PubMed Central

    Tristão, Gabriel B.; Assunção, Leandro do Prado; dos Santos, Luiz Paulo A.; Borges, Clayton L.; Silva-Bailão, Mirelle Garcia; Soares, Célia M. de Almeida; Cavallaro, Gabriele; Bailão, Alexandre M.

    2015-01-01

    Approximately one-third of all proteins have been estimated to contain at least one metal cofactor, and these proteins are referred to as metalloproteins. These represent one of the most diverse classes of proteins, containing metal ions that bind to specific sites to perform catalytic, regulatory and structural functions. Bioinformatic tools have been developed to predict metalloproteins encoded by an organism based only on its genome sequence. Its function and the type of metal binder can also be predicted via a bioinformatics approach. Paracoccidioides complex includes termodimorphic pathogenic fungi that are found as saprobic mycelia in the environment and as yeast, the parasitic form, in host tissues. They are the etiologic agents of Paracoccidioidomycosis, a prevalent systemic mycosis in Latin America. Many metalloproteins are important for the virulence of several pathogenic microorganisms. Accordingly, the present work aimed to predict the copper, iron and zinc proteins encoded by the genomes of three phylogenetic species of Paracoccidioides (Pb01, Pb03, and Pb18). The metalloproteins were identified using bioinformatics approaches based on structure, annotation and domains. Cu-, Fe-, and Zn-binding proteins represent 7% of the total proteins encoded by Paracoccidioides spp. genomes. Zinc proteins were the most abundant metalloproteins, representing 5.7% of the fungus proteome, whereas copper and iron proteins represent 0.3 and 1.2%, respectively. Functional classification revealed that metalloproteins are related to many cellular processes. Furthermore, it was observed that many of these metalloproteins serve as virulence factors in the biology of the fungus. Thus, it is concluded that the Cu, Fe, and Zn metalloproteomes of the Paracoccidioides spp. are of the utmost importance for the biology and virulence of these particular human pathogens. PMID:25620964

  4. Molecular characterization and mRNA expression during metal exposure and thermal stress of copper/zinc- and manganese-superoxide dismutases in disk abalone, Haliotis discus discus.

    PubMed

    Kim, Keun-Yong; Lee, Sang Yoon; Cho, Young Sun; Bang, In Chul; Kim, Ki Hong; Kim, Dong Soo; Nam, Yoon Kwon

    2007-11-01

    Complementary DNAs encoding copper/zinc superoxide dismutase (Cu/Zn-SOD; SOD1) and manganese superoxide dismutase (Mn-SOD; SOD2) were isolated from disk abalone, Haliotis discus discus. The open reading frame sequences of Cu/Zn- and Mn-SODs encoded 154 and 226 amino acids, respectively. Multiple sequence alignments using the deduced amino acid sequences revealed that both abalone SODs showed considerable sequence similarities with their orthologues from diverse aerobic organisms, in which the amino acid residues forming metal ligands were highly conserved. All phylogenetic trees for both SOD genes inferred from maximum likelihood and Bayesian inference analyses presented the monophyletic status of Teleostei and Aves/Tetrapoda clades, and recovered relatively close genetic affiliation of H. discus discus with some molluscan species. Expression of both SODs at mRNA levels were highly modulated in various tissues (gill, muscle and hepatopancreas from juveniles, and haemocytes from adults) by experimental exposures to heavy metals (copper, zinc and cadmium) and also by thermal treatments (elevation of temperature). The mRNA levels of both SODs were increased in general during the metal or thermal treatments; however, the transcriptional responses of SOD genes were quite variable depending upon isoforms and tissues based on semi-quantitative and/or real-time RT-PCR assays.

  5. Zinc Pyrithione Inhibits Yeast Growth through Copper Influx and Inactivation of Iron-Sulfur Proteins▿†

    PubMed Central

    Reeder, Nancy L.; Kaplan, Jerry; Xu, Jun; Youngquist, R. Scott; Wallace, Jared; Hu, Ping; Juhlin, Kenton D.; Schwartz, James R.; Grant, Raymond A.; Fieno, Angela; Nemeth, Suzanne; Reichling, Tim; Tiesman, Jay P.; Mills, Tim; Steinke, Mark; Wang, Shuo L.; Saunders, Charles W.

    2011-01-01

    Zinc pyrithione (ZPT) is an antimicrobial material with widespread use in antidandruff shampoos and antifouling paints. Despite decades of commercial use, there is little understanding of its antimicrobial mechanism of action. We used a combination of genome-wide approaches (yeast deletion mutants and microarrays) and traditional methods (gene constructs and atomic emission) to characterize the activity of ZPT against a model yeast, Saccharomyces cerevisiae. ZPT acts through an increase in cellular copper levels that leads to loss of activity of iron-sulfur cluster-containing proteins. ZPT was also found to mediate growth inhibition through an increase in copper in the scalp fungus Malassezia globosa. A model is presented in which pyrithione acts as a copper ionophore, enabling copper to enter cells and distribute across intracellular membranes. This is the first report of a metal-ligand complex that inhibits fungal growth by increasing the cellular level of a different metal. PMID:21947398

  6. Effect of manganese and iron at a neutral and acidic pH on the hematology of the banded Tilapia (Tilapia sparrmanii)

    SciTech Connect

    Wepener, V.; Van Vuren, J.H.J.; Du Preez, H.H.

    1992-10-01

    The pollution of natural water bodies is a common phenomenon in developing countries. Increases in population densities lead to increased mining and industrial activities in the area. With the establishment of gold and coal mines in South Africa, several industrial zones were created to support the mining industry. Many of these industries consist of heavy metal processing factories. Over the years pollution from the mines has led to acidification of the streams and lakes in the Transvaal. It was also found that high concentrations of heavy metals occurred in the water, sediments, plants and fish tissue in the affected water systems. Of all the heavy metals, iron and manganese were found in the highest concentrations. In order to determine the subtle, non-lethal effects induced by sublethal concentrations of heavy metals on the physiology of fish, it is necessary to monitor certain clinical parameters. The use of hematological methods as indicators of sublethal stress can supply valuable information concerning the physiological reactions of fish in a changing environment. The reason for this is the close association between the circulatory system of the fish and the external environment. The objective of the present paper was to evaluate the effects of manganese and iron at a neutral and acidic pH on the hematology of Tilapia sparrmanii. 19 refs., 2 figs.

  7. The ubiquity of iron.

    PubMed

    Frey, Perry A; Reed, George H

    2012-09-21

    The importance of iron in living systems can be traced to the many complexes within which it is found, to its chemical mobility in undergoing oxidation-reduction reactions, and to the abundance of iron in Earth's crust. Iron is the most abundant element, by mass, in the Earth, constituting about 80% of the inner and outer cores of Earth. The molten outer core is about 8000 km in diameter, and the solid inner core is about 2400 km in diameter. Iron is the fourth most abundant element in Earth's crust. It is the chemically functional component of mononuclear iron complexes, dinuclear iron complexes, [2Fe-2S] and [4Fe-4S] clusters, [Fe-Ni-S] clusters, iron protophorphyrin IX, and many other complexes in protein biochemistry. Metals such as nickel, cobalt, copper, and manganese are present in the crust and could in principle function chemically in place of iron, but they are scarce in Earth's crust. Iron is plentiful because of its nuclear stability in stellar nuclear fusion reactions. It seems likely that other solid planets, formed by the same processes as Earth, would also foster the evolution of life and that iron would be similarly important to life on those planets as it is on Earth. PMID:22845493

  8. The ubiquity of iron.

    PubMed

    Frey, Perry A; Reed, George H

    2012-09-21

    The importance of iron in living systems can be traced to the many complexes within which it is found, to its chemical mobility in undergoing oxidation-reduction reactions, and to the abundance of iron in Earth's crust. Iron is the most abundant element, by mass, in the Earth, constituting about 80% of the inner and outer cores of Earth. The molten outer core is about 8000 km in diameter, and the solid inner core is about 2400 km in diameter. Iron is the fourth most abundant element in Earth's crust. It is the chemically functional component of mononuclear iron complexes, dinuclear iron complexes, [2Fe-2S] and [4Fe-4S] clusters, [Fe-Ni-S] clusters, iron protophorphyrin IX, and many other complexes in protein biochemistry. Metals such as nickel, cobalt, copper, and manganese are present in the crust and could in principle function chemically in place of iron, but they are scarce in Earth's crust. Iron is plentiful because of its nuclear stability in stellar nuclear fusion reactions. It seems likely that other solid planets, formed by the same processes as Earth, would also foster the evolution of life and that iron would be similarly important to life on those planets as it is on Earth.

  9. Bioremediation of copper-containing wastewater by sulfate reducing bacteria coupled with iron.

    PubMed

    Bai, He; Kang, Yong; Quan, Hongen; Han, Yang; Sun, Jiao; Feng, Ying

    2013-11-15

    In order to treat copper-containing wastewater effectively using sulfate reducing bacteria (SRB), iron (Fe(0)) was added to enhance the activity of SRB. The SRB system and the SRB + Fe(0) system were operated under continuous operation. The sulfate reduction efficiency of the SRB + Fe(0) system was twice as much as that of the SRB system with the sulfate loading rate at 125  mg L(-1) h(-1). The effect of COD/SO4(2-) on sulfate reduction indicates an enhanced activity of SRB by adding Fe(0). 99% of total sulfate was deducted in both systems at pH 4.0-7.0, and temperature slightly influenced the removal of sulfate in the SRB + Fe(0) system. In the copper-containing wastewater treatment, the SRB + Fe(0) system shows a better performance since sulfate removal in this system was higher than the SRB system, and the removal ratio of Cu(2+) was held above 95% in SRB + Fe(0) system at all influent Cu(2+) concentrations.

  10. Influence of copper depletion on iron uptake mediated by SFT, a stimulator of Fe transport.

    PubMed

    Yu, J; Wessling-Resnick, M

    1998-03-20

    We recently identified a novel factor involved in cellular iron assimilation called SFT or Stimulator of Fe Transport (Gutierrez, J. A., Yu, J., Rivera, S., and Wessling-Resnick, M. (1997) J. Cell Biol. 149, 895-905). When stably expressed in HeLa cells, SFT was found to stimulate the uptake of both transferrin- and nontransferrin-bound Fe (iron). Assimilation of nontransferrin-bound Fe by HeLa cells stably expressing SFT was time- and temperature-dependent; both the rate and extent of uptake was enhanced relative to the activity of control nontransfected cells. Although the apparent Km for Fe uptake was unaffected by expression of SFT (5.6 versus 5.1 microM measured for control), the Vmax of transport was increased from 7.0 to 14.7 pmol/min/mg protein. Transport mediated by SFT was inhibitable by diethylenetriaminepentaacetic acid and ferrozine, Fe3+- and Fe2+-specific chelators. Because cellular copper status is known to influence Fe assimilation, we investigated the effects of Cu (copper) depletion on SFT function. After 4 days of culture in Cu-deficient media, HeLa cell Cu,Zn superoxide dismutase activity was reduced by more than 60%. Both control cells and cells stably expressing SFT displayed reduced Fe uptake as well; levels of transferrin-mediated import fell by approximately 80%, whereas levels of nontransferrin-bound Fe uptake were approximately 50% that of Cu-replete cells. The failure of SFT expression to stimulate Fe uptake above basal levels in Cu-depleted cells suggests a critical role for Cu in SFT function. A current model for both transferrin- and nontransferrin-bound Fe uptake involves the function of a ferrireductase that acts to reduce Fe3+ to Fe2+, with subsequent transport of the divalent cation across the membrane bilayer. SFT expression did not enhance levels of HeLa cell surface reductase activity; however, Cu depletion was found to reduce endogenous activity by 60%, suggesting impaired ferrireductase function may account for the influence

  11. Brain burdens of aluminum, iron, and copper and their relationships with amyloid-β pathology in 60 human brains.

    PubMed

    Exley, Christopher; House, Emily; Polwart, Anthony; Esiri, Margaret M

    2012-01-01

    The deposition in the brain of amyloid-β as beta sheet conformers associated with senile plaques and vasculature is frequently observed in Alzheimer’s disease. While metals, primarily aluminum, iron, zinc, and copper, have been implicated in amyloid-β deposition in vivo, there are few data specifically relating brain metal burden with extent of amyloid pathologies in human brains. Herein brain tissue content of aluminum, iron, and copper are compared with burdens of amyloid-β, as senile plaques and as congophilic amyloid angiopathy, in 60 aged human brains. Significant observations were strong negative correlations between brain copper burden and the degree of severity of both senile plaque and congophilic amyloid angiopathy pathologies with the relationship with the former reaching statistical significance. While we did not have access to the dementia status of the majority of the 60 brain donors, this knowledge for just 4 donors allowed us to speculate that diagnosis of dementia might be predicted by a combination of amyloid pathology and a ratio of the brain burden of copper to the brain burden of aluminum. Taking into account only those donor brains with either senile plaque scores ≥4 and/or congophilic amyloid angiopathy scores ≥12, a Cu:Al ratio of <20 would predict that at least 39 of the 60 donors would have been diagnosed as suffering from dementia. Future research should test the hypothesis that, in individuals with moderate to severe amyloid pathology, low brain copper is a predisposition to developing dementia.

  12. Iron-[S,S']-EDDS (FeEDDS) Chelate as an Iron Source for Horticultural Crop Production: Marigold Growth and Nutrition, Spectral Properties, and Photodegradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminopolycarboxylic acid (APCA) complexones, commonly referred to as ligands or chelating agents, like ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) are commonly used in soluble fertilizers to supply copper (Cu), iron (Fe), manganese (Mn), and/or zinc (Zn) to p...

  13. Doping effect on the Janus-like structure of a copper-iron bimetallic nanocluster and its solid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Taherkhani, Farid; Seresht, Pegah Freshteh

    2015-04-01

    A molecular dynamics simulation with a new-application potential model has been explored for melting temperature, radial distribution of iron-copper bimetallic nanoclusters, and their bulk for the first time. At low copper weight percentages, the melting temperature changes a little for the bulk structures; however, for nanostructures, the variation of melting temperature is significant. At medium copper-doping values, there is a melting-temperature plateau in bimetallic nanoclusters. For many catalysis applications, Janus-like structures are considered, which occur at around 53% iron weight in copper at room temperature, when copper-iron bimetallic nanoclusters clearly consist of two distinct faces. Our result for the melting temperature of the bulk alloy confirms the experimental result.

  14. Evaluating the Metal Source(s) of Iron Oxide-Copper-Gold (IOCG) Deposits (Invited)

    NASA Astrophysics Data System (ADS)

    Simon, A. C.; Bilenker, L.; Lundstrom, C.; Reich, M.; Barra, F.; Hanchar, J. M.; Westhues, A.

    2013-12-01

    Iron oxide - copper - gold deposits (IOCG) are characterized by high modal abundances of magnetite and/or hematite, ubiquitous and variable grades of Cu and Au, and, often, economic grades of other metals including REE, U, Ag, Mo and Zn. The largest deposits contain >1 billion tonnes of iron. There seems to be a general consensus that metals in IOCG deposits were transported by, and precipitated from, aqueous fluids. However, there is a lack of agreement for the source of the metal-bearing aqueous fluid(s) as well as the source of iron and other metals (i.e., magmatic or hydrothermal, or some combination of the two). Published fluid inclusion data indicate that metal-bearing aqueous fluids were trapped over a wide range of temperatures, with homogenization temperatures between 500 and 600 °C for inclusions associated with the precipitation of iron-oxide minerals, and between 300 and 500 °C for inclusions associated with main-stage sulfides (e.g., chalcopyrite, pyrite). The high trapping temperatures for fluid inclusions and the observation that some IOCG deposits appear to be related temporally and spatially to igneous intrusions, characteristics similar to those observed for porphyry-type ore deposits, have led some authors to propose that magmatic-hydrothermal aqueous fluids are responsible for IOCG formation. Others, however, favor a genetic model that invokes large-scale circulation of basinal brines, which are heated by magmatic intrusions and subsequently leach Fe and other metals from the crust. Evidence cited for this model includes the pervasive alkali metasomatism associated with some IOCG deposits, and the depletion of Fe, Cu and Au in some deposit wall rocks. Stable isotope evidence thus far is inconclusive. Published d34S values for IOCG deposits range from -30 to +30, but generally cluster around zero per mil. d18O ranges from ~0 to +10 per mil. Chlorine isotope values for fluids in inclusions liberated from quartz, calcite and apatite are

  15. Diffusion bonding of iron aluminide Fe{sub 72}Al{sub 28} using a copper interlayer

    SciTech Connect

    Torun, O.; Celikyuerek, I.; Guerler, R.

    2008-07-15

    An Fe{sub 72}Al{sub 28} alloy was diffusion-bonded using a copper interlayer under vacuum at 1075 deg. C for 1 h, 2 h, 4 h and 6 h durations at 3.2 MPa applied pressure. The bond microstructure was found to be composed of the copper rich interlayer, copper rich precipitates and the base metal. SEM-EDS studies indicated major diffusion of aluminium and iron atoms from Fe{sub 72}Al{sub 28} into the copper interlayer and copper atoms from the copper interlayer into the Fe{sub 72}Al{sub 28} matrix. SEM observations of fractured surfaces of the diffusion-bonded samples showed some plastic deformation and signs of good bonding. Cu{sub 3}Al and B{sub 2}-FeAl-based phases were identified by SEM-EDS and X-ray diffraction studies at the bond and on the fracture surfaces of all samples investigated. Good bonding was achieved with a maximum shear strength of 298 MPa which is 65% of the parent material shear strength for a sample diffusion-bonded for 6 h.

  16. Tribological behaviour and statistical experimental design of sintered iron-copper based composites

    NASA Astrophysics Data System (ADS)

    Popescu, Ileana Nicoleta; Ghiţă, Constantin; Bratu, Vasile; Palacios Navarro, Guillermo

    2013-11-01

    The sintered iron-copper based composites for automotive brake pads have a complex composite composition and should have good physical, mechanical and tribological characteristics. In this paper, we obtained frictional composites by Powder Metallurgy (P/M) technique and we have characterized them by microstructural and tribological point of view. The morphology of raw powders was determined by SEM and the surfaces of obtained sintered friction materials were analyzed by ESEM, EDS elemental and compo-images analyses. One lot of samples were tested on a "pin-on-disc" type wear machine under dry sliding conditions, at applied load between 3.5 and 11.5 × 10-1 MPa and 12.5 and 16.9 m/s relative speed in braking point at constant temperature. The other lot of samples were tested on an inertial test stand according to a methodology simulating the real conditions of dry friction, at a contact pressure of 2.5-3 MPa, at 300-1200 rpm. The most important characteristics required for sintered friction materials are high and stable friction coefficient during breaking and also, for high durability in service, must have: low wear, high corrosion resistance, high thermal conductivity, mechanical resistance and thermal stability at elevated temperature. Because of the tribological characteristics importance (wear rate and friction coefficient) of sintered iron-copper based composites, we predicted the tribological behaviour through statistical analysis. For the first lot of samples, the response variables Yi (represented by the wear rate and friction coefficient) have been correlated with x1 and x2 (the code value of applied load and relative speed in braking points, respectively) using a linear factorial design approach. We obtained brake friction materials with improved wear resistance characteristics and high and stable friction coefficients. It has been shown, through experimental data and obtained linear regression equations, that the sintered composites wear rate increases

  17. Aluminium, iron and copper in human brain tissues donated to the Medical Research Council's Cognitive Function and Ageing Study.

    PubMed

    House, Emily; Esiri, Margaret; Forster, Gill; Ince, Paul G; Exley, Christopher

    2012-01-01

    Aluminium, iron and copper are all implicated in the aetiology of neurodegenerative diseases including Alzheimer's disease. However, there are very few large cohort studies of the content of these metals in aged human brains. We have used microwave digestion and TH GFAAS to measure aluminium, iron and copper in the temporal, frontal, occipital and parietal lobes of 60 brains donated to the Cognitive Function and Ageing Study. Every precaution was taken to reduce contamination of samples and acid digests to a minimum. Actual contamination was estimated by preparing a large number of (170+) method blanks which were interspersed within the full set of 700+ tissue digests. Subtraction of method blank values (MBV) from tissue digest values resulted in metal contents in all tissues in the range, MBV to 33 μg g(-1) dry wt. for aluminium, 112 to 8305 μg g(-1) dry wt. for iron and MBV to 384 μg g(-1) dry wt. for copper. While the median aluminium content for all tissues was 1.02 μg g(-1) dry wt. it was informative that 41 brains out of 60 included at least one tissue with an aluminium content which could be considered as potentially pathological (> 3.50 μg g(-1) dry wt.). The median content for iron was 286.16 μg g(-1) dry wt. and overall tissue iron contents were generally high which possibly reflected increased brain iron in ageing and in neurodegenerative disease. The median content for copper was 17.41 μg g(-1) dry wt. and overall tissue copper contents were lower than expected for aged brains but they were commensurate with aged brains showing signs of neurodegenerative disease. In this study we have shown, in particular, the value of carrying out significant numbers of method blanks to identify unknown sources of contamination. When these values are subtracted from tissue digest values the absolute metal contents could be considered as conservative and yet they may still reflect aspects of ageing and neurodegenerative disease in individual brains.

  18. Acyloxylation of 1,4-Dioxanes and 1,4-Dithianes Catalyzed by a Copper-Iron Mixed Oxide.

    PubMed

    García-Cabeza, Ana Leticia; Marín-Barrios, Rubén; Moreno-Dorado, F Javier; Ortega, María J; Vidal, Hilario; Gatica, José M; Massanet, Guillermo M; Guerra, Francisco M

    2015-07-01

    The use of a copper-iron mixed oxide as a heterogeneous catalyst for the efficient synthesis of α-acyloxy-1,4-dioxanes and 1,4-dithianes employing t-butyl peroxyesters is reported. The preparation and characterization of the catalyst are described. The effect of the heteroatoms and a plausible mechanism are discussed. The method is operationally simple and involves low-cost starting materials affording products in good to excellent yields.

  19. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer's disease animal models.

    PubMed

    Baum, Larry; Ng, Alex

    2004-08-01

    Curcumin is a polyphenolic diketone from turmeric. Because of its anti-oxidant and anti-inflammatory effects, it was tested in animal models of Alzheimer's disease, reducing levels of amyloid and oxidized proteins and preventing cognitive deficits. An alternative mechanism of these effects is metal chelation, which may reduce amyloid aggregation or oxidative neurotoxicity. Metals can induce Abeta aggregation and toxicity, and are concentrated in AD brain. Chelators desferrioxamine and clioquinol have exhibited anti-AD effects. Using spectrophotometry, we quantified curcumin affinity for copper, zinc, and iron ions. Zn2+ showed little binding, but each Cu2+ or Fe2+ ion appeared to bind at least two curcumin molecules. The interaction of curcumin with copper reached half-maximum at approximately 3-12 microM copper and exhibited positive cooperativity, with Kd1 approximately 10-60 microM and Kd2 approximately 1.3 microM (for binding of the first and second curcumin molecules, respectively). Curcumin-iron interaction reached half-maximum at approximately 2.5-5 microM iron and exhibited negative cooperativity, with Kd1 approximately 0.5-1.6 microM and Kd2 approximately 50-100 microM. Curcumin and its metabolites can attain these levels in vivo, suggesting physiological relevance. Since curcumin more readily binds the redox-active metals iron and copper than redox-inactive zinc, curcumin might exert a net protective effect against Abeta toxicity or might suppress inflammatory damage by preventing metal induction of NF-kappaB.

  20. Assimilation of zinc, cadmium, lead, copper, and iron by the spider Dysdera crocata, a predator of woodlice

    SciTech Connect

    Hopkin, S.P.; Martin, M.H.

    1985-02-01

    In this paper, an experiment is described on the assimilation of zinc, cadmium, lead, copper and iron by Dysdera crocata collected from a site in central Bristol. The spiders were fed on woodlice from their own site, and on woodlice from a site contaminated by a smelting works which contained much higher levels of zinc, cadmium and lead than the spiders would have been used to in their normal diet.

  1. Transition-metal prion protein attachment: Competition with copper

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Prion protein, PrP, is a protein capable of binding copper ions in multiple modes depending on their concentration. Misfolded PrP is implicated in a group of neurodegenerative diseases, which include ``mad cow disease'' and its human form, variant Creutzfeld-Jacob disease. An increasing amount of evidence suggests that attachment of non-copper metal ions to PrP triggers transformations to abnormal forms similar to those observed in prion diseases. In this work, we use hybrid Kohn-Sham/orbital-free density functional theory simulations to investigate copper replacement by other transition metals that bind to PrP, including zinc, iron and manganese. We consider all known copper binding modes in the N-terminal domain of PrP. Our calculations identify modes most susceptible to copper replacement and reveal metals that can successfully compete with copper for attachment to PrP.

  2. Assessing the effects of model Maillard compound intake on iron, copper and zinc retention and tissue delivery in adult rats.

    PubMed

    Roncero-Ramos, Irene; Pastoriza, Silvia; Navarro, M Pilar; Delgado-Andrade, Cristina

    2016-01-01

    The behaviour of dietary Maillard reaction compounds (MRP) as metal chelating polymers can alter mineral absorption and/or retention. Our aim in this study was to analyse the long-term effects of the consumption of model MRP from glucose-lysine heated for 90 min at 150 °C (GL) on iron, copper and zinc whole-body retention and tissue delivery. For 88 days, weaning rats were fed a Control diet or one containing 3% GL, until reaching the adult stage. During the experimental period a mineral balance was conducted to investigate the mineral retention. At day 88, the animals were sacrificed, blood was drawn for haemoglobin determination and some organs were removed. Copper and zinc balances were unaffected (Cu: 450 vs. 375 μg; Zn: 6.7 vs. 6.2 mg for Control and GL groups, respectively) and no change was observed in whole-body delivery. Iron retention, too, was unaltered (11.2 mg for Control and GL groups) but due to the tendency toward decreased body weight in the GL group (248 vs. 233 g for the Control and GL groups), whole-body iron concentration was 13% higher in the GL group than in the Control group. Absorbed iron accumulated particularly in the liver (144 vs. 190 μg g(-1) for the Control and GL groups), thus reducing haemoglobin levels. The long-term intake of MRP induced iron accumulation in the body but this did not result in enhanced iron functionality, since the haemoglobin concentration declined. Taking into account the findings of our research group's studies of young and adult rats, we now corroborate the hypothesis that the negative effect of GL MRP consumption on iron functionality takes place regardless of the animals' stage of life.

  3. The Variations of Glycolysis and TCA Cycle Intermediate Levels Grown in Iron and Copper Mediums of Trichoderma harzianum.

    PubMed

    Tavsan, Zehra; Ayar Kayali, Hulya

    2015-05-01

    The efficiency of optimal metabolic function by microorganism depends on various parameters, especially essential metal supplementation. In the present study, the effects of iron and copper metals on metabolism were investigated by determination of glycolysis and tricarboxylic acid (TCA) cycle metabolites' levels with respect to the metal concentrations and incubation period in Trichoderma harzianum. The pyruvate and citrate levels of T. harzianum increased up to 15 mg/L of copper via redirection of carbon flux though glycolysis by suppression of pentose phosphate pathway (PPP). However, the α-ketoglutarate levels decreased at concentration higher than 5 mg/L of copper to overcome damage of oxidative stress. The fumarate levels correlated with the α-ketoglutarate levels because of substrate limitation. Besides, in T. harzianum cells grown in various concentrations of iron-containing medium, the intracellular pyruvate, citrate, and α-ketoglutarate levels showed positive correlation with iron concentration due to modifying of expression of glycolysis and TCA cycle enzymes via a mechanism involving cofactor or allosteric regulation. However, as a result of consuming of prior substrates required for fumarate production, its levels rose up to 10 mg/L. PMID:25805013

  4. Iron, copper, and nickel behavior in buffered, neutral aluminum chloride:1-methyl-3-ethylimidazolium chloride molten salt

    SciTech Connect

    Pye, S.; Winnick, J.; Kohl, P.A.

    1997-06-01

    Iron, copper, and nickel electrodes were examined as possible metal/metal(II) chloride cathodes for the room temperature sodium/metal chloride battery in a molten salt composed of sodium chloride (NaCl), aluminum chloride (AlCl{sub 3}), and 1-methyl-3-ethylimidazolium chloride (MEIC). The iron electrode was investigated in basic, neutral-like, and acidic MEIC:AlCl{sub 3} melts. The solubility and the kinetics of the reduction of Fe(II) was a function of acidity. In the basic melt, the FeCl{sub 2} was soluble; however, its reduction was not observed due to slow kinetics. In the neutral-like and acidic melts, the quasi-reversible reduction of Fe(II) to Fe(0) was observed. The redox potential of copper was approximately 1 V more positive of iron; however, the oxidized copper was soluble in the neutral-like melt, making it unacceptable without a separator. The oxidized and reduced forms of nickel were insoluble and the redox potential was 2.5 V positive of Na/Na{sup +}. The nickel electrode supported a charge density of 3.5 mC/cm{sup 2} at room temperature, suggesting that a high-surface-area electrode would be needed in a practical device.

  5. The Variations of Glycolysis and TCA Cycle Intermediate Levels Grown in Iron and Copper Mediums of Trichoderma harzianum.

    PubMed

    Tavsan, Zehra; Ayar Kayali, Hulya

    2015-05-01

    The efficiency of optimal metabolic function by microorganism depends on various parameters, especially essential metal supplementation. In the present study, the effects of iron and copper metals on metabolism were investigated by determination of glycolysis and tricarboxylic acid (TCA) cycle metabolites' levels with respect to the metal concentrations and incubation period in Trichoderma harzianum. The pyruvate and citrate levels of T. harzianum increased up to 15 mg/L of copper via redirection of carbon flux though glycolysis by suppression of pentose phosphate pathway (PPP). However, the α-ketoglutarate levels decreased at concentration higher than 5 mg/L of copper to overcome damage of oxidative stress. The fumarate levels correlated with the α-ketoglutarate levels because of substrate limitation. Besides, in T. harzianum cells grown in various concentrations of iron-containing medium, the intracellular pyruvate, citrate, and α-ketoglutarate levels showed positive correlation with iron concentration due to modifying of expression of glycolysis and TCA cycle enzymes via a mechanism involving cofactor or allosteric regulation. However, as a result of consuming of prior substrates required for fumarate production, its levels rose up to 10 mg/L.

  6. Purity-enhanced bulk synthesis of thin single-wall carbon nanotubes using iron-copper catalysts.

    PubMed

    Lim, H E; Miyata, Y; Nakayama, T; Chen, S; Kitaura, R; Shinohara, H

    2011-09-30

    We report high purity and high yield synthesis of single-wall carbon nanotubes (SWCNTs) of narrow diameter from iron-copper bimetal catalysts. The SWCNTs with diameter of 0.8-1.2 nm are synthesized using the zeolite-supported alcohol chemical vapour deposition method. Single metal and bimetal catalysts are systematically investigated to achieve both the enhancement of SWCNT yield and the suppression of the undesired formation of graphitic impurities. The relative yield and purity of SWCNTs are quantified using optical absorption spectroscopy with an ultracentrifuge-based purification technique. For the single metal catalyst, iron shows the highest catalytic activity compared with the other metals such as cobalt, nickel, molybdenum, copper, and platinum. It has been found that the addition of copper to iron results in the suppression of carbonaceous impurity formation without decreasing the SWCNT yield. The purity-enhanced SWCNT shows fairly low sheet resistance due to the improvement of inter-nanotube contacts. This scalable design of SWCNT synthesis with enhanced purity is therefore a promising tool for shaping future high performance devices. PMID:21891846

  7. Purity-enhanced bulk synthesis of thin single-wall carbon nanotubes using iron-copper catalysts

    NASA Astrophysics Data System (ADS)

    Lim, H. E.; Miyata, Y.; Nakayama, T.; Chen, S.; Kitaura, R.; Shinohara, H.

    2011-09-01

    We report high purity and high yield synthesis of single-wall carbon nanotubes (SWCNTs) of narrow diameter from iron-copper bimetal catalysts. The SWCNTs with diameter of 0.8-1.2 nm are synthesized using the zeolite-supported alcohol chemical vapour deposition method. Single metal and bimetal catalysts are systematically investigated to achieve both the enhancement of SWCNT yield and the suppression of the undesired formation of graphitic impurities. The relative yield and purity of SWCNTs are quantified using optical absorption spectroscopy with an ultracentrifuge-based purification technique. For the single metal catalyst, iron shows the highest catalytic activity compared with the other metals such as cobalt, nickel, molybdenum, copper, and platinum. It has been found that the addition of copper to iron results in the suppression of carbonaceous impurity formation without decreasing the SWCNT yield. The purity-enhanced SWCNT shows fairly low sheet resistance due to the improvement of inter-nanotube contacts. This scalable design of SWCNT synthesis with enhanced purity is therefore a promising tool for shaping future high performance devices.

  8. The effect of occupational lead exposure on blood levels of zinc, iron, copper, selenium and related proteins.

    PubMed

    Kasperczyk, Aleksandra; Prokopowicz, Adam; Dobrakowski, Michał; Pawlas, Natalia; Kasperczyk, Sławomir

    2012-12-01

    The study objective was to evaluate the effect of occupational lead exposure on blood concentrations of zinc, iron, copper, selenium and proteins related to them, such as transferrin, caeruloplasmin and haptoglobin. The examined group consisted of 192 healthy male employees of zinc-lead works. By the degree of lead exposure, the exposed group was subdivided into three subgroups. The control group was composed of 73 healthy male administrative workers. The markers of lead exposure (blood levels of lead and zinc protoporphyrin) were significantly elevated in the exposed group compared with the control group. Additionally, concentrations of copper and caeruloplasmin were raised. The significant increase in haptoglobin level was observed only in the low exposure group. Selenium levels were significantly decreased, whereas iron, zinc and transferrin levels were unchanged in the exposed group compared with the control group. There were positive correlations between the lead toxicity parameters and the copper and caeruloplasmin levels. In conclusion, the effect of occupational exposure to lead on the metabolism of trace metals appears to be limited. However, significant associations between lead exposure and levels of copper and selenium were shown. Changed levels of positive acute-phase proteins, such as caeruloplasmin and haptoglobin, were also observed.

  9. The water soluble peripherally tetra-substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines as new potential anticancer agents.

    PubMed

    Barut, Burak; Sofuoğlu, Ayşenur; Biyiklioglu, Zekeriya; Özel, Arzu

    2016-09-28

    In this study, [2-(2-morpholin-4-ylethoxy)ethoxy] group substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines 2-4 and their water soluble derivatives 2a, 3a and 4a were synthesized and the interactions of compounds 2a, 3a and 4a with CT-DNA and supercoiled pBR322 plasmid DNA were investigated. The results of binding experiments showed that these compounds were able to interact with CT-DNA via intercalative mode with a strong binding affinity in the order 3a > 2a > 4a. DNA-photocleavage activities of compounds 2a, 3a and 4a were determined. These compounds cleaved supercoiled pBR322 plasmid DNA efficiently under irradiation at 650 nm for 2a and 4a, and at 750 nm for 3a. These compounds displayed remarkable inhibitory activities against topoisomerase I enzyme in a dose-dependent manner. All of these results suggest that these phthalocyanines might be suitable anticancer agents due to their strong binding affinities, significant cleavage activities and effective topoisomerase I inhibition.

  10. Effects of Aqueous Extracts of Chicory and Milk Thistle on Serum Concentrations of Copper, Zinc, and Manganese in Tamoxifen-Treated Rats.

    PubMed

    Abbasalipourkabir, Roghayeh; Ziamajidi, Nasrin; Nasiri, Abolfazl; Behrouj, Hamid

    2016-09-01

    Some medications may change trace element levels in the body. Extracts of various plants, due to having the several elements, can have beneficial effects. Consumption of herbal extracts with chemical drugs may reduce adverse effects of medication. The goal of this study was to evaluate copper (Cu), zinc (Zn), and manganese (Mn) concentrations in serum of rats treated with tamoxifen, chicory, and/or milk thistle extracts. Therefore, 36 adult female Wistar rats were divided into six groups: normal control, chicory control, milk thistle control, tamoxifen, tamoxifen-chicory, and tamoxifen-milk thistle. At the end of the study, the blood samples were collected and sera isolated by centrifugation and analyzed by the atomic absorption spectrophotometry for Cu, Zn, and Mn levels. The Zn concentration increased in milk thistle-supplemented groups. The Cu level increased in the chicory control group only. Tamoxifen had no affect on Cu, Zn, and Mn levels, but seed extract of milk thistle increased Zn concentration, and chicory root extract increased Cu concentration. Although elevated levels of Cu in rats receiving tamoxifen-chicory were milder than rats treated only with chicory, it seems that the extract and tamoxifen impact on the Cu are in conflict with each other. PMID:26875177

  11. The water soluble peripherally tetra-substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines as new potential anticancer agents.

    PubMed

    Barut, Burak; Sofuoğlu, Ayşenur; Biyiklioglu, Zekeriya; Özel, Arzu

    2016-09-28

    In this study, [2-(2-morpholin-4-ylethoxy)ethoxy] group substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines 2-4 and their water soluble derivatives 2a, 3a and 4a were synthesized and the interactions of compounds 2a, 3a and 4a with CT-DNA and supercoiled pBR322 plasmid DNA were investigated. The results of binding experiments showed that these compounds were able to interact with CT-DNA via intercalative mode with a strong binding affinity in the order 3a > 2a > 4a. DNA-photocleavage activities of compounds 2a, 3a and 4a were determined. These compounds cleaved supercoiled pBR322 plasmid DNA efficiently under irradiation at 650 nm for 2a and 4a, and at 750 nm for 3a. These compounds displayed remarkable inhibitory activities against topoisomerase I enzyme in a dose-dependent manner. All of these results suggest that these phthalocyanines might be suitable anticancer agents due to their strong binding affinities, significant cleavage activities and effective topoisomerase I inhibition. PMID:27534374

  12. Effects of Aqueous Extracts of Chicory and Milk Thistle on Serum Concentrations of Copper, Zinc, and Manganese in Tamoxifen-Treated Rats.

    PubMed

    Abbasalipourkabir, Roghayeh; Ziamajidi, Nasrin; Nasiri, Abolfazl; Behrouj, Hamid

    2016-09-01

    Some medications may change trace element levels in the body. Extracts of various plants, due to having the several elements, can have beneficial effects. Consumption of herbal extracts with chemical drugs may reduce adverse effects of medication. The goal of this study was to evaluate copper (Cu), zinc (Zn), and manganese (Mn) concentrations in serum of rats treated with tamoxifen, chicory, and/or milk thistle extracts. Therefore, 36 adult female Wistar rats were divided into six groups: normal control, chicory control, milk thistle control, tamoxifen, tamoxifen-chicory, and tamoxifen-milk thistle. At the end of the study, the blood samples were collected and sera isolated by centrifugation and analyzed by the atomic absorption spectrophotometry for Cu, Zn, and Mn levels. The Zn concentration increased in milk thistle-supplemented groups. The Cu level increased in the chicory control group only. Tamoxifen had no affect on Cu, Zn, and Mn levels, but seed extract of milk thistle increased Zn concentration, and chicory root extract increased Cu concentration. Although elevated levels of Cu in rats receiving tamoxifen-chicory were milder than rats treated only with chicory, it seems that the extract and tamoxifen impact on the Cu are in conflict with each other.

  13. Three-dimensional electric field predictions of an iron-copper galvanic couple

    NASA Astrophysics Data System (ADS)

    Kasper, Rolf G.

    1987-02-01

    Based on completed experimental electric field scans and the corresponding finite element field predictions, it appears that the finite element numerical technique presents a strong analytical tool in calculating the nearfield electric intensity distributions about active microcells. These calculations were analytically achieved with the new double membrane finite element configuration representing nonlinear polarization and with a local tangent slope (impedance) definition dependent on the local potential difference. The experimental determination of the multidimensional current density structure was realized with a newly developed scanning vibrating electrode technique (SVET). The finite element model developed in this paper uses a priori measured uncoupled polarization curves for pure iron and pure copper. The current densities and the electric field intensities were calculated in the X, Y, and Z directions within specific regions of the electrolyte and on its boundaries. Results appear to indicate that first-order anodic mass loss can be predicated using (1) numerically predicted current density distributions on the anodic surface and (2) Faraday's law. The electric field correlation established in this work for the three-dimensional current density components provides the confidence to proceed in the evaluation of time-dependent effects of electric fields and multipolarized surfaces associated with pitting and crevice corrosion.

  14. [Reduction Kinetics of Cr (VI) in Chromium Contaminated Soil by Nanoscale Zerovalent Iron-copper Bimetallic].

    PubMed

    Ma, Shao-yun; Zhu, Fang; Shang, Zhi-feng

    2016-05-15

    Nanoscale zerovalent iron-copper bimetallic (nZVI/Cu) was produced by liquid-phase reduction and characterized by SEM and XRD. The remediation of Cr (VI) contaminated soil was conducted with nZVI/Cu, and the affecting factors and reduction kinetics were investigated. The results indicated that nZVI/Cu was effective in the degradation of Cr(VI) in soil at an initial pH of 7 at 30'C.After 10 min of reaction, Cr(VI) in the soil was completely degraded when the. concentration of nZVI/Cu was 2 g · L⁻' and the concentration of Cr(VI) in contaminated soil was 88 mg · kg⁻¹. nZVI/Cu amount, pH value, reaction temperature, and the concentration of humic acid affected the degradation of Cr(VI). The removal efficiency of Cr(VI)--increased with increasing reaction temperature and decreased with increasing initial pH value. Humic acid had a certain impact on the degradation of Cr(W) in soil. The removal of Cr (VI) followed the pseudo first order reduction kinetics model, and the relationship between the reduction rate and the reaction temperature accorded with Arrhenius law, and the reaction activation energy (Ea) was 104.26 kJ · mol⁻¹.

  15. [Reduction Kinetics of Cr (VI) in Chromium Contaminated Soil by Nanoscale Zerovalent Iron-copper Bimetallic].

    PubMed

    Ma, Shao-yun; Zhu, Fang; Shang, Zhi-feng

    2016-05-15

    Nanoscale zerovalent iron-copper bimetallic (nZVI/Cu) was produced by liquid-phase reduction and characterized by SEM and XRD. The remediation of Cr (VI) contaminated soil was conducted with nZVI/Cu, and the affecting factors and reduction kinetics were investigated. The results indicated that nZVI/Cu was effective in the degradation of Cr(VI) in soil at an initial pH of 7 at 30'C.After 10 min of reaction, Cr(VI) in the soil was completely degraded when the. concentration of nZVI/Cu was 2 g · L⁻' and the concentration of Cr(VI) in contaminated soil was 88 mg · kg⁻¹. nZVI/Cu amount, pH value, reaction temperature, and the concentration of humic acid affected the degradation of Cr(VI). The removal efficiency of Cr(VI)--increased with increasing reaction temperature and decreased with increasing initial pH value. Humic acid had a certain impact on the degradation of Cr(W) in soil. The removal of Cr (VI) followed the pseudo first order reduction kinetics model, and the relationship between the reduction rate and the reaction temperature accorded with Arrhenius law, and the reaction activation energy (Ea) was 104.26 kJ · mol⁻¹. PMID:27506053

  16. Phase diagram, thermal stability, and high temperature oxidation of the ternary copper-nickel-iron system

    NASA Astrophysics Data System (ADS)

    Gallino, Isabella

    Due to the aluminum industry demands, a large effort has recently been devoted to the development of special alloys to be used as inert anodes for a newly designed aluminum reduction cell. The implementation of this new technology aims at the replacement of the graphite anodes that have been used for over 100 years in aluminum smelting, which would reduce fossil carbon consumption, and eliminate the emission of carbon dioxide and of perfluorocarbons. Ternary alloys containing copper, nickel, and iron have been the subject of the research activities. The present research focused on the stability of the Cu-Ni-Fe alloys at high temperatures in oxidizing and fluoridating environments. The experimental methods included thermodynamic calculations of the phase diagram (Thermocalc), optical microscopy and microprobe microstructural and chemical investigations (EMPA), small-angle neutron scattering (SANS), differential thermal analysis (DTA), and air-oxidation studies. The results have led to the optimization of the Cu-Ni-Fe ternary phase diagram and to an extensive study of the thermodynamics and kinetics of the spinodal decomposition and discontinuous reactions occurring during ageing as a function of alloy composition. The oxidizing reactions occurring in air at high temperatures at the surface of the alloys have been also discussed in terms of thermodynamic and kinetic laws. The phase formation in a fluorine containing environment as encountered in an aluminum electrolytic cell is predicted using principles of physical chemistry.

  17. [Prevalence of deficiency and dietary intake of iron, zinc and copper in Chilean childbearing age women].

    PubMed

    Mujica-Coopman, María F; Borja, Angélica; Pizarro, Fernando; Olivares, Manuel

    2014-03-01

    The aim of the present study was to evaluate anemia, the biochemical status and dietary adequacy of iron (Fe), zinc (Zn) and copper (Cu), in Chilean childbearing age women. We studied a convenience sample of 86 women aged 18 to 48 years from Santiago, Chile. We determined anemia and the micronutrient status through hemoglobin (Hb) mean corpuscular volume, transferrin saturation, zinc protoporphyrin, serum ferritin (SF), serum Zn and Cu. Dietary adequacy was estimated using a food frequency questionnaire. Of all women, 4.7% had Fe deficiency (ID) anemia, 21 % ID without anemia, 26 % depleted Fe stores and 48.3% normal Fe status. Obese women had higher SF (p<0.01) compared with those classified as having normal BMI. Also, showed higher Hb (p<0.05) concentrations compared with overweight and normal weight women. Partidipants showed 3.5 % and 2.3 % of Zn and Cu deficiency, respectively. Also, 95 %, 94 % and 99 % had adequate intake of Fe, Zn and Cu respectively, according to EAR cut points. There were no significant differences in micronutrients intake across different nutritional status. There was a low prevalence of anemia, Fe, Zn and Cu deficiency. A high percentage of women reached micronutrient adequacy. However, 47% of women had ID without anemia and Fe depleted stores.

  18. Influence of Copper Addition and Temperature on the Kinetics of Austempering in Ductile Iron

    NASA Astrophysics Data System (ADS)

    Amran, Yogev; Katsman, Alexander; Schaaf, Peter; Bamberger, Menachem

    2010-10-01

    Austempered ductile iron (ADI) is a material that exhibits excellent mechanical properties because of its special microstructure, combining ferrite and austenite supersaturated with carbon. Two ADI alloys, Fe-3.5 pct C-2.5 pct Si and Fe-3.6 pct C-2.7 pct Si-0.7 pct Cu, austempered for various times at 623 K (350 °C) and 673 K (400 °C) followed by water quenching, were investigated. The first ferrite needles nucleate mainly at the graphite/austenite interface. The austenite and ferrite weight fractions increase with the austempering time until stabilization is reached. The increase in the lattice parameter of the austenite during austempering corresponds to an increase of carbon content in the austenite. The increase in the ferrite weight fraction is associated with a decrease in microhardness. As the austempering temperature increases, the ferrite weight fraction decreases, the high carbon austenite weight fraction increases, but the carbon content in the latter decreases. Copper addition increases the high carbon austenite weight fraction. The results are discussed based on the phases composing the Fe-2Si-C system.

  19. Iron, copper, and zinc concentrations in normal skin and in various nonmalignant and malignant lesions

    SciTech Connect

    Gorodetsky, R.; Sheskin, J.; Weinreb, A.

    1986-09-01

    The concentrations of zinc (Zn), copper (Cu), and iron (Fe) in the skin have been noninvasively determined in vivo by diagnostic x-ray spectrometry. The skin of healthy controls was divided into two major groups based upon the distribution of the concentrations of these elements. In the face and upper neck, the following wet weight concentrations were recorded: Fe, 14.2 +/- 3.3 ppm; Cu, 1.3 +/- 0.3 ppm; and Zn, 6.7 +/- 1.1 ppm. In the chest, abdomen, arm, axilla, and lower neck, the concentrations of these elements were as follows: Fe, 10.2 +/- 2.5 ppm; Cu, 0.8 +/- 0.3 ppm; and Zn, 4.5 +/- 1.7 ppm. In most lesions of solar dermatitis, solar keratosis, basal and squamous cell carcinomas, variable elevations of Zn and Fe (up to significant levels) were recorded in most of the contralateral, apparently uninvolved skin. In the majority of pigmented nevi and malignant melanomas, the levels of Fe and Zn were elevated. In some of these, the Cu concentration also was increased.

  20. Timing of multiple hydrothermal events in the iron oxide-copper-gold deposits of the Southern Copper Belt, Carajás Province, Brazil

    NASA Astrophysics Data System (ADS)

    Moreto, Carolina P. N.; Monteiro, Lena V. S.; Xavier, Roberto P.; Creaser, Robert A.; DuFrane, S. Andrew; Melo, Gustavo H. C.; Delinardo da Silva, Marco A.; Tassinari, Colombo C. G.; Sato, Kei

    2015-06-01

    The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide-copper-gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U-Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW-ESE shear zones. They encompass Mesoarchean (3.08-2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite-scapolite, biotite-scapolite-tourmaline-magnetite alteration, and proximal potassium feldspar, chlorite-epidote and chalcopyrite formation. U-Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re-Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72-2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90-1.88-Ga ore formation in the Sossego-Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72-2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia-Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.

  1. Manganese status, gut endogenous losses of manganese, and antioxidant enzyme activity in rats fed varying levels of manganese and fat.

    PubMed

    Malecki, E A; Huttner, D L; Greger, J L

    1994-07-01

    We hypothesized that manganese deficient animals fed high vs moderate levels of polyunsaturated fat would either manifest evidence of increased oxidative stress or would experience compensatory changes in antioxidant enzymes and/or shifts in manganese utilization that result in decreased endogenous gut manganese losses. Rats (females in Study 1, males in Study 2, n = 8/treatment) were fed diets that contained 5 or 20% corn oil by weight and either 0.01 or 1.5 mumol manganese/g diet. In study 2, 54Mn complexed to albumin was injected into the portal vein to assess gut endogenous losses of manganese. The manganese deficient rats: 1. Had 30-50% lower liver, tibia, kidney, spleen, and pancreas manganese concentrations than manganese adequate rats; 2. Conserved manganese through approximately 70-fold reductions in endogenous fecal losses of manganese; 3. Had lower heart manganese superoxide dismutase (MnSOD) activity; and 4. Experienced only two minor compensatory changes in the activity of copper-zinc superoxide dismutase (CuZnSOD) and catalase. Gut endogenous losses of manganese tended to account for a smaller proportion of absorbed manganese in rats fed high-fat diets; otherwise fat intake had few effects on tissue manganese concentrations. PMID:7986658

  2. Biaxially textured copper and copper iron alloy substrates for use in YBa2Cu3O7-x coated conductors

    NASA Astrophysics Data System (ADS)

    Varanasi, Chakrapani V.; Barnes, Paul N.; Yust, Nicholas A.

    2006-01-01

    Copper and Cu-Fe (Fe ~2.35 wt%) alloy substrates were thermo-mechanically processed and the biaxial texture development, magnetic properties, yield strength, and electrical resistivity were studied and compared to determine their suitability as substrates for high-temperature superconducting coated conductor applications. Average full width half maximum (FWHM) of 5.5° in Phi scans (in-plane alignment), and 6.6° in omega scans (out-of-plane alignment) was obtained in copper samples. Cu-Fe samples showed 5.9° FWHM in Phi scans and 5.9° in omega scans. Even with the presence of 2.35% Fe in the Cu-alloy, the saturation magnetization (Msat) value was found to be 4.27 emu g-1 at 5 K, which is less than in Ni samples by an order of magnitude and comparable to that of Ni-9 at.% W substrates. The yield strength of the annealed Cu-Fe alloy substrate was found to be at least two times higher than that of similarly annealed copper substrates. The electrical resistivity of Cu-Fe alloy was found to be an order of magnitude higher than that of pure copper at 77 K.

  3. Bog Manganese Ore: A Resource for High Manganese Steel Making

    NASA Astrophysics Data System (ADS)

    Pani, Swatirupa; Singh, Saroj K.; Mohapatra, Birendra K.

    2016-06-01

    Bog manganese ore, associated with the banded iron formation of the Iron Ore Group (IOG), occurs in large volume in northern Odisha, India. The ore is powdery, fine-grained and soft in nature with varying specific gravity (2.8-3.9 g/cm3) and high thermo-gravimetric loss, It consists of manganese (δ-MnO2, manganite, cryptomelane/romanechite with minor pyrolusite) and iron (goethite/limonite and hematite) minerals with sub-ordinate kaolinite and quartz. It shows oolitic/pisolitic to globular morphology nucleating small detritus of quartz, pyrolusite/romanechite and hematite. The ore contains around 23% Mn and 28% Fe with around 7% of combined alumina and silica. Such Mn ore has not found any use because of its sub-grade nature and high iron content, and is hence considered as waste. The ore does not respond to any physical beneficiation techniques because of the combined state of the manganese and iron phases. Attempts have been made to recover manganese and iron value from such ore through smelting. A sample along with an appropriate charge mix when processed through a plasma reactor, produced high-manganese steel alloy having 25% Mn within a very short time (<10 min). Minor Mn content from the slag was recovered through acid leaching. The aim of this study has been to recover a value-added product from the waste.

  4. Manganese recycling in the United States in 1998

    USGS Publications Warehouse

    Jones, Thomas S.

    2001-01-01

    This report describes the flow and processing of manganese within the U.S. economy in 1998 with emphasis on the extent to which manganese is recycled. Manganese was used mostly as an alloying agent in alloys in which it was a minor component. Manganese was recycled mostly within scrap of iron and steel. A small amount was recycled within aluminum used beverage cans. Very little manganese was recycled from materials being recovered specifically for their manganese content. For the United States in 1998, 218,000 metric tons of manganese was estimated to have been recycled from old scrap, of which 96% was from iron and steel scrap. Efficiency of recycling was estimated as 53% and recycling rate as 37%. Metallurgical loss of manganese was estimated to be about 1.7 times that recycled. This loss was mostly into slags from iron and steel production, from which recovery of manganese has yet to be shown economically feasible.

  5. Iron and copper accumulation in the brain of coxsackievirus-infected mice exposed to cadmium

    SciTech Connect

    Ilbaeck, N.-G. . E-mail: nils-gunnar.ilback@slv.se; Lindh, U.; Minqin, R.; Friman, G.; Watt, F.

    2006-11-15

    Cadmium (Cd) is a potentially toxic metal widely distributed in the environment and known to cause adverse health effects in humans. During coxsackievirus infection, the concentrations of essential and nonessential trace elements (e.g., iron (Fe), copper (Cu), and Cd) change in different target organs of the infection. Fe and Cu are recognized cofactors in host defence reactions, and Fe is known to be associated with certain pathological conditions of the brain. However, whether nonessential trace elements could influence the balance of essential trace elements in the brain is unknown. In this study the brain Fe, Cu, and Cd contents were measured through inductively coupled plasma mass spectrometry and their distributions determined by nuclear microscopy in the early phase (day 3) of coxsackievirus B3 (CB3) infection in nonexposed and in Cd-exposed female Balb/c mice. In CB3 infection the brain is a well-known target that has not been studied with regard to trace element balance. The brain concentration of Cu compared with that of noninfected control mice was increased by 9% (P<0.05) in infected mice not exposed to Cd and by 10% (not significant) in infected Cd-exposed mice. A similar response was seen for Fe, which in infected Cd-exposed mice, compared to noninfected control mice, tended to increase by 16%. Cu showed an even tissue distribution, whereas Fe was distributed in focal deposits. Changes in Cd concentration in the brain of infected mice were less consistent but evenly distributed. Further studies are needed to define whether the accumulation and distribution of trace elements in the brain have an impact on brain function.

  6. Iron and copper accumulation in the brain of coxsackievirus-infected mice exposed to cadmium.

    PubMed

    Ilbäck, N-G; Lindh, U; Minqin, R; Friman, G; Watt, F

    2006-11-01

    Cadmium (Cd) is a potentially toxic metal widely distributed in the environment and known to cause adverse health effects in humans. During coxsackievirus infection, the concentrations of essential and nonessential trace elements (e.g., iron (Fe), copper (Cu), and Cd) change in different target organs of the infection. Fe and Cu are recognized cofactors in host defence reactions, and Fe is known to be associated with certain pathological conditions of the brain. However, whether nonessential trace elements could influence the balance of essential trace elements in the brain is unknown. In this study the brain Fe, Cu, and Cd contents were measured through inductively coupled plasma mass spectrometry and their distributions determined by nuclear microscopy in the early phase (day 3) of coxsackievirus B3 (CB3) infection in nonexposed and in Cd-exposed female Balb/c mice. In CB3 infection the brain is a well-known target that has not been studied with regard to trace element balance. The brain concentration of Cu compared with that of noninfected control mice was increased by 9% (P < 0.05) in infected mice not exposed to Cd and by 10% (not significant) in infected Cd-exposed mice. A similar response was seen for Fe, which in infected Cd-exposed mice, compared to noninfected control mice, tended to increase by 16%. Cu showed an even tissue distribution, whereas Fe was distributed in focal deposits. Changes in Cd concentration in the brain of infected mice were less consistent but evenly distributed. Further studies are needed to define whether the accumulation and distribution of trace elements in the brain have an impact on brain function.

  7. Fractionation of fulvic acid by iron and aluminum oxides: influence on copper toxicity to Ceriodaphnia dubia

    USGS Publications Warehouse

    Smith, Kathleen S.; James F. Ranville,; Emily K. Lesher,; Daniel J. Diedrich,; Diane M. McKnight,; Ruth M. Sofield,

    2014-01-01

    This study examines the effect on aquatic copper toxicity of the chemical fractionation of fulvic acid (FA) that results from its association with iron and aluminum oxyhydroxide precipitates. Fractionated and unfractionated FAs obtained from streamwater and suspended sediment were utilized in acute Cu toxicity tests on ,i>Ceriodaphnia dubia. Toxicity test results with equal FA concentrations (6 mg FA/L) show that the fractionated dissolved FA was 3 times less effective at reducing Cu toxicity (EC50 13 ± 0.6 μg Cu/L) than were the unfractionated dissolved FAs (EC50 39 ± 0.4 and 41 ± 1.2 μg Cu/L). The fractionation is a consequence of preferential sorption of molecules having strong metal-binding (more aromatic) moieties to precipitating Fe- and Al-rich oxyhydroxides, causing the remaining dissolved FA to be depleted in these functional groups. As a result, there is more bioavailable dissolved Cu in the water and hence greater potential for Cu toxicity to aquatic organisms. In predicting Cu toxicity, biotic ligand models (BLMs) take into account dissolved organic carbon (DOC) concentration; however, unless DOC characteristics are accounted for, model predictions can underestimate acute Cu toxicity for water containing fractionated dissolved FA. This may have implications for water-quality criteria in systems containing Fe- and Al-rich sediment, and in mined and mineralized areas in particular. Optical measurements, such as specific ultraviolet absorbance at 254 nm (SUVA254), show promise for use as spectral indicators of DOC chemical fractionation and inferred increased Cu toxicity.

  8. Perinatal Iron and Copper Deficiencies Alter Neonatal Rat Circulating and Brain Thyroid Hormone Concentrations

    PubMed Central

    Bastian, Thomas W.; Prohaska, Joseph R.; Georgieff, Michael K.; Anderson, Grant W.

    2010-01-01

    Copper (Cu), iron (Fe), and iodine/thyroid hormone (TH) deficiencies lead to similar defects in late brain development, suggesting that these micronutrient deficiencies share a common mechanism contributing to the observed derangements. Previous studies in rodents (postweanling and adult) and humans (adolescent and adult) indicate that Cu and Fe deficiencies affect the hypothalamic-pituitary-thyroid axis, leading to altered TH status. Importantly, however, relationships between Fe and Cu deficiencies and thyroidal status have not been assessed in the most vulnerable population, the developing fetus/neonate. We hypothesized that Cu and Fe deficiencies reduce circulating and brain TH levels during development, contributing to the defects in brain development associated with these deficiencies. To test this hypothesis, pregnant rat dams were rendered Cu deficient (CuD), FeD, or TH deficient from early gestation through weaning. Serum thyroxine (T4) and triiodothyronine (T3), and brain T3 levels, were subsequently measured in postnatal d 12 (P12) pups. Cu deficiency reduced serum total T3 by 48%, serum total T4 by 21%, and whole-brain T3 by 10% at P12. Fe deficiency reduced serum total T3 by 43%, serum total T4 by 67%, and whole-brain T3 by 25% at P12. Brain mRNA analysis revealed that expression of several TH-responsive genes were altered in CuD or FeD neonates, suggesting that reduced TH concentrations were sensed by the FeD and CuD neonatal brain. These results indicate that at least some of the brain defects associated with neonatal Fe and Cu deficiencies are mediated through reductions in circulating and brain TH levels. PMID:20573724

  9. Absorption spectroscopy of mid and neighboring Z plasmas: Iron, nickel,copper and germanium

    NASA Astrophysics Data System (ADS)

    Loisel, G.; Arnault, P.; Bastiani-Ceccotti, S.; Blenski, T.; Caillaud, T.; Fariaut, J.; Fölsner, W.; Gilleron, F.; Pain, J.-C.; Poirier, M.; Reverdin, C.; Silvert, V.; Thais, F.; Turck-Chièze, S.; Villette, B.

    2009-09-01

    Opacities of four medium Z element plasmas (iron, nickel, copper and germanium) have been measured at the LULI-2000 facility in similar conditions: temperatures between 15 and 25 eV and densities between 2 and 10 mg/cm 3, in a wavelength range (8-18 Å) including the strong 2p-3d structures. Two laser beams from the LULI facility were used in the nanosecond-picosecond configuration. The NANO-2000 beam (at λ = 0.53 μm) heated a gold hohlraum with an energy between 30 and 150 J with a duration of 0.6 ns. Samples covering half a hohlraum hole were thus radiatively heated. The picosecond pulse PICO-2000 beam (at λ = 1.053 μm) has been used to produce a short (about 10 ps) X-ray backlighter in order to reduce time variations of temperatures and densities during the measurement. A crystal high-resolution spectrometer was used as the main diagnostic to record at the same time the non-absorbed and the absorbed backlighter spectra. Radiation temperatures were measured using a broadband spectrometer. 1D and 2D simulations have been performed in order to estimate hydrodynamic plasmas parameters. The measured spectra have been compared with theoretical ones obtained using either the superconfiguration code SCO or the detailed term accounting code HULLAC. These comparisons allow us to check the modeling of the statistical broadening and of the spin-orbit splitting of the 2p-3d transitions and related effects such as the interaction between relativistic subconfigurations belonging to the same non-relativistic configuration.

  10. Atomistic study on mixed-mode fracture mechanisms of ferrite iron interacting with coherent copper and nickel nanoclusters

    NASA Astrophysics Data System (ADS)

    Al-Motasem, Ahmed Tamer; Mai, Nghia Trong; Choi, Seung Tae; Posselt, Matthias

    2016-04-01

    The effect of copper and/or nickel nanoclusters, generally formed by neutron irradiation, on fracture mechanisms of ferrite iron was investigated by using molecular statics simulation. The equilibrium configuration of nanoclusters was obtained by using a combination of an on-lattice annealing based on Metropolis Monte Carlo method and an off-lattice relaxation by molecular dynamics simulation. Residual stress distributions near the nanoclusters were also calculated, since compressive or tensile residual stresses may retard or accelerate, respectively, the propagation of a crack running into a nanocluster. One of the nanoclusters was located in front of a straight crack in ferrite iron with a body-centered cubic crystal structure. Two crystallographic directions, of which the crack plane and crack front direction are (010)[001] and (111) [ 1 bar 10 ] , were considered, representing cleavage and non-cleavage orientations in ferrite iron, respectively. Displacements corresponding to pure opening-mode and mixed-mode loadings were imposed on the boundary region and the energy minimization was performed. It was observed that the fracture mechanisms of ferrite iron under the pure opening-mode loading are strongly influenced by the presence of nanoclusters, while under the mixed-mode loading the nanoclusters have no significant effect on the crack propagation behavior of ferrite iron.

  11. Genotoxicity and cytotoxicity of chromium, copper, manganese and lead, and their mixture in WIL2-NS human B lymphoblastoid cells is enhanced by folate depletion.

    PubMed

    Alimba, Chibuisi G; Dhillon, Varinderpal; Bakare, Adekunle A; Fenech, Michael

    2016-03-01

    Heavy metal exposure or dietary deficiency is associated with increased genetic damage, cancer and age-related diseases. Folate (vitamin B9) required for DNA repair and synthesis may increase cellular susceptibility to metal induced genotoxicity. This study investigated the interactive effects of folic acid deficiency and sufficiency on genome instability and cytotoxicity induced by chromium (VI), copper (II), manganese (II), lead (IV), and their mixture (CCMP) in WIL2-NS human B lymphoblastoid cells. WIL2-NS cells were cultured in folic acid deficient (20 nM) and replete (2000 nM) RPMI 1640 medium treated with different concentrations (0.00-1000 μM) of the metals and CCMP for 48 h. Chromosomal damage and cytotoxicity were measured using the Cytokinesis-block Micronucleus Cytome assay. CCMP, Cr, Pb, Cu and Mn induced concentration dependent, increases in cells with chromosome damage (micronuclei, nucleoplasmic bridges, nuclear buds) and necrotic cells and decreased nuclear division index. The metals exhibited different cytotoxic and genotoxic potentials (CCMP>Cr>Pb>Cu>Mn) in both folate deficient and sufficient cells, with the cytogenotoxic effects being greater in folate deficient cells. Significant interaction between the metals and folic acid suggests that folic acid deficiency exacerbated cell proliferation inhibition and genome instability induced by metals. Folate deficiency, increasing metal concentration, and their interactions explained 3-11%, 74-92% and 4-12% of the variance of DNA damage biomarkers. In conclusion, exposure to the tested metals (0.01-1000 μM) increased chromosomal DNA damage in WIL2-NS cells and this was exacerbated by folate deficiency. PMID:26994492

  12. A bias in the "mass-normalized" DTT response - An effect of non-linear concentration-response curves for copper and manganese

    NASA Astrophysics Data System (ADS)

    Charrier, Jessica G.; McFall, Alexander S.; Vu, Kennedy K.-T.; Baroi, James; Olea, Catalina; Hasson, Alam; Anastasio, Cort

    2016-11-01

    The dithiothreitol (DTT) assay is widely used to measure the oxidative potential of particulate matter. Results are typically presented in mass-normalized units (e.g., pmols DTT lost per minute per microgram PM) to allow for comparison among samples. Use of this unit assumes that the mass-normalized DTT response is constant and independent of the mass concentration of PM added to the DTT assay. However, based on previous work that identified non-linear DTT responses for copper and manganese, this basic assumption (that the mass-normalized DTT response is independent of the concentration of PM added to the assay) should not be true for samples where Cu and Mn contribute significantly to the DTT signal. To test this we measured the DTT response at multiple PM concentrations for eight ambient particulate samples collected at two locations in California. The results confirm that for samples with significant contributions from Cu and Mn, the mass-normalized DTT response can strongly depend on the concentration of PM added to the assay, varying by up to an order of magnitude for PM concentrations between 2 and 34 μg mL-1. This mass dependence confounds useful interpretation of DTT assay data in samples with significant contributions from Cu and Mn, requiring additional quality control steps to check for this bias. To minimize this problem, we discuss two methods to correct the mass-normalized DTT result and we apply those methods to our samples. We find that it is possible to correct the mass-normalized DTT result, although the correction methods have some drawbacks and add uncertainty to DTT analyses. More broadly, other DTT-active species might also have non-linear concentration-responses in the assay and cause a bias. In addition, the same problem of Cu- and Mn-mediated bias in mass-normalized DTT results might affect other measures of acellular redox activity in PM and needs to be addressed.

  13. Characterization of a tunable optical parametric oscillator laser system for multielement flame laser excited atomic fluorescence spectrometry of cobalt, copper, lead, manganese, and thallium in buffalo river sediment.

    PubMed

    Zhou, J X; Hou, X; Tsai, S J; Yang, K X; Michel, R G

    1997-02-01

    A pulsed (10 Hz) optical parametric oscillator (OPO) laser system based on beta-barium borate (BBO) crystals and equipped with a frequency-doubling option (FDO) was characterized for use in laser excited atomic fluorescence spectrometry (LEAFS). This all-solid-state laser has a narrow spectral line width, a wide spectral tuning range (220-2200 nm), and a rapid, computer-controlled slew scan of wavelength (0.250 nm s-1 in the visible and infrared, and 0.125 nm s-1 in the ultraviolet). The output power characteristics (15-90 mJ/pulse in the visible, 1-40 mJ in the infrared, and 1-11 mJ in the ultraviolet), laser pulse-to-pulse variability (3-13% relative standard deviation, RSD, of the laser pulses), conversion efficiency of the FDO (2-17%), and spectral bandwidth in the visible spectrum (0.1-0.3 cm-1) were measured. The laser was used as the excitation source for a flame LEAFS instrument for which rapid, sequential, multielement analysis was demonstrated by slew scan of the laser. The instrument allowed about 640 measurements to be made in about 6 h, with triplicate measurements of all solutions and aqueous calibration curves, which yielded accurate analyses of a river sediment (National Institute of Standards and Technology, Buffalo River Sediment, 2704) for five elements with precisions < 5% RSD. Comparable or improved flame LEAFS detection limits over literature values were obtained for cobalt (2 ng mL-1), copper (2 ng mL-1), lead (0.4 ng mL-1), manganese (0.2 ng mL-1), and thallium (0.9 ng mL-1) by flame LEAFS.

  14. Determination of copper, iron and zinc in spirituous beverages by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Capote, T.; Marcó, L. M.; Alvarado, J.; Greaves, E. D.

    1999-10-01

    The concentration of copper in traditional homemade alcoholic distillates produced in Venezuela (Cocuy de Penca) were determined by total reflection X-ray fluorescence (TXRF) using vanadium as internal standard. The results were compared to those obtained by flame atomic absorption spectrometry (FAAS). Three preparative methods of addition of vanadium were compared: classical internal standard addition, 'layer on layer' internal standard addition and in situ addition of internal standard. The TXRF procedures were accurate and the precision was comparable to that obtained by the FAAS technique. Copper levels were above the maximum allowed limits for similar beverages. Zinc and iron in commercial and homemade distilled beverages were also analyzed by TXRF with in situ addition of internal standard demonstrating the usefulness of this technique for trace metal determination in distillates.

  15. Observed transitions in n = 2 ground configurations of copper, nickel, iron, chromium and germanium in tokamak discharges

    SciTech Connect

    Hinnov, E.; Suckewer, S.; Cohen, S.; Sato, K.

    1981-11-01

    A number of spectrum lines of highly ionized copper, nickel, iron, chromium, and germanium have been observed and the corresponding transitions identified. The element under study is introduced into the discharge of the PLT Tokamak by means of rapid ablation by a laser pulse. The ionization state is generally distinguishable from the time behavior of the emitted light. New identifications of transitions are based on predicted wavelengths (from isoelectronic extrapolation and other data) and on approximate expected intensities. All the transitions pertain to the ground configurations of the respective ions, which are the only states strongly populated at tokamak plasma conditions. These lines are expected to be useful for spectroscopic plasma diagnostics in the 1-3 keV temperature range, and they provide direct measurement of intersystem energy separations from chromium through copper in the oxygen, nitrogen, and carbon isoelectronic sequences.

  16. Copper

    Integrated Risk Information System (IRIS)

    Copper ; CASRN 7440 - 50 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  17. In vitro toxicological assessment of iron oxide, aluminium oxide and copper nanoparticles in prokaryotic and eukaryotic cell types.

    PubMed

    Sadiq, Rakhshinda; Khan, Qaiser Mahmood; Mobeen, Ameena; Hashmat, Amer Jamal

    2015-04-01

    Metallic nanoparticles (NPs) have a variety of applications in different industries including pharmaceutical industry where these NPs are used mainly for image analysis and drug delivery. The increasing interest in nanotechnology is largely associated with undefined risks to the human health and to the environment. Therefore, in the present study cytotoxic and genotoxic effects of iron oxide, aluminium oxide and copper nanoparticles were evaluated using most commonly used assays i.e. Ames assay, in vitro cytotoxicity assay, micronucleus assay and comet assay. Cytotoxicity to bacterial cells was assessed in terms of colony forming units by using Escherichia coli (gram negative) and Bacillus subtilis (gram positive). Ames assay was carried out using two bacterial strains of Salmonella typhimurium TA98 and TA100. Genotoxicity of these NPs was evaluated following exposure to monkey kidney cell line, CHS-20. No cytotoxic and genotoxic effects were observed for iron oxide, and aluminium oxide NPs. Copper NPs were found mutagenic in TA98 and in TA100 and also found cytotoxic in dose dependent manner. Copper NPs induced significant (p < 0.01) increase in number of binucleated cells with micronuclei (96.6 ± 5.40) at the highest concentration (25 µg/mL). Copper NPs also induced DNA strand breaks at 10 µg/mL and oxidative DNA damage at 5 and 10 µg/mL. We consider these findings very useful in evaluating the genotoxic potential of NPs especially because of their increasing applications in human health and environment with limited knowledge of their toxicity and genotoxicity.

  18. Sedimentary profiles and sediment-water solute exchange of iron and manganese in reef- and river-dominated shelf regions of the Coral Sea

    NASA Astrophysics Data System (ADS)

    Alongi, Daniel M.; Tirendi, Frank; Christoffersen, Paul

    1993-02-01

    Vertical profiles and sediment-water solute exchange of iron and manganese were measured in reef- (central Great Barrier Reef Lagoon) and river-dominated (Fly Delta-Gulf of Papua) shelf regions of the Coral Sea. Solid-phase iron and manganese concentrations were greater in the Papuan deposits (Fe range: 42.8-98.3 mg g -1 sediment DW; Mn range: 423-2500 μg g -1 DW) than in the central GBR lagoon (Fe range: 4.0-40.0 mg g -1 DW; Mn range: 99-496 μg g -1 DW), reflecting generally smaller grain size and higher rates of terrigenous runoff from the Fly River and associated river systems onto the adjacent Papuan shelf as well as dilution by calcium carbonate and a decline in terrestrial input across the GBR shelf. Dissolved metal concentrations in the porewaters were usually very low (Fe range: 0.1-28.0 μM; Mn range: 0.1-97.0 μM) and not significantly different between shelves. Vertical profiles of dissolved and solid-phase Fe and Mn either did not vary with sediment depth or were irregular at most stations. The dissolved Mn/Fe (molar) ratio varied greatly among stations, but was generally higher in the Papuan sediments (range: 1.2-46.4) than in the GBR deposits (range: 0.3-18.1). The solid-phase Mn/Fe (molar) ratio varied little among stations, ranging from 0.01 to 0.03. Solid-phase metal concentrations correlated negatively with calcium carbonate content. When this relationship was held constant (partial correlation analysis), solid-phase Fe and Mn correlated negatively with grain size and positively with total N (Fe only) and P. Metal solutes in the porewater correlated negatively with redox potential and grain size (Mn only) and positively with porewater NH 4+ (Mn only). Rates of Fe and Mn solute flux across the sediment-water interface were, at most stations, undetectable. Measurable fluxes ranged from -609 to +125 μmol m -2 day -1 for iron and from -218 to +400 μmol m -2 day -1 for manganese. The distribution and diagenesis of Fe and Mn in these tropical shelf

  19. Electron Paramagnetic Resonance of MANGANESE(2+), COPPER(2+) and GADOLINIUM(3+) Ions Doping Some - and - Magnetic Single Crystals.

    NASA Astrophysics Data System (ADS)

    Kahrizi, Mojtaba

    X-band EPR measurements on several Mn('2+)-doped single crystals have been made at room and low temperatures. The spin-Hamiltonian parameters are evaluated from the data using a rigorous least-squares-fitting program suitable for electron-nuclear spin coupled systems. The signs of the parameters are determined from the observed relative intensities of EPR lines at liquid helium temperature. The temperature variation of zero-field splitting parameter b(,2)('0), as well as that of the linewidths have been studied. Using the shift of g-values in the paramagnetic Ni('2+) lattices, from those in the corresponding isostructural diagmagnetic lattices, the exchange constant between Mn('2+) -Ni('2+) ions in nickel salts has been estimated. For the case of hosts containing paramagnetic Co('2+) ions the spin-lattice relaxation time was estimated at room and liquid nitrogen temperatures. X-band EPR measurements on Cu('2+) in copper pentakisantipyrine perchlorate were performed at room and low temperatures. The principal values of g and A tensors and their direction cosines were evaluated using a rigorous least-squares fitting technique. Finally, X-band EPR studies of Gd('3+)-doped single crystals of LiYF(,4) and LiYbF(,4) have been made at room and low temperatures. In the case of paramagnetic host LiYbF(,4) the EPR lines broadened very fast as the temperature was lowered from room temperature, and below 270 K no EPR lines were observed. The parameters were evaluated using a least squares fitting method. The temperature variation of the parameters was studied. Using the g-shift in LiYbF(,4) from its value in LiYF(,4) the exchange constant between Gd('3+) and its paramagnetic neighbor ions Yb('3+), was estimated.

  20. The Structure and Properties of Plasma Sprayed Iron Oxide Doped Manganese Cobalt Oxide Spinel Coatings for SOFC Metallic Interconnectors

    NASA Astrophysics Data System (ADS)

    Puranen, Jouni; Lagerbom, Juha; Hyvärinen, Leo; Kylmälahti, Mikko; Himanen, Olli; Pihlatie, Mikko; Kiviaho, Jari; Vuoristo, Petri

    2011-01-01

    Manganese cobalt oxide spinel doped with Fe2O3 was studied as a protective coating on ferritic stainless steel interconnects. Chromium alloying causes problems at high operation temperatures in such oxidizing conditions where chromium compounds evaporate and poison the cathode active area, causing the degradation of the solid oxide fuel cell. In order to prevent chromium evaporation, these interconnectors need a protective coating to block the chromium evaporation and to maintain an adequate electrical conductivity. Thermal spraying is regarded as a promising way to produce dense and protective layers. In the present work, the ceramic Mn-Co-Fe oxide spinel coatings were produced by using the atmospheric plasma spray process. Coatings with low thickness and low amount of porosity were produced by optimizing deposition conditions. The original spinel structure decomposed because of the fast transformation of solid-liquid-solid states but was partially restored by using post-annealing treatment.

  1. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  2. Influence of essential elements on manganese intoxication

    SciTech Connect

    Khandelwal, S.; Ashquin, M.; Tandon, S.K.

    1984-01-01

    With a view to explore the influence of essential metals in manganese intoxication, the effect of calcium, iron or zinc supplementation on the uptake of manganese and on the activity of manganese sensitive enzymes, succinic dehydrogenase and cytochrome oxidase in brain and liver of rat was investigated. The choice of the two mitochondrial enzymes was based on the fact that the mitochondria are the chief site of manganese accumulation and their activity in brain, liver and blood of rats is significantly influenced by manganese.

  3. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis.

    PubMed

    Perry, Robert D; Bobrov, Alexander G; Fetherston, Jacqueline D

    2015-06-01

    Yersinia pestis, the causative agent of bubonic, septicemic and pneumonic plague, encodes a multitude of Fe transport systems. Some of these are defective due to frameshift or IS element insertions, while others are functional in vitro but have no established role in causing infections. Indeed only 3 Fe transporters (Ybt, Yfe and Feo) have been shown to be important in at least one form of plague. The yersiniabactin (Ybt) system is essential in the early dermal/lymphatic stages of bubonic plague, irrelevant in the septicemic stage, and critical in pneumonic plague. Two Mn transporters have been characterized (Yfe and MntH). These two systems play a role in bubonic plague but the double yfe mntH mutant is fully virulent in a mouse model of pneumonic plague. The same in vivo phenotype occurs with a mutant lacking two (Yfe and Feo) of four ferrous transporters. A role for the Ybt siderophore in Zn acquisition has been revealed. Ybt-dependent Zn acquisition uses a transport system completely independent of the Fe-Ybt uptake system. Together Ybt components and ZnuABC play a critical role in Zn acquisition in vivo. Single mutants in either system retain high virulence in a mouse model of septicemic plague while the double mutant is completely avirulent.

  4. The influence of aminopolycarboxylates on the sorption of copper (II) cations by (Hydro)oxides of iron, Aluminum, and manganese

    NASA Astrophysics Data System (ADS)

    Kropacheva, T. N.; Antonova, A. S.; Kornev, V. I.

    2016-07-01

    The influence of some complexing agents of (poly)aminopolycarboxylic acids (diethylenetriaminopentaacetic acid (DTPA), ethylenediaminotetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and iminodiacetic acid (IDA)) on the sorption of Cu2+ by crystal and amorphous (hydr)oxides of Fe(III), Al(III), and Mn(IV) that are widespread mineral components of soils was studied. The obtained results are considered in terms of complex-formation in the solution and on the sorbent's surface. The effect of the complexing agents on the metal sorption (mobilization/immobilization) is determined by (1) the stability, structure, and sorption capability of compexonates formed in the solution; (2) the acidity, and (3) the nature of the sorbent. The desorption effect on Cu2+ cations was found to change in the following sequence of complexing agents: EDTA > DTPA ≫ NTA > IDA. The high-dentate complexing agents (EDTA, DTPA) had the greatest impact on ?u2+ cations bound with crystalline (hydr)oxides of Fe, Al, and Mn. The low denticity of the complexing agents (IDA, NTA) and binding of ?u2+ with amorphous sorbents leads to the weakening of desorption. The decrease in acidity promoted the mobilization of the metal under the influence of complexing agents; the increase in acidity caused its immobilization. The growth in the mobility of heavy metals bound with soil (hydr)oxides of Fe, Al, and Mn due to the complexing agents entering the surface and ground water is considered a factor of ecological risk.

  5. The Role of Transition Metal Transporters for Iron, Zinc, Manganese, and Copper in the Pathogenesis of Yersinia pestis

    PubMed Central

    Perry, Robert D.; Bobrov, Alexander G.; Fetherston, Jacqueline D.

    2015-01-01

    Yersinia pestis, the causative agent of bubonic, septicemic and pneumonic plague, encodes a multitude of Fe transport systems. Some of these are defective due to frameshift or IS element insertions, while others are functional in vitro but have no established role in causing infections. Indeed only 3 Fe transporters (Ybt, Yfe and Feo) have been shown to be important in at least one form of plague. The yersiniabactin (Ybt) system is essential in the early dermal/lymphatic stages of bubonic plague, irrelevant in the septicemic stage, and critical in pneumonic plague. Two Mn transporters have been characterized (Yfe and MntH). These two systems play a role in bubonic plague but the double yfe mntH mutant is fully virulent in a mouse model of pneumonic plague. The same in vivo phenotype occurs with a mutant lacking two (Yfe and Feo) of four ferrous transporters. A role for the Ybt siderophore in Zn acquisition has been revealed. Ybt-dependent Zn acquisition uses a transport system completely independent of the Fe-Ybt uptake system. Together Ybt components and ZnuABC play a critical role in Zn acquisition in vivo. Single mutants in either system retain high virulence in a mouse model of septicemic plague while the double mutant is completely avirulent. PMID:25891079

  6. Dissolution of copper, tin, and iron from sintered tungsten-bronze spheres in a simulated avian gizzard, and an assessment of their potential toxicity to birds.

    PubMed

    Thomas, Vernon G; McGill, Ian R

    2008-05-15

    The rates of dissolution of copper, tin, and iron from sintered tungsten-bronze spheres (51.1%W, 44.4%Cu, 3.9%Sn, 0.6%Fe, by mass) were measured in an in vitro simulated avian gizzard at pH 2.0, and 42C. Most of the spheres had disintegrated completely to a fine powder by day 14. Dissolution of copper, tin, and iron from the spheres was linear over time; all r>0.974; all P<0.001. The mean rate of release of copper, tin, and iron was 30.4 mg, 2.74 mg, and 0.38 mg per g tungsten-bronze per day, respectively. These rates of metal release were compared to those in published studies to determine whether the simultaneous ingestion of eight spheres of 3.48 mm diameter would pose a toxic risk to birds. The potential absorption rates of iron and tin (0.54 mg Fe/day, and 3.89 mg Sn/day) from eight tungsten-bronze spheres of total mass 1.42 g would not prove toxic, based on empirical studies of tin and iron ingestion in waterfowl. The release of 43.17 mg copper/day from eight tungsten-bronze spheres, while exceeding the daily copper requirements of domesticated birds, is far below the levels of copper known to cause copper toxicosis in birds. We conclude that sintered tungsten-bronze material made into gunshot, fishing weights, or wheel balance weights, would not pose a toxic risk to wild birds when ingested.

  7. Iron

    MedlinePlus

    ... cereals and breads. White beans, lentils, spinach, kidney beans, and peas. Nuts and some dried fruits, such as raisins. Iron in food comes in two forms: heme iron and nonheme iron. Nonheme iron is found in plant foods and iron-fortified food products. Meat, seafood, ...

  8. Comparison of the mineralogy of the Boss-Bixby, Missouri copper-iron deposit, and the Olympic Dam copper-uranium-gold deposit, South Australia

    SciTech Connect

    Brandom, R.T.; Hagni, R.D.; Allen, C.R.

    1985-01-01

    An ore microscopic examination of 80 polished sections prepared from selected drill core specimens from the Boss-Bixby, Missouri copper-iron deposit has shown that its mineral assemblage is similar to that of the Olympic Dam (Roxby Downs) copper-uranium-gold deposit in South Australia. A comparison with the mineralogy reported for Olympic Dam shows that both deposits contain: 1) the principal minerals, magnetite, hematite, chalcopyrite, and bornite, 2) the cobalt-bearing phases, carrollite and cobaltian pyrite, 3) the titanium oxides, rutile and anatase, 4) smaller amounts of martite, covellite, and electrum, 5) fluorite and carbonates, and 6) some alteration minerals. The deposits also are similar with regard to the sequence of mineral deposition: 1) early oxides, 2) then sulfide minerals, and 3) a final oxide generation. The deposits, however, are dissimilar with regard to their host rock lithologies and structural settings. The Boss-Bixby ores occupy breccia zones within a hydrothermally altered basic intrusive and intruded silicic volcanics, whereas the Olympic Dam ores are contained in sedimentary breccias in a graben or trough. Also, some minerals have been found thus far to occur at only one of the deposits. The similarity of mineralogy in these deposits suggests that they were formed from ore fluids that had some similarities in character and that the St. Francois terrane of Missouri is an important region for further exploration for deposits with this mineral assemblage.

  9. Manganese Intoxication

    PubMed Central

    Hine, Charles H.; Pasi, Aurelio

    1975-01-01

    We have reported two cases of chronic manganese poisoning. Case 1 followed exposure to manganese fumes in cutting and burning manganese steel. Case 2 resulted from exposure to dusts of manganese dioxide, an ingredient used in glazing of ceramics. There were initial difficulties in establishing the correct diagnosis. Prominent clinical features were severe and persistent chronic depressive psychosis (Case 1), transient acute brain syndrome (Case 2) and the presence of various extrapyramidal symptoms in both cases. Manganese intoxication has not previously been reported as occurring in California. With increasing use of the metal, the disease should be considered in the differential diagnosis of neurologic and psychiatric disease. Our observations were made in the period 1964 through 1968. Recently the prognosis of victims of manganese poisoning has been improved dramatically by the introduction of levodopa as a therapeutic agent. PMID:1179714

  10. Prevention of iron- and copper-mediated DNA damage by catecholamine and amino acid neurotransmitters, L-DOPA, and curcumin: metal binding as a general antioxidant mechanism.

    PubMed

    García, Carla R; Angelé-Martínez, Carlos; Wilkes, Jenna A; Wang, Hsiao C; Battin, Erin E; Brumaghim, Julia L

    2012-06-01

    Concentrations of labile iron and copper are elevated in patients with neurological disorders, causing interest in metal-neurotransmitter interactions. Catecholamine (dopamine, epinephrine, and norepinephrine) and amino acid (glycine, glutamate, and 4-aminobutyrate) neurotransmitters are antioxidants also known to bind metal ions. To investigate the role of metal binding as an antioxidant mechanism for these neurotransmitters, L-dihydroxyphenylalanine (L-DOPA), and curcumin, their abilities to prevent iron- and copper-mediated DNA damage were quantified, cyclic voltammetry was used to determine the relationship between their redox potentials and DNA damage prevention, and UV-vis studies were conducted to determine iron and copper binding as well as iron oxidation rates. In contrast to amino acid neurotransmitters, catecholamine neurotransmitters, L-DOPA, and curcumin prevent significant iron-mediated DNA damage (IC(50) values of 3.2 to 18 μM) and are electrochemically active. However, glycine and glutamate are more effective at preventing copper-mediated DNA damage (IC(50) values of 35 and 12.9 μM, respectively) than L-DOPA, the only catecholamine to prevent this damage (IC(50) = 73 μM). This metal-mediated DNA damage prevention is directly related to the metal-binding behaviour of these compounds. When bound to iron or copper, the catecholamines, amino acids, and curcumin significantly shift iron oxidation potentials and stabilize Fe(3+) over Fe(2+) and Cu(2+) over Cu(+), a factor that may prevent metal redox cycling in vivo. These results highlight the disparate antioxidant activities of neurotransmitters, drugs, and supplements and highlight the importance of considering metal binding when identifying antioxidants to treat and prevent neurodegenerative disorders. PMID:22450660

  11. A study of the processes during high temperature oxidation that control surface hot shortness in copper-containing low carbon steels

    NASA Astrophysics Data System (ADS)

    Webler, Bryan A.

    Copper is a problematic residual element in electric arc furnace steel production because it leads to "surface hot shortness," a cracking defect that occurs during hot rolling of steel. The cracking arises from a liquid, copper-rich phase that penetrates into and embrittles the austenite grain boundaries. The liquid forms because copper is nobler than iron and enriches at the oxide/metal interface during oxidation of iron after casting and reheating prior to hot rolling. This cracking can be reduced or eliminated by controlling the distribution of the copper-rich layer, i.e. preventing it from penetrating down the austenite grain boundaries. This study investigated the effect of alloy chemistry on the oxidation behavior and copper-rich liquid phase evolution. Alloy compositions were selected such that effects of copper, nickel, and reactive impurities (manganese, aluminum, and silicon) can be isolated. Industrially produced low carbon steels with varying copper, nickel and silicon contents were also studied. Alloys were oxidized in air or water vapor for times up to one hour at 1150°C. Oxidizing heat treatments were conducted in a thermogravimetric setup where the weight change could be measured during oxidation. Scanning electron microscopy was used to investigate in detail the oxide/metal interfaces. The modeling work focused on describing the enrichment and subsequent growth of the copper-rich layer. A fixed grid finite difference model was developed that predicts the evolution of the enriched region from given oxidation kinetics. The model predictions were validated under a variety of conditions using an iron - 0.3 wt% copper alloy. Deviations from the model predictions in these alloys suggest a critical amount of separated copper is necessary for substantial grain boundary penetration to occur and the required amount decreases when the gas contains water vapor. The parabolic oxidation rate for the iron-copper alloy did not differ from that of pure iron, but

  12. Enhanced bioremediation of heavy metal from effluent by sulfate-reducing bacteria with copper-iron bimetallic particles support.

    PubMed

    Zhou, Qin; Chen, Yongzhe; Yang, Ming; Li, Wenkai; Deng, Le

    2013-05-01

    The purpose of this study was to investigate the potential of copper-iron bimetallic particles supported sulfate-reducing bacteria (SRB) in enhancing the reduction of Cu(2+) and Zn(2+) in effluent. The results showed that the copper-iron bimetallic particles can enhance Cu(2+) and Zn(2+) removal and the resistance of the sulfate-reducing bacteria towards metals toxicity, the inhibiting concentration of Cu(2+) and Zn(2+) for SRB was significantly increased (from 100 to 200 mg/L for Cu(2+) and 300 to 400 mg/L for Zn(2+)). The removal efficiencies of Cu(2+) and Zn(2+) (initial concentration 100 mg/L) were 98.17% and 99.67% in SRB-Cu/Fe system after 48 h, while only 29.83% Cu(2+), 90.88% Zn(2+) and 63.81% Cu(2+), 72.63% Zn(2+) were removed in the SRB and Cu/Fe system at the same condition.

  13. Iron-copper cooperative catalysis in the reactions of alkyl Grignard reagents: exchange reaction with alkenes and carbometalation of alkynes.

    PubMed

    Shirakawa, Eiji; Ikeda, Daiji; Masui, Seiji; Yoshida, Masatoshi; Hayashi, Tamio

    2012-01-11

    Iron-copper cooperative catalysis is shown to be effective for an alkene-Grignard exchange reaction and alkylmagnesiation of alkynes. The Grignard exchange between terminal alkenes (RCH═CH(2)) and cyclopentylmagnesium bromide was catalyzed by FeCl(3) (2.5 mol %) and CuBr (5 mol %) in combination with PBu(3) (10 mol %) to give RCH(2)CH(2)MgBr in high yields. 1-Alkyl Grignard reagents add to alkynes in the presence of a catalyst system consisting of Fe(acac)(3), CuBr, PBu(3), and N,N,N',N'-tetramethylethylenediamine to give β-alkylvinyl Grignard reagents. The exchange reaction and carbometalation take place on iron, whereas copper assists with the exchange of organic groups between organoiron and organomagnesium species through transmetalation with these species. Sequential reactions consisting of the alkene-Grignard exchange and the alkylmagnesiation of alkynes were successfully conducted by adding an alkyne to a mixture of the first reaction. Isomerization of Grignard reagents from 2-alkyl to 1-alkyl catalyzed by Fe-Cu also is applicable as the first 1-alkyl Grignard formation step. PMID:22128888

  14. Separation of copper ions from iron ions using PVA-g-(acrylic acid/N-vinyl imidazole) membranes prepared by radiation-induced grafting.

    PubMed

    Ajji, Zaki; Ali, Ali M

    2010-01-15

    Acrylic acid (AAc), N-vinyl imidazole (Azol) and their binary mixtures were graft copolymerized onto poly(vinyl alcohol) membranes using gamma irradiation. The ability of the grafted membranes to separate Cu ions from Fe ions was investigated with respect to the grafting yield and the pH of the feed solution. The data showed that the diffusion of copper ions from the feed compartment to the receiver compartment depends on the grafting yield of the membranes and the pH of the feed solution. To the contrary, iron ions did not diffuse through the membranes of all grafting yields. However, a limited amount of iron ions diffused in strong acidic medium. This study shows that the prepared membranes could be considered for the separation of copper ions from iron ions. The temperature of thermal decomposition of pure PVA-g-AAc/Azol membrane, PVA-g-AAc/Azol membrane containing copper ions, and PVA-g-AAc/Azol membrane containing iron ions were determined using TGA analyzer. It was shown that the presence of Cu and Fe ions increases the decomposition temperature, and the membranes bonded with iron ions are more stable than those containing copper ions. PMID:19836882

  15. Hydroxyapatite formation on titania-based materials in a solution mimicking body fluid: Effects of manganese and iron addition in anatase.

    PubMed

    Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara

    2015-03-01

    Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid.

  16. pH-responsive iron manganese silicate nanoparticles as T1-T2* dual-modal imaging probes for tumor diagnosis.

    PubMed

    Chen, Jian; Zhang, Wei-Jie; Guo, Zhen; Wang, Hai-Bao; Wang, Dong-Dong; Zhou, Jia-Jia; Chen, Qian-Wang

    2015-03-11

    Magnetic resonance imaging (MRI) probes can be concentrated in tumors through grafting targeting agents. However, the clinical application of such targeted MRI probes is largely limited because specific agents are only used to target specific characteristics of cancer cells. The development of the MRI probes that can be used regardless of tumor types or their developmental stages is highly appreciated. The acidic tumor microenvironments and acidic organelles (endosomes/lysosomes) in cancer cells are universal phenomena of solid tumors, and nanoparticles can also accumulate in tumor tissues by enhanced permeability and retention (EPR) effect. Here, we reported the synthesis of pH-responsive T1-T2* dual-modal contrast agents based on iron manganese silicate (FeMn(SiO4)) hollow nanospheres, which can release Mn(2+) ions in acidic environments, exhibiting excellent ability as agents for magnetic resonance and red fluorescence imaging. MRI for mouse models revealed that the nanoprobes could accumulate in tumors via EPR effect and then distinguish tumors from normal tissues with the synergistic effect of T1 and T2* signal only 10 min after intravenous injection. Fluorescence imaging demonstrated that the nanoprobes could be endocytosed into cancer cells and located at their lower pH compartments. Moreover, the hollow nanospheres showed no obvious toxicity and inflammation to the major organs of mice, which made them attractive diagnostic agents for different types of cancers.

  17. Effect of iron-manganese-sepiolite as heterogeneous Fenton-like catalyst on the performance and microbial community of anaerobic granular sludge treatment system.

    PubMed

    Su, Chengyuan; Li, Weiguang; Chen, Menglin; Huang, Zhi; Wu, Lei

    2016-01-01

    Both short-term and long-term exposure experiments have been carried out to investigate the influence of iron (Fe)-manganese (Mn)-sepiolite, as a heterogeneous Fenton-like catalyst, on the performance and microbial community of anaerobic granular sludge. During the short-term exposure experiments, chemical oxygen demand (COD) removal efficiency decreased from 73.1% to 64.1% with the presence of 100mg/L of catalyst. However, long-term exposure to the catalyst did not significantly affect the COD removal efficiency (81.8%) as compared to the control (83.5%). Meanwhile, the absorption peaks of coenzyme F420 in extracellular polymeric substances (EPS) of sludge samples were remarkable by excitation-emission matrix (EEM) fluorescence spectra. After long-term exposure, the presence of the catalyst increased secretions of EPS from 83.7mg/g VSS to 89.1mg/g VSS. Further investigations with high throughput sequencing indicated that the abundance of Methanosaeta increased from 57.7% to 70.4% after long-term exposure. In bacterial communities, Proteobacteria, Firmicutes, and Synergistetes were predominant.

  18. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  19. The Yin and Yang of copper during infection.

    PubMed

    Besold, Angelique N; Culbertson, Edward M; Culotta, Valeria C

    2016-04-01

    Copper is an essential micronutrient for both pathogens and the animal hosts they infect. However, copper can also be toxic in cells due to its redox properties and ability to disrupt active sites of metalloproteins, such as Fe-S enzymes. Through these toxic properties, copper is an effective antimicrobial agent and an emerging concept in innate immunity is that the animal host intentionally exploits copper toxicity in antimicrobial weaponry. In particular, macrophages can attack invading microbes with high copper and this metal is also elevated at sites of lung infection. In addition, copper levels in serum rise during infection with a wide array of pathogens. To defend against this toxic copper, the microbial intruder is equipped with a battery of copper detoxification defenses that promote survival in the host, including copper exporting ATPases and copper binding metallothioneins. However, it is important to remember that copper is also an essential nutrient for microbial pathogens and serves as important cofactor for enzymes such as cytochrome c oxidase for respiration, superoxide dismutase for anti-oxidant defense and multi-copper oxidases that act on metals and organic substrates. We therefore posit that the animal host can also thwart pathogen growth by limiting their copper nutrients, similar to the well-documented nutritional immunity effects for starving microbes of essential zinc, manganese and iron micronutrients. This review provides both sides of the copper story and evaluates how the host can exploit either copper-the-toxin or copper-the-nutrient in antimicrobial tactics at the host-pathogen battleground. PMID:26790881

  20. Chemical versus Enzymatic Digestion of Contaminated Estuarine Sediment: Relative Importance of Iron and Manganese Oxides in Controlling Trace Metal Bioavailability

    NASA Astrophysics Data System (ADS)

    Turner, A.; Olsen, Y. S.

    2000-12-01

    Chemical and enzymatic reagents have been employed to determine available concentrations of Fe, Mn, Cu and Zn in contaminated estuarine sediment. Gastric and intestinal enzymes (pepsin, pH 2, and trypsin, pH 7·6, respectively) removed significantly more metal than was water-soluble or exchangeable (by seawater or ammonium acetate), while gastro-intestinal fluid of the demersal teleost, Pleuronectes platessa L. (plaice), employed to operationally define a bioavailable fraction of contaminants, generally solubilized more metal than the model enzymes. Manganese was considerably more available than Fe under these conditions and it is suggested that the principal mechanism of contaminant release is via surface complexation and reductive solubilization of Mn oxides, a process which is enhanced under conditions of low pH. Of the chemical reagents tested, acetic acid best represents the fraction of Mn (as well as Cu and Zn) which is available under gastro-intestinal conditions, suggesting that the reducing tendency of acetate is similar to that of the ligands encountered in the natural digestive environment. Although the precise enzymatic and non-enzymatic composition of plaice gastro-intestinal fluid may be different to that encountered in more representative, filter-feeding or burrowing organisms, a general implication of this study is that contaminants associated with Mn oxides are significantly more bioavailable than those associated with Fe oxides, and that contaminant bioavailability may be largely dictated by the oxidic composition of contaminated sediment.

  1. Assessment of the possible role of iron and copper in cisplatin-induced nephrotoxicity in the rat.

    PubMed

    Goudie, J; Chandra, M; Lawrence, G D; Williams, P

    1994-01-01

    Nephrotoxic lesions induced by cisplatin in rats are characterized by acute tubular necrosis in the outer stripe of the medulla. The purpose of this study was to examine the potential role of changes in metal binding proteins, and iron and copper content in urine and renal tissue in cisplatin-induced nephrotoxicity. Cisplatin was administered intravenously to groups of 20 rats at single doses of 0, 1, 2.5, and 5 mg/kg and rats were sacrificed at 1, 2, 3 and 6 days after treatment. Increased serum BUN and creatinine were observed at a dose of 5 mg/kg cisplatin on day 2 through day 6. Increased urinary copper excretion coincided with necrosis and increased BUN and creatinine on day 3 in the high-dose group. Evidence of renal injury was apparent histologically as karyomegaly at all dose levels as early as 48 hours after injection of cisplatin, prior to increases in urinary copper levels. No change in the distribution of metal binding proteins (transferrin, ferritin, ceruloplasmin, and metallothionein) evaluated by immunohistochemical staining, was seen. Based upon these results, it is unlikely that changes in metal excretion play a primary role in cisplatin-induced nephrotoxicity however, changes in nuclear function indicated by karyomegaly may be involved in early renal injury.

  2. Effects of a single exposure to UVB radiation on the activities and protein levels of copper-zinc and manganese superoxide dismutase in cultured human keratinocytes.

    PubMed

    Sasaki, H; Akamatsu, H; Horio, T

    1997-04-01

    Ultraviolet B irradiation has been believed to decrease or impair the activity of reactive oxygen species (ROS) scavenging enzymes such as superoxide dismutase (SOD) in the skin. It has been recently reported that two isozymes of SOD, namely copper-zinc SOD (Cu-Zn SOD) and manganese SOD (Mn SOD), exist in mammalian cells and that the two enzymes play different roles in living systems. The aim of this study was to investigate changes in SOD activities and protein levels in cultured human keratinocytes after acute UVB irradiation. In addition, the protein levels of Cu-Zn SOD and Mn SOD were quantified separately. A single exposure to UVB irradiation produced an increase in SOD activity and protein level that peaked immediately after UVB irradiation, after which a decline was observed, with subsequent recovery to baseline levels 24 h after irradiation. In individual assays of Mn SOD and Cu-Zn SOD, the amount of Mn SOD protein decreased and then gradually recovered 24 h after irradiation. In contrast, the amount of Cu-Zn SOD protein increased immediately after UVB irradiation, and then gradually declined. To evaluate the mechanisms of these changes, we examined the effects of the cytokines, interleukin-1 alpha (IL-1 alpha) and tumor necrosis factor-alpha (TNF-alpha), which can be secreted from keratinocytes after UVB irradiation, on the SOD activity and protein levels in keratinocytes. Interleukin-1 alpha and TNF-alpha enhanced both the SOD activity and protein level of Mn SOD, while these cytokines had no effect on Cu-Zn SOD protein levels in cultured human keratinocytes after incubation for 24 h. Furthermore, when neutralizing antibodies against IL-1 alpha and TNF-alpha were added separately or together to the culture medium before UVB irradiation, the recovery of total SOD activity and Mn SOD protein level were markedly inhibited 24 h after irradiation. Our results suggest that significant increases in SOD activity and protein level occur as a cutaneous antioxidant

  3. Relative contribution of CTR1 and DMT1 in copper transport by the blood–CSF barrier: Implication in manganese-induced neurotoxicity

    SciTech Connect

    Zheng, Gang; Chen, Jingyuan; Zheng, Wei

    2012-05-01

    The homeostasis of copper (Cu) in the cerebrospinal fluid (CSF) is partially regulated by the Cu transporter-1 (CTR1) and divalent metal transporter-1 (DMT1) at the blood–CSF barrier (BCB) in the choroid plexus. Data from human and animal studies suggest an increased Cu concentration in blood, CSF, and brains following in vivo manganese (Mn) exposure. This study was designed to investigate the relative role of CTR1 and DMT1 in Cu transport under normal or Mn-exposed conditions using an immortalized choroidal Z310 cell line. Mn exposure in vitro resulted in an increased cellular {sup 64}Cu uptake and the up-regulation of both CTR1 and DMT1. Knocking down CTR1 by siRNA counteracted the Mn-induced increase of {sup 64}Cu uptake, while knocking down DMT1 siRNA resulted in an increased cellular {sup 64}Cu uptake in Mn-exposed cells. To distinguish the roles of CTR1 and DMT1 in Cu transport, the Z310 cell-based tetracycline (Tet)-inducible CTR1 and DMT1 expression cell lines were developed, namely iZCTR1 and iZDMT1 cells, respectively. In iZCTR1 cells, Tet induction led to a robust increase (25 fold) of {sup 64}Cu uptake with the time course corresponding to the increased CTR1. Induction of DMT1 by Tet in iZDMT1 cells, however, resulted in only a slight increase of {sup 64}Cu uptake in contrast to a substantial increase in DMT1 mRNA and protein expression. These data indicate that CTR1, but not DMT1, plays an essential role in transporting Cu by the BCB in the choroid plexus. Mn-induced cellular overload of Cu at the BCB is due, primarily, to Mn-induced over-expression of CTR1. -- Highlights: ► This study compares the relative role of CTR1 and DMT1 in Cu transport by the BCB. ► Two novel tetracycline-inducible CTR1 and DMT1 expression cell lines are created. ► CTR1, but not DMT1, plays an essential role in transporting Cu by the BCB. ► Mn-induced cellular Cu overload is due to its induction of CTR1 rather than DMT1. ► Induction of CTR1 by Mn in the BCB

  4. Does an infrasonic acoustic shock wave resonance of the manganese 3+ loaded/copper depleted prion protein initiate the pathogenesis of TSE?

    PubMed

    Purdey, Mark

    2003-06-01

    Intensive exposures to natural and artificial sources of infrasonic acoustic shock (tectonic disturbances, supersonic aeroplanes, etc.) have been observed in ecosystems supporting mammalian populations that are blighted by clusters of traditional and new variant strains of transmissible spongiform encephalopathy (TSE). But TSEs will only emerge in those 'infrasound-rich' environments which are simultaneously influenced by eco-factors that induce a high manganese (Mn)/low copper (Cu)-zinc (Zn) ratio in brains of local mammalian populations. Since cellular prion protein (PrPc) is a cupro-protein expressed throughout the circadian mediated pathways of the body, it is proposed that PrP's Cu component performs a role in the conduction and distribution of endogenous electromagnetic energy; energy that has been transduced from incoming ultraviolet, acoustic, geomagnetic radiations. TSE pathogenesis is initiated once Mn substitutes at the vacant Cu domain on PrPc and forms a nonpathogenic, protease resistant, 'sleeping' prion. A second stage of pathogenesis comes into play once a low frequency wave of infrasonic shock metamorphoses the piezoelectric atomic structure of the Mn 3+ component of the prion, thereby 'priming' the sleeping prion into its fully fledged, pathogenic TSE isoform - where the paramagnetic status of the Mn 3+ atom is transformed into a stable ferrimagnetic lattice work, due to the strong electron-phonon coupling resulting from the dynamic 'Jahn-Teller' type distortions of the oxygen octahedra specific to the trivalent Mn species. The so called 'infectivity' of the prion is a misnomer and should be correctly defined as the contagious field inducing capacity of the ferrimagnetic Mn 3+ component of the prion; which remains pathogenic at all temperatures below the 'curie point'. A progressive domino-like 'metal to ligand to metal' ferrimagnetic corruption of the conduits of electromagnetic superexchange is initiated. The TSE diseased brain can be likened to

  5. Manganese oxide-induced strategy to high-performance iron/nitrogen/carbon electrocatalysts with highly exposed active sites

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Wu, Qiang; Zhuo, Ou; Jiang, Yufei; Bu, Yongfeng; Yang, Lijun; Wang, Xizhang; Hu, Zheng

    2016-04-01

    Iron/nitrogen/carbon (Fe/N/C) catalyst is so far the most promising non-precious metal electrocatalyst for oxygen reduction reaction (ORR) in acidic medium, whose performance depends closely on the synthesis chemistry. Herein, we report a MnOx-induced strategy to construct the Fe/N/C with highly exposed Fe-Nx active sites, which involves the uniform spreading of polyaniline on hierarchical N-doped carbon nanocages by a reactive-template polymerization, followed by the successive iron incorporation and polyaniline pyrolysis. The resulting Fe/N/C demonstrates an excellent ORR performance, including an onset potential of 0.92 V (vs. RHE), four electron selectivity, superb stability and immunity to methanol crossover. The excellent performance is well correlated with the greatly enhanced surface active sites of the catalyst stemming from the unique MnOx-induced strategy. This study provides an efficient approach for exploring the advanced ORR electrocatalysts by increasing the exposed active sites.Iron/nitrogen/carbon (Fe/N/C) catalyst is so far the most promising non-precious metal electrocatalyst for oxygen reduction reaction (ORR) in acidic medium, whose performance depends closely on the synthesis chemistry. Herein, we report a MnOx-induced strategy to construct the Fe/N/C with highly exposed Fe-Nx active sites, which involves the uniform spreading of polyaniline on hierarchical N-doped carbon nanocages by a reactive-template polymerization, followed by the successive iron incorporation and polyaniline pyrolysis. The resulting Fe/N/C demonstrates an excellent ORR performance, including an onset potential of 0.92 V (vs. RHE), four electron selectivity, superb stability and immunity to methanol crossover. The excellent performance is well correlated with the greatly enhanced surface active sites of the catalyst stemming from the unique MnOx-induced strategy. This study provides an efficient approach for exploring the advanced ORR electrocatalysts by increasing the

  6. Transformation of triclosan to 2,8-dichlorodibenzo-p-dioxin by iron and manganese oxides under near dry conditions.

    PubMed

    Ding, Jiafeng; Su, Mian; Wu, Cuiwei; Lin, Kunde

    2015-08-01

    Triclosan (TCS) is a broad-spectrum antibacterial agent widely used in household and personal care products and is frequently detected in the environment. Previous studies have shown that TCS could be converted to the more toxic compound 2,8-dichlorodibenzo-p-dioxins (2,8-DCDD) in photochemical reactions and incineration processes. In this study, we demonstrated the formation of 2,8-DCDD from the oxidation of TCS by α-FeOOH and a natural manganese oxides (MnOx) sand. Experiments at room temperature and under near dry conditions showed that Fe and Mn oxides readily catalyzed the conversion of TCS to 2,8-DCDD and other products. Approximately 5.5% of TCS was transformed to 2,8-DCDD by α-FeOOH in 45 d and a higher conversion percentage (6.7%) was observed for MnOx sand in 16d. However, the presence of water in the samples significantly inhibited the formation of 2,8-DCDD. Besides 2,8-DCDD, 2,4-dichlorphenol (2,4-DCP), 4-chlorobenzene-1,2-diol, 2-chloro-5-(2,4-dichlorophenoxy)benzene-1,4-diol, and 2-chloro-5-(2,4-dichlorophenoxy)-1,4-benzoquinone were identified in the reactions. The possible pathways for the formation of reaction products were proposed. This study suggests that Fe and Mn oxides-mediated transformation of TCS under near dry conditions might be another potential pathway for the formation of 2,8-DCDD in the natural environment.

  7. Transformation of triclosan to 2,8-dichlorodibenzo-p-dioxin by iron and manganese oxides under near dry conditions.

    PubMed

    Ding, Jiafeng; Su, Mian; Wu, Cuiwei; Lin, Kunde

    2015-08-01

    Triclosan (TCS) is a broad-spectrum antibacterial agent widely used in household and personal care products and is frequently detected in the environment. Previous studies have shown that TCS could be converted to the more toxic compound 2,8-dichlorodibenzo-p-dioxins (2,8-DCDD) in photochemical reactions and incineration processes. In this study, we demonstrated the formation of 2,8-DCDD from the oxidation of TCS by α-FeOOH and a natural manganese oxides (MnOx) sand. Experiments at room temperature and under near dry conditions showed that Fe and Mn oxides readily catalyzed the conversion of TCS to 2,8-DCDD and other products. Approximately 5.5% of TCS was transformed to 2,8-DCDD by α-FeOOH in 45 d and a higher conversion percentage (6.7%) was observed for MnOx sand in 16d. However, the presence of water in the samples significantly inhibited the formation of 2,8-DCDD. Besides 2,8-DCDD, 2,4-dichlorphenol (2,4-DCP), 4-chlorobenzene-1,2-diol, 2-chloro-5-(2,4-dichlorophenoxy)benzene-1,4-diol, and 2-chloro-5-(2,4-dichlorophenoxy)-1,4-benzoquinone were identified in the reactions. The possible pathways for the formation of reaction products were proposed. This study suggests that Fe and Mn oxides-mediated transformation of TCS under near dry conditions might be another potential pathway for the formation of 2,8-DCDD in the natural environment. PMID:25880455

  8. The effect of manganese on the onset of the stage 2 reaction in an austempered ductile iron matrix

    SciTech Connect

    Hagen, K. N.

    1990-02-01

    Austempered ductile irons (ADIs) possess a unique combination of toughness and ductility plus high strength which make them attractive alternatives to other metal castings. ADIs can have tensile strengths up to 230 ksi with a 1% elongation and high hardness for wear resistant applications, or tensile strengths of approximately 150 ksi and elongations of 14% where a large amount of ductility is required. Austempering is a two step process: complete transformation to the austenite ({gamma}) phase; and a quench and hold in the temperature range of 270--420{degree}C for some time followed by cooling to room temperature. This quench must be sufficiently rapid to avoid formation of pearlite or ferrite if the best mechanical properties are to be obtained. This thesis presents the results of a number of experiments aimed at determining the effect of Mn on the length of the Stage 1 reaction. (austenite decomposes into bainitie ferrite and high carbon austenite). A basic knowledge of the effects of Mn will yield a more complete understanding of the austempering process for the normal case and also when microsegregation is present. The onset time for Stage 2 (high carbon austenite decomposes into bainitic ferrite plus carbides) in ductile irons is a critical parameter because of the associated degradation of the mechanical properties which result from carbide formation.

  9. Copper and iron isotope fractionation during weathering and pedogenesis: Insights from saprolite profiles

    NASA Astrophysics Data System (ADS)

    Liu, Sheng-Ao; Teng, Fang-Zhen; Li, Shuguang; Wei, Gang-Jian; Ma, Jing-Long; Li, Dandan

    2014-12-01

    Iron and copper isotopes are useful tools to track redox transformation and biogeochemical cycling in natural environment. To study the relationships of stable Fe and Cu isotopic variations with redox regime and biological processes during weathering and pedogenesis, we carried out Fe and Cu isotope analyses for two sets of basalt weathering profiles (South Carolina, USA and Hainan Island, China), which formed under different climatic conditions (subtropical vs. tropical). Unaltered parent rocks from both profiles have uniform δ56Fe and δ65Cu values close to the average of global basalts. In the South Carolina profile, δ56Fe values of saprolites vary from -0.01‰ to 0.92‰ in the lower (reduced) part and positively correlate with Fe3+/ΣFe (R2 = 0.90), whereas δ65Cu values are almost constant. By contrast, δ56Fe values are less variable and negatively correlate with Fe3+/ΣFe (R2 = 0.88) in the upper (oxidized) part, where large (4.85‰) δ65Cu variation is observed with most samples enriched in heavy isotopes. In the Hainan profile formed by extreme weathering under oxidized condition, δ56Fe values vary little (0.05-0.14‰), whereas δ65Cu values successively decrease from 0.32‰ to -0.12‰ with depth below 3 m and increase from -0.17‰ to 0.02‰ with depth above 3 m. Throughout the whole profile, δ65Cu positively correlate with Cu concentration and negatively correlate with the content of total organic carbon (TOC). Overall, the contrasting Fe isotopic patterns under different redox conditions suggest redox states play the key controls on Fe mobility and isotope fractionation. The negative correlation between δ56Fe and Fe3+/ΣFe in the oxidized part of the South Carolina profile may reflect addition of isotopically light Fe. This is demonstrated by leaching experiments, which show that Fe mineral pools extracted by 0.5 N HCl, representing poorly-crystalline Fe (hydr)-oxides, are enriched in light Fe isotopes. The systematic Cu isotopic variation

  10. IdiA, a 34 kDa protein in the cyanobacteria Synechococcus sp. strains PCC 6301 and PCC 7942, is required for growth under iron and manganese limitations.

    PubMed

    Michel, K P; Thole, H H; Pistorius, E K

    1996-09-01

    In the cyanobacteria Synechococcus PCC 6301 and PCC 7942 a protein with an apparent molecular mass of about 34 kDa (called IdiA for iron-deficiency-induced protein A) accumulates under iron and managanese limitation. IdiA from Synechococcus PCC 6301 was partially sequenced, showing that the N-terminal amino acid is an alanine. Moreover, the gene encoding this protein in Synechococcus PCC 6301 has been identified and completely sequenced. The idiA gene codes for a protein starting with valine and consisting of 330 amino acid residues. Thus, IdiA is apparently synthesized as a precursor protein of 36.17 kDa and cleaved to its mature form of 35.01 kDa between two alanine residues at positions 9 and 10. IdiA is a highly basic protein having an isoelectric point of 10.55 (mature protein). Comparison of the amino acid sequence of IdiA with protein sequences in the database revealed that IdiA has similarities to two basic bacterial iron-binding proteins, SfuA from Serratia marcescens and Fbp from Neisseria gonorrhoeae. Insertional inactivation of the idiA gene in Synechococcus PCC 7942 resulted in a mutant which was unable to grow under iron- or manganese-limiting conditions. Manganese limitation of the mutant strain led to a drastic reduction of photosystem II activity (O2 evolution) within less than 48 h, while wild-type cells required a prolonged cultivation in Mn-deficient medium before an effect on photosystem II was observed. Thus, IdiA is a protein involved in the process of providing photosystem II with manganese. PMID:8828233

  11. Photochemical aerobic detoxification of aqueous phenol and chlorophenol solutions promoted by iron salts and iron, vanadium, and copper oxides

    SciTech Connect

    Nizova, G.V.; Bochkova, M.M.; Kozlova, N.B.; Shul`pin, G.B.

    1995-09-10

    Phenol, 2,4,5-trichlorophenol, and pentachlorophenol in air in the presence of soluble iron salts or insoluble V{sub 2}O{sub 5}, Fe{sub 2}O{sub 3}, and CuO decompose in aqueous solution when irradiated by a luminescent lamp. The degree and the rate of decomposition are strongly influenced by the nature of the substrate and metal-containing promoter. As a result of decomposition, toxicity of solutions containing 2,4,5-trichlorophenol with respect to two types of living organisms - Protozoa (Tetrahymena pyriformis) and bacteria (Beneckea harveyi) - decreases significantly.

  12. The resistance to embrittlement by a hydrogen environment of selected high strength iron-manganese base alloys

    NASA Technical Reports Server (NTRS)

    Benson, R. B., Jr.; Kim, D. K.; Atteridge, D.; Gerberich, W. W.

    1974-01-01

    Fe-16Mn and Fe-25Mn base alloys, which had been cold worked to yield strength levels of 201 and 178 KSI, were resistant to degradation of mechanical properties in a one atmosphere hydrogen environment at ambient temperature under the loading conditions employed in this investigation. Transmission electron microscopy established that bands of epsilon phase martensite and fcc mechanical twins were formed throughout the fcc matrix when these alloys were cold worked. In the cold worked alloys a high density of crystal defects were observed associated with both types of strain induced structures, which should contribute significantly to the strengthening of these alloys. High strength iron base alloys can be produced which appear to have some resistance to degradation of mechanical properties in a hydrogen environment under certain conditions.

  13. Manganese nodules: thorium-230: protactinium-231 ratios.

    PubMed

    Sackett, W M

    1966-11-01

    The Th(230): Pa(231) activity ratio in 7 of 11 manganese nodules is less than 10.8, the theoretical production ratio of activities in the ocean. This finding indicates difierential accumulation of these nuclides in authigenic deposits of manganese-iron oxide.

  14. Manganese nodules: thorium-230: protactinium-231 ratios.

    PubMed

    Sackett, W M

    1966-11-01

    The Th(230): Pa(231) activity ratio in 7 of 11 manganese nodules is less than 10.8, the theoretical production ratio of activities in the ocean. This finding indicates difierential accumulation of these nuclides in authigenic deposits of manganese-iron oxide. PMID:17778807

  15. Preconcentration and determination of iron and copper in spice samples by cloud point extraction and flow injection flame atomic absorption spectrometry.

    PubMed

    Sahin, Ciğdem Arpa; Tokgöz, Ilknur; Bektaş, Sema

    2010-09-15

    A flow injection (FI) cloud point extraction (CPE) method for the determination of iron and copper by flame atomic absorption spectrometer (FAAS) has been improved. The analytes were complexed with 3-amino-7-dimethylamino-2-methylphenazine (Neutral Red, NR) and octylphenoxypolyethoxyethanol (Triton X-114)wasadded as a surfactant. The micellar solutionwasheated above 50 degrees C and loaded through a column packed with cotton for phase separation. Then the surfactant-rich phase was eluted using 0.05 mol L(-1) H2SO4 and the analytes were determined by FAAS. Chemical and flow variables influencing the instrumental and extraction conditions were optimized. Under optimized conditions for 25 mL of preconcentrated solution, the enrichment factors were 98 and 69, the limits of detection (3s) were 0.7 and 0.3 ng mL(-1), the limits of quantification (10s) were 2.2 and 1.0 ng mL(-1) for iron and copper, respectively. The relative standard deviation (RSD) for ten replicate measurements of 10 ng mL(-1) iron and copper were 2.1% and 1.8%, respectively. The proposed method was successfully applied to determination of iron and copper in spice samples.

  16. In vitro and in vivo corrosion properties of new iron-manganese alloys designed for cardiovascular applications.

    PubMed

    Drynda, Andreas; Hassel, Thomas; Bach, Friedrich Wilhelm; Peuster, Matthias

    2015-04-01

    The principle of biodegradation for the production of temporary implant materials (e.g. stents) plays an important role in the treatment of congenital heart defects. In the last decade several attempts have been made with different alloy materials-mainly based on iron and magnesium. None of the currently available materials in this field have demonstrated satisfying results and have therefore not found entry into broad clinical practice. While magnesium or magnesium alloy systems corrode too fast, the corrosion rate of pure iron-stents is too slow for cardiovascular applications. In the last years FeMn alloy systems were developed with the idea that galvanic effects, caused by different electrochemical properties of Fe and Mn, would increase the corrosion rate. In vitro tests with alloys containing up to 30% Mn showed promising results in terms of biocompatibility. This study deals with the development of new FeMn alloy systems with lower Mn concentrations (FeMn 0.5 wt %, FeMn 2.7 wt %, FeMn 6.9 wt %) to avoid Mn toxicity. Our results show, that these alloys exhibit good mechanical features as well as suitable in vitro biocompatibility and corrosion properties. In contrast, the evaluation of these alloys in a mouse model led to unexpected results-even after 9 months no significant corrosion was detectable. Preliminary SEM investigations showed that passivation layers (FeMn phosphates) might be the reason for corrosion resistance. If this can be proved in further experiments, strategies to prevent or dissolve those layers need to be developed to expedite the in vivo corrosion of FeMn alloys.

  17. Geology of the Fishtie deposit, Central Province, Zambia: iron oxide and copper mineralization in Nguba Group metasedimentary rocks

    NASA Astrophysics Data System (ADS)

    Hendrickson, Michael D.; Hitzman, Murray W.; Wood, David; Humphrey, John D.; Wendlandt, Richard F.

    2015-08-01

    The Fishtie copper deposit, located in the Central Province of Zambia, contains approximately 55 Mt of 1.04 % Cu at a 0.5 % Cu cut-off in oxide, sulfide, and mixed oxide-sulfide ores. The deposit is hosted in Neoproterozoic diamictites and siltstones of the Grand Conglomérat Formation and overlying Kakontwe Limestone Formation of the lower Nguba Group. The Grand Conglomérat Formation at Fishtie directly overlies basement schists and quartzites. Mineralized zones are located adjacent to high-angle normal faults that appear to control thickness variations in the Grand Conglomérat Formation suggesting synsedimentary fault movement. Iron-rich rocks consisting of nearly monomineralic bands of magnetite and ankerite occur within the Grand Conglomérat Formation. The absence of magnetite-rich clasts in overlying diamictites and the presence of disseminated magnetite, ankerite, and apatite in adjacent diamictites suggest this iron-rich rock formed by replacement of siltstone beds. These magnetite-rich rocks thicken towards normal faults suggesting the faults formed conduits for oxidized hydrothermal solutions. The magnetite-ankerite-quartz rock was overprinted by later hydrothermal alteration and sulfide mineralization. Copper sulfide precipitation was associated with growth of both muscovite and chlorite, together with weak silicification. Sulfides are zoned relative to normal faults with bornite more common in proximity to faults and ore stage pyrite most common in an outer zone with chalcopyrite. Copper sulfides display generally heavy sulfur isotopic values, suggesting sulfide derivation from thermochemical reduction of Neoproterozoic seawater sulfate. Copper mineralized zones in the Grand Conglomérat at Fishtie are megascopically similar to those observed in the newly discovered Kamoa deposit in the southern Democratic Republic of Congo. Alteration and mineralization at Fishtie display lateral zoning relative to normal faults unlike the broad vertical zonation

  18. Influence of manganese incorporation on structure, surface and As(III)/As(V) removal capacity of iron oxy-hydroxides

    NASA Astrophysics Data System (ADS)

    Tresintsi, Sofia; Simeonidis, Konstantinos; Mitrakas, Manassis

    2013-04-01

    Iron oxy-hydroxides are well defined As(V) adsorbents dominating in water treatment market. The main drawback of these adsorbents, as well as of all commercial one, is their significantly low adsorption capacity for As(III). A breakthrough for improving As(III) adsorption of iron oxy-hydroxides may come by the MnO2incorporation. However, MnO2 decreases the total arsenic capacity proportionally to its percentage since its efficiency for As(V) is much lower than that of an iron oxy-hydroxide. It is concluded that an ideal adsorbent capable for high and simultaneous As(III) and As(V) removal should be consisted of a binary Fe(III)-Mn(IV) oxy-hydroxide both efficient for As(III) oxidation, due to Mn(IV) presence, and capture of As(V) due to a high positively surface charge density. This work studies the optimum parameters at the synthesis of single Fe and binary Fe/Mn oxy-hydroxides in a continuous flow kilogram-scale production reactor through the precipitation of FeSO4 in the pH range 3-12, under intense oxidative conditions using H2O2/KMnO4, that maximize arsenic adsorption. The evaluation of their efficiency was based on its As(III) and As(V) adsorption capacity (Q10-index) at equilibrium concentration equal to drinking water regulation limit (Ce= 10 μg/L) in NSF challenge water. The pH of synthesis was found to decisively affect, the structure, surface configuration and Q10-index. As a result, both single Fe and binary Fe/Mn oxy-hydroxides prepared at pH 4, which consist of schwertmannite and Mn(IV)-feroxyhyte respectively, were qualified according to their highest Q10-index of 13±0.5 μg As(V)/ mg for a residual arsenic concentration of 10 μg/L at an equilibrium pH 7. The high surface charge and the activation of an ion-exchange mechanism between SO42- adsorbed in the Stern layer and arsenate ions were found to significantly contribute to the increased adsorption capacity. The Q10-index for As(III) of Fe/Mn adsorbent at equilibrium pH 7 was 6.7 μg/mg, which

  19. THE ROLE OF IRON IN Deinococcus radiodurans ENGINEERED FOR GROWTH ON TOLUENE AND THE ROLE OF MANGANESE IN THE EXTREME RADIATION RESISTANCE PHENOTYPE

    SciTech Connect

    Hassan Brim; Elena K. Gaidamakova; Vera Y. Matrosova; Min Zhai; Amudhan Venkateswaran; Marina Omelchenko; Kira S. Makarova; Lawrence P. Wackett; James K. Fredrickson; Michael J. Daly

    2004-03-17

    Toluene and other fuel hydrocarbons are commonly found in association with radionuclides at numerous Department of Energy (DOE) sites, frequently occurring together with Cr(VI) and other heavy metals. In this study, the extremely radiation resistant bacterium Deinococcus radiodurans was engineered for complete toluene mineralization by cloned expression of tod and xyl genes of Pseudomonas putida. The recombinant Tod/Xyl strain showed significant incorporation of carbon from the toluene aromatic ring into cellular macromolecules and carbon dioxide, in the absence or presence of chronic radiation. We have shown that intracellular iron concentrations in wild-type D. radiodurans i