Science.gov

Sample records for manganese redox chemistry

  1. Helicity inversion and redox chemistry of chiral manganese(II) cubanes.

    PubMed

    Deville, Claire; Granelli, Matteo; Downward, Alan M; Besnard, Céline; Guenée, Laure; Williams, Alan F

    2014-09-14

    The chiral ligand S-1,2-bis(1H-benzimidazol-2-yl)ethanol, 1, reacts with manganese(II) salts to form cubanes which readily undergo oxidation reactions leading either to a tetranuclear manganese(II,III) mixed valence complex 4 or to a tetranuclear complex of ligand 5 where the secondary alcohol has been oxidised to an enolate. N-methylation of ligand 1 slows the oxidation reaction and stable manganese(II) cubanes may be isolated. The fully methylated ligand 2 gives a cubane of opposite helicity to that found previously for 1 with cobalt. The inversion may be explained by conformational analysis. Cyclic voltammetry suggests that the manganese cubanes reported here are insufficiently robust to store oxidising equivalents as in the oxygen evolving system of photosystem II.

  2. A redox-assisted supramolecular assembly of manganese oxide nanotube

    SciTech Connect

    Tao Li; Sun Chenggao; Fan Meilian; Huang Caijuan; Wu Hailong; Chao Zisheng . E-mail: zschao@yahoo.com; Zhai Hesheng . E-mail: hszhai@xmu.edu.cn

    2006-11-09

    In this paper, we report the hydrothermal synthesis of manganese oxide nanotube from an aqueous medium of pH 7, using KMnO{sub 4} and MnCl{sub 2} as inorganic precursors, polyoxyethylene (10) nonyl phenyl ether (TX-10) a surfactant and acetaldehyde an additive. The characterization of X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and N{sub 2} adsorption at 77 K (BET) reveals that the synthesized manganese oxide nanotube has a mesopore size of ca. 3.65 nm and a wall thickness of ca. 12 nm, with the wall being composed of microporous crystals of monoclinic manganite. The X-ray photoelectron spectroscopy (XPS) result demonstrates a decrease of the binding energy of the Mn{sup 3+} in the manganese oxide nanotube, which may be related to both the nanotubular morphology and the crystalline pore wall. A mechanism of a redox-assisted supramolecular assembly, regulated by acetaldehyde, is postulated.

  3. The Chemistry of Redox-Flow Batteries.

    PubMed

    Noack, Jens; Roznyatovskaya, Nataliya; Herr, Tatjana; Fischer, Peter

    2015-08-17

    The development of various redox-flow batteries for the storage of fluctuating renewable energy has intensified in recent years because of their peculiar ability to be scaled separately in terms of energy and power, and therefore potentially to reduce the costs of energy storage. This has resulted in a considerable increase in the number of publications on redox-flow batteries. This was a motivation to present a comprehensive and critical overview of the features of this type of batteries, focusing mainly on the chemistry of electrolytes and introducing a thorough systematic classification to reveal their potential for future development.

  4. Long-term litter decomposition controlled by manganese redox cycling

    PubMed Central

    Keiluweit, Marco; Nico, Peter; Harmon, Mark E.; Mao, Jingdong; Pett-Ridge, Jennifer; Kleber, Markus

    2015-01-01

    Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn2+ provided by fresh plant litter to produce oxidative Mn3+ species at sites of active decay, with Mn eventually accumulating as insoluble Mn3+/4+ oxides. Formation of reactive Mn3+ species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn3+-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn3+ species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant–soil system may have a profound impact on litter decomposition rates. PMID:26372954

  5. Long-term litter decomposition controlled by manganese redox cycling.

    PubMed

    Keiluweit, Marco; Nico, Peter; Harmon, Mark E; Mao, Jingdong; Pett-Ridge, Jennifer; Kleber, Markus

    2015-09-22

    Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn(2+) provided by fresh plant litter to produce oxidative Mn(3+) species at sites of active decay, with Mn eventually accumulating as insoluble Mn(3+/4+) oxides. Formation of reactive Mn(3+) species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn(3+)-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn(3+) species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant-soil system may have a profound impact on litter decomposition rates.

  6. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    ERIC Educational Resources Information Center

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  7. Rapidly reversible redox transformation in nanophase manganese oxides at room temperature triggered by changes in hydration

    PubMed Central

    Birkner, Nancy; Navrotsky, Alexandra

    2014-01-01

    Chemisorption of water onto anhydrous nanophase manganese oxide surfaces promotes rapidly reversible redox phase changes as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Surface reduction of bixbyite (Mn2O3) to hausmannite (Mn3O4) occurs in nanoparticles under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Additionally, transformation does not occur on nanosurfaces passivated by at least 2% coverage of what is likely an amorphous manganese oxide layer. The transformation is due to thermodynamic control arising from differences in surface energies of the two phases (Mn2O3 and Mn3O4) under wet and dry conditions. Such reversible and rapid transformation near room temperature may affect the behavior of manganese oxides in technological applications and in geologic and environmental settings. PMID:24733903

  8. Synthesis, and characterization of low- and high-spin manganese(II) complexes of polyfunctional adipoyldihydrazone: Effect of coordination of N-donor ligands on stereo-redox chemistry

    NASA Astrophysics Data System (ADS)

    Basumatary, Debajani; Lal, Ram Ashray; Kumar, Arvind

    2015-07-01

    Manganese(II) complexes [MnII(npahH2)] (1), [MnII(npahH2)(A)2] and [MnII(npahH2)(NN)] (where A = pyridine, (2); 2-picoline, (3); 3-picoline, (4); 4-picoline, (5) and NN = 2,2‧ bipyridine, (6); 1,10-phenanthroline, (7)) have been synthesized from bis(2-hydroxy-1-naphthaldehyde)adipoyldihydrazone (npahH4) in methanol. The composition of metal complexes has been established by elemental analyses. Complexes (1) and (3) have been characterized by mass spectral data also. Structural assessments of the complexes have been based on data obtained from molar conductance, magnetic moment, electronic, electron paramagnetic resonance and infrared spectral studies. Conductivity measurements in DMSO suggest that they are non-electrolyte. Electronic spectral studies suggest a six-coordinate octahedral geometry around the manganese center in complexes (2) to (7) and square-planar geometry in complex (1). IR spectral studies reveal that the dihydrazone coordinates to the metal in keto form with an anti-cis configuration. Magnetic moment, and EPR studies suggest manganese in +2 oxidation state in all complexes with high-spin distorted octahedral stereochemistry in complexes (2-7) while low-spin square-planar stereochemistry is involved with significant metal-metal interactions in the solid state in complex (1). Cyclic voltammetric studies reveal that the metal center cycles among the MnII → MnI → Mn0 in complexes (2) to (7) and among MnII → MnI oxidation states in complex (1).

  9. Reduction potentials of heterometallic manganese-oxido cubane complexes modulated by redox-inactive metals.

    PubMed

    Tsui, Emily Y; Agapie, Theodor

    2013-06-18

    Understanding the effect of redox-inactive metals on the properties of biological and heterogeneous water oxidation catalysts is important both fundamentally and for improvement of future catalyst designs. In this work, heterometallic manganese-oxido cubane clusters [MMn3O4] (M = Sr(2+), Zn(2+), Sc(3+), Y(3+)) structurally relevant to the oxygen-evolving complex (OEC) of photosystem II were prepared and characterized. The reduction potentials of these clusters and other related mixed metal manganese-tetraoxido complexes are correlated with the Lewis acidity of the apical redox-inactive metal in a manner similar to a related series of heterometallic manganese-dioxido clusters. The redox potentials of the [SrMn3O4] and [CaMn3O4] clusters are close, which is consistent with the observation that the OEC is functional only with one of these two metals. Considering our previous studies of [MMn3O2] moieties, the present results with more structurally accurate models of the OEC ([MMn3O4]) suggest a general relationship between the reduction potentials of heterometallic oxido clusters and the Lewis acidities of incorporated cations that applies to diverse structural motifs. These findings support proposals that one function of calcium in the OEC is to modulate the reduction potential of the cluster to allow electron transfer.

  10. Macroform and microform-induced change in redox-sensitive chemistries of river channel surface sediments

    NASA Astrophysics Data System (ADS)

    Byrne, P.; Zhang, H.; Heathwaite, A. L.; Binley, A.; Ullah, S.; Kaeser, D.; Heppell, C. M.; Lansdown, K.; Trimmer, M.

    2012-04-01

    In-stream geomorphological features such as riffle-pool sequences (macroforms) can produce steep hydraulic gradients which induce flow in and out of the riverbed - hyporheic exchange flow (HEF). The acceleration of flow over channel obstacles such as large cobbles and boulders (microforms) can create variation in surface-subsurface pressure gradients and generation of HEF. HEF in shallow surface sediments affect the transformation of redox-sensitive chemical forms and, therefore, the attenuation or release of nutrients in river systems. Here, we examine the relationship between stream geomorphological environment (microform and macroform) and concentration profiles of redox-sensitive species (nitrate, sulphate, iron, manganese) in shallow (15cm) subsurface sediments. In-situ passive samplers (diffusive equilibrium in thin films - DET) are used to obtain biogeochemical data from armoured environments at fine scale (cm) depth resolution where there is strong upwelling. The probes were deployed in a 50m reach of the River Eden, Cumbria, UK, during baseflow conditions. The experimental setup allowed for the assessment of differences in redox-sensitive chemistries between a riffle and pool environment and between smooth and rough bed surfaces in the pool. The passive sensing basis of the DET methodology provided a means for investigating how HEF systems generated at two different geomorphological scales influence the concentration and spatial patterns of redox-sensitive species. DET's capability of measuring at high spatial resolution allowed the extent of hyporheic mixing to be targeted, even though it is often limited to the top few centimetres of sediment.

  11. Iron isotopes constrain biogeochemical redox cycling of iron and manganese in a Palaeoproterozoic stratified basin

    NASA Astrophysics Data System (ADS)

    Tsikos, Harilaos; Matthews, Alan; Erel, Yigal; Moore, John M.

    2010-09-01

    The Hotazel Formation in the uppermost stratigraphic portion of the Neoarchaean-Palaeoproterozoic Transvaal Supergroup of southern Africa is an unusual sedimentary sequence of banded iron-formation (BIF) intercalated with three manganese-rich layers. As such, it is a succession that holds great potential to offer a unique view of one of the most dramatic transitions in early Earth history — the switch to a full oxidative cycle in shallow oceans at ca. 2.3 Ga. We present iron isotope results from BIF and Mn-rich samples collected across the entire Hotazel sequence, with a view to constraining processes of biogeochemical redox cycling for both metals close to the transition from a reducing to an oxidizing ocean-atmosphere system. The recorded de-coupling of Fe- and Mn reduction during anaerobic organic carbon cycling in the Hotazel strata, suggests that manganese became an important electron acceptor in stratified marine environments of the Palaeoproterozoic during periods of increased primary manganese precipitation relative to iron. Very low δ 57Fe values registered across the entire Hotazel sequence and especially in manganese-rich samples (-2.4 to -3.5‰) signify deposition of iron and manganese in a terminal, stratified aqueous reservoir that was depleted in the heavy iron isotopes. These isotopic signatures, in conjunction with the unusual endowment of the Hotazel sequence in manganese, are interpreted to have evolved by Rayleigh distillation processes during protracted deposition of Mn-poor BIFs as preserved in the lower stratigraphic portion of the Transvaal Supergroup (Kuruman and Griquatown BIFs). The unique end-member geochemical and isotopic characteristics of the Hotazel rocks may therefore constitute a potential link between the widespread deposition of BIF during the Neoarchaean and Palaeoproterozoic, and the postulated rise in atmospheric oxygen levels around 2.3 Ga ago.

  12. Redox-Inactive Metals Modulate the Reduction Potential in Heterometallic Manganese-Oxido Clusters

    PubMed Central

    Tsui, Emily Y.; Tran, Rosalie; Yano, Junko; Agapie, Theodor

    2013-01-01

    Redox-inactive metals are found in biological and heterogeneous water oxidation catalysts, but their roles in catalysis are currently not well understood. A series of high oxidation state tetranuclear-dioxido clusters comprised of three manganese centers and a redox-inactive metal (M) of various charge is reported. Crystallographic studies show an unprecedented Mn3M(μ4-O)(μ2-O) core that remains intact upon changing M or the manganese oxidation state. Electrochemical studies reveal that the reduction potentials span a window of 700 mV, dependent upon the Lewis acidity of the second metal. With the pKa of the redox-inactive metal-aqua complex as a measure of Lewis acidity, these compounds display a linear dependence between reduction potential and acidity with a slope of ca. 100 mV per pKa unit. The Sr2+ and Ca2+ compounds show similar potentials, an observation that correlates with the behavior of the OEC, which is active only in the presence of one of these two metals. PMID:23511417

  13. Redox reactions involving chromium, plutonium, and manganese in soils. Final report, 1 July 1978-30 September 1981

    SciTech Connect

    Amacher, M C; Baker, D E

    1982-06-01

    Although particulate movement through wind and water erosion is the most important mechanism of dispersion of Pu at the Nevada Test Site, dispersion of water-soluble species may also be occurring. However, because Pu is toxic, usually insoluble, not uniformly distributed in the soil, and can exist in four oxidation states in the environment, it is very difficult to study. Therefore, Cr reactions in soil were investigated as a possible general model for Pu reactions in soil, since it was postulated that the redox chemistries of the two elements should be similar. Chemical fractionation methods were used to determine the redox states of Pu in a Nevada Test Site soil and the amounts of Pu associated with various soil components in order to deduce possible reactions between the various Pu species and soil components so that weathering and dispersion by chemical mechanisms can be predicted. Chemical fractionation and kinetics experiments were performed to study reactions of Cr with soil, manganese oxides, and fulvic acids in order to provide information to eventually develop a qualitative, predictive model for Pu behavior in soil.

  14. Redox chemistry in the phosphorus biogeochemical cycle

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew A.; Sampson, Jacqueline M.; Atlas, Zachary

    2014-10-01

    The element phosphorus (P) controls growth in many ecosystems as the limiting nutrient, where it is broadly considered to reside as pentavalent P in phosphate minerals and organic esters. Exceptions to pentavalent P include phosphine-PH3-a trace atmospheric gas, and phosphite and hypophosphite, P anions that have been detected recently in lightning strikes, eutrophic lakes, geothermal springs, and termite hindguts. Reduced oxidation state P compounds include the phosphonates, characterized by C-P bonds, which bear up to 25% of total organic dissolved phosphorus. Reduced P compounds have been considered to be rare; however, the microbial ability to use reduced P compounds as sole P sources is ubiquitous. Here we show that between 10% and 20% of dissolved P bears a redox state of less than +5 in water samples from central Florida, on average, with some samples bearing almost as much reduced P as phosphate. If the quantity of reduced P observed in the water samples from Florida studied here is broadly characteristic of similar environments on the global scale, it accounts well for the concentration of atmospheric phosphine and provides a rationale for the ubiquity of phosphite utilization genes in nature. Phosphine is generated at a quantity consistent with thermodynamic equilibrium established by the disproportionation reaction of reduced P species. Comprising 10-20% of the total dissolved P inventory in Florida environments, reduced P compounds could hence be a critical part of the phosphorus biogeochemical cycle, and in turn may impact global carbon cycling and methanogenesis.

  15. Redox chemistry in the phosphorus biogeochemical cycle

    PubMed Central

    Pasek, Matthew A.; Sampson, Jacqueline M.; Atlas, Zachary

    2014-01-01

    The element phosphorus (P) controls growth in many ecosystems as the limiting nutrient, where it is broadly considered to reside as pentavalent P in phosphate minerals and organic esters. Exceptions to pentavalent P include phosphine—PH3—a trace atmospheric gas, and phosphite and hypophosphite, P anions that have been detected recently in lightning strikes, eutrophic lakes, geothermal springs, and termite hindguts. Reduced oxidation state P compounds include the phosphonates, characterized by C−P bonds, which bear up to 25% of total organic dissolved phosphorus. Reduced P compounds have been considered to be rare; however, the microbial ability to use reduced P compounds as sole P sources is ubiquitous. Here we show that between 10% and 20% of dissolved P bears a redox state of less than +5 in water samples from central Florida, on average, with some samples bearing almost as much reduced P as phosphate. If the quantity of reduced P observed in the water samples from Florida studied here is broadly characteristic of similar environments on the global scale, it accounts well for the concentration of atmospheric phosphine and provides a rationale for the ubiquity of phosphite utilization genes in nature. Phosphine is generated at a quantity consistent with thermodynamic equilibrium established by the disproportionation reaction of reduced P species. Comprising 10–20% of the total dissolved P inventory in Florida environments, reduced P compounds could hence be a critical part of the phosphorus biogeochemical cycle, and in turn may impact global carbon cycling and methanogenesis. PMID:25313061

  16. Uraninite oxidation and dissolution induced by manganese oxide: A redox reaction between two insoluble minerals

    NASA Astrophysics Data System (ADS)

    Wang, Zimeng; Lee, Sung-Woo; Kapoor, Pratyul; Tebo, Bradley M.; Giammar, Daniel E.

    2013-01-01

    The longevity of subsurface U(IV) produced by reduction of U(VI) during in situ bioremediation can be limited by reoxidation to more mobile U(VI) species. Coupling of the biogeochemical cycles of U and Mn may affect the fate and transport of uranium. Manganese oxides can act as a powerful oxidant that accelerates the oxidative dissolution of UO2. This study investigated the physical and chemical factors controlling the interaction between UO2 and MnO2, which are both poorly soluble minerals. A multi-chamber reactor with a permeable membrane was used to eliminate direct contact of the two minerals while still allowing transport of aqueous species. The oxidation of UO2 was not significantly enhanced by MnO2 if the two solids were physically separated. Complete mixing of MnO2 with UO2 led to a much greater extent and rate of U oxidation. When direct contact is not possible, the reaction slowly progresses through release of soluble U(IV) with its adsorption and oxidation on MnO2. Continuously-stirred tank reactors (CSTRs) were used to quantify the steady-state rates of UO2 dissolution induced by MnO2. MnO2 dramatically promoted UO2 dissolution, but the degree of promotion leveled off once the MnO2:UO2 ratio exceeded a critical value. Substantial amounts of U(VI) and Mn(II) were retained on MnO2 surfaces. The total production of Mn(II) was less than that of U(VI), indicating that the fate of Mn products and their impact on UO2-MnO2 reaction kinetics were complicated and may involve formation of Mn(III) phases. At higher dissolved inorganic carbon concentrations, UO2 oxidation by MnO2 was faster and less U(VI) was adsorbed to MnO2. Such an inverse relationship suggested that U(VI) may passivate MnO2 surfaces. A conceptual model was developed to describe the oxidation rate of UO2 by MnO2. This model is potentially applicable to a broad range of water chemistry conditions and is relevant to other environmental redox processes involving two poorly soluble minerals.

  17. Redox-sensitive probes for the measurement of redox chemistries within phagosomes of macrophages and dendritic cells☆

    PubMed Central

    Balce, Dale R.; Yates, Robin M.

    2013-01-01

    There is currently much interest in factors that affect redox chemistries within phagosomes of macrophages and dendritic cells. In addition to the antimicrobial role of reactive oxygen species generation within phagosomes, accumulating evidence suggests that phagosomal redox chemistries influence other phagosomal functions such as macromolecular degradation and antigen processing. Whilst the redox chemistries within many sub-cellular compartments are being heavily scrutinized with the increasing use of fluorescent probe technologies, there is a paucity of tools to assess redox conditions within phagosomes. Hence the systems that control redox homeostasis in these unique environments remain poorly defined. This review highlights current redox-sensitive probes that can measure oxidative or reductive activity in phagosomes and discusses their suitability and limitations of use. Probes that are easily targeted to the phagosome by using established approaches are emphasized. PMID:24191242

  18. Chelate electronic properties control the redox behaviour and superoxide reactivity of seven-coordinate manganese(II) complexes.

    PubMed

    Liu, Gao-Feng; Dürr, Katharina; Puchta, Ralph; Heinemann, Frank W; van Eldik, Rudi; Ivanović-Burmazović, Ivana

    2009-08-28

    We have synthesized and characterized two Mn(II) seven-coordinate complexes with N5 pentadentate ligands, which contain hydrazone and hydrazide groups respectively. We have shown that insertion of hydrazido (amido) groups into the ligand sphere increases the negative charge of the chelate, without changing a donor atom set and coordination geometry, and radically modulate a redox activity of seven-coordinate manganese complexes, which is important for the function of manganese as a superoxide dismutase catalytic center.

  19. Redox-inactive metal ions promoted the catalytic reactivity of non-heme manganese complexes towards oxygen atom transfer.

    PubMed

    Choe, Cholho; Yang, Ling; Lv, Zhanao; Mo, Wanling; Chen, Zhuqi; Li, Guangxin; Yin, Guochuan

    2015-05-21

    Redox-inactive metal ions can modulate the reactivity of redox-active metal ions in a variety of biological and chemical oxidations. Many synthetic models have been developed to help address the elusive roles of these redox-inactive metal ions. Using a non-heme manganese(II) complex as the model, the influence of redox-inactive metal ions as a Lewis acid on its catalytic efficiency in oxygen atom transfer was investigated. In the absence of redox-inactive metal ions, the manganese(II) catalyst is very sluggish, for example, in cyclooctene epoxidation, providing only 9.9% conversion with 4.1% yield of epoxide. However, addition of 2 equiv. of Al(3+) to the manganese(II) catalyst sharply improves the epoxidation, providing up to 97.8% conversion with 91.4% yield of epoxide. EPR studies of the manganese(II) catalyst in the presence of an oxidant reveal a 16-line hyperfine structure centered at g = 2.0, clearly indicating the formation of a mixed valent di-μ-oxo-bridged diamond core, Mn(III)-(μ-O)2-Mn(IV). The presence of a Lewis acid like Al(3+) causes the dissociation of this diamond Mn(III)-(μ-O)2-Mn(IV) core to form monomeric manganese(iv) species which is responsible for improved epoxidation efficiency. This promotional effect has also been observed in other manganese complexes bearing various non-heme ligands. The findings presented here have provided a promising strategy to explore the catalytic reactivity of some di-μ-oxo-bridged complexes by adding non-redox metal ions to in situ dissociate those dimeric cores and may also provide clues to understand the mechanism of methane monooxygenase which has a similar diiron diamond core as the intermediate.

  20. Structure-redox-relaxivity relationships for redox responsive manganese-based magnetic resonance imaging probes.

    PubMed

    Gale, Eric M; Mukherjee, Shreya; Liu, Cynthia; Loving, Galen S; Caravan, Peter

    2014-10-06

    A library of 10 Mn-containing complexes capable of switching reversibly between the Mn(II) and Mn(III) oxidation states was prepared and evaluated for potential usage as MRI reporters of tissue redox activity. We synthesized N-(2-hydroxybenzyl)-N,N',N'-ethylenediaminetriacetic acid (HBET) and N-(2-hydroxybenzyl-N,N',N'-trans-1,2-cyclohexylenediaminetriacetic acid (CyHBET) ligands functionalized (-H, -OMe, -NO2) at the 5-position of the aromatic ring. The Mn(II) complexes of all ligands and the Mn(III) complexes of the 5-H and 5-NO2 functionalized ligands were synthesized and isolated, but the Mn(III) complexes with the 5-OMe functionalized ligands were unstable. (1)H relaxivity of the 10 isolable complexes was measured at pH 7.4 and 37 °C, 1.4 T. Thermodynamic stability, pH-dependent complex speciation, hydration state, water exchange kinetics of the Mn(II) complexes, and pseudo-first order reduction kinetics of the Mn(III) complexes were studied using a combination of pH-potentiometry, UV-vis spectroscopy, and (1)H and (17)O NMR measurements. The effects of ligand structural and electronic modifications on the Mn(II/III) redox couple were studied by cyclic voltammetry. The Mn(II) complexes are potent relaxation agents as compared to the corresponding Mn(III) species with [Mn(II)(CyHBET)(H2O)](2-) exhibiting a 7.5-fold higher relaxivity (3.3 mM(-1) s(-1)) than the oxidized form (0.4 mM(-1) s(-1)). At pH 7.4, Mn(II) exists as a mixture of fully deprotonated (ML) and monoprotonated (HML) complexes and Mn(II) complex stability decreases as the ligands become more electron-releasing (pMn for 10 μM [Mn(II)(CyHBET-R')(H2O)](2-) decreases from 7.6 to 6.2 as R' goes from -NO2 to -OMe, respectively). HML speciation increases as the electron-releasing nature of the phenolato-O donor increases. The presence of a water coligand is maintained upon conversion from HML to ML, but the water exchange rate of ML is faster by up to 2 orders of magnitude (k(ex)(310) for H

  1. Thiol Chemistry in Peroxidase Catalysis and Redox Signaling

    PubMed Central

    Fukuto, Jon M.; Forman, Henry Jay

    2008-01-01

    Abstract The oxidation chemistry of thiols and disulfides of biologic relevance is described. The review focuses on the interaction and kinetics of hydrogen peroxide with low-molecular-weight thiols and protein thiols and, in particular, on sulfenic acid groups, which are recognized as key intermediates in several thiol oxidation processes. In particular, sulfenic and selenenic acids are formed during the catalytic cycle of peroxiredoxins and glutathione peroxidases, respectively. In turn, these enzymes are in close redox communication with the thioredoxin and glutathione systems, which are the major controllers of the thiol redox state. Oxidants formed in the cell originate from several different sources, but the major producers are NADPH oxidases and mitochondria. However, a different role of the oxygen species produced by these sources is apparent as oxidants derived from NADPH oxidase are involved mainly in signaling processes, whereas those produced by mitochondria induce cell death in pathways including also the thioredoxin system, presently considered an important target for cancer chemotherapy. Antioxid. Redox Signal. 10, 1549–1564. PMID:18479206

  2. Redox dynamics of manganese as a mitochondrial life-death switch

    PubMed Central

    Smith, Matthew Ryan; Fernandes, Jolyn; Go, Young-Mi; Jones, Dean P.

    2017-01-01

    Sten Orrenius, M.D., Ph.D., pioneered many areas of cellular and molecular toxicology and made seminal contributions to our knowledge of oxidative stress and glutathione (GSH) metabolism, organellar functions and Ca+2-dependent mechanisms of cell death, and mechanisms of apoptosis. On the occasion of his 80th birthday, we summarize current knowledge on redox biology of manganese (Mn) and its role in mechanisms of cell death. Mn is found in all organisms and has critical roles in cell survival and death mechanisms by regulating Mn-containing enzymes such as manganese superoxide dismutase (SOD2) or affecting expression and activity of caspases. Occupational exposures to Mn cause “manganism”, a Parkinson's disease-like condition of neurotoxicity, and experimental studies show that Mn exposure leads to accumulation of Mn in the brain, especially in mitochondria, and neuronal cell death occurs with features of an apoptotic mechanism. Interesting questions are why a ubiquitous metal that is essential for mitochondrial function would accumulate to excessive levels, cause increased H2O2 production and lead to cell death. Is this due to the interactions of Mn with other essential metals, such as iron, or with toxic metals, such as cadmium? Why is the Mn loading in the human brain so variable, and why is there such a narrow window between dietary adequacy and toxicity? Are non-neuronal tissues similarly vulnerable to insufficiency and excess, yet not characterized? We conclude that Mn is an important component of the redox interface between an organism and its environment and warrants detailed studies to understand the role of Mn as a mitochondrial life-death switch. PMID:28212723

  3. Redox chemistry and natural organic matter (NOM): Geochemists' dream, analytical chemists' nightmare

    USGS Publications Warehouse

    Macalady, Donald L.; Walton-Day, Katherine

    2011-01-01

    Natural organic matter (NOM) is an inherently complex mixture of polyfunctional organic molecules. Because of their universality and chemical reversibility, oxidation/reductions (redox) reactions of NOM have an especially interesting and important role in geochemistry. Variabilities in NOM composition and chemistry make studies of its redox chemistry particularly challenging, and details of NOM-mediated redox reactions are only partially understood. This is in large part due to the analytical difficulties associated with NOM characterization and the wide range of reagents and experimental systems used to study NOM redox reactions. This chapter provides a summary of the ongoing efforts to provide a coherent comprehension of aqueous redox chemistry involving NOM and of techniques for chemical characterization of NOM. It also describes some attempts to confirm the roles of different structural moieties in redox reactions. In addition, we discuss some of the operational parameters used to describe NOM redox capacities and redox states, and describe nomenclature of NOM redox chemistry. Several relatively facile experimental methods applicable to predictions of the NOM redox activity and redox states of NOM samples are discussed, with special attention to the proposed use of fluorescence spectroscopy to predict relevant redox characteristics of NOM samples.

  4. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers.

  5. Complexation and redox interactions between aqueous plutonium and manganese oxide interfaces

    SciTech Connect

    Shaughnessy, Dawn A.; Nitsche, Heino; Booth, Corwin H.; Shuh, David K.; Waychunas, Glenn A.; Wilson, Richard E.; Cantrell, Kirk J.; Serne, R. Jeffrey

    2001-11-01

    The sorption of Pu(VI) and Pu(V) onto manganite (MnOOH) and Hausmannite (Mn3O4) was studied at pH 5. Manganite sorbed 21-24% from a 1x10-4 M plutonium solution and the hausmannite removed between 43-66% of the plutonium. The increased sorption by hausmannite results from its larger surface area (about twice that of manganite) plus a larger number of active surface sites. X-ray absorption near-edge structure (XANES) spectra taken at the Pu LIII edge were compared to standard spectra of plutonium in single oxidation states. Based on these spectra, it appears that both manganite and hausmannite reduce the higher valent plutonium species to Pu(IV). Between 53-59% of the plutonium was present as Pu(IV) in the manganite samples while 55-61% of the plutonium complexed to the hausmannite had also been reduced to Pu(IV). The exact mechanism behind this redox interaction between the plutonium and the manganese needs to be identified.

  6. Problems in Teaching the Topic of Redox Reactions: Actions and Conceptions of Chemistry Teachers.

    ERIC Educational Resources Information Center

    De Jong, Onno; And Others

    1995-01-01

    Presents a case study of problems that can occur when teaching the topic of redox reactions to grade-11 students. Concludes that the teachers' scientific expertise is an important source of difficulties when teaching redox reactions. Discusses implications for improvement of current chemistry classroom practice and content-related teacher…

  7. Manganese oxide-coated redox bars as an indicator for reducing soil conditions

    NASA Astrophysics Data System (ADS)

    Dorau, Kristof; Mansfeldt, Tim

    2014-05-01

    Field identification of reducing soil conditions is of concern not only for soil pedogenesis but also for nutrient and pollutant dynamics in soils. We manufactured manganese (Mn) oxide-coated polyvinyl chloride (PVC) bars and proved their suitability for identification of reducing soil conditions in both the laboratory and field. Birnessite (δ-MnO2) was synthesized according to a recently published method and was coated onto white PVC bars. We used microcosm devices with adjusted redox potentials (EH) to distinguish the onset and intensity of depletion patterns along the Mn oxide-coating and soil column experiments combined with field application to validate the enhanced removal of Mn against Fe oxide-coated bars under anaerobe soil conditions. Field application was performed at a site with shallow and strongly fluctuating water tables where water table depth and soil temperature were monitored. Three microcosm experiments adjusted to oxidizing (EH ~500 mV, pH 7), weakly reducing (EH ~175 mV, pH 7) and moderately reducing conditions (EH ~25 mV, pH 7) showed depending on the EH no, slight, or intense removal of the Mn oxide-coating, respectively. Moreover, the removal of Mn oxide (225 mm2 d-1) in soil column experiments exceeded the removal of Fe oxide (118 mm2 d-1). The enhanced removal of the Mn oxide-coating was also found under anaerobe conditions in field application. Consequently, identifying of reducing conditions in soils by Mn oxide-coated bars is possible. We recommend using this methodology for short-term monitoring, e.g. on weekly basis, since tri- and tetravalent Mn is the preferred electron acceptor compared with trivalent Fe.

  8. Synthesis and Characterization of a Layered Manganese Oxide: Materials Chemistry for the Inorganic or Instrumental Methods Lab

    ERIC Educational Resources Information Center

    Ching, Stanton; Neupane, Ram P.; Gray, Timothy P.

    2006-01-01

    A three-week laboratory project involving synthesis and characterization of a layered manganese oxide provides an excellent vehicle for teaching important concepts of inorganic chemistry and instrumental methods related to non-molecular systems. Na-birnessite is an easily prepared manganese oxide with a 7 A interlayer spacing and Na[superscript +]…

  9. Manganese

    Integrated Risk Information System (IRIS)

    Manganese ; CASRN 7439 - 96 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  10. The chemistry behind redox regulation with a focus on sulphur redox systems.

    PubMed

    Jacob, Claus; Anwar, Awais

    2008-07-01

    Sulphur metabolism in plants provides a wealth of natural products, including several chemically unusual substances, such as thiosulphinates, polysulphides and isothiocyanates. Many of these reactive sulphur species (RSS) exhibit a distinct redox behaviour in vitro, which translates into a rather interesting biological activity in vivo, such as antibiotic, fungicidal, pesticidal or anticancer activity. While the molecular basis for such activity has long remained obscure, research into sulphur-based redox systems during the past 5-10 years has achieved a better knowledge of the in vitro properties of RSS and has led to an improved understanding of their impact on intracellular redox signalling and control pathways in living cells. It has become apparent that the redox chameleon sulphur occurs in biological systems in about 10 different oxidation states, which give rise to an extensive and complicated network of sulphur-based redox events. Together, natural sulphur products from plants and their intracellular targets provide the basis for innovative design of novel antibiotics, fungicides, pesticides and anticancer agents.

  11. Manganese dioxide nanosheets-based redox/pH-responsive drug delivery system for cancer theranostic application

    PubMed Central

    Hao, Yongwei; Wang, Lei; Zhang, Bingxiang; Li, Dong; Meng, Dehui; Shi, Jinjin; Zhang, Hongling; Zhang, Zhenzhong; Zhang, Yun

    2016-01-01

    The aim of this study was to construct redox- and pH-responsive degradable manganese dioxide (MnO2) nanosheets for cancer theranostic application. The small MnO2 nanosheets were synthesized, and then functionalized by hyaluronic acid (HA), demonstrating excellent stability and tumor-targeting ability. Cisplatin (cis-diamminedichloroplatinum [CDDP]) was absorbed by the nanosheets through a physical action, which was designed as MnO2/HA/CDDP. The prepared MnO2/HA/CDDP formulation was able to efficiently deliver CDDP to tumor cells in vitro and in vivo, resulting in improved therapeutic efficiency. Subsequently, they were triggered by lower pH and higher level of reduced glutathione to generate Mn2+, enabling magnetic resonance imaging. The smart multifunctional system combining efficient magnetic resonance imaging and chemotherapy has the potential to be used as a tumor-targeting theranostic nanomedicine. PMID:27199556

  12. Redox Models in Chemistry Textbooks for the Upper Secondary School: Friend or Foe?

    ERIC Educational Resources Information Center

    Osterlund, Lise-Lotte; Berg, Anders; Ekborg, Margareta

    2010-01-01

    We have investigated how chemistry textbooks use models of redox reactions in different subject areas, how they change models between and within the topics, and how they deal with specific learning difficulties identified in the literature. The textbooks examined were published for use in the natural science programme in Swedish upper secondary…

  13. Solvent, anion, and structural effects on the redox potentials and UV-visible spectral properties of mononuclear manganese corroles.

    PubMed

    Shen, Jing; El Ojaimi, Maya; Chkounda, Mohammed; Gros, Claude P; Barbe, Jean-Michel; Shao, Jianguo; Guilard, Roger; Kadish, Karl M

    2008-09-01

    A series of manganese(III) corroles were investigated as to their electrochemistry and spectroelectrochemistry in nonaqueous solvents. Up to three oxidations and one reduction were obtained for each complex depending on the solvents. The main compound discussed in this paper is the meso-substituted manganese corrole, (Mes 2PhCor)Mn, and the main points are how changes in axially coordinated anion and solvent will affect the redox potentials and UV-vis spectra of each electrogenerated species in oxidation states of Mn(III), Mn(IV), or Mn(II). The anions OAc (-), Cl (-), CN (-), and SCN (-) were found to form five-coordinate complexes with the neutral Mn(III) corrole while two OH (-) or F (-) anions were shown to bind axially in a stepwise addition to give the five- and six-coordinate complexes in nonaqueous media. In each case, complexation with one or two anionic axial ligands led to an easier oxidation and a harder reduction as compared to the uncomplexed four-coordinate species.

  14. Limitations in determining redox chemistry in basalt groundwaters at the Hanford site

    SciTech Connect

    Dill, J.A.; Jones, T.E.; Marcy, A.D.; West, M.H.

    1986-03-01

    The oxidation-reduction (redox) chemistry of the basalt groundwater system will be an important factor governing both the design and performance of a high-level nuclear waste repository in basalt. Although the redox state of the basalt groundwater system is inherently difficult to measure, there are a number of types of measurements that provide valuable information on this subject. These measurements include concentrations of dissolved sulfide, ferrous iron, electrode redox potential, and groundwater reducing capacity. These measurements have been made on a limited basis in a number of different repository test horizons. Taken collectively, the results of these measurements suggest that both sulfide and ferrous iron play an important role in the establishment of the basalt groundwater redox condition. Thermodynamic calculations of redox potential (E/sub h/) based on these measurements are indicative of an E/sub h/ of -0.4 V. Additional measurements are proposed that will provide a more complete understanding of basalt groundwater redox conditions. The proposed measurements include a more in-depth analysis of redox active species as well as quantification of dissolved gas species such as oxygen and methane.

  15. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    PubMed

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  16. Redox chemistry of the Keggin heteropolyoxotungstate anion in ionic liquids.

    SciTech Connect

    Chiang, M.-H.; Dzielawa, J. A.; Dietz, M. L.; Antonio, M. R.; Chemistry

    2004-06-01

    The solid salts of the 1-ethyl-3-methylimidazolium and the 1-n-pentyl-3-methylimidazolium cations, abbreviated [C{sub 2}mim]{sup +} and [C{sub 5}mim]{sup +}, respectively, of the Keggin heteropolyanion, {alpha}-[PW{sub 12}O{sub 40}]{sup 3-}, were prepared. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements of both [C{sub n}mim]{sub 3}[{alpha}-PW{sub 12}O{sub 40}] salts (for n=2 and 5) were performed in acetonitrile containing either tetra-n-butylammonium hexafluorophosphate, abbreviated TBAPF{sub 6}, or the corresponding [C{sub n}mim]BF{sub 4} ionic liquids (ILs) as electrolytes. The results are compared with the corresponding data obtained in the neat [C{sub n}mim]BF{sub 4} ILs without addition of other electrolytes. The effects of countercation and supporting electrolyte on the voltammetry of the Keggin ion {alpha}-[PW{sub 12}O{sub 40}]{sup 3-} are interpreted as resulting from an amalgamation of isomerization, ion-association, and redox processes. The combination of the unique solvent/electrolyte properties of ILs with the well-known electrochemistry of molecular polyoxometalates (POMs) like the Keggin aanion leads to redox behavior that may have impact on the research and technology of catalytic and energy-storage phenomena.

  17. Redox properties of manganese-containing zirconia solid solution catalysts analyzed by in situ UV-vis spectroscopy and crystal field theory.

    PubMed

    Klokishner, Sophia I; Reu, Oleg; Chan-Thaw, Carine E; Jentoft, Friederike C; Schlögl, Robert

    2011-07-21

    The optical absorption spectra of manganese-promoted sulfated zirconia, a highly active alkane isomerization catalyst, were found to be characterized by oxygen-to-manganese charge-transfer transitions at 300-320 nm and d-d transitions of manganese ions at 580 and 680 nm. The latter were attributed to Mn(4+) and Mn(3+) ions, which are known to be incorporated in the zirconia lattice. The oxygen surroundings of these ions were modeled assuming a substitutional solid solution. The crystal field splittings, vibronic coupling constants, and oscillator strengths of the manganese ions were calculated on the basis of a cluster model that considers the manganese center as a complex with the adjacent ions of the lattice as ligands. The ratio of Mn(3+) to Mn(4+) ions was determined using the spectra and the model, and the relative concentrations of Mn(2+), Mn(3+), and Mn(4+) ions were determined with the help of the average valence known from X-ray absorption data in the literature. The redox behavior of manganese-promoted sulfated zirconia in oxidizing and inert atmosphere was elucidated at temperatures ranging from 323 to 773 K.

  18. Mutagenesis of the redox-active disulfide in mercuric ion reductase: Catalysis by mutant enzymes restricted to flavin redox chemistry

    SciTech Connect

    Distefano, M.D.; Au, K.G.; Walsh, C.T. )

    1989-02-07

    Mercuric reductase, a flavoenzyme that possesses a redox-active cystine, Cys{sub 135}Cys{sub 140}, catalyzes the reduction of Hg(II) to Hg(0) by NADPH. As a probe of mechanism, the authors have constructed mutants lacking a redox-active disulfide by eliminating Cys{sub 135} (Ala{sub 135}Cys{sub 140}), Cys{sub 14} (Cys{sub 135}Ala{sub 140}), or both (Ala{sub 135}Ala{sub 140}). Additionally, they have made double mutants that lack Cys{sub 135} (Ala{sub 135}Cys{sub 139}Cys{sub 140}) or Cys{sub 140} (Cys{sub 135}Cys{sub 139}Ala{sub 140}) but introduce a new Cys in place of Gly{sub 139} with the aim of constructing dithiol pairs in the active site that do not form a redox-active disulfide. The resulting mutant enzymes all lack redox-active disulfides and are hence restricted to FAD/FADH{sub 2} redox chemistry. Each mutant enzyme possesses unique physical and spectroscopic properties that reflect subtle differences in the FAD microenvironment. Preliminary evidence for the Ala{sub 135}Cys{sub 139}Cys{sub 14} mutant enzyme suggests that this protein forms a disulfide between the two adjacent Cys residues. Hg(II) titration experiments that correlate the extent of charge-transfer quenching with Hg(II) binding indicate that the Ala{sub 135}Cys{sub 140} protein binds Hg(II) with substantially less avidity than does the wild-type enzyme. All mutant mercuric reductases catalyze transhydrogenation and oxygen reduction reactions through obligatory reduced flavin intermediates at rates comparable to or greater than that of the wild-type enzyme. In multiple-turnover assays which monitored the production of Hg(0), two of the mutant enzymes were observed to proceed through at least 30 turnovers at rates ca. 1000-fold slower than that of wild-type mercuric reductase. They conclude that the Cys{sub 135} and Cys{sub 140} thiols serve as Hg(II) ligands that orient the Hg(II) for subsequent reduction by a reduced flavin intermediate.

  19. A Mononuclear Non-Heme Manganese(IV)-Oxo Complex Binding Redox-Inactive Metal Ions

    SciTech Connect

    Chen, Junying; Lee, Yong-Min; Davis, Katherine M.; Wu, Xiujuan; Seo, Mi Sook; Cho, Kyung-Bin; Yoon, Heejung; Park, Young Jun; Fukuzumi, Shunichi; Pushkar, Yulia N.; Nam, Wonwoo

    2013-05-29

    Redox-inactive metal ions play pivotal roles in regulating the reactivities of high-valent metal–oxo species in a variety of enzymatic and chemical reactions. A mononuclear non-heme Mn(IV)–oxo complex bearing a pentadentate N5 ligand has been synthesized and used in the synthesis of a Mn(IV)–oxo complex binding scandium ions. The Mn(IV)–oxo complexes were characterized with various spectroscopic methods. The reactivities of the Mn(IV)–oxo complex are markedly influenced by binding of Sc3+ ions in oxidation reactions, such as a ~2200-fold increase in the rate of oxidation of thioanisole (i.e., oxygen atom transfer) but a ~180-fold decrease in the rate of C–H bond activation of 1,4-cyclohexadiene (i.e., hydrogen atom transfer). The present results provide the first example of a non-heme Mn(IV)–oxo complex binding redox-inactive metal ions that shows a contrasting effect of the redox-inactive metal ions on the reactivities of metal–oxo species in the oxygen atom transfer and hydrogen atom transfer reactions.

  20. ROSics: chemistry and proteomics of cysteine modifications in redox biology.

    PubMed

    Kim, Hee-Jung; Ha, Sura; Lee, Hee Yoon; Lee, Kong-Joo

    2015-01-01

    Post-translational modifications (PTMs) occurring in proteins determine their functions and regulations. Proteomic tools are available to identify PTMs and have proved invaluable to expanding the inventory of these tools of nature that hold the keys to biological processes. Cysteine (Cys), the least abundant (1-2%) of amino acid residues, are unique in that they play key roles in maintaining stability of protein structure, participating in active sites of enzymes, regulating protein function and binding to metals, among others. Cys residues are major targets of reactive oxygen species (ROS), which are important mediators and modulators of various biological processes. It is therefore necessary to identify the Cys-containing ROS target proteins, as well as the sites and species of their PTMs. Cutting edge proteomic tools which have helped identify the PTMs at reactive Cys residues, have also revealed that Cys residues are modified in numerous ways. These modifications include formation of disulfide, thiosulfinate and thiosulfonate, oxidation to sulfenic, sulfinic, sulfonic acids and thiosulfonic acid, transformation to dehydroalanine (DHA) and serine, palmitoylation and farnesylation, formation of chemical adducts with glutathione, 4-hydroxynonenal and 15-deoxy PGJ2, and various other chemicals. We present here, a review of relevant ROS biology, possible chemical reactions of Cys residues and details of the proteomic strategies employed for rapid, efficient and sensitive identification of diverse and novel PTMs involving reactive Cys residues of redox-sensitive proteins. We propose a new name, "ROSics," for the science which describes the principles of mode of action of ROS at molecular levels.

  1. I. Redox chemistry of bimetallic fulvalene complexes II. Oligocyclopentadienyl complexes

    SciTech Connect

    Brown, David Stephen

    1993-11-01

    The electrochemistry of the heterobimetallic complexes (fulvalene)WFe(CO)5 (30) and (fulvalene)WRu(CO)5 (31) has been investigated. Compound 30 is reduced in two one-electron processes, and this behavior was exploited synthetically to prepare a tetranuclear dimer by selective metal reduction. Complex 31 displayed a distinction between the metals upon reoxidation of the dianion, allowing the formation of a dimer by selective metal anion oxidation. The redox behavior of 30 led to an investigation of the use of electrocatalysis to effect metal-specific ligand substitution. It was found that reduction of 30 with a catalytic amount of CpFe(C6Me6) (97) in the presence of excess P(OMe)3 or PMe5 led to the formation of the zwitterions (fulvalene)[W(CO)3-][Fe(CO)PR3+] (107, R = P(OMe)3; 108, R = PMe3). Compound 31 also displayed unique behavior with different reducing agents, as the monosubstituted zwitterion (fulvalene)[W(CO)3-][Ru(CO)2(PMe3+] was obtained when 97 was used while the disubstituted complex (fulvalene) [W(CO)3-] [Ru(CO)(PMe3)2+] was produced when Cp*Fe(C6Me6) was the catalyst. Potential synthetic routes to quatercyclopentadienyl complexes were also explored. Various attempts to couple heterobimetallic fulvalene compounds proved to be unsuccessful. 138 refs.

  2. Manganese redox cycling in Lake Imandra: impact on nitrogen and the trace metal sediment record

    NASA Astrophysics Data System (ADS)

    Ingri, J.; Pekka, L.; Dauvalter, V.; Rodushkin, I.; Peinerud, E.

    2011-01-01

    Sediment and water samples from the mine-polluted Yokostrovskaya basin in Lake Imandra have been analysed. Three major processes have influenced the accumulation and distribution of metals in the sediment: (1) Development of the apatite-nepheline and the sulfide ore mining industries. (2) Secondary formation of sulphides in the upper sediment column. (3) Redox cycling of Mn in the surface sediment and in the bottom water. This study demonstrate the dominant role of the Mn redox cycling in controlling distribution of several major and trace elements, especially during the winter stratification period. Mn oxides act as a major scavenger and carrier for the non-detrital fraction of Al, Ca, K, Mg, P, Ba, Co, Cu, Ni, Mo and Zn in the bottom water. Aluminium, Ca, K, Mg, P, Cu, Ni and Zn are mainly sorbed at the surface of the particulate Mn phase, while Ba and Mo form a phase (or inner sphere complex) with Mn. Co is associated with the Mn-rich phase, probably by oxidation of Co(II) to a trivalent state by the particulate Mn surface. Formation and dissolution of Mn particles most likely also control anoxic ammonium oxidation to nitrate and reduction of nitrate to N2. It is shown that secondary sulphides in Lake Imandra sediments are fed with trace metals primarily scavenged from the dissolved phase in the water column. This enrichment process, driven by the Mn-redox cycle, therefore changes the sediment record by the transfer of a dissolved pollution signal to the particulate sediment record, thus making it more complicated to trace direct influence of particles from different pollution sources.

  3. Coprecipitation and redox reactions of manganese oxides with copper and nickel

    USGS Publications Warehouse

    Hem, J.D.; Lind, Carol J.; Roberson, C.E.

    1989-01-01

    Open-system, continuous-titration experiments have been done in which a slow flux of ???0.02 molar solution of Mn2+ chloride, nitrate, or perchlorate with Cu2+ or Ni2+ in lesser concentrations was introduced into an aerated reactor solution held at constant temperature and at constant pH by a pH-stat titrator that added dilute NaOH. The resulting mixtures of metal oxyhydroxides and their native solutions were aged for periods as long as 2 1/2 years. Fresh and aged precipitates were characterized by chemical analysis, oxidation state determinations, X-ray and electron diffraction, and electron microscopy. The precipitates can be described as mixtures of oxide and oxyhydroxide species, using concepts of equilibrium and nonequilibrium chemical thermodynamics. The metal-ion content of the aged precipitates in systems that contained copper is distributed among three principal components. One of these is a mixed oxide Cu2Mn3O8 in which all Mn is in the 4+ oxidation state. A major component in all precipitates is feitknechtite, ??MnOOH. These forms are supplemented by CuO or by birnessite or ramsdellite forms of MnO2 where stoichiometry and thermodynamic calculations predict them. In systems that contained nickel and manganese, identifiable components included ??MnOOH, Ni(OH)2, and the same two forms of MnO2. The oxidation number of the precipitated manganese increased during aging, and the pH of the supernatant solution decreased. The maximum Mn oxidation number observed was 3.55 in an Mn + Cu precipitate aged for 18 months. Concentrations of Cu2+ and Ni2+ generally decreased to values substantially below those predicted by oxide or hydroxide equilibrium. Scavenging effects of this type are common in natural aqueous systems. ?? 1989.

  4. Reactive iron and manganese in estuarine sediments of the Baltic Sea: Impacts of flocculation and redox shuttling

    NASA Astrophysics Data System (ADS)

    Jilbert, Tom; Tiihonen, Rosa; Myllykangas, Jukka-Pekka; Asmala, Eero; Hietanen, Susanna

    2016-04-01

    Iron (Fe) and manganese (Mn) play important roles in sedimentary carbon cycling in both freshwater and marine systems. Dissimilatory reduction of Fe and Mn oxides is known to be a major pathway of suboxic organic matter remineralization in surface sediments, while recent studies have shown that Fe and Mn oxides may be involved in the anaerobic oxidation of methane deeper in the sediment column (e.g., Egger et al., 2015). Estuaries are transitional environments, characterized by gradients of salinity and redox conditions which impact on the mobility of Fe and Mn. In turn, the distribution of Fe and Mn in estuarine sediments, and the role of the two metals in carbon cycling, is expected to be spatially heterogeneous. However, few studies have attempted to describe the sedimentary distribution of Fe and Mn in the context of processes occurring in the estuarine water column. In particular, salinity-driven flocculation and redox shuttling are two key processes whose relative impacts on sedimentary Fe and Mn have not been clearly demonstrated. In this study we investigated the coupled water column and sedimentary cycling of Fe and Mn along a 60km non-tidal estuarine transect in the Gulf of Finland, Baltic Sea. We show that riverine Fe entering the estuary as colloidal oxides associated with dissolved organic matter (DOM) is quickly flocculated and sedimented within 5 km of the river mouth, despite the shallow lateral salinity gradient. Sediments within this range are enriched in Fe (up to twice the regional average), principally in the form of crystalline Fe oxides as determined by sequential extractions. The high crystallinity implies relative maturity of the oxide mineralogy, likely due to sustained oxic conditions and long residence time in the river catchment. Despite the reducing conditions below the sediment-water interface, Fe is largely retained in the sediments close to the river mouth. In contrast, sedimentary Mn concentrations are highest in a deep silled

  5. Manganese(III) biliverdin IX dimethyl ester: a powerful catalytic scavenger of superoxide employing the Mn(III)/Mn(IV) redox couple.

    PubMed

    Spasojević, I; Batinić-Haberle, I; Stevens, R D; Hambright, P; Thorpe, A N; Grodkowski, J; Neta, P; Fridovich, I

    2001-02-12

    A manganese(III) complex of biliverdin IX dimethyl ester, (MnIIIBVDME)2, was prepared and characterized by elemental analysis, UV/vis spectroscopy, cyclic voltammetry, chronocoulometry, electrospray mass spectrometry, freezing-point depression, magnetic susceptibility, and catalytic dismuting of superoxide anion (O2.-). In a dimeric conformation each trivalent manganese is bound to four pyrrolic nitrogens of one biliverdin dimethyl ester molecule and to the enolic oxygen of another molecule. This type of coordination stabilizes the +4 metal oxidation state, whereby the +3/+4 redox cycling of the manganese in aqueous medium was found to be at E1/2 = +0.45 V vs NHE. This potential allows the Mn(III)/Mn(IV) couple to efficiently catalyze the dismutation of O2.- with the catalytic rate constant of kcat = 5.0 x 10(7) M-1 s-1 (concentration calculated per manganese) obtained by cytochrome c assay at pH 7.8 and 25 degrees C. The fifth coordination site of the manganese is occupied by an enolic oxygen, which precludes binding of NO., thus enhancing the specificity of the metal center toward O2.-. For the same reason the (MnIIIBVDME)2 is resistant to attack by H2O2. The compound also proved to be an efficient SOD mimic in vivo, facilitating the aerobic growth of SOD-deficient Escherichia coli.

  6. Chromium Mobilization by Microbially-Driven Iron and Manganese Redox Cycling

    NASA Astrophysics Data System (ADS)

    Garcia Arredondo, M.; Hausladen, D.; Ying, S.; Fendorf, S. E.

    2014-12-01

    Chromium, a naturally occurring contaminant, poses a significant threat to California groundwater quality when ultramafic rocks weather leaving Cr-enriched serpentine soils. Benign and of limited solubility, Cr(III) can oxidize into soluble and carcinogenic Cr(VI). Under most environmental conditions, Mn-oxides are the principal oxidant of Cr(III). Here we investigate Cr(III) oxidation by both abiotically synthesized birnessite and biogenically produced Mn-oxides. Further, we explore chromium dynamics within artificial soil aggregates composed of Cr(OH)3- and Cr0.25Fe0.75(OH)3-coated quartz grains surrounded by aerated solute flow. Abiotic aggregates contained synthetic birnessite, while biotic aggregates were inoculated with Leptothrix cholodnii, a manganese-oxidizing bacterium, and Shewanella putrefaciens, an iron-reducing bacterium. Results show aqueous Cr(VI) concentrations scaling with Cr-mineral solubility. When Leptothrix sp.-inoculated Cr(III),Fe(III)-aggregates are supplied with aqueous Mn(II), Mn-oxides precipitate in the aerobic aggregate. Cr(VI) production occurs similar to that via synthetic birnessite. With the addition of Shewanella sp., coupled biotic and abiotic processes occur causing the reduction, and subsequent immobilization, of chromium by microbial metabolites (e.g., Fe(II)). This study shows the importance of microbial community composition on chromium dynamics within diffusion-limited zones, and suggests the potential for biological immobilization of Cr even in the presence of Mn-oxidizing bacteria.

  7. Iron-Manganese Redox Reactions in Endeavour Crater Rim Apron Rocks

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Mittlefehldt, D. W.; Gellert, R.; Peretyazhko, T.; Clark, B. C.; Morris, R. V.; Yen, A. S.; Arvidson, R. E.; Crumpler, L. S.; Farrand, W. H.; Grant, J. A., III; Jolliff, B. L.; Parker, T. J.; Schroder, C.

    2015-01-01

    The Mars Exploration Rover Opportunity has been exploring Noachian age rocks and outcrops on the rim of the 22 km diameter Endeavour crater since August 2011. The Cape York area is a low-lying rim of Endeavour that contains 3 distinct lithologies: 1) the stratigraphically lowest Matijevic fm of pre-impact lithology, 2) Shoemaker fm of impact breccias, and 3) the stratigraphically highest rim lithology Grasberg fm of post-impact sediments that drape the lower slopes of the rim. The sulfate-rich sediment of the Burns fm lies unconformably over the Grasberg fm. Ca-sulfate veins were discovered in Grasberg fm sediments; the sulfates precipitated from aqueous fluids flowing upward through these materials. Opportunity investigated the chemistry and morphology of outcrops in the Matijevic fm that have Fe(sup 3+)-rich smectite detected by orbital signatures returned by CRISM on MRO. Matijevic fm also contains "boxwork" fractures with chemistry consistent with an Al-rich smectite and veins that appear to be rich in Ca-sulfate. More recently on Cape Tribulation, Opportunity has characterized two S-, Mg- and Mn-rich rich rocks overturned and fractured by the rover's wheels on Cook Haven. Those rocks have been dubbed "Pinnacle Island" and "Stuart Island" and will be referred to as the "Island" rocks. The objectives of this study are to characterize the Fe and Mn contents in the Cape York materials, including the two Island rocks, and to provide a model for Mn mobilization and precipitation. Detailed geochemistry of Endeavour rim rocks is presented in a companion paper. Geochemical trends and elemental associations were obtained from data returned by the Alpha Particle X-ray Spectrometer (APXS) on Opportunity.

  8. Controlled Redox Chemistry at Cerium within a Tripodal Nitroxide Ligand Framework.

    PubMed

    Bogart, Justin A; Lippincott, Connor A; Carroll, Patrick J; Booth, Corwin H; Schelter, Eric J

    2015-12-01

    Ligand reorganization has been shown to have a profound effect on the outcome of cerium redox chemistry. Through the use of a tethered, tripodal, trianionic nitroxide ligand, [((2-tBuNOH)C6 H4 CH2 )3 N](3-) (TriNOx (3-) ), controlled redox chemistry at cerium was accomplished, and typically reactive complexes of tetravalent cerium were isolated. These included rare cationic complexes [Ce(TriNOx )thf][BAr(F) 4 ], in which Ar(F) =3,5-(CF3 )2 -C6 H3 , and [Ce(TriNOx )py][OTf]. A rare complete Ce-halide series, Ce(TriNOx )X, in which X=F(-) , Cl(-) , Br(-) , I(-) , was also synthesized. The solution chemistry of these complexes was explored through detailed solution-phase electrochemistry and (1) H NMR experiments and showed a unique shift in the ratio of species with inner- and outer-sphere anions with size of the anionic X(-) group. DFT calculations on the series of calculations corroborated the experimental findings.

  9. Manganese(III) Schiff base complexes: chemistry relevant to the copolymerization of epoxides and carbon dioxide.

    PubMed

    Darensbourg, Donald J; Frantz, Eric B

    2007-07-23

    Schiff base complexes of the form (acacen)Mn(III)X (acacen = N,N'-bis(acetylacetone)-1,2-ethylenediimine), where X = OAc, Cl, or N(3), have been evaluated for their ability to couple CO(2) and cyclohexene oxide in the presence of a variety of cocatalysts to provide cyclic or polycarbonates. These complexes proved to be ineffective at catalyzing this process; however, valuable information related to the coordination chemistry of these manganese Schiff bases was elucidated. Of importance, mechanistic findings as revealed by comprehensive studies involving structurally related (salen)CrX and (salen)CoX complexes strongly support the requirement of six-coordinate metal species for the effective copolymerization of CO(2) and epoxides. In the case of these Mn(III) complexes, it was determined that in chloroform or toluene solution a five-coordinate species was greatly favored over a six-coordinate species even in the presence of 20 equiv or more of various Lewis bases. Significantly epoxide monomers such as propylene oxide and cyclohexene oxide displayed no tendency to bind to these (acacen)MnX derivatives, even when used as solvents. Only in the case of excessive quantities of heterocyclic amines such as pyridine, DMAP, and DBU was spectral evidence of a six-coordinate Mn derivative observed in solution. X-ray crystal structures are provided for many of the complexes involved in this study, including the one-dimensional polymeric structures of [(acacen)MnOAc x 2H(2)O](n), [(acacen)MnN(3)](n) (mu(1,3)-N(3)), and a rare mixed bridging species [(acacen)MnN(3)](n) (mu(1,3)-N(3)/mu(1,1)-N(3)). In addition, a structure was obtained in which the unit cell contains both a (acacen)MnN(3)(DMAP) and a (acacen)MnN(3) species.

  10. Chemistry of manganese precipitation in Pinal Creek, Arizona, USA: A laboratory study

    USGS Publications Warehouse

    Hem, J.D.; Lind, Carol J.

    1994-01-01

    Groundwater underlying the valley of Pinal Creek downstream from Globe, Arizona, has been contaminated by low-pH metal-enriched wastewater from copper mining and ore processing at Miami, Arizona. At present, the acidity and most of the dissolved metal content, except for Mn, of the wastewater is removed by reactions with carbonate and other solids in the alluvial aquifer before the neutralized contaminated water enters the creek channel and becomes surface flow. Where flow in the creek is perennial, Mn-bearing precipitates are formed in the stream bed and in some places in the subsurface. As an aid to understanding the processes involved and explaining the mineralogy of the precipitates, closely controlled laboratory redox titration experiments were performed on samples of surface flow and groundwater taken near the head of perennial flow in the creek. The high content of dissolved Ca, Mg, Mn and COP2 species in the neutralized contaminated groundwater caused precipitation of some of the Mn as kutnahorite, (Mn, Mg)Ca(CO3)2, when the experimental system was held between pH 8.5 and 9.0 while CO2-free air was bubbled into the solution. Hausmannite and manganite also were precipitated, in somewhat lower amounts. When the concentrations of dissolved CO2 species in the groundwater sample were decreased before the experiment was started, the Mn precipitated was predominantly in the oxides hausmannite and manganite. In some of the experimental titrations clinoenstatite, (MgSiO3), was precipitated. After titrations were stopped the solutions and precipitates were allowed to stand, with limited access to the atmosphere, for several months. During this aging period the degree of oxidation of the precipitated Mn increased and in one precipitate from an experimental solution the Ca + Mn4+ oxides todorokite and takanelite were identified. These oxides also have been identified in streambed precipitates. Some of these precipitates also gave X-ray diffraction reflections for

  11. The Influence of Extracellular Superoxide on Iron Redox Chemistry and Bioavailability to Aquatic Microorganisms

    PubMed Central

    Rose, Andrew L.

    2012-01-01

    Superoxide, the one-electron reduced form of dioxygen, is produced in the extracellular milieu of aquatic microbes through a range of abiotic chemical processes and also by microbes themselves. Due to its ability to promote both oxidative and reductive reactions, superoxide may have a profound impact on the redox state of iron, potentially influencing iron solubility, complex speciation, and bioavailability. The interplay between iron, superoxide, and oxygen may also produce a cascade of other highly reactive transients in oxygenated natural waters. For microbes, the overall effect of reactions between superoxide and iron may be deleterious or beneficial, depending on the organism and its chemical environment. Here I critically discuss recent advances in understanding: (i) sources of extracellular superoxide in natural waters, with a particular emphasis on microbial generation; (ii) the chemistry of reactions between superoxide and iron; and (iii) the influence of these processes on iron bioavailability and microbial iron nutrition. PMID:22514548

  12. 4D sequential actuation: combining ionoprinting and redox chemistry in hydrogels

    NASA Astrophysics Data System (ADS)

    Baker, Anna B.; Wass, Duncan F.; Trask, Richard S.

    2016-10-01

    The programmable sequential actuation of two-dimensional hydrogel membranes into three-dimensional folded architectures has been achieved by combining ionoprinting and redox chemistry; this methodology permits the programmed evolution of complex architectures triggered through localized out-of-plane deformations. In our study we describe a soft actuator which utilizes ionoprinting of iron and vanadium, with the selective reduction of iron through a mild reducing agent, to achieve chemically controlled sequential folding. Through the optimization of solvent polarity and ionoprinting variables (voltage, duration and anode composition), we have shown how the actuation pathways, rate-of-movement and magnitude of angular rotation can be controlled for the design of a 4D sequential actuator.

  13. Redox chemistry of molybdenum in natural waters and its involvement in biological evolution.

    PubMed

    Wang, Deli

    2012-01-01

    The transition element molybdenum (Mo) possesses diverse valances (+II to +VI), and is involved in forming cofactors in more than 60 enzymes in biology. Redox switching of the element in these enzymes catalyzes a series of metabolic reactions in both prokaryotes and eukaryotes, and the element therefore plays a fundamental role in the global carbon, nitrogen, and sulfur cycling. In the present oxygenated waters, oxidized Mo(VI) predominates thermodynamically, whilst reduced Mo species are mainly confined within specific niches including cytoplasm. Only recently has the reduced Mo(V) been separated from Mo(VI) in sulfidic mats and even in some reducing waters. Given the presence of reduced Mo(V) in contemporary anaerobic habitats, it seems that reduced Mo species were present in the ancient reducing ocean (probably under both ferruginous and sulfidic conditions), prompting the involvement of Mo in enzymes including nitrogenase and nitrate reductase. During the global transition to oxic conditions, reduced Mo species were constrained to specific anaerobic habitats, and efficient uptake systems of oxidized Mo(VI) became a selective advantage for current prokaryotic and eukaryotic cells. Some prokaryotes are still able to directly utilize reduced Mo if any exists in ambient environments. In total, this mini-review describes the redox chemistry and biogeochemistry of Mo over the Earth's history.

  14. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.

    PubMed

    Prentice, Boone M; McLuckey, Scott A

    2013-02-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.

  15. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries

    PubMed Central

    Prentice, Boone M.

    2013-01-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field. PMID:23257901

  16. Effects of iron on arsenic speciation and redox chemistry in acid mine water

    USGS Publications Warehouse

    Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.

    2005-01-01

    Concern about arsenic is increasing throughout the world, including areas of the United States. Elevated levels of arsenic above current drinking-water regulations in ground and surface water can be the result of purely natural phenomena, but often are due to anthropogenic activities, such as mining and agriculture. The current study correlates arsenic speciation in acid mine drainage and mining-influenced water with the important water-chemistry properties Eh, pH, and iron(III) concentration. The results show that arsenic speciation is generally in equilibrium with iron chemistry in low pH AMD, which is often not the case in other natural-water matrices. High pH mine waters and groundwater do not always hold to the redox predictions as well as low pH AMD samples. The oxidation and precipitation of oxyhydroxides deplete iron from some systems, and also affect arsenite and arsenate concentrations through sorption processes. ?? 2004 Elsevier B.V. All rights reserved.

  17. The influence of redox chemistry and pH on chemically active forms of arsenic in sewage sludge-amended soil

    SciTech Connect

    Carbonell-Barrachina, A.; Jugsujinda, A.; DeLaune, R.D.; Patrick, W.H. Jr.; Burlo, F.; Sirisukhodom, S.; Anurakpongsatorn, P.

    1999-07-01

    Chemical fractionation procedures were used to quantify the effect of the sediment redox and pH conditions on the adsorption and solubility of arsenic (As) in municipal sewage sludge and sewage sludge-amended soil. Sludge and sludge-amended soil were incubated in microcosms in which Eh-pH conditions were controlled. Samples were sequentially extracted to determine As in various chemical forms (water soluble, exchangeable, bound to carbonates, bound to iron (Fe) and manganese (Mn) oxides, bound to insoluble organics and sulfides) and the chemically inactive fraction (mineral residues). In both sewage sludge and sludge-amended soil, As chemistry was governed by large molecular humic matter and sulfides and Fe and Mn-oxides. Solubility of As remained low and constant under both aerobic and anaerobic conditions in sludge-amended soil. After dissolution of Fe and Mn-oxides, As{sup 5+} was released into sludge solution, reduced to As{sup 3+} and likely precipitated as sulfide. Therefore, an organic amendment rich in sulfur compounds, such as sewage sludge, would drastically reduce the potential risks derived from As pollution under highly anoxic conditions by precipitation of this toxic metalloid as insoluble and immobile sulfides.

  18. Comparative analysis for various redox flow batteries chemistries using a cost performance model

    NASA Astrophysics Data System (ADS)

    Crawford, Alasdair; Viswanathan, Vilayanur; Stephenson, David; Wang, Wei; Thomsen, Edwin; Reed, David; Li, Bin; Balducci, Patrick; Kintner-Meyer, Michael; Sprenkle, Vincent

    2015-10-01

    The total energy storage system cost is determined by means of a robust performance-based cost model for multiple flow battery chemistries. Systems aspects such as shunt current losses, pumping losses and various flow patterns through electrodes are accounted for. The system cost minimizing objective function determines stack design by optimizing the state of charge operating range, along with current density and current-normalized flow. The model cost estimates are validated using 2-kW stack performance data for the same size electrodes and operating conditions. Using our validated tool, it has been demonstrated that an optimized all-vanadium system has an estimated system cost of < 350 kWh-1 for 4-h application. With an anticipated decrease in component costs facilitated by economies of scale from larger production volumes, coupled with performance improvements enabled by technology development, the system cost is expected to decrease to 160 kWh-1 for a 4-h application, and to 100 kWh-1 for a 10-h application. This tool has been shared with the redox flow battery community to enable cost estimation using their stack data and guide future direction.

  19. Optical Probes of Interlamellar Redox Chemistry: Intercalation of the Creutz-Taube Complex into Hydrogen Uranyl Phosphate.

    DTIC Science & Technology

    1987-07-08

    changes are consistent with redox chemistry wherein the intercalated C-T complex undergoes oxidation . For most samples examined, the PL decay times were...enhanced upon oxidation . 20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION SOUNCLASSIFIEDIUNLIMITED 03 SAME AS RPT...exhibits a characteristic intervalence band in the near infrared portion of the spectrum [6]. Furthermore, the complex is readily reduced and oxidized

  20. On the Way Toward Understanding Solution Chemistry of Lithium Polysulfides for High Energy Li-S Redox Flow Batteries

    SciTech Connect

    Pan, Huilin; Wei, Xiaoliang; Henderson, Wesley A.; Shao, Yuyan; Chen, Junzheng; Bhattacharya, Priyanka; Xiao, Jie; Liu, Jun

    2015-04-27

    Lithium sulfur (Li-S) redox flow battery (RFB) is a promising candidate for high energy large-scale energy storage application due to good solubility of long-chain polysulfide species and low cost of sulfur. In this report, recent progress and new concepts for Li-S redox flow batteries are discussed with an emphasis on the fundamental understanding and control of lithium polysulfide chemistry to enable the development of liquid phase Li-S redox flow prototype cells. These differ significantly from conventional static Li-S batteries targeting for vehicle electrification. A high solubility of the different lithium polysulfides generated at different depths of discharge and states of charge is required for a flow battery in order to take full advantage of the multiple electron transitions between elemental sulfur and Li2S. A new DMSO-based electrolyte is proposed for Li-S redox flow batteries, which not only enables the high solubility of lithium polysulfide species, especially for the short-chain species, but also results in excellent cycling with a high Coulombic efficiency. The challenges and opportunities for the Li-S redox flow concept have also been discussed in depth.

  1. Thiol redox chemistry: role of protein cysteine oxidation and altered redox homeostasis in allergic inflammation and asthma

    PubMed Central

    Hoffman, SM; Nolin, JD; McMillan, DH; Wouters, EFM; Janssen-Heininger, YMW; Reynaert, NL

    2015-01-01

    Asthma is a pulmonary disorder, with an estimated 300 million people affected worldwide. While it is thought that endogenous reactive oxygen species (ROS) and reactive nitrogen species (RNS) such as hydrogen peroxide and nitric oxide, are important mediators of natural physiological processes, inflammatory cells recruited to the asthmatic airways have an exceptional capacity for producing a variety of highly reactive ROS and RNS believed to contribute to tissue damage and chronic airways inflammation. Antioxidant defense systems form a tightly regulated network that maintains the redox environment of the intra- as well as extracellular environment. Evidence for an oxidant-antioxidant imbalance in asthmatic airways is demonstrated in a number of studies, revealing decreased total antioxidant capacity as well as lower levels of individual antioxidants. Thiols in the form of GSH and sulfhydryl groups of proteins are among the most susceptible oxidant-sensitive targets, and hence, studies investigating protein thiol redox modifications in biology and disease have emerged. This perspective offers an overview of the combined efforts aimed at the elucidation of mechanisms whereby cysteine oxidations contribute to chronic inflammation and asthma, as well as insights into potential cysteine thiol-based therapeutic strategies. PMID:25565397

  2. ROLE OF MANGANESE REDUCTION/OXIDATION (REDOX) ON FOAMING AND MELT RATE IN HIGH LEVEL WASTE (HLW) MELTERS (U)

    SciTech Connect

    Jantzen, C; Michael Stone, M

    2007-03-30

    High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass and liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2} or Mn

  3. Electrochemical studies of iron meteorites: phosphorus redox chemistry on the early Earth

    NASA Astrophysics Data System (ADS)

    Bryant, David E.; Greenfield, David; Walshaw, Richard D.; Evans, Suzanne M.; Nimmo, Alexander E.; Smith, Caroline L.; Wang, Liming; Pasek, Matthew A.; Kee, Terence P.

    2009-01-01

    The mineral schreibersite, (Fe,Ni)3P, a ubiquitous component of iron meteorites, is known to undergo anoxic hydrolytic modification to afford a range of phosphorus oxyacids. H-phosphonic acid (H3PO3) is the principal hydrolytic product under hydrothermal conditions, as confirmed here by 31P-NMR spectroscopic studies on shavings of the Seymchan pallasite (Magadan, Russia, 1967), but in the presence of photochemical irradiation a more reduced derivative, H-phosphinic (H3PO2) acid, dominates. The significance of such lower oxidation state oxyacids of phosphorus to prebiotic chemistry upon the early Earth lies with the facts that such forms of phosphorus are considerably more soluble and chemically reactive than orthophosphate, the commonly found form of phosphorus on Earth, thus allowing nature a mechanism to circumvent the so-called Phosphate Problem. This paper describes the Galvanic corrosion of Fe3P, a hydrolytic modification pathway for schreibersite, leading again to H-phosphinic acid as the key P-containing product. We envisage this pathway to be highly significant within a meteoritic context as iron meteorites are polymetallic composites in which dissimilar metals, with different electrochemical potentials, are connected by an electrically conducting matrix. In the presence of a suitable electrolyte medium, i.e., salt water, galvanic corrosion can take place. In addition to model electrochemical studies, we also report the first application of the Kelvin technique to map surface potentials of a meteorite sample that allows the electrochemical differentiation of schreibersite inclusions within an Fe:Ni matrix. Such experiments, coupled with thermodynamic calculations, may allow us to better understand the chemical redox behaviour of meteoritic components with early Earth environments.

  4. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signaling, and their interplay.

    PubMed

    Cobley, James N; Margaritelis, Nikos V; Morton, James P; Close, Graeme L; Nikolaidis, Michalis G; Malone, John K

    2015-01-01

    Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1) redox signaling and (2) macromolecule damage. Mechanistic knowledge of how exercise-induced redox signaling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signaling and DNA damage, using hydroxyl radical ((·)OH) and hydrogen peroxide (H2O2) as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signaling and damage. Indeed, H2O2 can participate in two electron signaling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and (·)OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signaling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signaling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation.

  5. The Application of 238U/235U as a Redox-Proxy for Past Ocean Chemistry

    NASA Astrophysics Data System (ADS)

    Andersen, M. B.; Westermann, S.; Bahniuk, A.; Vasconcelos, C.; McKenzie, J. A.; Föllmi, K. B.; Vance, D.

    2014-12-01

    The recent discovery of significant variation in 238U/235U caused by redox change at the surface Earth has led to its use to extract information on the oxygenation state of ancient oceans from marine sediments [e.g. 1]. Recent studies have focused on improving the understanding of the 238U/235U signature in modern marine carbonates [2] and black shales [3] to improve the robustness of this tracer. To further advance its use we have focused on improving our understanding of 238U/235U systematics in modern dolomite, another commonly occurring rock-type in the geological record, before turning to 238U/235U signatures in ancient sediments. The measured dolomite samples, precipitated in modern environments of coastal hypersaline lagoons in Brazil, all exhibit 238U/235U values that deviate from the seawater composition [3]. Observed values are both lighter (ca. 130 ppm; as also observed in dolomite from tidal-ponds on Bahamas [2]) and heavier (50-180 ppm). These distinct 238U/235U values for different dolomite-precipitates likely attest to the particular formation style, as well as early diagenetic processes. We use such modern settings to discuss the utility of 238U/235U in ancient sediments, the singularity of any observed 238U/235U signal, its relation to global ocean chemistry and potential diagenetic overprinting. These constraints are then used to evaluate a well-preserved marine carbonate section [4] and published black shale 238U/235U data [1], both deposited during the Oceanic Anoxic Event 2 (93 Ma). We discuss the capabilities of both the carbonate and black shale section for retaining information on the 238U/235U composition in the ocean during OAE 2. [1] Montoya-Pino et al. (2010) Geology, 38, 315-318 [2] Romaniello et al. (2013) 362, 305-316 [3] Andersen et al. (2014) EPSL, 400, 184-194 [4] Westermann et al. (2010) Cret. Res., 31, 500-514

  6. Probing the redox chemistry of titanium silicalite-1: formation of tetrahedral Ti3+ centers by reaction with triethylaluminum.

    PubMed

    Morra, Elena; Giamello, Elio; Chiesa, Mario

    2014-06-10

    Transition-metal ions with open-shell configurations hold promise in the development of novel coordination chemistry and potentially unprecedented redox catalysis. Framework-substituted Ti(3+) ions with tetrahedral coordination are generated by reductive activation of titanium silicalite-1 with triethylaluminum, an indispensable co-catalyst for heterogeneous Ziegler-Natta polymerization catalysts. Continuous-wave and pulse electron paramagnetic resonance methods are applied to unravel details on the local environment of the reduced transition metal-ions, which are shown to be part of the silica framework by detection of (29)Si hyperfine interactions. The chemical accessibility of the reduced sites is probed using ammonia as probe molecule. Evidence is found for the coordination of a single ammonia molecule. Comparison to similar systems, such as TiAlPO-5, reveals clear differences in the coordination chemistry of the reduced Ti sites in the two solids, which may be understood considering the different electronic properties of the solid frameworks.

  7. Synthesis and self-assembly of spin-labile and redox-active manganese(III) complexes.

    PubMed

    Gandolfi, Claudio; Cotting, Tatiana; Martinho, Paulo N; Sereda, Olha; Neels, Antonia; Morgan, Grace G; Albrecht, Martin

    2011-03-07

    New amphiphilic and spin-labile Mn(III) complexes based on dianionic N(4)O(2)-hexadentate sal(2)trien or sal(2)bapen ligands, which contain OC(6)H(13), OC(12)H(25), or OC(18)H(37) alkoxy substituents at different positions of the salicylidene unit were prepared (H(2)sal(2)trien = N,N'''-bis(salicylidene)-1,4,7,10-tetraazadecane, H(2)sal(2)bapen = N,N'''-bis(salicylidene)-1,5,8,12-tetraazadodecane). According to electrochemical measurements, these complexes undergo two (quasi)reversible redox processes. Temperature-dependent magnetic measurements revealed a high-spin configuration for all sal(2)trien complexes (S = 2) and gradual spin crossover for sal(2)bapen complexes from high to low spin (S = 1). The chain length strongly influences the spin crossover, as C(18)-functionalization stabilizes the low spin state at much higher temperatures than shorter alkyl chains. Moreover, long alkyl chains allow for spontaneous self-assembly of the molecules, which was investigated in single crystals and in Langmuir-films at the air-water interface. Long alkyl chains (C(12) or C(18)) as well as a mutual syn-orientation of these molecular recognition sites were required for the Langmuir monolayers to be stable.

  8. Redox deposition of birnessite-type manganese oxide on silicon carbide microspheres for use as supercapacitor electrodes.

    PubMed

    Kim, Myeongjin; Kim, Jooheon

    2014-06-25

    Silicon carbide microsphere/birnessite-type MnOx (SiC/B-MnOx) composites were prepared by removal of a SiO2 layer with redox deposition of birnessite-type MnOx for supercapacitor electrode materials. The characterization studies showed that the birnessite-type MnOx in the composite was homogeneously deposited on the SiC surface. The capacitive properties of the as-prepared SiC/B-MnOx electrodes were measured in a three-electrode system using 1 M Na2SO4(aq) as the electrolyte. The SiC/B-MnOx(6) electrode, fabricated using a MnOx/SiC feeding ratio of 6:1, displayed a specific capacitance of 251.3 F g(-1) at 10 mV s(-1). Such excellent electrochemical performance is attributed to an increase in the electrical conductivity in the presence of silicon carbide, an increase in the effective interfacial area between MnOx and the electrolyte, and the contact area between MnOx and silicon carbide. The deposition of birnessite-type MnOx on a SiC surface may be a prospective fabrication technique for electrode materials for supercapacitors.

  9. A high-energy-density redox flow battery based on zinc/polyhalide chemistry.

    PubMed

    Zhang, Liqun; Lai, Qinzhi; Zhang, Jianlu; Zhang, Huamin

    2012-05-01

    Zn and the Art of Battery Development: A zinc/polyhalide redox flow battery employs Br(-) /ClBr(2-) and Zn/Zn(2+) redox couples in its positive and negative half-cells, respectively. The performance of the battery is evaluated by charge-discharge cycling tests and reveals a high energy efficiency of 81%, based on a Coulombic efficiency of 96% and voltage efficiency of 84%. The new battery technology can provide high performance and energy density at an acceptable cost.

  10. Investigation of the redox chemistry of anthraquinone derivatives using density functional theory.

    PubMed

    Bachman, Jonathan E; Curtiss, Larry A; Assary, Rajeev S

    2014-09-25

    Application of density functional calculations to compute electrochemical properties such as redox windows, effect of substitution by electron donating and electron withdrawing groups on redox windows, and solvation free energies for ∼50 anthraquinone (AQ) derivatives are presented because of their potential as anolytes in all-organic redox flow batteries. Computations suggest that lithium ions can increase (by ∼0.4 V) the reduction potential of anthraquinone due to the lithium ion pairing by forming a Lewis base-Lewis acid complex. To design new redox active species, the substitution by electron donating groups is essential to improve the reduction window of AQ with adequate oxidative stability. For instance, a complete methylation of AQ can improve its reduction window by ∼0.4 V. The quantum chemical studies of the ∼50 AQ derivatives are used to derive a relationship that connects the computed LUMO energy and the reduction potential that can be applied as a descriptor for screening thousands of AQ derivatives. Our computations also suggest that incorporating oxy-methyl dioxolane substituents in the AQ framework can increase its interaction with nonaqueous solvent and improve its solubility. Thermochemical calculations for likely bond breaking decomposition reactions of unsubstituted AQ anions suggest that the dianions are relatively stable in the solution. These studies provide an ideal platform to perform further combined experimental and theoretical studies to understand the electrochemical reversibility and solubility of new quinone molecules as energy storage materials.

  11. Elucidation of the Biological Redox Chemistry of Purines Using Electrochemical Techniques.

    ERIC Educational Resources Information Center

    Dryhurst, Glenn; And Others

    1983-01-01

    Electrochemical studies can give insights into the chemical aspects of enzymatic and in vivo redox reactions of naturally occurring organic compounds. This is illustrated by studies of the electrochemical oxidation of the purinem uric acid. The discussion is limited to information at pH 7 or greater. (JN)

  12. Thermal chemistry of Mn{sub 2}(CO){sub 10} during deposition of thin manganese films on silicon oxide and on copper surfaces

    SciTech Connect

    Qin Xiangdong; Sun Huaxing; Zaera, Francisco

    2012-01-15

    The surface chemistry of dimanganese decacarbonyl on the native oxide of Si(100) wafers was characterized with the aid of x-ray photoelectron spectroscopy. Initial experiments in a small stainless-steel reactor identified a narrow range of temperatures, between approximately 445 and 465 K, in which the deposition of manganese could be achieved in a self-limiting fashion, as is desirable for atomic layer deposition. Deposition at higher temperatures leads to multilayer growth, but the extent of this Mn deposition reverses at even higher temperatures (about 625 K), and also ifhydrogen is added to the reaction mixture. Extensive decarbonylation takes place below room temperature, but limited C-O bond dissociation and carbon deposition are still seen after high exposures at 625 K. The films deposited at low ({approx}450 K) temperatures are mostly in the form of MnO, but at 625 K that converts to a manganese silicate, and upon higher doses a manganese silicide forms at the SiO{sub 2}/Si(100) interface as well. No metallic manganese could be deposited with this precursor on either silicon dioxide or copper surfaces.

  13. First-Principles Density Functional Theory Modeling Study on the Redox Chemistry of Graphene Oxides Affected by Placement Geometry of Oxygen Functional Groups

    NASA Astrophysics Data System (ADS)

    Kim, Sunghee; Kim, Ki Chul; Lee, Seung Woo; Jang, Seung Soon

    2015-03-01

    To date, lithium-ion batteries have been extensively gained attention due to their promising potential in the industry. Despite their promising properties, improving their poor power density is still needed for practical applications. In addition, sustaining the high redox potential in the lithium-ion batteries is prerequisite for exhibiting the high energy and power densities. Recently, layered carbon materials including graphenes and carbon nanotubes have been paid special attention as promising electrode candidates with high power densities due to their exceptionally high surface area and active oxygen functional groups on their surfaces. However, the lack of reliable information on the redox chemistry of the candidates is the obstacle to be uncovered for practical applications. In this study, we investigated the redox chemistry of graphene oxides cluster models with well-controlled hydroxyl functional groups at the edge. First-principles density functional theory approach was employed to understand the geometric effect of the incorporated hydroxyl functional groups on the redox chemistry. Our study will provide an insight on the strategy for improving the redox potentials of graphene-based electrode candidates.

  14. Comparative analysis for various redox flow batteries chemistries using a cost performance model

    SciTech Connect

    Crawford, Aladsair J.; Viswanathan, Vilayanur V.; Stephenson, David E.; Wang, Wei; Thomsen, Edwin C.; Reed, David M.; Li, Bin; Balducci, Patrick J.; Kintner-Meyer, Michael CW; Sprenkle, Vincent L.

    2015-10-20

    A robust performance-based cost model is developed for all-vanadium, iron-vanadium and iron chromium redox flow batteries. Systems aspects such as shunt current losses, pumping losses and thermal management are accounted for. The objective function, set to minimize system cost, allows determination of stack design and operating parameters such as current density, flow rate and depth of discharge (DOD). Component costs obtained from vendors are used to calculate system costs for various time frames. A 2 kW stack data was used to estimate unit energy costs and compared with model estimates for the same size electrodes. The tool has been shared with the redox flow battery community to both validate their stack data and guide future direction.

  15. Tuning redox chemistry and photophysics in core-substituted tetraazaperopyrenes (TAPPs).

    PubMed

    Geib, Sonja; Martens, Susanne C; Märken, Michaela; Rybina, Arina; Wadepohl, Hubert; Gade, Lutz H

    2013-10-04

    Core substitution of tetraazaperopyrenes (TAPPs) has been achieved, and with it, considerable variation of their photo- and redox-chemical properties. Through Suzuki cross coupling starting from the fourfold core-brominated tetraazaperopyrene, aryl-substituted TAPPs were synthesized, which displayed very high fluorescence quantum yields (up to 100 %) in solution. Besides the Suzuki reactions, Stille and Sonogashira cross-couplings were also found to be suitable methods for core derivatization, as demonstrated in the syntheses of alkynyl-substituted tetraazaperopyrene congeners. Furthermore, TAPPs incorporating intramolecular donor-acceptor combinations of aromatic units (8, 9) were accessible by coupling the electron-poor peropyrene core with electron-rich aromatic units, which act as strong electron donors. Finally, C-heteroatom coupling (O, S, N) gave rise to novel TAPP derivatives with strongly modified redox-chemical behaviour and photophysics in the solid state as well in solution. In particular, TAPP derivatives displaying red fluorescence were obtained for the first time.

  16. Redox chemistry of green tea polyphenols: therapeutic benefits in neurodegenerative diseases.

    PubMed

    Hügel, H M; Jackson, N

    2012-05-01

    Evidence for the medicinal and health benefits of polyphenols in green tea for the prevention of chronic diseases such as heart disease, various types of cancer and neurodegenerative diseases is advancing. Their in vivo effectiveness and molecular mechanisms are difficult to elucidate and remain a challenging task. We review the redox responsiveness and amyloid protein perturbation biophysical properties of the major green tea polyphenol constituent (-)- epigallocatechin-3-gallate [EGCG].

  17. Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode

    PubMed Central

    Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao; Nishimura, Shin-ichi; Chung, Sai-Cheong; Kiuchi, Hisao; Harada, Yoshihisa; Kikkawa, Jun; Kobayashi, Yoshio; Okubo, Masashi; Yamada, Atsuo

    2016-01-01

    Sodium-ion batteries are attractive energy storage media owing to the abundance of sodium, but the low capacities of available cathode materials make them impractical. Sodium-excess metal oxides Na2MO3 (M: transition metal) are appealing cathode materials that may realize large capacities through additional oxygen redox reaction. However, the general strategies for enhancing the capacity of Na2MO3 are poorly established. Here using two polymorphs of Na2RuO3, we demonstrate the critical role of honeycomb-type cation ordering in Na2MO3. Ordered Na2RuO3 with honeycomb-ordered [Na1/3Ru2/3]O2 slabs delivers a capacity of 180 mAh g−1 (1.3-electron reaction), whereas disordered Na2RuO3 only delivers 135 mAh g−1 (1.0-electron reaction). We clarify that the large extra capacity of ordered Na2RuO3 is enabled by a spontaneously ordered intermediate Na1RuO3 phase with ilmenite O1 structure, which induces frontier orbital reorganization to trigger the oxygen redox reaction, unveiling a general requisite for the stable oxygen redox reaction in high-capacity Na2MO3 cathodes. PMID:27088834

  18. Radiation-induced non-equilibrium redox chemistry of plutonium: implications for environmental migration

    SciTech Connect

    Haschke, J M; Siekhaus, W J

    2009-02-11

    Static concentrations of plutonium oxidation states in solution and at surfaces in oxide-water systems are identified as non-equilibrium steady states. These kinetically controlled systems are described by redox cycles based on irreversible disproportionation of Pu(IV), Pu(V), and Pu(VI) in OH-bridged intermediate complexes and at OH-covered oxide surfaces. Steady state is fixed by continuous redox cycles driven by radioactivity-promoted electron-transfer and energetically favorable reactions of Pu(III) and Pu(VII) disproportionation products with H2O. A model based on the redox cycles accounts for the high steady-state [Pu] coexisting with Pu(IV) hydrous oxide at pH 0-15 and for predominance of Pu(V) and Pu(VI) in solution. The steady-state [Pu] depends on pH and the surface area of oxide in solution, but not on the initial Pu oxidation state. PuO{sub 2+x} formation is attributed to high Pu(V) concentrations existing at water-exposed oxide surfaces. Results infer that migration of Pu in an aqueous environment is controlled by kinetic factors unique to that site and that the predominant oxidation states in solution are Pu(V) and Pu(VI).

  19. Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode

    NASA Astrophysics Data System (ADS)

    Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao; Nishimura, Shin-Ichi; Chung, Sai-Cheong; Kiuchi, Hisao; Harada, Yoshihisa; Kikkawa, Jun; Kobayashi, Yoshio; Okubo, Masashi; Yamada, Atsuo

    2016-04-01

    Sodium-ion batteries are attractive energy storage media owing to the abundance of sodium, but the low capacities of available cathode materials make them impractical. Sodium-excess metal oxides Na2MO3 (M: transition metal) are appealing cathode materials that may realize large capacities through additional oxygen redox reaction. However, the general strategies for enhancing the capacity of Na2MO3 are poorly established. Here using two polymorphs of Na2RuO3, we demonstrate the critical role of honeycomb-type cation ordering in Na2MO3. Ordered Na2RuO3 with honeycomb-ordered [Na1/3Ru2/3]O2 slabs delivers a capacity of 180 mAh g-1 (1.3-electron reaction), whereas disordered Na2RuO3 only delivers 135 mAh g-1 (1.0-electron reaction). We clarify that the large extra capacity of ordered Na2RuO3 is enabled by a spontaneously ordered intermediate Na1RuO3 phase with ilmenite O1 structure, which induces frontier orbital reorganization to trigger the oxygen redox reaction, unveiling a general requisite for the stable oxygen redox reaction in high-capacity Na2MO3 cathodes.

  20. Ionizing Radiation-Induced Responses: Where Free Radical Chemistry Meets Redox Biology and Medicine

    PubMed Central

    Hauer-Jensen, Martin

    2014-01-01

    Abstract The biological effects of ionizing radiation (IR) from environmental, medical, and man-made sources, as well as from space exploration are of broad health concern. During the last 40 years it has become evident that, in addition to short-lived free radical-mediated events initiated within microseconds of exposure and generally thought to dissipate within milliseconds, IR-induced production of reactive oxygen and nitrogen species as well as changes in redox signaling linked to disruption of metabolic processes persist long after radiation exposure. Furthermore, persistent IR-induced increases in the metabolic production of reactive oxygen and nitrogen species appear to significantly contribute to the delayed effects of IR exposure, including induction of adaptive responses at low doses as well as carcinogenesis, fibrosis, inflammation, genomic instability, and acceleration of the onset of degenerative tissue injury processes associated with aging. The ability to identify the specific metabolic mechanisms and dose–response relationships that contribute to adaptive responses as well as persistent IR-induced injury processes holds great promise for identifying novel strategies to mitigate the deleterious effects of IR exposure as well as for gathering mechanistic information critical for risk assessment. This Forum contains original and review articles authored by experts in the field of radiobiology focusing on novel mechanisms involving redox biology and metabolism that significantly contribute to the persistent biological effects seen following IR exposure. Antioxid. Redox Signal. 20, 1407–1409. PMID:24354361

  1. Redox Energy and Sulfur Chemistry in Prebiotic Polymer Synthesis and Replication

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1997-01-01

    In the past year we have made significant progress in three research areas: (1) Most importantly, we discovered a new pathway of prebiotic amino acid synthesis in which formaldehyde and glycolaldehyde (substrates of the formose reaction) react with ammonia yielding alanine and homoserine in the presence of thiol catalysts. This thiol-dependent synthesis of amino acids undoubtedly occurs via amino acid thioester intermediates capable of forming peptides. This 'one-pot' reaction system operates under mild aqueous conditions, and like modern amino acid biosynthesis, uses sugar intermediates which are converted to amino acids by energy-yielding redox disproportionation. (2) Finally, in preparation for the analysis of Martian meteorite samples, we upgraded our HPLC system and developed an improved method capable of detecting a I femtomole of amino acid enantiomers. (3) We completed our analysis of the energetics of metabolism that revealed that life depends on biosynthetic processes driven by chemical energy made available by the redox disproportionation of carbon groups of sugars. We established that the favorable energy of redox disproportionation is based on the universal reduction potentials of carbon groups. We concluded that it is hard to imagine any other organic molecule besides sugars (formaldehyde oligomers) having the energy and reactivity needed to drive either modem biosynthesis or the chemical processes behind its origin.

  2. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes

    NASA Astrophysics Data System (ADS)

    Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M.-L.; Foix, D.; Gonbeau, D.; Walker, W.; Prakash, A. S.; Ben Hassine, M.; Dupont, L.; Tarascon, J.-M.

    2013-09-01

    Li-ion batteries have contributed to the commercial success of portable electronics and may soon dominate the electric transportation market provided that major scientific advances including new materials and concepts are developed. Classical positive electrodes for Li-ion technology operate mainly through an insertion-deinsertion redox process involving cationic species. However, this mechanism is insufficient to account for the high capacities exhibited by the new generation of Li-rich (Li1+xNiyCozMn(1-x-y-z)O2) layered oxides that present unusual Li reactivity. In an attempt to overcome both the inherent composition and the structural complexity of this class of oxides, we have designed structurally related Li2Ru1-ySnyO3 materials that have a single redox cation and exhibit sustainable reversible capacities as high as 230 mA h g-1. Moreover, they present good cycling behaviour with no signs of voltage decay and a small irreversible capacity. We also unambiguously show, on the basis of an arsenal of characterization techniques, that the reactivity of these high-capacity materials towards Li entails cumulative cationic (Mn+→M(n+1)+) and anionic (O2-→O22-) reversible redox processes, owing to the d-sp hybridization associated with a reductive coupling mechanism. Because Li2MO3 is a large family of compounds, this study opens the door to the exploration of a vast number of high-capacity materials.

  3. Review about the manganese speciation project related to neurodegeneration: An analytical chemistry approach to increase the knowledge about manganese related parkinsonian symptoms.

    PubMed

    Michalke, Bernhard

    2016-09-01

    Neurodegenerative diseases get a growing relevance for societies. But yet the complex multi-factorial mechanisms of these diseases are not fully understood, although it is well accepted that metal ions may play a crucial role. Manganese (Mn) is a transition metal which has essential biochemical functions but from occupational exposure scenarios it appeared that Mn can cause severe neurological damage. This "two-faces"-nature of manganese initiated us to start a project on Mn-speciation, since different element species are known to exhibit different impacts on health. A summary about the step-wise developments and findings from our working group was presented during the annual conference of the German trace element society in 2015. This paper summarizes now the contribution to this conference. It is intended to provide a complete picture of the so far evolved puzzle from our studies regarding manganese, manganese speciation and metabolomics as well as Mn-related mechanisms of neural damage. Doing so, the results of the single studies are now summarized in a connected way and thus their interrelationships are demonstrated. In short terms, we found that Mn-exposure leads to an increase of low molecular weight Mn compounds, above all Mn-citrate complex, which gets even enriched across neural barriers (NB). At a Mn serum concentration between 1.5 and 1.9μg/L a carrier switch from Mn-transferrin to Mn-citrate was observed. We concluded that the Mn-citrate complex is that important Mn-carrier to NB which can be found also beyond NB in human cerebrospinal fluid (CSF) or brain of exposed rats. In brain of Mn-exposed rats manganese leads to a decreased iron (Fe) concentration, to a shift from Fe(III) to Fe(II) after long term exposure and thus to a shift toward oxidative stress. This was additionally supported by an increase of markers for oxidative stress, inflammation or lipid peroxidation at increased Mn concentration in brain extracts. Furthermore, glutamate and

  4. The influence of EI-21 redox ion-exchange resins on the secondary-coolant circuit water chemistry of vehicular nuclear power installations

    NASA Astrophysics Data System (ADS)

    Moskvin, L. N.; Rakov, V. T.

    2015-06-01

    The results obtained from testing the secondary-coolant circuit water chemistry of full-scale land-based prototype bench models of vehicular nuclear power installations equipped with water-cooled water-moderated and liquid-metal reactor plants are presented. The influence of copper-containing redox ionexchange resins intended for chemically deoxygenating steam condensate on the working fluid circulation loop's water chemistry is determined. The influence of redox ion-exchange resins on the water chemistry is evaluated by generalizing an array of data obtained in the course of extended monitoring using the methods relating to physicochemical analysis of the quality of condensate-feedwater path media and the methods relating to metallographic analysis of the state of a faulty steam generator's tube system surfaces. The deoxygenating effectiveness of the normal state turbine condensate vacuum deaeration system is experimentally determined. The refusal from applying redox ion-exchange resins in the condensate polishing ion-exchange filters is formulated based on the obtained data on the adverse effect of copper-containing redox ionexchange resins on the condensate-feedwater path water chemistry and based on the data testifying a sufficient effect from using the normal state turbine condensate vacuum deaeration system. Data on long-term operation of the prototype bench model of a vehicular nuclear power installation without subjecting the turbine condensate to chemical deoxygenation are presented.

  5. Hydrogeomorphic Controls on Redox Chemistry Across Boreal Upland-Wetland Interfaces

    NASA Astrophysics Data System (ADS)

    Mitchell, C. P.; Branfireun, B. A.

    2002-12-01

    The reduction-oxidation (redox) state of wetland pore waters plays an important role in wetland biogeochemical processes. Many hydrological interfaces have been shown to be biogeochemical hot spots due to the supply of oxidized nutrients to more nutrient limited anaerobic environments. Methylmercury is a by-product of sulphate reduction, one of these redox reactions. In boreal forest catchments, hydrological interfaces such as upland-wetland groundwater connections have been found to be zones of elevated methylmercury concentrations. Little is known, however, about the spatial and temporal dynamics of the redox-cline, or the specific in situ biogeochemical controls on sulphate reduction and subsequent mercury methylation. As part of the Mercury Experiment to Assess Atmospheric Loading in Canada and the United States (METAALICUS), this study examined the spatiotemporal dynamics of the redox state of groundwater along several upland-wetland transitions by measuring concentrations of oxidized and reduced iron and sulphur, pH, and reduction-oxidation potential (Eh) using in situ platinum electrodes. Hydrological controls including water table elevation, precipitation, and hydraulic head were measured. It was found that although there was a clear chemical distinction between oxic upland and anoxic wetland waters, the extent of the zones of oxidized and reduced chemical species across the interface was highly variable throughout the summer, often responding to individual hydrologic events such as enhanced oxic groundwater flow due to precipitation inputs. Moreover, patterns of chemical distribution differed greatly between the two upland-wetland transects. Across one transect, the hydrological connection between upland and wetland was episodic and event-driven with large hydraulic gradients observed under storm conditions. This led to plug-flow through the wetland and a rapid gradient in oxic species reduction at the upland-wetland interface. The other transect had

  6. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    SciTech Connect

    WANG,YIFENG; PAPENGUTH,HANS W.

    2000-05-04

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation.

  7. Surface chemistry of coated lithium manganese nickel oxide thin film cathodes studied by XPS

    SciTech Connect

    Baggetto, Loic; Dudney, Nancy J; Veith, Gabriel M

    2013-01-01

    The effect of coating high voltage LiMn1.5Ni0.5O4 spinel cathode thin films with three metal oxide thin layers is discussed. The changes in surface chemistry of the electrodes are measured by X-ray photoelectron spectroscopy. ZnO is found to decompose during the first charge whereas Al2O3 and ZrO2 are stable for more than 100 cycles. ZrO2, however, importantly limits the available Li storage capacity of the electrochemical reaction due to poorer kinetics. Al2O3 offers the best results in term of capacity retention. Upon cycling, the evidence of a signal at 75.4 eV in the Al2p binding energy spectrum indicates the partial conversion of Al2O3 into Al2O2F2. Moreover, the continuous formation of PEO , esters and LixPOyFz compounds on the surface of the electrodes is found for all coating materials.

  8. Redox chemistry of actinide ions in Wells-Dawson heteropolyoxoanion complexes.

    SciTech Connect

    Chiang, M.-H.; Soderholm, L.; Antonio, M. R.; Chemistry

    2003-08-18

    The redox behavior has been characterized for several actinide (An) complexes with the monovacant Wells-Dawson anion, of the form [An{sup n+}({alpha}-2-P{sub 2}W{sub 17}O{sub 61}){sub 2}]{sup n-20} (An = Th{sup 4+}, U{sup 4+}, Np{sup 4+}, Pu{sup 4+}, and Am{sup 3+}). Two complexes, with An = U{sup 4+} and Am{sup 3+}, show redox activity under oxidizing conditions, which is attributed to the actinide oxidation. Am{sup 3+} is oxidized to Am{sup 4+} with an E{sub 1/2} = +1.21{+-}0.01 V, and U{sup 4+} oxidizes to U{sup 5+} with a measured E{sub 1/2} = +0.55{+-}0.01 V vs. Ag/AgCl. Although the cyclic voltammetry (CV) data are consistent with a reversible redox couple, bulk oxidative electrolysis of [U{sup 4+}({alpha}-2-P{sub 2}W{sub 17}O{sub 61}){sub 2}]{sup 16-} results in the decomposition of this complex to produce uranyl acetate and the free monovacant Wells-Dawson anion. In contrast, all of the CV data from the actinide coordination complexes differ from equivalent data obtained from the [{alpha}-2-P{sub 2}W{sub 17}O{sub 61}]{sup 10-} ligand itself. There are two complexed An{sup 4+} ions, Np and Pu, that undergo reduction over the same potential range as the ligands themselves. In situ X-ray spectroelectrochemistry is used to quantify the actinide response. The Np{sup 4+}/Np{sup 3+} redox behavior is a classically single ion process, with a formal potential of -0.84{+-}0.01 V that was determined from a Nernst plot of X-ray absorption near-edge structure (XANES) data. The Pu{sup 4+}/Pu{sup 3+} formal reduction potential in the complex [Pu({alpha}-2-P{sub 2}W{sub 17}O{sub 61}){sub 2}]{sup n-} was determined to be -0.17{+-}0.01 V using the same methodology. However, in this latter case, the slope of the Nernst plot indicates that 0.72{+-}0.03 electrons are involved in the reduction. This is a significant deviation from the 1 electron expected for the Pu couple, and is discussed in terms of the concomitant reduction of the P-W-O framework of the Wells-Dawson anion.

  9. Disentangling the record of diagenesis, local redox conditions, and global seawater chemistry during the latest Ordovician glaciation

    NASA Astrophysics Data System (ADS)

    Ahm, Anne-Sofie C.; Bjerrum, Christian J.; Hammarlund, Emma U.

    2017-02-01

    The Late Ordovician stratigraphic record integrates glacio-eustatic processes, water-column redox conditions and carbon cycle dynamics. This complex stratigraphic record, however, is dominated by deposits from epeiric seas that are susceptible to local physical and chemical processes decoupled from the open ocean. This study contributes a unique deep water basinal perspective to the Late Ordovician (Hirnantian) glacial record and the perturbations in seawater chemistry that may have contributed to the Hirnantian mass extinction event. We analyze recently drilled cores and outcrop samples from the upper Vinini Formation in central Nevada and report combined trace- and major element geochemistry, Fe speciation (FePy /FeHR and FeHR /FeT), and stable isotope chemostratigraphy (δ13COrg and δ34SPy). Measurements of paired samples from outcrop and core reveal that reactive Fe is preserved mainly as pyrite in core samples, while outcrop samples have been significantly altered as pyrite has been oxidized and remobilized by modern weathering processes. Fe speciation in the more pristine core samples indicates persistent deep water anoxia, at least locally through the Late Ordovician, in contrast to the prevailing interpretation of increased Hirnantian water column oxygenation in shallower environments. Deep water redox conditions were likely decoupled from shallower environments by a basinal shift in organic matter export driven by decreasing rates of organic matter degradation and decreasing shelf areas. The variable magnitude in the record of the Hirnantian carbon isotope excursion may be explained by this increased storage of isotopically light carbon in the deep ocean which, in combination with increased glacio-eustatic restriction, would strengthen lateral- and vertical gradients in seawater chemistry. We adopt multivariate statistical methods to deconstruct the spatial and temporal re-organization of seawater chemistry during the Hirnantian glaciation and attempt to

  10. Effect of cation exchange on major cation chemistry in the large scale redox experiment at Aespoe

    SciTech Connect

    Viani, B.E.; Bruton, C.J.

    1994-10-01

    Predicting the chemical changes that result from excavating a repository below the groundwater table in granitic terrain is a major focus of the SKB geochemistry program. The modeling study presented here demonstrates that cation exchange can play a major role in controlling the fluid chemistry that results when groundwaters of differing composition mix due to flow induced by excavation of the HRL tunnel. The major goal of this study was to assess whether an equilibrium cation exchange model could explain the composition of groundwater sampled from boreholes in the HRL tunnel. Given the consistency of the cation exchange hypothesis with observations, geochemical modeling was used to assess whether the quantity of exchanger necessary to match model results and observation was physically reasonable. The impact of mineral dissolution and precipitation on fluid chemistry was also evaluated. Finally, the compositions of exchanger phases expected to be in equilibrium with various Aespoe groundwaters were predicted.

  11. Oxidation of a biomarker for phenol carcinogen exposure: expanding the redox chemistry of 2'-deoxyguanosine.

    PubMed

    Weishar, Jennifer L; McLaughlin, Christopher K; Baker, Michael; Gabryelski, Wojciech; Manderville, Richard A

    2008-05-01

    A biomarker for phenolic carcinogen exposure, 8-(4''-hydroxyphenyl)-2'-deoxyguanosine, has been found to undergo oxidative coupling in the presence of Na2IrCl6 to afford ortho-ortho C-C-coupled polyphenols through the intermediacy of a phenoxyl radical. One can envision using such unique chemistry to oxidatively couple strands of DNA for the generation of new biomaterials. Our results also demonstrate the potential for phenolic adducts of DNA to undergo further oxidation reactions that may contribute to phenol-mediated cytotoxicity and genotoxicity.

  12. Redox chemistry of sulphate and uranium in a phosphogypsum tailings dump.

    PubMed

    Papanicolaou, Fanos; Antoniou, Stella; Pashalidis, Ioannis

    2010-08-01

    The present study aims to assess the effect of redox conditions existing within the tailings dump on the stability of phosphogypsum (e.g. sulphate reduction) and uranium(VI). Phosphogypsum sampling and in-situ measurements were carried out at a coastal tailings dump in Vasiliko Cyprus, pH, E(H) and solubility experiments were performed in simulated laboratory systems and thermodynamic calculations using MINTEQA2. Generally, in the open tailings dump oxidizing conditions predominate stabilizing sulphur and uranium in their hexavalent oxidation states. On the other hand, after the application of a soil/vegetative cover and in the presence of natural organic matter, anoxic conditions prevail (E(H) < -70 mV) resulting in S(VI) and U(VI) reduction to S(-II) and U(IV), respectively. Although, the sulphide anion can form very insoluble compounds with heavy metal ions (e.g. Cd(II), Pb(II) etc.) and U(IV) oxide has very low solubility, partial reduction of sulphate to sulphide within gypsum may affect the stability of phosphogypsum resulting in enhanced erosion of the material by rain- and seawater and washing out of contaminants in particulate/colloidal form.

  13. JUPITER-II Molten Salt Flibe Research: An Update On Tritium, Mobilization and Redox Chemistry Experiments

    SciTech Connect

    D.A. Petti; D. A. Petti; G. R. Smolik; Michael F. Simpson; John P. Sharpe; R. A. Anderl; S. Fukada; Y. Hatano; Masanori Hara; Y. Oya; T. Terai; D.-K. Sze; S. Tanaka

    2005-05-01

    The second Japan/US Program on Irradiation Tests for Fusion Research (JUPITER-II) began on April 1, 2001. Part of the collaborative research centers on studies of the molten salt 2LiF2–BeF2 (also known as Flibe) for fusion applications. Flibe has been proposed as a self-cooled breeder in both magnetic and inertial fusion power plant designs over the last 25 years. The key feasibility issues associated with the use of Flibe are the corrosion of structural material by the molten salt, tritium behavior and control in the molten salt blanket system, and safe handling practices and releases from Flibe during an accidental spill. These issues are all being addressed under the JUPITER-II program at the Idaho National Laboratory in the Safety and Tritium Applied Research (STAR) facility. In this paper, we review the program to date in the area of tritium/deuterium behavior, Flibe mobilization under accident conditions and testing of Be as a redox agent to control corrosion. Future activities planned through the end of the collaboration are also presented.

  14. Spatially confined redox chemistry in periodic mesoporous hydridosilica-nanosilver grown in reducing nanopores.

    PubMed

    Dag, Ömer; Henderson, Eric J; Wang, Wendong; Lofgreen, Jennifer E; Petrov, Srebri; Brodersen, Peter M; Ozin, Geoffrey A

    2011-11-02

    Periodic mesoporous hydridosilica, PMHS, is shown for the first time to function as both a host and a mild reducing agent toward noble metal ions. In this archetypical study, PMHS microspheres react with aqueous Ag(I) solutions to form Ag(0) nanoparticles housed in different pore locations of the mesostructure. The dominant reductive nucleation and growth process involves SiH groups located within the pore walls and yields molecular scale Ag(0) nanoclusters trapped and stabilized in the pore walls of the PMHS microspheres that emit orange-red photoluminescence. Lesser processes initiated with pore surface SiH groups produce some larger spherical and worm-shaped Ag(0) nanoparticles within the pore voids and on the outer surfaces of the PMHS microspheres. The intrinsic reducing power demonstrated in this work for the pore walls of PMHS speaks well for a new genre of chemistry that benefits from the mesoscopic confinement of Si-H groups.

  15. Soil Redox Chemistry Limitation of Selenium Concentration in Carex Species Sedges

    SciTech Connect

    Bruce J. Mincher; John Mionczynski; Patrick A. Hnilicka

    2007-09-01

    The trace element selenium (Se) is required in the production of enzymes that protect mammalian cells from oxidative damage due to the byproducts of aerobic respiration. Its deficiency in livestock results in the nutritional muscular dystrophy called white muscle disease. This especially affects juveniles in the preweaning period. Symptoms have also been reported in wild herbivores on low-Se forage, and their appearance may be episodic, suggesting temporal variations in Se uptake by plants. Here, we report variations in selenium concentrations in Carex spp. sedges used as forage by bighorn sheep (Ovis canadensis) on summer range in the Wyoming, Wind River Mountains, and correlate those variations with soil conditions that affect the bioavailability of selenium. Variations in available Se are explained based upon the known oxidation/reduction chemistry of the element. It is concluded that water-saturated, alpine soils provide conditions suitable for the reduction of Se to the unavailable, elemental form, limiting its concentration in forage plants.

  16. Probing the chemistry, electronic structure and redox energetics in pentavalent organometallic actinide complexes

    SciTech Connect

    Graves, Christopher R; Vaughn, Anthony E; Morris, David E; Kiplinger, Jaqueline L

    2008-01-01

    Complexes of the early actinides (Th-Pu) have gained considerable prominence in organometallic chemistry as they have been shown to undergo chemistries not observed with their transition- or lanthanide metal counterparts. Further, while bonding in f-element complexes has historically been considered to be ionic, the issue of covalence remains a subject of debate in the area of actinide science, and studies aimed at elucidating key bonding interactions with 5f-orbitals continue to garner attention. Towards this end, our interests have focused on the role that metal oxidation state plays in the structure, reactivity and spectral properties of organouranium complexes. We report our progress in the synthesis of substituted U{sup V}-imido complexes using various routes: (1) Direct oxidation of U{sup IV}-imido complexes with copper(I) salts; (2) Salt metathesis with U{sup V}-imido halides; (3) Protonolysis and insertion of an U{sup V}-imido alkyl or aryl complex with H-N{double_bond}CPh{sub 2} or N{triple_bond}C-Ph, respectively, to form a U{sup V}-imido ketimide complex. Further, we report and compare the crystallographic, electrochemical, spectroscopic and magnetic characterization of the pentavalent uranium (C{sub 5}Me{sub 5}){sub 2}U({double_bond}N-Ar)(Y) series (Y = OTf, SPh, C{triple_bond}C-Ph, NPh{sub 2}, OPh, N{double_bond}CPh{sub 2}) to further interrogate the molecular, electronic, and magnetic structures of this new class of uranium complexes.

  17. Distinct effects of oxalate versus malonate on the iron redox chemistry: Implications for the photo-Fenton reaction.

    PubMed

    Xiao, Dongxue; Guo, Yaoguang; Lou, Xiaoyi; Fang, Changling; Wang, Zhaohui; Liu, Jianshe

    2014-05-01

    The dicarboxylic acids oxalate (Oxal) and malonate (Mal) are frequently detected as the final low-molecular-weight organic acids during oxidative degradation of aromatic compounds. Here a distinct effect of Oxal versus Mal on iron-based photocatalytic technologies was reported by testing the degradation efficiency of the dye rhodamine B. The rates of dye degradation in irradiated Fe(III) solutions depended on Fe(III/II) speciation, photoreactivities of Fe complexes and reactivities of Fe(II) complexes with H2O2. Photolysis of the Fe(III)-oxalato complex was favorable due to the formation of O2-, HO2 and OH for oxidizing the dye; however, an excess of H2O2 could quench the excited state of ferrioxalate, decreasing the degradation efficiency. In contrast, activities of UV/Fe(III) in the presence of Mal were significantly diminished because Fe(III)-Mal complexes, with much lower quantum yield of Fe(II) from photoreduction, dominated Fe(III) speciation. The results provide data for an understanding of the mechanism of iron redox (photo)chemistry mediated by diacids, which will aid in selecting appropriate Fe ligands, screening photo-Fenton conditions and designing UV/Fe(III) treatability.

  18. Electrochemical evidence that pyranopterin redox chemistry controls the catalysis of YedY, a mononuclear Mo enzyme.

    PubMed

    Adamson, Hope; Simonov, Alexandr N; Kierzek, Michelina; Rothery, Richard A; Weiner, Joel H; Bond, Alan M; Parkin, Alison

    2015-11-24

    A long-standing contradiction in the field of mononuclear Mo enzyme research is that small-molecule chemistry on active-site mimic compounds predicts ligand participation in the electron transfer reactions, but biochemical measurements only suggest metal-centered catalytic electron transfer. With the simultaneous measurement of substrate turnover and reversible electron transfer that is provided by Fourier-transformed alternating-current voltammetry, we show that Escherichia coli YedY is a mononuclear Mo enzyme that reconciles this conflict. In YedY, addition of three protons and three electrons to the well-characterized "as-isolated" Mo(V) oxidation state is needed to initiate the catalytic reduction of either dimethyl sulfoxide or trimethylamine N-oxide. Based on comparison with earlier studies and our UV-vis redox titration data, we assign the reversible one-proton and one-electron reduction process centered around +174 mV vs. standard hydrogen electrode at pH 7 to a Mo(V)-to-Mo(IV) conversion but ascribe the two-proton and two-electron transition occurring at negative potential to the organic pyranopterin ligand system. We predict that a dihydro-to-tetrahydro transition is needed to generate the catalytically active state of the enzyme. This is a previously unidentified mechanism, suggested by the structural simplicity of YedY, a protein in which Mo is the only metal site.

  19. Comparison of the redox chemistry of sulfur- and selenium-containing analogs of uracil.

    PubMed

    Payne, N Connor; Geissler, Andrew; Button, Aileen; Sasuclark, Alexandru R; Schroll, Alayne L; Ruggles, Erik L; Gladyshev, Vadim N; Hondal, Robert J

    2017-03-01

    Selenium is present in proteins in the form of selenocysteine, where this amino acid serves catalytic oxidoreductase functions. The use of selenocysteine in nature is strongly associated with redox catalysis. However, selenium is also found in a 2-selenouridine moiety at the wobble position of tRNA(Glu), tRNA(Gln) and tRNA(Lys). It is thought that the modifications of the wobble position of the tRNA improves the selectivity of the codon-anticodon pair as a result of the physico-chemical changes that result from substitution of sulfur and selenium for oxygen. Both selenocysteine and 2-selenouridine have widespread analogs, cysteine and thiouridine, where sulfur is used instead. To examine the role of selenium in 2-selenouridine, we comparatively analyzed the oxidation reactions of sulfur-containing 2-thiouracil-5-carboxylic acid (s(2)c(5)Ura) and its selenium analog 2-selenouracil-5-carboxylic acid (se(2)c(5)Ura) using (1)H-NMR spectroscopy, (77)Se-NMR spectroscopy, and liquid chromatography-mass spectrometry. Treatment of s(2)c(5)Ura with hydrogen peroxide led to oxidized intermediates, followed by irreversible desulfurization to form uracil-5-carboxylic acid (c(5)Ura). In contrast, se(2)c(5)Ura oxidation resulted in a diselenide intermediate, followed by conversion to the seleninic acid, both of which could be readily reduced by ascorbate and glutathione. Glutathione and ascorbate only minimally prevented desulfurization of s(2)c(5)Ura, whereas very little deselenization of se(2)c(5)Ura occurred in the presence of the same antioxidants. In addition, se(2)c(5)Ura but not s(2)c(5)Ura showed glutathione peroxidase activity, further suggesting that oxidation of se(2)c(5)Ura is readily reversible, while oxidation of s(2)c(5)Ura is not. The results of the study of these model nucleobases suggest that the use of 2-selenouridine is related to resistance to oxidative inactivation that otherwise characterizes 2-thiouridine. As the use of selenocysteine in proteins also

  20. Redox and complexation chemistry of the Cr(VI)/Cr(V)/Cr(IV)-D-glucuronic acid system.

    PubMed

    González, Juan Carlos; García, Silvia; Bellú, Sebastián; Salas Peregrín, Juan Manuel; Atria, Ana María; Sala, Luis Federico; Signorella, Sandra

    2010-03-07

    When excess uronic acid over Cr(VI) is used, the oxidation of D-glucuronic acid (Glucur) by Cr(VI) yields D-glucaric acid (Glucar) and Cr(III) as final products. The redox reaction involves the formation of intermediate Cr(IV) and Cr(V) species, with Cr(VI) and Cr(V) reacting with Glucur at comparable rates. The rate of disappearance of Cr(VI), and Cr(V) increases with [H(+)] and [substrate]. The experimental results indicated that Cr(IV) is a very reactive intermediate since its disappearance rate is much faster than Cr(VI)/Cr(V) and decreases when [H(+)] rises. Even at high [H(+)] Cr(IV) intermediate was involved in fast steps and does not accumulate in the reaction. Kinetic studies show that the redox reaction between Glucur and Cr(VI) proceeds through a mechanism combining one- and two-electron pathways for the reduction of intermediate Cr(IV) by the organic substrate: Cr(VI) --> Cr(IV) --> Cr(II) and Cr(VI) --> Cr(IV) --> Cr(III). The mechanism is supported by the observation of free radicals, CrO(2)(2+) (superoxoCr(III) ion) and Cr(V) as reaction intermediates. The EPR spectra show that five-co-ordinate oxo-Cr(V) bischelates are formed at pH < or = 4 with the uronic acid bound to Cr(V) through the carboxylate and the alpha-OH group of the furanose form. Five-co-ordinated oxo-Cr(V) monochelates are observed as minor species in addition to the major five-co-ordinated oxo-Cr(V) bischelates. At pH 7.5 the EPR spectra show the formation of a Cr(V) complex where the cis-diol groups of Glucur participate in the bonding to Cr(V). In vitro, our studies on the chemistry of Cr(V) complexes can provide information on the nature of the species that are likely to be stabilized in vivo. In particular, the EPR pattern of Glucur-Cr(V) species can be used as a finger print to identify Cr(V) complexes formed in biological systems.

  1. FeS/S/FeS(2) redox system and its oxidoreductase-like chemistry in the iron-sulfur world.

    PubMed

    Wang, Wei; Yang, Bin; Qu, Youpeng; Liu, Xiaoyang; Su, Wenhui

    2011-06-01

    The iron-sulfur world (ISW) theory is an intriguing prediction regarding the origin of life on early Earth. It hypothesizes that life arose as a geochemical process from inorganic starting materials on the surface of sulfide minerals in the vicinity of deep-sea hot springs. During the last two decades, many experimental studies have been carried out on this topic, and some interesting results have been achieved. Among them, however, the processes of carbon/nitrogen fixation and biomolecular assembly on the mineral surface have received an inordinate amount of attention. To the present, an abiotic model for the oxidation-reduction of intermediates participating in metabolic pathways has been ignored. We examined the oxidation-reduction effect of a prebiotic FeS/S/FeS(2) redox system on the interconversion between several pairs of α-hydroxy acids and α-keto acids (i.e., lactate/pyruvate, malate/oxaloacetate, and glycolate/glyoxylate). We found that, in the absence of FeS, elemental sulfur (S) oxidized α-hydroxy acids to form corresponding keto acids only at a temperature higher than its melting point (113°C); in the presence of FeS, such reactions occurred more efficiently through a coupled reaction mechanism, even at a temperature below the phase transition point of S. On the other hand, FeS was shown to have the capacity to reversibly reduce the keto acids. Such an oxidoreductase-like chemistry of the FeS/S/FeS(2) redox system suggests that it can determine the redox homeostasis of metabolic intermediates in the early evolutionary phase of life. The results provide a possible pathway for the development of primordial redox biochemistry in the iron-sulfur world. Key Words: Iron-sulfur world-FeS/S/FeS(2) redox system-Oxidoreductase-like chemistry. Astrobiology 11, 471-476.

  2. Temporal and spatial correlation of water table levels with redox, pH, and porewater chemistry in a clay-rich till aquitard

    NASA Astrophysics Data System (ADS)

    Boldt-Leppin, B. E. J.; Hendry, M. Jim

    2003-04-01

    Redox and pH changes control the geochemistry of porewater above and below water tables. In North America, surficial clay-rich aquitards typically consist of an upper oxidized and fractured zone (2-4 m) with a high hydraulic conductivity. This zone is often underlain by a slowly permeable, unoxidized and poorly fractured zone. An understanding on the depth of penetration of geochemical characteristics (redox, pH, and chemistry) and the controls on these parameters was investigated in the upper 5.5 m of a clay-rich aquitard in Saskatchewan, Canada. A vertical nest of twelve Pt-electrodes combined with thermocouples were installed at depths between 0.3 and 5.5 m. Temperature measurements and redox potentials were measured continuously since their installation in 2000. Porewater samples and water table levels from the water table were monitored monthly over the same time period. Water level and the pH, conductivity and temperature of porewater were also monitored in a piezometer installed 3.7 m below ground using an automated TROLL 8000 system. The extensive data sets of geochemical variables with time were smoothed using Fourier transformations. A distinct separation in the redox potential between the oxidized zone (Eh=550 mV) and unoxidized zone (Eh=-10 mV) was identified. Harmonic analyses techniques were used to identify seasonal variability in the measurements and associated time lags in these data.

  3. Anticorrelation between Surface and Subsurface Point Defects and the Impact on the Redox Chemistry of TiO2(110)

    SciTech Connect

    Yoon, Yeohoon; Du, Yingge; Garcia, Juan C.; Zhu, Zihua; Wang, Zhitao; Petrik, Nikolay G.; Kimmel, Gregory A.; Dohnalek, Zdenek; Henderson, Michael A.; Rousseau, Roger J.; Deskins, N. Aaron; Lyubinetsky, Igor

    2015-02-02

    Using combination of STM, DFT and SIMS, we explored the interplay and relative impact of surface vs. subsurface defects on the surface chemistry of rutile TiO2. STM results show that surface O vacancies (VO’s) are virtually absent in the vicinity of positively-charged subsurface point-defects. This observation is consistent with DFT calculations of impact of subsurface defect proximity on VO formation energy. To monitor the influence of such lateral anticorrelation on surface redox chemistry, a test reaction of the dissociative adsorption of O2 is employed, which is observed to be suppressed around them. DFT results attribute this to a perceived absence of the intrinsic (Ti) (and likely extrinsic) interstitials in the nearest subsurface layer beneath “inhibited” areas. We also postulate that the entire nearest subsurface region could be voided of any charged point-defects, whereas prevalent VO’s are largely responsible for mediation of the redox chemistry at reduced TiO2(110) surface.

  4. Synthesis, redox, and magnetic properties of a neutral, mixed-valent heptanuclear manganese wheel with S = 27/2 high-spin ground state.

    PubMed

    Saalfrank, Rolf W; Scheurer, Andreas; Prakash, Raju; Heinemann, Frank W; Nakajima, Takayuki; Hampel, Frank; Leppin, Roland; Pilawa, Bernd; Rupp, Holger; Müller, Paul

    2007-03-05

    Reaction of lithium tetrachloromanganate(II) with N-n-butyldiethanolamine H2L3 (3) in the presence of LiH leads to the formation of wheel-shaped, mixed-valent heptanuclear, neutral complex {MnII subset[MnII2MnIII4Cl6(L3)6]} (4). The manganese wheel crystallizes in the triclinic space group P as 4.2CHCl3 or 4.3THF when either diethyl ether or n-pentane was allowed to diffuse into solutions of 4 in chloroform or tetrahydrofuran. The oxidation states of each manganese ion in 4.2CHCl3 or 4.3THF were assigned on the basis of detailed symmetry, bond length, and charge considerations, as well as by the Jahn-Teller axial elongation observed for the manganese(III) ions, and were further supported by cyclic voltammetry. The analysis of the SQUID magnetic susceptibility data for complex 4.2CHCl3 showed that the intramolecular magnetic coupling of the manganese(II,III) ions is dominated by ferromagnetic exchange interactions. This results in an S = 27/2 ground-state multiplet at low magnetic field. At fields higher than 0.68 T, the energetically lowest state is given by the mS = 31/2 component of the S = 31/2 multiplet due to the Zeeman effect. The ligand-field-splitting parameters were determined by anisotropy SQUID measurements on single crystalline samples along the crystallographic x, y, and z axes (D = -0.055 K, E = 6.6 mK) and by high-frequency electron spin resonance measurements on a polycrystalline powder of 4.2CHCl3 (D = -0.068 K, E = 9.7 mK). The resulting barrier height for magnetization reversal amounts to U approximately 10 K. Finally, 2DEG Hall magnetization measurements revealed that 4.2CHCl3 shows single-molecule magnet behavior up to the blocking temperature of about 0.6 K with closely spaced steps in the hysteresis because of the quantum tunneling of the magnetization.

  5. Acid-base and Electrochemical Properties of Manganese meso(ortho- and meta-ethylpyridyl)porphyrins: Potentiometric, Spectrophotometric and Spectroelectrochemical Study of Protolytic and Redox Equilibria

    PubMed Central

    Weitner, Tin; Budimir, Ana; Batinić-Haberle, Ines

    2013-01-01

    The difference in electrostatics and reduction potentials between manganese ortho-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP) and manganese meta-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-3-PyP) is a challenging topic, particularly because of the high likelihood for their clinical development. Hence, a detailed study of the protolytic and electrochemical speciation of MnII–IVTE-2-PyP and MnII-IVTE-3-PyP in a broad pH range has been performed using the combined spectrophotometric and potentiometric methods. The results reveal that in aqueous solutions within the pH range ~2–13 the following species exist: (H2O)MnIITE-m-PyP4+, (HO)MnIITE-m-PyP3+, (H2O)2MnIIITE-m-PyP5+, (H2O)(HO)MnIIITE-m-PyP4+, (H2O)(O=)MnIIITE-m-PyP3+, (H2O)(O=)MnIVTE-m-PyP4+ and (HO)(O=)MnIVTE-m-PyP3+ (m = 2, 3). All the protolytic equilibrium constants that include the accessible species as well as the thermodynamic parameters for each particular protolytic equilibrium have been determined. The corresponding formal reduction potentials related to the reduction of the above species and the thermodynamic parameters describing the accessible reduction couples were calculated as well. PMID:21052598

  6. Manganese mineralogy and diagenesis in the sedimentary rock record

    NASA Astrophysics Data System (ADS)

    Johnson, Jena E.; Webb, Samuel M.; Ma, Chi; Fischer, Woodward W.

    2016-01-01

    Oxidation of manganese (II) to manganese (III,IV) demands oxidants with very high redox potentials; consequently, manganese oxides are both excellent proxies for molecular oxygen and highly favorable electron acceptors when oxygen is absent. The first of these features results in manganese-enriched sedimentary rocks (manganese deposits, commonly Mn ore deposits), which generally correspond to the availability of molecular oxygen in Earth surface environments. And yet because manganese reduction is promoted by a variety of chemical species, these ancient manganese deposits are often significantly more reduced than modern environmental manganese-rich sediments. We document the impacts of manganese reduction and the mineral phases that form stable manganese deposits from seven sedimentary examples spanning from modern surface environments to rocks over 2 billion years old. Integrating redox and coordination information from synchrotron X-ray absorption spectroscopy and X-ray microprobe imaging with scanning electron microscopy and energy and wavelength-dispersive spectroscopy, we find that unlike the Mn(IV)-dominated modern manganese deposits, three manganese minerals dominate these representative ancient deposits: kutnohorite (CaMn(CO3)2), rhodochrosite (MnCO3), and braunite (Mn(III)6Mn(II)O8SiO4). Pairing these mineral and textural observations with previous studies of manganese geochemistry, we develop a paragenetic model of post-depositional manganese mineralization with kutnohorite and calcian rhodochrosite as the earliest diagenetic mineral phases, rhodochrosite and braunite forming secondarily, and later alteration forming Mn-silicates.

  7. Manganese cluster in photosynthesis: Where plants oxidize water to dioxygen

    SciTech Connect

    Yachandra, V.K.; Klein, M.P.; Sauer, K. |

    1996-11-01

    The essential involvement of manganese in photosynthetic water oxidation was implicit in the observation by Pirson in 1937 that plants and algae deprived of Mn in their growth medium lost the ability to evolve O{sub 2}. Addition of this essential element to the growth medium resulted in the restoration of water oxidation within 30 min. There is increased interest in the study of Mn in biological chemistry and dioxygen metabolism in the last two decades with the discovery of several Mn redox enzymes. The list of enzymes where Mn is required for redox activity includes a Mn superoxide dismutase, a binuclear Mn-containing catalase, a binuclear Mn-containing ribonucleotide reductase, a proposed binuclear Mn site in thiosulfate oxidase, a Mn peroxidase that is capable of oxidative degradation of lignin, and perhaps the most complex and important, the tetranuclear Mn-containing oxygen-evolving complex in photosystem II (Mn-OEC). Mn is well suited for the redox role with accessible oxidation states of II, III, and IV, and possibly V: oxidation states that have all been proposed to explain the mechanisms of the Mn redox enzymes.

  8. Layered-to-Tunnel Structure Transformation and Oxygen Redox Chemistry in LiRhO2 upon Li Extraction and Insertion.

    PubMed

    Mikhailova, Daria; Karakulina, Olesia M; Batuk, Dmitry; Hadermann, Joke; Abakumov, Artem M; Herklotz, Markus; Tsirlin, Alexander A; Oswald, Steffen; Giebeler, Lars; Schmidt, Marcus; Eckert, Jürgen; Knapp, Michael; Ehrenberg, Helmut

    2016-07-18

    Layered Li(M,Li)O2 (where M is a transition metal) ordered rock-salt-type structures are used in advanced metal-ion batteries as one of the best hosts for the reversible intercalation of Li ions. Besides the conventional redox reaction involving oxidation/reduction of the M cation upon Li extraction/insertion, creating oxygen-located holes because of the partial oxygen oxidation increases capacity while maintaining the oxidized oxygen species in the lattice through high covalency of the M-O bonding. Typical degradation mechanism of the Li(M,Li)O2 electrodes involves partially irreversible M cation migration toward the Li positions, resulting in gradual capacity/voltage fade. Here, using LiRhO2 as a model system (isostructural and isoelectronic to LiCoO2), for the first time, we demonstrate an intimate coupling between the oxygen redox and M cation migration. A formation of the oxidized oxygen species upon electrochemical Li extraction coincides with transformation of the layered Li1-xRhO2 structure into the γ-MnO2-type rutile-ramsdellite intergrowth LiyRh3O6 structure with rutile-like [1 × 1] channels along with bigger ramsdellite-like [2 × 1] tunnels through massive and concerted Rh migration toward the empty positions in the Li layers. The oxidized oxygen dimers with the O-O distances as short as 2.26 Å are stabilized in this structure via the local Rh-O configuration reminiscent to that in the μ-peroxo-μ-hydroxo Rh complexes. The LiyRh3O6 structure is remarkably stable upon electrochemical cycling illustrating that proper structural implementation of the oxidized oxygen species can open a pathway toward deliberate employment of the anion redox chemistry in high-capacity/high-voltage positive electrodes for metal-ion batteries.

  9. Reactivity of [Ge9 {Si(SiMe3 )3 }3 ](-) Towards Transition-Metal M(2+) Cations: Coordination and Redox Chemistry.

    PubMed

    Kysliak, Oleksandr; Schrenk, Claudio; Schnepf, Andreas

    2016-12-23

    Recently the metalloid cluster compound [Ge9 Hyp3 ](-) (1; Hyp=Si(SiMe3 )3 ) was oxidatively coupled by an iron(II) salt to give the largest metalloid Group 14 cluster [Ge18 Hyp6 ]. Such redox chemistry is also possible with different transition metal (TM) salts TM(2+) (TM=Fe, Co, Ni) to give the TM(+) complexes [Fe(dppe)2 ][Ge9 Hyp3 ] (3; dppe=1,2-bis(diphenylphosphino)ethane), [Co(dppe)2 ][Ge9 Hyp3 ] (4), [Ni(dppe)(Ge9 Hyp3 )] (5) and [Ni(dppe)2 (Ge9 Hyp3 )](+) (6). Such a redox reaction does not proceed for Mn, for which a salt metathesis gives the first open shell [Hyp3 Ge9 -M-Ge9 Hyp3 ] cluster (2; M=Mn). The bonding of the transition metal atom to 1 is also possible for Ni (e.g., compound 6), in which one or even two nickel atoms can bind to 1. In contrast to this in case of the Fe and Co compounds 3 and 4, respectively, the transition-metal atom is not bound to the Ge9 core of 1. The synthesis and the experimentally determined structures of 2-6 are presented. Additionally the bonding within 2-6 is analyzed and discussed with the aid of EPR measurements and quantum chemical calculations.

  10. An evaluation of benthic foraminiferal U/Ca and U/Mn proxies for deep ocean carbonate chemistry and redox conditions

    NASA Astrophysics Data System (ADS)

    Chen, Pujiao; Yu, Jimin; Jin, Zhangdong

    2017-02-01

    The deep ocean is thought to have played a crucial role in modulating atmospheric CO2 changes, and thus reconstructions of deep ocean conditions can place important constraints on the past global carbon cycle. Some previous studies suggested that foraminiferal U/Ca could be used to infer seawater carbonate chemistry changes, but others showed complications from diagenesis and temperature. A recent downcore study suggested that foraminiferal U/Mn may be used for sedimentary redox-conditions, but no core-top work has been done to investigate factors affecting U/Mn. We investigate controlling factors on U/Ca and U/Mn in two benthic foraminiferal species from 120 global core-tops and three Atlantic sediment cores. Our core-top data reveal no significant correlation between core-top benthic U/Ca and carbonate system parameters. The lack of an influence of deep-water [CO32-] on U/Ca is further supported by our downcore results. Together, our data highlight complications to use benthic U/Ca for deep-water carbonate chemistry reconstructions. Although no correlation is found between core-top U/Mn and hydrographic data, high-resolution U/Mn and U/Ca in core TNO57-21 show similar patterns to authigenic U (aU) and vary in tandem with atmospheric CO2 on millennial timescales. Changes in U/Mn, U/Ca and aU in TNO57-21 may reflect postdepositional diagenesis linked to sedimentary oxygen, which is controlled by subantarctic surface productivity and ventilation of deep South Atlantic in the past. We suggest that benthic U/Mn and U/Ca may be used as auxiliary indicators for past sedimentary redox-conditions and along with other proxies could reflect deep-water oxygenation.

  11. Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery

    PubMed Central

    Zhang, Guijie; Zhang, Xiaolin; Hu, Dongping; Li, Dandan; Algeo, Thomas J.; Farquhar, James; Henderson, Charles M.; Qin, Liping; Shen, Megan; Shen, Danielle; Schoepfer, Shane D.; Chen, Kefan; Shen, Yanan

    2017-01-01

    The end-Permian mass extinction represents the most severe biotic crisis for the last 540 million years, and the marine ecosystem recovery from this extinction was protracted, spanning the entirety of the Early Triassic and possibly longer. Numerous studies from the low-latitude Paleotethys and high-latitude Boreal oceans have examined the possible link between ocean chemistry changes and the end-Permian mass extinction. However, redox chemistry changes in the Panthalassic Ocean, comprising ∼85–90% of the global ocean area, remain under debate. Here, we report multiple S-isotopic data of pyrite from Upper Permian–Lower Triassic deep-sea sediments of the Panthalassic Ocean, now present in outcrops of western Canada and Japan. We find a sulfur isotope signal of negative Δ33S with either positive δ34S or negative δ34S that implies mixing of sulfide sulfur with different δ34S before, during, and after the end-Permian mass extinction. The precise coincidence of the negative Δ33S anomaly with the extinction horizon in western Canada suggests that shoaling of H2S-rich waters may have driven the end-Permian mass extinction. Our data also imply episodic euxinia and oscillations between sulfidic and oxic conditions during the earliest Triassic, providing evidence of a causal link between incursion of sulfidic waters and the delayed recovery of the marine ecosystem. PMID:28167796

  12. Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery.

    PubMed

    Zhang, Guijie; Zhang, Xiaolin; Hu, Dongping; Li, Dandan; Algeo, Thomas J; Farquhar, James; Henderson, Charles M; Qin, Liping; Shen, Megan; Shen, Danielle; Schoepfer, Shane D; Chen, Kefan; Shen, Yanan

    2017-02-21

    The end-Permian mass extinction represents the most severe biotic crisis for the last 540 million years, and the marine ecosystem recovery from this extinction was protracted, spanning the entirety of the Early Triassic and possibly longer. Numerous studies from the low-latitude Paleotethys and high-latitude Boreal oceans have examined the possible link between ocean chemistry changes and the end-Permian mass extinction. However, redox chemistry changes in the Panthalassic Ocean, comprising ∼85-90% of the global ocean area, remain under debate. Here, we report multiple S-isotopic data of pyrite from Upper Permian-Lower Triassic deep-sea sediments of the Panthalassic Ocean, now present in outcrops of western Canada and Japan. We find a sulfur isotope signal of negative Δ(33)S with either positive δ(34)S or negative δ(34)S that implies mixing of sulfide sulfur with different δ(34)S before, during, and after the end-Permian mass extinction. The precise coincidence of the negative Δ(33)S anomaly with the extinction horizon in western Canada suggests that shoaling of H2S-rich waters may have driven the end-Permian mass extinction. Our data also imply episodic euxinia and oscillations between sulfidic and oxic conditions during the earliest Triassic, providing evidence of a causal link between incursion of sulfidic waters and the delayed recovery of the marine ecosystem.

  13. Thiodiacetate-manganese chemistry with N ligands: unique control of the supramolecular arrangement over the metal coordination mode.

    PubMed

    Grirrane, Abdessamad; Pastor, Antonio; Galindo, Agustín; Alvarez, Eleuterio; Mealli, Carlo; Ienco, Andrea; Orlandini, Annabella; Rosa, Patrick; Caneschi, Andrea; Barra, Anne-Laure; Sanz, Javier Fernández

    2011-09-12

    Compounds based on the Mn-tda unit (tda=S(CH(2)COO)(2)(-2) ) and N co-ligands have been analyzed in terms of structural, spectroscopic, magnetic properties and DFT calculations. The precursors [Mn(tda)(H(2)O)](n) (1) and [Mn(tda)(H(2)O)(3)]·H(2)O (2) have been characterized by powder and X-ray diffraction, respectively. Their derivatives with bipyridyl-type ligands have formulas [Mn(tda)(bipy)](n) (3), [{Mn(N-N)}(2)(μ-H(2)O)(μ-tda)(2)](n) (N-N=4,4'-Me(2)bipy (4), 5,5'-Me(2)bipy, (5)) and [Mn(tda){(MeO)(2)bipy}·2H(2)O](n) (6). Depending on the presence/position of substituents at bipy, the supramolecular arrangement can affect the metal coordination type. While all the complexes consist of 1D coordination polymers, only 3 has a copper-acetate core with local trigonal prismatic metal coordination. The presence of substituents in 4-6, together with water co-ligands, reduces the supramolecular interactions and typical octahedral Mn(II) ions are observed. The unicity of 3 is also supported by magnetic studies and by DFT calculations, which confirm that the unusual Mn coordination is a consequence of extended noncovalent interactions (π-π stacking) between bipy ligands. Moreover, 3 is an example of broken paradigm for supramolecular chemistry. In fact, the desired stereochemical properties are achieved by using rigid metal building blocks, whereas in 3 the accumulation of weak noncovalent interactions controls the metal geometry. Other N co-ligands have also been reacted with 1 to give the compounds [Mn(tda)(phen)](2)·6H(2)O (7) (phen=1,10-phenanthroline), [Mn(tda)(terpy)](n) (8) (terpy=2,2':6,2''-terpyridine), [Mn(tda)(pyterpy)](n) (9) (pyterpy=4'-(4-pyridyl)-2,2':6,2''-terpyridine), [Mn(tda)(tpt)(H(2)O)]·2H(2)O (10) and [Mn(tda)(tpt)(H(2)O)](2)·2H(2)O (11) (tpt=2,4,6-tris(2-pyridyl)-1,3,5-triazine). Their identified mono-, bi- or polynuclear structures clearly indicate that hydrogen bonding is variously competitive with π-π stacking.

  14. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1973

    1973-01-01

    Several ideas are proposed for chemistry teachers to try in their classrooms. Subjects included are polymerization of acrylate, polymerization of styrene, conductivity, pollution, preparation of chlorine, redox equations, chemiluminescence, and molecular sieves. (PS)

  15. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Describes 13 activities, experiments and demonstrations, including the preparation of iron (III) chloride, simple alpha-helix model, investigating camping gas, redox reactions of some organic compounds, a liquid crystal thermometer, and the oxidation number concept in organic chemistry. (JN)

  16. Copper binding and redox chemistry of the Aβ16 peptide and its variants: insights into determinants of copper-dependent reactivity.

    PubMed

    Yako, Nineveh; Young, Tessa R; Cottam Jones, Jade M; Hutton, Craig A; Wedd, Anthony G; Xiao, Zhiguang

    2017-02-01

    The metal-binding sites of Aβ peptides are dictated primarily by the coordination preferences of the metal ion. Consequently, Cu(i) is typically bound with two His ligands in a linear mode while Cu(ii) forms a pseudo-square planar stereochemistry with the N-terminal amine nitrogen acting as an anchoring ligand. Several distinct combinations of other groups can act as co-ligands for Cu(ii). A population of multiple binding modes is possible with the equilibrium position shifting sensitively with solution pH and the nature of the residues in the N-terminal region. This work examined the Cu(ii) chemistry of the Aβ16 peptide and several variants that targeted these binding modes. The results are consistent with: (i) at pH < 7.8, the square planar site in Cu(II)-Aβ16 consists primarily of a bidentate ligand provided by the carboxylate sidechain of Asp1 and the N-terminal amine supported by the imidazole sidechains of two His residues (designated here as component IA); it is in equilibrium with a less stable component IB in which the carboxylate ligand is substituted by the Asp1-Ala2 carbonyl oxygen. (ii) Both IA and IB convert to a common component II (apparent transition pKa ∼7.8 for IA and ∼6.5 for IB, respectively) featuring a tridentate ligand consisting of the N-terminal amine, the Asp1-Ala2 amide and the Ala2-Pro3 carbonyl; this stereochemistry is stabilized by two five-membered chelate rings. (iii) Component IA is stabilized for variant Aβ16-D1H, components I (both IA and IB) are imposed on Aβ16-A2P while the less stable IB is enforced on Aβ16-D1A (which is converted to component II at pH ∼6.5); (iv) components IA and IB share two His ligands with Cu(i) and are more reactive in redox catalysis than component II that features a highly covalent and less reactive amide N(-) ligand. The redox activity of IA is further enhanced for peptides with a His1 N-terminus that may act as a ligand for either Cu(i) or Cu(ii) with lower re-organization energy required

  17. A high-resolution record of Holocene millennial-scale oscillations of surface water, foraminiferal paleoecology and sediment redox chemistry in the SE Brazilian margin

    NASA Astrophysics Data System (ADS)

    Dias, B. B.; Barbosa, C. F.; Albuquerque, A. L.; Piotrowski, A. M.

    2014-12-01

    . The 8.2kyr climatic event is reported here for the first time in South American coastal sediment records as high productivity conditions and a rapid change in porewater redox chemistry.

  18. Linking Groundwater Age and Chemistry Data to Determine Redox Reaction Rates and Trends in Nitrate Concentrations in Agricultural Areas. (Invited)

    NASA Astrophysics Data System (ADS)

    Tesoriero, A. J.; Puckett, L.

    2009-12-01

    Use of industrially fixed nitrogen (N) fertilizer for agricultural purposes has increased dramatically, both in the United States (U.S.) and globally, since 1945. As a result, there has been growing concern about the consequences of increases in the amounts of anthropogenic N circulating in the atmosphere, hydrosphere, and biosphere. The U.S. Geological Survey’s National Water-Quality Assessment Program has collected groundwater samples along flow paths in more than 20 agricultural areas covering a range in hydrogeologic settings to evaluate the trends and transformations of agricultural chemicals. Historical trends in nitrogen fluxes to groundwater were evaluated by relating the recharge dates of groundwater samples, estimated using tracer (e.g., chlorofluorocarbon) concentrations, with concentrations of nitrate at the time of recharge, estimated by summing the molar concentrations of the parent compound (nitrate) and its transformation product (excess N2) in the age-dated sample. Results from this analysis indicate that median nitrate (NO3-) concentrations in recharge have increased markedly over the last 50 years: increasing from 4 mg/L (as N) in samples that recharged prior to 1983 to 7.5 mg/L (as N) in samples that recharged since 1983. Trends in nitrate concentrations in recharging groundwater were related to increases in the amount of fertilizer applied. Estimates of the portion of applied N reaching the water table ranged from 4 to 49% among the sites, with a median value of 14%. The fate of NO3- and many other groundwater contaminants is dependent on aquifer redox conditions. The reduction of oxygen is the most energetically favorable reaction that microorganisms use to oxidize organic material or other electron donors (e.g., pyrite). As a result, other reduction reactions (e.g., denitrification) affecting contaminant transport typically do not occur until most dissolved oxygen (DO) has been consumed. To improve assessments of contaminant transformations

  19. Redox chemistry of the molecular interactions between tea catechins and human serum proteins under simulated hyperglycemic conditions.

    PubMed

    Özyurt, Hazal; Luna, Carolina; Estévez, Mario

    2016-03-01

    Carbonylation is an irreversible modification in oxidized proteins that has been directly related to a number of health disorders including Type 2 diabetes. Dietary antioxidants have been proposed to counteract the oxidative stress occurring under hyperglycemic conditions. An understanding of the nature and consequences of the molecular interactions between phytochemicals and human plasma proteins is of utmost scientific interest. Three tea catechins namely epicatechin (EC), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG) were tested for (i) their affinity to bind to human serum albumin (HSA) and human hemoglobin (HH) and (ii) their ability to inhibit tryptophan (Trp) depletion and for the formation of specific protein carbonyls and pentosidine in the aforementioned proteins. Both proteins (20 mg mL(-1)) were allowed to react with postprandial plasmatic concentrations of the catechins (EC: 0.7 μM, EGC: 1.8 μM, and EGCG: 0.7 μM) under simulated hyperglycemic conditions (12 mM glucose/0.2 mM Fe(3+)/37 °C/10 days). The three catechins were able to inhibit Trp oxidation and protein carbonylation in both plasma proteins. Some anti-glycation properties were linked to their binding affinities. The molecular interactions reported in the present study may explain the alleged beneficial effects of tea catechins against the redox impairment linked to hyperglycemic conditions.

  20. The influence of the biological pump on ocean chemistry: implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems.

    PubMed

    Meyer, K M; Ridgwell, A; Payne, J L

    2016-05-01

    The net export of organic matter from the surface ocean and its respiration at depth create vertical gradients in nutrient and oxygen availability that play a primary role in structuring marine ecosystems. Changes in the properties of this 'biological pump' have been hypothesized to account for important shifts in marine ecosystem structure, including the Cambrian explosion. However, the influence of variation in the behavior of the biological pump on ocean biogeochemistry remains poorly quantified, preventing any detailed exploration of how changes in the biological pump over geological time may have shaped long-term shifts in ocean chemistry, biogeochemical cycling, and ecosystem structure. Here, we use a 3-dimensional Earth system model of intermediate complexity to quantitatively explore the effects of the biological pump on marine chemistry. We find that when respiration of sinking organic matter is efficient, due to slower sinking or higher respiration rates, anoxia tends to be more prevalent and to occur in shallower waters. Consequently, the Phanerozoic trend toward less bottom-water anoxia in continental shelf settings can potentially be explained by a change in the spatial dynamics of nutrient cycling rather than by any change in the ocean phosphate inventory. The model results further suggest that the Phanerozoic decline in the prevalence ocean anoxia is, in part, a consequence of the evolution of larger phytoplankton, many of which produce mineralized tests. We hypothesize that the Phanerozoic trend toward greater animal abundance and metabolic demand was driven more by increased oxygen concentrations in shelf environments than by greater food (nutrient) availability. In fact, a lower-than-modern ocean phosphate inventory in our closed system model is unable to account for the Paleozoic prevalence of bottom-water anoxia. Overall, these model simulations suggest that the changing spatial distribution of photosynthesis and respiration in the oceans has

  1. Driving Curie temperature towards room temperature in the half-metallic ferromagnet K2Cr8O16 by soft redox chemistry.

    PubMed

    Pirrotta, I; Fernández-Sanjulián, J; Moran, E; Alario-Franco, M A; Gonzalo, E; Kuhn, A; García-Alvarado, F

    2012-02-14

    The half-metallic ferromagnet K(2)Cr(8)O(16) with the hollandite structure has been chemically modified using soft chemistry methods to increase the average oxidation state of chromium. The synthesis of the parent material has been performed under high pressure/high temperature conditions. Following this, different redox reactions have been carried out on K(2)Cr(8)O(16). Oxidation to obtain potassium-de-inserted derivatives, K(2-x)Cr(8)O(16) (0 ≤x≤ 1), has been investigated with electrochemical methods, while the synthesis of sizeable amounts was achieved chemically by using nitrosonium tetrafluoroborate as a highly oxidizing agent. The maximum amount of extracted K ions corresponds to x = 0.8. Upon oxidation the hollandite structure is maintained and the products keep high crystallinity. The de-insertion of potassium changes the Cr(3+)/Cr(4+) ratio, and therefore the magnetic properties. Interestingly, the Curie temperature increases from ca. 175 K to 250 K, getting therefore closer to room temperature.

  2. 2D Conductive Iron-Quinoid Magnets Ordering up to Tc = 105 K via Heterogenous Redox Chemistry.

    PubMed

    DeGayner, Jordan A; Jeon, Ie-Rang; Sun, Lei; Dincă, Mircea; Harris, T David

    2017-03-13

    We report the magnetism and conductivity for a redox pair of iron-quinoid metal-organic frameworks (MOFs). The oxidized compound, (Me2NH2)2[Fe2L3]·2H2O·6DMF (LH2 = 2,5-dichloro-3,6-dihydroxo-1,4-benzoquinone) was previously shown to magnetically order below 80 K in its solvated form, with the ordering temperature decreasing to 26 K upon desolvation. Here, we demonstrate this compound to exhibit electrical conductivity values up to σ = 1.4(7) × 10(-2) S/cm (Ea = 0.26(1) cm(-1)) and 1.0(3) × 10(-3) S/cm (Ea = 0.19(1) cm(-1)) in its solvated and desolvated forms, respectively. Upon soaking in a DMF solution of Cp2Co, the compound undergoes a single-crystal-to-single-crystal one-electron reduction to give (Cp2Co)1.43(Me2NH2)1.57[Fe2L3]·4.9DMF. Structural and spectroscopic analysis confirms this reduction to be ligand-based, and as such the trianionic framework is formulated as [Fe(III)2(L(3-•))3](3-). Magnetic measurements for this reduced compound reveal the presence of dominant intralayer metal-organic radical coupling to give a magnetically ordered phase below Tc = 105 K, one of the highest reported ordering temperatures for a MOF. This high ordering temperature is significantly increased relative to the oxidized compound, and stems from the overall increase in coupling strength afforded by an additional organic radical. In line with the high critical temperature, the new MOF exhibits magnetic hysteresis up to 100 K, as revealed by variable-field measurements. Finally, this compound is electrically conductive, with values up to σ = 5.1(3) × 10(-4) S/cm with Ea = 0.34(1) eV. Taken together, these results demonstrate the unique ability of metal-quinoid MOFs to simultaneously exhibit both high magnetic ordering temperatures and high electrical conductivity.

  3. Two-electron redox chemistry at the dinuclear core of a TePt platform: chlorine photoreductive elimination and isolation of a Te(V)Pt(I) complex.

    PubMed

    Lin, Tzu-Pin; Gabbaï, François P

    2012-07-25

    As part of our interest in novel redox-active main group/transition metal platforms for energy applications, we have synthesized the chloride salt of [Te(III)Pt(I)Cl(o-dppp)(2)](+) ([1](+), o-dppp = o-(Ph(2)P)C(6)H(4)) by reaction of the new bis(phosphino) telluroether (o-(Ph(2)P)C(6)H(4))(2)Te with (Et(2)S)(2)PtCl(2). Complex [1](+) is chemically robust and undergoes a clean two-electron oxidation reaction in the presence of PhICl(2) to afford ClTe(III)Pt(III)Cl(3)(o-dppp)(2) (2), a complex combining a hypervalent four-coordinate tellurium atom and an octahedral platinum center. While the Te-Pt bond length is only slightly affected by the oxidation state of the TePt platform, DFT and NBO calculations show that this central linkage undergoes an umpolung from Te→Pt in [1](+) to Te←Pt in 2. This umpolung signals an increase in the electron releasing ability of the tellurium center upon switching from an eight-electron configuration in [1](+) to a hypervalent configuration in 2. Remarkably, the two-electron redox chemistry displayed by this new dinuclear platform is reversible as shown by the photoreductive elimination of a Cl(2) equivalent when 2 is irradiated at 350 nm in the presence of a radical trap such as 2,3-dimethyl-1,3-butadiene. This photoreductive elimination, which affords [1][Cl] with a maximum quantum yield of 4.4%, shows that main group/late transition metal complexes can mimic the behavior of their transition metal-only analogues and, in particular, undergo halogen photoelimination from the oxidized state. A last notable outcome of this study is the isolation and characterization of F(MeO)(2)Te(V)Pt(I)Cl(o-dppp)(2) (4), the first metalated hexavalent tellurium compound, which is formed by reaction of 2 with KF in the presence of MeOH.

  4. Chemistry for Potters.

    ERIC Educational Resources Information Center

    Denio, Allen A.

    1980-01-01

    Relates pottery making to chemistry by providing chemical information about clay, its origin, composition, properties, and changes that occur during firing; also describes glaze compositions, examples of redox chemistry, salt glazing, crystalline glazes, and problems in toxicity. (CS)

  5. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Describes several chemistry projects, including solubility, formula for magnesium oxide, dissociation of dinitrogen tetroxide, use of 1-chloro-2, 4-dinitrobenzene, migration of ions, heats of neutralizations, use of pocket calculators, sonic cleaning, oxidation states of manganese, and cell potentials. Includes an extract from Chemical Age on…

  6. Battery Relevant Electrochemistry of Ag7Fe3(P2O7 )4 : Contrasting Contributions from the Redox Chemistries of Ag+ and Fe3+

    DOE PAGES

    Zhang, Yiman; Kirshenbaum, Kevin C.; Marschilok, Amy C.; ...

    2016-10-12

    Ag7Fe3(P2O7 )4 is an example of an electrochemical displacement material which contains two different electrochemically active metal cations, where one cation (Ag+) forms metallic silver nanoparticles external to the crystals of Ag7Fe3(P2O7 )4 via an electrochemical reduction displacement reaction, while the other cation (Fe+3) is electrochemically reduced with the retention of iron cations within the anion structural framework concomitant with lithium insertion. These contrasting redox chemistries within one pure cathode material enable high rate capability and reversibility when Ag7Fe3(P2O7 )4 is employed as cathode material in a lithium ion battery (LIB). Further, pyrophosphate materials are thermally and electrically stable, desirablemore » attributes for cathode materials in LIBs. In this article, a bimetallic pyrophosphate material Ag7Fe3(P2O7 )4 is synthesized and confirmed to be a single phase by Rietveld refinement. Electrochemistry of Ag7Fe3(P2O7 )4 is reported for the first time in the context of lithium based batteries using cyclic voltammetry and galvanostatic discharge–charge cycling. The reduction displacement reaction and the lithium (de)insertion processes are investigated using ex situ X-ray absorption spectroscopy and X-ray diffraction of electrochemically reduced and oxidized Ag7Fe3(P2O7 )4. Ag7Fe3(P2O7 )4 exhibits good reversibility at the iron centers indicated by ~80% capacity retention over 100 cycles following the initial formation cycle and excellent rate capability exhibited by ~70% capacity retention upon a 4-fold increase in current.« less

  7. Manganese-oxide minerals in fractures of the Crater Flat Tuff in drill core USW G-4, Yucca Mountain, Nevada

    SciTech Connect

    Carlos, B.A.; Bish, D.L.; Chipera, S.J.

    1990-07-01

    The Crater Flat Tuff is almost entirely below the water table in drill hole USW G-4 at Yucca Mountain, Nevada. Manganese-oxide minerals from the Crater Flat Tuff in USW G-4 were studied using optical, scanning electron microscopic, electron microprobe, and x-ray powder diffraction methods to determine their distribution, mineralogy, and chemistry. Manganese-oxide minerals coat fractures in all three members of the Crater Flat Tuff (Prow Pass, Bullfrog, and Tram), but they are most abundant in fractures in the densely welded devitrified intervals of these members. The coatings are mostly of the cryptomelane/hollandite mineral group, but the chemistry of these coatings varies considerably. Some of the chemical variations, particularly the presence of calcium, sodium, and strontium, can be explained by admixture with todorokite, seen in some x-ray powder diffraction patterns. Other chemical variations, particularly between Ba and Pb, demonstrate that considerable substitution of Pb for Ba occurs in hollandite. Manganese-oxide coatings are common in the 10-m interval that produced 75% of the water pumped from USW G-4 in a flow survey in 1983. Their presence in water-producing zones suggests that manganese oxides may exert a significant chemical effect on groundwater beneath Yucca Mountain. In particular, the ability of the manganese oxides found at Yucca Mountain to be easily reduced suggests that they may affect the redox conditions of the groundwater and may oxidize dissolved or suspended species. Although the Mn oxides at Yucca Mountain have low exchange capacities, these minerals may retard the migration of some radionuclides, particularly the actinides, through scavenging and coprecipitation. 23 refs., 21 figs., 2 tabs.

  8. Manganese nodules

    USGS Publications Warehouse

    Hein, James R.; Harff, Jan; Petersen, Sven; Thiede, Jorn

    2016-01-01

    The existence of manganese (Mn) nodules (Fig. 1) has been known since the late 1800s when they were collected during the Challenger expedition of 1873–1876. However, it was not until after WWII that nodules were further studied in detail for their ability to adsorb metals from seawater. Many of the early studies did not distinguish Mn nodules from Mn crusts. Economic interest in Mn nodules began in the late 1950s and early 1960s when John Mero finished his Ph.D. thesis on this subject, which was published...

  9. Organic matter interactions with natural manganese oxide and synthetic birnessite.

    PubMed

    Allard, Sébastien; Gutierrez, Leonardo; Fontaine, Claude; Croué, Jean-Philippe; Gallard, Hervé

    2017-04-01

    Redox reactions of inorganic and organic contaminants on manganese oxides have been widely studied. However, these reactions are strongly affected by the presence of natural organic matter (NOM) at the surface of the manganese oxide. Interestingly, the mechanism behind NOM adsorption onto manganese oxides remains unclear. Therefore, in this study, the adsorption kinetics and equilibrium of different NOM isolates to synthetic manganese oxide (birnessite) and natural manganese oxide (Mn sand) were investigated. Natural manganese oxide is composed of both amorphous and well-crystallised Mn phases (i.e., lithiophorite, birnessite, and cryptomelane). NOM adsorption on both manganese oxides increased with decreasing pH (from pH7 to 5), in agreement with surface complexation and ligand exchange mechanisms. The presence of calcium enhanced the rate of NOM adsorption by decreasing the electrostatic repulsion between NOM and Mn sand. Also, the adsorption was limited by the diffusion of NOM macromolecules through the Mn sand pores. At equilibrium, a preferential adsorption of high molecular weight molecules enriched in aromatic moieties was observed for both the synthetic and natural manganese oxide. Hydrophobic interactions may explain the adsorption of organic matter on manganese oxides. The formation of low molecular weight UV absorbing molecules was detected with the synthetic birnessite, suggesting oxidation and reduction processes occurring during NOM adsorption. This study provides a deep insight for both environmental and engineered systems to better understand the impact of NOM adsorption on the biogeochemical cycle of manganese.

  10. Organic chemical degradation by remote study of the redox conditions

    NASA Astrophysics Data System (ADS)

    Fernandez, P. M.; Revil, A.; Binley, A. M.; Bloem, E.; French, H. K.

    2014-12-01

    Monitoring the natural (and enhanced) degradation of organic contaminants is essential for managing groundwater quality in many parts of the world. Contaminated sites often have limited access, hence non-intrusive methods for studying redox processes, which drive the degradation of organic compounds, are required. One example is the degradation of de-icing chemicals (glycols and organic salts) released to the soil near airport runways during winter. This issue has been broadly studied at Oslo airport, Gardermoen, Norway using intrusive and non-intrusive methods. Here, we report on laboratory experiments that aim to study the potential of using a self-potential, DCresistivity, and time-domain induced polarization for geochemical characterization of the degradation of Propylene Glycol (PG). PG is completely miscible in water, does not adsorb to soil particles and does not contribute to the electrical conductivity of the soil water. When the contaminant is in the unsaturated zone near the water table, the oxygen is quickly consumed and the gas exchange with the surface is insufficient to ensure aerobic degradation, which is faster than anaerobic degradation. Since biodegradation of PG is highly oxygen demanding, anaerobic pockets can exist causing iron and manganese reduction. It is hypothesised that nitrate would boost the degradation rate under such conditions. In our experiment, we study PG degradation in a sand tank. We provide the system with an electron highway to bridge zones with different redox potential. This geo-battery system is characterized by self-potential, resistivity and induced polarization anomalies. An example of preliminary results with self-potential at two different times of the experiment can be seen in the illustration. These will be supplemented with more direct information on the redox chemistry: in-situ water sampling, pH, redox potential and electrical conductivity measurements. In parallel, a series of batch experiments have been

  11. Redox spectrophotometric method involving electrolytically generated manganese(III) sulphate with diphenylamine for the determination of ascorbic acid present in the samples of various fruits, commercial juices and sprouted food grains.

    PubMed

    Shyla, B; Nagendrappa, G

    2013-06-01

    A spectrophotometric method was developed for ascorbic acid present in various fruits, commercial fruit juices and sprouted food grains. The method involves the oxidation of ascorbic acid with excess manganese(III) following reduction of unreacted manganese(III) with diphenylamine or barium diphenylamine sulphonate forming a product λ(max) 570 nm the system 1 or 540 nm the system 2 and decrease in the colour intensity is proportional to the concentration of vitamin C with quantification range 0.3-3.0 μg ml(-1). The molar absorptivity and Sandell's sensitivity values of the system 1 and the system 2 were 1.829 × 10(4) and 1.813 × 10(4)mol(-1)cm(-1) and 0.0096 and 0.0097 μg cm(-2) respectively. The stoichiometry was 4:1 between manganese(III) and diphenylamine. The ascorbic acid contents of the same samples were determined separately following the procedures of the developed method as well as the reference method and the results were comparable.

  12. Reversible Redox Chemistry and Catalytic C(sp(3))-H Amination Reactivity of a Paramagnetic Pd Complex Bearing a Redox-Active o-Aminophenol-Derived NNO Pincer Ligand.

    PubMed

    Broere, Daniël L J; van Leest, Nicolaas P; de Bruin, Bas; Siegler, Maxime A; van der Vlugt, Jarl Ivar

    2016-09-06

    The synthesis, spectroelectrochemical characterization (ultraviolet-visible and nuclear magnetic resonance), solid state structures, and computational metric parameters of three isostructural PdCl(NNO) complexes 1 [PdCl(NNO(ISQ))], 2 {[PdCl(NNO(AP))](-)}, and 5 {[PdCl(NNO(IBQ))](+)} (NNO = o-aminophenol-derived redox-active ligand with a pendant pyridine) with different NNO oxidation states are described. The reduced diamagnetic complex 2 readily reacts with halogenated solvents, including lattice solvent from crystalline pure material, as supported by spectroscopic data and density functional theory calculations. Thorough removal of chlorinated impurities allows for modest catalytic turnover in the conversion of 4-phenylbutyl azide into N-protected 2-phenylpyrrolidine, which is the first example of a palladium-catalyzed radical-type transformation facilitated by a redox-active ligand as well as the first C-H amination mediated by ligand-to-substrate single-electron transfer.

  13. Heterogeneous redox conditions, arsenic mobility, and groundwater flow in a fractured-rock aquifer near a waste repository site in New Hampshire, USA

    NASA Astrophysics Data System (ADS)

    Harte, Philip T.; Ayotte, Joseph D.; Hoffman, Andrew; Révész, Kinga M.; Belaval, Marcel; Lamb, Steven; Böhlke, J. K.

    2012-09-01

    Anthropogenic sources of carbon from landfill or waste leachate can promote reductive dissolution of in situ arsenic (As) and enhance the mobility of As in groundwater. Groundwater from residential-supply wells in a fractured crystalline-rock aquifer adjacent to a Superfund site in Raymond, New Hampshire, USA, showed evidence of locally enhanced As mobilization in relatively reducing (mixed oxic-anoxic to anoxic) conditions as determined by redox classification and other lines of evidence. Redox classification was determined from geochemical indicators based on threshold concentrations of dissolved oxygen (DO), nitrate (NO{3/-}), iron (Fe2+), manganese (Mn2+), and sulfate (SO{4/2-}). Redox conditions were evaluated also based on methane (CH4), excess nitrogen gas (N2) from denitrification, the oxidation state of dissolved As speciation (As(III) and As(V)), and several stable isotope ratios. Samples from the residential-supply wells primarily exhibit mixed redox conditions, as most have long open boreholes (typically 50-100 m) that receive water from multiple discrete fractures with contrasting groundwater chemistry and redox conditions. The methods employed in this study can be used at other sites to gauge redox conditions and the potential for As mobilization in complex fractured crystalline-rock aquifers where multiple lines of evidence are likely needed to understand As occurrence, mobility, and transport.

  14. Heterogeneous redox conditions, arsenic mobility, and groundwater flow in a fractured-rock aquifer near a waste repository site in New Hampshire, USA

    USGS Publications Warehouse

    Harte, Philip T.; Ayotte, Joseph D.; Hoffman, Andrew; Revesz, Kinga M.; Belaval, Marcel; Lamb, Steven; Böhlke, J.K.

    2012-01-01

    Anthropogenic sources of carbon from landfill or waste leachate can promote reductive dissolution of in situ arsenic (As) and enhance the mobility of As in groundwater. Groundwater from residential-supply wells in a fractured crystalline-rock aquifer adjacent to a Superfund site in Raymond, New Hampshire, USA, showed evidence of locally enhanced As mobilization in relatively reducing (mixed oxic-anoxic to anoxic) conditions as determined by redox classification and other lines of evidence. Redox classification was determined from geochemical indicators based on threshold concentrations of dissolved oxygen (DO), nitrate (NO3-), iron (Fe2+), manganese (Mn2+), and sulfate (SO42-). Redox conditions were evaluated also based on methane (CH4), excess nitrogen gas (N2) from denitrification, the oxidation state of dissolved As speciation (As(III) and As(V)), and several stable isotope ratios. Samples from the residential-supply wells primarily exhibit mixed redox conditions, as most have long open boreholes (typically 50–100 m) that receive water from multiple discrete fractures with contrasting groundwater chemistry and redox conditions. The methods employed in this study can be used at other sites to gauge redox conditions and the potential for As mobilization in complex fractured crystalline-rock aquifers where multiple lines of evidence are likely needed to understand As occurrence, mobility, and transport.

  15. Some redox chemistry of HPO ⨪2 and ̽PO 2-3 radicals. A pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Packer, John E.; Anderson, Robert F.

    The HO̽ radical oxidises hypophosphite and phosphite anions to HPO ⨪2 and ̽PO 2-3 respectively, but Br ⨪2 and N̽ 3 do not. The rates of oxidation of HPO ⨪2 by a series of oxidising agents of known one electron redox potentials decrease with decreasing potential while the corresponding rates for oxidation of ̽PO 2-3 remain close to the diffusion controlled limit. ̽PO 2-3 will oxidise cysteine but HPO⨪ 2 does not. ̽PO 2-3 did not oxidise ABTS, ascorbate, or the anion of the vitamin E analogue, trolox. It reduced traces of TMPD +̽ in TMPD rather than oxidising the substrate. The one electron redox potentials for oxidation and reduction of ̽PO 2-3 are calculated in light of recently published redox data on penicillamine.

  16. OXIDATION OF ALKANES WITH AIR USING IRON AND MANGANESE CATALYSTS. AN OVERALL GREEN CHEMISTRY APPROACH INCLUDING THE USE OF ALTERNATIVE SOLVENT SYSTEMS GENERATED BY PARIS II

    EPA Science Inventory

    The selective oxidation of alkanes is an industrially important process that is often plagued by low conversions and the formation of unwanted by-products. Research being conducted at the USEPA, implements a Green chemistry approach which is utilized to improve these difficult o...

  17. Subcellular Redox Targeting: Bridging in Vitro and in Vivo Chemical Biology.

    PubMed

    Long, Marcus J C; Poganik, Jesse R; Ghosh, Souradyuti; Aye, Yimon

    2017-03-17

    Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.

  18. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, teaching suggestions, and classroom materials/activities. These include: game for teaching ionic formulas; method for balancing equations; description of useful redox series; computer programs (with listings) for water electrolysis simulation and for determining chemical…

  19. Metalloradical Complexes of Manganese and Chromium Featuring an Oxidatively Rearranged Ligand

    PubMed Central

    Çelenligil-Çetin, Remle; Paraskevopoulou, Patrina; Lalioti, Nikolia; Sanakis, Yiannis; Staples, Richard J.; Rath, Nigam P.; Stavropoulos, Pericles

    2009-01-01

    Redox events involving both metal and ligand sites are receiving increased attention since a number of biological processes direct redox equivalents toward functional residues. Metalloradical synthetic analogs remain scarce and require better definition of their mode of formation and subsequent operation. The trisamido-amine ligand [(RNC6H4)3N]3−, where R is the electron-rich 4-t-BuPh, is employed in this study to generate redox active residues in manganese and chromium complexes. Solutions of [(L1)Mn(II)–THF]− in THF are oxidized by dioxygen to afford [(L1re–1)Mn(III)–(O)2–Mn(III)(L1re–1)]2− as the major product. The rare dinuclear manganese (III,III) core is stabilized by a rearranged ligand that has undergone an one-electron oxidative transformation, followed by retention of the oxidation equivalent as a π radical in an o-diiminobenzosemiquinonate moiety. Magnetic studies indicate that the ligand-centered radical is stabilized by means of extended antiferromagnetic coupling between the S = ½ radical and the adjacent S = 2 Mn(III) site, as well as between the two Mn(III) centers via the dioxo bridge. Electrochemical and EPR data suggest that this system can store higher levels of oxidation potency. Entry to the corresponding Cr(III) chemistry is achieved by employing CrCl3 to access both [(L1)Cr(III)–THF] and [(L1re–1)Cr(III)–THF(Cl)], featuring the intact and the oxidatively rearranged ligands, respectively. The latter is generated by ligand-centered oxidation of the former compound. The rearranged ligand is perceived to be the product of an one-electron oxidation of the intact ligand to afford a metal-bound aminyl radical that subsequently mediates a radical 1,4-(N-to-N) aryl migration. PMID:18937446

  20. Chronic manganese intoxication

    SciTech Connect

    Huang, C.C.; Chu, N.S.; Lu, C.S.; Wang, J.D.; Tsai, J.L.; Tzeng, J.L.; Wolters, E.C.; Calne, D.B. )

    1989-10-01

    We report six cases of chronic manganese intoxication in workers at a ferromanganese factory in Taiwan. Diagnosis was confirmed by assessing increased manganese concentrations in the blood, scalp, and pubic hair. In addition, increased manganese levels in the environmental air were established. The patients showed a bradykinetic-rigid syndrome indistinguishable from Parkinson's disease that responded to treatment with levodopa.

  1. Core chemistry influences the toxicity of multi-component metal oxide nanomaterials, lithium nickel manganese cobalt oxide and lithium cobalt oxide to Daphnia magna.

    PubMed

    Bozich, Jared; Hang, Mimi; Hamers, Robert; Klaper, Rebecca

    2017-03-11

    Lithium intercalation compounds such as lithium nickel manganese cobalt oxide (NMC) and lithium cobalt oxide (LCO) are used extensively in lithium batteries. Because there is currently little economic incentive for recycling, chances are greater that batteries will end up in landfills or waste in the environment. In addition, the toxicity of these battery materials has not been traditionally part of the design process. Therefore, to determine the environmental impact and the possibility of alternative battery materials, representative complex battery nanomaterials, LCO and NMC, were synthesized and toxicity was assessed in Daphnia magna. Toxicity was determined by assessing LCO and NMC at concentrations in the range of 0.1-25 mg/L. Acute studies (48-hours) showed no effect to daphnid survival at 25 mg/L whereas chronic studies (21-days) show significant impacts to daphnid reproduction and survival at concentrations of 0.25 mg/L for LCO and 1.0 mg/L for NMC. Dissolved metal exposures showed no effect at the amounts measured in suspension and supernatant controls could not reproduce the effects of the particles, indicating a nanomaterial-specific impact. Genes explored in the present study were actin, glutathione-s-transferase, catalase, 18s, metallothionein, heat shock protein and vitellogenin, Down regulation of genes important in metal detoxification, metabolism and cell maintenance was observed in a dose dependent manner. This study demonstrated battery material chemical composition could be altered to minimize environmental impacts. This article is protected by copyright. All rights reserved.

  2. Effects of manganese forms on biogenic amines in the brain and behavioral alterations in the mouse: Long-term oral administration of several manganese compounds

    SciTech Connect

    Komura, Junko; Sakamoto, Michiko )

    1992-02-01

    This work has identified the relative toxicity of four forms of manganese, using biogenic amine levels, tissue retention, weight gain, and activity scores as criteria. Male mice were chronically treated with four forms of manganese administered orally, mixed with the diet, for 12 months. The Mn levels were higher in some parts of brain after feeding insoluble salts than after the soluble salts. The concentration of manganese was significantly increased in the liver and spleen of the manganese carbonate-exposed group, compared with the concentration in the control group. Manganese dioxide feeding lowered dopamine and increased homovanilic acid. Since manganese dioxide is a powerful oxidizing agent in organic chemistry, it possibly enhanced the oxidative metabolite of dopamine. Accumulation of manganese in the brain correlated with reduced hypothalamic dopamine levels in the manganese acetate-exposed group; and the amount of manganese accumulated correlated with the intensity of suppression of motor activity. These findings indicate that manganese dioxide is more toxic than divalent manganese. Of the divalent manganese compounds, manganese acetate seemed to have the greatest toxic effect.

  3. Green chemistry methods in sulfur dyeing: application of various reducing D-sugars and analysis of the importance of optimum redox potential.

    PubMed

    Blackburn, Richard S; Harvey, Anna

    2004-07-15

    The importance of sulfur dyeing of cellulosic fibers, particularly cotton, is realized economically throughout the dyeing industry. At the present time, dyeing with sulfur dyes requires the use of various auxiliaries, many of which have adverse effects on the environment. The most damaging of these is the reducing agent sodium sulfide, required to reduce the dye molecules to a water-soluble leuco form to enable adsorption and diffusion into the fiber. In this study, attempts have been made to replace the sodium sulfide used within the sulfur dyeing process with a variety of environmentally friendly reducing sugars. The redox potential of various hexose and pentose monosaccharides and reducing disaccharides was recorded and compared. Subsequently, cotton was dyed with the world's most important sulfur dye, C. I. Sulfur Black 1, using the reducing sugars under alkaline conditions, and compared to dyeings secured by employing commercial sulfide reducing agents. It was observed that reducing sugars gave comparable, and in many cases superior, color strength and wash fastness results, with respect to the commercial sulfide-based reducing agents, which still account for the vast majority of sulfur dyeing processes and that pose significant environmental concern. Employment of reducing sugars in sulfur dyeing could provide a sustainable, nontoxic, biodegradable, cost-effective alternative to sodium polysulfide and sodium hydrogen sulfide. Comparison of the redox potential of reducing sugars against the color strength of the dyeings secured demonstrated that there was an optimum redox potential of around -650 mV for maximum color strength achieved. The same redox potential also conferred the lowest color loss upon washing. These observations were attributed to reduction of the polymeric dye molecules to an optimum size for fiber affinity and diffusion into the fiber, but which would also confer maximum wash fastness upon oxidation.

  4. Formation of manganese oxides by bacterially generated superoxide

    NASA Astrophysics Data System (ADS)

    Learman, D. R.; Voelker, B. M.; Vazquez-Rodriguez, A. I.; Hansel, C. M.

    2011-02-01

    Manganese oxide minerals are among the strongest sorbents and oxidants in the environment. The formation of these minerals controls the fate of contaminants, the degradation of recalcitrant carbon, the cycling of nutrients and the activity of anaerobic-based metabolisms. Oxidation of soluble manganese(II) ions to manganese(III/IV) oxides has been primarily attributed to direct enzymatic oxidation by microorganisms. However, the physiological reason for this process remains unknown. Here we assess the ability of a common species of marine bacteria-Roseobacter sp. AzwK-3b-to oxidize manganese(II) in the presence of chemical and biological inhibitors. We show that Roseobacter AzwK-3b oxidizes manganese(II) by producing the strong and versatile redox reactant superoxide. The oxidation of manganese(II), and concomitant production of manganese oxides, was inhibited in both the light and dark in the presence of enzymes and metals that scavenge superoxide. Oxidation was also inhibited by various proteases, enzymes that break down bacterial proteins, confirming that the superoxide was bacterially generated. We conclude that bacteria can oxidize manganese(II) indirectly, through the enzymatic generation of extracellular superoxide radicals. We suggest that dark bacterial production of superoxide may be a driving force in metal cycling and mineralization in the environment.

  5. High manganese concentrations in rocks at Gale crater, Mars

    USGS Publications Warehouse

    Lanza, Nina L.; Fischer, Woodward W.; Wiens, Roger C.; Grotzinger, John; Ollila, Ann M.; Anderson, Ryan B.; Clark, Benton C.; Gellert, Ralf; Mangold, Nicolas; Maurice, Sylvestre; Le Mouélic, Stéphane; Nachon, Marion; Schmidt, Mariek E.; Berger, Jeffrey; Clegg, Samuel M.; Forni, Olivier; Hardgrove, Craig; Melikechi, Noureddine; Newsom, Horton E.; Sautter, Violaine

    2014-01-01

    The surface of Mars has long been considered a relatively oxidizing environment, an idea supported by the abundance of ferric iron phases observed there. However, compared to iron, manganese is sensitive only to high redox potential oxidants, and when concentrated in rocks, it provides a more specific redox indicator of aqueous environments. Observations from the ChemCam instrument on the Curiosity rover indicate abundances of manganese in and on some rock targets that are 1–2 orders of magnitude higher than previously observed on Mars, suggesting the presence of an as-yet unidentified manganese-rich phase. These results show that the Martian surface has at some point in time hosted much more highly oxidizing conditions than has previously been recognized.

  6. Redox Redone.

    ERIC Educational Resources Information Center

    Petty, John T.

    1996-01-01

    Presents an extension of the change in oxidation number method that is used for balancing skeletal redox reactions in aqueous solutions. Retains most of the simplicity of the change in oxidation number method but provides the additional step-by-step process necessary for the beginner to balance an equation. (JRH)

  7. Mimicking the protein access channel to a metal center: effect of a funnel complex on dissociative versus associative copper redox chemistry.

    PubMed

    Le Poul, Nicolas; Douziech, Bénédicte; Zeitouny, Joceline; Thiabaud, Grégory; Colas, Hélène; Conan, Françoise; Cosquer, Nathalie; Jabin, Ivan; Lagrost, Corinne; Hapiot, Philippe; Reinaud, Olivia; Le Mest, Yves

    2009-12-16

    The control of metal-ligand exchange in a confined environment is of primary importance for understanding thermodynamics and kinetics of the electron transfer process governing the reactivity of enzymes. This study reveals an unprecedented change of the Cu(II)/Cu(I) binding and redox properties through a subtle control of the access to the labile site by a protein channel mimic. The cavity effect was estimated from cyclic voltammetry investigations by comparison of two complexes displaying the same coordination sphere (tmpa) and differing by the presence or absence of a calix[6]arene cone surrounding the metal labile site L. Effects on thermodynamics are illustrated by important shifts of E(1/2) toward higher values for the calix complexes. This is ascribable to the protection of the labile site of the open-shell system from the polar medium. Such a cavity control also generates specific stabilizations. This is exemplified by an impressively exalted affinity of the calixarene system for MeCN, and by the detection of a kinetic intermediate, a noncoordinated DMF guest molecule floating inside the cone. Kinetically, a unique dissymmetry between the Cu(I) and Cu(II) ligand exchange capacity is highlighted. At the CV time scale, the guest interconversion is only feasible after reduction of Cu(II) to Cu(I). Such a redox-switch mechanism results from the blocking of the associative process at the Cu(II) state, imposed by the calixarene funnel. All of this suggests that the embedment of a reactive redox metal ion in a funnel-like cavity can play a crucial role in catalysis, particularly for metallo-enzymes associating electron transfer and ligand exchange.

  8. Analysis of numerical simulations and influencing factors of seasonal manganese pollution in reservoirs.

    PubMed

    Peng, Hui; Zheng, Xilai; Chen, Lei; Wei, Yang

    2016-07-01

    Seasonal manganese pollution has become an increasingly pressing water quality issue for water supply reservoirs in recent years. Manganese is a redox-sensitive element and is released from sediment under anoxic conditions near the sediment-water interface during summer and autumn, when water temperature stratification occurs. The reservoir water temperature and water dynamic conditions directly influence the formation of manganese pollution. Numerical models are useful tools to quantitatively evaluate manganese pollution and its influencing factors. This paper presents a reservoir manganese pollution model by adding a manganese biogeochemical module to a water quality model-CE-QUAL-W2. The model is applied to the Wangjuan reservoir (Qingdao, China), which experiences manganese pollution during summer and autumn. Field data are used to verify the model, and the results show that the model can reproduce the main features of the thermal stratification and manganese distribution. The model is used to evaluate the manganese pollution process and its four influencing factors, including air temperature, water level, wind speed, and wind directions, through different simulation scenarios. The results show that all four factors can influence manganese pollution. High air temperature, high water level, and low wind speed aggravate manganese pollution, while low air temperature, low water level, and high wind speed reduce manganese pollution. Wind that travels in the opposite direction of the flow aggravates manganese pollution, while wind in the same direction as the flow reduces manganese pollution. This study provides useful information to improve our understanding of seasonal manganese pollution in reservoirs, which is important for reservoir manganese pollution warnings and control.

  9. A manganese oxido complex bearing facially coordinating trispyridyl ligands--is coordination geometry crucial for water oxidation catalysis?

    PubMed

    Berends, Hans-Martin; Manke, Anne-Marie; Näther, Christian; Tuczek, Felix; Kurz, Philipp

    2012-05-28

    In this work the synthesis of the novel manganese complex [Mn(2)(III,III)(tpdm)(2)(μ-O)(μ-OAc)(2)](2+) (1) is reported, containing two manganese centres ligated to the unusual, facially coordinating, all-pyridine ligand tpdm (tris(2-pyridyl)methane). The geometric and electronic properties of complex 1 were characterised by X-ray crystallography, vibrational (IR and Raman) and optical spectroscopy (UV/Vis and MCD). Cyclic voltammograms of 1 showed a quasi-reversible oxidation event at 950 mV and an irreversible reduction wave at -250 mV vs. Ag/Ag(+). The redox behaviour of the compound was investigated in detail by UV/Vis- and X-band EPR-spectroelectrochemistry. Both electrochemical (+1200 mV) and chemical (tBuOOH) oxidations transform 1 into the singly oxidized di-μ-oxido species [Mn(2)(III,IV)(tpdm)(2)(μ-O)(2)(μ-OAc)](2+). Further electrochemical oxidation at the same potential results in the removal of a second electron to obtain a Mn(2)(IV,IV)-species. The ability of compound 1 to evolve O(2) was studied using different reaction agents. While reactions with both hydrogen peroxide and peroxomonosulfate yield O(2), homogeneous water-oxidation using Ce(IV) was not observed. Nevertheless, the oxidation reactions of 1 are very interesting model processes for oxidation state (S-state) transitions of the natural manganese water-oxidation catalyst in photosynthesis. However, despite its favourable coordination geometry and multielectron redox chemistry, complex 1 fails to be a catalytically active model for natural water-oxidation.

  10. Manganese uptake of imprinted polymers

    SciTech Connect

    Susanna Ventura

    2015-09-30

    Batch tests of manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T=45C . Data on manganese uptake for two consecutive cycles are included.

  11. Manganese carbonates as possible biogenic relics in Archean settings

    NASA Astrophysics Data System (ADS)

    Rincón-Tomás, Blanca; Khonsari, Bahar; Mühlen, Dominik; Wickbold, Christian; Schäfer, Nadine; Hause-Reitner, Dorothea; Hoppert, Michael; Reitner, Joachim

    2016-07-01

    Carbonate minerals such as dolomite, kutnahorite or rhodochrosite are frequently, but not exclusively generated by microbial processes. In recent anoxic sediments, Mn(II)carbonate minerals (e.g. rhodochrosite, kutnahorite) derive mainly from the reduction of Mn(IV) compounds by anaerobic respiration. The formation of huge manganese-rich (carbonate) deposits requires effective manganese redox cycling in an oxygenated atmosphere. However, putative anaerobic pathways such as microbial nitrate-dependent manganese oxidation, anoxygenic photosynthesis and oxidation in ultraviolet light may facilitate manganese cycling even in an early Archean environment, without the availability of oxygen. In addition, manganese carbonates precipitate by microbially induced processes without change of the oxidation state, e.g. by pH shift. Hence, there are several ways how these minerals could have been formed biogenically and deposited in Precambrian sediments. We will summarize microbially induced manganese carbonate deposition in the presence and absence of atmospheric oxygen and we will make some considerations about the biogenic deposition of manganese carbonates in early Archean settings.

  12. Rapid loss of structural motifs in the manganese complex of oxygenic photosynthesis by X-ray irradiation at 10-300 K.

    PubMed

    Grabolle, Markus; Haumann, Michael; Müller, Claudia; Liebisch, Peter; Dau, Holger

    2006-02-24

    Structural changes upon photoreduction caused by x-ray irradiation of the water-oxidizing tetramanganese complex of photosystem II were investigated by x-ray absorption spectroscopy at the manganese K-edge. Photoreduction was directly proportional to the x-ray dose. It was faster in the higher oxidized S2 state than in S1; seemingly the oxidizing potential of the metal site governs the rate. X-ray irradiation of the S1 state at 15 K initially caused single-electron reduction to S0* accompanied by the conversion of one di-mu-oxo bridge between manganese atoms, previously separated by approximately 2.7 A, to a mono-mu-oxo motif. Thereafter, manganese photoreduction was 100 times slower, and the biphasic increase in its rate between 10 and 300 K with a breakpoint at approximately 200 K suggests that protein dynamics is rate-limiting the radical chemistry. For photoreduction at similar x-ray doses as applied in protein crystallography, halfway to the final Mn(II)4 state the complete loss of inter-manganese distances <3 A was observed, even at 10 K, because of the destruction of mu-oxo bridges between manganese ions. These results put into question some structural attributions from recent protein crystallography data on photosystem II. It is proposed to employ controlled x-ray photoreduction in metalloprotein research for: (i) population of distinct reduced states, (ii) estimating the redox potential of buried metal centers, and (iii) research on protein dynamics.

  13. Complexation of Manganese with Glutarimidedioxime: Implication for Extraction Uranium from Seawater

    NASA Astrophysics Data System (ADS)

    Xie, Xiang; Tian, Yin; Qin, Zhen; Yu, Qianhong; Wei, Hongyuan; Wang, Dongqi; Li, Xingliang; Wang, Xiaolin

    2017-03-01

    The molecule of glutaroimidedioxime, a cyclic imidedioxime moiety that can form during the synthesis of the poly(amidoxime)sorbent and is reputedly responsible for the extraction of uranium from seawater. Complexation of manganese (II) with glutarimidedioxime in aqueous solutions was investigated with potentiometry, calorimetry, ESI-mass spectrometry, electrochemical measurements and quantum chemical calculations. Results show that complexation reactions of manganese with glutarimidedioxime are both enthalpy and entropy driven processes, implying that the sorption of manganese on the glutarimidedioxime-functionalized sorbent would be enhanced at higher temperatures. Complex formation of manganese with glutarimidedioxime can assist redox of Mn(II/III). There are about ~15% of equilibrium manganese complex with the ligand in seawater pH(8.3), indicating that manganese could compete to some degree with uranium for sorption sites.

  14. Complexation of Manganese with Glutarimidedioxime: Implication for Extraction Uranium from Seawater

    PubMed Central

    Xie, Xiang; Tian, Yin; Qin, Zhen; Yu, Qianhong; Wei, Hongyuan; Wang, Dongqi; Li, Xingliang; Wang, Xiaolin

    2017-01-01

    The molecule of glutaroimidedioxime, a cyclic imidedioxime moiety that can form during the synthesis of the poly(amidoxime)sorbent and is reputedly responsible for the extraction of uranium from seawater. Complexation of manganese (II) with glutarimidedioxime in aqueous solutions was investigated with potentiometry, calorimetry, ESI-mass spectrometry, electrochemical measurements and quantum chemical calculations. Results show that complexation reactions of manganese with glutarimidedioxime are both enthalpy and entropy driven processes, implying that the sorption of manganese on the glutarimidedioxime-functionalized sorbent would be enhanced at higher temperatures. Complex formation of manganese with glutarimidedioxime can assist redox of Mn(II/III). There are about ~15% of equilibrium manganese complex with the ligand in seawater pH(8.3), indicating that manganese could compete to some degree with uranium for sorption sites. PMID:28266579

  15. Implications of phosphorus redox geochemistry

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew

    2015-04-01

    Phosphorus is the limiting nutrient in many environments. Until recently, redox changes to phosphorus speciation have been confined to the realm of chemical laboratories as phosphorus was considered to be synonymous with phosphate in the natural environment. The few known phosphorus species with a reduced redox state, such as phosphine gas, were considered novelties. Recent work has revealed a surprising role for low redox state organophosphorus compounds -- the phosphonates -- in biogeochemistry. Additionally, phosphite and hypophosphite (the lower oxyanions of phosphorus) have been identified from natural sources, and microbial genomics suggests these compounds may be ubiquitous in nature. Recent work from our laboratory suggests that reduced phosphorus compounds such as phosphite and hypophosphite may be ubiquitous (Pasek et al. 2014). If so, then these species maybe important in the global phosphorus biogeochemical cycle, and could influence global phosphorus sustainability. Additionally, these compounds could have been relevant on the early earth environment, priming the earth with reactive phosphorus for prebiotic chemistry. Reference: Pasek, M. A., Sampson, J. M., & Atlas, Z. (2014). Redox chemistry in the phosphorus biogeochemical cycle. Proceedings of the National Academy of Sciences, 111(43), 15468-15473.

  16. Manganese enzymes with binuclear active sites

    SciTech Connect

    Dismukes, G.C.

    1996-11-01

    The purpose of this article is twofold. First, to review the recent literature dealing with the mechanisms of catalysis by binuclear manganese enzymes. Second, to summarize and illustrate the general principles of catalysis which distinguish binuclear metalloenzymes from monometallic centers. This review covers primarily the published literature from 1991 up to May 1996. A summary of the major structurally characterized dimanganese enzymes is given. These perform various reaction types including several redox reactions, (de)hydrations, isomerizations, (de)phosphorylation, and phosphoryl transfer. 114 refs.

  17. The Redox Chemistry and Chemical Biology of H2S, Hydropersulfides and Derived Species: Implications to Their Possible Biological Activity and Utility

    PubMed Central

    Ono, Katsuhiko; Akaike, Takaake; Sawa, Tomohiro; Kumagai, Yoshito; Wink, David A.; Tantillo, Dean J.; Hobbs, Adrian J.; Nagy, Peter; Xian, Ming; Lin, Joseph; Fukuto, Jon M.

    2014-01-01

    Hydrogen sulfide (H2S) is an endogenously generated and putative signaling/effector molecule. In spite of its numerous reported functions, the chemistry by which it elicits its functions is not understood. Moreover, recent studies allude to the existence of other sulfur species besides H2S that may play critical physiological roles. Herein, the basic chemical biology of H2S as well as other related or derived species is discussed and reviewed. A particular focus of this review are the per- and poly-sulfides which are likely in equilibrium with free H2S and which may be important biological effectors themselves. PMID:25229186

  18. Green polymer chemistry: investigating the mechanism of radical ring-opening redox polymerization (R3P) of 3,6-dioxa-1,8-octanedithiol (DODT).

    PubMed

    Rosenthal-Kim, Emily Q; Puskas, Judit E

    2015-04-13

    The mechanism of the new Radical Ring-opening Redox Polymerization (R3P) of 3,6-dioxa-1,8-octanedithiol (DODT) by triethylamine (TEA) and dilute H2O2 was investigated. Scouting studies showed that the formation of high molecular weight polymers required a 1:2 molar ratio of DODT to TEA and of DODT to H2O2. Further investigation into the chemical composition of the organic and aqueous phases by 1H-NMR spectroscopy and mass spectrometry demonstrated that DODT is ionized by two TEA molecules (one for each thiol group) and thus transferred into the aqueous phase. The organic phase was found to have cyclic disulfide dimers, trimers and tetramers. Dissolving DODT and TEA in water before the addition of H2O2 yielded a polymer with Mn = 55,000 g/mol, in comparison with Mn = 92,000 g/mol when aqueous H2O2 was added to a DODT/TEA mixture. After polymer removal, MALDI-ToF MS analysis of the residual reaction mixtures showed only cyclic oligomers remaining. Below the LCST for TEA in water, 18.7 °C, the system yielded a stable emulsion, and only cyclic oligomers were found. Below DODT/TEA and H2O2 1:2 molar ratio mostly linear oligomers were formed, with <20% cyclic oligomers. The findings support the proposed mechanism of R3P.

  19. Strong Coupling between the Hydrogen Bonding Environment and Redox Chemistry during the S2 to S3 Transition in the Oxygen-Evolving Complex of Photosystem II.

    PubMed

    Isobe, Hiroshi; Shoji, Mitsuo; Shen, Jian-Ren; Yamaguchi, Kizashi

    2015-10-29

    We have studied the early phase of the S2 → S3 transition in the oxygen-evolving complex (OEC) of photosystem II using the hybrid density functional theory with a quantum mechanical model composed of 338-341 atoms. Special attention is given to the vital role of water molecules in the vicinity of the Mn4CaO5 core. Our results demonstrate how important the dynamic behavior of surrounding water molecules is in mediating critical chemical transformations such as binding and deprotonation of substrates and hydration of the catalytic site and identify a strong coupling of water-chain relocation near the redox-active tyrosine residue Tyr161 (TyrZ) with oxidation of the Mn4CaO5 cluster by TyrZ(•+). The oxidation reaction is further promoted when the catalytic site is more solvated by water. These results indicate the importance of surrounding water molecules in biological catalysts as they ultimately lead to effective catalytic function and/or favorable electron-transfer dynamics.

  20. Redox Pioneer: Professor Helmut Sies

    PubMed Central

    Radi, Rafael

    2014-01-01

    Abstract Professor Helmut Sies Dr. Helmut Sies (MD, 1967) is recognized as a Redox Pioneer, because he authored five articles on oxidative stress, lycopene, and glutathione, each of which has been cited more than 1000 times, and coauthored an article on hydroperoxide metabolism in mammalian systems cited more than 5000 times (Google Scholar). He obtained preclinical education at the University of Tübingen and the University of Munich, clinical training at Munich (MD, 1967) and Paris, and completed Habilitation at Munich (Physiological Chemistry and Physical Biochemistry, 1972). In early research, he first identified hydrogen peroxide (H2O2) as a normal aerobic metabolite and devised a method to quantify H2O2 concentration and turnover in cells. He quantified central redox systems for energy metabolism (NAD, NADP systems) and antioxidant GSH in subcellular compartments. He first described ebselen, a selenoorganic compound, as a glutathione peroxidase mimic. He contributed a fundamental discovery to the physiology of GSH, selenium nutrition, singlet oxygen biochemistry, and health benefits of dietary lycopene and cocoa flavonoids. He has published more than 600 articles, 134 of which are cited at least 100 times, and edited 28 books. His h-index is 115. During the last quarter of the 20th century and well into the 21st, he has served as a scout, trailblazer, and pioneer in redox biology. His formulation of the concept of oxidative stress stimulated and guided research in oxidants and antioxidants; his pioneering research on carotenoids and flavonoids informed nutritional strategies against cancer, cardiovascular disease, and aging; and his quantitative approach to redox biochemistry provides a foundation for modern redox systems biology. Helmut Sies is a true Redox Pioneer. Antioxid. Redox Signal. 21, 2459–2468. The joy of exploring the unknown and finding something novel and noteworthy: what a privilege! —Prof. Helmut Sies PMID:25178739

  1. Employment of methyl 2-pyridyl ketone oxime in manganese non-carboxylate chemistry: Mn(II)(2)Mn(IV) and Mn(II)(2)Mn(III)(6) complexes.

    PubMed

    Stoumpos, Constantinos C; Stamatatos, Theocharis C; Sartzi, Harikleia; Roubeau, Olivier; Tasiopoulos, Anastasios J; Nastopoulos, Vassilios; Teat, Simon J; Christou, George; Perlepes, Spyros P

    2009-02-14

    The employment of the anion of methyl 2-pyridyl ketone oxime (mpko(-)) as a tridentate chelating/bridging ligand in manganese chemistry is described. The inorganic anion (Br(-), ClO(4)(-)) used in the reaction affects the identity of the product. The reaction of MnBr(2) and one equivalent of mpkoH in the presence of a base affords [Mn(3)(OMe)(2)(mpko)(4)Br(2)] (3), which is mixed-valence (2Mn(II), Mn(IV)). The central Mn(IV) atom in each of the two, crystallographically independent, centrosymmetric molecules is coordinated by four oximate oxygen atoms belonging to the eta(1):eta(1):eta(1):mu mpko(-) ligands, and two eta(1):mu MeO(-) groups, while six coordination at each terminal Mn(II) atom is completed by four nitrogen atoms belonging to the 'chelating' part of two mpko(-) ligands, and one Br(-) ion. The Mn(II) atoms have trigonal prismatic coordination geometry. The reaction of Mn(ClO(4))(2).6H(2)O, mpkoH and OH(-) (1:2:1) in MeOH gives [Mn(8)O(4)(OMe)(mpko)(9)(mpkoH)](ClO(4))(4) (4), which is also mixed-valence (2Mn(II), 6Mn(III)) and possesses the novel [Mn(8)(mu(3)-O)(4)(mu-OMe)(mu-OR'')(2)](11+) core. The latter possesses a U-shaped sequence of four fused {Mn(II)Mn(III)(2)(mu(3)-O)}(6+) triangular units, with a Mn(III)-Mn(III) edge being shared between the central triangles. Variable-temperature, solid-state dc and ac magnetic susceptibility studies were carried out on complexes 3 and 4 . The dc susceptibility data for 3 in the 5.0-300 K range have been fit to a model with two J values, revealing weak ferromagnetic Mn(II)Mn(IV) (J = +3.4 cm(-1)) and Mn(II)Mn(II) (J' = +0.3 cm(-1)) exchange interactions. Fitting of the magnetization vs. H/T data by matrix diagonalization and including only axial anisotropy (ZFS, D) gave ground state spin (S) and D values of S = 13/2, D = +0.17 cm(-1) for and S = 3, D = -0.09 cm(-1) for 4 . The combined work demonstrates the usefulness of mpko(-) in the preparation of interesting Mn clusters, without requiring the co

  2. Quantifying manganese and nitrogen cycle coupling in manganese-rich, organic carbon-starved marine sediments: Examples from the Clarion-Clipperton fracture zone

    NASA Astrophysics Data System (ADS)

    Mogollón, José M.; Mewes, Konstantin; Kasten, Sabine

    2016-07-01

    Extensive deep-sea sedimentary areas are characterized by low organic carbon contents and thus harbor suboxic sedimentary environments where secondary (autotrophic) redox cycling becomes important for microbial metabolic processes. Simulation results for three stations in the Eastern Equatorial Pacific with low organic carbon content (<0.5 dry wt %) and low sedimentation rates (10-1-100 mm ky-1) show that ammonium generated during organic matter degradation may act as a reducing agent for manganese oxides below the oxic zone. Likewise, at these sedimentary depths, dissolved reduced manganese may act as a reducing agent for oxidized nitrogen species. These manganese-coupled transformations provide a suboxic conversion pathway of ammonium and nitrate to dinitrogen. These manganese-nitrogen interactions further explain the presence and production of dissolved reduced manganese (up to tens of μM concentration) in sediments with high nitrate (>20 μM) concentrations.

  3. Self-assembled monolayer of organic iodine on a Au surface for attachment of redox-active metal clusters.

    PubMed

    Yu, Ying; Dubey, Manish; Bernasek, Steven L; Dismukes, G Charles

    2007-07-17

    The attachment of a bifunctional iodo-organo-phosphinate compound to gold (Au) surfaces via chemisorption of the iodine atom is described and used to chelate a redox-active metal cluster via the phosphinate group. XPS, AFM, and electrochemical measurements show that (4-iodo-phenyl)phenyl phosphinic acid (IPPA) forms a tightly bound self-assembled monolayer (SAM) on Au surfaces. The surface coverage of an IPPA monolayer on Au was quantified by an electrochemical method and found to be 0.40 +/- 0.03 nmol/cm2, roughly corresponding to 0.4 monolayers. We show that the Au/IPPA SAM, but not the underivatized Au, adsorbs Mn4O4(Ph2PO2)6 from solution by a phosphinate exchange reaction to yield Au/IPPA/Mn4O4(Ph2PO2)5 SAM. The resulting SAM is firmly bound and not removed by sonication, as confirmed by manganese XPS (Mn 2p1/2) and by AFM. Electrochemistry confirms that Mn4O4(Ph2PO2)6 is anchored on the Au/IPPA surface and that redox chemistry can be mediated between the electrode and the surface-attached complex. Mn4O4(Ph2PO2)6 contains the reactive Mn4O46+ cubane core, a redox-active bioinspired catalyst.

  4. Iron chelation and redox chemistry of anthranilic acid and 3-hydroxyanthranilic acid: A comparison of two structurally related kynurenine pathway metabolites to obtain improved insights into their potential role in neurological disease development

    PubMed Central

    Chobot, Vladimir; Hadacek, Franz; Weckwerth, Wolfram; Kubicova, Lenka

    2015-01-01

    Anthranilic acid (ANA) and 3-hydroxyanthranilic acid (3-HANA) are kynurenine pathway intermediates of the tryptophan metabolism. A hitherto unemployed method combination, differential pulse voltammetry, mass spectrometry (nano-ESI–MS), deoxyribose degradation and iron(II) autoxidation assays has been employed for studying of their redox chemistry and their interactions with iron(II) and iron(III) ions. Both acids inhibited the Fenton reaction by iron chelation and ROS scavenging in the deoxyribose degradation assay. In the iron(II) autoxidation assay, anthranilic acid showed antioxidant effects, whereas 3-hydroxyanthranilic acid exhibited apparent pro-oxidant activity. The differential pulse voltammograms of free metabolites and their iron(II) coordination complexes reflected these properties. Nano-ESI–MS confirmed ANA and 3-HANA as efficient iron(II) chelators, both of which form coordination complexes of ligand:iron(II) ratio 1:1, 2:1, and 3:1. In addition, nano-ESI–MS analyses of the oxidation effects by hydroxyl radical attack identified 3-HANA as strikingly more susceptible than ANA. 3-HANA susceptibility to oxidation may explain its decreased concentrations in the reaction mixture. The presented observations can add to explaining why 3-HANA levels decrease in patients with some neurological and other diseases which can often associated with elevated concentrations of ROS. PMID:25892823

  5. Globally sustainable manganese metal production and use.

    PubMed

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  6. Effects of sequence, connectivity, and counter ions in new amide-linked Ru(tpy)2-Re(bpy) chromophores on redox chemistry and photophysics.

    PubMed

    Dietrich, Jan; Thorenz, Ute; Förster, Christoph; Heinze, Katja

    2013-02-04

    New cationic metallo ligands L1-L3 based on bis(terpyridine) ruthenium(II) complexes decorated with differently substituted 2,2'-bipyridines attached via amide groups (5-NHCO-bpy, 4-CONH-bpy, 5-CONH-bpy) were prepared. Coordination of Re(I)Cl(CO)(3) fragments to the bpy unit gives the corresponding bimetallic Ru~Re complexes 1-3. Hydrogen bonds of the bridging amide groups to [PF(6)](-) counterions or to water molecules are observed both in the solid state and in solution. The impact of the amide orientation, the connecting site, and the coordination of counterions on redox and photophysical properties is explored. Both the metallo ligands L1-L3 and the bimetallic complexes 1-3 are emissive at room temperature in fluid solution. The emission originates from (3)MLCT(Ru) states in all cases. Accordingly, the first oxidation of L1-L3 and 1-3 to [L1](+)-[L3](+) and [1](+)-[3](+) is assigned to the Ru(II/III) couple, while the first reduction to [L1](-)-[L3](-) and [1](-)-[3](-) occurs at the tpy-CO ligand as shown by UV/vis, IR, and EPR spectroscopy of the chemically generated radicals. Under rapid freezing conditions, radicals [2](-) and [3](-) are stabilized as different valence isomers with the odd electron localized at the [bpy-CO](•) bridging unit instead of the [tpy-CO](•). Furthermore, in radical [3](-) this valence equilibrium is shifted from [bpy-CO](•) to [tpy-CO](•) by coordination of [PF(6)](-) counterions to the bridging amide unit and back by replacing the [PF(6)](-) counterion with [BPh(4)](-). Photoinduced electron transfer (λ(exc) = 500 nm) to L1-L3 and to 1-3 is successful using triethanolamine (TEOA) as a reducing agent. Photocatalytic reduction of CO(2) by TEOA and 1-3 is hampered by the wrong site of electron localization in the one-electron reduced species [1](-)-[3](-).

  7. Stability Behavior and Thermodynamic States of Iron and Manganese in Sandy Soil Aquifer, Manukan Island, Malaysia

    SciTech Connect

    Lin, Chin Yik; Abdullah, Mohd. Harun; Musta, Baba; Praveena, Sarva Mangala; Aris, Ahmad Zaharin

    2011-03-15

    A total of 20 soil samples were collected from 10 boreholes constructed in the low lying area, which included ancillary samples taken from the high elevation area. Redox processes were investigated in the soil as well as groundwater in the shallow groundwater aquifer of Manukan Island, Sabah, Malaysia. Groundwater samples (n = 10) from each boreholes were also collected in the low lying area to understand the concentrations and behaviors of Fe and Mn in the dissolved state. This study strives to obtain a general understanding of the stability behaviors on Fe and Mn at the upper unsaturated and the lower-saturated soil horizons in the low lying area of Manukan Island as these elements usually play a major role in the redox chemistry of the shallow groundwater. Thermodynamic calculations using PHREEQC showed that the groundwater samples in the study area are oversaturated with respect to goethite, hematite, Fe(OH){sub 3} and undersaturated with respect to manganite and pyrochroite. Low concentrations of Fe and Mn in the groundwater might be probably due to the lack of minerals of iron and manganese oxides, which exist in the sandy aquifer. In fact, high organic matters that present in the unsaturated horizon are believed to be responsible for the high Mn content in the soil. It was observed that the soil samples collected from high elevation area (BK) comprises considerable amount of Fe in both unsaturated (6675.87 mg/kg) and saturated horizons (31440.49 mg/kg) compared to the low Fe content in the low lying area. Based on the stability diagram, the groundwater composition lies within the stability field for Mn{sup 2+} and Fe{sup 2+} under suboxic condition and very close to the FeS/Fe{sup 2+} stability boundary. This study also shows that both pH and Eh values comprise a strong negative value thus suggesting that the redox potential is inversely dependent on the changes of pH.

  8. Air Manganese Study

    EPA Pesticide Factsheets

    In November 2011 US EPA researchers conducted a health study of airborne manganese exposure in East Liverpool, Ohio. This Web site discusses preliminary results of the study and provides background and other related information.

  9. Beginning Chemistry Can Be Relevant

    ERIC Educational Resources Information Center

    Corwin, James F.

    1971-01-01

    Reviews ways of applying laboratory work in general and analytical chemistry to supermarket products. Describes ways water and air pollution analysis can illustrate acid-base reactions, redox reactions, precipitimetry, and colorimetry. (PR)

  10. Selenium- and tellurium-containing multifunctional redox agents as biochemical redox modulators with selective cytotoxicity.

    PubMed

    Jamier, Vincent; Ba, Lalla A; Jacob, Claus

    2010-09-24

    Various human diseases, including different types of cancer, are associated with a disturbed intracellular redox balance and oxidative stress (OS). The past decade has witnessed the emergence of redox-modulating compounds able to utilize such pre-existing disturbances in the redox state of sick cells for therapeutic advantage. Selenium- and tellurium-based agents turn the oxidizing redox environment present in certain cancer cells into a lethal cocktail of reactive species that push these cells over a critical redox threshold and ultimately kill them through apoptosis. This kind of toxicity is highly selective: normal, healthy cells remain largely unaffected, since changes to their naturally low levels of oxidizing species produce little effect. To further improve selectivity, multifunctional sensor/effector agents are now required that recognize the biochemical signature of OS in target cells. The synthesis of such compounds provides interesting challenges for chemistry in the future.

  11. Multireversible redox processes in pentanuclear bis(triple-helical) manganese complexes featuring an oxo-centered triangular {Mn(II)2Mn(III)(μ3-O)}5+ or {Mn(II)Mn(III)2(μ3-O)}6+ core wrapped by two {Mn(II)2(bpp)3}-.

    PubMed

    Romain, Sophie; Rich, Jordi; Sens, Cristina; Stoll, Thibaut; Benet-Buchholz, Jordi; Llobet, Antoni; Rodriguez, Montserrat; Romero, Isabel; Clérac, Rodolphe; Mathonière, Corine; Duboc, Carole; Deronzier, Alain; Collomb, Marie-Noëlle

    2011-09-05

    A new pentanuclear bis(triple-helical) manganese complex has been isolated and characterized by X-ray diffraction in two oxidation states: [{Mn(II)(μ-bpp)(3)}(2)Mn(II)(2)Mn(III)(μ-O)](3+) (1(3+)) and [{Mn(II)(μ-bpp)(3)}(2)Mn(II)Mn(III)(2)(μ-O)](4+) (1(4+)). The structure consists of a central {Mn(3)(μ(3)-O)} core of Mn(II)(2)Mn(III) (1(3+)) or Mn(II)Mn(III)(2) ions (1(4+)) which is connected to two apical Mn(II) ions through six bpp(-) ligands. Both cations have a triple-stranded helicate configuration, and a pair of enantiomers is present in each crystal. The redox properties of 1(3+) have been investigated in CH(3)CN. A series of five distinct and reversible one-electron waves is observed in the -1.0 and +1.50 V potential range, assigned to the Mn(II)(4)Mn(III)/Mn(II)(5), Mn(II)(3)Mn(III)(2)/Mn(II)(4)Mn(III), Mn(II)(2)Mn(III)(3)/Mn(II)(3)Mn(III)(2), Mn(II)Mn(III)(4)/Mn(II)(2)Mn(III)(3), and Mn(III)(5)/Mn(II)Mn(III)(4) redox couples. The two first oxidation processes leading to Mn(II)(3)Mn(III)(2) (1(4+)) and Mn(II)(2)Mn(III)(3) (1(5+)) are related to the oxidation of the Mn(II) ions of the central core and the two higher oxidation waves, close in potential, are thus assigned to the oxidation of the two apical Mn(II) ions. The 1(4+) and 1(5+) oxidized species and the reduced Mn(4)(II) (1(2+)) species are quantitatively generated by bulk electrolyses demonstrating the high stability of the pentanuclear structure in four oxidation states (1(2+) to 1(5+)). The spectroscopic characteristics (X-band electron paramagnetic resonance, EPR, and UV-visible) of these species are also described as well as the magnetic properties of 1(3+) and 1(4+) in solid state. The powder X- and Q-band EPR signature of 1(3+) corresponds to an S = 5/2 spin state characterized by a small zero-field splitting parameter (|D| = 0.071 cm(-1)) attributed to the two apical Mn(II) ions. At 40 K, the magnetic behavior is consistent for 1(3+) with two apical S = 5/2 {Mn(II)(bpp)(3)}(-) and one S

  12. High energy density redox flow device

    SciTech Connect

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  13. Occupational exposure to manganese.

    PubMed Central

    Sarić, M; Markićević, A; Hrustić, O

    1977-01-01

    The relationship between the degree of exposure and biological effects of manganese was studied in a group of 369 workers employed in the production of ferroalloys. Two other groups of workers, from an electrode plant and from an aluminium rolling mill, served as controls. Mean manganese concentrations at work places where ferroalloys were produced varied from 0-301 to 20-442 mg/m3. The exposure level of the two control groups was from 2 to 30 microgram/m3 and from 0-05 to 0-07 microgram/m3, in the electrode plant and rolling mill respectively. Sixty-two (16-8%) manganese alloy workers showed some signs of neurological impairment. These signs were noticeably less in the two control groups (5-8% and 0%) than in the occupationally exposed group. Subjective symptoms, which are nonspecific but may be symptoms of subclinical manganism, were not markedly different in the three groups. However, in the manganese alloy workers some of the subjective symptoms occurred more frequently in heavier smokers than in light smokers or nonsmokers. Heavier smokers engaged in manganese alloy production showed some of the subjective symptoms more often than heavier smokers from the control groups. PMID:871441

  14. Manganese As a Metal Accumulator

    EPA Science Inventory

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  15. Manganese Research Health Project (MHRP)

    DTIC Science & Technology

    2006-01-01

    MRI) of Manganese Role of Manganese in Prion Disease Pathogenesis Accumulation in the Rat Brain Associated with Iron - Deficiency and Supplementation...Imaging (MRI) of Manganese Accumulation in the Rat Brain Associated with Iron -Deficiency and Supplementation Aschner, Michael, Ph.D. Fitsanakis, Vanessa...Aschner (2006). Determination of brain manganese and iron accumulation using magnetic resonance imaging (MRI) and atomic absorption spectroscopy. 4 2 nd

  16. Manganese biomining: A review.

    PubMed

    Das, A P; Sukla, L B; Pradhan, N; Nayak, S

    2011-08-01

    Biomining comprises of processing and extraction of metal from their ores and concentrates using microbial techniques. Currently this is used by the mining industry to extract copper, uranium and gold from low grade ores but not for low grade manganese ore in industrial scale. The study of microbial genomes, metabolites and regulatory pathways provide novel insights to the metabolism of bioleaching microorganisms and their synergistic action during bioleaching operations. This will promote understanding of the universal regulatory responses that the biomining microbial community uses to adapt to their changing environment leading to high metal recovery. Possibility exists of findings ways to imitate the entire process during industrial manganese biomining endeavor. This paper reviews the current status of manganese biomining research operations around the world, identifies factors that drive the selection of biomining as a processing technology, describes challenges in exploiting these innovations, and concludes with a discussion of Mn biomining's future.

  17. Manganese Health Research Program (MHRP)

    DTIC Science & Technology

    2008-01-01

    Via the Olfactory Nerve David Dorman, CPI Magnetic Resonance Imaging (MRI) of Manganese Accumulation in the Rat Brain Associated with Iron ...Magnetic Resonance Imaging (MRI) of Manganese Accumulation in the Rat Brain Associated with Iron - Deficiency and Supplementation PRINCIPAL...TITLE AND SUBTITLE Magnetic Resonance Imaging (MRI) of Manganese Accumulation in the Rat Brain Associated with Iron -Deficiency and Supplementation

  18. Biogeochemistry of the coupled manganese-iron-sulfur cycles of intertidal surface sediments

    NASA Astrophysics Data System (ADS)

    Bosselmann, K.; Boettcher, M. E.; Billerbeck, M.; Walpersdorf, E.; Debeer, D.; Brumsack, H.-J.; Huettel, M.; Joergensen, B. B.

    2003-04-01

    The biogeochemistry of the coupled iron-manganese-sulfur-carbon cycles was studied in temperate intertidal surface sediments of the German Wadden Sea (North Sea). Coastal sampling sites include sand, mixed and mud flats with different organic matter and metal contents and permeability reflecting different hydrodynamic regimes. The field study focusses on the influence of temperature, organic matter load, and sediment types on the dynamics of biogeochemical reactions on different time scales (season, day-night, tidal cycles). One of the main interests was related to the cycling of metals (Mn, Fe) in relation to the activity of sulfate-reducing bacteria. Pore water profiles were investigated by sediment sectioning and high resolution gel sampling techniques. Microbial sulfate reduction rates were measured using radiolabeled sulfate with the whole core incubation technique and the spatial distribution of bacterial activity was visualised by using "2D-photoemulsion-monitoring technique". The biogeochemical sulfur cycle was additionally characterised by the stable isotope ratios (S,O) of different sulfur species (e.g., SO_4, AVS, pyrite). Element transfers (metals, nutrients) across the sediment-water interface were additionally quantified by the application of benthic flux chambers. Microbial sulfate reduction was generally highest in the suboxic zone of the surface sediments indicating its potential importance for the mobilization of iron and manganese. In organic matter poor permeable sediments tidal effects additionally influence the spatial and temporal distribution of dissolved redox-sensitive metals. In organic matter-rich silty and muddy sediments, temperature controlled the microbial sulfate reduction rates. Depth-integrated sulfate reduction rates in sandy sediments were much lower and controlled by both temperature and organic matter. Formation of anoxic sediment surfaces due to local enhanced organic matter load (so-called "black spots") may create windows

  19. The Redox Chemistry of Metallophthalocyanines in Solution

    DTIC Science & Technology

    1992-05-19

    tetraneopentoxyphthalocyanines [13] or in water, for example, the tetrasulfonated phthalocyanines [141 [see Table 11, above list of references, for...iron phthalocyanines have been studied. The tetrasulfonated species, Fe(I)[TsPc] has potentials very closely similar to those of the unsubstituted...Metallophthalocyanines in Solution By E.R. Milaeva, G. Speier and A.B.P. Lever* in The Phthalocyanines , Properties and Applications - Volume 2 York

  20. Redox chemistry at liquid/liquid interfaces

    NASA Technical Reports Server (NTRS)

    Volkov, A. G.; Deamer, D. W.

    1997-01-01

    The interface between two immiscible liquids with immobilized photosynthetic pigments can serve as the simplest model of a biological membrane convenient for the investigation of photoprocesses accompanied by spatial separation of charges. As it follows from thermodynamics, if the resolvation energies of substrates and products are very different, the interface between two immiscible liquids may act as a catalyst. Theoretical aspects of charge transfer reactions at oil/water interfaces are discussed. Conditions under which the free energy of activation of the interfacial reaction of electron transfer decreases are established. The activation energy of electron transfer depends on the charges of the reactants and dielectric permittivity of the non-aqueous phase. This can be useful when choosing a pair of immiscible solvents to decrease the activation energy of the reaction in question or to inhibit an undesired process. Experimental interfacial catalytic systems are discussed. Amphiphilic molecules such as chlorophyll or porphyrins were studied as catalysts of electron transfer reactions at the oil/water interface.

  1. Manganese, Metallogenium, and Martian Microfossils

    NASA Technical Reports Server (NTRS)

    Stein, L. Y.; Nealson, K. H.

    1999-01-01

    Manganese could easily be considered an abundant element in the Martian regolith, assuming that the composition of martian meteorites reflects the composition of the planet. Mineralogical analyses of 5 SNC meteorites have revealed an average manganese oxide concentration of 0.48%, relative to the 0.1% concentration of manganese found in the Earth's crust. On the Earth, the accumulation of manganese oxides in oceans, soils, rocks, sedimentary ores, fresh water systems, and hydrothermal vents can be largely attributed to microbial activity. Manganese is also a required trace nutrient for most life forms and participates in many critical enzymatic reactions such as photosynthesis. The wide-spread process of bacterial manganese cycling on Earth suggests that manganese is an important element to both geology and biology. Furthermore, there is evidence that bacteria can be fossilized within manganese ores, implying that manganese beds may be good repositories for preserved biomarkers. A particular genus of bacteria, known historically as Metallogenium, can form star-shaped manganese oxide minerals (called metallogenium) through the action of manganese oxide precipitation along its surface. Fossilized structures that resemble metallogenium have been found in Precambrian sedimentary formations and in Cretaceous-Paleogene cherts. The Cretaceous-Paleogene formations are highly enriched in manganese and have concentrations of trace elements (Fe, Zn, Cu, and Co) similar to modern-day manganese oxide deposits in marine environments. The appearance of metallogenium-like fossils associated with manganese deposits suggests that bacteria may be preserved within the minerals that they form. Additional information is contained in the original extended abstract.

  2. The redox switch/redox coupling hypothesis.

    PubMed

    Cerdán, Sebastián; Rodrigues, Tiago B; Sierra, Alejandra; Benito, Marina; Fonseca, Luis L; Fonseca, Carla P; García-Martín, María L

    2006-01-01

    We provide an integrative interpretation of neuroglial metabolic coupling including the presence of subcellular compartmentation of pyruvate and monocarboxylate recycling through the plasma membrane of both neurons and glial cells. The subcellular compartmentation of pyruvate allows neurons and astrocytes to select between glucose and lactate as alternative substrates, depending on their relative extracellular concentration and the operation of a redox switch. This mechanism is based on the inhibition of glycolysis at the level of glyceraldehyde 3-phosphate dehydrogenase by NAD(+) limitation, under sufficiently reduced cytosolic NAD(+)/NADH redox conditions. Lactate and pyruvate recycling through the plasma membrane allows the return to the extracellular medium of cytosolic monocarboxylates enabling their transcellular, reversible, exchange between neurons and astrocytes. Together, intracellular pyruvate compartmentation and monocarboxylate recycling result in an effective transcellular coupling between the cytosolic NAD(+)/NADH redox states of both neurons and glial cells. Following glutamatergic neurotransmission, increased glutamate uptake by the astrocytes is proposed to augment glycolysis and tricarboxylic acid cycle activity, balancing to a reduced cytosolic NAD(+)/NADH in the glia. Reducing equivalents are transferred then to the neuron resulting in a reduced neuronal NAD(+)/NADH redox state. This may eventually switch off neuronal glycolysis, favoring the oxidation of extracellular lactate in the lactate dehydrogenase (LDH) equilibrium and in the neuronal tricarboxylic acid cycles. Finally, pyruvate derived from neuronal lactate oxidation, may return to the extracellular space and to the astrocyte, restoring the basal redox state and beginning a new loop of the lactate/pyruvate transcellular coupling cycle. Transcellular redox coupling operates through the plasma membrane transporters of monocarboxylates, similarly to the intracellular redox shuttles

  3. Water, water everywhere, and its remarkable chemistry.

    PubMed

    Barber, Jim

    2004-04-12

    Photosystem II (PSII), the multisubunit pigment-protein complex localised in the thylakoid membranes of oxygenic photosynthetic organisms, uses light energy to drive a series of remarkable reactions leading to the oxidation of water. The products of this oxidation are dioxygen, which is released to the atmosphere, and reducing equivalents destined to reduce carbon dioxide to organic molecules. The water oxidation occurs at catalytic sites composed of four manganese atoms (Mn(4)-cluster) and powered by the redox potential of an oxidised chlorophyll a molecule (P680(*+)). Gerald T (Jerry) Babcock and colleagues showed that electron/proton transfer processes from substrate water to P680(*+) involved a tyrosine residue (Y(Z)) and proposed an attractive reaction mechanism for the direct involvement of Y(Z) in the chemistry of water oxidation. The 'hydrogen-atom abstract/metalloradical' mechanism he formulated is an expression of his genius and a highlight of his many other outstanding contributions to photosynthesis research. A structural basis for Jerry's model is now being revealed by X-ray crystallography.

  4. Manganese in Madison's drinking water.

    PubMed

    Schlenker, Thomas; Hausbeck, John; Sorsa, Kirsti

    2008-12-01

    Public concern over events of manganese-discolored drinking water and the potential for adverse health effects from exposure to excess manganese reached a high level in 2005. In response, Public Health Madison Dane County, together with the Madison Water Utility, conceived and implemented a public health/water utility strategy to quantify the extent of the manganese problem, determine the potential for adverse human health effects, and communicate these findings to the community. This strategy included five basic parts: taking an inventory of wells and their manganese levels, correlating manganese concentration with turbidity, determining the prevalence and distribution of excess manganese in Madison households, reviewing the available scientific literature, and effectively communicating our findings to the community. The year-long public health/water utility strategy successfully resolved the crisis of confidence in the safety of Madison's drinking water.

  5. Bimetallic redox synergy in oxidative palladium catalysis.

    PubMed

    Powers, David C; Ritter, Tobias

    2012-06-19

    Polynuclear transition metal complexes, which are embedded in the active sites of many metalloenzymes, are responsible for effecting a diverse array of oxidation reactions in nature. The range of chemical transformations remains unparalleled in the laboratory. With few noteworthy exceptions, chemists have primarily focused on mononuclear transition metal complexes in developing homogeneous catalysis. Our group is interested in the development of carbon-heteroatom bond-forming reactions, with a particular focus on identifying reactions that can be applied to the synthesis of complex molecules. In this context, we have hypothesized that bimetallic redox chemistry, in which two metals participate synergistically, may lower the activation barriers to redox transformations relevant to catalysis. In this Account, we discuss redox chemistry of binuclear Pd complexes and examine the role of binuclear intermediates in Pd-catalyzed oxidation reactions. Stoichiometric organometallic studies of the oxidation of binuclear Pd(II) complexes to binuclear Pd(III) complexes and subsequent C-X reductive elimination from the resulting binuclear Pd(III) complexes have confirmed the viability of C-X bond-forming reactions mediated by binuclear Pd(III) complexes. Metal-metal bond formation, which proceeds concurrently with oxidation of binuclear Pd(II) complexes, can lower the activation barrier for oxidation. We also discuss experimental and theoretical work that suggests that C-X reductive elimination is also facilitated by redox cooperation of both metals during reductive elimination. The effect of ligand modification on the structure and reactivity of binuclear Pd(III) complexes will be presented in light of the impact that ligand structure can exert on the structure and reactivity of binuclear Pd(III) complexes. Historically, oxidation reactions similar to those discussed here have been proposed to proceed via mononuclear Pd(IV) intermediates, and the hypothesis of mononuclear Pd

  6. New lab scale approaches for quantification of redox conditions

    NASA Astrophysics Data System (ADS)

    Fernandez, P. M.; Dathe, A.; Nadeem, S.; Bakken, L. R.; Bloem, E.; French, H. K.; Binley, A. M.

    2013-12-01

    Degradation of organic chemicals in the unsaturated zone is a process highly relevant for developing remediation techniques for protecting groundwater. Degradation causes changes in chemical composition of the water phase and gas releases. These changes can potentially be mapped with electrical resistivity measurements in the bulk soil and gas measurements at the soil surface. The redox potential combined with the local geological conditions determines the composition of available electron acceptors as well as microbial degradation pathways and how the soil system is affected in the long term. After oxygen and nitrate are depleted, manganese and iron should be reduced. However, in experiments conducted in the unsaturated zone at Gardermoen airport, Norway, it was found that for the degradation of the de-icing agent propylene glycol (PG), manganese and iron were preferred over nitrate as electron acceptor. A key hypothesis for the work presented is that for a designated soil, the redox potential affects gas releases and soil solution composition profoundly. As the redox potential decreases, the reactants of the degradation change and therefore the composition of the soil-water system changes. These changes can be quantified dynamically by gas measurements and changes in electrical conductivity of the pore water and electrical resistivity of the bulk soil. Batch experiments were conducted to examine whether nitrate is a preferred electron acceptor over iron and manganese oxides as described in classical redox reaction theory. Gas releases during PG and glutamate degradation were measured in a sandy pristine soil with and without nitrate under anaerobic condition during two weeks of incubation. Chemical reactions were quantified with the modelling tool ORCHESTRA. We are currently investigating whether dynamical measurements of electrical conductivity and bulk resistivity are suited to trace which electron acceptors (nitrate, manganese or iron) are being reduced. First

  7. A study of layered lithium manganese oxide cathode materials

    NASA Astrophysics Data System (ADS)

    Eriksson, Tom A.; Doeff, Marca M.

    Substituted layered sodium manganese oxide bronzes with the P2 structure were prepared by glycine-nitrate combustion synthesis. The Na in the as-prepared materials could be completely ion-exchanged for Li under mild conditions. All lithium manganese oxide compounds obtained after ion-exchange have O2 stacking of the layers. Cyclic voltammetry and stepped potential experiments on lithium cells containing these materials show that the main redox reaction around 3.1 V is a diffusion-controlled process and is completely reversible. O2-Li 0.6[Al 0.1Mn 0.85□ 0.05]O 2 and O2-Li 0.6[Ni 0.1Mn 0.85□ 0.05]O 2 are particularly promising as cathode materials in lithium cells because of the high reversible discharge capacities (180 mAh/g).

  8. Redox Conditions in Selected Principal Aquifers of the United States

    USGS Publications Warehouse

    McMahon, P.B.; Cowdery, T.K.; Chapelle, F.H.; Jurgens, B.C.

    2009-01-01

    Reduction/oxidation (redox) processes affect the quality of groundwater in all aquifer systems. Redox processes can alternately mobilize or immobilize potentially toxic metals associated with naturally occurring aquifer materials, contribute to the degradation or preservation of anthropogenic contami-nants, and generate undesirable byproducts, such as dissolved manganese (Mn2+), ferrous iron (Fe2+), hydrogen sulfide (H2S), and methane (CH4). Determining the kinds of redox processes that occur in an aquifer system, documenting their spatial distribution, and understanding how they affect concentrations of natural or anthropogenic contaminants are central to assessing and predicting the chemical quality of groundwater. This Fact Sheet extends the analysis of U.S. Geological Survey authors to additional principal aquifer systems by applying a framework developed by the USGS to a larger set of water-quality data from the USGS national water databases. For a detailed explanation, see the 'Introduction' in the Fact Sheet.

  9. Preparation of highly efficient manganese catalase mimics.

    PubMed

    Triller, Michael U; Hsieh, Wen-Yuan; Pecoraro, Vincent L; Rompel, Annette; Krebs, Bernt

    2002-10-21

    The series of compounds [Mn(bpia)(mu-OAc)](2)(ClO(4))(2) (1), [Mn(2)(bpia)(2)(muO)(mu-OAc)](ClO(4))(3).CH(3)CN (2), [Mn(bpia)(mu-O)](2)(ClO(4))(2)(PF(6)).2CH(3)CN (3), [Mn(bpia)(Cl)(2)](ClO)(4) (4), and [(Mn(bpia)(Cl))(2)(mu-O)](ClO(4))(2).2CH(3)CN (5) (bpia = bis(picolyl)(N-methylimidazol-2-yl)amine) represents a structural, spectroscopic, and functional model system for manganese catalases. Compounds 3 and 5 have been synthesized from 2 via bulk electrolysis and ligand exchange, respectively. All complexes have been structurally characterized by X-ray crystallography and by UV-vis and EPR spectroscopies. The different bridging ligands including the rare mono-mu-oxo and mono-mu-oxo-mono-mu-carboxylato motifs lead to a variation of the Mn-Mn separation across the four binuclear compounds of 1.50 A (Mn(2)(II,II) = 4.128 A, Mn(2)(III,III) = 3.5326 and 3.2533 A, Mn(2)(III,IV) = 2.624 A). Complexes 1, 2, and 3 are mimics for the Mn(2)(II,II), the Mn(2)(III,III), and the Mn(2)(III,IV) oxidation states of the native enzyme. UV-vis spectra of these compounds show similarities to those of the corresponding oxidation states of manganese catalase from Thermus thermophilus and Lactobacillus plantarum. Compound 2 exhibits a rare example of a Jahn-Teller compression. While complexes 1 and 3 are efficient catalysts for the disproportionation of hydrogen peroxide and contain an N(4)O(2) donor set, 4 and 5 show no catalase activity. These complexes have an N(4)Cl(2) and N(4)OCl donor set, respectively, and serve as mimics for halide inhibited manganese catalases. Cyclovoltammetric data show that the substitution of oxygen donor atoms with chloride causes a shift of redox potentials to more positive values. To our knowledge, complex 1 is the most efficient binuclear functional manganese catalase mimic exhibiting saturation kinetics to date.

  10. Lewis-acid-promoted stoichiometric and catalytic oxidations by manganese complexes having cross-bridged cyclam ligand: a comprehensive study.

    PubMed

    Dong, Lei; Wang, Yujuan; Lv, Yanzong; Chen, Zhuqi; Mei, Fuming; Xiong, Hui; Yin, Guochuan

    2013-05-06

    Redox-inactive metal ions have been recognized to be able to participate in redox metal-ion-mediated biological and chemical oxidative events; however, their roles are still elusive. This work presents how the redox-inactive metal ions affect the oxidative reactivity of a well-investigated manganese(II) with its corresponding manganese(IV) complexes having cross-bridged cyclam ligand. In dry acetone, the presence of these metal ions can greatly accelerate stoichiometric oxidations of triphenylphosphine and sulfides by the manganese(IV) complexes through electron transfer or catalytic sulfoxidations by the corresponding manganese(II) complexes with PhIO. Significantly, the rate enhancements are highly Lewis-acid strength dependent on added metal ions. These metal ions like Al(3+) can also promote the thermodynamic driving force of the Mn(IV)-OH moiety to facilitate its hydrogen abstraction from ethylbenzene having a BDE(CH) value of 85 kcal/mol, while it is experimentally limited to 80 kcal/mol for Mn(IV)-OH alone. Adding Al(3+) may also improve the manganese(II)-catalyzed olefin epoxidation with PhIO. However, compared with those in electron transfer, improvements in hydrogen abstraction and electron transfer are minor. The existence of the interaction between Lewis acid and the manganese(IV) species was evidenced by the blue shift of the characteristic absorbance of the manganese(IV) species from 554 to 537 nm and by converting its EPR signal at g = 2.01 into a hyperfine 6-line signal upon adding Al(3+) (I = 5/2). Cyclic voltammograms of the manganese(IV) complexes reveal that adding Lewis acid would substantially shift its potential to the positive direction, thus enhancing its oxidizing capability.

  11. Redox regulation: an introduction.

    PubMed

    Dietz, Karl-Josef; Scheibe, Renate

    2004-01-01

    The redox-state is a critical determinate of cell function, and any major imbalances can cause severe damage or death. The cellular redox status therefore needs to be sensed and modulated before such imbalances occur. Various redox-active components are involved in these processes, including thioredoxins, glutaredoxins and other thiol/disulphide-containing proteins. The cellular reactions for cytoprotection and for signalling are integrated with physiological redox-reactions in photosynthesis, assimilation and respiration. They also determine the developmental fate of the cell and finally decide on proliferation or cell death. An international workshop on redox regulation, organized by the research initiative FOR 387 of the Deutsche Forschungsgemeinschaft, was held in Bielefeld, Germany in 2002. A selection of articles originating from the meeting is printed in this issue of Physiologia Plantarum.

  12. Microtopography of manganese crusts

    NASA Astrophysics Data System (ADS)

    Morgan, Charles L.

    Quantitative examination of the seafloor surface roughness will be necessary for any design of equipment intended for use in collecting surface deposits such as cobalt-rich manganese crusts or nodules. Furthermore, it is an essential prerequisite to the confident interpretation of returns from high frequency side-scan and other acoustic systems. The objectives of the project were to develop the capability at the University of Hawaii of generating high resolution (less than 1 cm horizontal and vertical) topographic models of the seafloor from 35 mm stereo photographs; to produce such models from existing photographs of cobalt-rich manganese crust deposits; and to optimize the configuration of the existing Hawaii Undersea Research Laboratory (HURL) camera system for stereo photograph collection and correlation of acoustic data with the photographic ground-truth. These tasks were accomplished and have also led to the development of a follow-on project (MMTC/OBD Project 1512) dedicated to the simultaneous acquisition of both optical and side-scan acoustic data for future accurate determination of seabed microtopography.

  13. Redox processes and water quality of selected principal aquifer systems

    USGS Publications Warehouse

    McMahon, P.B.; Chapelle, F.H.

    2008-01-01

    Reduction/oxidation (redox) conditions in 15 principal aquifer (PA) systems of the United States, and their impact on several water quality issues, were assessed from a large data base collected by the National Water-Quality Assessment Program of the USGS. The logic of these assessments was based on the observed ecological succession of electron acceptors such as dissolved oxygen, nitrate, and sulfate and threshold concentrations of these substrates needed to support active microbial metabolism. Similarly, the utilization of solid-phase electron acceptors such as Mn(IV) and Fe(III) is indicated by the production of dissolved manganese and iron. An internally consistent set of threshold concentration criteria was developed and applied to a large data set of 1692 water samples from the PAs to assess ambient redox conditions. The indicated redox conditions then were related to the occurrence of selected natural (arsenic) and anthropogenic (nitrate and volatile organic compounds) contaminants in ground water. For the natural and anthropogenic contaminants assessed in this study, considering redox conditions as defined by this framework of redox indicator species and threshold concentrations explained many water quality trends observed at a regional scale. An important finding of this study was that samples indicating mixed redox processes provide information on redox heterogeneity that is useful for assessing common water quality issues. Given the interpretive power of the redox framework and given that it is relatively inexpensive and easy to measure the chemical parameters included in the framework, those parameters should be included in routine water quality monitoring programs whenever possible.

  14. An Excel Workbook for Identifying Redox Processes in Ground Water

    USGS Publications Warehouse

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  15. Mineral of the month: manganese

    USGS Publications Warehouse

    Corathers, Lisa A.

    2005-01-01

    Manganese is one of the most important ferrous metals and one of the few for which the United States is totally dependent on imports. It is a black, brittle element predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production, which together provide the largest market for manganese (about 83 percent). It is also used as an alloy with nonferrous metals such as aluminum and copper. Nonmetallurgical applications of manganese include battery cathodes, soft ferrite magnets used in electronics, micronutrients found in fertilizers and animal feed, water treatment chemicals, and a colorant for bricks and ceramics.

  16. A Multistep Equilibria-Redox-Complexation Demonstration to Illustrate Le Chatelier's Principle.

    ERIC Educational Resources Information Center

    Berger, Tomas G.; Mellon, Edward K.

    1996-01-01

    Describes a process that can be used to illustrate a number of chemical principles including Le Chatelier's principle, redox chemistry, equilibria versus steady state situations, and solubility of species. (JRH)

  17. Influence of calcium(II) and chloride on the oxidative reactivity of a manganese(II) complex of a cross-bridged cyclen ligand.

    PubMed

    Zhang, Zhan; Coats, Katherine L; Chen, Zhuqi; Hubin, Timothy J; Yin, Guochuan

    2014-11-17

    Available data from different laboratories have confirmed that both Ca(2+) and Cl(-) are crucial for water oxidation in Photosystem II. However, their roles are still elusive. Using a manganese(II) complex having a cross-bridged cyclen ligand as a model, the influence of Ca(2+) on the oxidative reactivity of the manganese(II) complex and its corresponding manganese(IV) analogue were investigated. It has been found that adding Ca(2+) can significantly improve the oxygenation efficiency of the manganese(II) complex in sulfide oxidation and further accelerate the oxidation of sulfoxide to sulfone. Similar improvements have also been observed for Mg(2+), Sr(2+), and Ba(2+). A new monomeric manganese(IV) complex having two cis-hydroxide ligands has also been isolated through oxidation of the corresponding manganese(II) complex with H2O2 in the presence of NH4PF6. This rare cis-dihydroxomanganese(IV) species has been well characterized by X-ray crystallography, electrochemistry, electron paramagnetic resonance, and UV-vis spectroscopy. Notably, using the manganese(IV) complex as a catalyst demonstrates higher activity than the corresponding manganese(II) complex, and adding Ca(2+) further improves its catalytic efficiency. However, adding Cl(-) decreases its catalytic activity. In electrochemical studies of manganese(IV) complexes with no chloride ligand present, adding Ca(2+) positively shifted the redox potential of the Mn(IV)/Mn(III) couple but negatively shifted its Mn(V)/Mn(IV) couple. In the manganese(II) complex having a chloride ligand, adding Ca(2+) shifted both the Mn(IV)/Mn(III) and Mn(V)/Mn(IV) couples in the negative direction. The revealed oxidative reactivity and redox properties of the manganese species affected by Ca(2+) and Cl(-) may provide new clues to understanding their roles in the water oxidation process of Photosystem II.

  18. Tellurium content of marine manganese oxides and other manganese oxides

    USGS Publications Warehouse

    Lakin, H.W.; Thompson, C.E.; Davidson, D.F.

    1963-01-01

    Tellurium in amounts ranging from 5 to 125 parts per million was present in all of 12 samples of manganese oxide nodules from the floor of the Pacific and Indian oceans. These samples represent the first recognized points of high tellurium concentration in a sedimentary cycle. The analyses may lend support to the theory that the minor-element content of seafloor manganese nodules is derived from volcanic emanations.

  19. Improved Manganese Phosphate Coatings

    DTIC Science & Technology

    1975-04-01

    Conversion coatings 3 . Phosphating bath 20 AGrjC onln odd*. ta It .. c..soMV midP 1J.,alft. by block noc.mb) Work was conducted to determine the mechanism by...34 TABULAR DATA Table I Analyses of Solution and Coating for Phosphating Baths 4 of Di-ferlng Compositions 11 Atomic Absorption...manganese and iron phosphate coating: k * a. Mn(H 2PO4) 2 Nn-P0 4 + H3PO0 k2 k) b. 3MnHPO4 - Mn3 (P04) 2 + H3i’O4 k4 k5 c. Fe(H 2PO4) 2 -01 FeHPO4

  20. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  1. Redox Control of Skeletal Muscle Regeneration.

    PubMed

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-02-06

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 00, 000-000.

  2. Evaluation of Manganese Phosphate Coatings.

    DTIC Science & Technology

    1984-02-01

    84003 _____________ 4 . TTLE and -bitle)5. TYPE OF REPORT & PERIOD COVERED EVALUATION OF MANGANESE PHOSPHATE COATINGS Final 6. PERFORMING ORG. REPORT...rosion resistance of the Endurion phosphate was significantly superior to the 4 . basic manganese phosphate . Endurion phosphate with a Supplementary...OF CONTENTS Page STATEMENT OF THE PROBLEM 1 BACKGROUND 1 APPROACH TO THE PROBLEM 3 RESULTS 4 CONCLUSIONS 7 TABLES I. Falex Wear Life Test Procedure 8

  3. Manganese and the Evolution of Photosynthesis.

    PubMed

    Fischer, Woodward W; Hemp, James; Johnson, Jena E

    2015-09-01

    Oxygenic photosynthesis is the most important bioenergetic event in the history of our planet-it evolved once within the Cyanobacteria, and remained largely unchanged as it was transferred to algae and plants via endosymbiosis. Manganese plays a fundamental role in this history because it lends the critical redox behavior of the water-oxidizing complex of photosystem II. Constraints from the photoassembly of the Mn-bearing water-oxidizing complex fuel the hypothesis that Mn(II) once played a key role as an electron donor for anoxygenic photosynthesis prior to the evolution of oxygenic photosynthesis. Here we review the growing body of geological and geochemical evidence from the Archean and Paleoproterozoic sedimentary records that supports this idea and demonstrates that the oxidative branch of the Mn cycle switched on prior to the rise of oxygen. This Mn-oxidizing phototrophy hypothesis also receives support from the biological record of extant phototrophs, and can be made more explicit by leveraging constraints from structural biology and biochemistry of photosystem II in Cyanobacteria. These observations highlight that water-splitting in photosystem II evolved independently from a homodimeric ancestral type II reaction center capable of high potential photosynthesis and Mn(II) oxidation, which is required by the presence of homologous redox-active tyrosines in the modern heterodimer. The ancestral homodimer reaction center also evolved a C-terminal extension that sterically precluded standard phototrophic electron donors like cytochrome c, cupredoxins, or high-potential iron-sulfur proteins, and could only complete direct oxidation of small molecules like Mn(2+), and ultimately water.

  4. Manganese and the Evolution of Photosynthesis

    NASA Astrophysics Data System (ADS)

    Fischer, Woodward W.; Hemp, James; Johnson, Jena E.

    2015-09-01

    Oxygenic photosynthesis is the most important bioenergetic event in the history of our planet—it evolved once within the Cyanobacteria, and remained largely unchanged as it was transferred to algae and plants via endosymbiosis. Manganese plays a fundamental role in this history because it lends the critical redox behavior of the water-oxidizing complex of photosystem II. Constraints from the photoassembly of the Mn-bearing water-oxidizing complex fuel the hypothesis that Mn(II) once played a key role as an electron donor for anoxygenic photosynthesis prior to the evolution of oxygenic photosynthesis. Here we review the growing body of geological and geochemical evidence from the Archean and Paleoproterozoic sedimentary records that supports this idea and demonstrates that the oxidative branch of the Mn cycle switched on prior to the rise of oxygen. This Mn-oxidizing phototrophy hypothesis also receives support from the biological record of extant phototrophs, and can be made more explicit by leveraging constraints from structural biology and biochemistry of photosystem II in Cyanobacteria. These observations highlight that water-splitting in photosystem II evolved independently from a homodimeric ancestral type II reaction center capable of high potential photosynthesis and Mn(II) oxidation, which is required by the presence of homologous redox-active tyrosines in the modern heterodimer. The ancestral homodimer reaction center also evolved a C-terminal extension that sterically precluded standard phototrophic electron donors like cytochrome c, cupredoxins, or high-potential iron-sulfur proteins, and could only complete direct oxidation of small molecules like Mn2+, and ultimately water.

  5. Redox Species of Redox Flow Batteries: A Review.

    PubMed

    Pan, Feng; Wang, Qing

    2015-11-18

    Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  6. Dissection of the mechanism of manganese porphyrin-catalyzed chlorine dioxide generation.

    PubMed

    Umile, Thomas P; Wang, Dong; Groves, John T

    2011-10-17

    Chlorine dioxide, an industrially important biocide and bleach, is produced rapidly and efficiently from chlorite ion in the presence of water-soluble, manganese porphyrins and porphyrazines at neutral pH under mild conditions. The electron-deficient manganese(III) tetra-(N,N-dimethyl)imidazolium porphyrin (MnTDMImP), tetra-(N,N-dimethyl)benzimidazolium (MnTDMBImP) porphyrin, and manganese(III) tetra-N-methyl-2,3-pyridinoporphyrazine (MnTM23PyPz) were found to be the most efficient catalysts for this process. The more typical manganese tetra-4-N-methylpyridiumporphyrin (Mn-4-TMPyP) was much less effective. Rates for the best catalysts were in the range of 0.24-32 TO/s with MnTM23PyPz being the fastest. The kinetics of reactions of the various ClO(x) species (e.g., chlorite ion, hypochlorous acid, and chlorine dioxide) with authentic oxomanganese(IV) and dioxomanganese(V)MnTDMImP intermediates were studied by stopped-flow spectroscopy. Rate-limiting oxidation of the manganese(III) catalyst by chlorite ion via oxygen atom transfer is proposed to afford a trans-dioxomanganese(V) intermediate. Both trans-dioxomanganese(V)TDMImP and oxoaqua-manganese(IV)TDMImP oxidize chlorite ion by 1-electron, generating the product chlorine dioxide with bimolecular rate constants of 6.30 × 10(3) M(-1) s(-1) and 3.13 × 10(3) M(-1) s(-1), respectively, at pH 6.8. Chlorine dioxide was able to oxidize manganese(III)TDMImP to oxomanganese(IV) at a similar rate, establishing a redox steady-state equilibrium under turnover conditions. Hypochlorous acid (HOCl) produced during turnover was found to rapidly and reversibly react with manganese(III)TDMImP to give dioxoMn(V)TDMImP and chloride ion. The measured equilibrium constant for this reaction (K(eq) = 2.2 at pH 5.1) afforded a value for the oxoMn(V)/Mn(III) redox couple under catalytic conditions (E' = 1.35 V vs NHE). In subsequent processes, chlorine dioxide reacts with both oxomanganese(V) and oxomanganese(IV)TDMImP to afford chlorate

  7. Chemical Principles Revisited. Redox Reactions and the Electropotential Axis.

    ERIC Educational Resources Information Center

    Vella, Alfred J.

    1990-01-01

    This paper suggests a nontraditional pedagogic approach to the subject of redox reactions and electrode potentials suitable for freshman chemistry. Presented is a method for the representation of galvanic cells without the introduction of the symbology and notation of conventional cell diagrams. (CW)

  8. Cooperative redox activation for carbon dioxide conversion

    NASA Astrophysics Data System (ADS)

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-12-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing `waste', produced through oxygen insertion into the Si-Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2.

  9. Proterozoic ocean redox and biogeochemical stasis

    PubMed Central

    Reinhard, Christopher T.; Planavsky, Noah J.; Robbins, Leslie J.; Partin, Camille A.; Gill, Benjamin C.; Lalonde, Stefan V.; Bekker, Andrey; Konhauser, Kurt O.; Lyons, Timothy W.

    2013-01-01

    The partial pressure of oxygen in Earth’s atmosphere has increased dramatically through time, and this increase is thought to have occurred in two rapid steps at both ends of the Proterozoic Eon (∼2.5–0.543 Ga). However, the trajectory and mechanisms of Earth’s oxygenation are still poorly constrained, and little is known regarding attendant changes in ocean ventilation and seafloor redox. We have a particularly poor understanding of ocean chemistry during the mid-Proterozoic (∼1.8–0.8 Ga). Given the coupling between redox-sensitive trace element cycles and planktonic productivity, various models for mid-Proterozoic ocean chemistry imply different effects on the biogeochemical cycling of major and trace nutrients, with potential ecological constraints on emerging eukaryotic life. Here, we exploit the differing redox behavior of molybdenum and chromium to provide constraints on seafloor redox evolution by coupling a large database of sedimentary metal enrichments to a mass balance model that includes spatially variant metal burial rates. We find that the metal enrichment record implies a Proterozoic deep ocean characterized by pervasive anoxia relative to the Phanerozoic (at least ∼30–40% of modern seafloor area) but a relatively small extent of euxinic (anoxic and sulfidic) seafloor (less than ∼1–10% of modern seafloor area). Our model suggests that the oceanic Mo reservoir is extremely sensitive to perturbations in the extent of sulfidic seafloor and that the record of Mo and chromium enrichments through time is consistent with the possibility of a Mo–N colimited marine biosphere during many periods of Earth’s history. PMID:23515332

  10. Successes and Techniques Associated with Teaching the Chemistry of Radioactive Wastes.

    ERIC Educational Resources Information Center

    Williams, Donald H.

    1995-01-01

    Describes a chemistry course that is built around the topic of radioactive waste and encompasses a large number of chemistry concepts including redox, equilibrium, kinetics, nuclear energy, and the periodic chart. (JRH)

  11. Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis.

    PubMed

    Blank, Lars M; Ebert, Birgitta E; Buehler, Katja; Bühler, Bruno

    2010-08-01

    Whole-cell biocatalysis utilizes native or recombinant enzymes produced by cellular metabolism to perform synthetically interesting reactions. Besides hydrolases, oxidoreductases represent the most applied enzyme class in industry. Oxidoreductases are attributed a high future potential, especially for applications in the chemical and pharmaceutical industries, as they enable highly interesting chemistry (e.g., the selective oxyfunctionalization of unactivated C-H bonds). Redox reactions are characterized by electron transfer steps that often depend on redox cofactors as additional substrates. Their regeneration typically is accomplished via the metabolism of whole-cell catalysts. Traditionally, studies towards productive redox biocatalysis focused on the biocatalytic enzyme, its activity, selectivity, and specificity, and several successful examples of such processes are running commercially. However, redox cofactor regeneration by host metabolism was hardly considered for the optimization of biocatalytic rate, yield, and/or titer. This article reviews molecular mechanisms of oxidoreductases with synthetic potential and the host redox metabolism that fuels biocatalytic reactions with redox equivalents. The tools discussed in this review for investigating redox metabolism provide the basis for studies aiming at a deeper understanding of the interplay between synthetically active enzymes and metabolic networks. The ultimate goal of rational whole-cell biocatalyst engineering and use for fine chemical production is discussed.

  12. The Expanding Landscape of the Thiol Redox Proteome*

    PubMed Central

    Yang, Jing; Carroll, Kate S.; Liebler, Daniel C.

    2016-01-01

    Cysteine occupies a unique place in protein chemistry. The nucleophilic thiol group allows cysteine to undergo a broad range of redox modifications beyond classical thiol-disulfide redox equilibria, including S-sulfenylation (-SOH), S-sulfinylation (-SO2H), S-sulfonylation (-SO3H), S-nitrosylation (-SNO), S-sulfhydration (-SSH), S-glutathionylation (-SSG), and others. Emerging evidence suggests that these post-translational modifications (PTM) are important in cellular redox regulation and protection against oxidative damage. Identification of protein targets of thiol redox modifications is crucial to understanding their roles in biology and disease. However, analysis of these highly labile and dynamic modifications poses challenges. Recent advances in the design of probes for thiol redox forms, together with innovative mass spectrometry based chemoproteomics methods make it possible to perform global, site-specific, and quantitative analyses of thiol redox modifications in complex proteomes. Here, we review chemical proteomic strategies used to expand the landscape of thiol redox modifications. PMID:26518762

  13. Bog Manganese Ore: A Resource for High Manganese Steel Making

    NASA Astrophysics Data System (ADS)

    Pani, Swatirupa; Singh, Saroj K.; Mohapatra, Birendra K.

    2016-06-01

    Bog manganese ore, associated with the banded iron formation of the Iron Ore Group (IOG), occurs in large volume in northern Odisha, India. The ore is powdery, fine-grained and soft in nature with varying specific gravity (2.8-3.9 g/cm3) and high thermo-gravimetric loss, It consists of manganese (δ-MnO2, manganite, cryptomelane/romanechite with minor pyrolusite) and iron (goethite/limonite and hematite) minerals with sub-ordinate kaolinite and quartz. It shows oolitic/pisolitic to globular morphology nucleating small detritus of quartz, pyrolusite/romanechite and hematite. The ore contains around 23% Mn and 28% Fe with around 7% of combined alumina and silica. Such Mn ore has not found any use because of its sub-grade nature and high iron content, and is hence considered as waste. The ore does not respond to any physical beneficiation techniques because of the combined state of the manganese and iron phases. Attempts have been made to recover manganese and iron value from such ore through smelting. A sample along with an appropriate charge mix when processed through a plasma reactor, produced high-manganese steel alloy having 25% Mn within a very short time (<10 min). Minor Mn content from the slag was recovered through acid leaching. The aim of this study has been to recover a value-added product from the waste.

  14. Improving the Thermochemical Energy Storage Performance of the Mn2 O3 /Mn3 O4 Redox Couple by the Incorporation of Iron.

    PubMed

    Carrillo, Alfonso J; Serrano, David P; Pizarro, Patricia; Coronado, Juan M

    2015-06-08

    Redox cycles of manganese oxides (Mn2 O3 /Mn3 O4 ) are a promising alternative for thermochemical heat storage systems coupled to concentrated solar power plants as manganese oxides are abundant and inexpensive materials. Although their cyclability for such a purpose has been proved, sintering processes, related to the high-temperature conditions at which charge-discharge cycles are performed, generally cause a cycle-to-cycle decrease in the oxidation rate of Mn3 O4 . To guarantee proper operation, both reactions should present stable reaction rates. In this study, it has been demonstrated that the incorporation of Fe, which is also an abundant material, into the manganese oxides improves the redox performance of this system by increasing the heat storage density, narrowing the redox thermal hysteresis, and, above all, stabilizing and enhancing the oxidation rate over long-term operation, which counteracts the negative effects caused by sintering, although its presence is not avoided.

  15. A carbon-free lithium-ion solid dispersion redox couple with low viscosity for redox flow batteries

    NASA Astrophysics Data System (ADS)

    Qi, Zhaoxiang; Koenig, Gary M.

    2016-08-01

    A new type of non-aqueous redox couple without carbon additives for flow batteries is proposed and the target anolyte chemistry is demonstrated. The so-called "Solid Dispersion Redox Couple" incorporates solid electroactive materials dispersed in organic lithium-ion battery electrolyte as its flowing suspension. In this work, a unique and systematic characterization approach has been used to study the flow battery redox couple in half cell demonstrations relative to a lithium electrode. An electrolyte laden with Li4Ti5O12 (LTO) has been characterized in multiple specially designed lithium half cell configurations. The flow battery redox couple described in this report has relatively low viscosity, especially in comparison to other flow batteries with solid active materials. The lack of carbon additive allows characterization of the electrochemical properties of the electroactive material in flow without the complication of conductive additives and unambiguous observation of the electrorheological coupling in these dispersed particle systems.

  16. Redox control of teratogenesis.

    PubMed

    Hansen, Jason M; Harris, Craig

    2013-01-01

    A number of human teratogens elicit their deleterious effects through mechanisms involving the generation of reactive oxygen species (ROS) and oxidative stress. However, classic definitions of oxidative stress do not fully coincide with basic fundamental principles of teratology. Newer definitions of oxidative stress focus on the targeted redox modification of cysteine/thiol functional groups found in the regulatory domains of critical signaling pathway proteins, suggesting that the targeted disruption of signaling through specific redox couples may account for the specificity of teratogen-induced malformations which previously could not be rationalized. Here, we review examples of teratogens that induce ROS and oxidative injury, describe oxidative stress-related teratogenic mechanisms, and provide rationale for developmental periods of sensitivity and species susceptibility. Understanding how chemicals disrupt redox status, induce oxidative stress leading to dysmorphogenesis becomes important to identify potential teratogens and develop therapeutic interventions for attenuation of harmful chemical effects in utero following exposure.

  17. Manganese olivine I: Electrical conductivity

    NASA Astrophysics Data System (ADS)

    Bai, Quan; Wang, Z.-C.; Kohlstedt, D. L.

    1995-12-01

    To investigate the point defect chemistry and the kinetic properties of manganese olivine Mn2SiO4, electrical conductivity ( ’) of single crystals was measured along either the [100] or the [010] direction. The experiments were carried out at temperatures T=850 1200 °C and oxygen fugacities f_{{text{O}}_{text{2}} } = 10^{ - 11} - 10^2 atm under both Mn oxide ( MO) buffered and MnSiO3 ( MS) buffered conditions. Under the same thermodynamic conditions, charge transport along [100] is 2.5 3.0 times faster than along [010]. At high oxygen fugacities, the electrical conductivity of samples buffered against MS is ˜1.6 times larger than that of samples buffered against MO; while at low oxygen fugacities, the electrical conductivity is nearly identical for the two buffer cases. The dependencies of electrical conductivity on oxygen fugacity and temperature are essentially the same for conduction along the [100] and [010] directions, as well as for samples coexisting with a solid-state buffer of either MO or MS. Hence, it is proposed that the same conduction mechanisms operate for samples of either orientation in contact with either solid-state buffer. The electrical conductivity data lie on concave upward curves on a log-log plot of σ vs f_{{text{O}}_{text{2}} } , giving rise to two f_{{text{O}}_{text{2}} } = 10^{ - 11} - 10^2 regimes with different oxygen fugacity exponents. In the low-f_{{text{O}}_{text{2}} } = 10^{ - 11} - 10^2 regime left( {f_{{text{O}}_{text{2}} } < 10^{ - 7} {text{atm}}} right), the f_{{text{O}}_{text{2}} } = 10^{ - 11} - 10^2 exponent, m, is 0, the MnSiO3-activity exponent, q, is ˜0, and the activation energy, Q, is 45 kJ/mol. In the high f_{{text{O}}_{text{2}} } = 10^{ - 11} - 10^2 regime left( {f_{{text{O}}_{text{2}} } > 10^{ - 7} {text{atm}}} right), m=1/6, q=1/4 1/3, and Q=45 and 200 kJ/mol for T<1100 °C and T>1100 °C, respectively. Based on a comparison of experimental data with results from point defect chemistry calculations, it is

  18. Follow-up study on the effects on well chemistry from biological and chemical remediation of chlorinated solvents.

    PubMed

    Scott, Dane; Apblett, Allen; Materer, Nicholas F

    2011-09-01

    The enduring effects of injected materials used for the remediation of chlorinated solvents were examined. Approximately two years previous to this study, four different remediation methods were tested in an area located southeast of Oklahoma City, OK. These methods included bioremediation under both anaerobic and aerobic conditions and chemical remediation using Fenton's reagent or KMnO(4). A series of water quality tests performed in this investigation revealed that the bioremediation processes did not introduce any unexpected chemistry. However, the wells that were treated anaerobically still had water with a negative oxidation-reduction potential and had no recontamination with migrating trichloroethylene as opposed to the aerobic wells that had both positive redox potentials and trichloroethylene present. Also, chemical treatment using Fenton's reagent did not result in any long-term changes in the well chemistry, with the exception of inducing a slight acidity. This is due to the facts that addition of iron into the aquifer that is already in contact with iron-rich clay soil had little long-term effects and the radical chemistry with hydrogen peroxide is short-lived due to its reactivity. KMnO(4)-based remediation results in deposition of new materials containing manganese in elevated oxidation states that may provide long-term protection against the build up of chlorinated organic compounds.

  19. Mechanisms of Hop Inhibition Include the Transmembrane Redox Reaction▿

    PubMed Central

    Behr, Jürgen; Vogel, Rudi F.

    2010-01-01

    In this work, a novel mechanistic model of hop inhibition beyond the proton ionophore action toward (beer spoiling) bacteria was developed. Investigations were performed with model systems using cyclic voltammetry for the determination of redox processes/conditions in connection with growth challenges with hop-sensitive and -resistant Lactobacillus brevis strains in the presence of oxidants. Cyclic voltammetry identified a transmembrane redox reaction of hop compounds at low pH (common in beer) and in the presence of manganese (present in millimolar levels in lactic acid bacteria). The antibacterial action of hop compounds could be extended from the described proton ionophore activity, lowering the intracellular pH, to pronounced redox reactivity, causing cellular oxidative damage. Accordingly, a correlation between the resistance of L. brevis strains to a sole oxidant to their resistance to hop could not be expected and was not detected. However, in connection with our recent study concerning hop ionophore properties and the resistance of hop-sensitive and -tolerant L. brevis strains toward proton ionophores (J. Behr and R. F. Vogel, J. Agric. Food Chem. 57:6074-6081, 2009), we suggest that both ionophore and oxidant resistance are required for survival under hop stress conditions and confirmed this correlation according to the novel mechanistic model. In consequence, the expression of several published hop resistance mechanisms involved in manganese binding/transport and intracellular redox balance, as well as that of proteins involved in oxidative stress under “highly reducing” conditions (cf. anaerobic cultivation and “antioxidative” hop compounds in the growth medium), is now comprehensible. Accordingly, hop resistance as a multifactorial dynamic property at least implies distinct resistance levels against two different mechanisms of hop inhibition, namely, proton ionophore-induced and oxidative stress-induced mechanisms. Beyond this specific model of

  20. Redox Regulation of Mitochondrial Function

    PubMed Central

    Handy, Diane E.

    2012-01-01

    Abstract Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function. Antioxid. Redox Signal. 16, 1323–1367. PMID:22146081

  1. Bacteriology of Manganese Nodules

    PubMed Central

    Trimble, R. B.; Ehrlich, H. L.

    1968-01-01

    MnO2 reduction by aerobic growing cultures of Bacillus 29 and coccus 32, isolated from ferromanganese nodules, was assessed for 7 days. A 1-day lag was observed before the onset of MnO2 reduction by either culture. Addition of HgCl2 to a final concentration of about 10-3 M caused a rapid cessation of MnO2 reduction by the growing cultures. Neither culture reduced MnO2 when grown under continued anaerobiosis from the start of an experiment. However, if conditions were made anaerobic after MnO2 reduction was initiated, reduction continued at a rate only slightly lower than that under aerobic conditions. Resting-cell cultures reduced MnO2 equally well aerobically and anaerobically, provided that ferricyanide was present to serve as electron carrier. These findings showed that oxygen is needed for culture adaptation to MnO2 reduction, and that oxygen does not interfere with microbial MnO2 reduction itself. Both cultures caused sharp drops in the pH of the medium during MnO2 reduction: with coccus 32, during the entire incubation time; with Bacillus 29, for the first 3 days. The Eh of the medium fluctuated with either culture and never fell below 469 mv with Bacillus 29 and below 394 mv with coccus 32. The rates of glucose consumption and Mn2+ release by Bacillus 29 and coccus 32 were fairly constant, but the rates of lactate and pyruvate production were not. Although acid production undoubtedly helped in the reduction of pyrolusite (MnO2) by the bacteria, it did not appear to be important in the reduction of manganese oxide in ferromanganese nodules, as shown by the results with a nodule enrichment. PMID:16349802

  2. Manganese uptake and streptococcal virulence.

    PubMed

    Eijkelkamp, Bart A; McDevitt, Christopher A; Kitten, Todd

    2015-06-01

    Streptococcal solute-binding proteins (SBPs) associated with ATP-binding cassette transporters gained widespread attention first as ostensible adhesins, next as virulence determinants, and finally as metal ion transporters. In this mini-review, we will examine our current understanding of the cellular roles of these proteins, their contribution to metal ion homeostasis, and their crucial involvement in mediating streptococcal virulence. There are now more than 35 studies that have collected structural, biochemical and/or physiological data on the functions of SBPs across a broad range of bacteria. This offers a wealth of data to clarify the formerly puzzling and contentious findings regarding the metal specificity amongst this group of essential bacterial transporters. In particular we will focus on recent findings related to biological roles for manganese in streptococci. These advances will inform efforts aimed at exploiting the importance of manganese and manganese acquisition for the design of new approaches to combat serious streptococcal diseases.

  3. Arsenic behavior in river sediments under redox gradient: a review.

    PubMed

    Gorny, Josselin; Billon, Gabriel; Lesven, Ludovic; Dumoulin, David; Madé, Benoît; Noiriel, Catherine

    2015-02-01

    The fate of arsenic - a redox sensitive metalloid - in surface sediments is closely linked to early diagenetic processes. The review presents the main redox mechanisms and final products of As that have been evidenced over the last years. Oxidation of organic matter and concomitant reduction of oxidants by bacterial activity result in redox transformations of As species. The evolution of the sediment reactivity will also induce secondary abiotic reactions like complexation/de-complexation, sorption, precipitation/dissolution and biotic reactions that could, for instance, lead to the detoxification of some As species. Overall, abiotic redox reactions that govern the speciation of As mostly involve manganese (hydr)-oxides and reduced sulfur species produced by the sulfate-reducing bacteria. Bacterial activity is also responsible for the inter-conversion between As(V) and As(III), as well as for the production of methylated arsenic species. In surficial sediments, sorption processes also control the fate of inorganic As(V), through the formation of inner sphere complexes with iron (hydr)-oxides, that are biologically reduced in buried sediment. Arsenic species can also be bound to organic matter, either directly to functional groups or indirectly through metal complexes. Finally, even if the role of reduced sulfur species in the cycling of arsenic in sediments has been evidenced, some of the transformations remain hypothetical and deserve further investigation.

  4. Redox Flow Batteries, a Review

    SciTech Connect

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  5. SEPARATING PROTOACTINIUM WITH MANGANESE DIOXIDE

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-04-22

    The preparation of U/sup 235/ and an improved method for isolating Pa/ sup 233/ from foreign products present in neutronirradiated thorium is described. The method comprises forming a solution of neutron-irradiated thorium together with a manganous salt, then adding potassium permanganate to precipitate the manganese as manganese dioxide whereby protoactinium is carried down with the nnanganese dioxide dissolving the precipitate, adding a soluble zirconium salt, and adding phosphate ion to precipitate zirconium phosphate whereby protoactinium is then carried down with the zirconium phosphate to effect a further concentration.

  6. Hydrogen peroxide and central redox theory for aerobic life A tribute to Helmut Sies: Scout, trailblazer and Redox Pioneer

    PubMed Central

    Jones, Dean P.

    2015-01-01

    When Rafael Radi and I wrote about Helmut Sies for the Redox Pioneer series, I was disappointed that the Editor restricted us to the use of “Pioneer” in the title. My view is that Helmut was always ahead of the pioneers: He was a scout discovering paths for exploration and a trailblazer developing strategies and methods for discovery. I have known him for nearly 40 years and greatly enjoyed his collegiality as well as brilliance in scientific scholarship. He made monumental contributions to 20th century physiological chemistry beginning with his first measurement of H2O2 in rat liver. While continuous H2O2 production is dogma today, the concept of H2O2 production in mammalian tissues was largely buried for half a century. He continued this leadership in research on oxidative stress, GSH, selenium, and singlet oxygen, during the timeframe when physiological chemistry and biochemistry transitioned to contemporary 21st century systems biology. His impact has been extensive in medical and health sciences, especially in nutrition, aging, toxicology and cancer. I briefly summarize my interactions with Helmut, stressing our work together on the redox code, a set of principles to link mitochondrial respiration, bioenergetics, H2O2 metabolism, redox signaling and redox proteomics into central redox theory. PMID:27095208

  7. Redox regulation of cardiac hypertrophy.

    PubMed

    Sag, Can M; Santos, Celio X C; Shah, Ajay M

    2014-08-01

    It is increasingly evident that redox-dependent modifications in cellular proteins and signaling pathways (or redox signaling) play important roles in many aspects of cardiac hypertrophy. Indeed, these redox modifications may be intricately linked with the process of hypertrophy wherein there is not only a significant increase in myocardial O2 consumption but also important alterations in metabolic processes and in the local generation of O2-derived reactive species (ROS) that modulate and/or amplify cell signaling pathways. This article reviews our current knowledge of redox signaling pathways and their roles in cardiac hypertrophy. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".

  8. Sedimentary cobalt concentrations track marine redox evolution

    NASA Astrophysics Data System (ADS)

    Swanner, Elizabeth; Planavsky, Noah; Lalonde, Stefan; Robbins, Jamie; Bekker, Andrey; Rouxel, Olivier; Konhauser, Kurt O.; Mojzsis, Stephen J.

    2013-04-01

    Oxygen production by photosynthesis drove the redox evolution of the atmosphere and ocean. Primary productivity by oxygenic photosynthesizers in the modern surface ocean is limited by trace nutrients such as iron, but previous studies have also observed high Co uptake associated with natural cyanobacterial populations. Constraining the size and variation of the oceanic reservoir of Co through time will help to understand the regulation of primary productivity and hence oxygenation through time. In this study, Co concentrations from iron formations (IF), shales and marine pyrites deposited over nearly 4 billion years of Earth's history are utilized to reconstruct secular changes in the mechanisms of Co removal from the oceanic reservoir. The Co reservoir prior to ~2 Ga was dominated by hydrothermal inputs and Fe(III)oxyhydroxides were likely involved in the removal of Co from the water column. Fe(II) oxidation in the water column resulted in the deposition of IF in the Archean and Paleoproterozoic, and the Co inventory of IF records a large oceanic reservoir of Co during this time. Lower Co concentrations in sediments during the Middle Proterozoic signify a decrease in the oceanic reservoir due to the expansion euxinic environments, corresponding to the results of previous studies. A transition to an oxidized deep ocean in the Phanerozoic is evidenced by correlation between Co and manganese (Mn) concentrations in hydrothermal and exhalative deposits, and in marine pyrites. This relationship between Co and Mn, signifying deposition of Co in association with Mn(IV)oxides, does not occur in the Precambrian. Mn(II) oxidation occurs at higher redox potentials than that required for Fe(II) oxidation, and the extent of Mn redox cycling prior to full ventilation of the oceans at the end of the Neoproterozoic was likely limited to spatially restricted oxic surface waters. In this regard, Co is another valuable redox proxy for tracking the growth and decline in oxygenated

  9. Recent Progress in Redox Flow Battery Research and Development

    SciTech Connect

    Wang, Wei; Luo, Qingtao; Li, Bin; Wei, Xiaoliang; Li, Liyu; Yang, Zhenguo

    2013-02-20

    With the increase need to seamlessly integrate the renewable energy with the current grid which itself is evolving into a more intelligent, efficient, and capable electrical power system, it is envisioned that the energy storage system will play a more prominent role in bridging the gap between the current technology and a clean sustainable future in grid reliability and utilization. Redox flow battery technology is leading the way in this perspective in providing a well balanced approach for current challenges. Recent progress in the research and development of redox flow battery technology is reviewed here with a focus on new chemistries and systems.

  10. A dual electrochrome of poly-(3,4-ethylenedioxythiophene) doped by N,N'-bis(3-sulfonatopropyl)-4-4'-bipyridinium--redox chemistry and electrochromism in flexible devices.

    PubMed

    Bhandari, Shweta; Deepa, Melepurath; Pahal, Suman; Joshi, Amish G; Srivastava, Avanish Kumar; Kant, Rama

    2010-01-01

    An electrochromic zwitterionic viologen, N,N'-bis(3-sulfonatopropyl)-4-4'-bipyridinium, has been used for the first time for doping poly (3,4-ethylenedioxythiopene) (PEDOT) films during electropolymerization. Slow and fast diffusional rates for the monomer at deposition potentials of +1.2 and +1.8 V, respectively yielded the viologen-doped PEDOT films with granular morphology and with dendrite-like shapes. The dual electrochrome formed at +1.8 V, showed enhanced coloration efficiency, larger electrochemical charge storage capacity, and superior redox activity in comparison to its analogue grown at +1.2 V, thus demonstrating the role of dendritic shapes in amplifying electrochromism. Flexible electrochromic devices fabricated with the viologen-doped PEDOT film grown at +1.8 V and Prussian blue with an ionic liquid-based gel electrolyte film showed reversible coloration between pale and dark purple with maximum coloration efficiency of 187 cm2C(-1) at lambda=693 nm. The diffusional impedance parameters and switching kinetics of the device showed the suitability of this dual electrochrome formed as a single layer for practical electrochromic cells.

  11. Mechanistic and energetic aspects of the thermal and photochemical redox chemistry of the octanuclear cubane complexes, Fe(III)(8)(mu(4)-O(4))(mu-pyrazolate)(12)X(4) (X = Cl or Br).

    PubMed

    Ferraudi, Guillermo; Piñero, Dalice; Chakraborty, Indranil; Raptis, Raphael G; Lappin, A Graham; Berlin, Nicholas

    2010-05-13

    The mechanisms of the thermal and photochemical redox reactions of clusters [Fe(III)(8)(mu(4)-O(4))(mu-Pz)(12)X(4)] (Pz = pyrazolate anion, X = Cl or Br) were investigated in this work. Reactions of the complexes with e(-)(sol), C(*)H(2)OH, and several powerful reducing transition metal complexes were investigated using the pulse radiolysis technique. Reaction rates of the outer-sphere electron transfer reactions with transition metal complexes had to be rationalized by invoking the formation of a [Fe(III)(7)Fe(II) '(mu(4)-O(4))(mu-Pz)(12)X(4)](-) intermediate or excited state. A transient species observed in the reaction of the e(-)(sol) with the cubanes can be either an excited state or a reaction intermediate mediating the formation of the stable product, [Fe(III)(7)Fe(II)(mu(4)-O(4))(mu-Pz)(12)X(4)](-). Photoredox reactions, characteristic of the ligand X(-) to Fe(III) charge transfer excited sates, were observed in the 350 nm steady state and 351 nm laser flash irradiations of the cubanes. Quantum yields are limited by the rapid recombination of the photofragments. The charge transfer spectroscopy of the products was rationalized on the basis of parameters derived from the thermal electron transfer reactions.

  12. X-ray Absorption Near Edge Structure Spectroscopy to Resolve the in Vivo Chemistry of the Redox-Active Indazolium trans-[Tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019)

    PubMed Central

    2013-01-01

    Indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (1, KP1019) and its analogue sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (2, KP1339) are promising redox-active anticancer drug candidates that were investigated with X-ray absorption near edge structure spectroscopy. The analysis was based on the concept of the coordination charge and ruthenium model compounds representing possible coordinations and oxidation states in vivo. 1 was investigated in citrate saline buffer (pH 3.5) and in carbonate buffer (pH 7.4) at 37 °C for different time intervals. Interaction studies on 1 with glutathione in saline buffer and apo-transferrin in carbonate buffer were undertaken, and the coordination of 1 and 2 in tumor tissues was studied too. The most likely coordinations and oxidation states of the compound under the above mentioned conditions were assigned. Microprobe X-ray fluorescence of tumor thin sections showed the strong penetration of ruthenium into the tumor tissue, with the highest concentrations near blood vessels and in the edge regions of the tissue samples. PMID:23282017

  13. X-ray absorption near edge structure spectroscopy to resolve the in vivo chemistry of the redox-active indazolium trans-[Tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019).

    PubMed

    Hummer, Alfred A; Heffeter, Petra; Berger, Walter; Filipits, Martin; Batchelor, David; Büchel, Gabriel E; Jakupec, Michael A; Keppler, Bernhard K; Rompel, Annette

    2013-02-14

    Indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (1, KP1019) and its analogue sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (2, KP1339) are promising redox-active anticancer drug candidates that were investigated with X-ray absorption near edge structure spectroscopy. The analysis was based on the concept of the coordination charge and ruthenium model compounds representing possible coordinations and oxidation states in vivo. 1 was investigated in citrate saline buffer (pH 3.5) and in carbonate buffer (pH 7.4) at 37 °C for different time intervals. Interaction studies on 1 with glutathione in saline buffer and apo-transferrin in carbonate buffer were undertaken, and the coordination of 1 and 2 in tumor tissues was studied too. The most likely coordinations and oxidation states of the compound under the above mentioned conditions were assigned. Microprobe X-ray fluorescence of tumor thin sections showed the strong penetration of ruthenium into the tumor tissue, with the highest concentrations near blood vessels and in the edge regions of the tissue samples.

  14. Redox-capacitor to connect electrochemistry to redox-biology.

    PubMed

    Kim, Eunkyoung; Leverage, W Taylor; Liu, Yi; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-01-07

    It is well-established that redox-reactions are integral to biology for energy harvesting (oxidative phosphorylation), immune defense (oxidative burst) and drug metabolism (phase I reactions), yet there is emerging evidence that redox may play broader roles in biology (e.g., redox signaling). A critical challenge is the need for tools that can probe biologically-relevant redox interactions simply, rapidly and without the need for a comprehensive suite of analytical methods. We propose that electrochemistry may provide such a tool. In this tutorial review, we describe recent studies with a redox-capacitor film that can serve as a bio-electrode interface that can accept, store and donate electrons from mediators commonly used in electrochemistry and also in biology. Specifically, we (i) describe the fabrication of this redox-capacitor from catechols and the polysaccharide chitosan, (ii) discuss the mechanistic basis for electron exchange, (iii) illustrate the properties of this redox-capacitor and its capabilities for promoting redox-communication between biology and electrodes, and (iv) suggest the potential for enlisting signal processing strategies to "extract" redox information. We believe these initial studies indicate broad possibilities for enlisting electrochemistry and signal processing to acquire "systems level" redox information from biology.

  15. Microfluidic redox battery.

    PubMed

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-07

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  16. Redox theory of aging

    PubMed Central

    Jones, Dean P.

    2015-01-01

    Metazoan genomes encode exposure memory systems to enhance survival and reproductive potential by providing mechanisms for an individual to adjust during lifespan to environmental resources and challenges. These systems are inherently redox networks, arising during evolution of complex systems with O2 as a major determinant of bioenergetics, metabolic and structural organization, defense, and reproduction. The network structure decreases flexibility from conception onward due to differentiation and cumulative responses to environment (exposome). The redox theory of aging is that aging is a decline in plasticity of genome–exposome interaction that occurs as a consequence of execution of differentiation and exposure memory systems. This includes compromised mitochondrial and bioenergetic flexibility, impaired food utilization and metabolic homeostasis, decreased barrier and defense capabilities and loss of reproductive fidelity and fecundity. This theory accounts for hallmarks of aging, including failure to maintain oxidative or xenobiotic defenses, mitochondrial integrity, proteostasis, barrier structures, DNA repair, telomeres, immune function, metabolic regulation and regenerative capacity. PMID:25863726

  17. Iron and manganese oxide mineralization in the Pacific

    USGS Publications Warehouse

    Hein, J.R.; Koschinsky, A.; Halbach, P.; Manheim, F. T.; Bau, M.; Kang, J.-K.; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. Iron and manganese deposits occur in five forms: nodules, crusts, cements, mounds and sediment-hosted stratabound layers. Seafloor oxides show a wide range of compositions from nearly pure iron to nearly pure manganese end members. Fe/Mn ratios vary from about 24 000 (up to 58% elemental Fe) for hydrothermal seamount ironstones to about 0.001 (up to 52% Mn) for hydrothermal stratabound manganese oxides from active volcanic arcs. Hydrogenetic Fe-Mn crusts that occur on most seamounts in the ocean basins have a mean Fe/Mn ratio of 0.7 for open-ocean seamount crusts and 1.2 for continental margin seamount crusts. Fe-Mn nodules of potential economic interest from the Clarion-Clipperton Zone have a mean Fe/Mn ratio of 0.3, whereas the mean ratio for nodules from elsewhere in the Pacific is about 0.7. Crusts are enriched in Co, Ni and Pt and nodules in Cu and Ni, and both have significant concentrations of Pb, Zn, Ba, Mo, V and other elements. In contrast, hydrothermal deposits commonly contain only minor trace metal contents, although there are many exceptions, for example, with Ni contents up to 0.66%, Cr to 1.2%, and Zn to 1.4%. Chondrite-normalized REE patterns generally show a positive Ce anomaly and abundant ??REEs for hydrogenetic and mixed hydrogenetic-diagenetic deposits, whereas the Ce anomaly is negative for hydrothermal deposits and ??REE contents are low. However, the Ce anomaly in crusts may vary from strongly positive in East Pacific crusts to slightly negative in West Pacific crusts, which may reflect

  18. Ediacaran Redox Fluctuations

    NASA Astrophysics Data System (ADS)

    Sahoo, S. K.; Jiang, G.; Planavsky, N. J.; Kendall, B.; Owens, J. D.; Anbar, A. D.; Lyons, T. W.

    2013-12-01

    Evidence for pervasive oxic conditions, and likely even deep ocean oxygenation has been documented at three intervals in the lower (ca. 632 Ma), middle (ca. 580 Ma) and upper (ca. 551 Ma) Ediacaran. The Doushantuo Formation in South China hosts large enrichments of redox-sensitive trace element (e.g., molybdenum, vanadium and uranium) in anoxic shales, which are indicative of a globally oxic ocean-atmosphere system. However, ocean redox conditions between these periods continue to be a topic of debate and remain elusive. We have found evidence for widespread anoxic conditions through much of the Ediacaran in the deep-water Wuhe section in South China. During most of the Ediacaran-early Cambrian in basinal sections is characterized by Fe speciation data and pyrite morphologies that indicate deposition under euxinic conditions with near-crustal enrichments of redox-sensitive element and positive pyrite-sulfur isotope values, which suggest low levels of marine sulfate and widespread euxinia. Our work reinforces an emerging view that the early Earth, including the Ediacaran, underwent numerous rises and falls in surface oxidation state, rather than a unidirectional rise as originally imagined. The Ediacaran ocean thus experienced repetitive expansion and contraction of marine chalcophilic trace-metal levels that may have had fundamental impact on the slow evolution of early animals and ecosystems. Further, this framework forces us to re-examine the relationship between Neoproterozoic oxygenation and metazoan diversification. Varying redox conditions through the Cryogenian and Ediacaran may help explain molecular clock and biomarker evidence for an early appearance and initial diversification of metazoans but with a delay in the appearance of most major metazoan crown groups until close to Ediacaran-Cambrian boundary.

  19. Water exchange in manganese-based water-oxidizing catalysts in photosynthetic systems: from the water-oxidizing complex in photosystem II to nano-sized manganese oxides.

    PubMed

    Najafpour, Mohammad Mahdi; Isaloo, Mohsen Abbasi; Eaton-Rye, Julian J; Tomo, Tatsuya; Nishihara, Hiroshi; Satoh, Kimiyuki; Carpentier, Robert; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2014-09-01

    The water-oxidizing complex (WOC), also known as the oxygen-evolving complex (OEC), of photosystem II in oxygenic photosynthetic organisms efficiently catalyzes water oxidation. It is, therefore, responsible for the presence of oxygen in the Earth's atmosphere. The WOC is a manganese-calcium (Mn₄CaO₅(H₂O)₄) cluster housed in a protein complex. In this review, we focus on water exchange chemistry of metal hydrates and discuss the mechanisms and factors affecting this chemical process. Further, water exchange rates for both the biological cofactor and synthetic manganese water splitting are discussed. The importance of fully unveiling the water exchange mechanism to understand the chemistry of water oxidation is also emphasized here. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.

  20. Synthesis, characterization, optical and sensing property of manganese oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Manigandan, R.; Suresh, R.; Giribabu, K.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.

    2014-01-01

    Manganese oxide nanoparticles were prepared by thermal decomposition of manganese oxalate. Manganese oxalate was synthesized by reacting 1:1 mole ratio of manganese acetate and ammonium oxalate along with sodium dodecyl sulfate (SDS). The structural characterization of manganese oxalate and manganese oxide nanoparticles was analyzed by XRD. The XRD spectrum confirms the crystal structure of the manganese oxide and manganese oxalate. In addition, the average grain size, lattice parameter values were also calculated using XRD spectrum. Moreover, the diffraction peaks were broadened due to the smaller size of the particle. The band gap of manganese oxide was calculated from optical absorption, which was carried out by DRS UV-Visible spectroscopy. The morphology of manganese oxide nanoparticles was analyzed by SEM images. The FT-IR analysis confirms the formation of the manganese oxide from manganese oxalate nanoparticles. The electrochemical sensing behavior of manganese oxide nanoparticles were investigated using hydrogen peroxide by cyclic voltammetry.

  1. Synthesis, characterization, optical and sensing property of manganese oxide nanoparticles

    SciTech Connect

    Manigandan, R.; Suresh, R.; Giribabu, K.; Narayanan, V.; Vijayalakshmi, L.; Stephen, A.

    2014-01-28

    Manganese oxide nanoparticles were prepared by thermal decomposition of manganese oxalate. Manganese oxalate was synthesized by reacting 1:1 mole ratio of manganese acetate and ammonium oxalate along with sodium dodecyl sulfate (SDS). The structural characterization of manganese oxalate and manganese oxide nanoparticles was analyzed by XRD. The XRD spectrum confirms the crystal structure of the manganese oxide and manganese oxalate. In addition, the average grain size, lattice parameter values were also calculated using XRD spectrum. Moreover, the diffraction peaks were broadened due to the smaller size of the particle. The band gap of manganese oxide was calculated from optical absorption, which was carried out by DRS UV-Visible spectroscopy. The morphology of manganese oxide nanoparticles was analyzed by SEM images. The FT-IR analysis confirms the formation of the manganese oxide from manganese oxalate nanoparticles. The electrochemical sensing behavior of manganese oxide nanoparticles were investigated using hydrogen peroxide by cyclic voltammetry.

  2. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of soil analysis on NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL will attempt to determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of the analytical procedure of NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL can determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Biological Superoxide In Manganese Oxide Formation

    NASA Astrophysics Data System (ADS)

    Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.

    2011-12-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.

  5. Fungal manganese oxidation in a reduced soil.

    PubMed

    Thompson, Ian A; Huber, Don M; Guest, Chris A; Schulze, Darrell G

    2005-09-01

    Manganese chemistry in soils is a function of complex, competing biotic and abiotic reactions. The role of soil-borne fungi in mediating these reactions is poorly understood. The objective of this article is to document direct observation of fungal Mn oxidation in soil under near in situ conditions, and to isolate, describe and confirm the role of fungi in the observed Mn oxidation, and present a model to explain our observations. We incubated soil under different moisture contents in sample cells designed to allow us to use synchrotron microspectroscopic techniques to analyse areas as small as 38x40 microm2. Mn was redistributed and accumulated in distinct small circular shapes or in dendritic patterns near the air-soil interface when water-saturated soil was incubated for >or=7 days. Mn oxidation did not occur at 3 or 52 degrees C indicating that oxidation was caused by microbial activity. Mn-oxidizing fungi were isolated from the sample cells and cultured on agar. Reinoculation of sterile soil with the Mn-oxidizing isolates resulted in the formation of Mn oxides around fungal hyphae. A model to describe the distinct zonal distribution of Mn oxides in the sample cells is presented. We believe that our data are the first direct observation of Mn oxidation by soil-inhabiting fungi under in situ conditions. Mn-oxidizing fungi may play an underappreciated role in the cycling of Mn in soils.

  6. Spectroscopic characterization of manganese minerals.

    PubMed

    Lakshmi Reddy, S; Padma Suvarna, K; Udayabhaska Reddy, G; Endo, Tamio; Frost, R L

    2014-01-03

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals.

  7. Detailed Vertical and Lateral Delineation of Redox Zones in Contaminant Plumes Using Redox-Sensitive Tapes (RST)

    NASA Astrophysics Data System (ADS)

    Blum, P.; Oeste, F. D.; Melzer, R.; Martus, P.

    2006-12-01

    Innovative redox-sensitive tapes (RST) have been developed for a detailed vertical and lateral delineation of redox zones in contaminated aquifers. The RST have the potential to become an integral part of a data acquisition strategy for monitored natural attenuation (MNA). The tape material, consists of a 2 cm wide synthetic textile coated with reactive manganese dioxide minerals. The RST are submerged into existing monitoring wells for approximately one month. This time period is sufficient to allow for a reaction of the mineral coating with groundwater. The RST are aimed at investigating four different redox-zones in contaminated aquifers: Mn(II)-oxidizing, Mn(IV)-reducing, Fe(III)-reducing and sulfate-reducing. Two RST case studies are presented. The RST investigations on a coal tar contaminated site allowed for a precise lateral and vertical delineation of the contaminant plume using the existing monitoring well network. The RST investigations on a BTEX contaminated site yielded a good correlation of RST data with hydrochemical data at the wells sampled. In the majority of plume wells located 50 m downstream of the source area and beyond, Mn(IV)-reducing environment appeared to be prevailing. Comparing the RST data with hydrochemical data indicated evidence for the transport of transformation products with groundwater flow. The repeated application of the RST facilitated an assessment of the plume dynamics. No significant seasonal variation with respect to the redox zone distribution was observed within the contaminant plume. However, the assessment of the changes in redox conditions over a time period of 2.5 years showed that the iron-reducing zone is shrinking and the sulfate-reducing zone disappeared completely indicating that the contaminant plume might decrease in the near future. Thus, the application of the RST facilitated an assessment of the plume dynamics on a centimeter-scale without the necessity of pumping and treating contaminated groundwater.

  8. Aqueous chemistry of iodine

    SciTech Connect

    Toth, L.M.; Pannell, K.D.; Kirkland, O.L.

    1984-01-01

    The chemistry of iodine has been examined in aqueous solutions of pH 6 to 10 containing 2500 ppM boron as H/sub 3/BO/sub 3/ at temperatures up to 150/sup 0/C using absorption spectrophotometry to identify and monitor the iodine species present. Kinetic rate constants for the disproportionation of the HOI intermediate, 3HOI= IO/sub 3//sup -/ + 2I/sup -/ + 3H/sup +/, have been measured as a function of pH even though no direct spectral evidence for HOI itself has been observed. An HOI partition coefficient >10/sup 4/ has been estimated; results of ionic strength tests are consistent with HOI being present as an uncharged triatomic species in solution. Redox and radiation effects on the aqueous iodine chemistry have also been described. 11 refs., 2 figs., 3 tabs.

  9. Manganese Research Health Project (MHRP)

    DTIC Science & Technology

    2009-02-01

    of a GLP compliant micronucleus assay in mice according to the OECD Guideline for the Testing of Chemicals, OECD 474: Mammalian Erythrocyte... Micronucleus Test . Experimental Design The basic experimental design used at ILS and proposed for the definitive in vivo micronucleus assay in manganese...regimen, would be expected to produce lethality”. The limit dose for the in vivo micronucleus assay based on OECD 474 is 2000 mg/kg and testing in a

  10. Microbial Formation of Manganese Oxides

    PubMed Central

    Greene, Anthony C.; Madgwick, John C.

    1991-01-01

    Microbial manganese oxidation was demonstrated at high Mn2+ concentrations (5 g/liter) in bacterial cultures in the presence of a microalga. The structure of the oxide produced varied depending on the bacterial strain and mode of culture. A nonaxenic, acid-tolerant microalga, a Chlamydomonas sp., was found to mediate formation of manganite (γ-MnOOH). Bacteria isolated from associations with crude cultures of this alga grown in aerated bioreactors formed disordered γ-MnO2 from Mn2+ at concentrations of 5 g/liter over 1 month, yielding 3.3 g of a semipure oxide per liter. All algal-bacterial cultures removed Mn2+ from solution, but only those with the highest removal rates formed an insoluble oxide. While the alga was an essential component of the reaction, a Pseudomonas sp. was found to be primarily responsible for the formation of a manganese precipitate. Medium components—algal biomass and urea—showed optima at 5.7 and 10 g/liters, respectively. The scaled-up culture (50 times) gave a yield of 22.3 g (53 mg/liter/day from a 15-liter culture) of semipure disordered γ-MnO2, identified by X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy, and had a manganese oxide O/Mn ratio of 1.92. The Mn(IV) content in the oxide was low (30.5%) compared with that of mined or chemically formed γ-MnO2 (ca. 50%). The shortfall in the bacterial oxide manganese content was due to biological and inorganic contaminants. FTIR spectroscopy, transmission electron microscopy, and electron diffraction studies have identified manganite as a likely intermediate product in the formation of disordered γ-MnO2. PMID:16348459

  11. Mineral resource of the month: manganese

    USGS Publications Warehouse

    Corathers, Lisa A.

    2012-01-01

    Manganese is a silver-colored metal resembling iron and often found in conjunction with iron. The earliest-known human use of manganese compounds was in the Stone Age, when early humans used manganese dioxide as pigments in cave paintings. In ancient Rome and Egypt, people started using it to color or remove the color from glass - a practice that continued to modern times. Today, manganese is predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production. Steel and cast iron together provide the largest market for manganese (historically 85 to 90 percent), but it is also alloyed with nonferrous metals such as aluminum and copper. Its importance to steel cannot be overstated, as almost all types of steel contain manganese and could not exist without it.

  12. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dioxide in sulfuric acid, and the roasting of pyrolusite (MnO2) ore with solid ferrous sulfate and coal... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O,...

  13. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dioxide in sulfuric acid, and the roasting of pyrolusite (MnO2) ore with solid ferrous sulfate and coal... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O,...

  14. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dioxide in sulfuric acid, and the roasting of pyrolusite (MnO2) ore with solid ferrous sulfate and coal... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O,...

  15. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... dioxide in sulfuric acid, and the roasting of pyrolusite (MnO2) ore with solid ferrous sulfate and coal... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O,...

  16. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant.

    PubMed

    Rhoads, Allison; Beyenal, Haluk; Lewandowski, Zbigniew

    2005-06-15

    We have operated a microbial fuel cell in which glucose was oxidized by Klebsiella pneumoniae in the anodic compartment, and biomineralized manganese oxides, deposited by Leptothrix discophora, were electrochemically reduced in the cathodic compartment. In the anodic compartment, to facilitate the electron transfer from glucose to the graphite electrode, we added a redox mediator, 2-hydroxy-1,4-naphthoquinone. We did not add any redox mediator to the cathodic compartment because the biomineralized manganese oxides were deposited on the surface of a graphite electrode and were reduced directly by electrons from the electrode. We have demonstrated that biomineralized manganese oxides are superiorto oxygen when used as cathodic reactants in microbial fuel cells. The current density delivered by using biomineralized manganese oxides as the cathodic reactant was almost 2 orders of magnitude higher than that delivered using oxygen. Several fuel cells were operated for 500 h, reaching anodic potentials of -441.5 +/- 31 mVscE and cathodic potentials of +384.5 +/- 64 mVscE. When the electrodes were connected by a 50 Ohms resistor, the fuel cell delivered the peak power density of 126.7 +/- 31.5 mW/m2.

  17. Molten fluoride fuel salt chemistry

    SciTech Connect

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Fission product behavior is described along with processing experience. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior, processing and recycle of the fuel components is a necessary factor if future systems are to be established.

  18. Phase equilibria in subseafloor hydrothermal systems: A review of the role of redox, temperature, pH and dissolved Cl on the chemistry of hot spring fluids at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Seyfried, W. E., Jr.; Ding, Kang

    Time series measurements of the chemistry of hot spring fluids at mid-ocean ridges (MOR) have revealed steady state concentrations of dissolved species that indicate solubility control by mineral phases in subseafloor reaction zones [Campbell et al., 1988a; Bowers et al., 1988; Butterfield et al. 1994]. That MOR hot spring fluids have relatively low measured pH values (3.1 to 3.9), and are variably depleted in Mg and SO4, while enriched in Ca, K, and Si [Von Damm, 1990] relative to seawater, is entirely consistent with heterogeneous equilibria involving feldspar, chlorite, epidote ± quartz and NaCl fluids at temperatures in the vicinity of 375-400°C [Seyfried et al., 1991]. The high concentrations of so-called "soluble" elements, such as Li, Rb, Cs, and B [Von Damm et al., 1985; Spivack and Edmond, 1987], however, require an abundance of fresh rock (basalt/diabase) relative to the mass of seawater (i.e., low fluid/rock ratio). That these elements also fall to reveal significant compositional changes in fluids from specific hot springs sampled several times over a six year period [Campbell et al., 1985a; Butterfield et al. 1994; Butterfield and Massoth 1994] indicates a non-static and expanding reaction zone caused by penetration of seawater into previously unaltered portions of a solidified magma chamber. Although most vent fluids reveal short term stability [Campbell et al. 1988a; Butterfield and Massoth 1994], this is not always the case, as evidenced by the temporal evolution of the composition of vent fluids at the North Cleft segment of the Juan de Fuca Ridge [Butterfield et al. 1991; Butterfield and Massoth, 1994], and at 9-10degN EPR [Von Damm et al. 1991].

  19. Negative impact of manganese on honeybee foraging

    PubMed Central

    Søvik, Eirik; Perry, Clint J.; LaMora, Angie; Barron, Andrew B.; Ben-Shahar, Yehuda

    2015-01-01

    Anthropogenic accumulation of metals such as manganese is a well-established health risk factor for vertebrates. By contrast, the long-term impact of these contaminants on invertebrates is mostly unknown. Here, we demonstrate that manganese ingestion alters brain biogenic amine levels in honeybees and fruit flies. Furthermore, we show that manganese exposure negatively affects foraging behaviour in the honeybee, an economically important pollinator. Our findings indicate that in addition to its direct impact on human health, the common industrial contaminant manganese might also have indirect environmental and economical impacts via the modulation of neuronal and behavioural functions in economically important insects. PMID:25808001

  20. High resolution redox potential measurements: techniques, interpretation and value

    NASA Astrophysics Data System (ADS)

    Vorenhout, Michel; van der Geest, Harm G.

    2013-04-01

    The ongoing improvement of techniques for the in situ measurement of redox potentials has led to a large number of studies on redox variability in various environments. These studies originate from a wide array of scientific disciplines, amongst which ecology (sediment biogeochemistry), environmental chemistry (degradation studies) and archaeology (in situ preservation). To gain insight in the potential applications, this paper presents three examples of studies in which a newly developed measurement technique was used in soils and where spatial and temporal variation plays an important role. The first one is a microcosm study on the effects of biota on the dynamics of redox conditions in the toplayer of aquatic sediments, showing that the presence of microbiota has a direct influence on biogeochemical parameters. The second is the study of the redox potential in the world heritage site of Bryggen (Bergen, NO) that is under threat of oxidation. The oxidation, caused by a lowered groundwater table, causes soil degradation and unstable conditions for the monumental buildings of the Medieval site. The third study shows variability in a sandy flood plain in Bangladesh, where redox processes dictate the environmental behaviour of Arsenic. This toxic metal is present in many wells used for drinking water, but shows very local variation in dissolution dynamics. In these three studies, continuous measurements of (changes in) redox conditions revealed a strong variability in these systems and consequences for the interpretation of single point measurements or low frequency sampling campaigns are discussed. In these and many other cases, the continuous measurement of the redox potential in soil media will aid in the understanding of the system under study.

  1. Low-temperature, manganese oxide-based, thermochemical water splitting cycle

    PubMed Central

    Xu, Bingjun; Bhawe, Yashodhan; Davis, Mark E.

    2012-01-01

    Thermochemical cycles that split water into stoichiometric amounts of hydrogen and oxygen below 1,000 °C, and do not involve toxic or corrosive intermediates, are highly desirable because they can convert heat into chemical energy in the form of hydrogen. We report a manganese-based thermochemical cycle with a highest operating temperature of 850 °C that is completely recyclable and does not involve toxic or corrosive components. The thermochemical cycle utilizes redox reactions of Mn(II)/Mn(III) oxides. The shuttling of Na+ into and out of the manganese oxides in the hydrogen and oxygen evolution steps, respectively, provides the key thermodynamic driving forces and allows for the cycle to be closed at temperatures below 1,000 °C. The production of hydrogen and oxygen is fully reproducible for at least five cycles. PMID:22647608

  2. Redox flow batteries: a review

    SciTech Connect

    Weber, Adam Z.; Mench, Matthew M; Meyers, Jeremy; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-01-01

    Redox flow batteries (RFBs) are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of RFBs with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  3. Manganese(III) binding to a pyoverdine siderophore produced by a manganese(II)-oxidizing bacterium

    NASA Astrophysics Data System (ADS)

    Parker, Dorothy L.; Sposito, Garrison; Tebo, Bradley M.

    2004-12-01

    The possible roles of siderophores (high affinity chelators of iron(III)) in the biogeochemistry of manganese remain unknown. Here we investigate the interaction of Mn(III) with a pyoverdine-type siderophore (PVD MnB1) produced by the model Mn(II)-oxidizing bacterium Pseudomonas putida strain MnB1. PVD MnB1 confirmed typical pyoverdine behavior with respect to: (a) its absorption spectrum at 350-600 nm, both in the absence and presence of Fe(III), (b) the quenching of its fluorescence by Fe(III), (c) the formation of a 1:1 complex with Fe(III), and (d) the thermodynamic stability constant of its Fe(III) complex. The Mn(III) complex of PVD MnB1 had a 1:1 Mn:pvd molar ratio, showed fluorescence quenching, and exhibited a light absorption spectrum (A max = 408-410 nm) different from that of either PVD MnB1-Fe(III) or uncomplexed PVD MnB1. Mn(III) competed strongly with Fe(III) for binding by PVD MnB1 in culture filtrates (pH 8, 4°C). Equilibration with citrate, a metal-binding ligand, did not detectably release Mn from its PVD MnB1 complex at a citrate/PVD MnB1 molar ratio of 830 (pH 8, 4°C), whereas pyrophosphate under the same conditions removed 55% of the Mn from its PVD MnB1 complex. Most of the PVD MnB1-complexed Mn was released by reaction with ascorbate, a reducing agent, or with EDTA, a ligand that is also oxidized by Mn(III). Data on the competition for binding to PVD MnB1 by Fe(III) vs. Mn(III) were used to determine a thermodynamic stability constant (nominally at 4°C) for the neutral species MnHPVD MnB1 (log K = 47.5 ± 0.5, infinite dilution reference state). This value was larger than that determined for FeHPVD MnB1 (log K = 44.6 ± 0.5). This result has important implications for the metabolism, solubility, speciation, and redox cycling of manganese, as well as for the biologic uptake of iron.

  4. Thermodynamics of Manganese Oxides at Bulk and Nanoscale: Phase Formation, Transformation, Oxidation-Reduction, and Hydration

    NASA Astrophysics Data System (ADS)

    Birkner, Nancy R.

    Natural manganese oxides are generally formed in surficial environments that are near ambient temperature and water-rich, and may be exposed to wet-dry cycles and a variety of adsorbate species that influence dramatically their level of hydration. Manganese oxide minerals are often poorly crystalline, nanophase, and hydrous. In the near-surface environment they are involved in processes that are important to life, such as water column oxygen cycling, biomineralization, and transport of minerals/nutrients through soils and water. These processes, often involving transformations among manganese oxide polymorphs, are governed by a complex interplay between thermodynamics and kinetics. Manganese oxides are also used in technology as catalysts, and for other applications. The major goal of this dissertation is to examine the energetics of bulk and nanophase manganese oxide phases as a function of particle size, composition, and surface hydration. Careful synthesis and characterization of manganese oxide phases with different surface areas provided samples for the study of enthalpies of formation by high temperature oxide melt solution calorimetry and of the energetics of water adsorption on their surfaces. These data provide a quantitative picture of phase stability and how it changes at the nanoscale. The surface energy of the hydrous surface of Mn3O4 is 0.96 +/- 0.08 J/m2, of Mn2O3 is 1.29 +/- 0.10 J/m2, and of MnO2 is 1.64 +/- 0.10 J/m2. The surface energy of the anhydrous surface of Mn3O4 is 1.62 +/- 0.08 J/m 2, of Mn2O3 is 1.77 +/- 0.10 J/m 2, and of MnO2 is 2.05 +/- 0.10 J/m2. Supporting preliminary findings (Navrotsky et al., 2010), the spinel phase (Mn3O4) has a lower surface energy (more stabilizing) than bixbyite, while the latter has a smaller surface energy than pyrolusite. These differences significantly change the positions in oxygen fugacity---temperature space of the redox couples Mn3O4-Mn2O 3 and Mn2O3-MnO2 favoring the lower surface enthalpy phase (the

  5. Regulation of cellular manganese and manganese transport rates in the unicellular alga Chlamydomonas

    SciTech Connect

    Sunda, W.G.; Huntsman, S.A.

    1985-01-01

    The cellular accumulation and uptake kinetics of manganese by Chlamydomonas sp. were studied in model chelate buffer systems. Cellular manganese concentrations and uptake rates were related to the computed free manganese ion concentration and were independent of the total or chelated manganese concentration. Cellular manganese was constant at about 1 mmol liter/sup -1/ of cellular volume at free manganese ion concentrations of 10/sup -7/ /sup 6/-10/sup -6/ /sup 3/ mol liter/sup -1/ and decreased below this range. Manganese uptake rates followed saturation kinetics and V/sub max/, but not K/sub s/, varied with the free manganese ion concentration in the growth medium. V/sub max/ appeared to be under negative feedback control and increased with decreasing manganese ion concentration. Variations of up to 30-fold in this parameter seemed to be instrumental in limiting the variation in cellular manganese to a sixfold range despite a 1000-fold variation in free manganese ion concentration in the growth medium.

  6. Cooperative redox activation for carbon dioxide conversion

    PubMed Central

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-01-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing ‘waste', produced through oxygen insertion into the Si–Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2. PMID:27981967

  7. Manganese nodules: thorium-230: protactinium-231 ratios.

    PubMed

    Sackett, W M

    1966-11-04

    The Th(230): Pa(231) activity ratio in 7 of 11 manganese nodules is less than 10.8, the theoretical production ratio of activities in the ocean. This finding indicates difierential accumulation of these nuclides in authigenic deposits of manganese-iron oxide.

  8. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive... less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good...

  9. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive... less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good...

  10. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive... less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good...

  11. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive... less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good...

  12. Reactivity of biogenic manganese oxide for metal sequestration and photochemistry: Computational solid state physics study

    SciTech Connect

    Kwon, K.D.; Sposito, G.

    2010-02-01

    Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

  13. Quercetin Improves Neurobehavioral Performance Through Restoration of Brain Antioxidant Status and Acetylcholinesterase Activity in Manganese-Treated Rats.

    PubMed

    Adedara, Isaac A; Ego, Valerie C; Subair, Temitayo I; Oyediran, Oluwasetemi; Farombi, Ebenezer O

    2017-04-01

    The present study investigated the neuroprotective mechanism of quercetin by assessing the biochemical and behavioral characteristics in rats sub-chronically treated with manganese alone at 15 mg/kg body weight or orally co-treated with quercetin at 10 and 20 mg/kg body weight for 45 consecutive days. Locomotor behavior was monitored using video-tracking software during a 10-min trial in a novel environment whereas the brain regions namely the hypothalamus, cerebrum and cerebellum of the rats were processed for biochemical analyses. Results indicated that co-treatment with quercetin significantly (p < 0.05) prevented manganese-induced locomotor and motor deficits specifically the decrease in total distance travelled, total body rotation, maximum speed, absolute turn angle as well as the increase in time of immobility and grooming. The improvement in the neurobehavioral performance of manganese-treated rats following quercetin co-treatment was confirmed by track and occupancy plot analyses. Moreover, quercetin assuaged manganese-induced decrease in antioxidant enzymes activities and the increase in acetylcholinesterase activity, hydrogen peroxide generation and lipid peroxidation levels in the hypothalamus, cerebrum and cerebellum of the rats. Taken together, quercetin mechanisms of ameliorating manganese-induced neurotoxicity is associated with restoration of acetylcholinesterase activity, augmentation of redox status and inhibition of lipid peroxidation in brain of rats.

  14. Prediction and visualization of redox conditions in the groundwater of Central Valley, California

    NASA Astrophysics Data System (ADS)

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.

    2017-03-01

    Regional-scale, three-dimensional continuous probability models, were constructed for aspects of redox conditions in the groundwater system of the Central Valley, California. These models yield grids depicting the probability that groundwater in a particular location will have dissolved oxygen (DO) concentrations less than selected threshold values representing anoxic groundwater conditions, or will have dissolved manganese (Mn) concentrations greater than selected threshold values representing secondary drinking water-quality contaminant levels (SMCL) and health-based screening levels (HBSL). The probability models were constrained by the alluvial boundary of the Central Valley to a depth of approximately 300 m. Probability distribution grids can be extracted from the 3-D models at any desired depth, and are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions. Models were constructed using a Boosted Regression Trees (BRT) machine learning technique that produces many trees as part of an additive model and has the ability to handle many variables, automatically incorporate interactions, and is resistant to collinearity. Machine learning methods for statistical prediction are becoming increasing popular in that they do not require assumptions associated with traditional hypothesis testing. Models were constructed using measured dissolved oxygen and manganese concentrations sampled from 2767 wells within the alluvial boundary of the Central Valley, and over 60 explanatory variables representing regional-scale soil properties, soil chemistry, land use, aquifer textures, and aquifer hydrologic properties. Models were trained on a USGS dataset of 932 wells, and evaluated on an independent hold-out dataset of 1835 wells from the California Division of Drinking Water. We used cross-validation to assess the predictive performance of

  15. Prediction and visualization of redox conditions in the groundwater of Central Valley, California

    USGS Publications Warehouse

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.

    2017-01-01

    Regional-scale, three-dimensional continuous probability models, were constructed for aspects of redox conditions in the groundwater system of the Central Valley, California. These models yield grids depicting the probability that groundwater in a particular location will have dissolved oxygen (DO) concentrations less than selected threshold values representing anoxic groundwater conditions, or will have dissolved manganese (Mn) concentrations greater than selected threshold values representing secondary drinking water-quality contaminant levels (SMCL) and health-based screening levels (HBSL). The probability models were constrained by the alluvial boundary of the Central Valley to a depth of approximately 300 m. Probability distribution grids can be extracted from the 3-D models at any desired depth, and are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions.Models were constructed using a Boosted Regression Trees (BRT) machine learning technique that produces many trees as part of an additive model and has the ability to handle many variables, automatically incorporate interactions, and is resistant to collinearity. Machine learning methods for statistical prediction are becoming increasing popular in that they do not require assumptions associated with traditional hypothesis testing. Models were constructed using measured dissolved oxygen and manganese concentrations sampled from 2767 wells within the alluvial boundary of the Central Valley, and over 60 explanatory variables representing regional-scale soil properties, soil chemistry, land use, aquifer textures, and aquifer hydrologic properties. Models were trained on a USGS dataset of 932 wells, and evaluated on an independent hold-out dataset of 1835 wells from the California Division of Drinking Water. We used cross-validation to assess the predictive performance of

  16. RNASeq in C. elegans following manganese exposure

    PubMed Central

    Parmalee, Nancy L.; Maqbool, Shahina B.; Ye, Bin; Calder, Brent; Bowman, Aaron B.; Aschner, Michael

    2015-01-01

    Manganese is a metal that is required for optimal biological functioning of organisms. Absorption, cellular import and export, and excretion of manganese are all tightly regulated. While some genes involved in regulation, such as DMT-1 and ferroportin are known, it is presumed that many more are involved and as yet unknown. Excessive exposure to manganese, usually in industrial settings, such as mining or welding, can lead to neurotoxicity and a condition known as manganism that closely resembles Parkinson's disease. Elucidating transcriptional changes following manganese exposure could lead to the development of biomarkers for exposure. This unit presents a protocol for RNA sequencing in the worm Caenorhabditis elegans to assay for transcriptional changes following exposure to manganese. This protocol is adaptable to any environmental exposure in C. elegans. The protocol results in counts of gene transcripts in control versus exposed conditions, and a ranked list of differentially expressed genes for further study. PMID:26250396

  17. Redox biology of the intestine

    PubMed Central

    Circu, Magdalena L.; Aw, Tak Yee

    2011-01-01

    The intestinal tract, known for its capability for self-renew, represents the first barrier of defense between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signaling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer. PMID:21831010

  18. Biophysical chemistry.

    PubMed

    Häussinger, Daniel; Pfohl, Thomas

    2010-01-01

    Biophysical chemistry at the Department of Chemistry, University of Basel, covers the NMR analysis of protein-protein interaction using paramagnetic tags and sophisticated microscopy techniques investigating the dynamics of biological matter.

  19. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and chemistry experiments. Topics include sublimation, electronegativity, electrolysis, experimental aspects of strontianite, halide test, evaluation of present and future computer programs in chemistry, formula building, care of glass/saturated calomel…

  20. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  1. Chemistry Dashboard

    EPA Pesticide Factsheets

    The Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The Chemistry Dashboard provides access to a variety of information on over 700,000 chemicals currently in use.

  2. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Thirteen ideas are presented that may be of use to chemistry teachers. Topics covered include vitamin C, industrial chemistry, electrical conductivity, electrolysis, alkali metals, vibration modes infra-red, dynamic equilibrium, and some new demonstrations in gaseous combinations. (PS)

  3. A New Hybrid Redox Flow Battery with Multiple Redox Couples

    SciTech Connect

    Wang, Wei; Li, Liyu; Nie, Zimin; Chen, Baowei; Luo, Qingtao; Shao, Yuyan; Wei, Xiaoliang; Chen, Feng; Xia, Guanguang; Yang, Zhenguo

    2012-05-19

    A redox flow battery using V{sup 4+}/V{sup 5+} vs. V{sup 2+}/V{sup 3+} and Fe{sup 2+}/Fe{sup 3+} vs. V{sup 2+}/V{sup 3+} redox couples in chloric/sulphuric mixed acid supporting electrolyte was investigated for potential stationary energy storage applications. The Fe/V hybrid redox flow cell using mixed reactant solutions operated within a voltage window of 0.5-1.7 V demonstrated stable cycling over 100 cycles with energy efficiency {approx}80% and no capacity fading at room temperature. A 66% improvement in the energy density of the Fe/V hybrid cell was achieved compared with the previous reported Fe/V cell using only Fe{sup 2+}/Fe{sup 3+} vs. V{sup 2+}/V{sup 3+} redox couples.

  4. High-valent iron and manganese complexes of corrole and porphyrin in atom transfer and dioxygen evolving catalysis.

    PubMed

    Abu-Omar, Mahdi M

    2011-04-14

    Manganese(V) imido complexes of 5,10,15-tris(pentafluorophenyl)corrole (H(3)tpfc) can be prepared by the reaction of Mn(III)(tpfc) and organic nitrene generated from either photolytic or thermal activation of organic azides. The terminal imido complexes of manganese(V) were among the first structurally characterized examples of Mn(V) terminal imido complexes in the literature. They feature a short Mn≡N triple bond and a nearly linear M[triple bond, length as m-dash]N-C angle. The ground state of (tpfc)Mn(V)(NAr) is singlet. Contrary to expectations, arylimido complexes of manganese(V) were stable to moisture and did not undergo [NR] group transfer to olefins. Manganese(V) imido corrole with an activated tosyl imido ligand was prepared from iodoimine (ArINTs) and manganese(III) corrole. The resulting complex (tpfc)Mn(NTs) is paramagnetic (S = 1), hydrolyzes to (tpfc)Mn(O) in the presence of water, abstracts hydrogen atoms from benzylic C-H bonds, and catalyzes aziridination of alkenes. Mechanistic studies on the aziridination and hydrogen atom transfer reactions are reviewed. This perspective also describes the reaction chemistry of the heme enzyme chlorite dismutase, the mechanism by which dioxygen is formed on a single-metal site, and recent advances in functional modelling of this enzyme. We also compare the reactivity of water-soluble iron versus manganese porphyrins towards the chlorite anion.

  5. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and…

  6. Extracellular redox state: refining the definition of oxidative stress in aging.

    PubMed

    Jones, Dean P

    2006-01-01

    Oxidative stress in aging can result from an imbalance of prooxidants and antioxidants with excessive, destructive free radical chemistry. Thiol systems are important in the control of these processes, both by protecting against damage and serving in redox signaling mechanisms to sense danger and repair the damage. Studies by a number of research groups in collaboration with the Emory Clinical Biomarkers Laboratory show that the redox state of the central tissue antioxidant, glutathione (GSH), can be measured in human plasma and provides a quantitative systemic indicator of oxidative stress. Plasma GSH/GSSG redox in humans becomes oxidized with age, in response to chemotherapy, as a consequence of cigarette smoking, and in association with common age-related diseases (e.g., type 2 diabetes, cardiovascular disease). However, the GSH/GSSG redox is not equilibrated with the larger plasma cysteine/cystine (Cys/CySS) pool, and the Cys/CySS redox varies with age in a pattern that is distinct from that of GSH/GSSG redox. Furthermore, in vitro studies show that variation in Cys/CySS redox over the range found in vivo affects signaling pathways, which control cell proliferation and oxidant-induced apoptosis. The results point to the conclusion that free radical scavenging antioxidants are of increased importance when thiol/disulfide redox states are oxidized. Because thiol/disulfide redox states, per se, function in redox signaling and control as well as antioxidant protection, GSH/GSSG and Cys/CySS redox states may provide central parameters to link environmental influences and progression of changes associated with aging.

  7. The Interaction of Mitochondrial Iron with Manganese Superoxide Dismutase*

    PubMed Central

    Naranuntarat, Amornrat; Jensen, Laran T.; Pazicni, Samuel; Penner-Hahn, James E.; Culotta, Valeria C.

    2009-01-01

    Superoxide dismutase 2 (SOD2) is one of the rare mitochondrial enzymes evolved to use manganese as a cofactor over the more abundant element iron. Although mitochondrial iron does not normally bind SOD2, iron will misincorporate into Saccharomyces cerevisiae Sod2p when cells are starved for manganese or when mitochondrial iron homeostasis is disrupted by mutations in yeast grx5, ssq1, and mtm1. We report here that such changes in mitochondrial manganese and iron similarly affect cofactor selection in a heterologously expressed Escherichia coli Mn-SOD, but not a highly homologous Fe-SOD. By x-ray absorption near edge structure and extended x-ray absorption fine structure analyses of isolated mitochondria, we find that misincorporation of iron into yeast Sod2p does not correlate with significant changes in the average oxidation state or coordination chemistry of bulk mitochondrial iron. Instead, small changes in mitochondrial iron are likely to promote iron-SOD2 interactions. Iron binds Sod2p in yeast mutants blocking late stages of iron-sulfur cluster biogenesis (grx5, ssq1, and atm1), but not in mutants defective in the upstream Isu proteins that serve as scaffolds for iron-sulfur biosynthesis. In fact, we observed a requirement for the Isu proteins in iron inactivation of yeast Sod2p. Sod2p activity was restored in mtm1 and grx5 mutants by depleting cells of Isu proteins or using a dominant negative Isu1p predicted to stabilize iron binding to Isu1p. In all cases where disruptions in iron homeostasis inactivated Sod2p, we observed an increase in mitochondrial Isu proteins. These studies indicate that the Isu proteins and the iron-sulfur pathway can donate iron to Sod2p. PMID:19561359

  8. Iron and manganese removal by using manganese ore constructed wetlands in the reclamation of steel wastewater.

    PubMed

    Xu, Jing-Cheng; Chen, Gu; Huang, Xiang-Feng; Li, Guang-Ming; Liu, Jia; Yang, Na; Gao, Sai-Nan

    2009-09-30

    To reclaim treated steel wastewater as cooling water, manganese ore constructed wetland was proposed in this study for the removal of iron and manganese. In lab-scale wetlands, the performance of manganese ore wetland was found to be more stable and excellent than that of conventional gravel constructed wetland. The iron and manganese concentration in the former was below 0.05 mg/L at hydraulic retention time of 2-5 days when their influent concentrations were in the range of 0.16-2.24 mg/L and 0.11-2.23 mg/L, respectively. Moreover, its removals for COD, turbidity, ammonia nitrogen and total phosphorus were 55%, 90%, 67% and 93%, respectively, superior to the corresponding removals in the gravel wetland (31%, 86%, 58% and 78%, respectively). The good performance of manganese ore was ascribed to the enhanced biological manganese removal with the aid of manganese oxide surface and the smaller size of the medium. The presence of biological manganese oxidation was proven by the facts of good manganese removal in wetlands at chemical unfavorable conditions (such as ORP and pH) and the isolation of manganese oxidizing strains from the wetlands. Similar iron and manganese removal was later observed in a pilot-scale gravel-manganese-ore constructed wetland, even though the manganese ore portion in total volume was reduced from 100% (in the lab-scale) to only 4% (in the pilot-scale) for the sake of cost-saving. The quality of the polished wastewater not only satisfied the requirement for cooling water but also suitable as make-up water for other purposes.

  9. Redox regulation of Ran GTPase

    SciTech Connect

    Heo, Jongyun

    2008-11-21

    Ran, a small Ras-like GTP-binding nuclear protein, plays a key role in modulation of various cellular signaling events including the cell cycle. This study shows that a cellular redox agent (nitrogen dioxide) facilitates Ran guanine nucleotide dissociation, and identifies a unique Ran redox architecture involved in that process. Sequence analysis suggests that Dexras1 and Rhes GTPases also possess the Ran redox architecture. As Ran releases an intact nucleotide, the redox regulation mechanism of Ran is likely to differ from the radical-based guanine nucleotide modification mechanism suggested for Ras and Rho GTPases. These results provide a mechanistic reason for the previously observed oxidative stress-induced perturbation of the Ran-mediated nuclear import, and suggest that oxidative stress could be a factor in the regulation of cell signal transduction pathways associated with Ran.

  10. Redox Properties of Free Radicals.

    ERIC Educational Resources Information Center

    Neta, P.

    1981-01-01

    Describes pulse radiolysis as a useful means in studing one-electron redox potentials. This method allows the production of radicals and the determination of their concentration and rates of reaction. (CS)

  11. Thiol-Based Redox Switches

    PubMed Central

    Groitl, Bastian; Jakob, Ursula

    2014-01-01

    Regulation of protein function through thiol-based redox switches plays an important role in the response and adaptation to local and global changes in the cellular levels of reactive oxygen species (ROS). Redox regulation is used by first responder proteins, such as ROS-specific transcriptional regulators, chaperones or metabolic enzymes to protect cells against mounting levels of oxidants, repair the damage and restore redox homeostasis. Redox regulation of phosphatases and kinases is used to control the activity of select eukaryotic signaling pathways, making reactive oxygen species important second messengers that regulate growth, development and differentiation. In this review we will compare different types of reversible protein thiol modifications, elaborate on their structural and functional consequences and discuss their role in oxidative stress response and ROS adaptation. PMID:24657586

  12. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  13. Forensic chemistry.

    PubMed

    Bell, Suzanne

    2009-01-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  14. Redox Reactions of Myoglobin

    PubMed Central

    2013-01-01

    Abstract Significance: Failure to maintain myoglobin (Mb) in the reduced state causes the formation of metMb, ferryl Mb species, and cross-linked Mb. Dissociation of ferriprotoporphyrin IX from the globin and release of iron atoms can also occur as oxidized Mb accumulates. These modifications may contribute to various oxidative pathologies in muscle and muscle foods. Recent Advances: The mechanism of ferryl Mb-mediated oxidative damage to nearby structures has been partially elucidated. Dissociation of ferriprotoporphyrin IX from metMb occurs more readily at acidic pH values. The dissociated ferriprotoporphyrin IX (also called hemin) readily decomposes preformed lipid hydroperoxides to reactive oxygen species. Heme oxygenase as well as lipophilic free radicals can degrade the protoporphyrin IX moiety, which results in the formation of free iron. Critical Issues: The multiple pathways by which Mb can incur toxicity create difficulties in determining the major cause of oxidative damage in a particular system. Peroxides and low pH activate each of the oxidative Mb forms, ferriprotoporphyrin IX, and released iron. Determining the relative concentration of these species is technically difficult, but essential to a complete understanding of oxidative pathology in muscle tissue. Future Directions: Improved methods to assess the different pathways of Mb toxicity are needed. Although significant advances have been made in the understanding of Mb interactions with other biomolecules, further investigation is needed to understand the physical and chemical nature of these interactions. Antioxid. Redox Signal. 18, 2342–2351. PMID:22900975

  15. Molecular-Level Processes Governing the Interaction of Contaminants with Iron and Manganese Oxides - Final Report

    SciTech Connect

    Brown Jr., G. E.; Chambers, S. A.

    1999-10-31

    Many of the inorganic and organic contaminants present in sediments at DOE sites can be altered or destroyed by reduction and oxidation (redox) reactions occurring at mineral surfaces. A fundamental understanding of such redox processes provided by molecular-level studies on structurally and compositionally well-defined mineral surfaces will lead to: (i) improved models of contaminant fate and transport in geochemical systems, and (ii) optimized manipulation of these processes for remediation purposes. To contribute to this understanding, we will study, both experimentally and theoretically, redox processes involving three important contaminants - chromate ion, carbon tetrachloride, and trichloroethene TCE, on the following iron and manganese oxides - hematite, magnetite, maghemite, and pyrolusite. These oxides and their hydroxylated analogs commonly occur as coatings on minerals or as interfaces in the subsurface environment. Single-crystal surfaces of these oxides will be synthesized in carefully controlled fashion by molecular beam epitaxy. These surfaces, as well as high surface are powdered samples of these oxides, will be used in spectroscopic and kinetic experiments in both aqueous and gas phases. Our goal is to identify products and to determine the kinetics and mechanisms of surface-catalyzed redox reaction of Cr(VI) and CR(III), and the reductive dechlorination of carbon tetrachloride and TCE. The combination of theory and experiment will provide the base information needed to scale from the molecular level to the microscopic grain level minerals.

  16. Synthesis of a high-valent, four-coordinate manganese cubane cluster with a pendant Mn atom: photosystem II-inspired manganese-nitrogen clusters.

    PubMed

    Vaddypally, Shivaiah; Kondaveeti, Sandeep K; Zdilla, Michael J

    2012-04-02

    High-valent, four-coordinate manganese imido- and nitrido-bridged heterodicubane clusters have been prepared and characterized by single-crystal X-ray diffraction and spectroscopic techniques. The title compound, a corner-nitride-fused dicubane with the chemical formula [Mn(5)Li(3)(μ(6)-N)(N)(μ(3)-N(t)Bu)(6)(μ-N(t)Bu)(3)(N(t)Bu)] (1), has been prepared as an adduct with a nearly isostructural tetramanganese cluster with one Mn atom replaced by Li. An important feature of the reported chemistry is the formation of nitride from tert-butylamide, indicative of N-C bond cleavage facilitated by manganese.

  17. Manganese cycles in Arctic marine sediments - Climate signals or diagenesis?

    NASA Astrophysics Data System (ADS)

    März, C.; Stratmann, A.; Eckert, S.; Schnetger, B.; Brumsack, H.-J.

    2009-04-01

    (analysed by ICP-OES and WD-XRF) indicate that certain Mn-rich layers are currently dissolving, while others are forming. This internal Mn re-distribution, while being more pronounced in some locations than in others, also has an impact on related trace metal distributions (e.g. Co, Cu, Ni, Mo). As Mn diagenesis obviously occurs in most cores studied so far (pelagic depositional areas unaffected by turbidites), we conclude that caution has to be taken when applying Mn layers as stratigraphic tools. In addition to more sensitive analyses (acid digestions and HR-ICP-MS measurements), we will apply methods like sequential Mn extraction, X-ray diffraction and electron microscopy to study these Mn-rich layers. These data will be put into a broader context by comparing them to parameters like magnetic susceptibility, grain size distribution, sediment colour or porosity. Hopefully, this will result in a better understanding of Mn biogeochemistry in the Arctic Ocean, including its application as paleoenvironmental proxy. Burdige, D.J. (2006) Geochemistry of marine sediments. Princeton University Press, 609 pp. Gobeil, C., Macdonald, R.W., Sundby, B. (1997) Diagenetic separation of cadmium and manganese in suboxic continental margin sediments. Geochim. Cosmochim. Acta 61, 4647-4654. Jakobsson, M., Løvlie, R., Al-Hanbali, H., Arnold, E.M., Backman, J., Mörth, M. (2000) Manganese and color cycles in Artic Ocean sediments constrain Pleistocene chronology. Geology 8, 23-26. Katsev, S., Sundby, B., Mucci, A. (2006) Modeling vertical excursions of the redox boundary in sediments: Application to deep basins of the Arctic Ocean. Limnol. Oceanogr. 51, 1581-1593. Li, Y.-H., Bischoff, J. Mathieu, G. (1969) Migration of manganese in Arctic Basin sediments. Earth Planet. Sci. Lett. 7, 265-270. Löwemark, L., Jakobsson, M., Mörth, M., Backman, J. (2008) Arctic Ocean manganese contents and sediment colour cycles. Polar. Res. 27, 105-113.

  18. Redox effects on release kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake Deltaic freshwater marsh soils.

    PubMed

    Shaheen, Sabry M; Rinklebe, Jörg; Frohne, Tina; White, John R; DeLaune, Ron D

    2016-05-01

    The impact of redox potential (EH), pH, iron (Fe), manganese (Mn), chloride (Cl(-)), aliphatic and aromatic dissolved organic carbon (DOC), and sulfate ( [Formula: see text] ) on the release of dissolved arsenic (As), cadmium (Cd), cobalt (Co), and vanadium (V) were studied in Louisiana freshwater marsh Wax Lake Delta soil (Mississippi River) using an automated biogeochemical microcosm apparatus. The experiment was conducted from reducing (-60 mV) to stepwise oxidizing (+491 mV) conditions. The initial pH was 7.4 and decreased under reducing conditions to 4.9, and remained constant during the increase of EH. Concentrations of As (1.3-120.5 μg L(-1)), V (0.9-48.6 μg L(-1)), Fe, DOC, and the specific UV absorbance increased under reducing conditions and decreased with rising EH. Release of As and V appeared to be related to changes of EH/pH, co-precipitation with Fe oxides, and the release of dissolved aromatic carbon compounds. Concentrations of soluble Cd (4.8-11.2 μg L(-1)), Mn, [Formula: see text] , and Cl(-) increased under oxidizing conditions. Release of Co (166.6-258.2 μg L(-1)) was related to the chemistry of Fe, Mn and DOC. Phospholipid fatty acids analysis indicated the potential for the microbial community to be involved in biogeochemical processes such as the formation of sulfides, oxidation and reduction of compounds, and the bio-methylation of elements such as As. Overall, we measured a release of As and V under anoxic conditions, while oxic conditions favored the release of Cd. These results outline concern on the potential risk of mobilization of toxic elements in temporary waterlogged soils for agricultural purposes in deltaic ecosystems.

  19. Manganese

    MedlinePlus

    ... weeks can slightly reduce weight in overweight people. Wound healing. Early research suggests that applying a dressing containing ... to chronic wounds for 12 weeks may improve wound healing. Anemia. Other conditions. More evidence is needed to ...

  20. Redox Control of Cardiac Excitability

    PubMed Central

    Aggarwal, Nitin T.

    2013-01-01

    Abstract Reactive oxygen species (ROS) have been associated with various human diseases, and considerable attention has been paid to investigate their physiological effects. Various ROS are synthesized in the mitochondria and accumulate in the cytoplasm if the cellular antioxidant defense mechanism fails. The critical balance of this ROS synthesis and antioxidant defense systems is termed the redox system of the cell. Various cardiovascular diseases have also been affected by redox to different degrees. ROS have been indicated as both detrimental and protective, via different cellular pathways, for cardiac myocyte functions, electrophysiology, and pharmacology. Mostly, the ROS functions depend on the type and amount of ROS synthesized. While the literature clearly indicates ROS effects on cardiac contractility, their effects on cardiac excitability are relatively under appreciated. Cardiac excitability depends on the functions of various cardiac sarcolemal or mitochondrial ion channels carrying various depolarizing or repolarizing currents that also maintain cellular ionic homeostasis. ROS alter the functions of these ion channels to various degrees to determine excitability by affecting the cellular resting potential and the morphology of the cardiac action potential. Thus, redox balance regulates cardiac excitability, and under pathological regulation, may alter action potential propagation to cause arrhythmia. Understanding how redox affects cellular excitability may lead to potential prophylaxis or treatment for various arrhythmias. This review will focus on the studies of redox and cardiac excitation. Antioxid. Redox Signal. 18, 432–468. PMID:22897788

  1. [Tongue play and manganese deficiency in dairy cattle].

    PubMed

    Karatzias, H; Roubies, N; Polizopoulou, Z; Papasteriades, A

    1995-09-01

    The present paper discusses "tongue rolling" observed in dairy cattle farms of a region in northern Greece associated with manganese deficiency. In these animals total body manganese status was evaluated by determining hair, as well as feed manganese content. Cows exhibiting tongue rolling had significantly lower hair manganese content, compared to non-tongue rolling control animals from other farms; in addition, feedstuff analysis demonstrated that manganese and inorganic phosphorus intake of affected cows was also significantly lower.

  2. Formation and Stability of Manganese-Desferrioxamine B Complexes

    NASA Astrophysics Data System (ADS)

    Duckworth, O. W.; Sposito, G.

    2004-12-01

    Recent laboratory and field studies suggest that Mn(III) forms persistent aqueous complexes with high-affinity ligands, particularly those produced by microbes. Aqueous Mn(III) species thus may play a significant, as-yet largely unexplored role in biogeochemical processes. We determined stability constants for both Mn(II) and Mn(III) complexes with the common tri-hydroxamate siderophore, desferrioxamine B (DFOB). We found the thermodynamic stability constants of the species, MHDFOBx-2 [M = Mn(II), x = 2; M = Mn(III), x = 3] to be KMn(II) = 106.8 ± 0.1 and KMn(III) = 1029.2 ± 0.2 at 25° C. The Mn(III)HDFOB+ complex is stable for pH in the range 7.0 - 11.3, but at pH < 7.0, Mn(III)HDFOB+ decays by internal electron transfer, yielding oxidized DFOB products and Mn2+. For pH > 11.3, the complex decays by disproportionation, yielding Mn2+ and solid MnO2. The Mn(III)HDFOB+ complex may be formed by either the oxidation of aqueous Mn(II)-HDFOB complexes or the DFOB-promoted dissolution of solid manganese(III) oxides. The DFOB-promoted Mn(II) air-oxidation rate was found to be proportional to the concentration of Mn(II)-DFOB complexes. At pH > 6.5, the dissolution of manganite (γ -MnOOH) in the presence of DFOB is predominantly a non-reductive ligand-promoted reaction whose rate is proportional to the adsorbed surface concentration of DFOB. At pH < 6.5, Mn2+ is the dominant species resulting from manganite dissolution, thus implicating a reductive dissolution pathway. The results of this study have broad implications for the biogeochemical cycling of manganese, redox-active elements, and siderophores in natural waters and soils.

  3. Manganese concentrate usage in steelmaking

    NASA Astrophysics Data System (ADS)

    Nokhrina, O. I.; Rozhihina, I. D.

    2015-09-01

    The results of the research process of producing metalized products by solid-phase reduction of iron using solid carbonaceous reducing agents. Thermodynamic modeling was carried out on the model of the unit the Fe-C-O and system with iron ore and coal. As a result of modeling the thermodynamic boundary reducing, oxidizing, and transition areas and the value of the ratio of carbon and oxygen in the system. Simulation of real systems carried out with the gas phase obtained in the pyrolys of coal. The simulation results allow to determine the optimal cost of coal required for complete reduction of iron ore from a given composition. The kinetics of the processes of solid-phase reduction of iron using coal of various technological brands. The paper describes experiments on effects of metal deoxidizer composition, component proportion, pelletizing mixture, particle size distribution of basic materials and flux on manganese recovering from oxides under direct melting.

  4. Neurotoxicity of manganese oxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Stefanescu, Diana M.; Khoshnan, Ali; Patterson, Paul H.; Hering, Janet G.

    2009-11-01

    Manganese (Mn) toxicity in humans has been observed as manganism, a disease that resembles Parkinson's disease. The mechanism of Mn toxicity and the chemical forms that may be responsible for its neurotoxicity are not well understood. We examined the toxicity of Mn oxide nanomaterials in a neuronal precursor cell model, using the MTS assay to evaluate mitochondrial function in living cells and the LDH assay to quantify the release of the enzyme lactate dehydrogenase as a result of damage to the cell membrane. Both assays show that the toxicity of Mn is dependent on the type of Mn oxide nanomaterial and its concentration as well as on the state of cell differentiation. Following exposure to Mn oxide nanomaterials, reactive oxygen species (ROS) are generated, and flow cytometry experiments suggest that cell death occurred through apoptosis. During exposure to Mn oxide nanomaterials, increased levels of the transcription factor NF-κB (which mediates the cellular inflammatory response) were observed.

  5. Redox Heterogenity in MORB

    NASA Astrophysics Data System (ADS)

    Cottrell, E.; Kelley, K. A.

    2012-12-01

    Mantle oxygen fugacity (fO2) has a first-order effect on the petrogenesis of mantle-derived melts and the speciation of mantle fluids. Current debate centers on the spatial uniformity of upper mantle fO2 and its constancy through geologic time. We use iron K-edge X-ray absorption near-edge structure (μXANES) spectroscopy to provide Fe3+ /ΣFe ratios of submarine mantle-derived basalts from mid-ocean ridges (MORB) as a proxy for fO2. A global survey of primitive (>8.75 wt% MgO) MORB glasses at spreading centers, unaffected by plumes, reveals a decrease in Fe3+ /ΣFe ratio of 12% relative with indices of mantle enrichment such as 87/86Sr, 208/204Pb, Ba/La, and Rb/Sr ratios. The strong negative correlation between upper mantle fO2 and enrichment recorded by MORB glasses contrasts with the positive relationship hinted at by abyssal peridotite oxybarometry (e.g. Ballhaus, CMP, 1993) and the general prediction of a positive correlation born of the expectation that Fe3+ can be treated as more incompatible than Fe2+ during mantle melting. These data unequivocally link upper mantle oxidation state to mantle source enrichment. EMORB generation is commonly attributed to subduction-related processes. That EMORB is more reduced than NMORB implies that deeply subducted and recycled lithologies, such as anoxic sediment, may be more reduced than ambient mantle. Negative correlations between traditional tracers of recycled sediment (e.g. +Nb anomaly, high 87/86Sr, high LILE/LREE) and redox support this hypothesis. Preservation of redox signatures on plate-recycling timescales of hundreds of millions to billions of years would require the mantle to be very poorly buffered. Alternatively, MORB Fe3+ /ΣFe ratios may be generated in situ beneath ridges as a function of variable carbon content. The shallow MORB source is too oxidized to stabilize graphite (Cottrell and Kelley, EPSL, 2011) and carbon exists as oxides. Decreasing fO2 with increasing depth eventually stabilizes reduced

  6. Manganese-containing ionic liquids: synthesis, crystal structures and electrodeposition of manganese films and nanoparticles.

    PubMed

    Sniekers, Jeroen; Malaquias, João C; Van Meervelt, Luc; Fransaer, Jan; Binnemans, Koen

    2017-02-21

    Manganese(ii)-containing ionic liquids were synthesized, in which the manganese atoms are coordinated by glymes (diglyme, triglyme, tetraglyme), pyridine-N-oxide, dimethylsulfoxide or N-alkylimidazoles (N-methylimidazole, N-butylimidazole and N-hexylimidazole). As anion, bis(trifluoromethanesulfonyl)imide (bistriflimide, Tf2N(-)), trifluoromethanesulfonate (triflate, OTf(-)) or methanesulfonate (mesylate, OMs(-)) were used. The compounds were characterized by CHN analysis, FTIR, DSC and single-crystal X-ray diffraction measurements. All manganese atoms were six-coordinate. It was found that the glyme-type ligands were replaced by atmospheric water upon leaving the crystals open to the air for several days. The crystal structures of seven compounds were described in detail and the compounds with the lowest melting temperatures were tested as electrolytes for the electrodeposition of manganese (thin) films. An irreversible reduction wave from Mn(ii) to Mn(0) and granular manganese deposits were observed for all compounds, except for liquid manganese salts with N-alkylimidazole ligands and bistriflimide anions, where the electrochemical formation of manganese nanoparticles was observed instead of the deposition of a manganese layer. However, for compounds with the same cation but with a triflate or methanesulfonate anion, manganese metal deposits were obtained, indicating that the nature of the anion has an important effect on the electrochemical properties of liquid metal salts.

  7. Crystal structure of nitrated human manganese superoxide dismutase: mechanism of inactivation.

    PubMed

    Quint, Patrick; Reutzel, Robbie; Mikulski, Rose; McKenna, Robert; Silverman, David N

    2006-02-01

    A cellular consequence of the reaction of superoxide and nitric oxide is enhanced peroxynitrite levels. Reaction of peroxynitrite with manganese superoxide dismutase (MnSOD) causes nitration of the active-site residue Tyr34 and nearly complete inhibition of catalysis. We report the crystal structures at 2.4 A resolution of human MnSOD nitrated by peroxynitrite and the unmodified MnSOD. A comparison of these structures showed no significant conformational changes of active-site residues or solvent displacement. The side chain of 3-nitrotyrosine 34 had a single conformation that extended toward the manganese with O1 of the nitro group within hydrogen-bonding distance (3.1 A) of Nepsilon2 of the second-shell ligand Gln143. Also, nitration of Tyr34 caused a weakening, as evidenced by the lengthening, of a hydrogen bond between its phenolic OH and Gln143, part of an extensive hydrogen-bond network in the active site. Inhibition of catalysis can be attributed to a steric effect of 3-nitrotyrosine 34 that impedes substrate access and binding, and alteration of the hydrogen-bond network that supports proton transfer in catalysis. It is also possible that an electrostatic effect of the nitro group has altered the finely tuned redox potential necessary for efficient catalysis, although the redox potential of nitrated MnSOD has not been measured.

  8. Mars Redox Chemistry: Atacama Desert Soils as a Terrestrial Analog

    NASA Technical Reports Server (NTRS)

    Quinn, R. C.; Grunthaner, F. J.; Taylor, C. L.; Zent, A. P.

    2003-01-01

    The motivation for this work is to perform quantitative site characterizations of soil chemical processes to allow further development and field validation of the Mars Oxidant Instrument (MOI). The MOI is an in situ survey instrument designed to establish the presence of reactive chemical species in the martian soil, dust, or atmosphere, and to provide detailed reaction model system measurements to enable comprehensive Earthbased study. Functioning as a survey instrument, MOI tests the broad range of hypotheses explaining the reactivity of the martian surface material that have been put forth since the Viking experiments. This work is currently being carried out under the NASA ASTEP funded AstroBioLab (Jeffery Bada, PI). A second objective is to use Atacama field and Viking data to perform comparative studies, with the goal of furthering the understanding of the formation mechanisms and properties of martian oxidants.

  9. Battery Relevant Electrochemistry of Ag7Fe3(P2O7 )4 : Contrasting Contributions from the Redox Chemistries of Ag+ and Fe3+

    SciTech Connect

    Zhang, Yiman; Kirshenbaum, Kevin C.; Marschilok, Amy C.; Takeuchi, Esther S.; Takeuchi, Kenneth J.

    2016-10-12

    Ag7Fe3(P2O7 )4 is an example of an electrochemical displacement material which contains two different electrochemically active metal cations, where one cation (Ag+) forms metallic silver nanoparticles external to the crystals of Ag7Fe3(P2O7 )4 via an electrochemical reduction displacement reaction, while the other cation (Fe+3) is electrochemically reduced with the retention of iron cations within the anion structural framework concomitant with lithium insertion. These contrasting redox chemistries within one pure cathode material enable high rate capability and reversibility when Ag7Fe3(P2O7 )4 is employed as cathode material in a lithium ion battery (LIB). Further, pyrophosphate materials are thermally and electrically stable, desirable attributes for cathode materials in LIBs. In this article, a bimetallic pyrophosphate material Ag7Fe3(P2O7 )4 is synthesized and confirmed to be a single phase by Rietveld refinement. Electrochemistry of Ag7Fe3(P2O7 )4 is reported for the first time in the context of lithium based batteries using cyclic voltammetry and galvanostatic discharge–charge cycling. The reduction displacement reaction and the lithium (de)insertion processes are investigated using ex situ X-ray absorption spectroscopy and X-ray diffraction of electrochemically reduced and oxidized Ag7Fe3(P2O7 )4. Ag7Fe3(P2O7 )4 exhibits good reversibility at the iron centers indicated by ~80% capacity retention over 100 cycles following the initial formation cycle and excellent rate capability exhibited by ~70% capacity retention upon a 4-fold increase in current.

  10. Redox Active Polymers as Soluble Nanomaterials for Energy Storage.

    PubMed

    Burgess, Mark; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2016-11-15

    It is an exciting time for exploring the synergism between the chemical and dimensional properties of redox nanomaterials for addressing the manifold performance demands faced by energy storage technologies. The call for widespread adoption of alternative energy sources requires the combination of emerging chemical concepts with redesigned battery formats. Our groups are interested in the development and implementation of a new strategy for nonaqueous flow batteries (NRFBs) for grid energy storage. Our motivation is to solve major challenges in NRFBs, such as the lack of membranes that simultaneously allow fast ion transport while minimizing redox active species crossover between anolyte (negative electrolyte) and catholyte (positive electrolyte) compartments. This pervasive crossover leads to deleterious capacity fade and materials underutilization. In this Account, we highlight redox active polymers (RAPs) and related polymer colloids as soluble nanoscopic energy storing units that enable the simple but powerful size-exclusion concept for NRFBs. Crossover of the redox component is suppressed by matching high molecular weight RAPs with simple and inexpensive nanoporous commercial separators. In contrast to the vast literature on the redox chemistry of electrode-confined polymer films, studies on the electrochemistry of solubilized RAPs are incipient. This is due in part to challenges in finding suitable solvents that enable systematic studies on high polymers. Here, viologen-, ferrocene- and nitrostyrene-based polymers in various formats exhibit properties that make amenable their electrochemical exploration as solution-phase redox couples. A main finding is that RAP solutions store energy efficiently and reversibly while offering chemical modularity and size versatility. Beyond the practicality toward their use in NRFBs, the fundamental electrochemistry exhibited by RAPs is fascinating, showing clear distinctions in behavior from that of small molecules. Whereas

  11. MANGANESE DIOXIDE METHOD FOR PREPARATION OF PROTACTINIUM

    DOEpatents

    Katzin, L.I.

    1958-08-12

    A method of obtaining U/sup 233/ is described. An aqueous solution of neutriln irradiated thoriunn is treated by forming tberein a precipitate of manganese dioxide which carries and thus separates the Pa/sup 233/ from the solution. The carrier precipitate so formed is then dissolved in an acidic solution containing a reducing agent sufficiently electronegative to reduce the tetravalent manganese to the divalent state. Further purification of the Pa/sup 233/ may be obtained by forming another manganese dioxide carrier precipitate and subsequently dissolving it. Ater a sufficient number of such cycles have brought the Pa/sup 233/ to the desired purity, the solution is aged, allowing the formation ot U/sup 233/ by radioaetive decay. A manganese dioxide precipitate is then formed in the U/sup 233/ containing solution. This precipitate carries down any remaining Pa/sup 233/ thus leaving the separated U/sup 233/solution, from whieh it may be easily recovered.

  12. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... pale pink, granular, odorless powder. It is obtained by reacting manganese compounds with sulfuric acid... products as defined in § 170.3(n(13) of this chapter; meat products as defined in § 170.3(n)(29) of...

  13. Manganese and the limits of high potential phototrophy

    NASA Astrophysics Data System (ADS)

    Fischer, W. W.; Hemp, J.; Johnson, J. E.

    2013-12-01

    Photosynthetic reaction centers create high-energy electrons using light, harnessing the charge separation to simultaneously provide the cell with a strong oxidant and strong reductant. Many substrates can be used as electron donors for phototrophy, however there appears to be important energetic limits. In oxygenic photosynthesis photosystem II (PSII) provides a very strong oxidant that is capable of oxidizing water (ca. +830 mV) to molecular oxygen at the water-oxidizing complex, a redox-active tetra-manganese cluster. Anoxygenic photosystems however appear to only be able to oxidize lower potential electron donors (Fe2+, H2, S0, HS, S2O32-, NO2-, AsO33-).. Several transitional photosystems have been proposed as evolutionary intermediates between anoxygenic and oxygenic photosynthesis, with electron donors of higher redox potentials such as nitrite (ca. +431 mV) or Mn2+ (ca. +780 mV) bridging the redox gap to water. While a range of observations from the geological record support a Mn2+-based transitional photosystem (Johnson et al. 2013), this proposed photochemical scheme is distinct from that observed in anoxygenic photosynthetic organisms. Mechanistically all anoxygenic reaction centers receive their electrons indirectly via soluble electron carriers such as cytochrome c, high potential iron sulfur proteins or cupredoxins. Conversely Mn2+ oxidation is only known to occur today via direct oxidation, such as during photoassembly of the water-oxidizing complex of PSII, or by two distinct, non-energy-conserving mechanisms using molecular oxygen. No natural photosystem is known to solely perform Mn2+-oxidation. The highest redox-potential accessed by known anoxygenic phototrophs oxidizes nitrite (Schott et al. 2010), but it has been unclear until now whether the reaction center is specially adapted to produce high potential oxidants, similar to that of PSII to oxidize Mn2+ and water. To constrain this we sequenced the genome of the nitrite-oxidizing phototroph

  14. A High-Current, Stable Nonaqueous Organic Redox Flow Battery

    SciTech Connect

    Wei, Xiaoliang; Duan, Wentao; Huang, Jinhua; Zhang, Lu; Li, Bin; Reed, David; Xu, Wu; Sprenkle, Vincent; Wang, Wei

    2016-10-14

    Nonaqueous redox flow batteries are promising in pursuit of high-energy storage systems owing to the broad voltage window, but currently are facing key challenges such as poor cycling stability and lack of suitable membranes. Here we report a new nonaqueous all-organic flow chemistry that demonstrates an outstanding cell cycling stability primarily because of high chemical persistency of the organic radical redox species and their good compatibility with the supporting electrolyte. A feasibility study shows that Daramic® and Celgard® porous separators can lead to high cell conductivity in flow cells thus producing remarkable cell efficiency and material utilization even at high current operations. This result suggests that the thickness and pore size are the key performance-determining factors for porous separators. With the greatly improved flow cell performance, this new flow system largely addresses the above mentioned challenges and the findings may greatly expedite the development of durable nonaqueous flow batteries.

  15. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Saffarini, D.

    1994-01-01

    Dissimilatory iron and/or manganese reduction is known to occur in several organisms, including anaerobic sulfur-reducing organisms such as Geobacter metallireducens or Desulfuromonas acetoxidans, and facultative aerobes such as Shewanella putrefaciens. These bacteria couple both carbon oxidation and growth to the reduction of these metals, and inhibitor and competition experiments suggest that Mn(IV) and Fe(III) are efficient electron acceptors similar to nitrate in redox abilities and capable of out-competing electron acceptors of lower potential, such as sulfate (sulfate reduction) or CO2 (methanogenesis). Field studies of iron and/or manganese reduction suggest that organisms with such metabolic abilities play important roles in coupling the oxidation of organic carbon to metal reduction under anaerobic conditions. Because both iron and manganese oxides are solids or colloids, they tend to settle downward in aquatic environments, providing a physical mechanism for the movement of oxidizing potential into anoxic zones. The resulting biogeochemical metal cycles have a strong impact on many other elements including carbon, sulfur, phosphorous, and trace metals.

  16. Removal of fluoride by hydrous manganese oxide-coated alumina: performance and mechanism.

    PubMed

    Teng, Shao-Xiang; Wang, Shu-Guang; Gong, Wen-Xin; Liu, Xian-Wei; Gao, Bao-Yu

    2009-09-15

    A novel hydrous-manganese-oxide-coated alumina (HMOCA) material was prepared through a redox process. The adsorbent was characterized by SEM, BET surface area measurement, XRD, pH(PZC) measurement, FTIR spectroscopy, and XPS. The manganese oxides were amorphous and manganese existed mainly in the +IV oxidation state. Batch and column experiments were carried out to investigate the adsorption potential of the adsorbent. Fluoride adsorption onto HMOCA followed the pseudo-second-order equation well with a correlation coefficient greater than 0.99. Both external and intraparticle diffusion contributed to the rate of transfer and removal. The adsorption of fluoride was thought to take place mainly by ion-exchange. Optimum removal of fluoride occurred in a pH range of 4.0-6.0. The maximum adsorption capacity calculated from the Langmuir model was 7.09 mg/g. The presence of HCO(3)(-), SO(4)(2-) and PO(4)(3-) had negative effects on the adsorption of fluoride. The adsorbed fluoride can be released by alkali solution. Column studies were performed and 669 bed volumes were treated with the effluent fluoride under 1.0mg/L at an influent F(-) concentration of 5.0mg/L and flow rate of 2.39 m(3)/(m(2)h) (empty bed contact time=7.5 min).

  17. Cost and performance model for redox flow batteries

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vilayanur; Crawford, Alasdair; Stephenson, David; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg; Thomsen, Ed; Graff, Gordon; Balducci, Patrick; Kintner-Meyer, Michael; Sprenkle, Vincent

    2014-02-01

    A cost model is developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling is done to estimate stack performance at various power densities as a function of state of charge and operating conditions. This is supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio and flow frame channel dimensions are adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates are obtained from various vendors to calculate cost estimates for present, near-term and optimistic scenarios. The most cost-effective chemistries with optimum operating conditions for power or energy intensive applications are determined, providing a roadmap for battery management systems development for redox flow batteries. The main drivers for cost reduction for various chemistries are identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guide suitability of various chemistries for different applications.

  18. Solution Layer Deposition: A Technique for the Growth of Ultra-Pure Manganese Oxides on Silica at Room Temperature.

    PubMed

    Cure, Jérémy; Piettre, Kilian; Coppel, Yannick; Beche, Eric; Esvan, Jérôme; Collière, Vincent; Chaudret, Bruno; Fau, Pierre

    2016-02-24

    With the ever increasing miniaturization in microelectronic devices, new deposition techniques are required to form high-purity metal oxide layers. Herein, we report a liquid route to specifically produce thin and conformal amorphous manganese oxide layers on silicon substrate, which can be transformed into a manganese silicate layer. The undesired insertion of carbon into the functional layers is avoided through a solution metal-organic chemistry approach named Solution Layer Deposition (SLD). The growth of a pure manganese oxide film by SLD takes place through the decoordination of ligands from a metal-organic complex in mild conditions, and coordination of the resulting metal atoms on a silica surface. The mechanism of this chemical liquid route has been elucidated by solid-state (29) Si MAS NMR, XPS, SIMS, and HRTEM.

  19. Technetium chemistry

    SciTech Connect

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-04-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  20. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Twelve new chemistry expermiments are described. Broad areas covered include atomic structure, solubility, gaseous diffusion, endothermic reactions, alcohols, equilibrium, atomic volumes, and some improvised apparatus. (PS)

  1. Autonomic function in manganese alloy workers

    SciTech Connect

    Barrington, W.W.; Angle, C.R.; Willcockson, N.K.; Padula, M.A.; Korn, T.

    1998-07-01

    The observation of orthostatic hypotension in an index case of manganese toxicity lead to this prospective attempt to evaluate cardiovascular autonomic function and cognitive and emotional neurotoxicity in eight manganese alloy welders and machinists. The subjects consisted of a convenience sample consisting of an index case of manganese dementia, his four co-workers in a frog shop for gouging, welding, and grinding repair of high manganese railway track and a convenience sample of three mild steel welders with lesser manganese exposure also referred because of cognitive or autonomic symptoms. Frog shop air manganese samples 9.6--10 years before and 1.2--3.4 years after the diagnosis of the index case exceeded 1.0 mg/m{sup 3} in 29% and 0.2 mg/m{sup 3} in 62%. Twenty-four-hour electrocardiographic (Holter) monitoring was used to determine the temporal variability of the heartrate (RR{prime} interval) and the rates of change at low frequency and high frequency. MMPI and MCMI personality assessment and short-term memory, figure copy, controlled oral word association, and symbol digit tests were used.

  2. Redox electrode materials for supercapatteries

    NASA Astrophysics Data System (ADS)

    Yu, Linpo; Chen, George Z.

    2016-09-01

    Redox electrode materials, including transition metal oxides and electronically conducting polymers, are capable of faradaic charge transfer reactions, and play important roles in most electrochemical energy storage devices, such as supercapacitor, battery and supercapattery. Batteries are often based on redox materials with low power capability and safety concerns in some cases. Supercapacitors, particularly those based on redox inactive materials, e.g. activated carbon, can offer high power output, but have relatively low energy capacity. Combining the merits of supercapacitor and battery into a hybrid, the supercapattery can possess energy as much as the battery and output a power almost as high as the supercapacitor. Redox electrode materials are essential in the supercapattery design. However, it is hard to utilise these materials easily because of their intrinsic characteristics, such as the low conductivity of metal oxides and the poor mechanical strength of conducting polymers. This article offers a brief introduction of redox electrode materials, the basics of supercapattery and its relationship with pseudocapacitors, and reviews selectively some recent progresses in the relevant research and development.

  3. Manganese recycling in the United States in 1998

    USGS Publications Warehouse

    Jones, Thomas S.

    2001-01-01

    This report describes the flow and processing of manganese within the U.S. economy in 1998 with emphasis on the extent to which manganese is recycled. Manganese was used mostly as an alloying agent in alloys in which it was a minor component. Manganese was recycled mostly within scrap of iron and steel. A small amount was recycled within aluminum used beverage cans. Very little manganese was recycled from materials being recovered specifically for their manganese content. For the United States in 1998, 218,000 metric tons of manganese was estimated to have been recycled from old scrap, of which 96% was from iron and steel scrap. Efficiency of recycling was estimated as 53% and recycling rate as 37%. Metallurgical loss of manganese was estimated to be about 1.7 times that recycled. This loss was mostly into slags from iron and steel production, from which recovery of manganese has yet to be shown economically feasible.

  4. Water oxidation chemistry of photosystem II.

    PubMed Central

    Vrettos, John S; Brudvig, Gary W

    2002-01-01

    The O(2)-evolving complex of photosystem II catalyses the light-driven four-electron oxidation of water to dioxygen in photosynthesis. In this article, the steps leading to photosynthetic O(2) evolution are discussed. Emphasis is given to the proton-coupled electron-transfer steps involved in oxidation of the manganese cluster by oxidized tyrosine Z (Y(*)(Z)), the function of Ca(2+) and the mechanism by which water is activated for formation of an O-O bond. Based on a consideration of the biophysical studies of photosystem II and inorganic manganese model chemistry, a mechanism for photosynthetic O(2) evolution is presented in which the O-O bond-forming step occurs via nucleophilic attack on an electron-deficient Mn(V)=O species by a calcium-bound water molecule. The proposed mechanism includes specific roles for the tetranuclear manganese cluster, calcium, chloride, Y(Z) and His190 of the D1 polypeptide. Recent studies of the ion selectivity of the calcium site in the O(2)-evolving complex and of a functional inorganic manganese model system that test key aspects of this mechanism are also discussed. PMID:12437878

  5. Sensitivity of water tupelo (Nyssa aquatica) and bald cypress (Taxodium distichum) seedlings to manganese enrichment under water-saturated conditions.

    PubMed

    McLeod, Kenneth W; Ciravolo, Thomas G

    2003-12-01

    In anaerobic soils of wetlands, Mn is highly available to plants because of the decreasing redox potential and pH of flooded soil. When growing adjacent to each another in wetland forests, water tupelo (Nyssa aquatica L.) had 10 times greater leaf manganese concentration than bald cypress (Taxodium distichum [L.] Richard). This interspecific difference was examined over a range of manganese-enriched soil conditions in a greenhouse experiment. Water tupelo and bald cypress seedlings were grown in fertilized potting soil enriched with 0, 40, 80, 160, 240, 320, and 400 mg Mn/L of soil and kept at saturated to slightly flooded conditions. Leaf Mn concentration was greater in water tupelo than bald cypress for all but the highest Mn addition treatment. Growth of water tupelo seedlings was adversely affected in treatments greater than 160 mg Mn/L. Total biomass of water tupelo in the highest Mn treatment was less than 50% of the control. At low levels of added Mn, bald cypress was able to restrict uptake of Mn at the roots with resulting low leaf Mn concentrations. Once that root restriction was exceeded, Mn concentration in bald cypress leaves increased greatly with treatment; that is, the highest treatment was 40 times greater than control (4,603 vs 100 microg/g, respectively), but biomass of bald cypress was unaffected by manganese additions. Bald cypress, a tree that does not naturally accumulate manganese, does so under manganese-enriched conditions and without biomass reduction in contrast to water tupelo, which is severely affected by higher soil Mn concentrations. Thus, bald cypress would be less affected by increased manganese availability in swamps receiving acidic inputs such as acid mine drainage, acid rain, or oxidization of pyritic soils.

  6. Electrochemical analyses of redox-active iron minerals: a review of nonmediated and mediated approaches.

    PubMed

    Sander, Michael; Hofstetter, Thomas B; Gorski, Christopher A

    2015-05-19

    Redox-active minerals are ubiquitous in the environment and are involved in numerous electron transfer reactions that significantly affect biogeochemical processes and cycles as well as pollutant dynamics. As a consequence, research in different scientific disciplines is devoted to elucidating the redox properties and reactivities of minerals. This review focuses on the characterization of mineral redox properties using electrochemical approaches from an applied (bio)geochemical and environmental analytical chemistry perspective. Establishing redox equilibria between the minerals and working electrodes is a major challenge in electrochemical measurements, which we discuss in an overview of traditional electrochemical techniques. These issues can be overcome with mediated electrochemical analyses in which dissolved redox mediators are used to increase the rate of electron transfer and to facilitate redox equilibration between working electrodes and minerals in both amperometric and potentiometric measurements. Using experimental data on an iron-bearing clay mineral, we illustrate how mediated electrochemical analyses can be employed to derive important thermodynamic and kinetic data on electron transfer to and from structural iron. We summarize anticipated methodological advancements that will further contribute to advance an improved understanding of electron transfer to and from minerals in environmentally relevant redox processes.

  7. Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging.

    PubMed

    Keshari, Kayvan R; Kurhanewicz, John; Bok, Robert; Larson, Peder E Z; Vigneron, Daniel B; Wilson, David M

    2011-11-15

    Reduction and oxidation (redox) chemistry is involved in both normal and abnormal cellular function, in processes as diverse as circadian rhythms and neurotransmission. Intracellular redox is maintained by coupled reactions involving NADPH, glutathione (GSH), and vitamin C, as well as their corresponding oxidized counterparts. In addition to functioning as enzyme cofactors, these reducing agents have a critical role in dealing with reactive oxygen species (ROS), the toxic products of oxidative metabolism seen as culprits in aging, neurodegenerative disease, and ischemia/ reperfusion injury. Despite this strong relationship between redox and human disease, methods to interrogate a redox pair in vivo are limited. Here we report the development of [1-(13)C] dehydroascorbate [DHA], the oxidized form of Vitamin C, as an endogenous redox sensor for in vivo imaging using hyperpolarized (13)C spectroscopy. In murine models, hyperpolarized [1-(13)C] DHA was rapidly converted to [1-(13)C] vitamin C within the liver, kidneys, and brain, as well as within tumor in a transgenic prostate cancer mouse. This result is consistent with what has been previously described for the DHA/Vitamin C redox pair, and points to a role for hyperpolarized [1-(13)C] DHA in characterizing the concentrations of key intracellular reducing agents, including GSH. More broadly, these findings suggest a prognostic role for this new redox sensor in determining vulnerability of both normal and abnormal tissues to ROS.

  8. Redox Deposition of Nanoscale Metal Oxides on Carbon for Next-Generation Electrochemical Capacitors

    DTIC Science & Technology

    2013-01-01

    ruthenium and manganese oxides) provide a strategy for bridging the power/energy performance gap between batteries and conventional ECs. These processes...buffer is added to the electrolyte to bring the pH to ∼8.5.24 Ruthenium Oxide. Ruthenium dioxide (RuO2) is the performance champion among the...Redox Deposition of Nanoscale Metal Oxides Sassin et al. RuO2, with up to 704 F g(RuO2) 1 but only at lower oxide loadings (25 wt %). Ruthenium

  9. Development and Applications of Thallium isotopes: a new proxy tracking the extent of manganese oxide burial

    NASA Astrophysics Data System (ADS)

    Owens, J. D.; Nielsen, S.; Ostrander, C.; Peterson, L. C.; Anbar, A. D.

    2015-12-01

    Thallium (Tl) isotopes are a new and potential powerful paleoredox proxy with the possibility to track bottom water oxygen conditions based on the burial flux of manganese oxides. Thallium has a residence time of ~20 thousand years, which is long enough to render modern oxic seawater conservative with respect to concentration and isotopes. The isotopic signature of Tl in the global ocean is driven mainly by two outputs (1) adsorption onto manganese oxides and (2) low temperature oceanic crust alteration. Importantly, the isotopic inputs of Tl are all nearly the same value; thus, the isotopic composition and flux of the outputs almost exclusively set the seawater signature. For relatively short term redox events it is reasonable to assume that the dominant isotope fractionation process is associated with manganese oxide precipitation because low temperature alteration is controlled by long-term average ocean crust production rates. We present a broad range of modern samples that span several open ocean profiles combined with water column and sediment profiles from the permanently anoxic basins of the Black Sea and Cariaco Basins. The open ocean shows no variation in depth profiles that encompass most of the major water masses in the Atlantic and Southern Oceans. The anoxic basins, however, reveal Tl isotope signatures closer to their inputs, which is likely due to basinal restriction. The authigenic fraction of organic-rich sediments from the Black Sea and Cariaco Basin capture the Tl isotope value of the overlying water column, which shows that Tl isotopes could be applied as a faithful deep time redox proxy. For the first time, we will present new data showing that Tl isotopes is tracking bottom water ocean oxygenation. We are applying this isotope system to ancient samples, testing the spatial and temporal variability of ocean oxygenation coinciding with major biogeochemical events.

  10. Mouse redox histology using genetically encoded probes.

    PubMed

    Fujikawa, Yuuta; Roma, Leticia P; Sobotta, Mirko C; Rose, Adam J; Diaz, Mauricio Berriel; Locatelli, Giuseppe; Breckwoldt, Michael O; Misgeld, Thomas; Kerschensteiner, Martin; Herzig, Stephan; Müller-Decker, Karin; Dick, Tobias P

    2016-03-15

    Mapping the in vivo distribution of endogenous oxidants in animal tissues is of substantial biomedical interest. Numerous health-related factors, including diet, physical activity, infection, aging, toxins, or pharmacological intervention, may cause redox changes. Tools are needed to pinpoint redox state changes to particular organs, tissues, cell types, and subcellular organelles. We describe a procedure that preserves the in vivo redox state of genetically encoded redox biosensors within histological tissue sections, thus providing "redox maps" for any tissue and comparison of interest. We demonstrate the utility of the technique by visualizing endogenous redox differences and changes in the context of tumor growth, inflammation, embryonic development, and nutrient starvation.

  11. NASA Redox Project status summary

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.

    1983-01-01

    This report is a summary of the results of the Redox Project effort during Cy 1982. It was presented at the Fifth U.S. Department of Energy Battery and Electrochemical Contractors Conference, Arlington, Va., Dec. 7-9, 1982. The major development during 1982 was the shift from Redox system operation at 25 C with unmixed reactants to operation at 65 C with mixed reactants. This change has made possible a two- or three-fold increase in operating current density, to about 65 mA/sq cm, and an increase in reactant utilization from 40% to about 90%. Both of these improvements will lead to significant system cost reductions. Contract studies have indicated that Redox reactant costs also will be moderate. A new catalyst for the chromuim electrode offers all the advantages of the conventional gold-lead catalyst while being easier to apply and more forgiving in use.

  12. Redox evolution of a degassing magma rising to the surface.

    PubMed

    Burgisser, Alain; Scaillet, Bruno

    2007-01-11

    Volatiles carried by magmas, either dissolved or exsolved, have a fundamental effect on a variety of geological phenomena, such as magma dynamics and the composition of the Earth's atmosphere. In particular, the redox state of volcanic gases emanating at the Earth's surface is widely believed to mirror that of the magma source, and is thought to have exerted a first-order control on the secular evolution of atmospheric oxygen. Oxygen fugacity (f(O2) estimated from lava or related gas chemistry, however, may vary by as much as one log unit, and the reason for such differences remains obscure. Here we use a coupled chemical-physical model of conduit flow to show that the redox state evolution of an ascending magma, and thus of its coexisting gas phase, is strongly dependent on both the composition and the amount of gas in the reservoir. Magmas with no sulphur show a systematic f(O2) increase during ascent, by as much as 2 log units. Magmas with sulphur show also a change of redox state during ascent, but the direction of change depends on the initial f(O2) in the reservoir. Our calculations closely reproduce the H2S/SO2 ratios of volcanic gases observed at convergent settings, yet the difference between f(O2) in the reservoir and that at the exit of the volcanic conduit may be as much as 1.5 log units. Thus, the redox state of erupted magmas is not necessarily a good proxy of the redox state of the gases they emit. Our findings may require re-evaluation of models aimed at quantifying the role of magmatic volatiles in geological processes.

  13. Electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue.

    PubMed

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Du, Jun; Tao, Changyuan

    2015-10-01

    Electrolytic manganese residue (EMR) is a solid waste found in filters after sulphuric acid leaching of manganese carbonate ore, which mainly contains manganese and ammonia nitrogen and seriously damages the ecological environment. This work demonstrated the use of electrokinetic (EK) remediation to remove ammonia nitrogen and manganese from EMR. The transport behavior of manganese and ammonia nitrogen from EMR during electrokinetics, Mn fractionation before and after EK treatment, the relationship between Mn fractionation and transport behavior, as well as the effects of electrolyte and pretreatment solutions on removal efficiency and energy consumption were investigated. The results indicated that the use of H2SO4 and Na2SO4 as electrolytes and pretreatment of EMR with citric acid and KCl can reduce energy consumption, and the removal efficiencies of manganese and ammonia nitrogen were 27.5 and 94.1 %, respectively. In these systems, electromigration and electroosmosis were the main mechanisms of manganese and ammonia nitrogen transport. Moreover, ammonia nitrogen in EMR reached the regulated level, and the concentration of manganese in EMR could be reduced from 455 to 37 mg/L. In general, the electrokinetic remediation of EMR is a promising technology in the future.

  14. Redox Regulation of Plant Development

    PubMed Central

    Considine, Michael J.

    2014-01-01

    Abstract Significance: We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. Recent Advances: Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. Critical Issues: The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. Future Directions: The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context. Antioxid. Redox Signal. 21, 1305–1326. PMID:24180689

  15. Autonomic function in manganese alloy workers.

    PubMed

    Barrington, W W; Angle, C R; Willcockson, N K; Padula, M A; Korn, T

    1998-07-01

    The observation of orthostatic hypotension in an index case of manganese toxicity lead to this prospective attempt to evaluate cardiovascular autonomic function and cognitive and emotional neurotoxicity in eight manganese alloy welders and machinists. The subjects consisted of a convenience sample consisting of an index case of manganese dementia, his four co-workers in a "frog shop" for gouging, welding, and grinding repair of high manganese railway track and a convenience sample of three mild steel welders with lesser manganese exposure also referred because of cognitive or autonomic symptoms. Frog shop air manganese samples 9.6-10 years before and 1.2-3.4 years after the diagnosis of the index case exceeded 1.0 mg/m3 in 29% and 0.2 mg/m3 in 62%. Twenty-four-hour electrocardiographic (Holter) monitoring was used to determine the temporal variability of the heartrate (RR' interval) and the rates of change at low frequency (0.04-0.15 Hz) and high frequency (0.15-0.40 Hz). MMPI and MCMI personality assessment and short-term memory, figure copy, controlled oral word association, and symbol digit tests were used. The five frog shop workers had abnormal sympathovagal balance with decreased high frequency variability (increased ln LF/ln HF). Seven of the eight workers had symptoms of autonomic dysfunction and significantly decreased heart rate variability (rMSSD) but these did not distinguish the relative exposure. Mood or affect was disturbed in all with associated changes in short-term memory and attention in four of the subjects. There were no significant correlations with serum or urine manganese. Power spectrum analysis of 24-h ambulatory ECG indicating a decrease in parasympathetic high frequency activation of heart rate variability may provide a sensitive index of central autonomic dysfunction reflecting increased exposure to manganese, although the contribution of exposures to solvents and other metals cannot be excluded. Neurotoxicity due to the gouging

  16. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines laboratory procedures, demonstrations, teaching suggestions, and content information related to chemistry. Topics include polarizing power; calorimetry and momentum; microcomputers in school chemistry; a constant-volume dispenser for liquids, floating magnets, and crystal lattices; preparation of chromium; and solvent polarity and…

  17. Characterization of protein redox dynamics induced during light-to-dark transitions and nutrient limitation in cyanobacteria

    SciTech Connect

    Ansong, Charles; Sadler, Natalie C.; Hill, Eric A.; Lewis, Michael P.; Zink, Erika M.; Smith, Richard D.; Beliaev, Alex S.; Konopka, Allan; Wright, Aaron T.

    2014-07-03

    Protein redox chemistry constitutes a major void in knowledge pertaining to photoautotrophic system regulation and signaling processes. We have employed a chemical biology approach to analyze redox sensitive proteins in live Synechococcus sp. PCC 7002 cells in both light and dark periods, and to understand how cellular redox balance is disrupted during nutrient perturbation. The present work identified several novel putative redox-sensitive proteins that are involved in the generation of reductant, macromolecule synthesis, and carbon flux through central metabolic pathways, and may be involved in cell signaling and response mechanisms. Furthermore, our research suggests that dynamic redox changes in response to specific nutrient limitations contribute to the regulatory changes driven by a shift from light to dark. Taken together, these results contribute to the high-level understanding of post-translational mechanisms regulating flux distributions and therefore present potential metabolic engineering targets for redirecting carbon towards biofuel precursors.

  18. Study of high performance alloy electroforming. [nickel manganese and nickel cobalt manganese alloys

    NASA Technical Reports Server (NTRS)

    Malone, G. A.

    1984-01-01

    Nickel-manganese alloy electrodeposits from an electrolyte containing more manganese ion than previously used is being evaluated at two bath operating temperatures with a great variety of pulse plating conditions. Saccharine was added as a stress reducing agent for the electroforming of several of the samples with highest manganese content. All specimens for mechanical property testing have been produced but are not through the various heat treatments as yet. One of the heat treatment will be at 343 C (650 F), the temperature at which the MCC outer electroformed nickel shell is stress relieved. A number of retainer specimens from prior work have been tested for hardness before and after heat treatment. There appears to be a fairly good correlation between hardness and mechanical properties. Comparison of representative mechanical properties with hardnesses are made for nickel-manganese electrodeposits and nickel-cobalt-manganese deposits.

  19. Systems and methods for rebalancing redox flow battery electrolytes

    DOEpatents

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  20. Hybrid ternary rice paper-manganese oxide-carbon nanotube nanocomposites for flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchao; Zhang, Kaixi; Wei, Li; Yu, Dingshan; Wei, Jun; Chen, Yuan

    2013-10-01

    Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications.Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two

  1. Manganese-catalyzed late-stage aliphatic C-H azidation.

    PubMed

    Huang, Xiongyi; Bergsten, Tova M; Groves, John T

    2015-04-29

    We report a manganese-catalyzed aliphatic C-H azidation reaction that can efficiently convert secondary, tertiary, and benzylic C-H bonds to the corresponding azides. The method utilizes aqueous sodium azide solution as the azide source and can be performed under air. Besides its operational simplicity, the potential of this method for late-stage functionalization has been demonstrated by successful azidation of various bioactive molecules with yields up to 74%, including the important drugs pregabalin, memantine, and the antimalarial artemisinin. Azidation of celestolide with a chiral manganese salen catalyst afforded the azide product in 70% ee, representing a Mn-catalyzed enantioselective aliphatic C-H azidation reaction. Considering the versatile roles of organic azides in modern chemistry and the ubiquity of aliphatic C-H bonds in organic molecules, we envision that this Mn-azidation method will find wide application in organic synthesis, drug discovery, and chemical biology.

  2. Redox processes in pore water of anoxic sediments with shallow gas.

    PubMed

    Ramírez-Pérez, A M; de Blas, E; García-Gil, S

    2015-12-15

    The Ría de Vigo (NW Spain) has a high organic matter content and high rates of sedimentation. The microbial degradation of this organic matter has led to shallow gas accumulations of methane, currently distributed all along the ría. These peculiar characteristics favor the development of anoxic conditions that can determine the dynamics of iron and manganese. In order to study the role played by iron and manganese in the processes that take place in anoxic sediments with shallow gas, four gravity cores were retrieved in anoxic sediments of the Ría de Vigo in November 2012. Methane was present in two of them, below 90cm in the inner zone and below 200cm, in the outer zone. Pore water was collected and analyzed for vertical profiles of pH, sulfide, sulfate, iron and manganese concentrations. Sulfate concentrations decreased with depth but never reached the minimum detection limit. High sulfide concentrations were measured in all cores. The highest sulfide concentrations were found in the inner zone with methane and the lowest were in the outer zone without methane. Concentrations of iron and manganese reached maximum values in the upper layers of the sediment, decreasing with depth, except in the outer zone without gas, where iron and manganese concentration increased strongly toward the bottom of the sediment. In areas with shallow gas iron reduction, sulfate reduction and methane production processes coexist, showing that the traditional redox cascade is highly simplified and suggesting that iron may be involved in a cryptic sulfur cycle and in the oxidation of methane.

  3. Manganese-Schiff base complexes as catalysts for water photolysis.

    PubMed

    González-Riopedre, Gustavo; Fernández-García, M Isabel; González-Noya, Ana M; Vázquez-Fernández, M Ángeles; Bermejo, Manuel R; Maneiro, Marcelino

    2011-10-28

    Four manganese(III)-Schiff base complexes (1-4) of formula [MnL(n)(H(2)O)(2)](2)(ClO(4))(2)·mH(2)O (n = 1-4; m = 0, 1) have been prepared. The multidentate H(2)L(n) Schiff base ligands consist of 3R,5R-substituted N,N'-bis(salicylidene)-1,2-diimino-2,2-dimethylethane, where R = OEt, OMe, Br or Cl. The complexes have been thoroughly characterized by elemental analysis, mass spectrometry, magnetic susceptibility measurements, IR, UV, paramagnetic (1)H NMR and EPR spectroscopies. Other properties, including redox studies and molar conductivity measurements, have also been assessed. The crystal structure of 1 was solved by X-ray diffraction, which revealed the dimeric nature of the compound through μ-aqua bridges. The ability of these complexes to split water has been studied by water photolysis experiments, with the oxygen evolution measured in aqueous media in the presence of a hydrogen acceptor (p-benzoquinone), the reduction of which was followed by UV-spectroscopy. The discussion of the photolytic behaviour includes advances in the knowledge of the structural motifs and the chemical activity of this type of complex, as revealed by the development of several characterization techniques in the last decade. Parallel-mode Mn(III) EPR shows that complexes 1-4 not only mimic reactivity but also share some structural characteristics from partially assembled natural OEC clusters.

  4. Manganese oxide minerals: Crystal structures and economic and environmental significance

    PubMed Central

    Post, Jeffrey E.

    1999-01-01

    Manganese oxide minerals have been used for thousands of years—by the ancients for pigments and to clarify glass, and today as ores of Mn metal, catalysts, and battery material. More than 30 Mn oxide minerals occur in a wide variety of geological settings. They are major components of Mn nodules that pave huge areas of the ocean floor and bottoms of many fresh-water lakes. Mn oxide minerals are ubiquitous in soils and sediments and participate in a variety of chemical reactions that affect groundwater and bulk soil composition. Their typical occurrence as fine-grained mixtures makes it difficult to study their atomic structures and crystal chemistries. In recent years, however, investigations using transmission electron microscopy and powder x-ray and neutron diffraction methods have provided important new insights into the structures and properties of these materials. The crystal structures for todorokite and birnessite, two of the more common Mn oxide minerals in terrestrial deposits and ocean nodules, were determined by using powder x-ray diffraction data and the Rietveld refinement method. Because of the large tunnels in todorokite and related structures there is considerable interest in the use of these materials and synthetic analogues as catalysts and cation exchange agents. Birnessite-group minerals have layer structures and readily undergo oxidation reduction and cation-exchange reactions and play a major role in controlling groundwater chemistry. PMID:10097056

  5. Use of poisons in determination of microbial manganese binding rates in seawater

    SciTech Connect

    Rosson, R.A.; Tebo, B.M.; Nealson, K.H.

    1984-04-01

    A method was developed to determine whether microorganisms mediate the precipitation of manganese(II) in the marine environment. Radioactive /sup 54/Mn(II) was used as a tracer to measure the precipitation (binding and oxidation) of Mn(II) (i.e., the /sup 54/Mn(II) trapped on 0.2-..mu..m membrane filters) in the presence and absence of biological poisons. A variety of antibiotics, fixatives, and metabolic inhibitors were tested in laboratory control experiments to select poisons that did not interfere in the chemistry of manganese. The poisons were deemed suitable if (i) they did not complex Mn(II) more strongly than the ion-exchange resin Chelex 100, (ii) they did not interfere in the adsorption of /sup 54/Mn(II) onto synthetic deltaMnO/sub 2/ (manganate), (iii) they did not cause desorption of /sup 54/Mn(II) which had been preadsorbed onto synthetic manganate, and (iv) they did not solubilize synthetic /sup 54/manganate. In addition, several known chelators, reducing agents, and buffers normally added to microbiological growth media or used in biochemical assays were tested. Most additions interfered to some extent with manganese chemistry. However, at least one inhibitor, sodium azide, or a mixture of sodium azide, penicillin, and tetracycline was shown to be appropriate for use in field studies of /sup 54/Mn(II) binding. Formaldehyde could also be used in short incubations (1 to 3 h) but was not suitable for longer time course studies. The method was applied to studies of Mn(II) precipitation in Saanich Inlet, British Columbia, Canada. Bacteria were shown to significantly enhance the rate of Mn(II) removal from solution in the manganese-rich particulate layer which occurs just above the oxygen-hydrogen sulfide interface in the water column. 23 references.

  6. Mitochondrially targeted fluorescent redox sensors.

    PubMed

    Yang, Kylie; Kolanowski, Jacek L; New, Elizabeth J

    2017-04-06

    The balance of oxidants and antioxidants within the cell is crucial for maintaining health, and regulating physiological processes such as signalling. Consequently, imbalances between oxidants and antioxidants are now understood to lead to oxidative stress, a physiological feature that underlies many diseases. These processes have spurred the field of chemical biology to develop a plethora of sensors, both small-molecule and fluorescent protein-based, for the detection of specific oxidizing species and general redox balances within cells. The mitochondrion, in particular, is the site of many vital redox reactions. There is therefore a need to target redox sensors to this particular organelle. It has been well established that targeting mitochondria can be achieved by the use of a lipophilic cation-targeting group, or by utilizing natural peptidic mitochondrial localization sequences. Here, we review how these two approaches have been used by a number of researchers to develop mitochondrially localized fluorescent redox sensors that are already proving useful in providing insights into the roles of reactive oxygen species in the mitochondria.

  7. Rational design of metal nitride redox materials for solar-driven ammonia synthesis.

    PubMed

    Michalsky, Ronald; Pfromm, Peter H; Steinfeld, Aldo

    2015-06-06

    Fixed nitrogen is an essential chemical building block for plant and animal protein, which makes ammonia (NH3) a central component of synthetic fertilizer for the global production of food and biofuels. A global project on artificial photosynthesis may foster the development of production technologies for renewable NH3 fertilizer, hydrogen carrier and combustion fuel. This article presents an alternative path for the production of NH3 from nitrogen, water and solar energy. The process is based on a thermochemical redox cycle driven by concentrated solar process heat at 700-1200°C that yields NH3 via the oxidation of a metal nitride with water. The metal nitride is recycled via solar-driven reduction of the oxidized redox material with nitrogen at atmospheric pressure. We employ electronic structure theory for the rational high-throughput design of novel metal nitride redox materials and to show how transition-metal doping controls the formation and consumption of nitrogen vacancies in metal nitrides. We confirm experimentally that iron doping of manganese nitride increases the concentration of nitrogen vacancies compared with no doping. The experiments are rationalized through the average energy of the dopant d-states, a descriptor for the theory-based design of advanced metal nitride redox materials to produce sustainable solar thermochemical ammonia.

  8. Rational design of metal nitride redox materials for solar-driven ammonia synthesis

    PubMed Central

    Michalsky, Ronald; Pfromm, Peter H.; Steinfeld, Aldo

    2015-01-01

    Fixed nitrogen is an essential chemical building block for plant and animal protein, which makes ammonia (NH3) a central component of synthetic fertilizer for the global production of food and biofuels. A global project on artificial photosynthesis may foster the development of production technologies for renewable NH3 fertilizer, hydrogen carrier and combustion fuel. This article presents an alternative path for the production of NH3 from nitrogen, water and solar energy. The process is based on a thermochemical redox cycle driven by concentrated solar process heat at 700–1200°C that yields NH3 via the oxidation of a metal nitride with water. The metal nitride is recycled via solar-driven reduction of the oxidized redox material with nitrogen at atmospheric pressure. We employ electronic structure theory for the rational high-throughput design of novel metal nitride redox materials and to show how transition-metal doping controls the formation and consumption of nitrogen vacancies in metal nitrides. We confirm experimentally that iron doping of manganese nitride increases the concentration of nitrogen vacancies compared with no doping. The experiments are rationalized through the average energy of the dopant d-states, a descriptor for the theory-based design of advanced metal nitride redox materials to produce sustainable solar thermochemical ammonia. PMID:26052421

  9. Cost and Performance Model for Redox Flow Batteries

    SciTech Connect

    Viswanathan, Vilayanur V.; Crawford, Aladsair J.; Stephenson, David E.; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg W.; Thomsen, Edwin C.; Graff, Gordon L.; Balducci, Patrick J.; Kintner-Meyer, Michael CW; Sprenkle, Vincent L.

    2014-02-01

    A cost model was developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling was done to estimate stack performance at various power densities as a function of state of charge. This was supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio, electrolyte flow channel dimensions were adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates were obtained from various vendors to calculate cost estimates for present, realistic and optimistic scenarios. The main drivers for cost reduction for various chemistries were identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guided suitability of various chemistries for different applications.

  10. Control of high level radioactive waste-glass melters. Part 5, Modelling of complex redox effects

    SciTech Connect

    Bickford, D.F.; Choi, A.S.

    1991-12-31

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs.

  11. Soil manganese redox cycling in suboxic zones: Effects on soil carbon stability

    EPA Science Inventory

    Suboxic soil environments contain a disproportionately higher concentration of highly reactive free radicals relative to the surrounding soil matrix, which may have significant implications for soil organic matter cycling and stabilization. This study investigated how Mn-ozidizin...

  12. Circumstellar chemistry

    NASA Technical Reports Server (NTRS)

    Glassgold, Alfred E.; Huggins, Patrick J.

    1987-01-01

    The study of the outer envelopes of cool evolved stars has become an active area of research. The physical properties of CS envelopes are presented. Observations of many wavelengths bands are relevant. A summary of observations and a discussion of theoretical considerations concerning the chemistry are summarized. Recent theoretical considerations show that the thermal equilibrium model is of limited use for understanding the chemistry of the outer CS envelopes. The theoretical modeling of the chemistry of CS envelopes provides a quantitive test of chemical concepts which have a broader interest than the envelopes themselves.

  13. High-throughput screening of cellular redox sensors using modern redox proteomics approaches.

    PubMed

    Jiang, Jingwen; Wang, Kui; Nice, Edouard C; Zhang, Tao; Huang, Canhua

    2015-01-01

    Cancer cells are characterized by higher levels of intracellular reactive oxygen species (ROS) due to metabolic aberrations. ROS are widely accepted as second messengers triggering pivotal signaling pathways involved in the process of cell metabolism, cell cycle, apoptosis, and autophagy. However, the underlying cellular mechanisms remain largely unknown. Recently, accumulating evidence has demonstrated that ROS initiate redox signaling through direct oxidative modification of the cysteines of key redox-sensitive proteins (termed redox sensors). Uncovering the functional changes underlying redox regulation of redox sensors is urgently required, and the role of different redox sensors in distinct disease states still remains to be identified. To assist this, redox proteomics has been developed for the high-throughput screening of redox sensors, which will benefit the development of novel therapeutic strategies for cancer treatment. Highlighted here are recent advances in redox proteomics approaches and their applications in identifying redox sensors involved in tumor development.

  14. TEM Study of Manganese Biosorption by Cyanobacterium Synechocystis 6803

    SciTech Connect

    Dohnalkova, Alice; Bilskis, Christina L.; Kennedy, David W.

    2006-09-01

    The capture of solar energy and its conversion into chemical energy in photosynthetic organisms involves a series of charge reactions across photosynthetic membranes. Oxygen is generated by a proton-electron coupling in photosystem II (PSII) during a water oxidation process where hydrogen is extracted from water terminally bound to a Mn4Ca1Clx inorganic cluster [1]. Manganese is, therefore, an essential catalytic element for photosynthetic growth in cyanobacteria and plants. Since bioavailability of this micronutrient largely depends on the Mn concentration in natural environments, cells have to manage its uptake in order to endure Mn fluctuations. Previous studies have shown that metal biosorption in cyanobacteria can occur by passive adsorption to their outer membrane (pool A), and by metabolically mediated internal uptake [2]. The fresh water cyanobacterium Synechocystis 6803 has been widely used as a model organism for studying photosynthetic processes. This Gram-negative organism has an intricate architecture of internal thylakoid membranes where photosynthetic electron transfer takes place. Here we report on the spatial distribution of Mn biosorbed by cells in both external pool A and intracellular pool B, as observed and analyzed by methods of TEM. The Synechocystis 6803 cells were cultured in BG11 medium at 30 C with continuous irradiance and constant air bubbling. To determine the influence of solid or liquid Mn substrate and its oxidation state on the cell biosorption ability, cells were exposed to two Mn substrates: 1mM solution of MnCl2, and 0.5mM suspension of nanocrystalline MnO2. Cells were incubated with the respective Mn solutions for 48 hours, harvested, and processed using a modified protocol for plastic embedding of bacterial samples containing minerals that was developed in our laboratory [3]. In order to preserve the fragile redox conditions within the cells, all the common heavy metal-based fixatives and stains were omitted, resulting in

  15. Environmental effects and exposures to manganese from use of methylcyclopentadienyl manganese tricarbonyl (MMT) in gasoline.

    PubMed

    Lynam, D R; Roos, J W; Pfeifer, G D; Fort, B F; Pullin, T G

    1999-01-01

    Methylcyclopentadienyl Manganese Tricarbonyl (MMT) has been used since the 1970s in the U.S. as a gasoline octane enhancer Extensive testing of the effects of MMT on regulated gaseous emissions carried out on a wide variety of automobiles showed that use of MMT resulted in significantly lower NOx emissions Tests showed that less than 15% of the manganese from MMT combustion was emitted from the tailpipe, mostly in the PM2.5 fraction as manganese phosphate, with some manganese sulfate and a very small amount of manganese oxide. MMT has been used in Canada in virtually all unleaded gasoline for about 20 years. A probability-based study involving over 900 personal exposure samples in Toronto confirmed exposures to airborne PM2.5 Mn in the general population are quite low (.008 microgram/m3-median). Ambient levels of airborne manganese in Toronto are about the same as those in areas where MMT is not used. Exposures to manganese among the general population in Toronto are well within safe limits determined by the U.S. EPA and other standard setting bodies around the world.

  16. Real-Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction.

    PubMed

    Johnson, Jena E; Savalia, Pratixa; Davis, Ryan; Kocar, Benjamin D; Webb, Samuel M; Nealson, Kenneth H; Fischer, Woodward W

    2016-04-19

    Manganese oxides are often highly reactive and easily reduced, both abiotically, by a variety of inorganic chemical species, and biologically during anaerobic respiration by microbes. To evaluate the reaction mechanisms of these different reduction routes and their potential lasting products, we measured the sequence progression of microbial manganese(IV) oxide reduction mediated by chemical species (sulfide and ferrous iron) and the common metal-reducing microbe Shewanella oneidensis MR-1 under several endmember conditions, using synchrotron X-ray spectroscopic measurements complemented by X-ray diffraction and Raman spectroscopy on precipitates collected throughout the reaction. Crystalline or potentially long-lived phases produced in these experiments included manganese(II)-phosphate, manganese(II)-carbonate, and manganese(III)-oxyhydroxides. Major controls on the formation of these discrete phases were alkalinity production and solution conditions such as inorganic carbon and phosphate availability. The formation of a long-lived Mn(III) oxide appears to depend on aqueous Mn(2+) production and the relative proportion of electron donors and electron acceptors in the system. These real-time measurements identify mineralogical products during Mn(IV) oxide reduction, contribute to understanding the mechanism of various Mn(IV) oxide reduction pathways, and assist in interpreting the processes occurring actively in manganese-rich environments and recorded in the geologic record of manganese-rich strata.

  17. Catalytic Chemistry.

    ERIC Educational Resources Information Center

    Borer, Londa; And Others

    1996-01-01

    Describes an approach for making chemistry relevant to everyday life. Involves the study of kinetics using the decomposition of hydrogen peroxide by vegetable juices. Allows students to design and carry out experiments and then draw conclusions from their results. (JRH)

  18. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Describes equipment, activities, and experiments useful in chemistry instruction, including among others, a rapid method to determine available chlorine in bleach, simple flame testing apparatus, and a simple apparatus demonstrating the technique of flash photolysis. (SK)

  19. Nuclear Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  20. Precolumbian Chemistry.

    ERIC Educational Resources Information Center

    Robinson, Janet Bond

    1995-01-01

    Describes the content and development of a curriculum that provides an approach to descriptive chemistry and the history of technology through consideration of the pottery, metallurgy, pigments, dyes, agriculture, and medicine of pre-Columbian people. (DDR)

  1. Silver manganese oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  2. Stratospheric chemistry

    SciTech Connect

    Brune, W.H. )

    1991-01-01

    Advances in stratospheric chemistry made by investigators in the United States from 1987 to 1990 are reviewed. Subject areas under consideration include photochemistry of the polar stratosphere, photochemistry of the global stratosphere, and assessments of inadvertent modification of the stratosphere by anthropogenic activity. Particular attention is given to early observations and theories, gas phase chemistry, Antarctic observations, Arctic observations, odd-oxygen, odd-hydrogen, odd-nitrogen, halogens, aerosols, modeling of stratospheric ozone, and reactive nitrogen effects.

  3. Manganese (II) induces chemical hypoxia by inhibiting HIF-prolyl hydroxylase: Implication in manganese-induced pulmonary inflammation

    SciTech Connect

    Han, Jeongoh; Lee, Jong-Suk; Choi, Daekyu; Lee, Youna; Hong, Sungchae; Choi, Jungyun; Han, Songyi; Ko, Yujin; Kim, Jung-Ae; Mi Kim, Young; Jung, Yunjin

    2009-03-15

    Manganese (II), a transition metal, causes pulmonary inflammation upon environmental or occupational inhalation in excess. We investigated a potential molecular mechanism underlying manganese-induced pulmonary inflammation. Manganese (II) delayed HIF-1{alpha} protein disappearance, which occurred by inhibiting HIF-prolyl hydroxylase (HPH), the key enzyme for HIF-1{alpha} hydroxylation and subsequent von Hippel-Lindau(VHL)-dependent HIF-1{alpha} degradation. HPH inhibition by manganese (II) was neutralized significantly by elevated dose of iron. Consistent with this, the induction of cellular HIF-1{alpha} protein by manganese (II) was abolished by pretreatment with iron. Manganese (II) induced the HIF-1 target gene involved in pulmonary inflammation, vascular endothelial growth factor (VEGF), in lung carcinoma cell lines. The induction of VEGF was dependent on HIF-1. Manganese-induced VEGF promoted tube formation of HUVEC. Taken together, these data suggest that HIF-1 may be a potential mediator of manganese-induced pulmonary inflammation.

  4. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  5. Conformational selectivity in cytochrome P450 redox partner interactions

    PubMed Central

    Hollingsworth, Scott A.; Batabyal, Dipanwita; Nguyen, Brian D.; Poulos, Thomas L.

    2016-01-01

    The heme iron of cytochromes P450 must be reduced to bind and activate molecular oxygen for substrate oxidation. Reducing equivalents are derived from a redox partner, which requires the formation of a protein–protein complex. A subject of increasing discussion is the role that redox partner binding plays, if any, in favoring significant structural changes in the P450s that are required for activity. Many P450s now have been shown to experience large open and closed motions. Several structural and spectral studies indicate that the well-studied P450cam adopts the open conformation when its redox partner, putidaredoxin (Pdx), binds, whereas recent NMR studies indicate that this view is incorrect. Given the relevance of this discrepancy to P450 chemistry, it is important to determine whether Pdx favors the open or closed form of P450cam. Here, we have used both computational and experimental isothermal titration calorimetry studies that unequivocally show Pdx favors binding to the open form of P450cam. Analyses of molecular-dynamic trajectories also provide insights into intermediate conformational states that could be relevant to catalysis. PMID:27439869

  6. Numerical modeling of an all vanadium redox flow battery.

    SciTech Connect

    Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.

    2014-01-01

    We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.

  7. Carbon Nanotube/Graphene Supercapacitors Containing Manganese Oxide Nanoparticles

    DTIC Science & Technology

    2012-12-01

    Carbon Nanotube/Graphene Supercapacitors Containing Manganese Oxide Nanoparticles by Matthew Ervin, Vinay Raju, Mary Hendrickson, and...Laboratory Adelphi, MD 20783-1197 ARL-TR-6289 December 2012 Carbon Nanotube/Graphene Supercapacitors Containing Manganese Oxide...From - To) October 2011 to September 2012 4. TITLE AND SUBTITLE Carbon Nanotube/Graphene Supercapacitors Containing Manganese Oxide Nanoparticles

  8. Essentiality, Toxicity and Uncertainty in the Risk Assessment of Manganese

    EPA Science Inventory

    Risk assessments of manganese by inhalation or oral routes of exposure typically acknowledge the duality of manganese as an essential element at low doses and a toxic metal at high doses. Previously, however, risk assessors were unable to describe manganese pharmacokinetics quant...

  9. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this...

  10. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this...

  11. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this...

  12. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this...

  13. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this...

  14. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor

    NASA Technical Reports Server (NTRS)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Microbes that couple growth to the reduction of manganese could play an important role in the biogeochemistry of certain anaerobic environments. Such a bacterium, Alteromonas putrefaciens MR-1, couples its growth to the reduction of manganese oxides only under anaerobic conditions. The characteristics of this reduction are consistent with a biological, and not an indirect chemical, reduction of manganese, which suggest that this bacterium uses manganic oxide as a terminal electron acceptor. It can also utilize a large number of other compounds as terminal electron acceptors; this versatility could provide a distinct advantage in environments where electron-acceptor concentrations may vary.

  15. Unusual redox stability of neptunium in the ionic liquid [Hbet][Tf(2)N].

    PubMed

    Long, Kristy; Goff, George; Runde, Wolfgang

    2014-07-25

    The behavior of neptunium in the ionic liquid betaine bistriflimide, [Hbet][Tf2N], has been studied spectroscopically at room temperature and 60 °C for the first time. An unprecedented complex redox chemistry is observed, with up to three oxidation states (iv, v and vi) and up to six Np species existing simultaneously. Both redox reactions and coordination of betaine are observed for Np(iv), (v) and (vi). Elevating the temperature accelerates the coordination of Np(v) with betaine and reduction reactions slow down.

  16. Metal Uptake by Manganese Superoxide Dismutase

    PubMed Central

    Whittaker, James W.

    2009-01-01

    Manganese superoxide dismutase is an important antioxidant defense metalloenzyme that protects cells from damage by the toxic oxygen metabolite, superoxide free radical, formed as an unavoidable by-product of aerobic metabolism. Many years of research have gone into understanding how the metal cofactor interacts with small molecules in its catalytic role. In contrast, very little is presently known about how the protein acquires its metal cofactor, an important step in the maturation of the protein and one that is absolutely required for its biological function. Recent work is beginning to provide insight into the mechanisms of metal delivery to manganese superoxide dismutase in vivo and in vitro. PMID:19699328

  17. Flowable conducting particle networks in redox-active electrolytes for grid energy storage

    DOE PAGES

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; ...

    2015-01-09

    This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributionsmore » (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less

  18. Flowable conducting particle networks in redox-active electrolytes for grid energy storage

    SciTech Connect

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; Gogotsi, Yury G.

    2015-01-09

    This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.

  19. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions.

    PubMed

    Mueller, David N; Machala, Michael L; Bluhm, Hendrik; Chueh, William C

    2015-01-19

    Surface redox-active centres in transition-metal oxides play a key role in determining the efficacy of electrocatalysts. The extreme sensitivity of surface redox states to temperatures, to gas pressures and to electrochemical reaction conditions renders them difficult to investigate by conventional surface-science techniques. Here we report the direct observation of surface redox processes by surface-sensitive, operando X-ray absorption spectroscopy using thin-film iron and cobalt perovskite oxides as model electrodes for elevated-temperature oxygen incorporation and evolution reactions. In contrast to the conventional view that the transition metal cations are the dominant redox-active centres, we find that the oxygen anions near the surface are a significant redox partner to molecular oxygen due to the strong hybridization between oxygen 2p and transition metal 3d electronic states. We propose that a narrow electronic state of significant oxygen 2p character near the Fermi level exchanges electrons with the oxygen adsorbates. This result highlights the importance of surface anion-redox chemistry in oxygen-deficient transition-metal oxides.

  20. Predicting groundwater redox status on a regional scale using linear discriminant analysis.

    PubMed

    Close, M E; Abraham, P; Humphries, B; Lilburne, L; Cuthill, T; Wilson, S

    2016-08-01

    Reducing conditions are necessary for denitrification, thus the groundwater redox status can be used to identify subsurface zones where potentially significant nitrate reduction can occur. Groundwater chemistry in two contrasting regions of New Zealand was classified with respect to redox status and related to mappable factors, such as geology, topography and soil characteristics using discriminant analysis. Redox assignment was carried out for water sampled from 568 and 2223 wells in the Waikato and Canterbury regions, respectively. For the Waikato region 64% of wells sampled indicated oxic conditions in the water; 18% indicated reduced conditions and 18% had attributes indicating both reducing and oxic conditions termed "mixed". In Canterbury 84% of wells indicated oxic conditions; 10% were mixed; and only 5% indicated reduced conditions. The analysis was performed over three different well depths, <25m, 25 to 100 and >100m. For both regions, the percentage of oxidised groundwater decreased with increasing well depth. Linear discriminant analysis was used to develop models to differentiate between the three redox states. Models were derived for each depth and region using 67% of the data, and then subsequently validated on the remaining 33%. The average agreement between predicted and measured redox status was 63% and 70% for the Waikato and Canterbury regions, respectively. The models were incorporated into GIS and the prediction of redox status was extended over the whole region, excluding mountainous land. This knowledge improves spatial prediction of reduced groundwater zones, and therefore, when combined with groundwater flow paths, improves estimates of denitrification.

  1. Predicting groundwater redox status on a regional scale using linear discriminant analysis

    NASA Astrophysics Data System (ADS)

    Close, M. E.; Abraham, P.; Humphries, B.; Lilburne, L.; Cuthill, T.; Wilson, S.

    2016-08-01

    Reducing conditions are necessary for denitrification, thus the groundwater redox status can be used to identify subsurface zones where potentially significant nitrate reduction can occur. Groundwater chemistry in two contrasting regions of New Zealand was classified with respect to redox status and related to mappable factors, such as geology, topography and soil characteristics using discriminant analysis. Redox assignment was carried out for water sampled from 568 and 2223 wells in the Waikato and Canterbury regions, respectively. For the Waikato region 64% of wells sampled indicated oxic conditions in the water; 18% indicated reduced conditions and 18% had attributes indicating both reducing and oxic conditions termed "mixed". In Canterbury 84% of wells indicated oxic conditions; 10% were mixed; and only 5% indicated reduced conditions. The analysis was performed over three different well depths, < 25 m, 25 to 100 and > 100 m. For both regions, the percentage of oxidised groundwater decreased with increasing well depth. Linear discriminant analysis was used to develop models to differentiate between the three redox states. Models were derived for each depth and region using 67% of the data, and then subsequently validated on the remaining 33%. The average agreement between predicted and measured redox status was 63% and 70% for the Waikato and Canterbury regions, respectively. The models were incorporated into GIS and the prediction of redox status was extended over the whole region, excluding mountainous land. This knowledge improves spatial prediction of reduced groundwater zones, and therefore, when combined with groundwater flow paths, improves estimates of denitrification.

  2. Cathodic current enhancement via manganese and oxygen related reactions in marine biofilms

    NASA Astrophysics Data System (ADS)

    Strom, Matthew James

    Corrosion is a threat that has economic, and environmental impacts worldwide. Many types of corrosive attack are the subject of ongoing research. One of these areas of research is microbiologically influenced corrosion, which is the enhancement and/or initiation of corrosion events caused by microorganisms. It is well known that colonies of microorganisms can enhance cathodic currents through biofilm formation. The aim of the present work was to elucidate the role of manganese in enhancing cathodic currents in the presence of biofilms. Repeated polarizations conducted in Delaware Bay waters, on biofilm coated Cr identified potentially sustainable reduction reactions. The reduction of MnO2 and the enhancement of the oxygen reduction reaction (ORR) were proven to be factors that influence cathodic current enhancement. The removal of ambient oxygen during polarizations resulted in a shutdown of cathodic current enhancement. These field data led to an exploration of the synergistic relationship between MnO2 and the ORR. Laboratory studies of the catalysis of peroxide disproportionation by MnO2 were monitored using a hanging mercury drop electrode. Experiments were run at an ambient sweater pH of 8 and pH 9, which simulated the near-surface conditions typical of cathodes immersed in seawater. Rapid reoxidation at the more basic pH was shown to allow manganese to behave as a persistent catalyst under the typical electrochemical surface conditions of a cathode. As a result a mechanism for ORR enhancement by manganese was proposed as a unique mechanism for cathodic current enhancement in biofilms. A separate field study of Delaware biofilms on stainless steel coupled to a sacrificial Al anode was carried out to identify the ORR enhancement mechanism and sustainable redox reactions at the cathode. Chemical treatments of glutaraldehyde and formaldoxime were applied to cathodes with biofilms to distinguish between enzymatic and MnO2 related ORR enhancement. The results ruled

  3. Acupuncture mechanism and redox equilibrium.

    PubMed

    Zeng, Xiang-Hong; Li, Qian-Qian; Xu, Qian; Li, Fang; Liu, Cun-Zhi

    2014-01-01

    Oxidative stress participates in the pathological process of various diseases. Acupuncture is a component of the health care system in China that can be traced back for at least 3000 years. Recently, increased evidences indicate that acupuncture stimulation could reduce oxidative damage in organisms under pathological state, but the exact mechanism remains unclear. This review focuses on the emerging links between acupuncture and redox modulation in various disorders, such as vascular dementia, Parkinson's disease, and hypertension, ranging from redox system, antioxidant system, anti-inflammatory system, and nervous system to signaling pathway. Although the molecular and cellular pathways studies of acupuncture effect on oxidative stress are preliminary, they represent an important step forward in the research of acupuncture antioxidative effect.

  4. Redox signaling in cardiac myocytes

    PubMed Central

    Santos, Celio X.C.; Anilkumar, Narayana; Zhang, Min; Brewer, Alison C.; Shah, Ajay M.

    2011-01-01

    The heart has complex mechanisms that facilitate the maintenance of an oxygen supply–demand balance necessary for its contractile function in response to physiological fluctuations in workload as well as in response to chronic stresses such as hypoxia, ischemia, and overload. Redox-sensitive signaling pathways are centrally involved in many of these homeostatic and stress-response mechanisms. Here, we review the main redox-regulated pathways that are involved in cardiac myocyte excitation–contraction coupling, differentiation, hypertrophy, and stress responses. We discuss specific sources of endogenously generated reactive oxygen species (e.g., mitochondria and NADPH oxidases of the Nox family), the particular pathways and processes that they affect, the role of modulators such as thioredoxin, and the specific molecular mechanisms that are involved—where this knowledge is available. A better understanding of this complex regulatory system may allow the development of more specific therapeutic strategies for heart diseases. PMID:21236334

  5. Cascade redox flow battery systems

    DOEpatents

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  6. Experienced Teachers' Pedagogical Content Knowledge of Teaching Acid-Base Chemistry

    ERIC Educational Resources Information Center

    Drechsler, Michal; Van Driel, Jan

    2008-01-01

    We investigated the pedagogical content knowledge (PCK) of nine experienced chemistry teachers. The teachers took part in a teacher training course on students' difficulties and the use of models in teaching acid-base chemistry, electrochemistry, and redox reactions. Two years after the course, the teachers were interviewed about their PCK of (1)…

  7. Redox signaling in acute pancreatitis

    PubMed Central

    Pérez, Salvador; Pereda, Javier; Sabater, Luis; Sastre, Juan

    2015-01-01

    Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF–VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis. PMID:25778551

  8. Redox signaling in acute pancreatitis.

    PubMed

    Pérez, Salvador; Pereda, Javier; Sabater, Luis; Sastre, Juan

    2015-08-01

    Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF-VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis.

  9. Redox Regulation of Protein Kinases

    PubMed Central

    Truong, Thu H.; Carroll, Kate S.

    2015-01-01

    Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous H2O2 by membrane-bound NADPH oxidases. In turn, H2O2 can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H2O2 regarding kinase activity, as well as the components involved in H2O2 production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H2O2 through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiologic and pathological H2O2 responses. PMID:23639002

  10. Competition for Manganese at the Host-Pathogen Interface.

    PubMed

    Kelliher, J L; Kehl-Fie, T E

    2016-01-01

    Transition metals such as manganese are essential nutrients for both pathogen and host. Vertebrates exploit this necessity to combat invading microbes by restricting access to these critical nutrients, a defense known as nutritional immunity. During infection, the host uses several mechanisms to impose manganese limitation. These include removal of manganese from the phagolysosome, sequestration of extracellular manganese, and utilization of other metals to prevent bacterial acquisition of manganese. In order to cause disease, pathogens employ a variety of mechanisms that enable them to adapt to and counter nutritional immunity. These adaptations include, but are likely not limited to, manganese-sensing regulators and high-affinity manganese transporters. Even though successful pathogens can overcome host-imposed manganese starvation, this defense inhibits manganese-dependent processes, reducing the ability of these microbes to cause disease. While the full impact of host-imposed manganese starvation on bacteria is unknown, critical bacterial virulence factors such as superoxide dismutases are inhibited. This chapter will review the factors involved in the competition for manganese at the host-pathogen interface and discuss the impact that limiting the availability of this metal has on invading bacteria.

  11. ADVERSE HEALTH EFFECTS FROM ENVIRONMENTAL MANGANESE EXPOSURE.

    EPA Science Inventory

    The ubiquitous element, manganese (Mn), is an essential nutrient, but toxic at excessive exposure levels. Therefore, the US EPA set guideline levels for Mn exposure through inhalation (reference concentration-RfC=0.05 ?g/m3) and ingestion (reference dose-RfD=0.14 mg/kg/day (10 mg...

  12. Geology of the manganese deposits of Cuba

    USGS Publications Warehouse

    Simons, Frank S.; Straczek, John A.

    1958-01-01

    Deposits of manganese ore have been found in five of the six provinces of Cuba and have been reported from the sixth.  Only Oriente and Pinar del Rio provinces have more than a few known deposits and only the deposits of Oriente have yielded any appreciable amount of ore.

  13. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  14. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients...

  15. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Manganese citrate. 582.5449 Section 582.5449 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  16. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients...

  17. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese hypophosphite. 582.5458 Section 582.5458 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  18. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Manganese hypophosphite. 582.5458 Section 582.5458 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  19. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Manganese gluconate. 582.5452 Section 582.5452 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  20. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese gluconate. 582.5452 Section 582.5452 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  1. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  2. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  3. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  4. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Manganese citrate. 582.5449 Section 582.5449 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  5. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Manganese hypophosphite. 582.5458 Section 582.5458 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  6. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Manganese hypophosphite. 582.5458 Section 582.5458 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  7. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  8. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  9. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Manganese hypophosphite. 582.5458 Section 582.5458 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  10. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  11. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Manganese citrate. 582.5449 Section 582.5449 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  12. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Manganese citrate. 582.5449 Section 582.5449 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  13. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients...

  14. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  15. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  16. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  17. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Manganese gluconate. 582.5452 Section 582.5452 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  18. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients...

  19. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients...

  20. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Manganese gluconate. 582.5452 Section 582.5452 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  1. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese citrate. 582.5449 Section 582.5449 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  2. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Manganese gluconate. 582.5452 Section 582.5452 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  3. Chemically activated manganese dioxide for dry batteries

    NASA Astrophysics Data System (ADS)

    Askar, M.; Abbas, H.

    1994-10-01

    The present investigation has enabled us to convert inactive beta-manganese dioxide to high electrochemically active types by chemical processes. Natural and chemically prepared beta-manganese dioxides were roasted at 1050 C to form Mn3O4. This compound was subjected to activation treatment using hydrochloric and sulfuric acid under various reaction conditions. The manganese dioxide so obtained was examined by x-ray diffraction, thermogravimetric, differential thermal, and chemical analyses. The structure of the dioxide obtained was found to be greatly dependent on the origin of MnO2 and type of acid used. Treatment with hydrochloric acid yielded the so-called gamma-variety while sulfuric acid tended to produce gamma- or alpha-MnO2. In addition, waste manganese sulfate obtained as by-product from sulfuric acid digestion treatment was recycled and electrolytically oxidized to gamma-MnO2. The discharge performance of the above-mentioned MnO2 samples as battery cathodic active material was evaluated and compared with the ordinary battery grade.

  4. 21 CFR 184.1452 - Manganese gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... may be used in infant formulas in accordance with section 412(g) of the Federal Food, Drug, and...-0998) is a slightly pink colored powder. It is obtained by reacting manganese carbonate with gluconic...; meat products as defined in § 170.3(n)(29) of this chapter; milk products as defined in §...

  5. 21 CFR 184.1449 - Manganese citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...; milk products as defined in § 170.3(n)(31) of this chapter; and poultry products as defined in § 170.3(n)(34) of this chapter. The ingredient may be used in infant formulas in accordance with section 412... pale orange or pinkish white powder. It is obtained by precipitating manganese carbonate from...

  6. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... hydrochloric acid. The resulting solution is neutralized to precipitate heavy metals, filtered, concentrated... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Manganese chloride. 184.1446 Section 184.1446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  7. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... hydrochloric acid. The resulting solution is neutralized to precipitate heavy metals, filtered, concentrated... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese chloride. 184.1446 Section 184.1446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  8. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... hydrochloric acid. The resulting solution is neutralized to precipitate heavy metals, filtered, concentrated... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Manganese chloride. 184.1446 Section 184.1446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  9. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... solution is neutralized to precipitate heavy metals, filtered, concentrated, and crystallized. (b) The... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Manganese chloride. 184.1446 Section 184.1446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED)...

  10. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... hydrochloric acid. The resulting solution is neutralized to precipitate heavy metals, filtered, concentrated... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Manganese chloride. 184.1446 Section 184.1446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  11. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive... extent that such other impurities may be avoided by good manufacturing practice: Ash (at 600 °C), not... substances, not more than 6 percent. pH of filtrate of 10 grams color additive (shaken occasionally for...

  12. Lithium Manganese Silicate Positive Electrode Material

    NASA Astrophysics Data System (ADS)

    Yang, Qiong

    As the fast development of the electronic portable devices and drastic fading of fossil energy sources. The need for portable secondary energy sources is increasingly urgent. As a result, lithium ion batteries are being investigated intensely to meet the performance requirements. Among various electrode materials, the most expensive and capacity limiting component is the positive materials. Based on this, researches have been mostly focused on the development of novel cathode materials with high capacity and energy density and the lithium transition metal orthosilicates have been identified as possible high performance cathodes. Here in, we report the synthesis of a kind of lithium transition metal orthosilicates electrode lithium manganese silicate. Lithium manganese silicate has the advantage of high theoretical capacity, low cost raw material and safety. In this thesis, lithium manganese silicate are prepared using different silicon sources. The structure of silicon sources preferred are examined. Nonionic block copolymers surfactant, P123, is tried as carbon source and mophology directing agent. Lithium manganese silicate's performances are improved by adding P123.

  13. Manganese ore tailing: optimization of acid leaching conditions and recovery of soluble manganese.

    PubMed

    Santos, Olívia de Souza Heleno; Carvalho, Cornélio de Freitas; Silva, Gilmare Antônia da; Santos, Cláudio Gouvêa Dos

    2015-01-01

    Manganese recovery from industrial ore processing waste by means of leaching with sulfuric acid was the objective of this study. Experimental conditions were optimized by multivariate experimental design approaches. In order to study the factors affecting leaching, a screening step was used involving a full factorial design with central point for three variables in two levels (2(3)). The three variables studied were leaching time, concentration of sulfuric acid and sample amount. The three factors screened were shown to be relevant and therefore a Doehlert design was applied to determine the best working conditions for leaching and to build the response surface. By applying the best leaching conditions, the concentrations of 12.80 and 13.64 %w/w of manganese for the global sample and for the fraction -44 + 37 μm, respectively, were found. Microbeads of chitosan were tested for removal of leachate acidity and recovering of soluble manganese. Manganese recovery from the leachate was 95.4%. Upon drying the leachate, a solid containing mostly manganese sulfate was obtained, showing that the proposed optimized method is efficient for manganese recovery from ore tailings.

  14. Raman microscopy of lithium-manganese-rich transition metal oxide cathodes

    DOE PAGES

    Ruther, Rose E.; Callender, Andrew F.; Zhou, Hui; ...

    2014-11-15

    Lithium-rich and manganese-rich (LMR) layered transition metal (TM) oxide composites with general formula xLi2MnO3·(1-x)LiMO2 (M = Ni, Co, Mn) are promising cathode candidates for high energy density lithium ion batteries. Lithium-manganese-rich TM oxides crystallize as a nanocomposite layered phase whose structure further evolves with electrochemical cycling. Raman spectroscopy is a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich TM oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this paper, Raman microscopy is used tomore » investigate lithium-rich and manganese-rich TM cathodes as a function of voltage and electrochemical cycling at various temperatures. No growth of a spinel phase is observed within the cycling conditions. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. Finally, the results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets.« less

  15. Raman microscopy of lithium-manganese-rich transition metal oxide cathodes

    SciTech Connect

    Ruther, Rose E.; Callender, Andrew F.; Zhou, Hui; Martha, Surendra K.; Nanda, Jagjit

    2014-11-15

    Lithium-rich and manganese-rich (LMR) layered transition metal (TM) oxide composites with general formula xLi2MnO3·(1-x)LiMO2 (M = Ni, Co, Mn) are promising cathode candidates for high energy density lithium ion batteries. Lithium-manganese-rich TM oxides crystallize as a nanocomposite layered phase whose structure further evolves with electrochemical cycling. Raman spectroscopy is a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich TM oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this paper, Raman microscopy is used to investigate lithium-rich and manganese-rich TM cathodes as a function of voltage and electrochemical cycling at various temperatures. No growth of a spinel phase is observed within the cycling conditions. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. Finally, the results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets.

  16. Soil Manganese Enrichment from Industrial Inputs: A Gastropod Perspective

    PubMed Central

    Bordean, Despina-Maria; Nica, Dragos V.; Harmanescu, Monica; Banatean-Dunea, Ionut; Gergen, Iosif I.

    2014-01-01

    Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems. PMID:24454856

  17. Soil manganese enrichment from industrial inputs: a gastropod perspective.

    PubMed

    Bordean, Despina-Maria; Nica, Dragos V; Harmanescu, Monica; Banatean-Dunea, Ionut; Gergen, Iosif I

    2014-01-01

    Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems.

  18. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  19. Chemistry Experiments

    NASA Technical Reports Server (NTRS)

    Brasseur, Guy; Remsberg, Ellis; Purcell, Patrick; Bhatt, Praful; Sage, Karen H.; Brown, Donald E.; Scott, Courtney J.; Ko, Malcolm K. W.; Tie, Xue-Xi; Huang, Theresa

    1999-01-01

    The purpose of the chemistry component of the model comparison is to assess to what extent differences in the formulation of chemical processes explain the variance between model results. Observed concentrations of chemical compounds are used to estimate to what degree the various models represent realistic situations. For readability, the materials for the chemistry experiment are reported in three separate sections. This section discussed the data used to evaluate the models in their simulation of the source gases and the Nitrogen compounds (NO(y)) and Chlorine compounds (Cl(y)) species.

  20. Non-equilibrium thermodynamics of thiol/disulfide redox systems: A perspective on redox systems biology

    PubMed Central

    Kemp, Melissa; Go, Young-Mi; Jones, Dean P.

    2008-01-01

    Understanding the dynamics of redox elements in biologic systems remains a major challenge for redox signaling and oxidative stress research. Central redox elements include evolutionarily conserved subsets of cysteines and methionines of proteins which function as sulfur switches and labile reactive oxygen species (ROS) and reactive nitrogen species (RNS) which function in redox signaling. The sulfur switches depend upon redox environments in which rates of oxidation are balanced with rates of reduction through the thioredoxins, glutathione/glutathione disulfide and cysteine/cystine redox couples. These central couples, which we term redox control nodes, are maintained at stable but non-equilibrium steady states, are largely independently regulated in different subcellular compartments and are quasi-independent from each other within compartments. Disruption of the redox control nodes can differentially affect sulfur switches, thereby creating a diversity of oxidative stress responses. Systems biology provides approaches to address the complexity of these responses. In the present review, we summarize thiol/disulfide pathway, redox potential and rate information as a basis for kinetic modeling of sulfur switches. The summary identifies gaps in knowledge especially related to redox communication between compartments, definition of redox pathways and discrimination between types of sulfur switches. A formulation for kinetic modeling of GSH/GSSG redox control indicates that systems biology could encourage novel therapeutic approaches to protect against oxidative stress by identifying specific redox-sensitive sites which could be targeted for intervention. PMID:18155672

  1. Lead-210, polonium-210, manganese and iron in the Cariaco Trench

    NASA Astrophysics Data System (ADS)

    Bacon, Michael P.; Brewer, Peter G.; Spencer, Derek W.; Murray, James W.; Goddard, John

    1980-02-01

    Measurements of temperature, salinity, dissolved oxygen, sulfide, 226Ra, Mn, Fe, 210Pb, 210Po, and total suspended matter from three cruises of R.V. Atlantis II in the Cariaco Trench are reported. Distributions of dissolved and particulate Mn and Fe are similar to those for the Black Sea and reflect similar diffusion and redox-potential controls. Results for 210Pb and 226Ra in the anoxic deep water indicate a residence time for 210Pb in solution of less than two years. Particulate 210Pb results suggest that removal occurs largely by incorporation into metal sulfide phases forming in the water column. There is also evidence for precipitation of 210Pb with manganese oxide or iron hydroxide just above the O 2-H 2S interface. In the upper 300 m, 210Po is enriched by 55% over radioactive equilibrium with 210Pb. Possible sources of this excess include the bottom sediments and the water upwelling along the Venezuelan coast.

  2. Preparation and Characterization of a PEDOT-Manganese Oxide Composite, and Its Application to Electrochemical Sensing

    NASA Astrophysics Data System (ADS)

    Arena, A.

    2016-03-01

    Stable and transparent aqueous dispersions of a hybrid organic-inorganic composite, are prepared by electrochemically doping Manganese Oxide into Polyethylendioxythiophene (PEDOT). Films deposited from the PEDOT-MnOx dispersions, are characterized by means of electrical and optical measurements, and by means of Atomic Force Microscopy (AFM) investigations. The PEDOT-MnOx composite is then used to modify one of the gold electrodes of a simple electrochemical cell, in which Nafion is used as a solid electrolyte. The cell is characterized using time domain electrical measurements. It is found that distinguishable redox peaks arise in the current-voltage loops of the cell, as nanomolar amounts of either acetic acid and ammonia, are added to the deionized water into which the cell is immersed. The intensity of such current peaks, is linearly related to the concentration of the analytes, in the nanomolar range of concentrations.

  3. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    PubMed

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.

  4. Redox Control of Renal Function and Hypertension

    PubMed Central

    Whaley-Connell, Adam; Sowers, James R.

    2008-01-01

    Abstract Loss of redox homeostasis and formation of excessive free radicals play an important role in the pathogenesis of kidney disease and hypertension. Free radicals such as reactive oxygen species (ROS) are necessary in physiologic processes. However, loss of redox homeostasis contributes to proinflammatory and profibrotic pathways in the kidney, which in turn lead to reduced vascular compliance and proteinuria. The kidney is susceptible to the influence of various extracellular and intracellular cues, including the renin–angiotensin–aldosterone system (RAAS), hyperglycemia, lipid peroxidation, inflammatory cytokines, and growth factors. Redox control of kidney function is a dynamic process with reversible pro– and anti-free radical processes. The imbalance of redox homeostasis within the kidney is integral in hypertension and the progression of kidney disease. An emerging paradigm exists for renal redox contribution to hypertension. Antioxid. Redox Signal. 11, 2047–2089. PMID:18821850

  5. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Presents 12 chemistry notes for British secondary school teachers. Some of these notes are: (1) a simple device for testing pH-meters; (2) portable fume cupboard safety screen; and (3) Mass spectroscopy-analysis of a mass peak. (HM)

  6. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the alkylation of aniline, the preparation and properties of perbromate, using scrap copper in chemistry instruction, a safe method of burning hydrogen, and the use of an ion-charge model as an alternative to the mole concept in secondary school instruction. (AL)

  7. Confectionary Chemistry.

    ERIC Educational Resources Information Center

    Levine, Elise Hilf

    1996-01-01

    Presents activities and demonstrations that enable teachers to use various types of confections as tactile experiences to spark chemistry students' interest and generate enthusiasm for learning. Presents uses of candy in teaching about atomic structure, spontaneous nuclear decay, chemical formulas, fractoluminescence, the effect of a molecular…

  8. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the kinetics of the hydrogen peroxide-iodide ion reaction, simulation of fluidization catalysis, the use of Newman projection diagrams to represent steric relationships in organic chemistry, the use of synthetic substrates for proteolytic enzyme reactions, and two simple clock reactions"--hydrolysis of halogenoalkanes and…

  9. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, and classroom materials/activities. These include: experiments on colloids, processing of uranium ore, action of heat on carbonates; color test for phenols and aromatic amines; solvent properties of non-electrolytes; stereoscopic applications/methods; a valency balance;…

  10. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, experiments, demonstrations, teaching suggestions, and information on a variety of chemistry topics including, for example, inert gases, light-induced reactions, calculators, identification of substituted acetophenones, the elements, analysis of copper minerals, extraction of metallic strontium, equilibrium, halogens, and…

  11. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Describes some laboratory apparatus, chemistry experiments and demonstrations, such as a Kofler block melting point apparatus, chromatographic investigation of the phosphoric acid, x-ray diffraction, the fountain experiment, endothermic sherbet, the measurement of viscosity, ionization energies and electronic configurations. (GA)

  12. Rho GTPases, oxidation, and cell redox control

    PubMed Central

    Hobbs, G Aaron; Zhou, Bingying; Cox, Adrienne D; Campbell, Sharon L

    2014-01-01

    While numerous studies support regulation of Ras GTPases by reactive oxygen and nitrogen species, the Rho subfamily has received considerably less attention. Over the last few years, increasing evidence is emerging that supports the redox sensitivity of Rho GTPases. Moreover, as Rho GTPases regulate the cellular redox state by controlling enzymes that generate and convert reactive oxygen and nitrogen species, redox feedback loops likely exist. Here, we provide an overview of cellular oxidants, Rho GTPases, and their inter-dependence. PMID:24809833

  13. Microscale Chemistry and Green Chemistry: Complementary Pedagogies

    NASA Astrophysics Data System (ADS)

    Singh, Mono M.; Szafran, Zvi; Pike, R. M.

    1999-12-01

    This paper describes the complementary nature of microscale chemistry and green chemistry. Green chemistry emphasizes the concepts of atom economy, source reduction, pathway modification, solvent substitution, and pollution prevention as means of improving the environmental impact of industrial chemistry. Microscale chemistry serves as a tool for incorporating green chemistry ideas across the curriculum in educational institutions. Examples are drawn from microscale laboratory experiments to illustrate the pedagogic connection between the two areas.

  14. Redox conditions for mantle plumes

    NASA Astrophysics Data System (ADS)

    Heister, L. E.; Lesher, C. E.

    2005-12-01

    The vanadium to scandium ratio (V/Sc) for basalts from mid-ocean ridge (MOR) and arc environments has been proposed as a proxy for fO2 conditions during partial melting (e.g. [1] and [2]). Contrary to barometric measurements of the fO2 of primitive lavas, the V/Sc ratio of the upper mantle at mid-ocean ridges and arcs is similar, leading previous authors to propose that the upper mantle has uniform redox potential and is well-buffered. We have attempted to broaden the applicability of the V/Sc parameter to plume-influenced localities (both oceanic and continental), where mantle heterogeneities associated with recycled sediments, mafic crust, and metasomatized mantle, whether of shallow or deep origin, exist. We find that primitive basalts from the North Atlantic Igneous Province (NAIP), Hawaii (both the Loa and Kea trends), Deccan, Columbia River, and Siberian Traps show a range of V/Sc ratios that are generally higher (average ~9) than those for MOR (average ~ 6.7) or arc (average ~7) lavas. Based on forward polybaric decompression modeling, we attribute these differences to polybaric melting and melt segregation within the garnet stability field rather than the presence of a more oxidized mantle in plume-influenced settings. Like MORB, the V/Sc ratios for plume-influenced basalts can be accounted for by an oxidation state approximately one log unit below the Ni-NiO buffer (NNO-1). Our analysis suggests that source heterogeneities have little, if any, resolvable influence on mantle redox conditions, although they have significant influence on the trace element and isotopic composition of mantle-derived melts. We suggest that variations in the redox of erupted lavas is largely a function of shallow lithospheric processes rather than intrinsic to the mantle source, regardless of tectonic setting. [1] Li and Lee (2004) EPSL, [2] Lee et al. (2005) J. of Petrology

  15. [Redox Molecular Imaging Using ReMI].

    PubMed

    Hyodo, Fuminori; Ito, Shinji; Utsumi, Hideo

    2015-01-01

    Tissue redox status is one of the most important parameters to maintain homeostasis in the living body. Numerous redox reactions are involved in metabolic processes, such as energy production in the mitochondrial electron transfer system. A variety of intracellular molecules such as reactive oxygen species, glutathione, thioredoxins, NADPH, flavins, and ascorbic acid may contribute to the overall redox status in tissues. Breakdown of redox balance may lead to oxidative stress and can induce many pathological conditions such as cancer, neurological disorders, and aging. Therefore imaging of tissue redox status and monitoring antioxidant levels in living organisms can be useful in the diagnosis of disease states and assessment of treatment response. In vivo redox molecular imaging technology such as electron spin resonance imaging (ESRI), magnetic resonance imaging (MRI), and dynamic nuclear polarization (DNP)-MRI (redox molecular imaging; ReMI) is emerging as a viable redox status imaging modality. This review focuses on the application of magnetic resonance technologies using MRI or DNP-MRI and redox-sensitive contrast agents.

  16. The effect of induced anoxia and reoxygenation on benthic fluxes of organic carbon, phosphate, iron, and manganese.

    PubMed

    Skoog, Annelie C; Arias-Esquivel, Victor A

    2009-11-15

    Eutrophication causes seasonally anoxic bottom waters in coastal environments, but we lack information on effects of onset of anoxia and subsequent reoxygenation on benthic fluxes of redox-sensitive minerals and associated organic carbon (OC). As the first study, we determined the effect of inducing anoxia and subsequently restoring oxic conditions in mesocosms with surface sediment and water from a coastal environment. These concentration changes were compared with those in an oxygenated control. We determined water column concentrations of dissolved organic carbon (DOC), particulate organic carbon (POC), iron, manganese, and phosphate. Benthic fluxes of DOC, POC, and iron increased at the onset of anoxia in oxygen-depleted treatments. DOC and iron concentrations increased concomitantly towards maxima, which may have indicated reductive dissolution of FeOOH and release of associated OC. The subsequent concomitant concentration decreases may have been the result of coprecipitation of OC with iron-containing minerals. In contrast, the phosphate-concentration increase occurred several days after the onset of anoxia and the manganese concentration was not affected by the onset of anoxia. Restoring oxic conditions resulted in a decrease in DOC, POC, and phosphate concentrations, which may indicate coprecipitation of OC with phosphate-containing minerals. The high DOC fluxes at the onset of anoxia indicate that redox oscillations may be important in OC degradation. Further, our results indicate a close coupling between OC cycling and dissolution/precipitation of iron-containing minerals in intermittently anoxic sediments.

  17. Synthesis and atomic level in situ redox characterization in ceria and ceria zirconia

    NASA Astrophysics Data System (ADS)

    Wang, Ruigang

    2007-12-01

    Nanocrystalline ceria-based oxides are widely used in automotive three-way catalytic converters to reduce the emissions of carbon monoxide, nitrogen oxides, and unburned hydrocarbons. The primary function of ceria-based oxides in the catalytic process is to adjust the local oxygen partial pressure and maintain an air-to-fuel ratio near the stoichiometric value (˜14.5) required for the optimal catalyst performance for carbon monoxide, hydrocarbon oxidation, and nitrogen oxides reduction. In this dissertation, a study of the relationship between the nanoscale structure, chemistry, and the redox behavior on high surface area ceria and ceria zirconia is presented. Precipitation and spray freezing methods were used to synthesize nanocrystalline ceria and ceria zirconia solid solution powders respectively. The effect of thermal treatments in oxidizing and reducing atmospheres on the reducibility of the materials has been systematically investigated. X-ray diffraction and thermogravimetric analysis were used to characterize the average structure and reducibility. In situ environmental transmission electron microscope was exploited to visualize the dynamic changes during redox processes at the atomic level. This resulted in the identification of the nanoscale structure and chemistry for the most active nanoparticles in these oxides. The correlation between ex situ macroscopic redox properties and in situ redox behavior of individual nanoparticles is demonstrated. The addition of zirconia to ceria clearly enhances the reducibility and thermal stability of ceria. A fundamental difference between ceria and ceria zirconia during in situ redox processes is related to oxygen vacancy ordering. Ceria showed oxygen vacancy ordering during reduction, whereas ceria zirconia did not. It is suggested that the absence of oxygen vacancy ordering might be a fundamental factor for improved redox properties of ceria zirconia compared with pure ceria. The 50% ceria-50% zirconia solid

  18. A simple route to synthesize manganese germanate nanorods

    SciTech Connect

    Pei, L.Z. Yang, Y.; Yuan, C.Z.; Duan Taike; Zhang Qianfeng

    2011-06-15

    Manganese germanate nanorods have been synthesized by a simple route using germanium dioxide and manganese acetate as the source materials. X-ray diffraction observation shows that the nanorods are composed of orthorhombic and monoclinic manganese germanate phases. Scanning electron microscopy and transmission electron microscopy observations display that the manganese germanate nanorods have flat tips with the length of longer than 10 micrometers and diameter of 60-350 nm, respectively. The role of the growth conditions on the formation of the manganese germanate nanorods shows that the proper selection and combination of the growth conditions are the key factor for controlling the formation of the manganese germanate nanorods. The photoluminescence spectrum of the manganese germanate nanorods exhibits four fluorescence emission peaks centered at 422 nm, 472 nm, 487 nm and 530 nm showing the application potential for the optical devices. - Research Highlights: {yields} Manganese germanate nanorods have been synthesized by simple hydrothermal process. {yields} The formation of manganese germanate nanorods can be controlled by growth conditions. {yields} Manganese germanate nanorods exhibit good PL emission ability for optical device.

  19. Manganese binding proteins in human and cow's milk

    SciTech Connect

    Loennerdal, B.; Keen, C.L.; Hurley, L.S.

    1985-03-01

    Manganese nutrition in the neonatal period is poorly understood, due in part to a lack of information on the amount of manganese in infant foods and its bioavailability. Since the molecular localization of an element in foods is one determinant of its subsequent bioavailability, a study was made of the binding of manganese in human and cow's milk. An extrinsic label of /sup 54/Mn was shown to equilibrate isotopically with native manganese in milks and formulas. Milk samples were separated into fat, casein and whey by ultracentrifugation. In human milk, the major part (71%) of manganese was found in whey, 11% in casein and 18% in the lipid fraction. In contrast, in cow's milk, 32% of total manganese was in whey, 67% in casein and 1% in lipid. Within the human whey fraction, most of the manganese was bound to lactoferrin, while in cow's whey, manganese was mostly complexed to ligands with molecular weights less than 200. The distribution of manganese in formulas was closer to that of human milk than of cow's milk. The bioavailability of manganese associated with lactoferrin, casein and low molecular weight complexes needs to be assessed.

  20. Study of interaction and adsorption of aromatic amines by manganese oxides and their role in chemical evolution

    NASA Astrophysics Data System (ADS)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2017-04-01

    The role of manganese oxides in concentrating organic moieties and offering catalytic activity for prebiotic reactions is investigated by studying their interaction with different aromatic amines such as aniline, p-chloroaniline, p-toluidine and p-anisidine. For all amines, metal oxides showed highest adsorption at neutral pH. The order of their adsorption capacity and affinity as revealed by the Langmuir constants was found to be manganosite (MnO) > bixbyite (Mn2O3) > hausmannite (Mn3O4) > and pyrolusite (MnO2). At alkaline pH, these manganese oxides offered their surfaces for oxidation of amines to form coloured oligomers. Analysis of the oxidation products by gas chromatography-mass spectrometry showed the formation of a dimer from p-anisidine and p-chloroaniline, while a trimer and tetramer is formed from p-toluidine and aniline, respectively. A reaction mechanism is proposed for the formation of the oligomers. While field-emission scanning electron microscopic studies confirm the binding phenomenon, the Fourier transform infrared spectroscopy analysis suggests that the mechanism of binding of amines on the manganese oxides was primarily electrostatic. The adsorption behaviour of the studied aromatic amines followed the order: p-anisidine > p-toluidine > aniline > p-chloroaniline, which is related to the basicities and structure of the amines. Our studies confirmed the significance of the role of manganese oxides in prebiotic chemistry.

  1. Pathogenic prion protein is degraded by a manganese oxide mineral found in soils

    USGS Publications Warehouse

    Russo, F.; Johnson, C.J.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2009-01-01

    Prions, the aetiological agents of transmissible spongiform encephalopathies, exhibit extreme resistance to degradation. Soil can retain prion infectivity in the environment for years. Reactive soil components may, however, contribute to the inactivation of prions in soil. Members of the birnessite family of manganese oxides (MnO2) rank among the strongest natural oxidants in soils. Here, we report the abiotic degradation of pathogenic prion protein (PrPTSE) by a synthetic analogue of naturally occurring birnessite minerals. Aqueous MnO2 suspensions degraded the PrPTSE as evidenced by decreased immunoreactivity and diminished ability to seed protein misfolding cyclic amplification reactions. Birnessite-mediated PrPTSE degradation increased as a solution's pH decreased, consistent with the pH-dependence of the redox potential of MnO2. Exposure to 5.6 mg MnO2 ml-1 (PrPTSE:MnO2=1 : 110) decreased PrPTSE levels by ???4 orders of magnitude. Manganese oxides may contribute to prion degradation in soil environments rich in these minerals. ?? 2009 SGM.

  2. The chemostat: A novel approach to the synthesis of manganese dioxide

    SciTech Connect

    Donne, S.W.; Lawrance, G.A.; Swinkels, D.A.J.

    1995-07-01

    The development and use of the chemostat, an apparatus which controls pH, Eh and temperature during redox reactions, is described. Its application is illustrated for the synthesis of the birnessite variety of manganese dioxide, via 2(x{minus}1)MnO{sub 4}{sup {minus}} + (7{minus}2x)Mn{sup 2+} + (8{minus}3x)H{sub 2}O {leftrightarrow} 5MnO{sub x} + 2(8{minus}3x)H{sup +} where x is the oxygen index of the manganese dioxide. The chemostat controls the pH and Eh of the precipitation reaction by the judicious addition of KOH and KMnO{sub 4} solutions, respectively, as well as maintaining a constant temperature in the precipitation cell. Using the control conditions outlined herein, the average errors associated with the pH, Eh and temperature were {+-}0.2 pH units, {+-}0.025 V and {+-}0.5 C, respectively. The birnessite samples that were produced were characterized in terms of X-ray diffraction, x in MnO{sub x} and open circuit voltage measurements. These properties were found to have a strong dependence on the synthetic conditions.

  3. Mobilisation processes responsible for iron and manganese contamination of groundwater in Central Adriatic Italy.

    PubMed

    Palmucci, William; Rusi, Sergio; Di Curzio, Diego

    2016-06-01

    Iron and manganese are two of the most common contaminants that exceed the threshold imposed by international and national legislation. When these contamination occurs in groundwater, the use of the water resource is forbidden for any purposes. Several studies investigated these two metals in groundwater, but research focused in the Central Adriatic area are still lacking. Thus, the objective of this study is to identify the origin of Fe and Mn contamination in groundwater and the hydrogeochemical processes that can enrich aquifers with these metals. This work is based on hydrogeochemical and multivariate statistical analysis of analytical results undertaken on soils and groundwater. Fe and Mn contamination are widespread in the alluvial aquifers, and their distribution is regulated by local conditions (i.e. long residence time, presence of peat or organic-rich fine sediments or anthropic pollution) that control redox processes in the aquifers and favour the mobilisation of these two metals in groundwater. The concentration of iron and manganese identified within soil indicates that the latter are a concrete source of the two metals. Anthropic impact on Fe and Mn contamination of groundwater is not related to agricultural activities, but on the contrary, the contribution of hydrocarbons (e.g. spills) is evident.

  4. High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide

    NASA Astrophysics Data System (ADS)

    Bello, Abdulhakeem; Fashedemi, Omobosede O.; Lekitima, Joel N.; Fabiane, Mopeli; Dodoo-Arhin, David; Ozoemena, Kenneth I.; Gogotsi, Yury; Charlie Johnson, Alan T.; Manyala, Ncholu

    2013-08-01

    We have fabricated a symmetric electrochemical capacitor with high energy and power densities based on a composite of graphene foam (GF) with ˜80 wt% of manganese oxide (MnO2) deposited by hydrothermal synthesis. Raman spectroscopy and X-ray diffraction measurements showed the presence of nanocrystalline MnO2 on the GF, while scanning and transmission electron microscopies showed needle-like manganese oxide coated and anchored onto the surface of graphene. Electrochemical measurements of the composite electrode gave a specific capacitance of 240 Fg-1 at a current density of 0.1 Ag-1 for symmetric supercapacitors using a two-electrode configuration. A maximum energy density of 8.3 Whkg-1 was obtained, with power density of 20 kWkg-1 and no capacitance loss after 1000 cycles. GF is an excellent support for pseudo-capacitive oxide materials such as MnO2, and the composite electrode provided a high energy density due to a combination of double-layer and redox capacitance mechanisms.

  5. Decolorization of methylene blue in layered manganese oxide suspension with H2O2.

    PubMed

    Zhang, Lili; Nie, Yulun; Hu, Chun; Hu, Xuexiang

    2011-06-15

    Layered birnessite-type manganese oxides (Na-OL-1) were prepared via a redox reaction involving MnO(4)(-) and Mn(2+) under markedly alkaline conditions. According to the XRD analysis, the resulting material exhibited a well-crystallized octahedral layer (OL) structure with several different phases, including β-MnOOH, α-MnOOH and γ-Mn(3)O(4). The catalyst was highly effective for the decolorization and degradation of methylene blue (MB) in the presence of H(2)O(2) at neutral pH. The tested MB was completely decolorized in Na-OL-1 suspension by the fraction dosing of H(2)O(2) (556.5mM at the beginning and then 183.8mM at 40 min). Based on the studies of electron spin resonance and the effect of radical scavengers, the (1)O(2) and O(2)(-) were the main reactive oxygen species (ROS) in the reaction. It was found that both oxygen and ROS were generated from the decomposition of H(2)O(2) in Na-OL-1 suspension, wherein the decomposition pathways were proposed. The generation of H(2)O(2) in Na-OL-1 suspension at air atmosphere indicated that the existence of multivalent manganese oxides greatly enhanced the interfacial electron transfer, leading to the high activity of Na-OL-1.

  6. Crystal Structure of Manganese Lipoxygenase of the Rice Blast Fungus Magnaporthe oryzae.

    PubMed

    Wennman, Anneli; Oliw, Ernst H; Karkehabadi, Saeid; Chen, Yang

    2016-04-08

    Lipoxygenases (LOX) are non-heme metal enzymes, which oxidize polyunsaturated fatty acids to hydroperoxides. All LOX belong to the same gene family, and they are widely distributed. LOX of animals, plants, and prokaryotes contain iron as the catalytic metal, whereas fungi express LOX with iron or with manganese. Little is known about metal selection by LOX and the adjustment of the redox potentials of their protein-bound catalytic metals. Thirteen three-dimensional structures of animal, plant, and prokaryotic FeLOX are available, but none of MnLOX. The MnLOX of the most important plant pathogen, the rice blast fungusMagnaporthe oryzae(Mo), was expressed inPichia pastoris.Mo-MnLOX was deglycosylated, purified to homogeneity, and subjected to crystal screening and x-ray diffraction. The structure was solved by sulfur and manganese single wavelength anomalous dispersion to a resolution of 2.0 Å. The manganese coordinating sphere is similar to iron ligands of coral 8R-LOX and soybean LOX-1 but is not overlapping. The Asn-473 is positioned on a short loop (Asn-Gln-Gly-Glu-Pro) instead of an α-helix and forms hydrogen bonds with Gln-281. Comparison with FeLOX suggests that Phe-332 and Phe-525 might contribute to the unique suprafacial hydrogen abstraction and oxygenation mechanism of Mo-MnLOX by controlling oxygen access to the pentadiene radical. Modeling suggests that Arg-525 is positioned close to Arg-182 of 8R-LOX, and both residues likely tether the carboxylate group of the substrate. An oxygen channel could not be identified. We conclude that Mo-MnLOX illustrates a partly unique variation of the structural theme of FeLOX.

  7. Cardiovascular Redox and Ox Stress Proteomics

    PubMed Central

    Kumar, Vikas; Calamaras, Timothy Dean; Haeussler, Dagmar; Colucci, Wilson Steven; Cohen, Richard Alan; McComb, Mark Errol; Pimentel, David

    2012-01-01

    Abstract Significance: Oxidative post-translational modifications (OPTMs) have been demonstrated as contributing to cardiovascular physiology and pathophysiology. These modifications have been identified using antibodies as well as advanced proteomic methods, and the functional importance of each is beginning to be understood using transgenic and gene deletion animal models. Given that OPTMs are involved in cardiovascular pathology, the use of these modifications as biomarkers and predictors of disease has significant therapeutic potential. Adequate understanding of the chemistry of the OPTMs is necessary to determine what may occur in vivo and which modifications would best serve as biomarkers. Recent Advances: By using mass spectrometry, advanced labeling techniques, and antibody identification, OPTMs have become accessible to a larger proportion of the scientific community. Advancements in instrumentation, database search algorithms, and processing speed have allowed MS to fully expand on the proteome of OPTMs. In addition, the role of enzymatically reversible OPTMs has been further clarified in preclinical models. Critical Issues: The identification of OPTMs suffers from limitations in analytic detection based on the methodology, instrumentation, sample complexity, and bioinformatics. Currently, each type of OPTM requires a specific strategy for identification, and generalized approaches result in an incomplete assessment. Future Directions: Novel types of highly sensitive MS instrumentation that allow for improved separation and detection of modified proteins and peptides have been crucial in the discovery of OPTMs and biomarkers. To further advance the identification of relevant OPTMs in advanced search algorithms, standardized methods for sample processing and depository of MS data will be required. Antioxid. Redox Signal. 17, 1528–1559. PMID:22607061

  8. Effect of Different Casting Parameters on the Cleanliness of High Manganese Steel Ingots Compared to High Carbon Steel

    NASA Astrophysics Data System (ADS)

    von Schweinichen, Petrico; Chen, Zhiye; Senk, Dieter; Lob, Alexander

    2013-12-01

    The increasing demand for excellent steel properties has led to the creation of new steel grades such as high manganese TWIP and TRIP steels which are scientifically examined in Germany within the international research framework of the SFB 761 "Steel-ab initio." The production of these high-technology products, utilizing mainly the ingot-casting method, leads to new challenges in the prevention of cast defects. At RWTH Aachen University, a systematic investigation of the solidification process as it relates to shrinkage cavity, macrosegregation, cleanliness, and surface imperfections in as-cast ingots is being conducted. A particular attention was devoted to the effects of such casting parameters as superheat, pouring rate, hot top, and stirring conditions on the solidification and cleanliness of low carbon alloyed and high manganese alloyed steels. The experimental results show that rising manganese content leads to a higher amount and larger size of inclusions while rising carbon content enhances the inclusion generation in the same way. It was found that a bottom teeming system combined with an inert gas atmosphere produces the best quality and that if casting is performed with a runner-system, it is important to use a SiO2-free refractory to avoid oxidizing the Mn content of the melt to MnO inclusions by redox-reactions.

  9. Manganese concentration in lobster (Homarus americanus) gills as an index of exposure to reducing conditions in western Long Island Sound

    USGS Publications Warehouse

    Draxler, Andrew F.J.; Sherrell, Robert M.; Wieczorek, Dan; Lavigne, Michele G.; Paulson, A.J.

    2005-01-01

    We examined the accumulation of manganese (Mn) in gill tissues of chemically nai??ve lobsters held in situ at six sites in Long Island Sound (LIS) for up to six weeks to evaluate the possible contribution of eutrophication-driven habitat quality factors to the 1999 mass mortality of American lobsters (Homarus americanus). These western LIS lobster habitats experience seasonal hypoxia, which results in redox-mobilized Mn being transferred to and deposited on the tissues of the lobsters. Manganese accumulated in gill tissue of lobsters throughout the study, but rates were highest at western and southern LIS sites, ranging from 3.4-0.8 ??g/g/d (???16 ??g/g initial). The Baden-Eriksson observation that Mn accumulation in Norway lobsters (Nephrops norvegicus) is associated with ecosystem hypoxia is confirmed and extended to H. americanus. It seems likely that, after accounting for molting frequency, certain critical values may be applied to other lobster habitats of the NE US shelf. If a high proportion of lobsters in autumn have gill Mn concentrations exceeding 30 ??g/g, then the habitats are likely experiencing some reduced oxygen levels. Manganese concentrations above 100 ??g/g suggest exposure to conditions with the potential for lobster mortality should the temperatures of bottom waters become elevated, and gill concentrations above some higher level (perhaps 300 ??g/g) indicate the most severe habitat conditions with a strong potential for hypoxia stress.

  10. Manganese concentration in lobster (Homarus americansus) gills as an index of exposure to reducing conditions in Western Long Island Sound

    USGS Publications Warehouse

    Draxler, Andrew F.J.; Sherrell, Robert M.; Wieczorek, Daniel; Lavigne, Michele G.; Paulson, Anthony J.

    2005-01-01

    We examined the accumulation of manganese (Mn) in gill tissues of chemically naïve lobsters heldin situ at six sites in Long Island Sound (LIS) for up to six weeks to evaluate the possible contribution of eutrophication-driven habitat quality factors to the 1999 mass mortality of American lobsters (Homarus americanus). These western LIS lobster habitats experience seasonal hypoxia, which results in redox-mobilized Mn being transferred to and deposited on the tissues of the lobsters. Manganese accumulated in gill tissue of lobsters throughout the study, but rates were highest at western and southern LIS sites, ranging from 3.4–0.8 μ g/g/d (~16 μg/g initial). The Baden-Eriksson observation that Mn accumulation in Norway lobsters (Nephrops norvegicus) is associated with ecosystem hypoxia is confirmed and extended to H. americanus. It seems likely that, after accounting for molting frequency, certain critical values may be applied to other lobster habitats of the NE US shelf. If a high proportion of lobsters in autumn have gill Mn concentrations exceeding 30 μg/g, then the habitats are likely experiencing some reduced oxygen levels. Manganese concentrations above 100 μg/g suggest exposure to conditions with the potential for lobster mortality should the temperatures of bottom waters become elevated, and gill concentrations above some higher level (perhaps 300 μg/g) indicate the most severe habitat conditions with a strong potential for hypoxia stress.

  11. Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management.

    PubMed

    Shaheen, Sabry M; Frohne, Tina; White, John R; DeLaune, Ron D; Rinklebe, Jörg

    2017-01-15

    Studies about the mobilization of potentially toxic elements (PTEs) in deltaic soils can be challenging, provide critical information on assessing the potential risk and fate of these elements and for sustainable management of these soils. The impact of redox potential (EH), pH, iron (Fe), manganese (Mn), sulfate (SO4(2-)), chloride (Cl(-)), aliphatic dissolved organic carbon (DOC), and aromatic dissolved organic carbon (DAC) on the mobilization of copper (Cu), selenium (Se), and zinc (Zn) was studied in two soils collected from the Nile and Mississippi Rivers deltaic plains focused on increasing our understanding of the fate of these toxic elements. Soils were exposed to a range of redox conditions stepwise from reducing to oxidizing soil conditions using an automated biogeochemical microcosm apparatus. Concentrations of DOC and Fe were high under reducing conditions as compared to oxidizing conditions in both soils. The proportion of DAC in relation to DOC in solution (aromaticity) was high in the Nile Delta soil (NDS) and low in the Mississippi Delta soil (MDS) under oxidizing conditions. Mobilization of Cu was low under reducing conditions in both soils which was likely caused by sulfide precipitation and as a result of reduction of Cu(2+) to Cu(1+). Mobilization of Se was high under low EH in both soils. Release of Se was positively correlated with DOC, Fe, Mn, and SO4(2-) in the NDS, and with Fe in the MDS. Mobilization of Zn showed negative correlations with EH and pH in the NDS while these correlations were non-significant in the MDS. The release dynamics of dissolved Zn could be governed mainly by the chemistry of Fe and Mn in the NDS and by the chemistry of Mn in the MDS. Our findings suggest that a release of Se and Zn occurs under anaerobic conditions, while aerobic conditions favor the release of Cu in both soils. In conclusion, the release of Cu, Se, and Zn under different reducing and oxidizing conditions in deltaic wetland soils should be taken into

  12. Surface-Enhanced Raman Scattering for Redox-Active Adsorbates: Pentaammineosmium(III)/(II) and Pentaammineruthenium(II) Containing Nitrogen Heterocycle Ligands.

    DTIC Science & Technology

    1984-04-01

    electrode reactions involving simple one- electron transfer for which both redox states are detectably adsorbed and structurally similar. Although... Taube at Stanford University. We also thank Henry Taube for his advice and encouragement. The research program of M.J.W. is supported in part by the...k AD-Ai42 418 SURFACE-ENHANCED RAMAN SCATTERING FOR REDOX -ACTIVE ii ADSORBATES: PENTRNIN..(U) PURDUE UNIV LAFAYETTE IN DEPT OF CHEMISTRY S

  13. Preparation of manganese sulfate from low-grade manganese carbonate ores by sulfuric acid leaching

    NASA Astrophysics Data System (ADS)

    Lin, Qing-quan; Gu, Guo-hua; Wang, Hui; Zhu, Ren-feng; Liu, You-cai; Fu, Jian-gang

    2016-05-01

    In this study, a method for preparing pure manganese sulfate from low-grade ores with a granule mean size of 0.47 mm by direct acid leaching was developed. The effects of the types of leaching agents, sulfuric acid concentration, reaction temperature, and agitation rate on the leaching efficiency of manganese were investigated. We observed that sulfuric acid used as a leaching agent provides a similar leaching efficiency of manganese and superior selectivity against calcium compared to hydrochloric acid. The optimal leaching conditions in sulfuric acid media were determined; under the optimal conditions, the leaching efficiencies of Mn and Ca were 92.42% and 9.61%, respectively. Moreover, the kinetics of manganese leaching indicated that the leaching follows the diffusion-controlled model with an apparent activation energy of 12.28 kJ·mol-1. The purification conditions of the leaching solution were also discussed. The results show that manganese dioxide is a suitable oxidant of ferrous ions and sodium dimethyldithiocarbamate is an effective precipitant of heavy metals. Finally, through chemical analysis and X-ray diffraction analysis, the obtained product was determined to contain 98% of MnSO4·H2O.

  14. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene

    SciTech Connect

    Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo; Aykol, Muratahan; Luo, Langli; Wu, Jinsong; Myers, Benjamin D.; Iddir, Hakim; Russell, John T.; Saldana, Spencer J.; Kumar, Rajan; Thackeray, Michael M.; Curtiss, Larry A.; Dravid, Vinayak P.; Wolverton, Christopher M.; Hersam, Mark C.

    2015-06-24

    Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmission electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.

  15. Chromium electrodes for REDOX cells

    NASA Technical Reports Server (NTRS)

    Jalan, V.; Reid, M. A.; Charleston, A. (Inventor)

    1984-01-01

    An improved electrode having a gold coating for use in the anode compartment of a REDOX cell is described. The anode fluid utilizes a chromic/chromous couple. A carbon felt is soaked in methanol, rinsed in water, dried and then heated in KOH after which it is again washed in deionized water and dried. The felt is then moistened with a methanol water solution containing chloroauric acid and is stored in a dark place while still in contact with the gold-containing solution. After all the gold-containing solution is absorbed in the felt, the latter is dried by heat and then heat treated at a substantially greater temperature. The felt is then suitable for use as an electrode and is wetted with water or up to two molar HCl prior to installation in a REDOX cell. The novelty of the invention lies in the use of KOH for cleaning the felt and the use of alcohol as a carrier for the gold together with the heat treating procedure.

  16. Redox pioneer: professor Barry Halliwell.

    PubMed

    Pervaiz, Shazib

    2011-05-01

    Professor Barry Halliwell is recognized as a Redox Pioneer because he has published eight articles on redox biology that have been each cited more than 1000 times, and 158 articles that have been each cited more than 100 times. His contributions go back as far as 1976, when he was involved in elucidation of the Foyer-Halliwell-Asada cycle, an efficient mechanism for preventing oxidative damage to chloroplasts. His subsequent work established the important role of iron and zinc in free radical reactions and their relevance to human pathologies. Professor Halliwell is also a leader in developing novel methodology for detecting free radical intermediates in vivo, and his contributions to our knowledge of reactive nitrogen species are highly significant. His sustained excellence won him the top-cited scientist award in the United Kingdom in biomedical sciences in 1999, and in 2003 he was recognized as a highly cited scientist by Institute of Scientific Information (ISI) for work on plant antioxidants, and the same year ranked 28 out of 5494 biochemists/biologists for scientific impact. Two pieces of his scholarly work have been listed as Citation Classics by ISI, and in 2007 his laboratory was ranked number 1 worldwide based on highest citation score in research on free radicals.

  17. Conversion of aminonitrotoluenes by fungal manganese peroxidase.

    PubMed

    Scheibner, K; Hofrichter, M

    1998-01-01

    Preparations of extracellular manganese peroxidase from the white-rot fungus Nematoloma frowardii and the litter decaying fungus Stropharia rugosoannulata converted rapidly the main intermediates of the explosive 2,4,-trinitrotoluene--the aminonitrotoluenes. In a cell-free system, 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene and 2,6-diamino-4-nitrotoluene were degraded without formation of identifiable metabolites. Radioactive experiments using a complex mixture of uniform ring-labeled 14C-TNT reduction products demonstrated the partial direct mineralization of these compounds by manganese peroxidase. The extent of aminonitrotoluene conversion as well as the release of 14CO2 from TNT reduction products were considerably enhanced in the presence of thiols like reduced glutathione or the amino acid L-cystein, which probably act as secondary mediators.

  18. Manganese enhanced MRI (MEMRI): neurophysiological applications

    PubMed Central

    Inoue, Taeko; Majid, Tabassum; Pautler, Robia G.

    2012-01-01

    Manganese ion (Mn2+) is a calcium (Ca2+) analog that can enter neurons and other excitable cells through voltage gated Ca2+ channels. Mn2+ is also a paramagnetic that shortens the spin-lattice relaxation time constant (T1) of tissues where it has accumulated, resulting in positive contrast enhancement. Mn2+ was first investigated as a magnetic resonance imaging (MRI) contrast agent approximately 20 years ago to assess the toxicity of the metal in rats. In the late 1990s, Alan Koretsky and colleagues pioneered the use of manganese enhanced MRI (MEMRI) towards studying brain activity, tract tracing and enhancing anatomical detail. This review will describe the methodologies and applications of MEMRI in the following areas: monitoring brain activity in animal models, in vivo neuronal tract tracing and using MEMRI to assess in vivo axonal transport rates. PMID:22098448

  19. An anaerobic field injection experiment in a landfill leachate plume, Grindsted, Denmark: 2. Deduction of anaerobic (methanogenic, sulfate-, and Fe (III)-reducing) redox conditions

    NASA Astrophysics Data System (ADS)

    Albrechtsen, Hans-JøRgen; Bjerg, Poul L.; Ludvigsen, Liselotte; Rügge, Kirsten; Christensen, Thomas H.

    1999-04-01

    Redox conditions may be environmental factors which affect the fate of the xenobiotic organic compounds. Therefore the redox conditions were characterized in an anaerobic, leachate-contaminated aquifer 15-60 m downgradient from the Grindsted Landfill, Denmark, where an field injection experiment was carried out. Furthermore, the stability of the redox conditions spatially and over time were investigated, and different approaches to deduce the redox conditions were evaluated. The redox conditions were evaluated in a set of 20 sediment and groundwater samples taken from locations adjacent to the sediment samples. Samples were investigated with respect to groundwater chemistry, including hydrogen and volatile fatty acids (VFAs) and sediment geochemistry, and bioassays were performed. The groundwater chemistry, including redox sensitive species for a large number of samples, varied over time during the experimental period of 924 days owing to variations in the leachate from the landfill. However, no indication of change in the redox environment resulting from the field injection experiment or natural variation was observed in the individual sampling points. The methane, Fe(II), hydrogen, and VFA groundwater chemistry parameters strongly indicated a Fe(III)-reducing environment. This was further supported by the bioassays, although methane production and sulfate-reduction were also observed in a few samples close to the landfill. On the basis of the calculated carbon conversion, Fe(III) was the dominant electron acceptor in the region of the aquifer, which was investigated. Because of the complexity of a landfill leachate plume, several redox processes may occur simultaneously, and an array of methods must be applied for redox characterization in such multicomponent systems.

  20. Redox Capacity of an Extracellular Matrix Protein Associated with Adhesion in Mytilus californianus.

    PubMed

    Nicklisch, Sascha C T; Spahn, Jamie E; Zhou, Hongjun; Gruian, Cristina M; Waite, J Herbert

    2016-04-05

    Adhesive mussel foot proteins (Mfps) rely in part on DOPA (3,4-dihydroxyphenyl-l-alanine) side chains to mediate attachment to mineral surfaces underwater. Oxidation of DOPA to Dopaquinone (Q) effectively abolishes the adsorption of Mfps to these surfaces. The thiol-rich mussel foot protein-6 (Mfp-6) rescues adhesion compromised by adventitious DOPA oxidation by reducing Q back to DOPA. The redox chemistry and kinetics of foot-extracted Mfp-6 were investigated by using a nonspecific chromogenic probe to equilibrate with the redox pool. Foot-extracted Mfp-6 has a reducing capacity of ~17 e(-) per protein; half of this comes from the cysteine residues, whereas the other half comes from other constituents, probably a cohort of four or five nonadhesive, redox-active DOPA residues in Mfp-6 with an anodic peak potential ~500 mV lower than that for oxidation of cysteine to cystine. At higher pH, DOPA redox reversibility is lost possibly due to Q scavenging by Cys thiolates. Analysis by one- and two-dimensional proton nuclear magnetic resonance identified a pronounced β-sheet structure with a hydrophobic core in foot-extracted Mfp-6 protein. The structure endows redox-active side chains in Mfp-6, i.e., cysteine and DOPA, with significant reducing power over a broad pH range, and this power is measurably diminished in recombinant Mfp-6.

  1. Extracting the redox orbitals in Li battery materials with high-resolution x-ray compton scattering spectroscopy.

    PubMed

    Suzuki, K; Barbiellini, B; Orikasa, Y; Go, N; Sakurai, H; Kaprzyk, S; Itou, M; Yamamoto, K; Uchimoto, Y; Wang, Yung Jui; Hafiz, H; Bansil, A; Sakurai, Y

    2015-02-27

    We present an incisive spectroscopic technique for directly probing redox orbitals based on bulk electron momentum density measurements via high-resolution x-ray Compton scattering. Application of our method to spinel Li_{x}Mn_{2}O_{4}, a lithium ion battery cathode material, is discussed. The orbital involved in the lithium insertion and extraction process is shown to mainly be the oxygen 2p orbital. Moreover, the manganese 3d states are shown to experience spatial delocalization involving 0.16±0.05 electrons per Mn site during the battery operation. Our analysis provides a clear understanding of the fundamental redox process involved in the working of a lithium ion battery.

  2. Polynitrogen Chemistry

    DTIC Science & Technology

    2013-09-24

    4N3, while As(C6H5)4N3 presents a borderline case.23 Theoretical Calculations High-level theoretical studies of nitrogen, oxygen, selenium and...Dixon, D. A.; Christe, K. O., "Thermochemical Properties of Selenium Fluorides, Oxides, and Oxofluorides," Inorganic Chemistry, p. 2472, vol. 51, (2012...34Thermochemical Properties of Selenium Fluorides, Oxides, and Oxofluorides," Inorg. Chem., p. 2472, vol. 51, (2012). 26. K. S. Thanthiriwatte, M. Vasiliu

  3. Indium antimonide doped with manganese grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Partin, D. L.; Heremans, J.; Thrush, C. M.

    1997-05-01

    Indium antimonide is of interest for infrared detecting and emitting devices and for magnetic field sensors. In this study, indium antimonide doped with manganese and grown by molecular beam epitaxy was investigated. Secondary ion mass spectroscopy (SIMS) was used to show that the incorporation of managenese is near unity over a wide range of manganese concentrations. Manganese is observed to be an acceptor with a dopant efficiency which follows a power law in which the hole density is proportional to the manganese concentration raised to the power α. The power α depends on the growth temperature; at 300°C, α = 0.86 and at 360°C, α = 0.78. Lightly manganese doped samples have transport dominated by electrons at low temperatures due to hole freeze out, followed by holes at intermediate temperatures and finally by intrinsic electrons at high temperatures. Additional SIMS studies showed that manganese diffuses relatively slowly in indium antimonide.

  4. Computational chemistry

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  5. Manganese deposition in drinking water distribution systems.

    PubMed

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality.

  6. Manganese Inhalation as a Parkinson Disease Model

    PubMed Central

    Ordoñez-Librado, José Luis; Anaya-Martínez, Verónica; Gutierrez-Valdez, Ana Luisa; Colín-Barenque, Laura; Montiel-Flores, Enrique; Avila-Costa, Maria Rosa

    2011-01-01

    The present study examines the effects of divalent and trivalent Manganese (Mn2+/Mn3+) mixture inhalation on mice to obtain a novel animal model of Parkinson disease (PD) inducing bilateral and progressive dopaminergic cell death, correlate those alterations with motor disturbances, and determine whether L-DOPA treatment improves the behavior, to ensure that the alterations are of dopaminergic origin. CD-1 male mice inhaled a mixture of Manganese chloride and Manganese acetate, one hour twice a week for five months. Before Mn exposure, animals were trained to perform motor function tests and were evaluated each week after the exposure. By the end of Mn exposure, 10 mice were orally treated with 7.5 mg/kg L-DOPA. After 5 months of Mn mixture inhalation, striatal dopamine content decreased 71%, the SNc showed important reduction in the number of TH-immunopositive neurons, mice developed akinesia, postural instability, and action tremor; these motor alterations were reverted with L-DOPA treatment. Our data provide evidence that Mn2+/Mn3+ mixture inhalation produces similar morphological, neurochemical, and behavioral alterations to those observed in PD providing a useful experimental model for the study of this neurodegenerative disease. PMID:21209715

  7. Manganese-induced turnover of TMEM165.

    PubMed

    Potelle, Sven; Dulary, Eudoxie; Climer, Leslie; Duvet, Sandrine; Morelle, Willy; Vicogne, Dorothée; Lebredonchelle, Elodie; Houdou, Marine; Spriet, Corentin; Krzewinski-Recchi, Marie-Ange; Peanne, Romain; Klein, André; DE Bettignies, Geoffroy; Morsomme, Pierre; Matthijs, Gert; Marquardt, Thorsten; Lupashin, Vladimir; Foulquier, Francois

    2017-03-07

    TMEM165 deficiencies lead to one of the Congenital Disorders of Glycosylation (CDG), a group of inherited diseases where the glycosylation process is altered. We recently demonstrated that the Golgi glycosylation defect due to TMEM165 deficiency resulted from Golgi manganese homeostasis defect and that Mn2+ supplementation was sufficient to rescue normal glycosylation. In this paper we highlight TMEM165 as a novel Golgi protein sensitive to manganese. When cells were exposed to high Mn2+ concentrations, TMEM165 was degraded in lysosomes. Remarkably, while the variant R126H was sensitive upon manganese exposure, the variant E108G recently identified in a novel TMEM165-CDG patient, was found to be insensitive. We also showed that the E108G mutation did not abolish the function of TMEM165 in Golgi glycosylation. Altogether this study identified the Golgi protein TMEM165 as a novel Mn2+ sensitive protein in mammalian cells and pointed to the crucial importance of the glutamic acid (E108) in the cytosolic ELGDK motif in Mn2+ induced degradation of TMEM165.

  8. Metabolism of manganese, iron, copper, and selenium in calves

    SciTech Connect

    Ho, S.Y.

    1981-01-01

    Sixteen male Holstein calves were used to study manganese and iron metabolism. The calves were fed one of the following diets for 18 days: control, control + iron, control + manganese, and control + iron and manganese. All calves were dosed orally with manganese-54. Tissue concentrations of manganese, iron and manganese-54 were determined. Small intestinal iron was lower in calves fed the high manganese diet than in controls. Tissue manganese-54 was lower in calves fed a high manganese diet. Fecal manganese content increased in calves fed both high manganese and high manganese-high iron diets. Serum total iron was not affected by the dietary treatments. To study the effects of high dietary levels of copper and selenium on the intracellular distributions of these two elements in liver and kidney cytosol, calves were fed one of four diets for 15 days. These were 0 and 100 ppM supplemental copper and 0 and 1 ppM added selenium. The control diet containing 0.1 ppM of selenium and 15 ppM of copper. All calves were orally dosed 48 hrs prior to sacrifice with selenium-75. A high copper diet increased copper concentrations in all intracellular liver fractions and most kidney fractions. Only the effects in the liver were significant. Less copper was found in the mitochondria fractions in liver and kidney of calves fed a high selenium diet. Three major copper-binding protein peaks were separated from the soluble fractions of calf liver and kidney. Peak 1 appeared to be the major copper-binding protein in liver and kidney cytosol of copper-loaded animals. Added selenium alone or in combination with copper accentuated the copper accumulation in this peak. Most of selenium-75 was recovered in the same peak as the copper. The results of this experiment indicated that the large molecular proteins in liver and kidney cytosol of calves play an important role in copper and selenium-75 metabolism. (ERB)

  9. The [4Fe4S] cluster of human DNA primase functions as a redox switch using DNA charge transport.

    PubMed

    O'Brien, Elizabeth; Holt, Marilyn E; Thompson, Matthew K; Salay, Lauren E; Ehlinger, Aaron C; Chazin, Walter J; Barton, Jacqueline K

    2017-02-24

    DNA charge transport chemistry offers a means of long-range, rapid redox signaling. We demonstrate that the [4Fe4S] cluster in human DNA primase can make use of this chemistry to coordinate the first steps of DNA synthesis. Using DNA electrochemistry, we found that a change in oxidation state of the [4Fe4S] cluster acts as a switch for DNA binding. Single-atom mutations that inhibit this charge transfer hinder primase initiation without affecting primase structure or polymerization. Generating a single base mismatch in the growing primer duplex, which attenuates DNA charge transport, inhibits primer truncation. Thus, redox signaling by [4Fe4S] clusters using DNA charge transport regulates primase binding to DNA and illustrates chemistry that may efficiently drive substrate handoff between polymerases during DNA replication.

  10. Proton coupled electron transfer and redox-active tyrosine Z in the photosynthetic oxygen-evolving complex.

    PubMed

    Keough, James M; Jenson, David L; Zuniga, Ashley N; Barry, Bridgette A

    2011-07-27

    Proton coupled electron transfer (PCET) reactions play an essential role in many enzymatic processes. In PCET, redox-active tyrosines may be involved as intermediates when the oxidized phenolic side chain deprotonates. Photosystem II (PSII) is an excellent framework for studying PCET reactions, because it contains two redox-active tyrosines, YD and YZ, with different roles in catalysis. One of the redox-active tyrosines, YZ, is essential for oxygen evolution and is rapidly reduced by the manganese-catalytic site. In this report, we investigate the mechanism of YZ PCET in oxygen-evolving PSII. To isolate YZ(•) reactions, but retain the manganese-calcium cluster, low temperatures were used to block the oxidation of the metal cluster, high microwave powers were used to saturate the YD(•) EPR signal, and YZ(•) decay kinetics were measured with EPR spectroscopy. Analysis of the pH and solvent isotope dependence was performed. The rate of YZ(•) decay exhibited a significant solvent isotope effect, and the rate of recombination and the solvent isotope effect were pH independent from pH 5.0 to 7.5. These results are consistent with a rate-limiting, coupled proton electron transfer (CPET) reaction and are contrasted to results obtained for YD(•) decay kinetics at low pH. This effect may be mediated by an extensive hydrogen-bond network around YZ. These experiments imply that PCET reactions distinguish the two PSII redox-active tyrosines.

  11. Method for characterization of the redox condition of cementitious materials

    SciTech Connect

    Almond, Philip M.; Langton, Christine A.; Stefanko, David B.

    2015-12-22

    Disclosed are methods for determining the redox condition of cementitious materials. The methods are leaching methods that utilize an in situ redox indicator that is present in the cementitious materials as formed. The in situ redox indicator leaches from cementitious material and, when the leaching process is carried out under anaerobic conditions can be utilized to determine the redox condition of the material. The in situ redox indicator can exhibit distinct characteristics in the leachate depending upon the redox condition of the indicator.

  12. Screening of redox couples and electrode materials

    NASA Technical Reports Server (NTRS)

    Giner, J.; Swette, L.; Cahill, K.

    1976-01-01

    Electrochemical parameters of selected redox couples that might be potentially promising for application in bulk energy storage systems were investigated. This was carried out in two phases: a broad investigation of the basic characteristics and behavior of various redox couples, followed by a more limited investigation of their electrochemical performance in a redox flow reactor configuration. In the first phase of the program, eight redox couples were evaluated under a variety of conditions in terms of their exchange current densities as measured by the rotating disk electrode procedure. The second phase of the program involved the testing of four couples in a redox reactor under flow conditions with a varity of electrode materials and structures.

  13. Manganese-enhanced magnetic resonance microscopy of mineralization

    USGS Publications Warehouse

    Chesnick, I.E.; Todorov, T.I.; Centeno, J.A.; Newbury, D.E.; Small, J.A.; Potter, K.

    2007-01-01

    Paramagnetic manganese (II) can be employed as a calcium surrogate to sensitize magnetic resonance microscopy (MRM) to the processing of calcium during bone formation. At high doses, osteoblasts can take up sufficient quantities of manganese, resulting in marked changes in water proton T1, T2 and magnetization transfer ratio values compared to those for untreated cells. Accordingly, inductively coupled plasma mass spectrometry (ICP-MS) results confirm that the manganese content of treated cell pellets was 10-fold higher than that for untreated cell pellets. To establish that manganese is processed like calcium and deposited as bone, calvaria from the skull of embryonic chicks were grown in culture medium supplemented with 1 mM MnCl2 and 3 mM CaCl2. A banding pattern of high and low T2 values, consistent with mineral deposits with high and low levels of manganese, was observed radiating from the calvarial ridge. The results of ICP-MS studies confirm that manganese-treated calvaria take up increasing amounts of manganese with time in culture. Finally, elemental mapping studies with electron probe microanalysis confirmed local variations in the manganese content of bone newly deposited on the calvarial surface. This is the first reported use of manganese-enhanced MRM to study the process whereby calcium is taken up by osteoblasts cells and deposited as bone. ?? 2007 Elsevier Inc. All rights reserved.

  14. Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia.

    PubMed

    Torres, Natascha T; Och, Lawrence M; Hauser, Peter C; Furrer, Gerhard; Brandl, Helmut; Vologina, Elena; Sturm, Michael; Bürgmann, Helmut; Müller, Beat

    2014-04-01

    Distinct layers of iron(III) and manganese(IV) (Fe/Mn) oxides are found buried within the reducing part of the sediments in Lake Baikal and cause considerable complexity and steep vertical gradients with respect to the redox sequence. For the on-site investigation of the responsible biogeochemical processes, we applied filter tube samplers for the extraction of sediment porewater combined with a portable capillary electrophoresis instrument for the analyses of inorganic cations and anions. On the basis of the new results, the sequence of diagenetic processes leading to the formation, transformation, and dissolution of the Fe/Mn layers was investigated. With two exemplary cores we demonstrate that the dissolution of particulate Fe and Mn is coupled to the anaerobic oxidation of CH₄ (AOM) either via the reduction of sulphate (SO₄(2-)) and the subsequent generation of Fe(II) by S(-II) oxidation, or directly coupled to Fe reduction. Dissolved Fe(II) diffuses upwards to reduce particulate Mn(IV) thus forming a sharp mineral boundary. An alternative dissolution pathway is indicated by the occurrence of anaerobic nitrification of NH₄(+) observed at locations with Mn(IV). Furthermore, the reasons and consequences of the non-steady-state sediment pattern and the resulting redox discontinuities are discussed and a suggestion for the burial of active Fe/Mn layers is presented.

  15. What are the oxidation states of manganese required to catalyze photosynthetic water oxidation?

    PubMed

    Kolling, Derrick R J; Cox, Nicholas; Ananyev, Gennady M; Pace, Ron J; Dismukes, G Charles

    2012-07-18

    Photosynthetic O(2) production from water is catalyzed by a cluster of four manganese ions and a tyrosine residue that comprise the redox-active components of the water-oxidizing complex (WOC) of photosystem II (PSII) in all known oxygenic phototrophs. Knowledge of the oxidation states is indispensable for understanding the fundamental principles of catalysis by PSII and the catalytic mechanism of the WOC. Previous spectroscopic studies and redox titrations predicted the net oxidation state of the S(0) state to be (Mn(III))(3)Mn(IV). We have refined a previously developed photoassembly procedure that directly determines the number of oxidizing equivalents needed to assemble the Mn(4)Ca core of WOC during photoassembly, starting from free Mn(II) and the Mn-depleted apo-WOC complex. This experiment entails counting the number of light flashes required to produce the first O(2) molecules during photoassembly. Unlike spectroscopic methods, this process does not require reference to synthetic model complexes. We find the number of photoassembly intermediates required to reach the lowest oxidation state of the WOC, S(0), to be three, indicating a net oxidation state three equivalents above four Mn(II), formally (Mn(III))(3)Mn(II), whereas the O(2) releasing state, S(4), corresponds formally to (Mn(IV))(3)Mn(III). The results from this study have major implications for proposed mechanisms of photosynthetic water oxidation.

  16. VERTEX: manganese transport through oxygen minima

    NASA Astrophysics Data System (ADS)

    Martin, John H.; Knauer, George A.

    1984-01-01

    Manganese transport through a well-developed oxygen minimum was studied off central Mexico (18°N, 108°W) in October-November 1981 as part of the VERTEX (Vertical Transport and Exchange) research program. Refractory, leachable and dissolved Mn fractions associated with particulates caught in traps set at eight depths (120-1950 m) were analyzed. Particles entering the oxygen minimum had relatively large Mn loads; however, as the particulates sank further into the minimum, total Mn fluxes steadily decreased from 190 nmol m -2 day -1 at 120 m to 36 nmol m -2 day -1 at 400 m. Manganese fluxes then steadily increased in the remaining 800-1950 m, reaching rates of up to 230 nmol m -2 day -1 at 1950 m. Manganese concentrations were also measured in the water column. Dissolved Mn levels < 3.0 nmol kg -1 were consistently observed within the 150-600 m depth interval. In contrast, suspended particulate leachable Mn amounts were especially low at those depths, and never exceeded 0.04 nmol kg -1. The combined water column and particle trap data clearly indicate that Mn is released from particles as they sink through the oxygen minimum. Rate-of-change estimates based on trap flux data yield regeneration rates of up to 0.44 nmol kg -1 yr -1 in the upper oxygen minimum (120-200 m). However, only 30% of the dissolved Mn in the oxygen minimum appears to be from sinking particulate regeneration; the other 70% probably results from continental-slope-release-horizontal-transport processes. Dissolved Mn scavenges back onto particles as oxygen levels begin to increase with depth. Scavenging rates ranging from -0.03 to -0.09 nmol kg -1 yr -1 were observed at depths from 700 to 1950 m. These scavenging rates result in Mn residence times of 16-19 years, and scavenging rate constants on the order of 0.057 yr -1. Manganese removal via scavenging on sinking particles below the oxygen minimum is balanced by Mn released along continental boundaries and transported horizontally via advective

  17. Engineered Proteins: Redox Properties and Their Applications

    PubMed Central

    Prabhulkar, Shradha; Tian, Hui; Wang, Xiaotang; Zhu, Jun-Jie

    2012-01-01

    Abstract Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices. Antioxid. Redox Signal. 17, 1796–1822. PMID:22435347

  18. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface.

    PubMed

    den Boer, Duncan; Li, Min; Habets, Thomas; Iavicoli, Patrizia; Rowan, Alan E; Nolte, Roeland J M; Speller, Sylvia; Amabilino, David B; De Feyter, Steven; Elemans, Johannes A A W

    2013-07-01

    Manganese porphyrins have been extensively investigated as model systems for the natural enzyme cytochrome P450 and as synthetic oxidation catalysts. Here, we report single-molecule studies of the multistep reaction of manganese porphyrins with molecular oxygen at a solid/liquid interface, using a scanning tunnelling microscope (STM) under environmental control. The high lateral resolution of the STM, in combination with its sensitivity to subtle differences in the electronic properties of molecules, allowed the detection of at least four distinct reaction species. Real-space and real-time imaging of reaction dynamics enabled the observation of active sites, immobile on the experimental timescale. Conversions between the different species could be tuned by the composition of the atmosphere (argon, air or oxygen) and the surface bias voltage. By means of extensive comparison of the results to those obtained by analogous solution-based chemistry, we assigned the observed species to the starting compound, reaction intermediates and products.

  19. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface

    NASA Astrophysics Data System (ADS)

    den Boer, Duncan; Li, Min; Habets, Thomas; Iavicoli, Patrizia; Rowan, Alan E.; Nolte, Roeland J. M.; Speller, Sylvia; Amabilino, David B.; de Feyter, Steven; Elemans, Johannes A. A. W.

    2013-07-01

    Manganese porphyrins have been extensively investigated as model systems for the natural enzyme cytochrome P450 and as synthetic oxidation catalysts. Here, we report single-molecule studies of the multistep reaction of manganese porphyrins with molecular oxygen at a solid/liquid interface, using a scanning tunnelling microscope (STM) under environmental control. The high lateral resolution of the STM, in combination with its sensitivity to subtle differences in the electronic properties of molecules, allowed the detection of at least four distinct reaction species. Real-space and real-time imaging of reaction dynamics enabled the observation of active sites, immobile on the experimental timescale. Conversions between the different species could be tuned by the composition of the atmosphere (argon, air or oxygen) and the surface bias voltage. By means of extensive comparison of the results to those obtained by analogous solution-based chemistry, we assigned the observed species to the starting compound, reaction intermediates and products.

  20. Plant extract-mediated biogenic synthesis of silver, manganese dioxide, silver-doped manganese dioxide nanoparticles and their antibacterial activity against food- and water-borne pathogens.

    PubMed

    Krishnaraj, Chandran; Ji, Byoung-Jun; Harper, Stacey L; Yun, Soon-Il

    2016-05-01

    Silver nanoparticles (AgNPs), manganese dioxide nanoparticles (MnO₂NPs) and silver-doped manganese dioxide nanoparticles (Ag-doped MnO₂NPs) were synthesized by simultaneous green chemistry reduction approach. Aqueous extract from the leaves of medicinally important plant Cucurbita pepo was used as reducing and capping agents. Various characterization techniques were carried out to affirm the formation of nanoparticles. HR-TEM analysis confirmed the size of nanoparticles in the range of 15-70 nm and also metal doping was confirmed through XRD and EDS analyses. FT-IR analysis confirmed that the presence of biomolecules in the aqueous leaves extract was responsible for nanoparticles synthesis. Further, the concentration of metals and their doping in the reaction mixture was achieved by ICP-MS. The growth curve and well diffusion study of synthesized nanoparticles were performed against food- and water-borne Gram-positive and Gram-negative bacterial pathogens. The mode of interaction of nanoparticles on bacterial cells was demonstrated through Bio-TEM analysis. Interestingly, AgNPs and Ag-doped MnO₂NPs showed better antibacterial activity against all the tested bacterial pathogens; however, MnO₂NPs alone did not show any antibacterial properties. Hence, AgNPs and Ag-doped MnO₂NPs synthesized from aqueous plant leaves extract may have important role in controlling various food spoilage caused by bacteria.