Science.gov

Sample records for manghopir hot spring

  1. Hot Spring Metagenomics

    PubMed Central

    López-López, Olalla; Cerdán, María Esperanza; González-Siso, María Isabel

    2013-01-01

    Hot springs have been investigated since the XIX century, but isolation and examination of their thermophilic microbial inhabitants did not start until the 1950s. Many thermophilic microorganisms and their viruses have since been discovered, although the real complexity of thermal communities was envisaged when research based on PCR amplification of the 16S rRNA genes arose. Thereafter, the possibility of cloning and sequencing the total environmental DNA, defined as metagenome, and the study of the genes rescued in the metagenomic libraries and assemblies made it possible to gain a more comprehensive understanding of microbial communities—their diversity, structure, the interactions existing between their components, and the factors shaping the nature of these communities. In the last decade, hot springs have been a source of thermophilic enzymes of industrial interest, encouraging further study of the poorly understood diversity of microbial life in these habitats. PMID:25369743

  2. Hot spring metagenomics.

    PubMed

    López-López, Olalla; Cerdán, María Esperanza; González-Siso, María Isabel

    2013-01-01

    Hot springs have been investigated since the XIX century, but isolation and examination of their thermophilic microbial inhabitants did not start until the 1950s. Many thermophilic microorganisms and their viruses have since been discovered, although the real complexity of thermal communities was envisaged when research based on PCR amplification of the 16S rRNA genes arose. Thereafter, the possibility of cloning and sequencing the total environmental DNA, defined as metagenome, and the study of the genes rescued in the metagenomic libraries and assemblies made it possible to gain a more comprehensive understanding of microbial communities-their diversity, structure, the interactions existing between their components, and the factors shaping the nature of these communities. In the last decade, hot springs have been a source of thermophilic enzymes of industrial interest, encouraging further study of the poorly understood diversity of microbial life in these habitats. PMID:25369743

  3. 6. HOT AIR PORTION OF DAMPERS. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. HOT AIR PORTION OF DAMPERS. - Hot Springs National Park, Bathhouse Row, Lamar Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  4. Archaeal Nitrification in Hot Springs

    NASA Astrophysics Data System (ADS)

    Richter, A.; Daims, H.; Reigstad, L.; Wanek, W.; Wagner, M.; Schleper, C.

    2006-12-01

    Biological nitrification, i.e. the aerobic conversion of ammonia to nitrate via nitrite, is a major component of the global nitrogen cycle. Until recently, it was thought that the ability to aerobically oxidize ammonia was confined to bacteria of the phylum Proteobacteria. However, it has recently been shown that Archaea of the phylum Crenarchaeota are also capable of ammonia oxidation. As many Crenarchaeota are thermophilic or hyperthermophilic, and at least some of them are capable of ammonia oxidation we speculated on the existence of (hyper)thermophilic ammonia-oxidizing archaea (AOA). Using PCR primers specifically targeting the archaeal ammonia monooxygenase (amoA) gene, we were indeed able to confirm the presence of such organisms in several hot springs in Reykjadalur, Iceland. These hot springs exhibited temperatures well above 80 °C and pH values ranging from 2.0 to 4.5. To proof that nitrification actually took place under these extreme conditions, we measured gross nitrification rates by the isotope pool dilution method; we added 15N-labelled nitrate to the mud and followed the dilution of the label by nitrate production from ammonium either in situ (incubation in the hot spring) or under controlled conditions in the laboratory (at 80 °C). The nitrification rates in the hot springs ranged from 0.79 to 2.22 mg nitrate-N per L of mud and day. Controls, in which microorganisms were killed before the incubations, demonstrated that the nitrification was of biological origin. Addition of ammonium increased the gross nitrification rate approximately 3-fold, indicating that the nitrification was ammonium limited under the conditions used. Collectively, our study provides evidence that (1) AOA are present in hot springs and (2) that they are actively nitrifying. These findings have major implications for our understanding of nitrogen cycling of hot environments.

  5. Phage Community Dynamics in Hot Springs

    PubMed Central

    Breitbart, Mya; Wegley, Linda; Leeds, Steven; Schoenfeld, Tom; Rohwer, Forest

    2004-01-01

    In extreme thermal environments such as hot springs, phages are the only known microbial predators. Here we present the first study of prokaryotic and phage community dynamics in these environments. Phages were abundant in hot springs, reaching concentrations of a million viruses per milliliter. Hot spring phage particles were resistant to shifts to lower temperatures, possibly facilitating DNA transfer out of these extreme environments. The phages were actively produced, with a population turnover time of 1 to 2 days. Phage-mediated microbial mortality was significant, making phage lysis an important component of hot spring microbial food webs. Together, these results show that phages exert an important influence on microbial community structure and energy flow in extreme thermal environments. PMID:15006788

  6. Diagenetic Changes in Common Hot Spring Microfacies

    NASA Astrophysics Data System (ADS)

    Hinman, N. W.; Kendall, T. A.; MacKenzie, L. A.; Cady, S. D.

    2016-05-01

    The friable nature of silica hot spring deposits makes them susceptible to mechanical weathering. Rapid diagenesis must take place for these rocks to persist in the geologic record. The properties of two microfacies at two deposits were compared.

  7. Travertine Hot Springs, Mono County, California

    SciTech Connect

    Chesterman, C.W.; Kleinhampl, F.J.

    1991-08-01

    This article is an abridgement of Special Report 172, Travertine Hot Springs at Bridgeport, Mono County, California, in preparation at the California Division of Mines and Geology. The Travertine Hot Springs area is on the northern edge of what many consider to be one of the most tectonically active areas in the United States. There is abundant geothermal and seismic activity. The landscape is dotted with volcanic features- cones, craters, domes, flows, fumaroles and hot springs-indicators of unrest in the present as well as reminders of activity in the past. Travertine, also known as calcareous sinter, is limestone formed by chemical precipitation of calcium carbonate (CaCO{sub 3}) from ground or surface waters. It forms stalactites and stalagmites in caves, fills some veins and spring conduits and can also be found at the mouths of springs, especially hot springs. The less compact variety is called tufa and the dense, banded variety is known as Mexican onyx, or onyx marble. True onyx, however, is a banded silicate.

  8. 4. VACUUM PUMP (CONDENSATE RETURN). Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VACUUM PUMP (CONDENSATE RETURN). - Hot Springs National Park, Bathhouse Row, Buckstaff Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 Mile North of U.S. Highway 70, Hot Springs, Garland County, AR

  9. VACUUM PUMP (CONDENSATE RETURN). Hot Springs National Park, Bathhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VACUUM PUMP (CONDENSATE RETURN). - Hot Springs National Park, Bathhouse Row, Hale Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  10. 1. INDUSTRIAL IRON (WORKING SIDE). Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. INDUSTRIAL IRON (WORKING SIDE). - Hot Springs National Park, Bathhouse Row, Quapaw Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  11. 10. NEEDLE SHOWER IN COOLING ROOM. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. NEEDLE SHOWER IN COOLING ROOM. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  12. BLOWER MOTOR & DRIVE WHEEL. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLOWER MOTOR & DRIVE WHEEL. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  13. 5. FLOW METER AND PIPING SHOWING CONNECTIONS. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. FLOW METER AND PIPING SHOWING CONNECTIONS. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  14. 5. DISCONNECTED COMPRESSOR MOTOR. Hot Springs National Park, Bathhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DISCONNECTED COMPRESSOR MOTOR. - Hot Springs National Park, Bathhouse Row, Quapaw Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  15. 2. PADDLE FAN IN PLENUM INTERIOR. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PADDLE FAN IN PLENUM INTERIOR. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  16. 11. GENERAL VIEW OF MEN'S BATH HALL. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. GENERAL VIEW OF MEN'S BATH HALL. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  17. 1. BLOWER (EXTERIOR CONFIGURATION). Hot Springs National Park Bathhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BLOWER (EXTERIOR CONFIGURATION). - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  18. 2. INDUSTRIAL IRON (LAUNDRY AREA IN BACKGROUND). Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. INDUSTRIAL IRON (LAUNDRY AREA IN BACKGROUND). - Hot Springs National Park, Bathhouse Row, Quapaw Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  19. 7. COOLING TOWER FROM ROOF. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. COOLING TOWER FROM ROOF. - Hot Springs National Park, Bathhouse Row, Quapaw Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  20. 13. DETAIL OF INTERIOR OF ELEVATOR SHAFT. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL OF INTERIOR OF ELEVATOR SHAFT. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  1. 2. ELEVATOR DRIVE, CABLE MOTOR, CIRCUIT BOX, Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ELEVATOR DRIVE, CABLE MOTOR, CIRCUIT BOX, - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  2. 2. SECTIONAL BOILER '#4 IDEAL RED FLASH.' Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SECTIONAL BOILER '#4 IDEAL RED FLASH.' - Hot Springs National Park, Bathhouse Row, Ozark Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  3. 11. INTERIOR OF THERMOSTAT. Hot Springs National Park Bathhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR OF THERMOSTAT. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  4. 12. ELEVATOR DOORS AND CAB. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. ELEVATOR DOORS AND CAB. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  5. 4. DETAIL OF ELEVATOR DRUM AND DRIVE. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF ELEVATOR DRUM AND DRIVE. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  6. 9. NEEDLE SHOWER IN MEN'S PACK ROOM. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. NEEDLE SHOWER IN MEN'S PACK ROOM. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  7. On the Usefulness of Radioactive Hot Springs in Mars Exploration

    NASA Astrophysics Data System (ADS)

    Rask, J. C.; Bywaters, K. F.; Magnuson, T. S.

    2016-09-01

    We report on a systematic characterization of the radiation environment, water temperatures, and microbial systems of Worswick Hot Springs, as a model for future characterization of polar hot spring environments.

  8. 9. THERMOSTAT IN LADIES MASSAGE ROOM. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. THERMOSTAT IN LADIES MASSAGE ROOM. - Hot Springs National Park, Bathhouse Row, Lamar Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  9. DETAIL OF THERMALWATER FLOW METER. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THERMAL-WATER FLOW METER. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  10. 5. HORIZONTAL COOLEDWATER STORAGE TANKS. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. HORIZONTAL COOLED-WATER STORAGE TANKS. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  11. THERMALWATER FLOW METER. Hot Springs National Park, Bathhouse Row, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    THERMAL-WATER FLOW METER. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  12. 10. NEEDLE SHOWER IN WOMEN'S PACK ROOM. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. NEEDLE SHOWER IN WOMEN'S PACK ROOM. - Hot Springs National Park, Bathhouse Row, Lamar Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  13. 36 CFR 7.18 - Hot Springs National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or carrying away of water, hot or cold, from any of the springs, fountains, or other sources of... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Hot Springs National Park. 7... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.18 Hot Springs National Park. (a)...

  14. 36 CFR 7.18 - Hot Springs National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or carrying away of water, hot or cold, from any of the springs, fountains, or other sources of... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Hot Springs National Park. 7... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.18 Hot Springs National Park. (a)...

  15. 36 CFR 7.18 - Hot Springs National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or carrying away of water, hot or cold, from any of the springs, fountains, or other sources of... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Hot Springs National Park. 7... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.18 Hot Springs National Park. (a)...

  16. 36 CFR 7.18 - Hot Springs National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or carrying away of water, hot or cold, from any of the springs, fountains, or other sources of... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Hot Springs National Park. 7... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.18 Hot Springs National Park. (a)...

  17. The microbial role in hot spring silicification.

    PubMed

    Konhauser, Kurt O; Jones, Brian; Phoenix, Vernon R; Ferris, Grant; Renaut, Robin W

    2004-12-01

    Recent experimental studies indicate that microorganisms play a passive role in silicification. The organic functional groups that comprise the outer cell surfaces simply serve as heterogeneous nucleation sites for the adsorption of polymeric and/or colloidal silica, and because different microorganisms have different cell ultrastructural chemistry, species-specific patterns of silicification arise. Despite their templating role, they do not appear to increase the kinetics of silicification, and at the very most, they contribute only marginally to the magnitude of silicification. Instead, silicification is due to the polymerization of silica-supersaturated hydrothermal fluids upon discharge at the surface of the hot spring. Microorganisms do, however, impart an influence on the fabric of the siliceous sinters that form around hot spring vents. Different microorganisms have different growth patterns, that in turn, affect the style of laminations, the primary porosity of the sinter and the distribution of later-stage diagenetic cementation.

  18. Virus Silicification under Simulated Hot Spring Conditions

    NASA Astrophysics Data System (ADS)

    Laidler, James R.; Stedman, Kenneth M.

    2010-07-01

    Silicification of organisms in silica-depositing environments can impact both their ecology and their presence in the fossil record. Although microbes have been silicified under laboratory and environmental conditions, viruses have not. Bacteriophage T4 was successfully silicified under laboratory conditions that closely simulated those found in silica-depositing hot springs. Virus morphology was maintained, and a clear elemental signature of phosphorus was detected by energy-dispersive X-ray spectrophotometry (EDS).

  19. Virus silicification under simulated hot spring conditions.

    PubMed

    Laidler, James R; Stedman, Kenneth M

    2010-01-01

    Silicification of organisms in silica-depositing environments can impact both their ecology and their presence in the fossil record. Although microbes have been silicified under laboratory and environmental conditions, viruses have not. Bacteriophage T4 was successfully silicified under laboratory conditions that closely simulated those found in silica-depositing hot springs. Virus morphology was maintained, and a clear elemental signature of phosphorus was detected by energy-dispersive X-ray spectrophotometry (EDS).

  20. Microbiology of Kamchatka Peninsula Hot Springs

    NASA Astrophysics Data System (ADS)

    Bonch-Osmolovsk, E.

    2005-12-01

    Hot springs of Uzon Caldera, Geyser Valley, Moutnovsky Volcano (Kamchatka Peninsula) served as the sources of isolation of numerous thermophilic prokaryotes, many of them representing new taxa. Among new isolates there were hyperthermophilic archaea - neutrophilic or acidophilic anaerobic organotrophs, able to use a wide range of polymeric organic substrates. Bacterial isolates were in majority represented by moderate thermophiles - organotrophs and lithoautotrophs. Latter group consisted of anaerobes oxidizing molecular hydrogen in the course of sulfate, sulfur or iron reduction, and of anaerobic CO-oxidizing, hydrogen-producing bacteria. Some of new isolates represented deep phylogenetic lineages in Bacteria domain. Microbial activity in Kamchatka hot springs was studied by means of radioisotopic tracing. The rates of methanogenesis, acetogenesis, inorganic carbon assimilation, acetate oxidation were determined in three different hot springs with pH ranging from 3.0 to 8.5 and water temeperature being in the range from 55 to 85oC. The results indicated the presence and activity of novel metabolic groups of thermophilic prokaryotes that so far have not been known in laboratory cultures.

  1. Geothermal Exploration in Hot Springs, Montana

    SciTech Connect

    Toby McIntosh, Jackola Engineering

    2012-09-26

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250 of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the center of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  2. Sol Duc Hot Springs feasibility study

    SciTech Connect

    Not Available

    1981-12-01

    Sol Duc Springs is located in the Olympic National Park in western Washington state. Since the turn of the century, the area has served as a resort, offering hot mineral baths, lodge and overnight cabin accommodations. The Park Service, in conjunction with the concessionaire, is in the process of renovating the existing facilities, most of which are approximately 50 years old. The present renovation work consists of removing all of the existing cabins and replacing them with 36 new units. In addition, a new hot pool is planned to replace the existing one. This report explores the possibility of a more efficient use of the geothermal resource to accompany other planned improvements. It is important to note that the system outlined is based upon the resource development as it exists currently. That is, the geothermal source is considered to be: the two existing wells and the hot springs currently in use. In addition, every effort has been made to accommodate the priorities for utilization as set forth by the Park Service.

  3. Portrait of a Geothermal Spring, Hunter's Hot Springs, Oregon.

    PubMed

    Castenholz, Richard W

    2015-01-27

    Although alkaline Hunter's Hot Springs in southeastern Oregon has been studied extensively for over 40 years, most of these studies and the subsequent publications were before the advent of molecular methods. However, there are many field observations and laboratory experiments that reveal the major aspects of the phototrophic species composition within various physical and chemical gradients of these springs. Relatively constant temperature boundaries demark the upper boundary of the unicellular cyanobacterium, Synechococcus at 73-74 °C (the world-wide upper limit for photosynthesis), and 68-70 °C the upper limit for Chloroflexus. The upper limit for the cover of the filamentous cyanobacterium, Geitlerinema (Oscillatoria) is at 54-55 °C, and the in situ lower limit at 47-48 °C for all three of these phototrophs due to the upper temperature limit for the grazing ostracod, Thermopsis. The in situ upper limit for the cyanobacteria Pleurocapsa and Calothrix is at ~47-48 °C, which are more grazer-resistant and grazer dependent. All of these demarcations are easily visible in the field. In addition, there is a biosulfide production in some sections of the springs that have a large impact on the microbiology. Most of the temperature and chemical limits have been explained by field and laboratory experiments.

  4. Phototrophy in Mildly Acidic Hot Spring Ecosystems

    NASA Astrophysics Data System (ADS)

    Fecteau, K.; Boyd, E. S.; Shock, E.

    2014-12-01

    Microbial light-driven reduction of carbon in continental hydrothermal ecosystems is restricted to environments at temperatures less than 73 °C. In circumneutral and alkaline systems bacterial phototrophs (cyanobacteria and anoxygenic phototrophs) are suggested to be principally responsible for this activity whereas algal (i.e., eukaryotic) phototrophs are thought to be responsible for this activity in acidic systems. In Yellowstone National Park numerous examples of phototrophic microbial communities exist at high and low pH, while hot springs with intermediate pH (values 3-5) are rare and commonly dilute. It is thought that the transition from algal photosynthesis to bacterial photosynthesis occurs within this pH range. To test this hypothesis, we sequenced bacterial and eukaryal small subunit ribosomal RNA genes, analyzed pigments, and performed comprehensive geochemical measurements from 12 hot springs within this pH realm. At all sites, the largest phototrophic population was either comprised of Cyanobacteria or affiliated with the algal order Cyanidiales, which are ubiquitous in acidic springs, yet abundant sequences of both lineages were present in 8 of the 12 sites. Nevertheless, some of these samples exceeded the known temperature limit of the algae (56 °C), suggesting that these populations are dead or inactive. Indeed, one site yielded evidence for a large Cyanidiales population as the only phototrophs present, yet an experiment at the time of sampling failed to demonstrate light-driven carbon fixation, and analysis of extracted pigments showed a large amount of the chlorophyll degradation product pheophorbide a and very little intact chlorophyll, indicating photosynthesis occurred at this site when conditions were different. Our observations illustrate the dynamic nature of these systems that may be transiently conducive to photosynthesis, which may open niches for phototrophs of both domains and likely played a role in the evolution of photosynthesis.

  5. Hot Springs-Garrison Fiber Optic Project

    SciTech Connect

    Not Available

    1994-10-01

    Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

  6. Geothermal resource assessment of Waunita Hot Springs, Colorado

    SciTech Connect

    Zacharakis, T.G.

    1981-01-01

    This assessment includes the project report; the geothermal prospect reconnaissance evaluation and recommendations; interpretation of water sample analyses; a hydrogeochemical comparison of the Waunita Hot Springs, Hortense, Castle Rock, and Anderson Hot Springs; geothermal resistivity resource evaluation survey, the geophysical environment; temperature, heat flow maps, and temperature gradient holes; and soil mercury investigations.

  7. 36 CFR 7.18 - Hot Springs National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Hot Springs National Park. 7.18 Section 7.18 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.18 Hot Springs National Park. (a)...

  8. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    SciTech Connect

    East, J.

    1982-04-01

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  9. Siliceous Shrubs in Yellowstone's Hot Springs: Implications for Exobiological Investigations

    NASA Technical Reports Server (NTRS)

    Guidry, S. A.; Chafetz, H. S.

    2003-01-01

    Potential relict hot springs have been identified on Mars and, using the Earth as an analog, Martian hot springs are postulated to be an optimal locality for recognizing preserved evidence of extraterrestrial life. Distinctive organic and inorganic biomarkers are necessary to recognize preserved evidence of life in terrestrial and extraterrestrial hot spring accumulations. Hot springs in Yellowstone National Park, Wyoming, U.S.A., contain a wealth of information about primitive microbial life and associated biosignatures that may be useful for future exobiological investigations. Numerous siliceous hot springs in Yellowstone contain abundant, centimeter-scale, spinose precipitates of opaline silica (opal-A). Although areally extensive in siliceous hot spring discharge channel facies, these spinose forms have largely escaped attention. These precipitates referred to as shrubs, consist of porous aggregates of spinose opaline silica that superficially resemble miniature woody plants, i.e., the term shrubs. Shrubs in carbonate precipitating systems have received considerable attention, and represent naturally occurring biotically induced precipitates. As such, shrubs have great potential as hot spring environmental indicators and, more importantly, proxies for pre-existing microbial life.

  10. Kelley Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center conceptual design

    SciTech Connect

    Longyear, A.B.

    1980-06-01

    The proposed core activity in the Kelly Hot Spring Agricultural Center is a nominal 1200 sow swine raising complex. The swine raising is to be a totally confined operation for producing premium pork in controlled environment facilities that utilize geothermal energy. The complex will include a feedmill for producing the various feed formulae required for the animals from breeding through gestation, farrowing, nursery, growing and finishing. The market animals are shipped live by truck to slaughter in Modesto, California. A complete waste management facility will include manure collection from all raising areas, transport via a water flush sysem to methane (biogas) generators, manure separation, settling ponds and disposition of the surplus agricultural quality water. The design is based upon the best commercial practices in confined swine raising in the US today. The most unique feature of the facility is the utilization of geothermal hot water for space heating and process energy throughout the complex.

  11. Kelly Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center preliminary design. Final technical report

    SciTech Connect

    Longyear, A.B.

    1980-08-01

    A Phase 1 Preliminary Design, Construction Planning and Economic Analysis has been conducted for the Kelly Hot Spring Agricultural Center in Modoc County, California. The core activity is a 1360 breeding sow, swine raising complex that utilizes direct heat energy from the Kelly Hot Spring geothermal resource. The swine is to be a totally confined operation for producing premium pork in controlled-environment facilities. The complex contains a feed mill, swine raising buildings and a complete waste management facility that produces methane gas to be delivered to a utility company for the production of electricity. The complex produces 6.7 million pounds of live pork (29,353 animals) shipped to slaughter per year; 105,000 cu. ft. of scrubbed methane per day; and fertilizer. Total effluent is less than 200 gpm of agricultural quality-water with full odor control. The methane production rate made possible with geothermal direct heat is equivalent to at least 400 kw continuous. Sale of the methane on a co-generation basis is being discussed with the utility company. The use of geothermal direct heat energy in the complex displaces nearly 350,000 gallons of fuel oil per year. Generation of the biogas displaces an additional 300,000 gallons of fuel oil per year.

  12. Analysis of geothermal electric-power generation at Big Creek Hot Springs, Lemhi County, Idaho

    SciTech Connect

    Struhsacker, D.W.

    1981-01-01

    Big Creek Hot Springs was evaluated as a source of electrical power for the Blackbird Cobalt Mine, approximately 13 miles south of the hot spring. An evaluaton of the geothermal potential of Big Creek Hot Springs, a suggested exploration program and budget, an engineering feasibility study of power generation at Big Creek Hot Springs, an economic analysis of the modeled power generating system, and an appraisal of the institutional factors influencing development at Big Creek Hot Springs are included.

  13. Geothermal heat pump system assisted by geothermal hot spring

    NASA Astrophysics Data System (ADS)

    Nakagawa, M.; Koizumi, Y.

    2016-01-01

    The authors propose a hybrid geothermal heat pump system that could cool buildings in summer and melt snow on the pedestrian sidewalks in winter, utilizing cold mine water and hot spring water. In the proposed system, mine water would be used as cold thermal energy storage, and the heat from the hot spring after its commercial use would be used to melt snow for a certain section of sidewalks. Neither of these sources is viable for direct use application of geothermal resources, however, they become contributing energy factors without producing any greenhouse gases. To assess the feasibility of the proposed system, a series of temperature measurements in the Edgar Mine (Colorado School of Mines' experimental mine) in Idaho Springs, Colorado, were first conducted, and heat/mass transfer analyses of geothermal hot spring water was carried out. The result of the temperature measurements proved that the temperature of Edgar Mine would be low enough to store cold groundwater for use in summer. The heat loss of the hot spring water during its transportation was also calculated, and the heat requirement for snow melt was compared with the heat available from the hot spring water. It was concluded that the heat supply in the proposed usage of hot spring water was insufficient to melt the snow for the entire area that was initially proposed. This feasibility study should serve as an example of "local consumption of locally available energy". If communities start harnessing economically viable local energy in a responsible manner, there will be a foundation upon which to build a sustainable community.

  14. Geologic reconnaissance of the Hot Springs Mountains, Churchill County, Nevada

    USGS Publications Warehouse

    Voegtly, Nickolas E.

    1981-01-01

    A geologic reconnaissance of the Hot Springs Mountains and adjacent areas, which include parts of the Brady-Hazen and the Stillwater-Soda Lake Known Geothermal Resource Areas, during June-December 1975, resulted in a reinterpretation of the nature and location of some Basin and Range faults. In addition, the late Cenozoic stratigraphy has been modified, chiefly on the basis of radiometric dates of volcanic rocks by U.S. Geological Survey personnel and others. The Hot Springs Mountains are in the western part of the Basin and Range province, which is characterized by east-west crustal extension and associated normal faulting. In the surrounding Trinity, West Humboldt, Stillwater, and Desert Mountains, Cenozoic rocks overlie ' basement ' rocks of the Paleozoic and Mesozoic age. A similar relation is inferred in the Hot Springs Mountains. Folding and faulting have taken place from the late Tertiary to the present. (USGS)

  15. Acord 1-26 hot, dry well, Roosevelt Hot Springs hot dry rock prospect, Utah

    SciTech Connect

    Shannon, S.S. Jr.; Pettitt, R.; Rowley, J.; Goff, F.; Mathews, M.; Jacobson, J.J.

    1983-08-01

    The Acord 1-26 well is a hot, dry well peripheral to the Roosevelt Hot Springs known geothermal resource area (KGRA) in southwestern Utah. The bottom-hole temperature in this 3854-m-deep well is 230/sup 0/C, and the thermal gradient is 54/sup 0/C/km. The basal 685 m, comprised of biotite monzonite and quartz schist and gneiss, is a likely hot, dry rock (HDR) prospect. The hole was drilled in a structural low within the Milford Valley graben and is separated from the Roosevelt KGRA to the east by the Opal Mound Fault and other basin faults. An interpretation of seismic data approximates the subsurface structure around the well using the lithology in the Acord 1-26 well. The hole was drilled with a minimum of difficulty, and casing was set to 2411 m. From drilling and geophysical logs, it is deduced that the subsurface blocks of crystalline rock in the vicinity of the Acord 1-26 well are tight, dry, shallow, impermeable, and very hot. A hydraulic fracture test of the crystalline rocks below 3170 m is recommended. Various downhole tools and techniques could be tested in promising HDR regimes within the Acord 1-26 well.

  16. Environmental assessment for Kelley Hot Spring geothermal project: Kelley Hot Spring Agricultural Center

    SciTech Connect

    Neilson, J.A.

    1981-04-01

    The environmental impacts of an integrated swine production unit are analyzed together with necessary ancillary operations deriving its primary energy from a known geothermal reservoir in accordance with policies established by the National Energy Conservation Act. This environmental assessment covers 6 areas designated as potentially feasible project sites, using as the basic criteria for selection ground, surface and geothermal water supplies. The six areas, comprising +- 150 acres each, are within a 2 mile radius of Kelley Hot Springs, a known geothermal resource of many centuries standing, located 16 miles west of Alturas, the county seat of Modoc County, California. The project consists of the construction and operation of a 1360 sow confined pork production complex expandable to 5440 sows. The farrow to finish system for 1360 sows consists of 2 breeding barns, 2 gestation barns, 1 farrowing and 1 nursery barn, 3 growing and 3 finishing barns, a feed mill, a methane generator for waste disposal and water storage ponds. Supporting this are one geothermal well and 1 or 2 cold water wells, all occupying approximately 12 acres. Environmental reconnaissance involving geology, hydrology, soils, vegetation, fauna, air and water quality, socioeconomic, archaelogical and historical, and land use aspects were carefully carried out, impacts assessed and mitigations evaluated.

  17. Small-scale Geothermal Power Plants Using Hot Spring Water

    NASA Astrophysics Data System (ADS)

    Tosha, T.; Osato, K.; Kiuchi, T.; Miida, H.; Okumura, T.; Nakashima, H.

    2013-12-01

    The installed capacity of the geothermal power plants has been summed up to be about 515MW in Japan. However, the electricity generated by the geothermal resources only contributes to 0.2% of the whole electricity supply. After the catastrophic earthquake and tsunami devastated the Pacific coast of north-eastern Japan on Friday, March 11, 2011, the Japanese government is encouraging the increase of the renewable energy supply including the geothermal. It needs, however, more than 10 years to construct the geothermal power plant with more than 10MW capacity since the commencement of the development. Adding the problem of the long lead time, high temperature fluid is mainly observed in the national parks and the high quality of the geothermal resources is limited. On the other hand hot springs are often found. The utilisation of the low temperature hot water becomes worthy of notice. The low temperature hot water is traditionally used for bathing and there are many hot springs in Japan. Some of the springs have enough temperature and enthalpy to turn the geothermal turbine but a new technology of the binary power generation makes the lower temp fluid to generate electricity. Large power generators with the binary technology are already installed in many geothermal fields in the world. In the recent days small-scale geothermal binary generators with several tens to hundreds kW capacity are developed, which are originally used by the waste heat energy in an iron factory and so on. The newly developed binary unit is compact suitable for the installation in a Japanese inn but there are the restrictions for the temperature of the hot water and the working fluid. The binary power unit using alternatives for chlorofluorocarbon as the working fluid is relatively free from the restriction. KOBELCO, a company of the Kobe Steel Group, designed and developed the binary power unit with an alternative for chlorofluorocarbon. The unit has a 70 MW class electric generator. Three

  18. Hot Spring Microbial Community Elemental Composition: Hot Spring and Soil Inputs, and the Transition from Biocumulus to Sinter

    NASA Astrophysics Data System (ADS)

    Havig, J. R.; Prapaipong, P.; Zolotova, N.; Moore, G. M.; Fecteau, K.; Robinson, K.; Boyer, G. M.; Shock, E.

    2015-12-01

    Hydrothermal microbial communities contain some of the most deeply branching members of the tree of life, and hydrothermal environments have been present on the Earth's surface since the condensation of the ocean over four billion years ago. Hydrothermal microbial communities are a potential source for biosignatures across nearly all of Earth's history, and the most likely mode of life (past and/or present) if it had developed on other bodies in the solar system. While there are general patterns of element enrichment for hydrothermal water, the elemental composition of bulk hydrothermal microbial communities (here termed biocumulus, encompassing biomass and non-biomass material) are largely unexplored. In order to elucidate the elemental composition of hot spring biocumulus and explore the sources of those elements, we sampled 87 hot spring biocumulus in 19 hot springs along with dozens of associated soil, rock, sinter, and autochthonous biomass samples and analyzed them for 41 elements, in conjunction with a larger sampling campaign (> 1000 hot spring water samples from 11 hydrothermal areas within Yellowstone National Park). While biocumulus are of obvious biological origin, they have surprising elemental compositions. Organic carbon makes up a minor percentage of the total mass of thermophilic chemotrophic and phototrophic biocumulus. We have found that the majority of hot spring biocumulus is inorganic material, largely silica, with measurable quantities of dozens of other elements, and that the distribution of major elements mimics that of surrounding rock and soil far more closely than the hot spring fluids. Analyses indicate a consistent pattern of elemental composition for biocumulus across varying hydrothermal geochemical compositions, and a systematic loss of biologically-associated elements during diagenetic transformation of biocumulus to siliceous sinter.

  19. Association of Bacteria and Yeasts in Hot Springs

    PubMed Central

    Rikhvanov, Eugene G.; Varakina, Nina N.; Sozinov, Dmitri Yu.; Voinikov, Viktor K.

    1999-01-01

    The thermophilic bacterium Bacillus sp. strain TB-1 was isolated in association with the yeast Debaryomyces vanriji from hot springs at 46°C. It was shown that TB-1 excreted thiamine into the culture broth, which not only promoted D. vanriji growth in mixed culture but also increased the maximal temperature for yeast growth. PMID:10473457

  20. Biogeochemistry of Hot Spring Biofilms: Major and Trace Element Behavior

    NASA Astrophysics Data System (ADS)

    Havig, J. R.; Prapaipong, P.; Zolotova, N.; Moore, G.; Shock, E. L.

    2008-12-01

    Hot spring biofilms are of obvious biological origin, but of surprising composition. Organic carbon makes up a minor percentage of the total mass of chemotrophic and phototrophic biofilms. We have found that the majority of biofilm mass is inorganic material, largely silica, with measurable quantities of dozens of other elements, and that the distribution of major elements mimics that of surrounding rock and soil far more closely than the hot spring fluids. Comparisons of biofilms with the compositions of their geochemical surroundings help identify trace elements that are anomalously enriched or depleted. These anomalies provide insight into the processes of active or passive elemental accumulation by biofilms, which could be used to understand microbial processes of element uptake or to identify evidence for life in hydrothermal deposits in the rock record. Five separate hydrothermal systems in Yellowstone National Park were incorporated into this study: 'Bison Pool' and its outflow (siliceous-sinter depositing, temp. = 93.2 to 56.2 C, pH = 7.4 to 8.3), Flatcone Geyser and its outflow (siliceous-sinter depositing, temp. = 94.3 to 44.3 C, pH = 7.9 to 8.8, Boulder Spring and its outflow (siliceous-sinter depositing, temp. = 92.1 to 64.9 C, pH = 8.2 to 8.7), Octopus Spring and its outflow (siliceous-sinter depositing, temp. = 91.4 to 62.8 C, pH = 7.7 to 8.2), and two unnamed locations in the Obsidian Pool area we have dubbed 'Green Cheese' (temp. = 64.5 to 54.9 C, pH = 5.9 to 6.2) and 'Happy Harfer Pool' (temp. = 59.9 to 48.3 C, pH = 5.5 to 6.3). Analysis of water, biofilm, and contextual samples collected from and around these hot springs offer intriguing patterns of elemental behavior, both similar and dissimilar, among the varying systems. Examples of these patterns include elements that behave the same across all hot spring systems (B, C, Ni, Cu, Ge, Sb, and W), elements with behavior that was consistent throughout most (four of five) of the hot spring systems

  1. RECOVERY OF A HOT SPRING COMMUNITY FROM A CATASTROPHE.

    PubMed

    Brock, T D; Brock, M L

    1969-03-01

    The algal mats of a number of hot springs in the Lower Geyser Basin of Yellowstone National Park were destroyed by a brief violent hailstorm on August 30, 1967. The rate of recovery of the algal mat at Mushroom Spring was studied by quantitative methods. In the temperature range of 65-71 C a unicellular cyanophycean alga is the sole photosynthetic component. The doubling times during the recovery period for three stations were: Station I (71 C), 17 days; station II (68 C), 10.5 days; station III (65 C), 10 days. The algal mat had returned to apparently normal size by 152 days after the catastrophe. The significance of these observations for the conservation of hot spring communities is discussed. PMID:27097256

  2. Carbon Source Preference in Chemosynthetic Hot Spring Communities

    PubMed Central

    Urschel, Matthew R.; Kubo, Michael D.; Hoehler, Tori M.; Peters, John W.

    2015-01-01

    Rates of dissolved inorganic carbon (DIC), formate, and acetate mineralization and/or assimilation were determined in 13 high-temperature (>73°C) hot springs in Yellowstone National Park (YNP), Wyoming, in order to evaluate the relative importance of these substrates in supporting microbial metabolism. While 9 of the hot spring communities exhibited rates of DIC assimilation that were greater than those of formate and acetate assimilation, 2 exhibited rates of formate and/or acetate assimilation that exceeded those of DIC assimilation. Overall rates of DIC, formate, and acetate mineralization and assimilation were positively correlated with spring pH but showed little correlation with temperature. Communities sampled from hot springs with similar geochemistries generally exhibited similar rates of substrate transformation, as well as similar community compositions, as revealed by 16S rRNA gene-tagged sequencing. Amendment of microcosms with small (micromolar) amounts of formate suppressed DIC assimilation in short-term (<45-min) incubations, despite the presence of native DIC concentrations that exceeded those of added formate by 2 to 3 orders of magnitude. The concentration of added formate required to suppress DIC assimilation was similar to the affinity constant (Km) for formate transformation, as determined by community kinetic assays. These results suggest that dominant chemoautotrophs in high-temperature communities are facultatively autotrophic or mixotrophic, are adapted to fluctuating nutrient availabilities, and are capable of taking advantage of energy-rich organic substrates when they become available. PMID:25819970

  3. Terrestrial Iron Hot Springs as Analogs for Ancient Martian Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Parenteau, M. N.; Farmer, J. D.; Jahnke, L. L.; Cady, S. L.

    2010-04-01

    We have been studying a subaerial terrestrial iron hot spring as an potential analog for hydrothermal systems on Mars. In this multidisciplinary study, we have characterized the aqueous geochemistry, mineralogy, and microbial biosignatures at Chocolate Pots hot springs.

  4. Comparative Metagenomics of Eight Geographically Remote Terrestrial Hot Springs.

    PubMed

    Menzel, Peter; Gudbergsdóttir, Sóley Ruth; Rike, Anne Gunn; Lin, Lianbing; Zhang, Qi; Contursi, Patrizia; Moracci, Marco; Kristjansson, Jakob K; Bolduc, Benjamin; Gavrilov, Sergey; Ravin, Nikolai; Mardanov, Andrey; Bonch-Osmolovskaya, Elizaveta; Young, Mark; Krogh, Anders; Peng, Xu

    2015-08-01

    Hot springs are natural habitats for thermophilic Archaea and Bacteria. In this paper, we present the metagenomic analysis of eight globally distributed terrestrial hot springs from China, Iceland, Italy, Russia, and the USA with a temperature range between 61 and 92 (∘)C and pH between 1.8 and 7. A comparison of the biodiversity and community composition generally showed a decrease in biodiversity with increasing temperature and decreasing pH. Another important factor shaping microbial diversity of the studied sites was the abundance of organic substrates. Several species of the Crenarchaeal order Thermoprotei were detected, whereas no single bacterial species was found in all samples, suggesting a better adaptation of certain archaeal species to different thermophilic environments. Two hot springs show high abundance of Acidithiobacillus, supporting the idea of a true thermophilic Acidithiobacillus species that can thrive in hyperthermophilic environments. Depending on the sample, up to 58 % of sequencing reads could not be assigned to a known phylum, reinforcing the fact that a large number of microorganisms in nature, including those thriving in hot environments remain to be isolated and characterized.

  5. 77 FR 51561 - Notice of Temporary Restriction Order for Skinny Dipper Hot Springs, Boise County, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... Bureau of Land Management Notice of Temporary Restriction Order for Skinny Dipper Hot Springs, Boise...: This serves as notice of a sunset-to-sunrise recreational use restriction of Skinny Dipper Hot Springs... Hot Springs, and the public lands in Lot 3, Section 25, T. 9 N., R.3 E., Boise Meridian, Boise...

  6. Influence of Locally Derived Recharge on the Water Quality and Temperature of Springs in Hot Springs National Park, Arkansas

    USGS Publications Warehouse

    Bell, Richard W.; Hays, Phillip D.

    2007-01-01

    The hot springs of Hot Springs National Park consist of a mixture of water from two recharge components: a primary hot-water component and a secondary cold-water component. Widespread distribution of fractures enables mixing of the hot- and cold-water components of flow near the discharge area for the springs. Urbanization in the area near the hot springs of Hot Springs National Park has increased the potential for degradation of the quality of surface-water runoff and locally derived ground-water recharge to the hot springs. Previous studies by the U.S. Geological Survey have indicated that water from some cold-water springs and wells in the vicinity of Hot Springs, Arkansas, showed evidence of contamination and that water from locally derived cold-water recharge might contribute 25 percent of the total flow to the hot springs after storms. Water samples were collected during base-flow conditions at nine hot springs and two cold-water springs in September 2000. Nine hot springs and one cold-water spring were resampled in October 2001 after a storm that resulted in a measurable decrease in water temperature in selected hot springs. Water samples were analyzed for a variety of dissolved chemical constituents (nutrients, major ions, trace elements, pesticides, semivolatile compounds, isotopes, and radiochemicals), physical properties, field measurements, and bacteria. Comparison of analyses of samples collected during base-flow conditions from the springs in 2000 and during a storm event in 2001 with the results from earlier studies dating back to the late 1800's indicates that little change in major, minor, and trace constituent chemistry has occurred and that the water continues to be of excellent quality. Water-quality data show distinguishable differences in water chemistry of the springs during base-flow and stormflow conditions, indicating changing input of cold-water recharge relative to hot-water recharge. Silica, total dissolved solids, strontium, barium

  7. A silicified bird from Quaternary hot spring deposits

    PubMed Central

    Channing, Alan; Schweitzer, Mary Higby; Horner, John R; McEneaney, Terry

    2005-01-01

    The first avian fossil recovered from high-temperature hot spring deposits is a three-dimensional external body mould of an American coot (Fulica americana) from Holocene sinters of Yellowstone National Park, Wyoming, USA. Silica encrustation of the carcass, feathers and colonizing microbial communities occurred within days of death and before substantial soft tissue degradation, allowing preservation of gross body morphology, which is usually lost under other fossilization regimes. We hypothesize that the increased rate and extent of opal-A deposition, facilitated by either passive or active microbial mediation following carcass colonization, is required for exceptional preservation of relatively large, fleshy carcasses or soft-bodied organisms by mineral precipitate mould formation. We suggest physico-chemical parameters conducive to similar preservation in other vertebrate specimens, plus distinctive sinter macrofabric markers of hot spring subenvironments where these parameters are met. PMID:16024344

  8. 3D Model of the Neal Hot Springs Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  9. Investigation of bacterial diversity of hot springs of Odisha, India.

    PubMed

    Sahoo, Rajesh Kumar; Subudhi, Enketeswara; Kumar, Mohit

    2015-12-01

    16S rRNA deep sequencing analysis, targeting V3 region was performed using Illumina bar coded sequencing. Sediment samples from two hot springs (Atri and Taptapani) were collected. Atri and Taptapani metagenomes were classified into 50 and 51 bacterial phyla. Proteobacteria (45.17%) dominated the Taptapani sample metagenome followed by Bacteriodetes (23.43%) and Cyanobacteria (10.48%) while in the Atri sample, Chloroflexi (52.39%), Nitrospirae (10.93%) and Proteobacteria (9.98%) dominated. A large number of sequences remained taxonomically unresolved in both hot springs, indicating the presence of potentially novel microbes in these two unique habitats thus unraveling the importance of the current study. Metagenome sequence information is now available at NCBI, SRA database accession no. SRP057428.

  10. Investigation of bacterial diversity of hot springs of Odisha, India

    PubMed Central

    Sahoo, Rajesh Kumar; Subudhi, Enketeswara; Kumar, Mohit

    2015-01-01

    16S rRNA deep sequencing analysis, targeting V3 region was performed using Illumina bar coded sequencing. Sediment samples from two hot springs (Atri and Taptapani) were collected. Atri and Taptapani metagenomes were classified into 50 and 51 bacterial phyla. Proteobacteria (45.17%) dominated the Taptapani sample metagenome followed by Bacteriodetes (23.43%) and Cyanobacteria (10.48%) while in the Atri sample, Chloroflexi (52.39%), Nitrospirae (10.93%) and Proteobacteria (9.98%) dominated. A large number of sequences remained taxonomically unresolved in both hot springs, indicating the presence of potentially novel microbes in these two unique habitats thus unraveling the importance of the current study. Metagenome sequence information is now available at NCBI, SRA database accession no. SRP057428. PMID:26697369

  11. Dynamics of precipitation pattern formation at geothermal hot springs.

    PubMed

    Goldenfeld, Nigel; Chan, Pak Yuen; Veysey, John

    2006-06-30

    We formulate and model the dynamics of spatial patterns arising during the precipitation of calcium carbonate from a supersaturated shallow water flow. The model describes the formation of travertine deposits at geothermal hot springs and rimstone dams of calcite in caves. We find explicit solutions for travertine domes at low flow rates, identify the linear instabilities which generate dam and pond formation on sloped substrates, and present simulations of statistical landscape evolution. PMID:16907308

  12. Dynamics of precipitation pattern formation at geothermal hot springs.

    PubMed

    Goldenfeld, Nigel; Chan, Pak Yuen; Veysey, John

    2006-06-30

    We formulate and model the dynamics of spatial patterns arising during the precipitation of calcium carbonate from a supersaturated shallow water flow. The model describes the formation of travertine deposits at geothermal hot springs and rimstone dams of calcite in caves. We find explicit solutions for travertine domes at low flow rates, identify the linear instabilities which generate dam and pond formation on sloped substrates, and present simulations of statistical landscape evolution.

  13. Geothermal vegetable dehydration at Brady`s Hot Springs, Nevada

    SciTech Connect

    Lund, J.W.

    1994-07-01

    This article describes the utilization of the Brady`s Springs geothermal resource for heat generation used in the food dehydration process. This geothermal system is located in the Forty-Mile Desert area of Nevada. Geothermal Food Processors, Inc. of Reno, Nevada started construction of the geothermal vegetable dehydration plant in 1978, and the plant started operations in 1979. The industrial process of vegetable dehydration at the plant is described. In July of 1992, the Brady`s Springs geothermal system began being used for power generation by the Brady`s Hot Springs geothermal power plant, operated by Oxbow Power Services, Inc. As a result, the water levels in the food processing plant wells have dropped below usable levels and the geothermal brine is now being supplied by the Oxbow power plant.

  14. Geothermal Geodatabase for Routt Hot Springs, Routt County, Colorado

    DOE Data Explorer

    Zehner, Richard

    2012-11-01

    Geothermal Geodatabase for Routt Hot Springs, Routt County, Colorado By Richard “Rick” Zehner Geothermal Development Associates Reno Nevada USA 775.737.7806 rzehner@gdareno.com For Flint Geothermal LLC, Denver Colorado Part of DOE Grant EE0002828 2013 This is an ESRI geodatabase version 10, together with an ESRI MXD file version 10.2 Data is in UTM Zone 13 NAD27 projection North boundary: approximately 4,500,000 South boundary: approximately 4,480,000 West boundary: approximately 330,000 East boundary: approximately 358,000 This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs and wells in the Routt Hot Spring and Steamboat Springs areahave geochemistry and geothermometry values indicative of high-temperature systems. The datasets in the geodatabase are a mixture of public domain data as well as data collected by Flint Geothermal, now being made public. It is assumed that the user has internet access, for the mxd file accesses ESRI’s GIS servers. Datasets include: 1. Results of reconnaissance shallow (2 meter) temperature surveys 2. Air photo lineaments 3. Groundwater geochemistry 5. Georeferenced geologic map of Routt County 6. Various 1:24,000 scale topographic maps

  15. Nitrogen assimilation by single cells in hot springs

    NASA Astrophysics Data System (ADS)

    Poret-peterson, A. T.; Romaniello, S. J.; Bose, M.; Williams, P.; Elser, J. J.; Shock, E.; Anbar, A. D.; Hartnett, H. E.

    2012-12-01

    Microorganisms drive biogeochemical cycles and require nutrients, such as ammonium and nitrate, to function. As a result, following nutrient flows provides opportunities to study how microbial activity influences ecosystem-level processes. Most past measurements of microbial nutrient uptake rely on bulk measurements, which are informative but provide little information about heterogeneity among community members involved in elemental transformations, nor about possible effects of physiological state or taxonomic identity. Since microbial communities tend to be phylogenetically and physiologically diverse, it is reasonable to expect that community members will respond differently to nutrient addition. Here, we examine nitrogen assimilation (via addition of 15N-labeled ammonium or nitrate) in Yellowstone hot spring microbial communities. Using the NanoSIMS, we imaged cells at a very high spatial resolution (nanometer scale) necessary to determine 15N enrichments in single micron-sized cells. We compare the N isotopic enrichments observed in single cells to that determined in bulk sediments by standard isotope ratio mass spectrometry. NanoSIMS imaging of 56 individual cells from sediments of an acidic hot spring (pH 4.7, T=67oC) incubated with 15N-ammonium shows that about two-thirds of the cells (38) exhibited 15N-enrichment. Most cells had 15N enrichments from 0.39 to 0.91 atom %, while some cells were much more significantly enriched. Bulk analyses of sediments show that ammonium assimilation and nitrate assimilation readily occurred at this spring. These findings show that microbes in this hot spring may differentially take up ammonium, which may arise from a number of factors including differences in cellular N requirements, growth rates, and the ability to transport ammonium. This work represents some of the first single-cell isotopic measurements from an extreme environment. Efforts are underway to image sediment samples from other hot springs and to pair Nano

  16. Modeling hot spring chemistries with applications to martian silica formation

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Catling, D. C.; Crowley, J. K.; Kargel, J. S.

    2011-04-01

    Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO 2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100 °C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25 °C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO 4-SO 4-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system up to 100 °C and apply the model to hot springs and silica deposits. A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355 K) led to precipitation of anhydrous minerals (CaSO 4, Na 2SO 4) that was also the case for the high temperature (353 K) low pH case where anhydrous minerals (NaCl, CaSO 4) also precipitated. Thus we predict that secondary

  17. Modeling hot spring chemistries with applications to martian silica formation

    USGS Publications Warehouse

    Marion, G.M.; Catling, D.C.; Crowley, J.K.; Kargel, J.S.

    2011-01-01

    Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100??C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25??C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO4-SO4-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system up to 100??C and apply the model to hot springs and silica deposits.A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355K) led to precipitation of anhydrous minerals (CaSO4, Na2SO4) that was also the case for the high temperature (353K) low pH case where anhydrous minerals (NaCl, CaSO4) also precipitated. Thus we predict that secondary minerals associated with

  18. Nitrogen cycling in Hot Spring Sediments and Biofilms (Invited)

    NASA Astrophysics Data System (ADS)

    Meyer-Dombard, D. R.; Burton, M. S.; Havig, J. R.; Shock, E.

    2010-12-01

    Over the past several decades, gene-targeted analyses have revealed that microbial communities in hydrothermal environments can be surprisingly diverse. However, we know shockingly little about basic ecological functions such as carbon and nitrogen cycling or community shifts over time, or environmental parameters such as growth criteria. Previous work has shown that carbon cycling in one hot spring in Yellowstone National Park [“Bison Pool”] and its associated runoff channel functions as a complex system. Analysis of carbon and nitrogen isotopes in biofilms across a temperature and chemical gradient at this location revealed that multiple autotrophic carbon fixation pathways are functioning in this system, and nitrogen fixation varies across the chemosynthetic/photosynthetic ecotone [1]. Further, sequencing of metagenomes from multiple locations at “Bison Pool” has indicated the presence of genes involved in carbon fixation [both phototrophic and autotrophic], and heterotrophy, as well as nitrogen fixation [2]. Studies from other Yellowstone locations have also found genetic evidence for carbon and nitrogen fixation [3-5]. The role of individual microbes in nitrogen cycling as environmental conditions vary over space and time is the focus of this study. Here, we explore the diversity of nifH [nitrogen fixation], nirK [nitrite reduction] and amoA [ammonia oxidation] genes across a variety of Yellowstone environments. Environmental nucleic acids were extracted, and the presence/absence of Bacteria and Archaea determined by PCR. In addition, PCR-directed screens reveal the presence or absence of the aforementioned functional genes, indicating genetic capacity for nitrogen cycling. We have examined the transition of genetic diversity and genetic capacity within sediments and biofilms at the chemosynthetic/photosynthetic ecotone in several hot springs spanning ranges of pH and geochemical conditions. By sampling across this ecotone, changes in the genetic

  19. Diverse Thermus species inhabit a single hot spring microbial mat

    NASA Technical Reports Server (NTRS)

    Nold, S. C.; Ward, D. M.

    1995-01-01

    Through an effort to characterize aerobic chemoorganotrophic bacteria in the Octopus Spring cyano-bacterial mat community, we cultivated four Thermus isolates with unique 16S rRNA sequences. Isolates clustered within existing Thermus clades, including those containing Thermus ruber, Thermus aquaticus, and a subgroup closely related to T. aquaticus. One Octopus Spring isolate is nearly identical (99.9% similar) to isolates from Iceland, and two others are closely related to a T. ruber isolated from Russia. Octopus Spring isolates similar to T. aquaticus and T. ruber exhibited optimal growth rates at high (65-70 degrees C) and low (50 degrees C) temperatures, respectively, with the most abundant species best adapted to the temperature of the habitat (50-55 degrees C). Our results display a diversity of Thermus genotypes defined by 16S rRNA within one hot spring microbial community. We suggest that specialization to temperature and perhaps other local environmental features controls the abundance of Thermus populations.

  20. Evidence supporting biologically mediated sulfide oxidation in hot spring ecosystems

    NASA Astrophysics Data System (ADS)

    Cox, A. D.; Shock, E.

    2011-12-01

    The sulfide concentration of fluids in hydrothermal ecosystems is one of several factors determining the transition to microbial photosynthesis (Cox et al., 2011, Chem. Geol. 280, 344-351). To investigate the loss of sulfide in Yellowstone hot spring systems, measurements of total dissolved sulfide with respect to time were made in incubation experiments conducted on 0.2-micron filtered (killed controls) vs. unfiltered hot spring water at locations with three different pH:sulfide combinations (pH 2.5 with 50 μM sulfide, 5.2 with 5.6 μM sulfide, and 8.3 with 86 μM sulfide). At the higher pH values, the experiments yielded similar rates of sulfide loss in filtered and unfiltered water of approximately 0.8 (pH 5.2) and 7.6 nmol sulfide L-1s-1 (pH 8.3). At the acidic spring, the unfiltered water lost sulfide at a rate 1.6 times that of the filtered water (8.2 vs. 5 nmol sulfide L-1s-1). These results suggest that the pelagic biomass at the pH 5.2 and 8.3 springs may not affect sulfide loss, whereas in the pH 2.5 spring there appears to be an effect. In addition, the incubation of filamentous biomass with unfiltered water increased the rate of sulfide loss by approximately two-fold at a pH of 2.5 (59 vs. 31 nmol L-1s-1; Cox et al., 2011), five-fold at a pH of 5.2 (3.9 vs. 0.8 nmol sulfide L-1s-1), and barely increased the rate of sulfide loss at a pH of 8.3 (9.1 vs. 8.4 nmol sulfide L-1s-1). Sulfide is predominately present as HS- at a pH of 8.3, which may not be taken up as easily by microorganisms as the H2S (aq) that dominates sulfide speciation at pH 2.5 and 5.2. That the loss of sulfide at acidic pH is due to biotic rather than abiotic factors is further supported by studies with whole mat samples that show greater sulfide consumption than killed controls (D'Imperio et al., 2008, AEM 74, 5802-5808). Taken together, the results of these experiments suggest that the majority of sulfide oxidation occurs in the filamentous biomass of hot spring ecosystems, although

  1. Geothermal resource assessment of Hot Sulphur Springs, Colorado

    SciTech Connect

    Pearl, R.H.; Zacharakis, T.G.; Ringrose, C.D.

    1982-01-01

    Approximately 10 springs whose waters are used for recreation, steam baths and laundry purposes are located at Hot Sulphur Springs. Estimated heat-flow at Hot Sulphur Springs is approximately 100 mW/m2, which is about normal for western Colorado. Recent work tends to show that surface and reduced heat flow in the mountains of northern Colorado could be high. The thermal waters have an estimated discharge of 50 gpm, a temperature that ranges from 104/sup 0/F (40/sup 0/C) to a high of 111/sup 0/F (44/sup 0/C), and a total dissolved solid content of 1200 mg/l. The waters are a sodium bicarbonate type with a large concentration of sulphate. It is estimated that the most likely reservoir temperature of this system ranges from 167/sup 0/F (75/sup 0/F) to 302/sup 0/F (150/sup 0/C) and that the areal extent of the system could encompass 1.35 sq mi (3.50 sq km) and could contain 0.698 Q's (1015 B.T.U.'s) of heat energy. Soil mercury and electrical resistivity surveys were conducted. The geophysical survey delineated several areas of low resistivity associated with the north trending fault that passes just to the west of the spring area. It appears that this fault is saturated with thermal waters and may be the conduit along which the thermal waters are moving up from depth. The appendices to this report include tables showing water temperatures required for various industrial processes, as well as dissolved minerals, trace elements and radioactivity levels found in the thermal waters. Also presented are a complete description of the factors affecting the electrical resistivity measurements, a description of the electrical resistivity equipment used, and the resistivity field procedures. Electrical resistivity calculations are also included in the appendices.

  2. Microsporidial keratitis in patients with hot springs exposure.

    PubMed

    Fan, Nai-Wen; Wu, Chih-Chiau; Chen, Te-Li; Yu, Wei-Kuang; Chen, Chien-Pei; Lee, Shui-Mei; Lin, Pei-Yu

    2012-02-01

    This retrospective study included 10 eyes of 9 patients diagnosed with microsporidial keratitis. All of them were known to contract this disease after taking baths in hot springs. The disease was diagnosed based on detecting microsporidia in corneal scrapings using Gram stain and the modified Kinyoun's acid-fast stain. The specimens from the last six patients were subjected to PCR and then sequencing. All of them revealed that the microorganism identified has a high similarity to Vittaforma corneae. Repeated debridement of the epithelial lesions successfully eradicated the microsporidial infection in all nine patients.

  3. Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China.

    PubMed

    Song, Zhao-Qi; Wang, Feng-Ping; Zhi, Xiao-Yang; Chen, Jin-Quan; Zhou, En-Min; Liang, Feng; Xiao, Xiang; Tang, Shu-Kun; Jiang, Hong-Chen; Zhang, Chuanlun L; Dong, Hailiang; Li, Wen-Jun

    2013-04-01

    Thousands of hot springs are located in the north-eastern part of the Yunnan-Tibet geothermal zone, which is one of the most active geothermal areas in the world. However, a comprehensive and detailed understanding of microbial diversity in these hot springs is still lacking. In this study, bacterial and archaeal diversities were investigated in 16 hot springs (pH 3.2-8.6; temperature 47-96°C) in Yunnan Province and Tibet, China by using a barcoded 16S rRNA gene-pyrosequencing approach. Aquificae, Proteobacteria, Firmicutes, Deinococcus-Thermus and Bacteroidetes comprised the large portion of the bacterial communities in acidic hot springs. Non-acidic hot springs harboured more and variable bacterial phyla than acidic springs. Desulfurococcales and unclassified Crenarchaeota were the dominated groups in archaeal populations from most of the non-acidic hot springs; whereas, the archaeal community structure in acidic hot springs was simpler and characterized by Sulfolobales and Thermoplasmata. The phylogenetic analyses showed that Aquificae and Crenarchaeota were predominant in the investigated springs and possessed many phylogenetic lineages that have never been detected in other hot springs in the world. Thus findings from this study significantly improve our understanding of microbial diversity in terrestrial hot springs.

  4. Environmental consequences of geochemical change in hot spring ecosystems

    NASA Astrophysics Data System (ADS)

    Havig, J. R.; Shock, E.

    2010-12-01

    Hydrothermal systems provide a natural laboratory for studying the effects of geochemical change over time, and for testing predictions of how geochemical change will affect microbial ecology. Hot springs in hydrothermal areas that express the results of subsurface boiling, phase separation, and differential movement of liquid phase and vapor phase constituents can fluctuate in temperature and composition. Since 1999 we have sampled several fluctuating hot springs at Yellowstone National Park, and those hat experience large geochemical changes provide opportunities to quantify the effects of fluctuations on chemical energy supplies. Annual samples from Obsidian Pool (Mud Volcano Area) showed that pH increased from 6.5 (in 1999) to 6.8 (’00), steadily decreased to 4.2 (’06), and then increased to 5.2 (’09), with temperature ranging from 76.4 to 85.3°C. Simultaneously the chloride concentration increased by 65% (from 18.5 ppm in 1999 to 30.7 ppm in 2009), indicative of increased hydrothermal input, and the sulfate concentration increased by over 300% (from 50.0 ppm in 2000 to 203.8 ppm in 2009), suggesting an increased gas-phase sulfide input and subsequent oxidation. Several energy yielding reactions at a pH of 6.5 no longer yield energy at pH of 4.2. This suggests that microorganisms that use those pathways had a negative selection pressure with the drop in pH. As an example, the chemical affinity for sulfur reduction to pyrite coupled to iron oxidation to goethite changed from 7.1 (pH = 6.5) to -1.3 kcal/mol e- (pH = 4.2), and once again had a positive value at pH = 5.2. This means that microorganisms using this pathway may once again inhabit the hot spring while many others from when the pH was 6.5 still have a negative selection pressure. The pH of another hot spring in the Sylvan Springs Area steadily increased from 3.7 (’04) to 7.6 (’08) while the temp. decreased from 52.9 to 41.9°C, chloride concentration increased by 32% (from 464 to 614 ppm

  5. [Biomineralization at hot springs and mineral springs, and their significance in relation to the Earth's history].

    PubMed

    Akai, J

    2000-12-01

    Recently, there is strong interest on microbe-mineral interactions. This is related also to recent expanded knowledges on extremely severe environments in which microbes live. Interaction between microbes and minerals contains biomineralization processes. Varieties of biomineralization products are found not only in various geologic materials and processes in the earth's history but also in present surface environments. Some hot springs represent such environments similar to those of unique and extremely severe environments for life. In this short review, the author briefly shows some examples of biomineralizations at some hot springs and mineral springs, Japan. In such environments, iron ore was formed and some varieties of growing stromatolites were found. The varieties of stromatolite are siliceous, calcic and manganese types. Cyanobacteria and the other bacteria are related to form the stromatolite structure. In the Gunma iron ore, sedimentary iron ores were mineralogically described in order to evaluate the role of microorganisms and plants in ore formation. The iron ore is composed of nanocrystalline goethite. Algal fossils are clearly preserved in some ores. Various products of biomineralization are found in the present pH 2-3, Fe2(+)- and SO4(2-)-rich streams. Bacterial precipitation had variations from amorphous Fe-P-(S) precipitates near the outlet of mineral spring, to Fe-P-S precipitates and to Fe-S-(P) precipitates. Mosses and green algae are also collecting Fe precipitates in and around the living and dead cells. The Gunma Iron Ore can be said as Biologically Induced Iron Ore. At Onikobe and Akakura hot springs, growing stromatolites of siliceous and calcareous types, were found, respectively. At Onikobe, The stromatolites grow especially near the geyser. Cyanobacterial filaments in stromatolite were well preserved in the siliceous and calcic stromatolites. The filaments oriented in two directions which form the layered structures were found. At

  6. [Biomineralization at hot springs and mineral springs, and their significance in relation to the Earth's history].

    PubMed

    Akai, J

    2000-12-01

    Recently, there is strong interest on microbe-mineral interactions. This is related also to recent expanded knowledges on extremely severe environments in which microbes live. Interaction between microbes and minerals contains biomineralization processes. Varieties of biomineralization products are found not only in various geologic materials and processes in the earth's history but also in present surface environments. Some hot springs represent such environments similar to those of unique and extremely severe environments for life. In this short review, the author briefly shows some examples of biomineralizations at some hot springs and mineral springs, Japan. In such environments, iron ore was formed and some varieties of growing stromatolites were found. The varieties of stromatolite are siliceous, calcic and manganese types. Cyanobacteria and the other bacteria are related to form the stromatolite structure. In the Gunma iron ore, sedimentary iron ores were mineralogically described in order to evaluate the role of microorganisms and plants in ore formation. The iron ore is composed of nanocrystalline goethite. Algal fossils are clearly preserved in some ores. Various products of biomineralization are found in the present pH 2-3, Fe2(+)- and SO4(2-)-rich streams. Bacterial precipitation had variations from amorphous Fe-P-(S) precipitates near the outlet of mineral spring, to Fe-P-S precipitates and to Fe-S-(P) precipitates. Mosses and green algae are also collecting Fe precipitates in and around the living and dead cells. The Gunma Iron Ore can be said as Biologically Induced Iron Ore. At Onikobe and Akakura hot springs, growing stromatolites of siliceous and calcareous types, were found, respectively. At Onikobe, The stromatolites grow especially near the geyser. Cyanobacterial filaments in stromatolite were well preserved in the siliceous and calcic stromatolites. The filaments oriented in two directions which form the layered structures were found. At

  7. Hydrosalinity studies of the Virgin River, Dixie Hot Springs, and Littlefield Springs, Utah, Arizona, and Nevada

    USGS Publications Warehouse

    Gerner, Steven J.; Thiros, Susan A.; Gerner, Steven J.; Thiros, Susan A.

    2014-01-01

    The Virgin River contributes a substantial amount of dissolved solids (salt) to the Colorado River at Lake Mead in the lower Colorado River Basin. Degradation of Colorado River water by the addition of dissolved solids from the Virgin River affects the suitability of the water for municipal, industrial, and agricultural use within the basin. Dixie Hot Springs in Utah are a major localized source of dissolved solids discharging to the Virgin River. The average measured discharge from Dixie Hot Springs during 2009–10 was 11.0 cubic feet per second (ft3/s), and the average dissolved-solids concentration was 9,220 milligrams per liter (mg/L). The average dissolved-solids load—a measurement that describes the mass of salt that is transported per unit of time—from Dixie Hot Springs during this period was 96,200 tons per year (ton/yr). Annual dissolved-solids loads were estimated at 13 monitoring sites in the Virgin River Basin from streamflow data and discrete measurements of dissolved-solids concentrations and (or) specific conductance. Eight of the sites had the data needed to estimate annual dissolved-solids loads for water years (WYs) 1999 through 2010. During 1999–2010, the smallest dissolved-solids loads in the Virgin River were upstream of Dixie Hot Springs (59,900 ton/yr, on average) and the largest loads were downstream of Littlefield Springs (298,200 ton/yr, on average). Annual dissolved-solids loads were smallest during 2002–03, which was a period of below normal precipitation. Annual dissolved-solids loads were largest during 2005—a year that included a winter rain storm that resulted in flooding throughout much of the Virgin River Basin. An average seepage loss of 26.7 ft3/s was calculated from analysis of monthly average streamflow from July 1998 to September 2010 in the Virgin River for the reach that extends from just upstream of the Utah/Arizona State line to just above the Virgin River Gorge Narrows. Seepage losses from three river reaches

  8. The fishes of Hot Springs National Park, Arkansas, 2003

    USGS Publications Warehouse

    Petersen, James C.; Justus, B.G.

    2005-01-01

    Fish communities were sampled from eight sites within Hot Springs National Park. Fish were collected by seining and electrofishing during base-flow periods in July and October 2003. All individuals were identified to species. More than 1,020 individuals were collected, representing 24 species. The number of species collected at the sites ranged from 5 to 19. Central stoneroller, orangebelly darter, and longear sunfish were among the more abundant fish species at most sites. These species are typical of small streams in this area. An expected species list incorrectly listed 35 species because of incorrect species range or habitat requirements. Upon revising this list, the inventory yielded 24 of the 51 expected species (47 percent). No species collected in 2003 were federally-listed threatened or endangered species. However, two species collected at Hot Springs National Park may be of special interest to National Park Service managers and others. The Ouachita madtom is endemic to the Ouachita Mountains and is listed as a species of special concern by the Arkansas Natural Heritage Commission. The grass carp, which is a native of eastern Asia, is present in Ricks Pond; one individual was collected and no other grass carp were observed. The introduction of grass carp into the United States is a controversial issue because of possible (but undocumented) harmful effects on native species and habitats.

  9. Biophysical model of prokaryotic diversity in geothermal hot springs.

    PubMed

    Klales, Anna; Duncan, James; Nett, Elizabeth Janus; Kane, Suzanne Amador

    2012-02-01

    Recent studies of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than a single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. We present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms.

  10. Martian Hot Springs? Silica deposits in the Nili Patera Caldera.

    NASA Astrophysics Data System (ADS)

    Skok, J. R.; Mustard, J. F.; Ehlmann, B. L.; Murchie, S. L.

    2011-12-01

    The caldera of the Syrtis Major volcanic complex shows evidence of a late-stage, chemically evolved eruption that emplaced a volcanic cone and an evolved dacitic lava flow. This cone and flow contain several light-toned deposits, spectrally defined, with the CRISM instrument, by a broad asymmetrical absorption centered at 2.21 μm that is characteristic of a Si-OH bond. Additional weak 1.4 and 1.9 μm OH- and H2O related absorption features were detected that combined with the 2.21 μm feature confirms the detection of hydrated silica (SiO2 nH2O). The deposits are expressed morphologically as low mounds in stereo HiRISE data that superpose and post-date the volcanic flows. This mineral detection and volcanic context is consistent with several formation mechanisms, notably volcanic outgassing leading to fumarole surface alteration or silica deposition in volcanically driven hot springs. Since current orbital observations do not allow conclusive determination of precise mechanism, we here focus on the hot spring silica depositional hypothesis and investigate what the current observations tell us about such a system. These deposits would occur as post-eruption volcanic heat-driven hydrothermal convection of ground and possibly magmatic waters. Convecting, heated water would dissolve the igneous minerals in the basalt that forms the majority of the caldera mobilizing significant silica. Silica saturated fluids that reach the surface cool and deposit amorphous silica as the silica solubility in the fluids decreases. The large size and mound building nature of individual deposits require a significant and sustained fluid source for deposition. That amorphous silica deposits were detected in several distinct regions illustrates the prevalence of this process in this volcanic complex. The largest deposit is located on the southern flank of the cone and forms a fan-shaped morphology as the material is sourced from a vent and flows downslope. Another small deposit was

  11. Interpretation of the Hydrothermal System in Kirishima Hot Spring Village, Southern Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Yonekura, Yusaku; Fujimitsu, Yasuhiro; Nishijima, Jun

    2014-05-01

    It is very important to understand hydrothermal systems for sustainable utilizing of hot springs. However, in Japan, most of the large hot springs are located in national parks. Therefore, explorations such as geochemical, geophysical or boring surveys to interpret the hydrothermal systems had not been conducted enough. For this reason, hydrothermal systems of some hot springs in Japan have not been made clear even now. We constructed a conceptual model to interpret the hydrothermal system of Kirishima Hot Spring Village in Kirishima national park, southern part of Kyushu, Japan. There are many hot springs in Kirishima Hot Spring Village, such as Maruo, Hayashida, and Myoban hot spring areas. Kirishima Hot Spring Village is located in southwestern part of Kirishima volcanoes, like Onami-ike volcano, and the altitude of Maruo area is about 600 m and that of Hayashida and Myoban areas is about 800 m. In order to interpret the hydrothermal system in Kirishima Hot Spring Village, we need to understand three important factors which are heat source, hot spring water, and subsurface structure. In January 2011, Shinmoe-dake volcano of Kirishima volcanoes made a large scale eruption. Then, the pressure source of Kirishima volcanoes is expected to be located in about 2 km west of Onami-ike volcano and its estimated altitude is about -7 km (Kobayashi et al., 2011). We used this pressure source for our conceptual model as a heat source. Secondary, we tried to clarify the fluid of Kirishima Hot Spring Village by considering the chemical compositions of hot spring water. In addition, we made a Na-K-Mg diagram to estimate the reservoir temperature and find that spring water has reached equilibrium or not. As a result, we supposed that hot spring water of Maruo area is magmatic, and that of Hayashida and Myoban area is consisted of sulfate and meteoric water. Thirdly, we used gravity data, which is the result from previous study and our field survey, to make a residual Bouguer

  12. Hydrosalinity studies of the Virgin River, Dixie Hot Springs, and Littlefield Springs, Utah, Arizona, and Nevada

    USGS Publications Warehouse

    Gerner, Steven J.; Thiros, Susan A.; Gerner, Steven J.; Thiros, Susan A.

    2014-01-01

    The Virgin River contributes a substantial amount of dissolved solids (salt) to the Colorado River at Lake Mead in the lower Colorado River Basin. Degradation of Colorado River water by the addition of dissolved solids from the Virgin River affects the suitability of the water for municipal, industrial, and agricultural use within the basin. Dixie Hot Springs in Utah are a major localized source of dissolved solids discharging to the Virgin River. The average measured discharge from Dixie Hot Springs during 2009–10 was 11.0 cubic feet per second (ft3/s), and the average dissolved-solids concentration was 9,220 milligrams per liter (mg/L). The average dissolved-solids load—a measurement that describes the mass of salt that is transported per unit of time—from Dixie Hot Springs during this period was 96,200 tons per year (ton/yr). Annual dissolved-solids loads were estimated at 13 monitoring sites in the Virgin River Basin from streamflow data and discrete measurements of dissolved-solids concentrations and (or) specific conductance. Eight of the sites had the data needed to estimate annual dissolved-solids loads for water years (WYs) 1999 through 2010. During 1999–2010, the smallest dissolved-solids loads in the Virgin River were upstream of Dixie Hot Springs (59,900 ton/yr, on average) and the largest loads were downstream of Littlefield Springs (298,200 ton/yr, on average). Annual dissolved-solids loads were smallest during 2002–03, which was a period of below normal precipitation. Annual dissolved-solids loads were largest during 2005—a year that included a winter rain storm that resulted in flooding throughout much of the Virgin River Basin. An average seepage loss of 26.7 ft3/s was calculated from analysis of monthly average streamflow from July 1998 to September 2010 in the Virgin River for the reach that extends from just upstream of the Utah/Arizona State line to just above the Virgin River Gorge Narrows. Seepage losses from three river reaches

  13. Hot dry rock geothermal potential of Roosevelt Hot Springs area: review of data and recommendations

    SciTech Connect

    East, J.

    1981-05-01

    The Roosevelt Hot Springs area in west-central Utah possesses several features indicating potential for hot dry rock (HDR) geothermal development. The area is characterized by extensional tectonics and a high regional heat flow of greater than 105 mW/m/sup 2/. The presence of silicic volcanic rocks as young as 0.5 to 0.8 Myr and totaling 14 km/sup 3/ in volume indicates underlying magma reservoirs may be the heat source for the thermal anomaly. Several hot dry wells have been drilled on the periphery of the geothermal field. Information obtained on three of these deep wells shows that they have thermal gradients of 55 to 60/sup 0/C/km and bottom in impermeable Tertiary granitic and Precambrian gneissic units. The Tertiary granite is the preferred HDR reservoir rock because Precambrian gneissic rocks possess a well-developed banded foliation, making fracture control over the reservoir more difficult. Based on a fairly conservative estimate of 160 km/sup 2/ for the thermal anomaly present at Roosevelt Hot Springs, the area designated favorable for HDR geothermal exploration may be on the order of seven times or more than the hydrogeothermal area currently under development.

  14. Geothermal Geodatabase for Rico Hot Springs Area and Lemon Hot Springs, Dolores and San Miguel Counties, Colorado

    DOE Data Explorer

    Zehner, Richard

    2012-11-01

    Geothermal Geodatabase for Rico Hot Springs Area and Lemon Hot Springs, Dolores and San Miguel Counties, Colorado By Richard “Rick” Zehner Geothermal Development Associates Reno Nevada USA For Flint Geothermal LLC, Denver Colorado Part of DOE Grant EE0002828 2013 This is an ESRI geodatabase version 10, together with an ESRI MXD file version 10.2 Data is in UTM Zone 13 NAD27 projection North boundary: approximately 4,215,000 South boundary: approximately 4,160,000 West boundary: approximately 216,000 East boundary: approximately 245,000 This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs have geochemistry and geothermometry values indicative of high-temperature systems. In addition, the explorationists discovered a very young Climax-style molybdenum porphyry system northeast of Rico, and drilling intersected thermal waters at depth. The datasets in the geodatabase are a mixture of public domain data as well as data collected by Flint Geothermal, now being made public. It is assumed that the user has internet access, for the mxd file accesses ESRI’s GIS servers. Datasets include: 1. Structural data collected by Flint Geothermal 2. Point information 3. Mines and prospects from the USGS MRDS dataset 4. Results of reconnaissance shallow (2 meter) temperature surveys 5. Air photo lineaments 6. Areas covered by travertine 7. Groundwater geochemistry 8. Land ownership in the Rico area 9. Georeferenced geologic map of the Rico Quadrangle, by Pratt et al. 10. Various 1:24,000 scale topographic maps

  15. Phylogenetic diversity analysis of subterranean hot springs in Iceland.

    PubMed

    Marteinsson, V T; Hauksdóttir, S; Hobel, C F; Kristmannsdóttir, H; Hreggvidsson, G O; Kristjánsson, J K

    2001-09-01

    Geothermal energy has been harnessed and used for domestic heating in Iceland. In wells that are typically drilled to a depth of 1,500 to 2,000 m, the temperature of the source water is 50 to 130 degrees C. The bottoms of the boreholes can therefore be regarded as subterranean hot springs and provide a unique opportunity to study the subterranean biosphere. Large volumes of geothermal fluid from five wells and a mixture of geothermal water from 50 geothermal wells (hot tap water) were sampled and concentrated through a 0.2-microm-pore-size filter. Cells were observed in wells RG-39 (91.4 degrees C) and MG-18 (71.8 degrees C) and in hot tap water (76 degrees C), but no cells were detected in wells SN-4, SN-5 (95 to 117 degrees C), and RV-5 (130 degrees C). Archaea and Bacteria were detected by whole-cell fluorescent in situ hybridization. DNAs were extracted from the biomass, and small-subunit rRNA genes (16S rDNAs) were amplified by PCR using primers specific for the Archaea and Bacteria domains. The PCR products were cloned and sequenced. The sequence analysis showed 11 new operational taxonomic units (OTUs) out of 14, 3 of which were affiliated with known surface OTUs. Samples from RG-39 and hot tap water were inoculated into enrichment media and incubated at 65 and 85 degrees C. Growth was observed only in media based on geothermal water. 16S rDNA analysis showed enrichments dominated with Desulfurococcales relatives. Two strains belonging to Desulfurococcus mobilis and to the Thermus/Deinococcus group were isolated from borehole RG-39. The results indicate that subsurface volcanic zones are an environment that provides a rich subsurface for novel thermophiles.

  16. Iron Homeostasis in Yellowstone National Park Hot Spring Microbial Communities

    NASA Technical Reports Server (NTRS)

    Brown, I.; Tringe, S. G.; Franklin, H.; Bryant, D. A.; Klatt, C. G.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    It has been postulated that life may have originated on Earth, and possibly on Mars, in association with hydrothermal activity and high concentrations of ferrous iron. However, it is not clear how an iron-rich thermal hydrosphere could be hospitable to microbes, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, the study of microbial diversity in iron-depositing hot springs (IDHS) and the mechanisms of iron homeostasis and suppression of oxidative stress may help elucidate how Precambrian organisms could withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe(2+) and O2. Proteins and clusters of orthologous groups (COGs) involved in the maintenance of Fe homeostasis found in cyanobacteria (CB) inhabiting environments with high and low [Fe] were main target of this analysis. Preliminary results of the analysis suggest that the Chocolate Pots (CP) microbial community is heavily dominated by phototrophs from the cyanobacteria (CB), Chloroflexi and Chlorobi phyla, while the Mushroom Spring (MS) effluent channel harbors a more diverse community in which Chloroflexi are the dominant phototrophs. It is speculated that CB inhabiting IDHS have an increased tolerance to both high concentrations of Fe(2+) and ROS produced in the Fenton reaction. This hypothesis was explored via a comparative analysis of the diversity of proteins and COGs involved in Fe and redox homeostasis in the CP and MS microbiomes.

  17. Geothermal Geodatabase for Wagon Wheel Hot Springs, Mineral County, Colorado

    DOE Data Explorer

    Zehner, Richard

    2012-11-01

    Geothermal Geodatabase for Wagon Wheel Hot Springs, Mineral County, Colorado By Richard “Rick” Zehner Geothermal Development Associates Reno Nevada USA 775.737.7806 rzehner@gdareno.com For Flint Geothermal LLC, Denver Colorado Part of DOE Grant EE0002828 2013 This is an ESRI geodatabase version 10, together with an ESRI MXD file version 10.2 Data is in UTM Zone 13 NAD27 projection North boundary: approximately 4,189,000 South boundary: approximately 4,170,000 West boundary: approximately 330,000 East boundary: approximately 351,000 This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs at Wagon Wheel Gap have geochemistry and geothermometry values indicative of high-temperature systems. The datasets in the geodatabase are a mixture of public domain data as well as data collected by Flint Geothermal, now being made public. It is assumed that the user has internet access, for the mxd file accesses ESRI’s GIS servers. Datasets include: 1. Results of reconnaissance shallow (2 meter) temperature surveys 2. Air photo lineaments 3. Groundwater geochemistry 4. Power lines 5. Georeferenced geologic map of Routt County 6. Various 1:24,000 scale topographic maps

  18. Lee Hot Springs power project. First topical report management plan

    SciTech Connect

    1996-03-18

    The Lee Hot Springs Project ({open_quotes}the Project{close_quotes}) will use binary cycle turbine-generators supplied by geothermal hot water to make electricity. Two clusters of three (3) 1,000 kilowatt ({open_quotes}kw{close_quotes}) projects, each cluster comprising a {open_quotes}plant,{close_quotes} will use the pumped output of one geothermal well. The plants will tie into Sierra Pacific Power Company`s ({open_quotes}Sierra`s{open_quotes}) transmission system. The Project objectives are designed to demonstrate that geothermal energy is a non-polluting, non-CO{sub 2} emitting form of generation, which if used in larger increments, will significantly reduce the emissions of greenhouse gasses. The Project will also demonstrate the use of modular, {open_quotes}non-grid{close_quotes} or {open_quotes}village{close_quotes} units which can be used throughout the world where geothermal energy is present in remote locations and power is not. The Project was conceived as a 20,000 kw Qualifying Facility, divided into two phases, a 5,000 kw phase one followed by a 15,000 kw phase two. The first phase of the Project now consists of two (2) 3,000 kw plants to generate 6,000 kws.

  19. Magnetotelluric models of the Roosevelt Hot Springs thermal area, Utah

    SciTech Connect

    Wannamaker, P.E.; Ward, S.H.; Hohmann, G.W.; Sill, W.R.

    1980-09-01

    The Roosevelt Hot Springs (RHS) thermal area, which includes a hotwater-dominated fracture zone prospect, near the eastern margin of the Basin-Range tectonic province, conceivably possesses a whole family of resistivity structures that includes the following: deep hot brine reservoirs, deep-seated partially molten heat sources in the crust or upper mantle that drive the convective system, near-surface hydrothermal alteration zones, wet sedimentary fill in valleys, and a regional, apparently one-dimensional resistivity profile of the crust and upper mantle. This complex resistivity makeup, particular to RHS but probably similar to that at other geothermal areas in the Great Basin, must be treated as being fully three-dimensional (3-D). In an attempt to understand these structures, broadband (10/sup -3/ to 10/sup -2/ Hz) tensor magnetotelluric (MT) data were obtained including apparent resistivities (rho/sub a/), impedance phases (phi) and vertical magnetic field transfer functions for 93 sites in the vicinity of this resource area.

  20. Portrait of a Geothermal Spring, Hunter’s Hot Springs, Oregon

    PubMed Central

    Castenholz, Richard W.

    2015-01-01

    Although alkaline Hunter’s Hot Springs in southeastern Oregon has been studied extensively for over 40 years, most of these studies and the subsequent publications were before the advent of molecular methods. However, there are many field observations and laboratory experiments that reveal the major aspects of the phototrophic species composition within various physical and chemical gradients of these springs. Relatively constant temperature boundaries demark the upper boundary of the unicellular cyanobacterium, Synechococcus at 73–74 °C (the world-wide upper limit for photosynthesis), and 68–70 °C the upper limit for Chloroflexus. The upper limit for the cover of the filamentous cyanobacterium, Geitlerinema (Oscillatoria) is at 54–55 °C, and the in situ lower limit at 47–48 °C for all three of these phototrophs due to the upper temperature limit for the grazing ostracod, Thermopsis. The in situ upper limit for the cyanobacteria Pleurocapsa and Calothrix is at ~47–48 °C, which are more grazer-resistant and grazer dependent. All of these demarcations are easily visible in the field. In addition, there is a biosulfide production in some sections of the springs that have a large impact on the microbiology. Most of the temperature and chemical limits have been explained by field and laboratory experiments. PMID:25633225

  1. Geologic setting and chemical characteristics of hot springs in central and western Alaska

    USGS Publications Warehouse

    Miller, Thomas P.; Barnes, Ivan; Pattan, William Wallace

    1973-01-01

    The geologic and chemical data are too preliminary to make an estimate of the potential of the hot springs as a geothermal resource. The data suggest, however, that most of the hot springs of central and western Alaska have relatively low subsurface temperatures and limited reservoir capacities in comparison with geothermal areas presently being utilized for electrical power generation.

  2. Novel division level bacterial diversity in a Yellowstone hot spring.

    PubMed

    Hugenholtz, P; Pitulle, C; Hershberger, K L; Pace, N R

    1998-01-01

    A culture-independent molecular phylogenetic survey was carried out for the bacterial community in Obsidian Pool (OP), a Yellowstone National Park hot spring previously shown to contain remarkable archaeal diversity (S. M. Barns, R. E. Fundyga, M. W. Jeffries, and N. R. Page, Proc. Natl. Acad. Sci. USA 91:1609-1613, 1994). Small-subunit rRNA genes (rDNA) were amplified directly from OP sediment DNA by PCR with universally conserved or Bacteria-specific rDNA primers and cloned. Unique rDNA types among > 300 clones were identified by restriction fragment length polymorphism, and 122 representative rDNA sequences were determined. These were found to represent 54 distinct bacterial sequence types or clusters (> or = 98% identity) of sequences. A majority (70%) of the sequence types were affiliated with 14 previously recognized bacterial divisions (main phyla; kingdoms); 30% were unaffiliated with recognized bacterial divisions. The unaffiliated sequence types (represented by 38 sequences) nominally comprise 12 novel, division level lineages termed candidate divisions. Several OP sequences were nearly identical to those of cultivated chemolithotrophic thermophiles, including the hydrogen-oxidizing Calderobacterium and the sulfate reducers Thermodesulfovibrio and Thermodesulfobacterium, or belonged to monophyletic assemblages recognized for a particular type of metabolism, such as the hydrogen-oxidizing Aquificales and the sulfate-reducing delta-Proteobacteria. The occurrence of such organisms is consistent with the chemical composition of OP (high in reduced iron and sulfur) and suggests a lithotrophic base for primary productivity in this hot spring, through hydrogen oxidation and sulfate reduction. Unexpectedly, no archaeal sequences were encountered in OP clone libraries made with universal primers. Hybridization analysis of amplified OP DNA with domain-specific probes confirmed that the analyzed community rDNA from OP sediment was predominantly bacterial. These

  3. Novel division level bacterial diversity in a Yellowstone hot spring.

    PubMed

    Hugenholtz, P; Pitulle, C; Hershberger, K L; Pace, N R

    1998-01-01

    A culture-independent molecular phylogenetic survey was carried out for the bacterial community in Obsidian Pool (OP), a Yellowstone National Park hot spring previously shown to contain remarkable archaeal diversity (S. M. Barns, R. E. Fundyga, M. W. Jeffries, and N. R. Page, Proc. Natl. Acad. Sci. USA 91:1609-1613, 1994). Small-subunit rRNA genes (rDNA) were amplified directly from OP sediment DNA by PCR with universally conserved or Bacteria-specific rDNA primers and cloned. Unique rDNA types among > 300 clones were identified by restriction fragment length polymorphism, and 122 representative rDNA sequences were determined. These were found to represent 54 distinct bacterial sequence types or clusters (> or = 98% identity) of sequences. A majority (70%) of the sequence types were affiliated with 14 previously recognized bacterial divisions (main phyla; kingdoms); 30% were unaffiliated with recognized bacterial divisions. The unaffiliated sequence types (represented by 38 sequences) nominally comprise 12 novel, division level lineages termed candidate divisions. Several OP sequences were nearly identical to those of cultivated chemolithotrophic thermophiles, including the hydrogen-oxidizing Calderobacterium and the sulfate reducers Thermodesulfovibrio and Thermodesulfobacterium, or belonged to monophyletic assemblages recognized for a particular type of metabolism, such as the hydrogen-oxidizing Aquificales and the sulfate-reducing delta-Proteobacteria. The occurrence of such organisms is consistent with the chemical composition of OP (high in reduced iron and sulfur) and suggests a lithotrophic base for primary productivity in this hot spring, through hydrogen oxidation and sulfate reduction. Unexpectedly, no archaeal sequences were encountered in OP clone libraries made with universal primers. Hybridization analysis of amplified OP DNA with domain-specific probes confirmed that the analyzed community rDNA from OP sediment was predominantly bacterial. These

  4. Impacts of geothermal energy developments on hydrological environment in hot spring areas

    NASA Astrophysics Data System (ADS)

    Taniguchi, M.

    2015-12-01

    Water-energy nexus such as geothermal energy developments and its impacts on groundwater, river water, and coastal water is one of the key issues for the sustainable society. This is because the demand of both water and energy resources will be increasing in near future, and the tradeoff between both resources and conflict between stakeholders will be arisen. Geothermal power generation, hot springs heat power generation, and steam power generation, are developing in hot spring areas in Ring of Fire countries including Japan, as renewable and sustainable energy. Impacts of the wasted hot water after using hot springs heat and steam power generation on ecosystem in the rivers have been observed in Beppu, Oita prefecture, Japan. The number of the fish species with wasted hot water in the Hirata river is much less than that without wasted hot water in Hiyakawa river although the dominant species of tilapia was found in the Hirata river with wasted hot water. The water temperature in Hirata rive is increased by wasted hot water by 10 degree C. The impacts of the developments of steam power generations on hot spring water and groundwater in downstream are also evaluated in Beppu. The decreases in temperature and volume of the hot spring water and groundwater after the development are concerning. Stakeholder analysis related to hot spa and power generation business and others in Beppu showed common interests in community development among stakeholders and gaps in prerequisite knowledge and recognition of the geothermal resource in terms of economic/non-economic value and utilization as power generation/hot-spring. We screened stakeholders of four categories (hot spring resorts inhabitants, industries, supporters, environmentalists), and set up three communities consisting of 50 persons of the above categories. One remarkable result regarding the pros and cons of geothermal power in general terms was that the supporter count increased greatly while the neutralities count

  5. Applying spatial analysis techniques to assess the suitability of multipurpose uses of spring water in the Jiaosi Hot Spring Region, Taiwan

    NASA Astrophysics Data System (ADS)

    Jang, Cheng-Shin

    2016-04-01

    The Jiaosi Hot Spring Region is located in northeastern Taiwan and is rich in geothermal springs. The geothermal development of the Jiaosi Hot Spring Region dates back to the 18th century and currently, the spring water is processed for various uses, including irrigation, aquaculture, swimming, bathing, foot spas, and recreational tourism. Because of the proximity of the Jiaosi Hot Spring Region to the metropolitan area of Taipei City, the hot spring resources in this region attract millions of tourists annually. Recently, the Taiwan government is paying more attention to surveying the spring water temperatures in the Jiaosi Hot Spring Region because of the severe spring water overexploitation, causing a significant decline in spring water temperatures. Furthermore, the temperature of spring water is a reliable indicator for exploring the occurrence and evolution of springs and strongly affects hydrochemical reactions, components, and magnitudes. The multipurpose uses of spring water can be dictated by the temperature of the water. Therefore, accurately estimating the temperature distribution of the spring water is critical in the Jiaosi Hot Spring Region to facilitate the sustainable development and management of the multipurpose uses of the hot spring resources. To evaluate the suitability of spring water for these various uses, this study spatially characterized the spring water temperatures of the Jiaosi Hot Spring Region by using ordinary kriging (OK), sequential Gaussian simulation (SGS), and geographical information system (GIS). First, variogram analyses were used to determine the spatial variability of spring water temperatures. Next, OK and SGS were adopted to model the spatial distributions and uncertainty of the spring water temperatures. Finally, the land use (i.e., agriculture, dwelling, public land, and recreation) was determined and combined with the estimated distributions of the spring water temperatures using GIS. A suitable development strategy

  6. Chemical and isotopic characteristics of hot springs along the along the Neogene Malawi rift.

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.; Tsokonombwe, G. W.; Elsenbeck, J.; Wanless, V. D.; Atekwana, E. A.

    2015-12-01

    We measured the concentrations of major ions and dissolved inorganic carbon (DIC) and the stable isotopes of carbon (δ13CDIC), hydrogen (δD) and oxygen (δ18O) of hot springs along the Neogene Malawi rift. We compared the results with those of streams and a cold spring. We aimed to assess the hot springs for evidence of addition of mantle mass, specifically water and carbon and (2) determine the processes that control the chemical and isotopic evolution of the hot springs. Understanding the source(s) of heat for the springs and if the chemical and isotopic characteristics show evidence of mantle processes is an important goal of the Project for Rift Initiation, Development and Evolution (PRIDE). The temperature of the hot springs ranged from 35 to 80 ºC. High temperature anomalies are observed between latitudes 10 to 11, 12 to 13 and 15 to 16 degrees south along the rift axis. The δD and δ18O for the cold spring, hot springs and streams had a similar range, were positively correlated and lie on the trend of the local meteoric water line. We suggest negligible contribution of water from a connate or magmatic source and limited oxygen exchange from water-rock interaction or CO2 exchange from deep sedimentary carbonates. The DIC concentrations of the hot springs are higher (5 to 61 mg C/L) than those of streams (2 to 28 mg C/L) indicating addition of carbon to the DIC pool during the circulation of some springs. The range in the δ13CDIC of the hot springs (-17 to -8‰) is broader and lower compared to streams (-12 to -5‰) due to addition of carbon with a δ13CDIC of -15‰ to the spring water during circulation. Our results indicate that (1) the source of water for the hot springs is meteoric, (2) the hot springs have not experienced extensive water-rock interaction due to fast circulation suggesting highly permeable fault zones, (3) the source of carbon in the DIC of the hot springs is mostly CO2(g) from the soil zone and (4) the springs are heated by normal

  7. Spatial relationship between earthquakes, hot-springs and faults in Odisha, India

    NASA Astrophysics Data System (ADS)

    Pradhan, Biswajeet; Jena, Ratiranjan

    2016-06-01

    Odisha is famous for Mineral rich Eastern-Ghat mobile belt, hot springs and cultural Heritage. The hot springs are known for centuries and are used by public as a place for worship. Odisha falls under the II and III seismic zones in India. Most of the seismicity in Odisha is due to motion along some active normal faults along the Mahanadi Graben. Therefore, it is necessary to identify the active faults and understand spatial distribution of seismic activity in Odisha. It is also important to understand the Earthquakes and their relation with the Geology of Odisha and understand the neo-tectonic activity. There are 7 major hot springs found along the North Odisha Boundary Fault and Mahanadi Shear Zone. The hot water percolates deep into the Earth through porous and permeable fractured rocks along the fault. Depth of source for most of the hot springs in Odisha must be some few feets to few meters; however most of these observations are not based on scientific geophysical data. Therefore, spatial relationship between thermal springs, earthquakes, and geology of Odisha may provide better understanding of the hot-spring setting. By using the earthquake and fault data, the sense of motion along faults can be easily interpreted. All these information can explain the spatial distribution and inter-relation between hot-springs, faults and earthquakes in Odisha.

  8. Indoor radon levels in selected hot spring hotels in Guangdong, China.

    PubMed

    Song, Gang; Zhang, Boyou; Wang, Xinming; Gong, Jingping; Chan, Daniel; Bernett, John; Lee, S C

    2005-03-01

    Guangdong is one of the provinces that have most hot springs in China, and many hotels have been set up near hot springs, with spring water introduced into the bath inside each hotel room for hot spring bathing to attract tourists. In the present study, we measured radon in indoor and outdoor air, as well as in hot spring waters, in four hot spring hotels in Guangdong by using NR-667A (III) continuous radon detector. Radon concentrations ranged 53.4-292.5 Bq L(-1) in the hot spring water and 17.2-190.9 Bq m(-3) in outdoor air. Soil gas intrusion, indoor hot spring water use and inefficient ventilation all contributed to the elevated indoor radon levels in the hotel rooms. From the variation of radon levels in closed unoccupied hotel rooms, soil gas intrusion was found to be a very important source of indoor radon in hotel rooms with floors in contact with soils. When there was spring water bathing in the bathes, average radon levels were 10.9-813% higher in the hotel rooms and 13.8-489% higher in bathes compared to their corresponding average levels when there was no spring water use. Spring water use in the hotel rooms had radon transfer coefficients from 1.6x10(-4) to 5.0x10(-3). Radon in some hotel rooms maintained in concentrations much higher than guideline levels might thus have potential health risks to the hotel workers, and technical and management measures should be taken to lower their exposure of radon through inhalation.

  9. Using Hydrogen Isotopes to Distinguish Allochthony and Autochthony in Hot Springs Ecosystems

    NASA Astrophysics Data System (ADS)

    Hungate, J.; DeSousa, T. M.; Ong, J. C.; Caron, M. M.; Brown, J. R.; Patel, N.; Dijkstra, P.; Hedlund, B. P.; Hungate, B. A.

    2013-12-01

    Hot springs are hosts to abundant and diverse microbial communities. Above the temperature threshold for photosynthesis (~73 degrees C), a variety of chemosynthetic organisms support autochthonous primary production in hot springs ecosystems. These organisms are thought to drive the carbon and energy budgets of these ecosystems, but the importance of energy inputs from the surrounding terrestrial environments - allochthonous inputs - is not well known. Here, we tested the efficacy of stable isotopes of hydrogen in distinguishing autochthonous from allochthonous sources of organic matter in hot springs ecosystems. Under laboratory conditions and in pure culture, we grew autotrophic, mixotrophic, and heterotrophic organisms from the Great Boiling Springs in northern Nevada as well as organisms typical of other hot springs environments. We measured the δ2H composition of biomass, water and organic matter sources used by the organisms to produce that biomass. We also surveyed organic matter in and around hot springs in Nevada and in the Tengchong geothermal region in China, sampling terrestrial plants at the hot springs margin, microorganisms (either scraped from surfaces or in the water column), and organic matter in the sediment accruing in the spring itself as an integrative measure of the relative importance of organic matter sources to the spring ecosystem. We found that autotrophic production in culture results in strongly depleted δ2H signatures, presumably because of fractionation against 2H-H2O during chemosynthesis. The observed difference between microbial biomass and water was larger than that typically found for terrestrial plants during photosynthesis, setting the stage for using δ2H to distinguish allochthonous from autochthonous sources of productivity in hot springs. In surveys of natural hot springs, microbial biomass sampled from the water column or from surfaces was often strongly depleted in δ2H, consistent with in situ chemosynthesis. Organic

  10. Boiling Water at Hot Creek - The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera

    USGS Publications Warehouse

    Farrar, Christopher D.; Evans, William C.; Venezky, Dina Y.; Hurwitz, Shaul; Oliver, Lynn K.

    2007-01-01

    The beautiful blue pools and impressive boiling fountains along Hot Creek in east-central California have provided enjoyment to generations of visitors, but they have also been the cause of injury or death to some who disregarded warnings and fences. The springs and geysers in the stream bed and along its banks change location, temperature, and flow rates frequently and unpredictably. The hot springs and geysers of Hot Creek are visible signs of dynamic geologic processes in this volcanic region, where underground heat drives thermal spring activity.

  11. Free-living ameba contamination in natural hot springs in Thailand.

    PubMed

    Lekkla, Amorn; Sutthikornchai, Chantira; Bovornkitti, Somchai; Sukthana, Yaowalark

    2005-01-01

    Thermo tolerant free-living ameba, Naegleria spp and Acanthamoeba spp contamination in natural hot springs in Thailand were carried out from 13 provinces. The temperature of hot springs water varied from 28 degrees-65 degrees C and pH from 6-8. We found that 38.2 % (26/68) of water samples were positive, Acanthamoeba was 13.2% (9/68) whilst Naegleria was 35.3% (24/68). Contamination by free-living ameba in natural hot springs may pose a significant health risk to people who use such water for recreation activities.

  12. Microbial Controls on Hot Spring Travertine Depositional Fabrics

    NASA Astrophysics Data System (ADS)

    Dwyer, S. E.; Fouke, B. W.; Miller, P. A.; Kandianis, M. T.

    2008-12-01

    In order to accurately identify and interpret the fossilization of bacteria in the geological record, a study of the three-dimensional crystalline architecture of CaCO3 (travertine) was completed at Mammoth Hot Springs (MHS) in Yellowstone National Park. We have identified the Apron and Channel Facies (71-65o C) as a site of active travertine precipitation that is fundamentally controlled by microbial activity. Structural and gross morphological analyses of these aragonite (CaCO3) travertine deposits have been completed in the context of rapid precipitation (< 5 mm/day) in unidirectional advection-dominated turbulent sheet flow. Significant changes in travertine depositional fabric were observed along the 1 to 3 m-long and 1 to 2 cm-deep primary flow path of the Apron and Channel Facies. The high-temperature (71 - 69o C) upstream portion of the Apron Channel Facies, which lies a few meters downstream from the vent source, is composed of filamentous microbial strands. Using our 16S rRNA gene sequence clone libraries from the Apron and Channel Facies, filamentous Aquificales pBB bacteria have been identified as the dominant microbes composing the filamentous strands, of which are separated by thin sheets of extra-cellular polysaccharide substances (EPS) a distance of 1 to 3mm. The EPS exhibits distinctive elliptical to circular voids that may result from water turbulence, gas escape, or other mechanisms. The EPS also acts as a binding agent for the filaments and stabilizes them into patterns that parallel the direction of spring water flow. The extent of aragonite needle precipitation on the exterior of intertwining microbial filaments increases from the downstream end of each filament upwards toward the vent source. Based on these attributes, we have termed this the fettuccini travertine fabric. Travertine deposited in the low-temperature (68 - 65o C) downstream portion of the Apron Channel Facies exhibits a capellini-like morphology arranged in a uniform tightly

  13. Geothermal-resource assessment of the Steamboat-Routt Hot Springs area, Colorado. Resources Series 22

    SciTech Connect

    Pearl, R.H.; Zacharakis, T.G.; Ringrose, C.D.

    1983-01-01

    An assessment of the Steamboat Springs region in northwest Colorado was initiated and carried out in 1980 and 1981. The goal of this program was to delineate the geological features controlling the occurrence of the thermal waters (temperatures in excess of 68/sup 0/F (20/sup 0/C)) in this area at Steamboat Springs and 8 miles (12.8 km) north at Routt Hot Springs. Thermal waters from Heart Spring, the only developed thermal water source in the study area, are used in the municipal swimming pool in Steamboat Springs. The assessment program was a fully integrated program consisting of: dipole-dipole, Audio-magnetotelluric, telluric, self potential and gravity geophysical surveys, soil mercury and soil helium geochemical surveys; shallow temperature measurements; and prepartion of geological maps. The investigation showed that all the thermal springs appear to be fault controlled. Based on the chemical composition of the thermal waters it appears that Heart Spring in Steamboat Springs is hydrologically related to the Routt Hot Springs. This relationship was further confirmed when it was reported that thermal waters were encountered during the construction of the new high school in Strawberry Park on the north side of Steamboat Springs. In addition, residents stated that Strawberry Park appears to be warmer than the surrounding country side. Geological mapping has determined that a major fault extends from the Routt Hot Springs area into Strawberry Park.

  14. Bacterial composition of microbial mats in hot springs in Northern Patagonia: variations with seasons and temperature.

    PubMed

    Mackenzie, Roy; Pedrós-Alió, Carlos; Díez, Beatriz

    2013-01-01

    Seasonal shifts in bacterial diversity of microbial mats were analyzed in three hot springs (39-68 °C) of Patagonia, using culture-independent methods. Three major bacterial groups were detected in all springs: Phyla Cyanobacteria and Bacteroidetes, and Order Thermales. Proteobacteria, Acidobacteria and Green Non-Sulfur Bacteria were also detected in small amounts and only in some samples. Thermophilic filamentous heterocyst-containing Mastigocladus were dominant Cyanobacteria in Porcelana Hot Spring and Geyser, and Calothrix in Cahuelmó, followed by the filamentous non-heterocyst Leptolyngbya and Oscillatoria. Bacteroidetes were detected in a wide temperature range and their relative abundance increased with decreasing temperature in almost all samples. Two Meiothermus populations with different temperature optima were found. Overall, fingerprinting analysis with universal bacterial primers showed high similarities within each hot spring despite differences in temperature. On the other hand, Cahuelmó Hot Spring showed a lower resemblance among samples. Porcelana Hot Spring and Porcelana Geyser were rather similar to each other, possibly due to a common geological substrate given their geographic proximity. This was even more evident with specific cyanobacterial primers. The different geological substrate and the seawater influence in Cahuelmó might have caused the differences in the microbial community structure with the other two hot springs.

  15. Bacterial composition of microbial mats in hot springs in Northern Patagonia: variations with seasons and temperature.

    PubMed

    Mackenzie, Roy; Pedrós-Alió, Carlos; Díez, Beatriz

    2013-01-01

    Seasonal shifts in bacterial diversity of microbial mats were analyzed in three hot springs (39-68 °C) of Patagonia, using culture-independent methods. Three major bacterial groups were detected in all springs: Phyla Cyanobacteria and Bacteroidetes, and Order Thermales. Proteobacteria, Acidobacteria and Green Non-Sulfur Bacteria were also detected in small amounts and only in some samples. Thermophilic filamentous heterocyst-containing Mastigocladus were dominant Cyanobacteria in Porcelana Hot Spring and Geyser, and Calothrix in Cahuelmó, followed by the filamentous non-heterocyst Leptolyngbya and Oscillatoria. Bacteroidetes were detected in a wide temperature range and their relative abundance increased with decreasing temperature in almost all samples. Two Meiothermus populations with different temperature optima were found. Overall, fingerprinting analysis with universal bacterial primers showed high similarities within each hot spring despite differences in temperature. On the other hand, Cahuelmó Hot Spring showed a lower resemblance among samples. Porcelana Hot Spring and Porcelana Geyser were rather similar to each other, possibly due to a common geological substrate given their geographic proximity. This was even more evident with specific cyanobacterial primers. The different geological substrate and the seawater influence in Cahuelmó might have caused the differences in the microbial community structure with the other two hot springs. PMID:23208511

  16. Streptomyces calidiresistens sp. nov., isolated from a hot spring sediment.

    PubMed

    Duan, Yan-Yan; Ming, Hong; Dong, Lei; Yin, Yi-Rui; Zhang, Yi; Zhou, En-Min; Liu, Lan; Nie, Guo-Xing; Li, Wen-Jun

    2014-08-01

    A Streptomyces-like actinomycete strain, designated as YIM 78087(T), was isolated from a sediment sample collected from Hehua hot spring in Tengchong, Yunnan province, south-west China. The taxonomic position of strain YIM 78087(T) was investigated by a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain YIM 78087(T) belongs to the genus Streptomyces and is closely related to Streptomyces fimbriatus DSM 40942(T), Streptomyces marinus DSM 41968(T) and Streptomyces qinglanensis DSM 42035(T) (97.18, 97.05 and 97.1 % similarity, respectively). Combined with the low values of DNA-DNA hybridization between strain YIM 78087(T) and its closest neighbours, these analyses indicated that this new isolate represents a different genomic species in the genus Streptomyces. The predominant menaquinones of strain YIM 78087(T) were identified as MK-9 (H4) and MK-9 (H6). The major fatty acids were identified as anteiso-C15:0 (28.4 %), anteiso-C17:0 (23.0 %) and iso-C16:0 (15.1 %). The whole-cell hydrolysates found to contain glucose, mannose and ribose. The DNA G+C content was determined to be 73.0 mol%. Based on the comparative analysis of phenotypic and genotypic characteristics, it is proposed that strain YIM 78087(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces calidiresistens sp. nov., is proposed. The type strain is YIM 78087(T) (=BCRC 16955(T)=DSM 42108(T)=JCM 19629(T)).

  17. CRISPR Spacer Arrays for Detection of Viral Signatures from Acidic Hot Springs

    NASA Astrophysics Data System (ADS)

    Snyder, J. C.; Bateson, M. M.; Suciu, D.; Young, M. J.

    2010-04-01

    Viruses are the most abundant life-like entities on the planet Earth. Using CRISPR spacer sequences, we have developed a microarray-based approach to detecting viral signatures in the acidic hot springs of Yellowstone.

  18. Siliceous algal and bacterial stromatolites in hot spring and geyser effluents of yellowstone national park.

    PubMed

    Walter, M R; Bauld, J; Brock, T D

    1972-10-27

    Growing algal and bacterial stromatolites composed of nearly amorphous silica occur around hot springs and geysers in Yellowstone National Park, Wyoming. Some Precambrian stromatolites may be bacterial rather than algal, which has important implications in atmospheric evolution, since bacterial photo-synthesis does not release oxygen. Conophyton stromatolites were thought to have become extinct at the end of the Precambrian, but are still growing in hot spring effluents.

  19. Siliceous algal and bacterial stromatolites in hot spring and geyser effluents of yellowstone national park.

    PubMed

    Walter, M R; Bauld, J; Brock, T D

    1972-10-27

    Growing algal and bacterial stromatolites composed of nearly amorphous silica occur around hot springs and geysers in Yellowstone National Park, Wyoming. Some Precambrian stromatolites may be bacterial rather than algal, which has important implications in atmospheric evolution, since bacterial photo-synthesis does not release oxygen. Conophyton stromatolites were thought to have become extinct at the end of the Precambrian, but are still growing in hot spring effluents. PMID:17815363

  20. WATER CHEMISTRY AND MINERALOGY OF MORGAN AND GROWLER HOT SPRINGS, LASSEN KGRA, CALIFORNIA.

    USGS Publications Warehouse

    Thompson, J. Michael; Keith, Terry E.C.; Consul, Jerry J.

    1985-01-01

    Because these springs contain substantial amounts of dissolved chloride, halite and sylvite are found above the water level as evaporitic deposits, along with gypsum. One spring is depositing pyrite that contains significant amounts of arsenic, antimony, and thallium. A yellow compound, composed of arsenic and sulfur, is being deposited in another spring. Arsenic and antimony concentrations are high in the spring waters; the dissolved thallium concentration is not known. The dissolved arsenic appears to be a conservative species and follows chloride. Antimony appears to be independent of dissolved arsenic and to be linearly related to chloride and measured orifice temperature at Morgan Hot Springs.

  1. Mercury in water and biomass of microbial communities in hot springs of Yellowstone National Park, USA

    USGS Publications Warehouse

    King, S.A.; Behnke, S.; Slack, K.; Krabbenhoft, D.P.; Nordstrom, D.K.; Burr, M.D.; Striegl, R.G.

    2006-01-01

    Ultra-clean sampling methods and approaches typically used in pristine environments were applied to quantify concentrations of Hg species in water and microbial biomass from hot springs of Yellowstone National Park, features that are geologically enriched with Hg. Microbial populations of chemically-diverse hot springs were also characterized using modern methods in molecular biology as the initial step toward ongoing work linking Hg speciation with microbial processes. Molecular methods (amplification of environmental DNA using 16S rDNA primers, cloning, denatured gradient gel electrophoresis (DGGE) screening of clone libraries, and sequencing of representative clones) were used to examine the dominant members of microbial communities in hot springs. Total Hg (THg), monomethylated Hg (MeHg), pH, temperature, and other parameters influential to Hg speciation and microbial ecology are reported for hot springs water and associated microbial mats. Several hot springs indicate the presence of MeHg in microbial mats with concentrations ranging from 1 to 10 ng g-1 (dry weight). Concentrations of THg in mats ranged from 4.9 to 120,000 ng g-1 (dry weight). Combined data from surveys of geothermal water, lakes, and streams show that aqueous THg concentrations range from l to 600 ng L-1. Species and concentrations of THg in mats and water vary significantly between hot springs, as do the microorganisms found at each site. ?? 2006.

  2. Mycobacterium parascrofulaceum in acidic hot springs in Yellowstone National Park.

    PubMed

    Santos, Ricardo; Fernandes, João; Fernandes, Nuno; Oliveira, Fernanda; Cadete, Manuela

    2007-08-01

    Mycobacterium parascrofulaceum was found in Norris Geyser Basin, Yellowstone National Park, in a system composed of two acidic (pH 3.0) springs with temperatures between 56 degrees C at the source and 40 degrees C at the confluence of both springs. Growth and survival assays at 56 degrees C for 60 days were performed, confirming the origin of the strain.

  3. Microscopic physical biomarkers in carbonate hot springs: implications in the search for life on Mars.

    PubMed

    Allen, C C; Albert, F G; Chafetz, H S; Combie, J; Graham, C R; Kieft, T L; Kivett, S J; McKay, D S; Steele, A; Taunton, A E; Taylor, M R; Thomas-Keprta, K L; Westall, F

    2000-09-01

    Physical evidence of life (physical biomarkers) from the deposits of carbonate hot springs were documented at the scale of microorganisms--submillimeter to submicrometer. The four moderate-temperature (57 to 72 degrees C), neutral pH springs reported on in this study, support diverse communities of bacteria adapted to specific physical and chemical conditions. Some of the microbes coexist with travertine deposits in endolithic communities. In other cases, the microbes are rapidly coated and destroyed by precipitates but leave distinctive mineral fabrics. Some microbes adapted to carbonate hot springs produce an extracellular polymeric substance which forms a three-dimensional matrix with living cells and cell remains, known as a biofilm. Silicon and iron oxides often coat the biofilm, leading to long-term preservation. Submicrometer mineralized spheres composed of calcium fluoride or silica are common in carbonate hot spring deposits. Sphere formation is biologically mediated, but the spheres themselves are apparently not fossils or microbes. Additionally, some microbes selectively weather mineral surfaces in distinctive patterns. Hot spring deposits have been cited as prime locations for exobiological exploration of Mars. The presence of preserved microscopic physical biomarkers at all four sites supports a strategy of searching for evidence of life in hot spring deposits on Mars. PMID:11543582

  4. Microscopic physical biomarkers in carbonate hot springs: implications in the search for life on Mars

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Albert, F. G.; Chafetz, H. S.; Combie, J.; Graham, C. R.; Kieft, T. L.; Kivett, S. J.; McKay, D. S.; Steele, A.; Taunton, A. E.; Taylor, M. R.; Thomas-Keprta, K. L.; Westall, F.

    2000-01-01

    Physical evidence of life (physical biomarkers) from the deposits of carbonate hot springs were documented at the scale of microorganisms--submillimeter to submicrometer. The four moderate-temperature (57 to 72 degrees C), neutral pH springs reported on in this study, support diverse communities of bacteria adapted to specific physical and chemical conditions. Some of the microbes coexist with travertine deposits in endolithic communities. In other cases, the microbes are rapidly coated and destroyed by precipitates but leave distinctive mineral fabrics. Some microbes adapted to carbonate hot springs produce an extracellular polymeric substance which forms a three-dimensional matrix with living cells and cell remains, known as a biofilm. Silicon and iron oxides often coat the biofilm, leading to long-term preservation. Submicrometer mineralized spheres composed of calcium fluoride or silica are common in carbonate hot spring deposits. Sphere formation is biologically mediated, but the spheres themselves are apparently not fossils or microbes. Additionally, some microbes selectively weather mineral surfaces in distinctive patterns. Hot spring deposits have been cited as prime locations for exobiological exploration of Mars. The presence of preserved microscopic physical biomarkers at all four sites supports a strategy of searching for evidence of life in hot spring deposits on Mars.

  5. Microscopic Physical Biomarkers in Carbonate Hot Springs: Implications in the Search for Life on Mars

    NASA Astrophysics Data System (ADS)

    Allen, Carlton C.; Albert, Fred G.; Chafetz, Henry S.; Combie, Joan; Graham, Catherine R.; Kieft, Thomas L.; Kivett, Steven J.; McKay, David S.; Steele, Andrew; Taunton, Anne E.; Taylor, Michael R.; Thomas-Keprta, Kathie L.; Westall, Frances

    2000-09-01

    Physical evidence of life (physical biomarkers) from the deposits of carbonate hot springs were documented at the scale of microorganisms—submillimeter to submicrometer. The four moderate-temperature (57 to 72°C), neutral pH springs reported on in this study, support diverse communities of bacteria adapted to specific physical and chemical conditions. Some of the microbes coexist with travertine deposits in endolithic communities. In other cases, the microbes are rapidly coated and destroyed by precipitates but leave distinctive mineral fabrics. Some microbes adapted to carbonate hot springs produce an extracellular polymeric substance which forms a three-dimensional matrix with living cells and cell remains, known as a biofilm. Silicon and iron oxides often coat the biofilm, leading to long-term preservation. Submicrometer mineralized spheres composed of calcium fluoride or silica are common in carbonate hot spring deposits. Sphere formation is biologically mediated, but the spheres themselves are apparently not fossils or microbes. Additionally, some microbes selectively weather mineral surfaces in distinctive patterns. Hot spring deposits have been cited as prime locations for exobiological exploration of Mars. The presence of preserved microscopic physical biomarkers at all four sites supports a strategy of searching for evidence of life in hot spring deposits on Mars.

  6. Quantification of Dynamic Water-Rock-Microbe Interactions in a Travertine-Depositing Hot Spring, Mammoth Hot Springs, Yellowstone National Park, USA

    NASA Astrophysics Data System (ADS)

    DeMott, L. M.; Sivaguru, M.; Fried, G.; Sanford, R. A.; Fouke, B. W.

    2014-12-01

    Filamentous microbial mats in a travertine-depositing hot spring at Mammoth Hot Springs in Yellowstone National Park exert primary controls on the growth rate, mineralogy, and crystal fabric of calcium carbonate minerals (travertine) that precipitate in the spring. Filaments directly affect porosity and permeability of travertine by providing a structural framework consisting of "ropes" of microbial cells around which carbonate minerals precipitate, creating a uniquely biogenetic mineral fabric characterized by horizontal layers of large tubular pores. Nanometer scale microscopy reveals that these mineral fabrics may be directly tied to microbial activities, as aragonite crystals precipitating directly on filaments are smaller and more densely packed than crystals precipitating on extra-polymeric substances (EPS) between filaments. In order to more closely examine the processes which control calcium carbonate crystallization dynamics in this system, a high-resolution transect of water and travertine was sampled for geochemistry, microscopy, and microbial biomass along the primary flow path from upstream to downstream of Narrow Gauge spring at Mammoth Hot Springs. Travertine samples were analyzed for petrography using transmitted light, cathodoluminescence, and laser confocal microscopy to examine crystal morphology and associations with microbial filaments and provide insight on pore network distributions. Additionally, travertine and spring water geochemistry was also analyzed for major and trace ions, δ34S, δ13C, and δ18O, to identify any trends that may relate to crystallization rates, microbial biomass, or crystal habit. Total biomass was determined using dried weight. Water-rock-microbe interactions result in upstream-to-downstream variations in travertine crystal morphology and water chemistry that are directly related to systematic changes in microbial biomass and community respiration. Geochemical modeling lends insight into the biogeochemical reactions

  7. Metagenomic Study of Iron Homeostasis in Iron Depositing Hot Spring Cyanobacterial Community

    NASA Technical Reports Server (NTRS)

    Brown, I.; Franklin H.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    Introduction: It is not clear how an iron-rich thermal hydrosphere could be hospitable to cyanobacteria, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, metagenomic study of cyanobacterial community in iron-depositing hot springs may help elucidate how oxygenic prokaryotes can withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe2+ and O2. Method: Anchor proteins from various species of cyanobacteria and some anoxygenic phototrophs were selected on the basis of their hypothetical role in Fe homeostasis and the suppression of oxidative stress and were BLASTed against the metagenomes of iron-depositing Chocolate Pots and freshwater Mushroom hot springs. Results: BLASTing proteins hypothesized to be involved in Fe homeostasis against the microbiomes from the two springs revealed that iron-depositing hot spring has a greater abundance of defensive proteins such as bacterioferritin comigratory protein (Bcp) and DNA-binding Ferritin like protein (Dps) than a fresh-water hot spring. One may speculate that the abundance of Bcp and Dps in an iron-depositing hot spring is connected to the need to suppress oxidative stress in bacteria inhabiting environments with high Fe2+ concnetration. In both springs, Bcp and Dps are concentrated within the cyanobacterial fractions of the microbial community (regardless of abundance). Fe3+ siderophore transport (from the transport system permease protein query) may be less essential to the microbial community of CP because of the high [Fe]. Conclusion: Further research is needed to confirm that these proteins are unique to photoautotrophs such as those living in iron-depositing hot spring.

  8. Mycobacterium parascrofulaceum in acidic hot springs in Yellowstone National Park.

    PubMed

    Santos, Ricardo; Fernandes, João; Fernandes, Nuno; Oliveira, Fernanda; Cadete, Manuela

    2007-08-01

    Mycobacterium parascrofulaceum was found in Norris Geyser Basin, Yellowstone National Park, in a system composed of two acidic (pH 3.0) springs with temperatures between 56 degrees C at the source and 40 degrees C at the confluence of both springs. Growth and survival assays at 56 degrees C for 60 days were performed, confirming the origin of the strain. PMID:17557859

  9. Possible mechanism of hydrological responses to the historical Nankai earthquakes at old hot springs

    NASA Astrophysics Data System (ADS)

    Matsumoto, N.; Koizumi, N.; Sato, T.; Takahashi, M.; Kitagawa, Y.; Itaba, S.

    2006-12-01

    The large earthquakes along the Nankai trough, which are referred to as the Nankai, Tonankai and Tokai earthquakes, occurred nine times since 684. The Dogo and Yunomine hot springs, which have histories of more than 1000 years, are located in and around the source region of the Nankai and Tonankai earthquakes. Several ancient writings reported that the Dogo and Yunomine hot springs stopped or decreased discharging after four and five of the nine large earthquakes, respectively. At the Dogo hot spring, an 11.2 m decrease of well water level was observed after the 1946 Nankai earthquake (M 8.0). Moreover 1.9 m increase of well water level at the same well was observed 49 hours after the 2001 Geiyo earthquake (M6.7). We estimate volumetric strain changes at the Dogo hot spring associated with the 1946 Nankai and 2001 Geiyo earthquakes using the Okada's program and estimated fault models. As a result, changes of 5.3 - 6.0 x 10-6 extensional strain and 4 x 10^{-8} contractional strain are estimated at the Dogo hot spring associated with the 1946 Nankai and 2001 Geiyo earthquakes, respectively. We found that the observed coseismic changes in groundwater level are proportional to the estimated coseismic strain steps associated with these earthquakes at the Dogo hot spring. In order to estimate strain sensitivity of the groundwater level, we started groundwater level observation at the same well at the Dogo hot spring from June 2003. We estimated that the strain sensitivity of groundwater level is 1.72 mm/nstrain using tidal analysis. This strain sensitivity estimated by the tidal analysis is consistent with the relationship between the observed coseismic changes in groundwater level and the estimated coseismic strain steps associated with the 1946 Nankai and 2001 Geiyo earthquakes at the Dogo hot spring. We think that the reported stops or decreases of self-discharge of the hot water at the Dogo hot spring after the historical Nankai earthquakes were caused by extensional

  10. 76 FR 16810 - Notice of Realty Action: Non-Competitive (Direct) Sale of Public Land in Hot Springs County, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... Bureau of Land Management Notice of Realty Action: Non-Competitive (Direct) Sale of Public Land in Hot...: A 10-acre parcel of public land in Hot Springs County, Wyoming is being considered for non... following described public land in Hot Springs County, Wyoming has been examined and found suitable for...

  11. Characterizing Hot Spring Connectivity Using Aqueous Geochemistry in the River Group Springs, Yellowstone NP, Wyoming

    NASA Astrophysics Data System (ADS)

    Aunan, M. M.; Lindsey, C.; Price, A. N.; Fairley, J. P., Jr.; Larson, P. B.

    2015-12-01

    Abstract We analyzed the aqueous geochemical components of 11 springs in the River Group, Yellowstone National Park, Wyoming. For the springs sampled, we found pHs ranging from a low of ˜4.8 to a high of ˜9.6; TDS (as inferred from electrical conductivity measurements) was roughly correlated to pH, with the lowest pH spring being the most dilute (373 µS) and the highest pH spring having the second highest conductivity (1384 µS). In combination with a shallow ground temperature survey and visual observations of the relative water levels in the springs, the spring chemistries support a conceptual model of fracture-controlled fluid flow in which individual springs demonstrate a surprising level of flowpath isolation. We hypothesize that variations in flowpath permeability lead to steam-heating of low-pH springs, while nearby circumneutral springs are heated by upwelling liquid hydrothermal fluids, high in chlorid and other dissolved components. If our hypothesis is correct, it implies that vaporand liquid-dominated zones of Model III hydrothermal systems can coexist in close proximity, resulting in a complex surface expression of acid-sulfate and chloride-rich circum-neutral springs.

  12. Preservation Potential of Life in Little Hot Creek, California: Implications for the use of Hot Spring Systems as Astrobiological Targets

    NASA Astrophysics Data System (ADS)

    Santiago Ramos, D. P.; Rempfert, K. R.; Nascimento, G. S.; Zhang, F.; Loyd, S. J.; Piazza, O.; Bertran, E.; Stamps, B. W.; Stevenson, B. S.; Spear, J. R.; Corsetti, F. A.

    2015-12-01

    Hot spring deposits have long been considered astrobiological targets; modern springs display diverse and abundant life and rapid mineralization is thought to increase biosignature preservation potential. Volcano-associated, silica-rich, mineral deposits have been identified on Mars, so the study of terrestrial examples is warranted. We studied a hot spring in Long Valley Caldera near Little Hot Creek, California, as part of the 2015 Geobiology Summer Course to characterize biological diversity and the potential for biosignature preservation in the rock record. Subsurface hydrothermal waters interact with the rhyolitic Bishop Tuff and feed Little Hot Creek, which exhibits progressively decreasing temperatures (~82-71°C) and rising pH (6.7-7.6) along a 23 m spatial transect. Creek water and sediment samples were collected along the entire transect, in addition to rim-encrusting carbonate-silica structures located ~6 m downstream from the creek source. 16S rRNA sequencing of both water and sediment samples yielded operational taxonomic units (OTUs) reflecting the potential capability for autotrophic thiosulfate oxidation and reduction, hydrogen oxidation, and sulfur oxidation near the creek source. Despite the obvious presence of life in the creek, the preservation potential of biosignatures in mineral deposits has proven ambiguous in at least three ways: 1. Sulfur isotope fractionation between aqueous sulfate and sulfide (~0.3‰) is consistent with both biotic and abiotic sulfur oxidation; 2. The increasing d13C of DIC down the transect can be solely explained by CO2 degassing; and 3. The d13C of rim-encrusting carbonates likely record a similar degassing signal. However, amorphous silica precipitates do exhibit textural evidence of life, with low inheritance between layers and lack of isopachous layering. Our results suggest that mineral deposits in Little Hot Creek show little potential for biosignature preservation; hence, further consideration of hot springs

  13. Water quality parameters associated with prevalence of Legionella in hot spring facility water bodies.

    PubMed

    Huang, Shih-Wei; Hsu, Bing-Mu; Wu, Shu-Fen; Fan, Cheng-Wei; Shih, Feng-Cheng; Lin, Yung-Chang; Ji, Dar-Der

    2010-09-01

    Some species of Legionella are recognized as opportunistic potential human pathogens, such as Legionella pneumophila, which causes legionnaires disease. Indeed, outbreaks of legionellosis are frequently reported in areas in which the organism has been spread via aerosols from contaminated institutional water systems. Contamination in hot tubs, spas and public baths are also possible. As a result, in this study, we investigated the distribution of Legionella at six hot spring recreation areas throughout Taiwan. Legionella were detected in all six hot spring recreation areas, as well as in 20 of the 72 samples that were collected (27.8%). Seven species of Legionella identified from samples by the direct DNA extraction method were unidentified Legionella spp., Legionella anisa, L. pneumophila, Legionella erythra, Legionella lytica, Legionella gresilensis and Legionella rubrilucen. Three species of Legionella identified in the samples using the culture method were L. pneumophila, unidentified Legionella spp. and L. erythra. Legionella species were found in water with temperatures ranging from 22.7 °C to 48.6 °C. The optimal pH appeared to range from 5.0 to 8.0. Taken together, the results of this survey confirmed the ubiquity of Legionella in Taiwan spring recreational areas. Therefore, a long-term investigation of the health of workers at hot spring recreational areas and the occurrence of Legionella in hot spring recreational areas throughout Taiwan are needed.

  14. Nanoarchaeota, Their Sulfolobales Host, and Nanoarchaeota Virus Distribution across Yellowstone National Park Hot Springs

    PubMed Central

    Munson-McGee, Jacob H.; Field, Erin K.; Bateson, Mary; Rooney, Colleen; Stepanauskas, Ramunas

    2015-01-01

    Nanoarchaeota are obligate symbionts with reduced genomes first described from marine thermal vent environments. Here, both community metagenomics and single-cell analysis revealed the presence of Nanoarchaeota in high-temperature (∼90°C), acidic (pH ≈ 2.5 to 3.0) hot springs in Yellowstone National Park (YNP) (United States). Single-cell genome analysis of two cells resulted in two nearly identical genomes, with an estimated full length of 650 kbp. Genome comparison showed that these two cells are more closely related to the recently proposed Nanobsidianus stetteri from a more neutral YNP hot spring than to the marine Nanoarchaeum equitans. Single-cell and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) analysis of environmental hot spring samples identified the host of the YNP Nanoarchaeota as a Sulfolobales species known to inhabit the hot springs. Furthermore, we demonstrate that Nanoarchaeota are widespread in acidic to near neutral hot springs in YNP. An integrated viral sequence was also found within one Nanoarchaeota single-cell genome and further analysis of the purified viral fraction from environmental samples indicates that this is likely a virus replicating within the YNP Nanoarchaeota. PMID:26341207

  15. Nanoarchaeota, Their Sulfolobales Host, and Nanoarchaeota Virus Distribution across Yellowstone National Park Hot Springs.

    PubMed

    Munson-McGee, Jacob H; Field, Erin K; Bateson, Mary; Rooney, Colleen; Stepanauskas, Ramunas; Young, Mark J

    2015-11-01

    Nanoarchaeota are obligate symbionts with reduced genomes first described from marine thermal vent environments. Here, both community metagenomics and single-cell analysis revealed the presence of Nanoarchaeota in high-temperature (∼90°C), acidic (pH ≈ 2.5 to 3.0) hot springs in Yellowstone National Park (YNP) (United States). Single-cell genome analysis of two cells resulted in two nearly identical genomes, with an estimated full length of 650 kbp. Genome comparison showed that these two cells are more closely related to the recently proposed Nanobsidianus stetteri from a more neutral YNP hot spring than to the marine Nanoarchaeum equitans. Single-cell and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) analysis of environmental hot spring samples identified the host of the YNP Nanoarchaeota as a Sulfolobales species known to inhabit the hot springs. Furthermore, we demonstrate that Nanoarchaeota are widespread in acidic to near neutral hot springs in YNP. An integrated viral sequence was also found within one Nanoarchaeota single-cell genome and further analysis of the purified viral fraction from environmental samples indicates that this is likely a virus replicating within the YNP Nanoarchaeota.

  16. Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China.

    PubMed

    Huang, Qiuyuan; Dong, Christina Z; Dong, Raymond M; Jiang, Hongchen; Wang, Shang; Wang, Genhou; Fang, Bin; Ding, Xiaoxue; Niu, Lu; Li, Xin; Zhang, Chuanlun; Dong, Hailiang

    2011-09-01

    The diversity of archaea and bacteria was investigated in ten hot springs (elevation >4600 m above sea level) in Central and Central-Eastern Tibet using 16S rRNA gene phylogenetic analysis. The temperature and pH of these hot springs were 26-81°C and close to neutral, respectively. A total of 959 (415 and 544 for bacteria and archaea, respectively) clone sequences were obtained. Phylogenetic analysis showed that bacteria were more diverse than archaea and that these clone sequences were classified into 82 bacterial and 41 archaeal operational taxonomic units (OTUs), respectively. The retrieved bacterial clones were mainly affiliated with four known groups (i.e., Firmicutes, Proteobacteria, Cyanobacteria, Chloroflexi), which were similar to those in other neutral-pH hot springs at low elevations. In contrast, most of the archaeal clones from the Tibetan hot springs were affiliated with Thaumarchaeota, a newly proposed archaeal phylum. The dominance of Thaumarchaeota in the archaeal community of the Tibetan hot springs appears to be unique, although the exact reasons are not yet known. Statistical analysis showed that diversity indices of both archaea and bacteria were not statistically correlated with temperature, which is consistent with previous studies.

  17. Biomediated Precipitation of Calcium Carbonate in a Slightly Acidic Hot Spring

    NASA Astrophysics Data System (ADS)

    Jiang, L.

    2015-12-01

    A slightly acidic hot spring named "Female Tower" (T=73.5 °C, pH=6.64) is located in the Jifei Geothermal Field, Yunnan Province, Southwest China. The precipitates in the hot spring are composed of large amounts of calcite, aragonite, and sulfur. Scanning electron microscopy (SEM) analyses revealed that the microbial mats were formed of various coccoid, rod-shaped, and filamentous microbes. Transmission electron microscopy (TEM) showed that the intracellular sulfur granules were commonly associated with these microbes. A culture-independent molecular phylogenetic analysis demonstrated that the majority of the bacteria in the spring were sulfur-oxidizing bacteria. In the spring water, H2S concentration was up to 60 ppm, while SO42- concentration was only about 10 ppm. We speculated that H2S might be utilized by sulfur-oxidizing bacteria in this hot spring water, leading to the intracellular formation of sulfur granules. In the meantime, this reaction increased the pH in the micron-scale microdomains, which fostered the precipitation of calcium carbonate in the microbial mats. The results of this study indicated that the sulfur-oxidizing bacteria could play an important role in calcium carbonate precipitation in slightly acidic hot spring environments.

  18. Biomediated Precipitation of Calcium Carbonate and Sulfur in a Faintly Acidic Hot Spring

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Peng, X.; Qiao, H.

    2014-12-01

    A faintly acidic hot spring named "female Tower" (T=73.5 ℃, pH=6.64 ) is located in the Jifei Geothermal Field,Yunnan province, Southwest China. The precipitates in the hot spring are composed of large amounts of calcite and sulfur, as reveals by XRD analysis. Scanning electron microscopy (SEM) analysis show the microbial mats are formed of various coccoid, rod and filamentous microbes. Transmission electron microscopy (TEM) analysis show that intracellular sulfur granules are commonly associated with these microbes. Energy dispersive X-ray spectrometer (EDS) analysis shows that the surface of microbes are mainly composed of Ca, C, O and S. A culture-independent molecular phylogenetic analysis demonstrates the majority of bacteria in the spring are sulfur-oxidizing bacteria. In the spring water, H2S concentration was up to 60 ppm, while SO42- concentration was only about 10 ppm. We suggest that H2S might be utilized by sulfur-oxidizing bacteria in this hot spring water, leading to the formation of sulfur granules intracellularly and extracellularly. In the meantime, this reaction increases the pH in ambient environments, which fosters the precipitation of calcium carbonate precipitation in the microbial mats. This study suggests that the sulfur-oxidizing bacteria could play an important role in calcium carbonate precipitation in faintly acidic hot spring environments.

  19. Geophysical investigation of hot springs in the vicinity of Shoshone, California

    NASA Astrophysics Data System (ADS)

    Dziedzorm, Ziwu Felix

    Magnetic and gravity surveys were conducted in the vicinity of Shoshone, California to test a hypothesis from investigating hotsprings within Tecopa and Saratoga which states that deep faults must intersect with a specific orientation relative to the regional stress field in order to create hot springs along the Amargosa River. Three isolated basalt flows with different gravity and magnetic properties were identified near the Shoshone hot spring. Two of the flows have very low magnetic anomalies and the remaining one has a high magnetic anomaly. The high magnetic anomaly basalt flow also has a significantly higher Bouguer anomaly than the other two flows associated with the low magnetic anomalies. These observations suggest that the flows were formed by different time volcanic activity with the low magnetic anomaly basalts cooling during a magnetic reversal and the high magnetic anomaly basalt cooling during normal magnetic era. The deepest part of the Tecopa basin in the study area was identified as a region with low Bouguer anomaly and associated magnetic high. These properties suggest the basin fill includes highly vesicular basalts which would give the low density. Generally regions of high magnetic anomalies also have high Bouguer anomalies which indicate the possible existence of igneous rocks in the region. The low magnetic anomalies are mainly seen in the regions of thicker sedimentary deposits such as in the Resting Springs range where Precambrian and Paleozoic sedimentary rocks are preserved. From the magnetic and gravity surveys, this research support the testing hypothesis based on the identified intersecting faults of the appropriate orientation associated with the Shoshone hot spring. Faults were also identified at places with no evidence of hot springs and this could be due to the presence of thicker sediments preventing the springs from flowing to the surface. An alternative possibility is that the faults are not deep enough to tap the hot water

  20. Geochemistry and geothermometry of non-volcanic hot springs in West Malaysia

    NASA Astrophysics Data System (ADS)

    Baioumy, Hassan; Nawawi, Mohd; Wagner, Karl; Arifin, Mohd Hariri

    2015-01-01

    Although more than sixty hot springs have been reported in West Malaysia, their geochemistry, geothermometry and utilization as a potential energy source have not been considered yet. This study reports the geochemistry, geothermometry and mineral saturation indices of a number of hot springs in West Malaysia. The potential of these hot springs as a source of geothermal energy as well as their origin and possible mixing with surface cold waters have been discussed. Surface temperatures of the studied hot springs range from 41 to 99 °C and pH values vary between 5.5 and 9. Geochemical data showed that among cations, Si, Na, Ca and K occur in relatively high contents, while Mg and Fe show very low concentrations. On the other hand, HCO3 is present in relatively high concentration compared to other anions (SO4, Cl and F). Data also illustrated that most of the studied hot springs are K-Na-bicarbonate rich waters although they represent different geological provenances in West Malaysia reflecting homogeneity in the geological formations and/or hydrochemical processes governing the characteristics of these waters. This homogeneity also indicates the insignificant effect of local geology on the chemistry of the studied hot springs. Saturation indices calculations of the studied thermal waters indicate that most of the secondary mineral phases such as goethite and hematite are apparently supersaturated while quartz and chalcedony are saturated. Conversely, amorphous silica is slightly under-saturated. These results suggest similar rock-water interactions for both geothermal and non-geothermal waters. The geological settings of the studied hot springs either in or close to granitic masses or along the major fault or shear zones as well as the Na-bicarbonate nature of the waters and low sulfate concentrations suggest their non-volcanic origin. They are also similar in their geological setting and water chemistry to other non-volcanic hot springs in other parts of the world

  1. Geology and Thermal History of Mammoth Hot Springs, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bargar, Keith E.

    1978-01-01

    Mammoth Hot Springs, located about 8 km inside the north entrance to Yellowstone National Park, consists of nearly 100 hot springs scattered over a score of steplike travertine terraces. The travertine deposits range in age from late Pleistocene to the present. Sporadic records of hot-spring activity suggest that most of the current major springs have been intermittently active since at least 1871. Water moving along the Norris-Mammoth fault zone is heated by partly molten magma and enriched in calcium and bicarbonate. Upon reaching Mammoth this thermal water (temperature about 73?C) moves up through the old terrace deposits along preexisting vertical linear planes of weakness. As the water reaches the surface, pressure is released, carbon dioxide escapes as a gas, and bicarbonate in the water is partitioned into more carbon dioxide and carbonate; the carbonate then combines with calcium to precipitate calcium carbonate, forming travertine. The travertine usually precipitates rapidly from solution and is lightweight and porous; however, dense travertine, such as is found in core from the 113-m research drill hole Y-10 located on one of the upper terraces, forms beneath the surface by deposition in the pore spaces of older deposits. The terraces abound with unusual hot-spring deposits such as terracettes, cones, and fissure ridges. Semicircular ledges (ranging in width from about 0.3 m to as much as 2.5 m), called terracettes, formed by deposition of travertine around slowly rising pools. Complex steplike arrangements of terracettes have developed along runoff channels of some hot springs. A few hot springs have deposited cone-shaped mounds, most of which reach heights of 1-2 m before becoming dormant. However, one long-inactive cone named Liberty Cap attained a height of about 14 m. Fissure ridges are linear mounds of travertine deposited from numerous hot-spring vents along a medial fracture zone. The ridges range in height from about 1 to 6 m and in length from a

  2. Reconnaissance of the Hot Springs Mountains and adjacent areas, Churchill County, Nevada

    SciTech Connect

    Voegtly, N.E.

    1981-01-01

    A geological reconnaissance of the Hot Springs Mountains and adjacent areas, which include parts of the Brady-Hazen and the Stillwater-Soda Lake Known Geothermal Resource Areas (KGRA's), resulted in a reinterpretation of the nature and location of some Basin and Range faults. This reconnaissance took place during June-December 1975. In addition, the late Cenozoic stratigraphy has been modified, chiefly on the basis of radiometric dates of volcanic rocks by US Geological Survey personnel and others. The Hot Springs Mountains are in the western part of the Basin and Range province, which is characterized by east-west crustal extension and associated normal faulting. In the surrounding Trinity, West Humboldt, Stillwater, and Desert Mountains, Cenozoic rocks overlie basement rocks of Paleozoic and Mesozoic age. A similar relation is inferred in the Hot Springs Mountains. Folding and faulting have taken place from the late Tertiary to the present.

  3. Anaerobic transformation of carbon monoxide by microbial communities of Kamchatka hot springs.

    PubMed

    Kochetkova, Tatiana V; Rusanov, Igor I; Pimenov, Nikolay V; Kolganova, Tatyana V; Lebedinsky, Alexander V; Bonch-Osmolovskaya, Elizaveta A; Sokolova, Tatyana G

    2011-05-01

    Carbon monoxide (CO) is one of the common gaseous compounds found in hot volcanic environments. It is known to serve as the growth substrate for a number of thermophilic prokaryotes, both aerobic and anaerobic. The goal of this work was to study the process of anaerobic transformation of CO by microbial communities inhabiting natural thermal environments: hot springs of Uzon Caldera, Kamchatka. The anaerobic microbial community of Treshchinny Spring (80°C, pH 6.5) was found to exhibit two peaks of affinity for CO (K (S1) = 54 nM and K (S2) = 1 μM). The actual rate of anaerobic CO transformation by the microbial community of this spring, calculated after obtaining the concentration dependence curve and extrapolated to the natural concentration of CO dissolved in the hot spring water (20 nM), was found to be 120 μmol l(-1) of sediment day(-1). In all the hot springs studied, more than 90% of the carbon of (14)CO upon anaerobic incubation was recovered as (14)CO(2). From 1 to 5% of (14)CO was transformed to volatile fatty acids (VFA). The number of microorganisms capable of anaerobic CO oxidation determined by dilution-to-extinction method reached 10(6) cells ml(-1) of sediment. CO-transforming anaerobic thermophilic microorganisms isolated from the springs under study exhibited hydrogenogenic type of CO oxidation and belonged to the bacterial genera Carboxydocella and Dictyoglomus. These data suggest a significant role of hydrogenogenic carboxydotrophic prokaryotes in anaerobic CO transformation in Uzon Caldera hot springs.

  4. Control of temperature on microbial community structure in hot springs of the Tibetan Plateau.

    PubMed

    Wang, Shang; Hou, Weiguo; Dong, Hailiang; Jiang, Hongchen; Huang, Liuqin; Wu, Geng; Zhang, Chuanlun; Song, Zhaoqi; Zhang, Yong; Ren, Huilei; Zhang, Jing; Zhang, Li

    2013-01-01

    The Tibetan Plateau in Northwest China hosts a number of hot springs that represent a biodiversity hotspot for thermophiles, yet their diversity and relationship to environmental conditions are poorly explored in these habitats. In this study we investigated microbial diversity and community composition in 13 Tibetan hot springs with a wide range of temperatures (22.1-75°C) and other geochemical conditions by using the 16S rRNA gene pyrosequencing approach. Bacteria (10(8)-10(11) copy/g; 42 bacterial phyla) in Tibetan hot springs were more abundant and far more diverse than Archaea (10(7)-10(10) copy/g; 5 archaeal phyla). The dominant bacterial phyla systematically varied with temperature. Moderate temperatures (75-66°C) favored Aquificae, GAL35, and novel Bacteria, whereas low temperatures (60-22.1°C) selected for Deinococcus-Thermus, Cyanobacteria, and Chloroflexi. The relative abundance of Aquificae was correlated positively with temperature, but the abundances of Deinococcus-Thermus, Cyanobacteria, and Chloroflexi were negatively correlated with temperature. Cyanobacteria and Chloroflexi were abundant in Tibetan hot springs and their abundances were positively correlated at low temperatures (55-43°C) but negatively correlated at moderate temperatures (75-55°C). These correlation patterns suggest a complex physiological relationship between these two phyla. Most archaeal sequences were related to Crenarchaeota with only a few related to Euryarchaeota and Thaumarchaeota. Despite the fact that microbial composition in Tibetan hot springs was strongly shaped by temperature, microbial diversity (richness, evenness and Shannon diversity) was not significantly correlated with temperature change. The results of this study expand our current understanding of microbial ecology in Tibetan hot springs and provide a basis for a global comparison.

  5. Thermotolerant Acanthamoeba spp. isolated from therapeutic hot springs in Northwestern Iran.

    PubMed

    Solgi, Rahmat; Niyyati, Maryam; Haghighi, Ali; Taghipour, Niloofar; Tabaei, Seyyed Javad Seyyed; Eftekhar, Mohamad; Nazemalhosseini Mojarad, Ehsan

    2012-12-01

    This study was conducted to address the distribution of Acanthamoeba genotypes in therapeutic hot springs in Iran. Sixty water and sediment samples were collected from bicarbonate, sulphur, and sodium chloride thermal springs in the northwest. All hot springs examined are used mainly for health purposes in Iran. Acanthamoeba were identified by both morphology and PCR (polymerase chain reaction). Genotype identification was based on the sequencing of a highly variable and informative region of Diagnostic Fragment 3 (stem 29-1 of 18S rRNA gene) within Acanthamoeba-specific amplimer (ASA.S1). Twenty percent of hot springs were contaminated with thermotolerant Acanthamoeba belonging to the potentially pathogenic T4 and T3 genotypes. A high number (91.7%) of strains showed growth at 37 °C, and eight isolates showed growth at 42 °C. A single isolate (HSNW2) was detected in waters at 70 °C. The presence of thermotolerant Acanthamoeba highlights a risk factor for susceptible individuals, as Acanthamoeba-related keratitis continues to rise in Iran. Periodic surveillance of thermal waters as well as improved filtration and disinfection is recommended to prevent disease related to pathogenic Acanthamoeba. This is the first comprehensive molecular study of Acanthamoeba genotypes in hot springs in Iran and the first to report the occurrence of the T3 genotype (corresponding to Acanthamoeba griffini) in thermal water sources in this country.

  6. Catalog of known hot springs and thermal place names for Honduras

    SciTech Connect

    Finch, R.C.

    1986-08-01

    Thermal place names were compiled from all 1:50,000 topographic quadrangle maps for the Republic of Honduras as of July 1986, from other published maps, and from several sources of unpublished data. Known hot spring sites include those visited by Empresa Nacional de Energia Electrica (Honduras) geologists, sites visited by Los Alamos geologists in 1985, and other sites known to R.C. Finch. The number of known hot spring sites in Honduras with temperatures >30/sup 0/C is 125. In addition, 56 thermal sites are suspected on the basis of thermal place names. The total number of geothermal sites, known and suspected, is 181.

  7. Thermopolis hydrothermal system with an analysis of Hot Springs State Park

    SciTech Connect

    Hinckley, B.S.; Heasler, H.P.; King, J.K.

    1982-01-01

    Thermopolis is the site of Hot Springs State Park, where numerous hot springs produce nearly 3000 gallons per minute (gpm) of 130/sup 0/F (54/sup 0/C) water. The University of Wyoming Geothermal Resource Assessment Group has studied a 1700-square-mile area centered roughly on the State Park. Available literature, bottom-hole temperatures from over 400 oil well logs, 62 oil field drill stem tests, the Wyoming State Engineer's water well files, 60 formation water analyses, thermal logs of 19 holes, and field investigations of geology and hydrology form the basis of this report.

  8. Radon concentrations in spa water taken from hot and cold springs in Taiwan.

    PubMed

    Weng, P S; Lin, C L

    1995-05-01

    Spa water samples taken from hot and cold springs throughout Taiwan were analyzed for waterborne radon concentrations using electret ion chambers. The highest radon concentration was detected at Yangmingshan National Park, where it is closed to the action level of 11.0 kBq m-3. Next comes a sea-water hot spring at Green Isle on the east coast of Taiwan. The spa water used by the nearby inhabitants may increase the indoor radon concentration by a factor of two in extreme cases.

  9. Archaeal and bacterial diversity in acidic to circumneutral hot springs in the Philippines.

    PubMed

    Huang, Qiuyuan; Jiang, Hongchen; Briggs, Brandon R; Wang, Shang; Hou, Weiguo; Li, Gaoyuan; Wu, Geng; Solis, Ramonito; Arcilla, Carlo A; Abrajano, Teofilo; Dong, Hailiang

    2013-09-01

    The microbial diversity was investigated in sediments of six acidic to circumneutral hot springs (Temperature: 60-92 °C, pH 3.72-6.58) in the Philippines using an integrated approach that included geochemistry and 16S rRNA gene pyrosequencing. Both bacterial and archaeal abundances were lower in high-temperature springs than in moderate-temperature ones. Overall, the archaeal community consisted of sequence reads that exhibited a high similarity (nucleotide identity > 92%) to phyla Crenarchaeota, Euryarchaeota, and unclassified Archaea. The bacterial community was composed of sequence reads moderately related (nucleotide identity > 90%) to 17 phyla, with Aquificae and Firmicutes being dominant. These phylogenetic groups were correlated with environmental conditions such as temperature, dissolved sulfate and calcium concentrations in spring water, and sediment properties including total nitrogen, pyrite, and elemental sulfur. Based on the phylogenetic inference, sulfur metabolisms appear to be key physiological functions in these hot springs. Sulfobacillus (within phylum Firmicutes) along with members within Sulfolobales were abundant in two high-temperature springs (> 76 °C), and they were hypothesized to play an important role in regulating the sulfur cycling under high-temperature conditions. The results of this study improve our understanding of microbial diversity and community composition in acidic to circumneutral terrestrial hot springs and their relationships with geochemical conditions.

  10. Hot-spring sinter deposits in the Alvord-Pueblo Valley, Harney County, Oregon

    SciTech Connect

    Cummings, M.L.; St. John, A.M. . Dept. of Geology)

    1993-04-01

    Silica sinter deposits occur at Borax Lake, Alvord Hot Springs, and Mickey Springs in the Alvord-Pueblo Valley. Although the sinter deposits occur in areas of active hot springs, sinter is not being deposited. Hot springs are localized along faults that have been active since the Pleistocene. The sinter deposits formed after the drying of glacial Lake Alvord, but before and during extensive wind deflation of glacial-lacustrine sediments. At Mickey Springs, sinter rests directly on unaltered, unconsolidated lithic-rich sand. At Borax Lake, sinter overlies unaltered diatomite, but some armoring, presumably by silica, of the 30 m vent has developed. Field relations suggest rapid dumping of silica from solution without alteration of the country rock at the vent. Discharge of thermal fluids and cold groundwater along the same structure may have produced colloidal silica carried in a solution stripped of dissolved silica. Sinter is composed of opal-a, traces of detrital feldspar and quartz, and evaporation-related boracite. The concentration of Sb is similar among the three sinter deposits (20 to 70 ppm); however, As, Cs, and Br are highest at Borax Lake (5 to 560 ppm; 26 to 118 ppm; 5 to 1,040 ppm) while Hg is highest at Mickey Springs (1.0 to 5.2 ppm).

  11. Archaeal and bacterial community analysis of several Yellowstone National Park hot springs

    NASA Astrophysics Data System (ADS)

    Colman, D. R.; Takacs-Vesbach, C. D.

    2012-12-01

    The hot springs of Yellowstone National Park (YNP) are home to a diverse assemblage of microorganisms. Culture-independent studies have significantly expanded our understanding of the diversity of both Bacteria and Archaea present in YNP springs as well as the geochemical and ecological controls on communities. While the ecological analysis of Bacteria among the physicochemically heterogenous springs of YNP has been previously conducted, less is known about the extent of diversity of Archaeal communities and the chemical and ecological controls on their populations. Here we report a culture-independent analysis of 31 hot spring archaeal and bacterial communities of YNP springs using next generation sequencing. We found the phylogenetic diversity of Archaea to be generally comparable to that of co-occurring bacterial communities although overall, in the springs we investigated, diversity was higher for Bacteria than Archaea. Chemical and physical controls were similar for both domains with pH correlating most strongly with community composition. Community differences reflected the partitioning of taxonomic groups in low or high pH springs for both domains. Results will be discussed in a geochemical and ecological context.

  12. Initial characterization of carbon flows through microbial communities in Beowulf spring, an acidic hot spring in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Kreuzer, H.; Moran, J.; Ehrhardt, C.; Melville, A.; Kranz, A.; Inskeep, W. P.

    2011-12-01

    Beowulf Springs are acidic, sulfidic hot springs in Yellowstone National Park. Visual inspection of the springs reveals distinct geochemical regions starting with a sulfur deposition zone followed by a transition to iron oxide deposition downstream. The relatively rapid sulfur and iron oxide deposition rates in this spring suggests the processes are microbially mediated (since, for instance, abiotic iron oxidation is kinetically slow at this temperature and pH) and previous diversity studies identify microbial communities consistent with the observed metabolic products (namely sulfur and iron oxide). While the energetics of sulfide and iron oxidation are sufficient for supporting microbial activity, a suitable carbon source remains undocumented. The temperatures in Beowulf approach 80 °C, which is above the photosynthetic upper temperature limit thus precluding photosynthetic-based autotrophy within the spring itself. Observed potential carbon sources in Beowulf include dissolved inorganic carbon, dissolved organic carbon, and methane. We are employing geochemical and stable isotope techniques to assess carbon inventories in the system. With thorough analysis we hope to identify both the major carbon stores in the system and track how they are transferred between microbial components in Beowulf. Initial stable isotope measurements focused on bulk isotope analysis of major carbon pools; both directly in the spring and in surrounding areas that may affect the spring water through runoff or ground water migration. We are analyzing bulk carbon isotopes of different microbial groups in the spring, the dissolved organic and inorganic carbon in the spring, and surrounding soils and potential plant inputs. Isotopic similarity between dissolved organic carbon and soil organic carbon is consistent with a common carbon source (local vegetation) but has not yet been confirmed as such. Correlation between δ13C of microbial biomass and dissolved organic carbon are suggestive

  13. Submarine hot springs and the origin of life

    NASA Technical Reports Server (NTRS)

    Miller, Stanley L.; Bada, Jeffrey L.

    1988-01-01

    The popular hypothesis that life originally arose in hydrothermal vents at oceanic ridge crests is examined. It is shown that the high temperatures in the vents would not allow synthesis of organic compounds, but would decompose them, unless the exposure time at vent temperature was short. Even if the essential organic molecules were available in the hot hydrothermal waters, the subsequent steps of polymerization and the conversion of these polymers into the first organisms would not occur as the vent waters were quenched to the colder temperatures of the primitive oceans.

  14. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.).

    PubMed

    Fouke, B W; Farmer, J D; Des Marais, D J; Pratt, L; Sturchio, N C; Burns, P C; Discipulo, M K

    2000-05-01

    Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 degrees C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43-72 degrees C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30-62 degrees C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonite at lower temperatures. Calcite "ice sheets", calcified bubbles, and aggregates of aragonite needles ("fuzzy dumbbells") precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28-54 degrees C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28-30 degrees C) is composed of calcite spherules and calcite "feather" crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO2 degassing causes a +2 unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding delta 13C. Travertine delta 13C and delta 18O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature (approximately 50-73 degrees C) depositional facies. Conversely, travertine precipitating in the lower-temperature (< approximately 50 degrees C) depositional facies exhibits delta 13C and delta 18O

  15. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, USA)

    SciTech Connect

    Fouke, B.W.; Farmer, J.D.; Des Marais, D.J.; Pratt, L.; Sturchio, N.C.; Burns, P.C.; Discipulo, M.K.

    2000-05-01

    Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43--72 C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30--62 C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonite at lower temperatures. Calcite ice sheets, calcified bubbles, and aggregates of aragonite needles (fuzzy dumbbells) precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28--54 C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28--30 C) is composed of calcite spherules and calcite feather crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO{sub 2} degassing causes a +2 unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding {delta}{sup 13}C. Travertine {delta}{sup 13}C and {delta}{sup 18}O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature ({approximately}50--73 C) depositional facies. Conversely, travertine precipitating in the lower-temperature (<{approximately}50 C) depositional facies exhibits {delta}{sup 13}C and {delta}{sup 18}O values that are as

  16. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.)

    NASA Technical Reports Server (NTRS)

    Fouke, B. W.; Farmer, J. D.; Des Marais, D. J.; Pratt, L.; Sturchio, N. C.; Burns, P. C.; Discipulo, M. K.

    2000-01-01

    Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 degrees C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43-72 degrees C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30-62 degrees C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonite at lower temperatures. Calcite "ice sheets", calcified bubbles, and aggregates of aragonite needles ("fuzzy dumbbells") precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28-54 degrees C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28-30 degrees C) is composed of calcite spherules and calcite "feather" crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO2 degassing causes a +2 unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding delta 13C. Travertine delta 13C and delta 18O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature (approximately 50-73 degrees C) depositional facies. Conversely, travertine precipitating in the lower-temperature (< approximately 50 degrees C) depositional facies exhibits delta 13C and delta 18O

  17. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.).

    PubMed

    Fouke, B W; Farmer, J D; Des Marais, D J; Pratt, L; Sturchio, N C; Burns, P C; Discipulo, M K

    2000-05-01

    Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 degrees C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43-72 degrees C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30-62 degrees C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonite at lower temperatures. Calcite "ice sheets", calcified bubbles, and aggregates of aragonite needles ("fuzzy dumbbells") precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28-54 degrees C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28-30 degrees C) is composed of calcite spherules and calcite "feather" crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO2 degassing causes a +2 unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding delta 13C. Travertine delta 13C and delta 18O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature (approximately 50-73 degrees C) depositional facies. Conversely, travertine precipitating in the lower-temperature (< approximately 50 degrees C) depositional facies exhibits delta 13C and delta 18O

  18. Linking geochemistry to microbial ecology in hot springs: examples from southeastern Asia (Invited)

    NASA Astrophysics Data System (ADS)

    Dong, H.; Jiang, H.; Hou, W.; Wang, S.; Huang, Q.; Briggs, B. R.; Huang, L.; Hust, W.; Hedlund, B. P.; Zhang, C.; Hartnett, H. E.; Dijkstra, P.; Hungate, B. A.

    2013-12-01

    Despite recent advances in our understanding of microbial ecology in high temperature environments, important questions remain as to how geochemical conditions shape microbial ecology in hot springs. In the past three years, we have surveyed a large number of hot springs in three regions of southeastern Asia: Tengchong of Yunnan Province, China; Tibet in China; and the Philippines. These springs possess large gradients in pH (2.5-9.4), temperature (22.1-93.6oC), and water and sediment geochemistry. Within each region, these geochemical conditions are important in shaping microbial community structure and diversity. For example, in the Rehai geothermal field of Tengchong, dominant taxa within the dominant bacterial phylum Aquificae and archaeal phylum Crenarchaeota depended on pH (2.5-9.4), temperature (55.1-93.6), Na-Cl-HCO3 water type and silicate rock lithology. In the Ruidian geothermal region, springs with circum-neutral pH (6.71-7.29), moderate temperature (50-82oC), Na-HCO3 water type, and carbonate-dominated lithology, Hydrogenobacter of Aquificae dominated spring water, but the microbial community in sediments was diverse with abundant novel groups. In Tibet springs with low-moderate temperature (22-75oC) and circum-neutral pH (7.2-8.1), temperature appeared to be the most important factor in determining diversity and community structure. In acidic hot springs of the Philippines (Temperature: 60-92°C, pH 3.72-6.58), microbial communities were predominated by those related to sulfur metabolism, which are different from those in acidic springs of Tengchong. When these three regions are considered together, environmental conditions play a major role in controlling microbial community structure, but geographical location appears to be an important factor as well.

  19. Cyanobacterial construction of hot spring siliceous stromatolites in Yellowstone National Park.

    PubMed

    Pepe-Ranney, Charles; Berelson, William M; Corsetti, Frank A; Treants, Merika; Spear, John R

    2012-05-01

    Living stromatolites growing in a hot spring in Yellowstone National Park are composed of silica-encrusted cyanobacterial mats. Two cyanobacterial mat types grow on the stromatolite surfaces and are preserved as two distinct lithofacies. One mat is present when the stromatolites are submerged or at the water-atmosphere interface and the other when stromatolites protrude from the hot spring. The lithofacies created by the encrustation of submerged mats constitutes the bulk of the stromatolites, is comprised of silica-encrusted filaments, and is distinctly laminated. To better understand the cyanobacterial membership and community structure differences between the mats, we collected mat samples from each type. Molecular methods revealed that submerged mat cyanobacteria were predominantly one novel phylotype while the exposed mats were predominantly heterocystous phylotypes (Chlorogloeopsis HTF and Fischerella). The cyanobacterium dominating the submerged mat type does not belong in any of the subphylum groups of cyanobacteria recognized by the Ribosomal Database Project and has also been found in association with travertine stromatolites in a Southwest Japan hot spring. Cyanobacterial membership profiles indicate that the heterocystous phylotypes are 'rare biosphere' members of the submerged mats. The heterocystous phylotypes likely emerge when the water level of the hot spring drops. Environmental pressures tied to water level such as sulfide exposure and possibly oxygen tension may inhibit the heterocystous types in submerged mats. These living stromatolites are finely laminated and therefore, in texture, may better represent similarly laminated ancient forms compared with more coarsely laminated living marine examples. PMID:22356555

  20. Radiological studies in the hot spring region of Mahallat, Central Iran.

    PubMed

    Beitollahi, M; Ghiassi-Nejad, M; Esmaeli, A; Dunker, R

    2007-01-01

    Five hot springs called 'Abegarm-e-Mahallat', located in the central part of Iran, have a mean water temperature of 46 +/- 1 degrees C and are used by visitors as spas. This is an area of high natural radiation background due to the presence of (226)Ra and its decay products in the deposited travertine (CaCO(3)). The mean concentration of (226)Ra in these hot springs, measured by the emanation method, ranged from 0.48 +/- 0.05 to 1.35 +/- 0.13 Bq l(-1). (222)Rn concentrations measured in the hot springs using a liquid scintillation counter ranged from 145 +/- 37 to 2731 +/- 98 Bq l(-1). Mean radon concentrations in air were 487 +/- 160 and 15.4 +/- 2.7 Bq m(-3) for indoor and outdoor, respectively. Radiation levels above that of normal background ( approximately 100 nGy h(-1)) were mainly limited to the Quaternary travertine formations in the vicinity of the hot springs. The results of environmental radiological studies in this region are presented and discussed. PMID:17166871

  1. 77 FR 68716 - Proposed Amendment of Class E Airspace; Hot Springs, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... Procedures (44 FR 11034; February 26, 1979); and (3) does not warrant preparation of a Regulatory Evaluation...: Authority: 49 U.S.C. 106(g); 40103, 40113, 40120; E.O. 10854, 24 FR 9565, 3 CFR, 1959-1963 Comp., p. 389... Federal Aviation Administration 14 CFR Part 71 Proposed Amendment of Class E Airspace; Hot Springs,...

  2. 78 FR 14911 - Amendment of Class E Airspace; Hot Springs, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... controlled airspace at Hot Springs Municipal Airport (77 FR 68716) Docket No. FAA-2012-0655. Interested...) is not a ``significant rule'' under DOT Regulatory Policies and Procedures (44 FR 11034; February 26...), 40103, 40113, 40120; E. O. 10854, 24 FR 9565, 3 CFR, 1959-1963 Comp., p. 389. ] Sec. 71.1 0 2....

  3. Radiological studies in the hot spring region of Mahallat, Central Iran.

    PubMed

    Beitollahi, M; Ghiassi-Nejad, M; Esmaeli, A; Dunker, R

    2007-01-01

    Five hot springs called 'Abegarm-e-Mahallat', located in the central part of Iran, have a mean water temperature of 46 +/- 1 degrees C and are used by visitors as spas. This is an area of high natural radiation background due to the presence of (226)Ra and its decay products in the deposited travertine (CaCO(3)). The mean concentration of (226)Ra in these hot springs, measured by the emanation method, ranged from 0.48 +/- 0.05 to 1.35 +/- 0.13 Bq l(-1). (222)Rn concentrations measured in the hot springs using a liquid scintillation counter ranged from 145 +/- 37 to 2731 +/- 98 Bq l(-1). Mean radon concentrations in air were 487 +/- 160 and 15.4 +/- 2.7 Bq m(-3) for indoor and outdoor, respectively. Radiation levels above that of normal background ( approximately 100 nGy h(-1)) were mainly limited to the Quaternary travertine formations in the vicinity of the hot springs. The results of environmental radiological studies in this region are presented and discussed.

  4. Cyanobacterial construction of hot spring siliceous stromatolites in Yellowstone National Park.

    PubMed

    Pepe-Ranney, Charles; Berelson, William M; Corsetti, Frank A; Treants, Merika; Spear, John R

    2012-05-01

    Living stromatolites growing in a hot spring in Yellowstone National Park are composed of silica-encrusted cyanobacterial mats. Two cyanobacterial mat types grow on the stromatolite surfaces and are preserved as two distinct lithofacies. One mat is present when the stromatolites are submerged or at the water-atmosphere interface and the other when stromatolites protrude from the hot spring. The lithofacies created by the encrustation of submerged mats constitutes the bulk of the stromatolites, is comprised of silica-encrusted filaments, and is distinctly laminated. To better understand the cyanobacterial membership and community structure differences between the mats, we collected mat samples from each type. Molecular methods revealed that submerged mat cyanobacteria were predominantly one novel phylotype while the exposed mats were predominantly heterocystous phylotypes (Chlorogloeopsis HTF and Fischerella). The cyanobacterium dominating the submerged mat type does not belong in any of the subphylum groups of cyanobacteria recognized by the Ribosomal Database Project and has also been found in association with travertine stromatolites in a Southwest Japan hot spring. Cyanobacterial membership profiles indicate that the heterocystous phylotypes are 'rare biosphere' members of the submerged mats. The heterocystous phylotypes likely emerge when the water level of the hot spring drops. Environmental pressures tied to water level such as sulfide exposure and possibly oxygen tension may inhibit the heterocystous types in submerged mats. These living stromatolites are finely laminated and therefore, in texture, may better represent similarly laminated ancient forms compared with more coarsely laminated living marine examples.

  5. Significant role of climatic trends on hydrothermal activity Coso Hot Springs, California

    SciTech Connect

    Lofgren, B.E. )

    1990-05-01

    The hydrothermal features of Coso Hot Springs have attracted visitors for 130 yr and scientific investigators for two decades. In 1978, anticipating effects of major geothermal developments nearby, the Naval Weapons Center (NWC) initiated a comprehensive monitoring program at a dozen hydrothermal sites in the Coso Hot Springs area. Nine years of monitoring preceded power production in the nearby Coso geothermal field in July 1987. During this period, steam was rising from numerous vents and gently boiling mud pots. Local rainfall caused increased boiling activity in several mud pots, with some overflowing during wet periods. Then in August 1988, a year after geothermal power production began major changes in hot spring activity commenced. Small mud pots and steamers started to grow and coalesce. In March 1989, mud-pot activity became more violent. Many buried wells failed causing surface activity in other areas to diminish. During ensuing months, large mud cones developed and much of the steam and boiling water occurred in a few major pots. Because the abrupt changes in hydrothermal activity followed so closely after nearby geothermal production began, the obvious cause has been attributed to geothermal developments. Studies of NWC baseline monitoring data indicate, however, that no effects of geothermal developments have been felt in the hot springs area. Rainfall and barometric effects account for most of the fluctuations in records of the past decade. Early accounts and field evidence suggest similar changes have occurred in the past.

  6. Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya.

    PubMed

    Krienitz, Lothar; Ballot, Andreas; Kotut, Kiplagat; Wiegand, Claudia; Pütz, Stephanie; Metcalf, James S; Codd, Geoffrey A; Pflugmacher, Stephan

    2003-03-01

    Cyanobacterial mats at hot springs on the shore of the alkaline Lake Bogoria, Kenya, were investigated regarding species community and cyanobacterial toxin content. The hepatotoxins microcystin-LR, -RR, -LF and -YR, and the neurotoxin anatoxin-a were present. The mats were dominated by Phormidium terebriformis, Oscillatoria willei, Spirulina subsalsa and Synechococcus bigranulatus. The concentration of microcystins in mat samples, ranged from 221 to 845 microg microcystin-LR equivalents g(-1) DW of mat. Anatoxin-a concentrations ranged from 10 to 18 microg g(-1) DW of mat. A contribution of the cyanobacterial toxins from the hot spring mats to the mass mortalities of Lesser Flamingos is suggested by: (a), the presence of hot spring cyanobacterial cells and cell fragments, and high concentrations of the cyanobacterial hepato- and neurotoxins in flamingo stomach contents and faecal pellets; (b), observations of neurological signs of bird poisoning at the lake. Cyanobacterial toxins in stomach contents, intestine and fecal pellets were 0.196 microg g(-1) fresh weight (FW) for the microcystins and 4.34 microg g(-1) FW for anatoxin-a. Intoxication with cyanobacterial toxins could occur by uptake of detached cyanobacterial cells from the mats, as the flamingos need to drink fresh or brackish water, and to wash their feathers daily, which they do in the vicinity of the hot springs, where salinity is lower than in the main body of water of the lake.

  7. Cyanobacterial diversity in the hot spring, pelagic and benthic habitats of a tropical soda lake.

    PubMed

    Dadheech, Pawan K; Glöckner, Gernot; Casper, Peter; Kotut, Kiplagat; Mazzoni, Camila Junqueira; Mbedi, Susan; Krienitz, Lothar

    2013-08-01

    Hot springs and saline-alkaline lakes of East Africa are extreme habitats regarding temperature, or salinity and pH, respectively. This study examines whether divergent habitats of Lake Bogoria, Kenya, impacts cyanobacterial community structure. Samples from the hot springs, pelagic zone and sediment were analysed by light microscopy, multilocus 454-amplicons sequencing and metagenomics to compare the cyanobacterial diversity. Most of the phylogenetic lineages of Cyanobacteria occurred exclusively in the Bogoria hot springs suggesting a high degree of endemism. The prevalent phylotypes were mainly members of the Oscillatoriales (Leptolyngbya, Spirulina, Oscillatoria-like and Planktothricoides). The Chroococcales were represented by different clades of Synechococcus but not a single phylotype clustered with any of the lineages described earlier from different continents. In contrast, we found that the pelagic zone and the sediments were inhabited by only a few taxa, dominated by Arthrospira and Anabaenopsis. Arthrospira, the main food base of Lesser Flamingo, was detected in all three habitats by amplicons pyrosequencing, indicating its resilience and key role as a primary producer. Despite the close connection between the three habitats studied, the cyanobacterial communities in the hot springs and lake differed considerably, suggesting that they are unable to adapt to the extreme conditions of the neighbouring habitat.

  8. Occurrence of Thermotolerant Hartmannella vermiformis and Naegleria Spp. in Hot Springs of Ardebil Province, Northwest Iran

    PubMed Central

    Solgi, R; Niyyati, M; Haghighi, A; Mojarad, E Nazemalhosseini

    2012-01-01

    Background Geothermal waters could be suitable niches for thermophilic free living amoebae including Naegleria and Hartmannella. Ardebil Province, northwest Iran is popular for having many hot springs for recreational and health purposes activity. The present research is the first molecular based investigation regarding the presence of Naegleria and Hartmannella in the hot springs of Ardebil Province in Iran. Methods Overall, 30 water samples were taken from waters of thermal hot springs in Ardebil Province, Iran during 2010-2011. All collected samples were transferred to Dept. of Parasitology and Mycology, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Cultivation of concentrated water samples was performed using culture-enrichment method. Cloning of the target amoebae was obtained and morphological and molecular analysis was done using page key combined with two sets of primers, respectively. Sequence analysis and homology search was used for strains identification. Results Of 30 water samples, 8 (26.7%) were positive for thermotolerant Vahlkampfiids and Hartmannella based on morphological characteristics of vegetative form and double walled cysts. Cloning of the target amoebae were done successfully. Sequencing of the positive isolates revealed that the strains belonged to Naegleria (N. carteri and N. spp) and H. vermiformis. Conclusion The result highlights a need for improved filtration and disinfection and periodic monitoring of recreational thermal waters in order to prevent disease related to free- living amoebae. This is the first comprehensive molecular study of thermophilic Naegleria and Hartmannella in hot springs of Iran. PMID:23109945

  9. Isolation of Free-Living Amoebae from Sarein Hot Springs in Ardebil Province, Iran

    PubMed Central

    Badirzadeh, A; Niyyati, M; Babaei, Z; Amini, H; Badirzadeh, H; Rezaeian, M

    2011-01-01

    Background Free-living amoebae (FLA) are a group of ubiquitous protozoan, which are distributed in the natural and artificial environment sources. The main aim of the current study was to identify the presence of FLA in the recreational hot springs of Sarein in Ardebil Province of Iran. Methods Seven recreational hot springs were selected in Sarein City and 28 water samples (four from each hot spring) were collected using 500 ml sterile plastic bottles during three month. Filtration of water samples was performed, and culture was done in non-nutrient agar medium enriched with Escherichia coli. Identification of the FLA was based on morphological criteria of cysts and trophozoites. Genotype identification of Acanthamoeba positive samples were also performed using sequencing based method. Results Overall, 12 out of 28 (42.9%) samples were positive for FLA which Acanthamoeba and Vahlkampfiid amoebae were found in one (3.6%) and 11 (39.3%) samples, respectively. Sequence analysis of the single isolate of Acanthamoeba revealed potentially pathogenic T4 genotype corresponding to A. castellanii. Conclusion Contamination of hot springs to FLA, such as Acanthamoeba T4 genotype (A. castellanii) and Vahlkampfiid amoebae, could present a sanitary risk for high risk people, and health authorities must be aware of FLA presence. PMID:22347281

  10. Genome Sequence of a Novel Archaeal Rudivirus Recovered from a Mexican Hot Spring

    PubMed Central

    Peng, Xu; Garrett, Roger A.; Martínez-Romero, Esperanza

    2013-01-01

    We report the consensus genome sequence of a novel GC-rich rudivirus, designated SMR1 (Sulfolobales Mexican rudivirus 1), assembled from a high-throughput sequenced environmental sample from a hot spring in Los Azufres National Park in western Mexico. PMID:23405288

  11. Microbial communities and arsenic biogeochemistry at the outflow of an alkaline sulfide-rich hot spring

    NASA Astrophysics Data System (ADS)

    Jiang, Zhou; Li, Ping; van Nostrand, Joy D.; Zhang, Ping; Zhou, Jizhong; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Dawei; Wang, Yanxin

    2016-04-01

    Alkaline sulfide-rich hot springs provide a unique environment for microbial community and arsenic (As) biogeochemistry. In this study, a representative alkaline sulfide-rich hot spring, Zimeiquan in the Tengchong geothermal area, was chosen to study arsenic geochemistry and microbial community using Illumina MiSeq sequencing. Over 0.26 million 16S rRNA sequence reads were obtained from 5-paired parallel water and sediment samples along the hot spring’s outflow channel. High ratios of As(V)/AsSum (total combined arsenate and arsenite concentrations) (0.59–0.78), coupled with high sulfide (up to 5.87 mg/L), were present in the hot spring’s pools, which suggested As(III) oxidation occurred. Along the outflow channel, AsSum increased from 5.45 to 13.86 μmol/L, and the combined sulfide and sulfate concentrations increased from 292.02 to 364.28 μmol/L. These increases were primarily attributed to thioarsenic transformation. Temperature, sulfide, As and dissolved oxygen significantly shaped the microbial communities between not only the pools and downstream samples, but also water and sediment samples. Results implied that the upstream Thermocrinis was responsible for the transformation of thioarsenic to As(III) and the downstream Thermus contributed to derived As(III) oxidation. This study improves our understanding of microbially-mediated As transformation in alkaline sulfide-rich hot springs.

  12. Microbial communities and arsenic biogeochemistry at the outflow of an alkaline sulfide-rich hot spring

    PubMed Central

    Jiang, Zhou; Li, Ping; Van Nostrand, Joy D.; Zhang, Ping; Zhou, Jizhong; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Dawei; Wang, Yanxin

    2016-01-01

    Alkaline sulfide-rich hot springs provide a unique environment for microbial community and arsenic (As) biogeochemistry. In this study, a representative alkaline sulfide-rich hot spring, Zimeiquan in the Tengchong geothermal area, was chosen to study arsenic geochemistry and microbial community using Illumina MiSeq sequencing. Over 0.26 million 16S rRNA sequence reads were obtained from 5-paired parallel water and sediment samples along the hot spring’s outflow channel. High ratios of As(V)/AsSum (total combined arsenate and arsenite concentrations) (0.59–0.78), coupled with high sulfide (up to 5.87 mg/L), were present in the hot spring’s pools, which suggested As(III) oxidation occurred. Along the outflow channel, AsSum increased from 5.45 to 13.86 μmol/L, and the combined sulfide and sulfate concentrations increased from 292.02 to 364.28 μmol/L. These increases were primarily attributed to thioarsenic transformation. Temperature, sulfide, As and dissolved oxygen significantly shaped the microbial communities between not only the pools and downstream samples, but also water and sediment samples. Results implied that the upstream Thermocrinis was responsible for the transformation of thioarsenic to As(III) and the downstream Thermus contributed to derived As(III) oxidation. This study improves our understanding of microbially-mediated As transformation in alkaline sulfide-rich hot springs. PMID:27126380

  13. Presence of Balamuthia mandrillaris in hot springs from Mazandaran province, northern Iran.

    PubMed

    Latifi, A R; Niyyati, M; Lorenzo-Morales, J; Haghighi, A; Seyyed Tabaei, S J; Lasjerdi, Z

    2016-08-01

    Balamuthia mandrillaris is an opportunistic free-living amoeba that has been reported to cause cutaneous lesions and Balamuthia amoebic encephalitis. The biology and environmental distribution of B. mandrillaris is still poorly understood and isolation of this pathogen from the environment is a rare event. Previous studies have reported that the presence of B. mandrillaris in the environment in Iran may be common. However, no clinical cases have been reported so far in this country. In the present study, a survey was conducted in order to evaluate the presence of B. mandrillaris in hot-spring samples of northern Iran. A total of 66 water samples were analysed using morphological and molecular tools. Positive samples by microscopy were confirmed by performing PCR amplification of the 16S rRNA gene of B. mandrillaris. Sequencing of the positive amplicons was also performed to confirm morphological data. Two of the 66 collected water samples were positive for B. mandrillaris after morphological and molecular identification. Interestingly, both positive hot springs had low pH values and temperatures ranging from 32 °C to 42 °C. Many locals and tourists use both hot springs due to their medicinal properties and thus contact with water bodies containing the organism increases the likelihood of infection. To the best of our knowledge, this is the first report on the isolation of B. mandrillaris from hot-spring sources related to human activity. Therefore, B. mandrillaris should be considered as a possible causative agent if cases of encephalitis are suspected following immersion in hot springs in addition to Acanthamoeba and Naegleria. PMID:27086943

  14. Presence of Balamuthia mandrillaris in hot springs from Mazandaran province, northern Iran.

    PubMed

    Latifi, A R; Niyyati, M; Lorenzo-Morales, J; Haghighi, A; Seyyed Tabaei, S J; Lasjerdi, Z

    2016-08-01

    Balamuthia mandrillaris is an opportunistic free-living amoeba that has been reported to cause cutaneous lesions and Balamuthia amoebic encephalitis. The biology and environmental distribution of B. mandrillaris is still poorly understood and isolation of this pathogen from the environment is a rare event. Previous studies have reported that the presence of B. mandrillaris in the environment in Iran may be common. However, no clinical cases have been reported so far in this country. In the present study, a survey was conducted in order to evaluate the presence of B. mandrillaris in hot-spring samples of northern Iran. A total of 66 water samples were analysed using morphological and molecular tools. Positive samples by microscopy were confirmed by performing PCR amplification of the 16S rRNA gene of B. mandrillaris. Sequencing of the positive amplicons was also performed to confirm morphological data. Two of the 66 collected water samples were positive for B. mandrillaris after morphological and molecular identification. Interestingly, both positive hot springs had low pH values and temperatures ranging from 32 °C to 42 °C. Many locals and tourists use both hot springs due to their medicinal properties and thus contact with water bodies containing the organism increases the likelihood of infection. To the best of our knowledge, this is the first report on the isolation of B. mandrillaris from hot-spring sources related to human activity. Therefore, B. mandrillaris should be considered as a possible causative agent if cases of encephalitis are suspected following immersion in hot springs in addition to Acanthamoeba and Naegleria.

  15. Dental fluorosis associated with drinking water from hot springs in Choma district in southern province, Zambia.

    PubMed

    Shitumbanuma, V; Tembo, F; Tembo, J M; Chilala, S; Van Ranst, E

    2007-02-01

    This study was conducted to investigate the high incidence of mottled teeth among residents of an area with hot springs in the Choma District of the Southern Province of Zambia. A survey involving 128 pupils was conducted at a Basic School to collect data on pupil's backgrounds and their main sources of drinking water between birth and age 7. A dental specialist examined the pupils' teeth and samples of drinking water were collected from locations where the majority of the pupils lived. It was analysed for fluorides and other drinking water quality parameters. Results of the survey showed a highly significant (P < 0.001) association between pupils' main sources of drinking water between birth and age 7 and the incidence of discoloured teeth. All (100%) pupils who drank water from hot springs before age 7 had moderate to severe fluorosis, while the majority (96.7%) of the pupils who drank water from other sources had no dental fluorosis. Fluoride concentrations ranged from 5.95 to 10.09 mg/l in water from hot springs, and from 0.03 to 0.6 mg/l in water from other sources. Fluoride levels in water from hot spring water samples exceeded the 1.5 mg/l WHO guideline value for drinking water, while those in water from other sources were significantly (P < 0.05) lower than this. We conclude that the high prevalence of mottled teeth among residents of the study area is a case of endemic dental fluorosis associated with drinking water from hot springs containing high concentrations of fluoride.

  16. Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of yellowstone national park.

    PubMed

    Schouten, Stefan; van der Meer, Marcel T J; Hopmans, Ellen C; Rijpstra, W Irene C; Reysenbach, Anna-Louise; Ward, David M; Sinninghe Damsté, Jaap S

    2007-10-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are core membrane lipids originally thought to be produced mainly by (hyper)thermophilic archaea. Environmental screening of low-temperature environments showed, however, the abundant presence of structurally diverse GDGTs from both bacterial and archaeal sources. In this study, we examined the occurrences and distribution of GDGTs in hot spring environments in Yellowstone National Park with high temperatures (47 to 83 degrees C) and mostly neutral to alkaline pHs. GDGTs with 0 to 4 cyclopentane moieties were dominant in all samples and are likely derived from both (hyper)thermophilic Crenarchaeota and Euryarchaeota. GDGTs with 4 to 8 cyclopentane moieties, likely derived from the crenarchaeotal order Sulfolobales and the euryarchaeotal order Thermoplasmatales, are usually present in much lower abundance, consistent with the relatively high pH values of the hot springs. The relative abundances of cyclopentane-containing GDGTs did not correlate with in situ temperature and pH, suggesting that other environmental and possibly genetic factors play a role as well. Crenarchaeol, a biomarker thought to be specific for nonthermophilic group I Crenarchaeota, was also found in most hot springs, though in relatively low concentrations, i.e., <5% of total GDGTs. Its abundance did not correlate with temperature, as has been reported previously. Instead, the cooccurrence of relatively abundant nonisoprenoid GDGTs thought to be derived from soil bacteria suggests a predominantly allochthonous source for crenarchaeol in these hot spring environments. Finally, the distribution of bacterial branched GDGTs suggests that they may be derived from the geothermally heated soils surrounding the hot springs.

  17. SELECTED CHEMICAL ANALYSES AND GEOTHERMOMETRY OF HOT SPRING WATERS FROM THE CALABOZOS CALDERA, CENTRAL CHILE.

    USGS Publications Warehouse

    Thompson, J.M.; Grunder, A.L.; Hildreth, Wes

    1983-01-01

    Hot springs discharging from the active hydrothermal system associated with the Calabozos caldera, Chile, have measured orifice temperatures as high as 98. 5 degree C and calculated geothermometer temperatures as high as 250 degree C. Three types of spring waters can be identified from the chemical analyses: a Na-Cl type, a Na-HCO//3 type and a Na-mixed anion type. Chloride-enthalpy relations indicate that the hydrothermal reservoir water may attain temperatures near 342 degree C and that most spring waters are mixed with cold meteoric water. Despite the proximity of Mesozoic marine gypsum deposits, the Cl/Br weight ratio of the Calabozos spring waters does not appear to indicate that these waters have a significant 'marine' signature. Refs.

  18. Natural radioactivity in geothermal waters, Alhambra Hot Springs and nearby areas, Jefferson County, Montana

    USGS Publications Warehouse

    Leonard, Robert B.; Janzer, Victor J.

    1978-01-01

    Radioactive hot springs issue from a fault zone in crystalline rock of the Boulder batholith at Alhambra, Jefferson County, in southwestern Montana. The discharge contains high concentrations of radon, and the gross alpha activity and the concentration of adium-226 exceed maximum levels recommended by the Environmental Protection Agency for drinking water. Part of the discharge is diverted for space heating, bathing, and domestic use. The radioactive thermal waters at measured temperatures of about 60°C are of the sodium bicarbonate type and saturated with respect to calcium carbonate. Radium-226 in the rock and on fractured surfaces or coprecipitated with calcium carbonate probably is the principal source of radon that is dissolved in the thermal water and discharged with other gases from some wells and springs. Local surface water and shallow ground water are of the calcium bicarbonate type and exhibit low background activity. The temperature, percent sodium, and radioactivity of mixed waters adjacent to the fault zone increase with depth. Samples from most of the major hot springs in southwestern Montana have been analyzed for gross alpha and beta activity. The high level of radioactivity at Alhambra appears to be related to leaching of radioactive material from siliceous veins by ascending thermal waters and is not a normal characteristic of hot springs issuing from fractured crystalline rock in Montana.

  19. Utah State Prison Space Heating with Geothermal Heat - Resource Assessment Report Crystal Hot Springs Geothermal Area

    SciTech Connect

    1981-12-01

    Reported herein is a summary of work conducted under the Resource Assessment Program-Task 2, for the Utah State Prison Geothermal Space Heating Project at Crystal Hot Springs, Draper, Utah. Assessment of the geothermal resource in and around the Utah State Prison property began in october of 1979 with an aeromagnetic and gravity survey. These tasks were designed to provide detailed subsurface structural information in the vicinity of the thermal springs so that an informed decision as to the locations of test and production holes could be made. The geophysical reconnaissance program provided the structural details needed to focus the test drilling program on the most promising production targets available to the State Prison. The subsequent drilling and well testing program was conducted to provide information to aid fin the siting and design of a production well and preliminary design activities. As part of the resource assessment portion of the Utah State Prison Geothermal Project, a program for periodic geophysical monitoring of the Crystal Hot Springs resource was developed. The program was designed to enable determination of baseline thermal, hydraulic, and chemical characteristics in the vicinity of Crystal Hot Springs prior to production and to provide a history of these characteristics during resource development.

  20. Abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China.

    PubMed

    Song, Zhao-Qi; Wang, Li; Wang, Feng-Ping; Jiang, Hong-Chen; Chen, Jin-Quan; Zhou, En-Min; Liang, Feng; Xiao, Xiang; Li, Wen-Jun

    2013-09-01

    It has been suggested that archaea carrying the accA gene, encoding the alpha subunit of the acetyl CoA carboxylase, autotrophically fix CO2 using the 3-hydroxypropionate/4-hydroxybutyrate pathway in low-temperature environments (e.g., soils, oceans). However, little new information has come to light regarding the occurrence of archaeal accA genes in high-temperature ecosystems. In this study, we investigated the abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China, using DNA- and RNA-based phylogenetic analyses and quantitative polymerase chain reaction. The results showed that archaeal accA genes were present and expressed in the investigated Yunnan hot springs with a wide range of temperatures (66-96 °C) and pH (4.3-9.0). The majority of the amplified archaeal accA gene sequences were affiliated with the ThAOA/HWCG III [thermophilic ammonia-oxidizing archaea (AOA)/hot water crenarchaeotic group III]. The archaeal accA gene abundance was very close to that of AOA amoA gene, encoding the alpha subunit of ammonia monooxygenase. These data suggest that AOA in terrestrial hot springs might acquire energy from ammonia oxidation coupled with CO2 fixation using the 3-hydroxypropionate/4-hydroxybutyrate pathway.

  1. Microbial mercury methylation in the Ngawha hot springs and the abandoned Puhipuhi mine, New Zealand

    NASA Astrophysics Data System (ADS)

    Gionfriddo, C. M.; Ogorek, J. M.; Thompson, C. D.; Power, J.; Krabbenhoft, D. P.; Stott, M. B.; Moreau, J. W.

    2011-12-01

    Hot springs and fumaroles release significant quantities of aqueous and gaseous mercury into the environment. Yet few studies have focused on the biogeochemical cycling of mercury in geothermal settings. In this study, we investigated the abundance, speciation, and partitioning of mercury in geothermal waters and sediments in the Ngawha geothermal field and Puhipuhi region of New Zealand. The Ngawha geothermal field contains over 20 hot springs with variable chemistry (pH 2.9 - 7.1, ORP 15.7 to 249.1 mV, 22-40.5°C), from which approximately 530 kg of mercury is released annually from deep geological sources, most of which remains in the local surficial waters and sediments. Puhipuhi is the site of an historic mercury mining operation located about 22 miles southeast of Ngawha. The mercury-bearing geological deposits at Ngawha and Puhipuhi were formed over the same period and are connected to the young basalt flows of the region. Puhipuhi no longer hosts active hot springs, but is transected by a stream that varies in chemistry (pH 5.1-7.2, ORP -3.8-115.3 mV, ~22°C). Total- and methylmercury concentrations were measured using ICP-MS and CVAFS. Preliminary analyses of dissolved total- and methylmercury levels across the hot springs ranged from 5-10,000 ng/L and 0.6-23.5 ng/L, respectively, indicating a wide range of environmental conditions exist and may support a diverse array of microbial communities. Due to their high mercury content, geothermal settings may hold clues about the evolution of microbial mercury resistance (detoxification response to environmental Hg), as the ancestral mer operon evolved in thermophilic bacteria such as Thermus thermophilus and Methylacidophilum infernorum. Thus, the Ngawha hot springs provide an opportunity to investigate the evolution of microbial responses to mercury. Adjacent sites often display radically different chemical traits, with implications for changes in microbial community structure and genetic responses to mercury

  2. Aerobic and Anaerobic Oxidation of Organic Acids in Yellowstone Hot Spring Ecosystems

    NASA Astrophysics Data System (ADS)

    Windman, T. O.; Zolotova, N.; Shock, E.

    2007-12-01

    Thermodynamic analysis of energy supply based on samples collected from continental hot spring ecosystems at Yellowstone show that aerobic reactions yield the greatest energy. In terms of energy per mole of electrons transferred, aerobic oxidation of organic acids rivals or exceeds the energy supply from aerobic oxidation of hydrogen, CO, hydrogen sulfide, pyrite, sulfur or ammonia. This analysis is derived from samples collected where hot spring fluid are in contact with the atmosphere. It is likely that oxygen will be present at lower concentrations deeper in the system, which will place hard constraints on aerobic lifestyles. If so, which metabolisms could be supported deeper in the system? How will other oxidants be used to release energy? What characterizes the transition from aerobic to anaerobic oxidation? To answer these questions, pH, temperature, and alkalinity were measured in the field while measurements of dissolved oxygen and other redox-sensitive species (nitrate, ammonia, ferrous iron, and sulfide) were made with field-portable spectrophotometers and samples were taken for analysis of organic and inorganic ions by ion chromatography. Conditions in the subsurface can be predicted by starting from measured oxygen concentrations and calculating the effect of decreasing the concentration on the overall energetics of the system. Depending on hot spring composition, the amount of energy from aerobic oxidation of organic acid anions like succinate matches that from anaerobic oxidation (by nitrate or sulfate) once the log of the activity of dissolved oxygen drops to -6 to -8. These activities are 1 to 4 orders of magnitude lower that values determined for surface water in the hot springs. At lower oxygen activities aerobic oxidation gives way to anaerobic oxidation, and organic oxidation is more likely to involve nitrate and sulfate. Preliminary estimates indicate that these changes may occur at shallow depths in hot spring sediments (perhaps within the

  3. Filamentous anoxygenic phototrophic bacteria from cyanobacterial mats of Alla hot springs (Barguzin Valley, Russia).

    PubMed

    Gaisin, Vasil A; Kalashnikov, Alexander M; Sukhacheva, Marina V; Namsaraev, Zorigto B; Barhutova, Darima D; Gorlenko, Vladimir M; Kuznetsov, Boris B

    2015-11-01

    Alkaline hydrotherms of the Baikal rift zone are unique systems to study the diversity of thermophilic bacteria. In this study, we present data on the phototrophic bacterial community of cyanobacterial mats from the alkaline Alla hot spring. Using a clonal analysis approach, this study evaluated the species diversity, the proportion of oxygenic and anoxygenic phototrophs and their distribution between various areas of the spring. Novel group-specific PCR primers were designed and applied to detect representatives of the Chloroflexus and Roseiflexus genera in mat samples. For the first time, the presence of Roseiflexus-like bacteria was detected in the Baikal rift zone.

  4. Discharge temperature-discharge rate correlation of Japanese hot springs driven by buoyancy and its application to permeability mapping

    NASA Astrophysics Data System (ADS)

    Muraoka, H.; Sakaguchi, K.; Nakao, S.; Kimbara, K.

    2006-05-01

    A bi-logarithmic plot of the discharge temperature versus flow rate of 3,686 hot springs in Japan shows a broad but positive correlation. This correlation is semiquantitatively explained as buoyancy-driven Darcy flow using a one-dimensional advection flow equation for hot water in a porous media assuming a 1 km reservoir depth and 104 m2 discharge area for each hot spring. The permeability of the best fit curve to the relation is 10-13 m2 that is a typical value for relatively low-temperature geothermal fields at a reservoir temperature less than 260°C. This is consistent with the relatively low reservoir temperature for these hot springs. Based on the relation, the permeability of each hot spring area can be estimated from the discharge temperature and discharge rate values, and permeability mapping for the 1 km skin depth is performed for almost all of Japan.

  5. Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats

    NASA Technical Reports Server (NTRS)

    Ruff-Roberts, A. L.; Kuenen, J. G.; Ward, D. M.

    1994-01-01

    Oligodeoxynucleotide hybridization probes were developed to complement specific regions of the small subunit (SSU) rRNA sequences of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria, which inhabit hot spring microbial mats. The probes were used to investigate the natural distribution of SSU rRNAs from these species in mats of Yellowstone hot springs of different temperatures and pHs as well as changes in SSU rRNA distribution resulting from 1-week in situ shifts in temperature, pH, and light intensity. Synechococcus lividus Y-7c-s SSU rRNA was detected only in the mat of a slightly acid spring, from which it may have been initially isolated, or when samples from a more alkaline spring were incubated in the more acid spring. Chloroflexus aurantiacus Y-400-fl SSU rRNA was detected only in a high-temperature mat sample from the alkaline Octopus Spring or when lower-temperature samples from this mat were incubated at the high-temperature site. SSU rRNAs of uncultivated species were more widely distributed. Temperature distributions and responses to in situ temperature shifts suggested that some of the uncultivated cyanobacteria might be adapted to high-, moderate-, and low-temperature ranges whereas an uncultivated Chloroflexus-like bacterium appears to have broad temperature tolerance. SSU rRNAs of all uncultivated species inhabiting a 48 to 51 degrees C Octopus Spring mat site were most abundant in the upper 1 mm and were not detected below a 2.5-to 3.5-mm depth, a finding consistent with their possible phototrophic nature. However, the effects of light intensity reduction on these SSU rRNAs were variable, indicating the difficulty of demonstrating a phototrophic phenotype in light reduction experiments.

  6. Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats.

    PubMed Central

    Ruff-Roberts, A L; Kuenen, J G; Ward, D M

    1994-01-01

    Oligodeoxynucleotide hybridization probes were developed to complement specific regions of the small subunit (SSU) rRNA sequences of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria, which inhabit hot spring microbial mats. The probes were used to investigate the natural distribution of SSU rRNAs from these species in mats of Yellowstone hot springs of different temperatures and pHs as well as changes in SSU rRNA distribution resulting from 1-week in situ shifts in temperature, pH, and light intensity. Synechococcus lividus Y-7c-s SSU rRNA was detected only in the mat of a slightly acid spring, from which it may have been initially isolated, or when samples from a more alkaline spring were incubated in the more acid spring. Chloroflexus aurantiacus Y-400-fl SSU rRNA was detected only in a high-temperature mat sample from the alkaline Octopus Spring or when lower-temperature samples from this mat were incubated at the high-temperature site. SSU rRNAs of uncultivated species were more widely distributed. Temperature distributions and responses to in situ temperature shifts suggested that some of the uncultivated cyanobacteria might be adapted to high-, moderate-, and low-temperature ranges whereas an uncultivated Chloroflexus-like bacterium appears to have broad temperature tolerance. SSU rRNAs of all uncultivated species inhabiting a 48 to 51 degrees C Octopus Spring mat site were most abundant in the upper 1 mm and were not detected below a 2.5-to 3.5-mm depth, a finding consistent with their possible phototrophic nature. However, the effects of light intensity reduction on these SSU rRNAs were variable, indicating the difficulty of demonstrating a phototrophic phenotype in light reduction experiments. Images PMID:11536630

  7. Evaluation of the production potential of the Crystal Hot Springs geothermal resource, north central Utah

    SciTech Connect

    Blair, C.K.; Owen, L.B.

    1981-01-01

    Results of an artesian flow test of a 1000 foot deep well (USP/TH-1) are reported. The testing program was designed to provide necessary data for estimating the long-term production potential of the geothermal resource. Based on results of a 72 hour flow test, it was concluded that the state-owned portion of the Crystal Hot Springs resource is potentially capable of supplying sufficient energy to provide space and hot water heating for the minimum security portion of the Utah State Prison. However, development of the resource will have to be carefully managed to prevent premature depletion of the reservoir.

  8. Hot springs and the geothermal energy potential of Jammu & Kashmir State, N.W. Himalaya, India

    NASA Astrophysics Data System (ADS)

    Craig, J.; Absar, A.; Bhat, G.; Cadel, G.; Hafiz, M.; Hakhoo, N.; Kashkari, R.; Moore, J.; Ricchiuto, T. E.; Thurow, J.; Thusu, B.

    2013-11-01

    India has an estimated geothermal power potential of 10,600 MWe, but this potential is entirely undeveloped at present. The 'Geothermal Atlas of India' prepared by the Geological Survey of India (GSI) in 1991 describes some 340 hot spring sites and identifies more than 300 sites with geothermal potential in at least seven key geothermal provinces throughout India. There are more than 20 hot spring sites in Jammu & Kashmir State, mainly in the Chenab Valley in the Lesser/Central Himalaya, the Kashmir Valley and in the High Himalaya region of Ladakh. At least three localities in the Ladakh region - Chamuthang and Puga in the Indus valley and Panamik in the Nubra Valley - are considered to have geothermal power generation potential of between 3 and > 20 MWe.

  9. [Comment on “Submarine hot springs: Origin of life?”] Hydrothermal vents revisited

    NASA Astrophysics Data System (ADS)

    Hoffman, Sarah

    It was gratifying to read Peter Bell's synopsis of our paper [Corliss et al., 1981] in the March 23 issue of Eos (Submarine hot springs: Origin of life?) however, in the last sentence, he wrote, ‘They note that microorganisms found in recent expeditions to the submarine hot springs of the East Pacific Rise would be evidence that the processes are still occurring.’In our final paragraph we actually said that while “events leading to the formation of complex organic compounds and “protocell” structures may still be occurring in present-day oceanic hydrothermal systems … the complex communities of bacteria in modern oceanic environments would outcompete and consume abiotically synthesized protocells…” Modern-day vent microbiota will probably mask or destroy any evidence for abiotic synthesis in the hydrothermal vents.

  10. Thermopolis hydrothermal system, with an analysis of Hot Springs State Park. Preliminary report No. 20

    SciTech Connect

    Hinckley, B.S.; Heasler, H.P.; King, J.K.

    1982-01-01

    Thermopolis is the site of Hot Springs State Park, where numerous hot springs produce nearly 3000 gallons per minute (gpm) of 130/sup 0/F (54/sup 0/C) water. The University of Wyoming Geothermal Resource Assessment Group has studied a 1700-square-mile area centered roughly on the State Park. Available literature, bottom-hole temperatures from over 400 oil well logs, 62 oil field drill stem tests, the Wyoming State Engineer's water well files, 60 formation water analyses, thermal logs of 19 holes, and field investigations of geology and hydrology form the basis of this report. Analysis of thermal data reveals that temperatures of up to 161/sup 0/F (72/sup 0/C) occur along the crest of the Thermopolis Anticline within 500 feet of the surface. The hydrology and heat flow of these geothermal anomalies was studied.

  11. A high natural radiation area in Khao-Than hot spring, Southern Thailand.

    PubMed

    Bhongsuwan, T; Auisui, S A

    2015-11-01

    Natural radioactivity in Khao-Than hot spring area, Surat Thani Province, Thailand was investigated. Gamma dose survey indicated a possible high radiation risk for this area. Rock, soil and hot spring mud samples were collected and analysed by a low background gamma spectrometer. The activity concentrations of (226)Ra, (232)Th and (40)K in samples were 151-139 092 (mean = 13 794), 12-596 (127), 24-616 (215) Bq kg(-1), respectively. X-ray diffraction and Fourier transform infrared spectroscopy indicated that quartz and calcite (CaCO3) are the main constituents in mud samples with varying contents. In conclusion, this study area was reasonably classified as a high natural background radiation area. The source of radium in this area is supposed to be related to the fault fluids enriched in radium that precipitated with calcium in the carbonate terrain and partly absorbed by high cation exchange capacity clays.

  12. A high natural radiation area in Khao-Than hot spring, Southern Thailand.

    PubMed

    Bhongsuwan, T; Auisui, S A

    2015-11-01

    Natural radioactivity in Khao-Than hot spring area, Surat Thani Province, Thailand was investigated. Gamma dose survey indicated a possible high radiation risk for this area. Rock, soil and hot spring mud samples were collected and analysed by a low background gamma spectrometer. The activity concentrations of (226)Ra, (232)Th and (40)K in samples were 151-139 092 (mean = 13 794), 12-596 (127), 24-616 (215) Bq kg(-1), respectively. X-ray diffraction and Fourier transform infrared spectroscopy indicated that quartz and calcite (CaCO3) are the main constituents in mud samples with varying contents. In conclusion, this study area was reasonably classified as a high natural background radiation area. The source of radium in this area is supposed to be related to the fault fluids enriched in radium that precipitated with calcium in the carbonate terrain and partly absorbed by high cation exchange capacity clays. PMID:25956781

  13. Morphological and phylogenetic diversity of thermophilic cyanobacteria in Algerian hot springs.

    PubMed

    Amarouche-Yala, Samia; Benouadah, Ali; El Ouahab Bentabet, Abd; López-García, Purificación

    2014-11-01

    Geothermal springs in Algeria have been known since the Roman Empire. They mainly locate in Eastern Algeria and are inhabited by thermophilic organisms, which include cyanobacteria forming mats and concretions. In this work, we have investigated the cyanobacterial diversity of these springs. Cyanobacteria were collected from water, concretions and mats in nine hot springs with water temperatures ranging from 39 to 93 °C. Samples were collected for isolation in culture, microscopic morphological examination, and molecular diversity analysis based on 16S rRNA gene sequences. Nineteen different cyanobacterial morphotypes were identified, the most abundant of which were three species of Leptolyngbya, accompanied by members of the genera Gloeocapsa, Gloeocapsopsis, Stigonema, Fischerella, Synechocystis, Microcoleus, Cyanobacterium, Chroococcus and Geitlerinema. Molecular diversity analyses were in good general agreement with classical identification and allowed the detection of additional species in three springs with temperatures higher than 50 °C. They corresponded to a Synechococcus clade and to relatives of the intracellularly calcifying Candidatus Gloeomargarita lithophora. The hottest springs were dominated by members of Leptolyngbya, Synechococcus-like cyanobacteria and Gloeomargarita, whereas Oscillatoriales other than Leptolyngbya, Chroococcales and Stigonematales dominated lower temperature springs. The isolation of some of these strains sets the ground for future studies on the biology of thermophilic cyanobacteria.

  14. Ecological differentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs.

    PubMed

    Colman, Daniel R; Feyhl-Buska, Jayme; Robinson, Kirtland J; Fecteau, Kristopher M; Xu, Huifang; Shock, Everett L; Boyd, Eric S

    2016-09-01

    Chemosynthetic sediment and planktonic community composition and sizes, aqueous geochemistry and sediment mineralogy were determined in 15 non-photosynthetic hot springs in Yellowstone National Park (YNP). These data were used to evaluate the hypothesis that differences in the availability of dissolved or mineral substrates in the bulk fluids or sediments within springs coincides with ecologically differentiated microbial communities and their populations. Planktonic and sediment-associated communities exhibited differing ecological characteristics including community sizes, evenness and richness. pH and temperature influenced microbial community composition among springs, but within-spring partitioning of taxa into sediment or planktonic communities was widespread, statistically supported (P < 0.05) and could be best explained by the inferred metabolic strategies of the partitioned taxa. Microaerophilic genera of the Aquificales predominated in many of the planktonic communities. In contrast, taxa capable of mineral-based metabolism such as S(o) oxidation/reduction or Fe-oxide reduction predominated in sediment communities. These results indicate that ecological differentiation within thermal spring habitats is common across a range of spring geochemistry and is influenced by the availability of dissolved nutrients and minerals that can be used in metabolism.

  15. Ecological differentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs.

    PubMed

    Colman, Daniel R; Feyhl-Buska, Jayme; Robinson, Kirtland J; Fecteau, Kristopher M; Xu, Huifang; Shock, Everett L; Boyd, Eric S

    2016-09-01

    Chemosynthetic sediment and planktonic community composition and sizes, aqueous geochemistry and sediment mineralogy were determined in 15 non-photosynthetic hot springs in Yellowstone National Park (YNP). These data were used to evaluate the hypothesis that differences in the availability of dissolved or mineral substrates in the bulk fluids or sediments within springs coincides with ecologically differentiated microbial communities and their populations. Planktonic and sediment-associated communities exhibited differing ecological characteristics including community sizes, evenness and richness. pH and temperature influenced microbial community composition among springs, but within-spring partitioning of taxa into sediment or planktonic communities was widespread, statistically supported (P < 0.05) and could be best explained by the inferred metabolic strategies of the partitioned taxa. Microaerophilic genera of the Aquificales predominated in many of the planktonic communities. In contrast, taxa capable of mineral-based metabolism such as S(o) oxidation/reduction or Fe-oxide reduction predominated in sediment communities. These results indicate that ecological differentiation within thermal spring habitats is common across a range of spring geochemistry and is influenced by the availability of dissolved nutrients and minerals that can be used in metabolism. PMID:27306555

  16. The cyanobacterium Mastigocladus fulfills the nitrogen demand of a terrestrial hot spring microbial mat.

    PubMed

    Estrella Alcamán, María; Fernandez, Camila; Delgado, Antonio; Bergman, Birgitta; Díez, Beatriz

    2015-10-01

    Cyanobacteria from Subsection V (Stigonematales) are important components of microbial mats in non-acidic terrestrial hot springs. Despite their diazotrophic nature (N2 fixers), their impact on the nitrogen cycle in such extreme ecosystems remains unknown. Here, we surveyed the identity and activity of diazotrophic cyanobacteria in the neutral hot spring of Porcelana (Northern Patagonia, Chile) during 2009 and 2011-2013. We used 16S rRNA and the nifH gene to analyze the distribution and diversity of diazotrophic cyanobacteria. Our results demonstrate the dominance of the heterocystous genus Mastigocladus (Stigonematales) along the entire temperature gradient of the hot spring (69-38 °C). In situ nitrogenase activity (acetylene reduction), nitrogen fixation rates (cellular uptake of (15)N2) and nifH transcription levels in the microbial mats showed that nitrogen fixation and nifH mRNA expression were light-dependent. Nitrogen fixation activities were detected at temperatures ranging from 58 °C to 46 °C, with maximum daily rates of 600 nmol C2H4 cm(-2) per day and 94.1 nmol N cm(-2) per day. These activity patterns strongly suggest a heterocystous cyanobacterial origin and reveal a correlation between nitrogenase activity and nifH gene expression during diurnal cycles in thermal microbial mats. N and C fixation in the mats contributed ~3 g N m(-2) per year and 27 g C m(-2) per year, suggesting that these vital demands are fully met by the diazotrophic and photoautotrophic capacities of the cyanobacteria in the Porcelana hot spring.

  17. The cyanobacterium Mastigocladus fulfills the nitrogen demand of a terrestrial hot spring microbial mat

    PubMed Central

    Estrella Alcamán, María; Fernandez, Camila; Delgado, Antonio; Bergman, Birgitta; Díez, Beatriz

    2015-01-01

    Cyanobacteria from Subsection V (Stigonematales) are important components of microbial mats in non-acidic terrestrial hot springs. Despite their diazotrophic nature (N2 fixers), their impact on the nitrogen cycle in such extreme ecosystems remains unknown. Here, we surveyed the identity and activity of diazotrophic cyanobacteria in the neutral hot spring of Porcelana (Northern Patagonia, Chile) during 2009 and 2011–2013. We used 16S rRNA and the nifH gene to analyze the distribution and diversity of diazotrophic cyanobacteria. Our results demonstrate the dominance of the heterocystous genus Mastigocladus (Stigonematales) along the entire temperature gradient of the hot spring (69–38 °C). In situ nitrogenase activity (acetylene reduction), nitrogen fixation rates (cellular uptake of 15N2) and nifH transcription levels in the microbial mats showed that nitrogen fixation and nifH mRNA expression were light-dependent. Nitrogen fixation activities were detected at temperatures ranging from 58 °C to 46 °C, with maximum daily rates of 600 nmol C2H4 cm−2 per day and 94.1 nmol N cm−2 per day. These activity patterns strongly suggest a heterocystous cyanobacterial origin and reveal a correlation between nitrogenase activity and nifH gene expression during diurnal cycles in thermal microbial mats. N and C fixation in the mats contributed ~3 g N m−2 per year and 27 g C m−2 per year, suggesting that these vital demands are fully met by the diazotrophic and photoautotrophic capacities of the cyanobacteria in the Porcelana hot spring. PMID:26230049

  18. Recovery Act Validation of Innovative Exploration Techniques Pilgrim Hot Springs, Alaska

    SciTech Connect

    Holdmann, Gwen

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  19. Deciphering the microbiota of Tuwa hot spring, India using shotgun metagenomic sequencing approach.

    PubMed

    Mangrola, Amitsinh; Dudhagara, Pravin; Koringa, Prakash; Joshi, C G; Parmar, Mansi; Patel, Rajesh

    2015-06-01

    Here, we report metagenome from the Tuwa hot spring, India using shotgun sequencing approach. Metagenome consisted of 541,379 sequences with 98.7 Mbps size with 46% G + C content. Metagenomic sequence reads were deposited into the EMBL database under accession number ERP009321. Community analysis presented 99.1% sequences belong to bacteria, 0.3% of eukaryotic origin, 0.2% virus derived and 0.05% from archea. Unclassified and unidentified sequences were 0.4% and 0.07% respectively. A total of 22 bacterial phyla include 90 families and 201 species were observed in the hot spring metagenome. Firmicutes (97.0%), Proteobacteria (1.3%) and Actinobacteria (0.4%) were reported as dominant bacterial phyla. In functional analysis using Cluster of Orthologous Group (COG), 21.5% drops in the poorly characterized group. Using subsystem based annotation, 4.0% genes were assigned for stress responses and 3% genes were fit into the metabolism of aromatic compounds. The hot spring metagenome is very rich with novel sequences affiliated to unclassified and unidentified lineages, suggesting the potential source for novel microbial species and their products. PMID:26484204

  20. Three-dimensional Q -1 model of the Coso Hot Springs Known Geothermal Resource Area

    NASA Astrophysics Data System (ADS)

    Young, Chi-Yuh; Ward, Ronald W.

    1980-05-01

    Observations of teleseismic P waves above geothermal systems exhibit travel time delays and anomalously high seismic attenuation, which is extremely useful in estimating the thermal regime and the potential of the system. A regional telemetered network of sixteen stations was operated by the U.S. Geological Survey in the Coso Hot Springs Known Geothermal Resources Area (KGRA) for such studies from September 1975 to October 1976. Subsequently, they deployed a portable Centipede array of 26 three-component stations near the center of the anomaly. The seismograms of 44 events recorded by the telemetered array and nine events by the Centipede array were analyzed using the reduced spectral ratio technique to determine the differential attenuation factor δt* for the events recorded with the highest signal-to-noise ratio. The δt* variation observed across the Coso Hot Springs KGRA were small (<0.2 s). A three-dimensional generalized linear inversion of the δt* observations was performed using a three-layer model. A shallow zone of high attenuation exists within the upper 5 km in a region bounded by Coso Hot Springs, Devils Kitchen, and Sugarloaf Mountain probably corresponding to a shallow vapor liquid mixture or `lossy' near surface lithology. No zones of significantly high attenuation occur between 5- and 12- km depth. Between the depth of 12-20 km a thick zone of high attenuation (Q <50) exists, offset toward the east from the surface anomaly.

  1. Case studies on developing local industry by using hot spring water and geothermal energy

    SciTech Connect

    Sasaki, Akira; Umetsu, Yoshio; Narita, Eiichi

    1997-12-31

    We have investigated the new ways to develop local industries by using hot spring water, geothermal water and geothermal energy from the Matsukawa Geothermal Power Plant in Iwate Prefecture, which is the first geothermal power plant established in Japan. The new dyeing technique, called {open_quotes}Geothermal Dyeing{close_quotes} was invented in which hydrogen sulfide in the water exhibited decoloration effect. By this technique we succeeded to make beautiful color patterns on fabrics. We also invented the new way to make the light wight wood, called {open_quotes}Geo-thermal Wood{close_quotes} by using hot spring water or geothermal water. Since polysaccharides in the wood material were hydrolyzed and taken out during the treatment in the hot spring water, the wood that became lighter is weight and more porous state. On the bases of these results, we have produced {open_quotes}Wooded Soap{close_quotes} on a commercial scale which is the soap, synthesized in the pore of the treated wood in round slice. {open_quotes}Collapsible Wood Cabin{close_quotes} was also produced for enjoyable outdoor life by using the modified properties of Geothermal Wood.

  2. Biogeography of bacterial communities in hot springs: a focus on the actinobacteria.

    PubMed

    Valverde, Angel; Tuffin, Marla; Cowan, Don A

    2012-07-01

    Actinobacteria are ubiquitous in soil, freshwater and marine ecosystems. Although various studies have focused on the microbial ecology of this phylum, data are scant on the ecology of actinobacteria endemic to hot springs. Here, we have investigated the molecular diversity of eubacteria, with specific focus on the actinobacteria in hot springs in Zambia, China, New Zealand and Kenya. Temperature and pH values at sampling sites ranged between 44.5 and 86.5 °C and 5-10, respectively. Non-metric multidimensional scaling analysis of 16S rRNA gene T-RFLP patterns showed that samples could be separated by geographical location. Multivariate analysis showed that actinobacterial community composition was best predicted by changes in pH and temperature, whereas temperature alone was the most important variable explaining differences in bacterial community structure. Using 16S rRNA gene libraries, 28 major actinobacterial OTUs were found. Both molecular techniques indicated that many of the actinobacterial phylotypes were unique and exclusive to the respective sample. Collectively, these results support the view that both actinobacterial diversity and endemism are high in hot spring ecosystems.

  3. Cultivation-independent comprehensive survey of bacterial diversity in Tulsi Shyam Hot Springs, India.

    PubMed

    Ghelani, Anjana; Patel, Rajesh; Mangrola, Amitsinh; Dudhagara, Pravin

    2015-06-01

    A taxonomic description of bacteria was deduced from 5.78 Mb metagenomic sequence retrieved from Tulsi Shyam hot spring, India using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). Metagenome contained 10,893 16S rDNA sequences that were analyzed by MG-RAST server to generate the comprehensive profile of bacteria. Metagenomic data are available at EBI under EBI Metagenomics database with accession no. ERP009559. Metagenome sequences represented the 98.2% bacteria origin, 1.5% of eukaryotic and 0.3% were unidentified. A total of 16 bacterial phyla demonstrating 97 families and 287 species were revealed in the hot spring metagenome. Most abundant phyla were Firmicutes (65.38%), Proteobacteria (21.21%) and unclassified bacteria (10.69%). Whereas, Peptostreptococcaceae (37.33%), Clostridiaceae (23.36%), and Enterobacteriaceae (16.37%) were highest reported families in metagenome. Ubiquitous species were Clostridium bifermentans (17.47%), Clostridium lituseburense (13.93%) and uncultured bacterium (10.15%). Our data provide new information on hot spring bacteria and shed light on their abundance, diversity, distribution and coexisting organisms.

  4. Deciphering the microbiota of Tuwa hot spring, India using shotgun metagenomic sequencing approach

    PubMed Central

    Mangrola, Amitsinh; Dudhagara, Pravin; Koringa, Prakash; Joshi, C.G.; Parmar, Mansi; Patel, Rajesh

    2015-01-01

    Here, we report metagenome from the Tuwa hot spring, India using shotgun sequencing approach. Metagenome consisted of 541,379 sequences with 98.7 Mbps size with 46% G + C content. Metagenomic sequence reads were deposited into the EMBL database under accession number ERP009321. Community analysis presented 99.1% sequences belong to bacteria, 0.3% of eukaryotic origin, 0.2% virus derived and 0.05% from archea. Unclassified and unidentified sequences were 0.4% and 0.07% respectively. A total of 22 bacterial phyla include 90 families and 201 species were observed in the hot spring metagenome. Firmicutes (97.0%), Proteobacteria (1.3%) and Actinobacteria (0.4%) were reported as dominant bacterial phyla. In functional analysis using Cluster of Orthologous Group (COG), 21.5% drops in the poorly characterized group. Using subsystem based annotation, 4.0% genes were assigned for stress responses and 3% genes were fit into the metabolism of aromatic compounds. The hot spring metagenome is very rich with novel sequences affiliated to unclassified and unidentified lineages, suggesting the potential source for novel microbial species and their products. PMID:26484204

  5. Geology and Geochemistry of volcanic hot springs on the island of Dominica, West Indies

    NASA Astrophysics Data System (ADS)

    Herlihy, R. D.; Smith, A. L.; Rheubottom, A. N.; Kirkley, J.; Melchiorre, E.; Fryxell, J. E.; Roobol, M. J.

    2005-12-01

    The island of Dominica, located in the center of the Lesser Antilles island arc, contains at least 8 young volcanic centers. Evidence for the active nature of these centers include two historic phreatic eruptions (1880 AD and 1997 AD), at least 17 historic volcano-seismic crises and the presence of over 30 hot springs. These springs, which have been repeatedly sampled by us over a two-year period (2003-2004), can be divided, based on their geographic locations into at least 5 main groups: Group 1 (T~27‰C; pH ~1.6) are located near the summit of Morne aux Diables in the extreme north of the island; Group 2(T 48-101‰C; pH ~2.5) composed of both subaerial and submarine springs, are located on the western flanks of Morne Diablotins; Group 3 (T 48-102‰C; pH~3.5) are located within the Watten Woven caldera in west-central Dominica; Group 4 (T 74-98‰C; pH~3.5) are located within the Valley of Desolation in east central Dominica, the site of the two historic phreatic eruptions; Group 5 (T 61-106‰C; pH~1.6) composed of both subaerial and submarine springs, are located within the Soufriere Depression, a sector collapse structure in southwest Dominica. Over the period of the study the temperatures of many of the hot springs have shown small but measurable increases. With one exception, all of the springs can be regarded as belonging to the Ca-Mg-SO4 type. δO18 values of the spring waters range from 5.05 to -2.04 suggesting that significant water-rock exchange and alteration has occurred. Trends of decreasing. δO18 values at specific sites suggest a increasing volume of meteoric and/or sea water is entering the hydrothermal system, perhaps in response to increasing sub-surface temperature. Silica thermometry gives fluid source temperatures of between 51 and 197‰C depending on the site. Sr/Y versus Si data suggest that deep formation of economic-mineral deposits may be occurring beneath some of the hot spring areas.

  6. Skeletal crystals of calcite and trona from hot-spring deposits in Kenya and New Zealand

    SciTech Connect

    Jones, B.; Renaut, R.W.

    1996-01-01

    Skeletal crystals are hollow crystals that develop because their outer walls grow before their cores. The presence of skeletal crystals of calcite (three types--trigonal prisms, hexagonal prisms, and plates) and trona in hot (> 90 C) spring deposits in New Zealand (Waikite Springs and Ohaaki Pool) and Kenya (Lorusio hot springs) shows that they can form in natural sedimentary regimes. Analysis of samples from these deposits shows that this crystal morphology develops under disequilibrium conditions that are unrelated to a specific environmental or diagenetic setting. Skeletal crystals transform into solid crystals when subsequent precipitation fills their hollow cores. In some cases, this may involve precipitation of crystalline material that has a sieve-like texture. In other examples, the skeletal crystal provides a framework upon which other materials can be precipitated. Walls in the skeletal trigonal calcite prisms from Waikite Springs are formed of subcrystals that mimic the shape of the parent crystal. Similarly, plate-like skeletal crystals from Lorusio are formed of densely packed subcrystals that are < 0.5 {micro}m long. Conversely, the walls of the skeletal hexagonal calcite crystals from Ohaaki Pool and the skeletal trona crystals from Lorusio are not formed of subcrystals. Recognition of skeletal crystals is important because they represent growth that follows the reverse pattern of normal growth. Failure to recognize that crystal growth followed the skeletal motif may lead to false interpretations concerning the growth of a crystal.

  7. Hot spring deposits on a cliff face: A case study from Jifei, Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Jones, Brian; Peng, Xiaotong

    2014-04-01

    A cliff face in the Jifei karst area, southwest China, is covered by a spectacular succession of precipitates that formed from the hot spring water that once flowed down its surface. This layered succession is formed of aragonite layers that are formed largely of “fountain dendrites”, calcite layers that are formed mostly of “cone dendrites”, and microlaminated layers that contain numerous microbes and extracellular polymeric substances (EPS). Many of the aragonite crystals are hollow due to preferential dissolution of their cores. The calcite cone dendrites are commonly covered with biofilms, reticulate Si-Mg coatings, and other precipitates. The microbial layers include dodecahedral calcite crystals and accessory minerals that include opal-A, amorphous Si-Mg coatings, trona, barite, potassium sulfate crystals, mirabillite, and gaylussite. Interpretation of the δ18O(calcite) and δ18O(aragonite) indicates precipitation from water with a temperature of 54 to 66 °C. The active hot spring at the top of the cliff presently ejects water at a temperature of 65 °C. Layers, 1 mm to 6 cm thick, record temporal changes in the fluids from which the precipitates formed. This succession is not, however, formed of recurring cycles that can be linked to diurnal or seasonal changes in the local climate. Indeed, it appears that the climatic contrast between the wet season and the dry season had little impact on precipitation from the spring waters that flowed down the cliff face. Integration of currently available evidence suggests that the primary driving force was aperiodic changes in the CO2 content of the spring waters because that seems to be the prime control on the saturation levels that underpinned precipitation of the calcite and aragonite as well as the dissolution of the aragonite. Such variations in the CO2 content of the spring water were probably due to changes that took place in the subterranean plumbing system of the spring.

  8. Microbial metabolism and the geochemistry of bioactive gases in Kamchatka and Lassen hot springs

    NASA Astrophysics Data System (ADS)

    He, B.; Robb, F. T.; Colman, A. S.

    2013-12-01

    Thermophilic and hyperthermophilic metabolisms include several pathways that involve dissolved gases as carbon sources, energy sources, and/or waste products. In hot springs, dissolved gas concentrations are often compared with concentrations predicted based upon equilibration with free phase gases bubbling up in the same springs. This comparison guides the inference of metabolic modes in the subsurface, spring vents, and outflow channels. Supersaturation is invoked as a signal of a biogenic source for the gas, while undersaturation is interpreted to indicate microbial consumption. However, these conventional interpretations of disequilibria between dissolved and free phase gases can be misleading. They ignore the decoupling of water and free phase gas transport in terrestrial hot springs and the effects on gas solubility of thermal and pressure gradients that exist as fluids travel from depth to vent. We have surveyed two significant geothermal regions: Lassen Volcanic National Park (LVNP), California, USA (July, 2009), and Uzon Caldera, Kamchatka, Russia (August, 2010) in past years. We collected and analyzed both free phase and dissolved gas composition from a number of hot springs in each region. We used Henry's Law to calculate apparent saturation state of the dissolved gases with respect to the free phases gases bubbling up in the springs. We then constructed a 1-D gas exchange-transport model to examine the thermodynamic drivers and potential kinetic hindrances to gas exchange and equilibration in water and gases ascending continental hot spring systems. Specifically, this model takes into account: (1) the vertical gradient in temperature and pressure, (2) interaction between the bioactive gases via water gas shift reaction, and (3) fluid transport from subsurface to vent. We have modeled several end-member transport-exchange scenarios: (1) gas and spring water co-ascend in a closed system, with instantaneous equilibration between free phase and dissolved

  9. Jurassic hot spring deposits of the Deseado Massif (Patagonia, Argentina): Characteristics and controls on regional distribution

    NASA Astrophysics Data System (ADS)

    Guido, Diego M.; Campbell, Kathleen A.

    2011-06-01

    The Deseado Massif, Santa Cruz Province, Argentinean Patagonia, hosts numerous Middle to Late Jurassic age geothermal and epithermal features represented by siliceous and calcareous chemical precipitates from hot springs (sinters and travertines, respectively), hydrothermal breccias, quartz veins, and widespread hydrothermal silicification. They indicate pauses in explosive volcanic activity, marking the final stages in the evolution of an extensive Jurassic (ca. 178-151 Ma) volcanic complex set in a diffuse extensional back-arc setting heralding the opening of the Atlantic Ocean. Published paleo-hot spring sites for the Deseado Massif, plus additional sites identified during our recent field studies, reveal a total of 23 locations, five of which were studied in detail to determine their geologic and facies associations. They show structural, lithologic, textural and biotic similarities with Miocene to Recent hot spring systems from the Taupo and Coromandel volcanic zones, New Zealand, as well as with modern examples from Yellowstone National Park, U.S.A. These comparisons aid in the definition of facies assemblages for Deseado Massif deposits - proximal, middle apron and distal siliceous sinter and travertine terraces and mounds, with preservation of many types of stromatolitic fabrics - that likely were controlled by formation temperature, pH, hydrodynamics and fluid compositions. Locally the mapped hot spring deposits largely occur in association with reworked volcaniclastic lacustrine and/or fluvial sediments, silicic to intermediate lava domes, and hydrothermal mineralization, all of which are related to local and regional structural lineaments. Moreover, the numerous geothermal and significant epithermal (those with published minable resources) deposits of the Deseado Massif geological province mostly occur in four regional NNW and WNW hydrothermal-structural belts (Northwestern, Northern, Central, and Southern), defined here by alignment of five or more hot

  10. The effects of bathing in hot springs on the absorption of green tea catechin: a pilot study.

    PubMed

    Hayasaka, Shinya; Goto, Yasuaki; Maeda-Yamamoto, Mari

    2013-11-01

    Japan is a major tea producing country, and green tea is known for its health benefits which are believed to be due to catechins. However, difficulties in maintaining an adequate amount of catechins in the blood have been reported. Another important health-promoting activity among the Japanese is bathing in hot springs. This pilot study examined whether the combined effects of green tea consumption and hot spring bathing improved absorption of green tea catechins. The study, with a comparative within-subject design involving two different intervention trials--green tea consumption with hot spring bathing and only green tea consumption--was conducted on 2 separate days. Plasma levels of catechin; (-)-epigallocatechin-3-O-gallate (EGCG) were analyzed from four volunteers. Plasma EGCG concentration was found to be higher for the combined trial of green tea consumption and hot spring bathing.

  11. Tracing Hot-Spring Facies and thier Geothermally Silicified Microbial Textures into the Geologic Record: Relevance for Mars Biosignature Recognition

    NASA Astrophysics Data System (ADS)

    Campbell, K. A.; Guido, D. M.; Farmer, J. D.; Van Kranendonk, M. J.; Ruff, S. W.; Westall, F.

    2016-05-01

    Siliceous hot-spring deposits (sinters) in terrestrial volcanic terrains preserve robust microbial textures, owing to early mineralization, in the geologic record as far back as 3.48 billion years ago. Some resemble features at Columbia Hills.

  12. Draft Genome Sequence of Chelatococcus sambhunathii Strain HT4T (DSM 18167T) Isolated from a Hot Spring in India

    PubMed Central

    Badhai, Jhasketan; Whitman, William B.

    2016-01-01

    The moderately thermophilic bacterium Chelatococcus sambhunathii strain HT4T was isolated from hot spring sediment. Based upon the draft genome sequence, the genome is 4.4 Mb and encodes 4,147 proteins. PMID:27516514

  13. Draft Genome Sequence of Chelatococcus sambhunathii Strain HT4T (DSM 18167T) Isolated from a Hot Spring in India.

    PubMed

    Badhai, Jhasketan; Whitman, William B; Das, Subrata K

    2016-01-01

    The moderately thermophilic bacterium Chelatococcus sambhunathii strain HT4(T) was isolated from hot spring sediment. Based upon the draft genome sequence, the genome is 4.4 Mb and encodes 4,147 proteins. PMID:27516514

  14. The impact of thermal energy and materials derived from the hot spring drainage on the fish community near the estuary

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Shoji, J.; Mishima, T.; Honda, H.; Fujii, M.; Ohsawa, S.; Taniguchi, M.

    2014-12-01

    Beppu is a region with many hot springs in Japan. Some of environmental studies of the rivers in this region (e.g. Kawano et al., 1998, Ohsawa et al., 2008) show that hot spring drainage flows into a river and then flow into the coastal are, and it strongly affects the river water quality. On the other hands, several kinds of tropical fish lives in those rivers (Hiramatu et al., 1995). We can easily have watched those fish there. Although the relationship between hot spring drainage and the fish community had not been investigated in the past in this area, it is easily assumed that thermal energy and materials derived from the hot spring drainage strongly affect the ecosystem. However, the impact of the hot spring drainage on the ecosystem in river and coastal area is not clear. We investigated the river water quality and physical property of six rivers in this region. Additionally, we investigated the fish community near the estuary at two rivers which are strongly affected by the hot spring drainage and not the influence of the hot spring at all. We tried an evaluation about the influence of thermal energy and materials derived from the hot spring drainage on the fish community near the estuary.The results of chemical and physical data in these rivers are as follows. The size of influence of hot spring drainage on river is different every river. In this region, Hirata River is most strongly affected by the hot spring drainage. The water temperature of Hirata River maintains 25 degrees Celsius or more through the year and the concentrations of dissolved component is very high. On the other hand, the water temperature and the concentrations of dissolved component of Hiya Rive is low. These data are similar to data of the upper side of Hirata River. The results of investigating the fish community indicate that Oreochromis niloticus and Rhinogobius giurinus is the dominant species at Hirata River and Hiya River respectively. In addition, there is more the number of

  15. Lake Bogoria, Kenya: Hot and warm springs, geysers and Holocene stromatolites

    NASA Astrophysics Data System (ADS)

    McCall, Joseph

    2010-11-01

    I carried out the first regional geological survey of the central Gregory Rift Valley in Kenya in 1958-60, and review here the numerous subsequent specialised studies focused on the unique endoreic Lake Bogoria (formerly Hannington), studies which embraced the sedimentology of the Holocene sediments around the lake shores, the hot-spring and geyser activities and the coring of the sediments beneath the lake. I focus on the occurrences of stromatolites in a hydrothermal environment, both in two closely spaced late Holocene (~ 4500 yr BP) generations at the lake margin, associated with algae and cyanobacteria, which represent a final more humid climatic phase after the several interglacial more humid phases (also represented by stromatolite occurrences in other rift valley lakes); and also at present being formed, at the edge of the now highly saline lake, in the very hot springs in association with thermophilic bacteria and with silica. I briefly mention the older occurrences in Lake Magadi to the south, which are quite different; and form three generations; and also present-day occurrences of stromatolites in a flood-plain environment, unlike the present-day environment at Lake Bogoria. Other stromatolite occurrences are mentioned, around Lake Turkana and the former lake in the Suguta River valley to the north. I suggest that the hot waterfall at Kapedo, at the head of the Suguta River, and the central island of Ol Kokwe (with hot springs, amidst the fresh water Lake Baringo) could well be investigated for stromatolite occurrences. Lake Bogoria, an empty wilderness occupied only by flamingos when I mapped it, is now more accessible and provides a unique open-air laboratory for such researches, but like all the Rift Valley lakes, is unique, sui generis. Results of detailed investigations of the type reviewed here, can only be applied to other occurrences of stromatolites elsewhere in the rift system or beyond the rift system with reservation.

  16. A controlled source audiomagnetotelluric investigation of the Ennis Hot Springs Geothermal Area, Ennis, Montana: Final report: Part 2

    SciTech Connect

    Emilsson, G.R.

    1988-06-01

    A controlled-source audiomagnetotelluric survey (CSAMT) at the Ennis Hot Springs geothermal area revealed a low resistivity anomaly (3 ohm-m to 10 ohm-m) in the vicinity of the hot springs. The hot springs issue from the base of a gravel terrace on the west side of the Madison Valley. Low apparent resistivities extend to the west under the gravel terrace as well as to the north in an elongated ''plume''. To the southwest the apparent resistivity increases rapidly due to an uplift in the valley basement. One-dimensional inverse modeling in the center of the valley indicates a buried conductive layer probably due to a thick layer of clay-bearing sediments since a nearby test well does not show elevated temperatures. Near the hot springs, one-dimensional inverse modeling did not prove useful, partly because of the two and three-dimensional nature of the structure. Two-dimensional forward modeling near the hot springs provides a more quantitative delineation of the low resistivity zone and of the faulted basement uplifts to the west and south. Details of the structure beneath the conductive zone near the hot springs are difficult to resolve and most of the model control in this region is provided by well logs and seismic data. A technique for correcting data collected in the region close to the transmitter where the plane wave assumption is not valid has derived and has been applied to the low frequency data. 29 refs., 35 figs., 1 tab.

  17. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs

    PubMed Central

    Schubotz, Florence; Hays, Lindsay E.; Meyer-Dombard, D'Arcy R.; Gillespie, Aimee; Shock, Everett L.; Summons, Roger E.

    2015-01-01

    Streamer biofilm communities (SBC) are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75–88°C) SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae and Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and “Bison Pool,” using various 13C-labeled substrates (bicarbonate, formate, acetate, and glucose) to determine the relative uptake of these different carbon sources. Highest 13C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus, and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. 13C-glucose showed a similar, but a 10–30 times lower uptake across most fatty acids. 13C-bicarbonate uptake, signifying the presence of autotrophic communities was only significant at “Bison Pool” and was observed predominantly in non-specific saturated C16, C18, C20, and C22 fatty acids. Incorporation of 13C-formate occurred only at very low rates at “Bison Pool” and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. 13C-uptake into archaeal lipids occurred predominantly with 13C-acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being sustained

  18. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs.

    PubMed

    Schubotz, Florence; Hays, Lindsay E; Meyer-Dombard, D'Arcy R; Gillespie, Aimee; Shock, Everett L; Summons, Roger E

    2015-01-01

    Streamer biofilm communities (SBC) are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75-88°C) SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae and Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and "Bison Pool," using various (13)C-labeled substrates (bicarbonate, formate, acetate, and glucose) to determine the relative uptake of these different carbon sources. Highest (13)C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus, and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. (13)C-glucose showed a similar, but a 10-30 times lower uptake across most fatty acids. (13)C-bicarbonate uptake, signifying the presence of autotrophic communities was only significant at "Bison Pool" and was observed predominantly in non-specific saturated C16, C18, C20, and C22 fatty acids. Incorporation of (13)C-formate occurred only at very low rates at "Bison Pool" and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. (13)C-uptake into archaeal lipids occurred predominantly with (13)C-acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being sustained by

  19. Hot Spring Monitoring at Lassen Volcanic National Park, California 1983-1985

    SciTech Connect

    Sorey, Michael L.

    1986-01-21

    Data collected on several occasions between 1983 and 1985 as part of a hydrologic monitoring program by the U.S. Geological Survey permit preliminary estimation of the natural variability in the discharge characteristics of hydrothermal features in Lassen Volcanic National Park and the Lassen KGRA in northern California. The total rate of discharge of high-chloride hot springs along Mill Creek and Canyon Creek in the Lassen KGRA has averaged 20.9 {+-} 1.7 L/s, based on seven measurements of the flux of chloride in these streams. Measured chloride flux does not appear to increase with streamflow during the spring-summer snowmelt period, as observed at Yellowstone and Long Valley Caldera. The corresponding fluxes of arsenic in Mill Creek and Canyon Creek decrease within distances of about 2 km downstream from the hot springs by approximately 30%, most likely due to chemical absorption on streambed sediments. Within Lassen Volcanic National Park, measurements of sulfate flux in streams draining steam-heated thermal features at Sulphur Works and Bumpass Hell have averaged 7.5 {+-} 1.0 and 4.0 {+-} 1.5 g/s, respectively. Calculated rates of steam upflow containing, dissolved H{sub 2}S to supply these sulfate fluxes are 1.8 kg/s at Sulphur Works and 1.0 kg/s at Bumpass Hell.

  20. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities

    NASA Technical Reports Server (NTRS)

    Ward, D. M.; Ferris, M. J.; Nold, S. C.; Bateson, M. M.

    1998-01-01

    This review summarizes a decade of research in which we have used molecular methods, in conjunction with more traditional approaches, to study hot spring cyanobacterial mats as models for understanding principles of microbial community ecology. Molecular methods reveal that the composition of these communities is grossly oversimplified by microscopic and cultivation methods. For example, none of 31 unique 16S rRNA sequences detected in the Octopus Spring mat, Yellowstone National Park, matches that of any prokaryote previously cultivated from geothermal systems; 11 are contributed by genetically diverse cyanobacteria, even though a single cyanobacterial species was suspected based on morphologic and culture analysis. By studying the basis for the incongruity between culture and molecular samplings of community composition, we are beginning to cultivate isolates whose 16S rRNA sequences are readily detected. By placing the genetic diversity detected in context with the well-defined natural environmental gradients typical of hot spring mat systems, the relationship between gene and species diversity is clarified and ecological patterns of species occurrence emerge. By combining these ecological patterns with the evolutionary patterns inherently revealed by phylogenetic analysis of gene sequence data, we find that it may be possible to understand microbial biodiversity within these systems by using principles similar to those developed by evolutionary ecologists to understand biodiversity of larger species. We hope that such an approach guides microbial ecologists to a more realistic and predictive understanding of microbial species occurrence and responsiveness in both natural and disturbed habitats.

  1. A Natural View of Microbial Biodiversity within Hot Spring Cyanobacterial Mat Communities

    PubMed Central

    Ward, David M.; Ferris, Michael J.; Nold, Stephen C.; Bateson, Mary M.

    1998-01-01

    This review summarizes a decade of research in which we have used molecular methods, in conjunction with more traditional approaches, to study hot spring cyanobacterial mats as models for understanding principles of microbial community ecology. Molecular methods reveal that the composition of these communities is grossly oversimplified by microscopic and cultivation methods. For example, none of 31 unique 16S rRNA sequences detected in the Octopus Spring mat, Yellowstone National Park, matches that of any prokaryote previously cultivated from geothermal systems; 11 are contributed by genetically diverse cyanobacteria, even though a single cyanobacterial species was suspected based on morphologic and culture analysis. By studying the basis for the incongruity between culture and molecular samplings of community composition, we are beginning to cultivate isolates whose 16S rRNA sequences are readily detected. By placing the genetic diversity detected in context with the well-defined natural environmental gradients typical of hot spring mat systems, the relationship between gene and species diversity is clarified and ecological patterns of species occurrence emerge. By combining these ecological patterns with the evolutionary patterns inherently revealed by phylogenetic analysis of gene sequence data, we find that it may be possible to understand microbial biodiversity within these systems by using principles similar to those developed by evolutionary ecologists to understand biodiversity of larger species. We hope that such an approach guides microbial ecologists to a more realistic and predictive understanding of microbial species occurrence and responsiveness in both natural and disturbed habitats. PMID:9841675

  2. The Thermodynamics and Kinetics of Iron Redox Metabolism in Hot Spring Ecosystems

    NASA Astrophysics Data System (ADS)

    St Clair, B. E.; Shock, E.

    2012-12-01

    The oxidation of ferrous iron and the reduction of ferric minerals are widespread sources of metabolic energy for microorganisms in hot spring ecosystems. How these energy sources are used can be determined by combining thermodynamic calculations with kinetic experiments. By measuring concentrations of ferrous iron, total iron, pH, dissolved hydrogen and oxygen, as well as temperature and many other parameters in hot springs at Yellowstone National Park, we can calculate chemical affinities of iron redox reactions, which reveal the maximum amount of energy an organism can derive from the catalysis of a given reaction. Iron redox reactions typically involve protons, and energy yields are greatly affected by pH. The heterotrophic reduction of ferric minerals typically consumes a large stoichiometric number of protons compared to the other components. For example, the reduction of hematite (Fe2O3), to ferrous ions with glucose requires 48 moles of protons per mole of glucose oxidized. Calculations indicate this proton requirement increases the energy yield with decreasing pH. The opposite trend is observed for iron oxidation reactions. The autotrophic oxidation of ferrous iron to hematite releases four protons per mole of hematite formed. As a consequence, the energy yield from this reaction decreases with decreasing pH. How effectively energy sources are tapped depends on the efficiencies of microbial metabolism compared with the rates of abiotic mechanisms for the same redox reactions. Experiments were performed across the pH spectrum on isolated sediments incubated in situ and assayed for biological oxidation and reduction by monitoring changing concentrations of Fe2+. In hot springs with pH values <2, particularly those with large gas flows, abiological reduction is rapid. Biological reduction, nevertheless, occasionally proceeded faster than the abiological rate. The quick abiological reduction rate, combined with the high solubility of ferrous iron, leads to

  3. Experimental Simulation of Evaporation-Driven Silica Sinter Formation and Microbial Silicification in Hot Spring Systems

    PubMed Central

    Lalonde, Stefan V.; Konhauser, Kurt O.

    2013-01-01

    Abstract Evaporation of silica-rich geothermal waters is one of the main abiotic drivers of the formation of silica sinters around hot springs. An important role in sinter structural development is also played by the indigenous microbial communities, which are fossilized and eventually encased in the silica matrix. The combination of these two factors results in a wide variety of sinter structures and fabrics. Despite this, no previous experimental fossilization studies have focused on evaporative-driven silica precipitation. We present here the results of several experiments aimed at simulating the formation of sinters through evaporation. Silica solutions at different concentrations were repeatedly allowed to evaporate in both the presence and absence of the cyanobacterium Synechococcus elongatus. Without microorganisms, consecutive silica additions led to the formation of well-laminated deposits. By contrast, when microorganisms were present, they acted as reactive surfaces for heterogeneous silica particle nucleation; depending on the initial silica concentration, the deposits were then either porous with a mixture of silicified and unmineralized cells, or they formed a denser structure with a complete entombment of the cells by a thick silica crust. The deposits obtained experimentally showed numerous similarities in terms of their fabric to those previously reported for natural hot springs, demonstrating the complex interplay between abiotic and biotic processes during silica sinter growth. Key Words: Silica—Cyanobacteria—Fossilization—Hot springs—Stromatolites. Astrobiology 13, 163–176. PMID:23384170

  4. Quantifying Rates of Complete Microbial Iron Redox Cycling in Acidic Hot Springs

    NASA Astrophysics Data System (ADS)

    St Clair, B.; Pottenger, J. W.; Shock, E.

    2013-12-01

    Large accumulations of iron oxide commonly occur in shallow outflows of acidic hot springs, and culturing, molecular techniques, and microscopy by others indicate that this iron oxide (often ferrihydrite) is largely biogenic in Yellowstone National Park. The hot springs that support iron mats have several consistent geochemical features including combinations of pH, temperature, sulfide, dissolved oxygen, depth and ferrous iron concentration appropriate to support iron oxidation. These springs nearly always have a point source leading to a large shallow outflow apron. Microbial zones often, but not always, include a small clear zone near the source, followed by a sulfide oxidation zone, iron mat, and finally photosynthesis. The yellow sulfide oxidation zone is separated from the red iron mat by a sharp transition resulting from increasing dissolved oxygen from atmospheric contact and microbial depletion of sulfide. The iron mat is typically the largest microbial zone in the feature by area. Further down the outflow, iron oxidation appears to be outcompeted by phototrophs as the temperature cools. Occasionally there is overlap in these zones, but one metabolism always appears dominant. Our experiments at diverse hot springs indicate that microbial reduction is less geochemically restricted than oxidation, requiring only organic carbon, ferric minerals and an anoxic environment. With iron oxidizers fixing carbon and producing layers of ferric minerals that become rapidly anoxic with depth, iron reduction is invariably proximal to where biogenic iron oxides are forming. To characterize the interplay of oxidation and reduction rates that permit oxide accumulation, we conducted rate experiments at geochemically diverse Yellowstone hot springs featuring visible iron oxides in thermal areas throughout the park. These experiments were performed during two summer field seasons to determine in situ and maximum rates of iron oxidation and reduction by measuring changing

  5. Noncrystallographic calcite dendrites from hot-spring deposits at Lake Bogoria, Kenya

    SciTech Connect

    Jones, B.; Renaut, R.W.

    1995-01-02

    Complex calcite crystals are an integral component of precipitates that form around the orifices of the Loburu and Mawe Moto hot springs on the shores of Lake bogoria, Kenya. Two types of large (up to 4 cm long) noncrystallographic dendrites are important components of these deposits. Feather dendrites are characterized by multiple levels of branching with individual branches developed through crystal splitting and spherulitic growth. Scandulitic (from Latin meaning shingle) dendrites are formed of stacked calcite crystals and are generally more compact than feather dendrites. These developed through the incremental stacking of rectangular-shaped calcite crystals that initially grew as skeletal crystals. Feather and scandulitic dendrites precipitated from the same waters in the same springs. The difference in morphology is therefore related to microenvironments in which they grew. Feather dendrites grew in any direction in pools of free-standing water provided that they were in constant contact with the solute. Conversely, scandulitic dendrites grew on rims of dams where water flowed over the surface in concert with the pulses of spring water. Thus, each calcite crystal in these dendrites represents one episode of crystal growth. The orientation of the component crystals in scandulitic dendrites is controlled by the topography of the dam or surface, not crystallographic criteria. The noncrystallographic dendrites formed from spring waters with initial temperatures of 90--99 C. Surficial water cooling, loss of CO{sub 2}, and presence of other elements that can interfere with crystal growth contributed to the formation of these unusual crystals.

  6. Fate of Immediate Methane Precursors in Low-Sulfate, Hot-Spring Algal-Bacterial Mats

    PubMed Central

    Sandbeck, Kenneth A.; Ward, David M.

    1981-01-01

    The fates of acetate and carbon dioxide were examined in several experiments designed to indicate their relative contributions to methane production at various temperatures in two low-sulfate, hot-spring algal-bacterial mats. [2-14C]acetate was predominantly incorporated into cell material, although some 14CH4 and 14CO2 was produced. Acetate incorporation was reduced by dark incubation in short-term experiments and severely depressed by a 2-day preincubation in darkness. Autoradiograms showed that acetate was incorporated by long filaments resembling phototrophic microorganisms of the mat communities. [3H]acetate was not converted to C3H4 in samples from Octopus Spring collected at the optimum temperature for methanogenesis. NaH14CO3 was readily converted to 14CH4 at temperatures at which methanogenesis was active in both mats. Comparisons of the specific activities of methane and carbon dioxide suggested that of the methane produced, 80 ± 6% in Octopus Spring and 71 ± 21% in Wiegert Channel were derived from carbon dioxide. Addition of acetate to 1 mM did not reduce the relative importance of carbon dioxide as a methane precursor in samples from Octopus Spring. Experiments with pure cultures of Methanobacterium thermoautotrophicum suggested that the measured ratio of specific activities might underestimate the true contribution of carbon dioxide in methanogenesis. Images PMID:16345736

  7. Summary of basic hydrologic data collected at Coso Hot Springs, Inyo County, California

    USGS Publications Warehouse

    Moyle, W.R.

    1977-01-01

    More than 200 wells and springs were visited within a 20-mile radius of Coso Hot Springs, Calif. Hydrologic and geothermal data were collected for each well or spring site. The data includes depth, chemical quality, temperature and specific conductance of water, quantity of flow, well construction, and well logs. These data show that the normal temperature gradient in the ground is about 1.1 degrees Celsius (2 degrees Fahrenheit) per 100 feet. The temperature gradient in the thermal areas is as high as 24.4 degrees Celsius (44 degrees Fahrenheit) per 100 feet. The highest temperature measured for all the wells and springs was 142.2 degrees Celsius (288 degrees Fahrenheit). The chemical quality of water in the study area is generally good except in areas where water evaporates from land surface at Owens Valley playa or where steam escapes into the atmosphere from land surface. Computerized hydrologic and geothermal data are being stored for future use at the U.S. Geological Survey office, Laguna Niguel, Calif. (Woodard-USGS)

  8. Estimation of microbial cover distributions at Mammoth Hot Springs using a multiple clone library resampling method.

    PubMed

    Martín, Héctor García; Goldenfeld, Nigel

    2006-07-01

    We propose the use of cover as a quick, low-resolution proxy for the abundance of microbial species, which reduces polymerase chain reaction bias. We showcase this concept in a computation that uses clone library information from travertine-forming hot springs in Yellowstone National Park to provide estimates of relative covers at different locations within the spring system. Samples were used from two media: the water column and the travertine substrate. The cover distribution is found to approximate a power law for samples within the water column. Significant commonality of species with the highest cover is observed in the water column for all locations, but not for species present in the substrate at different locations or between media at the same location. PMID:16817923

  9. Coordinating environmental genomics and geochemistry reveals metabolic transitions in a hot spring ecosystem.

    PubMed

    Swingley, Wesley D; Meyer-Dombard, D'Arcy R; Shock, Everett L; Alsop, Eric B; Falenski, Heinz D; Havig, Jeff R; Raymond, Jason

    2012-01-01

    We have constructed a conceptual model of biogeochemical cycles and metabolic and microbial community shifts within a hot spring ecosystem via coordinated analysis of the "Bison Pool" (BP) Environmental Genome and a complementary contextual geochemical dataset of ~75 geochemical parameters. 2,321 16S rRNA clones and 470 megabases of environmental sequence data were produced from biofilms at five sites along the outflow of BP, an alkaline hot spring in Sentinel Meadow (Lower Geyser Basin) of Yellowstone National Park. This channel acts as a >22 m gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of biologically important chemical species, such as those containing nitrogen and sulfur. Microbial life at BP transitions from a 92 °C chemotrophic streamer biofilm community in the BP source pool to a 56 °C phototrophic mat community. We improved automated annotation of the BP environmental genomes using BLAST-based Markov clustering. We have also assigned environmental genome sequences to individual microbial community members by complementing traditional homology-based assignment with nucleotide word-usage algorithms, allowing more than 70% of all reads to be assigned to source organisms. This assignment yields high genome coverage in dominant community members, facilitating reconstruction of nearly complete metabolic profiles and in-depth analysis of the relation between geochemical and metabolic changes along the outflow. We show that changes in environmental conditions and energy availability are associated with dramatic shifts in microbial communities and metabolic function. We have also identified an organism constituting a novel phylum in a metabolic "transition" community, located physically between the chemotroph- and phototroph-dominated sites. The complementary analysis of biogeochemical and environmental genomic data from BP has allowed us to build ecosystem-based conceptual models for this hot spring, reconstructing

  10. Coordinating environmental genomics and geochemistry reveals metabolic transitions in a hot spring ecosystem.

    PubMed

    Swingley, Wesley D; Meyer-Dombard, D'Arcy R; Shock, Everett L; Alsop, Eric B; Falenski, Heinz D; Havig, Jeff R; Raymond, Jason

    2012-01-01

    We have constructed a conceptual model of biogeochemical cycles and metabolic and microbial community shifts within a hot spring ecosystem via coordinated analysis of the "Bison Pool" (BP) Environmental Genome and a complementary contextual geochemical dataset of ~75 geochemical parameters. 2,321 16S rRNA clones and 470 megabases of environmental sequence data were produced from biofilms at five sites along the outflow of BP, an alkaline hot spring in Sentinel Meadow (Lower Geyser Basin) of Yellowstone National Park. This channel acts as a >22 m gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of biologically important chemical species, such as those containing nitrogen and sulfur. Microbial life at BP transitions from a 92 °C chemotrophic streamer biofilm community in the BP source pool to a 56 °C phototrophic mat community. We improved automated annotation of the BP environmental genomes using BLAST-based Markov clustering. We have also assigned environmental genome sequences to individual microbial community members by complementing traditional homology-based assignment with nucleotide word-usage algorithms, allowing more than 70% of all reads to be assigned to source organisms. This assignment yields high genome coverage in dominant community members, facilitating reconstruction of nearly complete metabolic profiles and in-depth analysis of the relation between geochemical and metabolic changes along the outflow. We show that changes in environmental conditions and energy availability are associated with dramatic shifts in microbial communities and metabolic function. We have also identified an organism constituting a novel phylum in a metabolic "transition" community, located physically between the chemotroph- and phototroph-dominated sites. The complementary analysis of biogeochemical and environmental genomic data from BP has allowed us to build ecosystem-based conceptual models for this hot spring, reconstructing

  11. The distribution and abundance of archaeal tetraether lipids in U.S. Great Basin hot springs.

    PubMed

    Paraiso, Julienne J; Williams, Amanda J; Huang, Qiuyuan; Wei, Yuli; Dijkstra, Paul; Hungate, Bruce A; Dong, Hailiang; Hedlund, Brian P; Zhang, Chuanlun L

    2013-01-01

    Isoprenoidal glycerol dialkyl glycerol tetraethers (iGDGTs) are core membrane lipids of many archaea that enhance the integrity of cytoplasmic membranes in extreme environments. We examined the iGDGT profiles and corresponding aqueous geochemistry in 40 hot spring sediment and microbial mat samples from the U.S. Great Basin with temperatures ranging from 31 to 95°C and pH ranging from 6.8 to 10.7. The absolute abundance of iGDGTs correlated negatively with pH and positively with temperature. High lipid concentrations, distinct lipid profiles, and a strong relationship between polar and core lipids in hot spring samples suggested in situ production of most iGDGTs rather than contamination from local soils. Two-way cluster analysis and non-metric multidimensional scaling (NMS) of polar iGDGTs indicated that the relative abundance of individual lipids was most strongly related to temperature (r (2) = 0.546), with moderate correlations with pH (r (2) = 0.359), nitrite (r (2) = 0.286), oxygen (r (2) = 0.259), and nitrate (r (2) = 0.215). Relative abundance profiles of individual polar iGDGTs indicated potential temperature optima for iGDGT-0 (≤70°C), iGDGT-3 (≥55°C), and iGDGT-4 (≥60°C). These relationships likely reflect both physiological adaptations and community-level population shifts in response to temperature differences, such as a shift from cooler samples with more abundant methanogens to higher-temperature samples with more abundant Crenarchaeota. Crenarchaeol was widely distributed across the temperature gradient, which is consistent with other reports of abundant crenarchaeol in Great Basin hot springs and suggests a wide distribution for thermophilic ammonia-oxidizing archaea (AOA).

  12. Coordinating Environmental Genomics and Geochemistry Reveals Metabolic Transitions in a Hot Spring Ecosystem

    PubMed Central

    Swingley, Wesley D.; Meyer-Dombard, D’Arcy R.; Shock, Everett L.; Alsop, Eric B.; Falenski, Heinz D.; Havig, Jeff R.; Raymond, Jason

    2012-01-01

    We have constructed a conceptual model of biogeochemical cycles and metabolic and microbial community shifts within a hot spring ecosystem via coordinated analysis of the “Bison Pool” (BP) Environmental Genome and a complementary contextual geochemical dataset of ∼75 geochemical parameters. 2,321 16S rRNA clones and 470 megabases of environmental sequence data were produced from biofilms at five sites along the outflow of BP, an alkaline hot spring in Sentinel Meadow (Lower Geyser Basin) of Yellowstone National Park. This channel acts as a >22 m gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of biologically important chemical species, such as those containing nitrogen and sulfur. Microbial life at BP transitions from a 92°C chemotrophic streamer biofilm community in the BP source pool to a 56°C phototrophic mat community. We improved automated annotation of the BP environmental genomes using BLAST-based Markov clustering. We have also assigned environmental genome sequences to individual microbial community members by complementing traditional homology-based assignment with nucleotide word-usage algorithms, allowing more than 70% of all reads to be assigned to source organisms. This assignment yields high genome coverage in dominant community members, facilitating reconstruction of nearly complete metabolic profiles and in-depth analysis of the relation between geochemical and metabolic changes along the outflow. We show that changes in environmental conditions and energy availability are associated with dramatic shifts in microbial communities and metabolic function. We have also identified an organism constituting a novel phylum in a metabolic “transition” community, located physically between the chemotroph- and phototroph-dominated sites. The complementary analysis of biogeochemical and environmental genomic data from BP has allowed us to build ecosystem-based conceptual models for this hot spring

  13. In situ production of branched glycerol dialkyl glycerol tetraethers in a great basin hot spring (USA)

    PubMed Central

    Zhang, Chuanlun L.; Wang, Jinxiang; Dodsworth, Jeremy A.; Williams, Amanda J.; Zhu, Chun; Hinrichs, Kai-Uwe; Zheng, Fengfeng; Hedlund, Brian P.

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (bGDGTs) are predominantly found in soils and peat bogs. In this study, we analyzed core (C)-bGDGTs after hydrolysis of polar fractions using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry and analyzed intact P-bGDGTs using total lipid extract (TLE) without hydrolysis by liquid chromatography-electrospray ionization-multiple stage mass spectrometry. Our results show multiple lines of evidence for the production of bGDGTs in sediments and cellulolytic enrichments in a hot spring (62–86°C) in the Great Basin (USA). First, in situ cellulolytic enrichment led to an increase in the relative abundance of hydrolysis-derived P-bGDGTs over their C-bGDGT counterparts. Second, the hydrolysis-derived P- and C-bGDGT profiles in the hot spring were different from those of the surrounding soil samples; in particular, a monoglycosidic bGDGT Ib containing 13,16-dimethyloctacosane and one cyclopentane moiety was detected in the TLE but it was undetectable in surrounding soil samples even after sample enrichments. Third, previously published 16S rRNA gene pyrotag analysis from the same lignocellulose samples demonstrated the enrichment of thermophiles, rather than mesophiles, and total bGDGT abundance in cellulolytic enrichments correlated with the relative abundance of 16S rRNA gene pyrotags from thermophilic bacteria in the phyla Bacteroidetes, Dictyoglomi, EM3, and OP9 (“Atribacteria”). These observations conclusively demonstrate the production of bGDGTs in this hot spring; however, the identity of organisms that produce bGDGTs in the geothermal environment remains unclear. PMID:23847605

  14. Phase equilibria constraints on the chemistry of hot spring fluids at mid-ocean ridges

    SciTech Connect

    Seyfried, W.E. Jr.; Ding, K.; Berndt, M.E. )

    1991-12-01

    Recent advances in experimental and theoretical geochemistry have made it possible to assess both homogeneous and heterogeneous equilibria involving a wide range of aqueous species at temperatures and pressures appropriate to model hydrothermal alteration processes at mid-ocean ridges. The authors have combined selected aspects of the chemistry of hot spring fluids with constraints imposed by a geologically reasonable assemblage of minerals in the system Na{sub 2}O-K{sub 2}O-CaO-MgO-FeO-Fe{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O-HCl-H{sub 2}S to assess the effect of temperature on the composition of the aqueous phase and the activities of mineral components in plagioclase and epidote solid solutions. Assuming fO{sub 2(g)} and fS{sub 2(g)} controlled by pyrite-pyrrhotite-magnetite equilibria, a constant dissolved Ca concentration, and a dissolved Cl concentration equivalent to that of seawater, increasing temperature from 250 to 400C at 500 bars results in systematic changes in the composition of mineral phases, which in turn constrain pH and the distribution of aqueous species. The model predicts that dissolved concentrations of Fe, SiO{sub 2}, K, H{sub 2}S, and H{sub 2} increase, while Na and pH{sub (25C)} decrease with increasing temperature. That many hot springs vent fluids are characterized by variable degrees of conductive heat loss renders measured temperatures unreliable as indicators of the maximum temperature of subseafloor hydrothermal alteration processes. The implications of this are significant for hot spring fluids which reveal large Cl variations relative to seawater, since likely mechanisms to account for such variability typically require temperatures in excess of those inferred for subseafloor reaction zones by simply correcting measured temperatures for the effects of adiabatic cooling.

  15. Seismic baseline and induction studies: Roosevelt Hot Springs, Utah and Raft River, Idaho

    SciTech Connect

    Zandt, G.; McPherson, L.; Schaff, S.; Olsen, S.

    1982-05-01

    Local seismic networks were established at the Roosevelt Hot Springs geothermal area, utah and at Raft River geothermal area, Idaho to monitor the background seismicity prior to initiation of geothermal power production. The Raft River study area is currently seismically quiet down to the level of approximately magnitude one. The Roosevelt Hot Springs area has low-level seismic activity for M/sub L/ greater than about two; however, microearthquake (M/sub L/ less than or equal to 2) swarms appear to be relatively common. One swarm occurred adjacent to the Roosevelt geothermal area during the summer of 1981. From June 27 to August 28, 1044 microearthquakes (M/sub L/ less than or equal to 1.5) were recorded from which 686 earthquakes were located and analysed. The main cluster of microearthquakes was located about 2 km east of the production field at a depth of about 5 km. A few small events were located in the production field at shallow depths (< 2 km). Three of the four largest earthquakes in the swarm (M/sub L/ 1.5-2.0) were located 4 to 5 km further east along a n-NW trend beneath the flank of the adjacent Mineral Mountains. Focal mechanism solutions indicate primarily normal faulting due to the regional E-W extension which characterizes this portion of the eastern Basin and Range province. Hence, the Mineral Mountain swarm appears to be a natural release of tectonic stress in this area. Nevertheless, the occurrence of natural earthquake swarms indicates a potential for induced seismicity at Roosevelt Hot Springs after major production operations are initiated.

  16. Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing.

    PubMed

    Chan, Chia Sing; Chan, Kok-Gan; Tay, Yea-Ling; Chua, Yi-Heng; Goh, Kian Mau

    2015-01-01

    The Sungai Klah (SK) hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-m-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0-9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3-V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream) and geochemical parameters (broad temperature and pH range). It is speculated that symbiotic relationships occur between the members of the community.

  17. Studying Prokaryotic Communities in Iron Depositing Hot Springs (IDHS): Implication for Early Mars Habitability

    NASA Technical Reports Server (NTRS)

    Sarkisova, S. A.; Tringe, S. G.; Thomas-Keprta, K. L.; Allen, C. c.; Garrison, D. H.; McKay, David S.; Brown, I. I.

    2010-01-01

    We speculate that both external and intracellular iron precipitate in iron-tolerant CB might be involved in oxidative stress suppression shown by [9]. Significant differences are apparent between a set of proteins involved in the maintenance of Fe homeostasis and oxidative stress protection in iron-tolerant and fresh-water and marine CB. Correspondingly, these properties may help to make iron-tolerant CB as dominant organisms in IDHS and probably on early Earth and Mars. Further comparative analyses of hot springs metagenomes and the genomes of iron-tolerant microbes versus fresh-water/marine ones may point out to different habitable zones on early Mars.

  18. Geobacillus icigianus sp. nov., a thermophilic bacterium isolated from a hot spring.

    PubMed

    Bryanskaya, Alla V; Rozanov, Alexey S; Slynko, Nikolay M; Shekhovtsov, Sergey V; Peltek, Sergey E

    2015-03-01

    A Gram-reaction-positive, motile, thermophilic spore-forming strain, G1w1(T), was isolated from a hot spring of the Valley of Geysers, Kamchatka (Russia). Based on data from the present polyphasic taxonomic study, including phylogenetic analysis of 16S rRNA and spo0A gene sequences, the strain is considered to represent a novel species of the genus Geobacillus, for which the name Geobacillus icigianus sp. nov. is proposed. The type strain is G1w1(T) ( = VKM B-2853(T) = DSM 28325(T)).

  19. Environmental assessment of the proposed nonelectric application of geothermal resources at Desert Hot Springs, California

    NASA Technical Reports Server (NTRS)

    Rosenberg, L.

    1978-01-01

    The paper presents an environmental analysis performed in evaluating various proposed geothermal demonstration projects at Desert Hot Springs. These are categorized in two ways: (1) indirect, or (2) direct uses. Among the former are greenhouses, industrial complexes, and car washes. The latter include aquaculture, a cascaded agribusiness system, and a mobile home park. Major categories of environmental impact covered are: (1) site, (2) construction of projects, and (3) the use of the geothermal source. Attention is also given to the disposal of the geothermal fluid after use. Finally, it is concluded that there are no major problems forseen for each project, and future objectives are discussed.

  20. Investigation of the microbial community in the Odisha hot spring cluster based on the cultivation independent approach.

    PubMed

    Singh, Archana; Subudhi, Enketeswara; Sahoo, Rajesh Kumar; Gaur, Mahendra

    2016-03-01

    Deulajhari hot spring is located in the Angul district of Odisha. The significance of this hot spring is the presence of the hot spring cluster adjacent to the cold spring which attracts the attention of microbiologists to understand the role of physio-chemical factors of these springs on bacterial community structure. Next-generation sequencing technology helps us to depict the pioneering microflora of any ecological niche based on metagenomic approach. Our study represents the first Illumina based metagenomic study of Deulajhari hot spring DH1, and DH2 of the cluster with temperature 65 °C to 55 °C respectively establishing a difference of 10 °C. Comprehensive study of microbiota of these two hot springs was done using the metagenomic sequencing of 16S rRNA of V3-V4 region extracting metagenomic DNA from the two hot spring sediments. Sequencing community DNA reported about 28 phyla in spring DH1 of which the majority were Chloroflexi (22.98%), Proteobacteria (15.51%), Acidobacteria (14.51%), Chlorobi (9.52%), Nitrospirae (8.54%), and Armatimonadetes (7.07%), at the existing physiochemical conditions like; temperature 65 °C, pH 8.06, electro conductivity 0.020 dSm(- 1), and total organic carbon (TOC) 3.76%. About 40 phyla were detected in cluster DH2 at the existing physiochemical parameters like temperature 55 °C, pH 8.10, electro conductivity 0.019 dSm(- 1), and total organic carbon (TOC) 0.58% predominated with Chloroflexi (41.98%), Proteobacteria (10.74%), Nitrospirae (10.01%), Chlorobi (8.73%), Acidobacteria (6.73%) and Planctomycetes (3.73%). Approximately 68 class, 107 order, 171 genus and 184 species were reported in cluster DH1 but 102 class, 180 order, 375 genus and 411 species in cluster DH2. The comparative metagenomics study of the Deulajhari hot spring clusters DH1, and DH2 depicts the differential profile of the microbiota. Metagenome sequences of these two hot spring clusters are deposited to the SRA database and are available in

  1. Investigation of the microbial community in the Odisha hot spring cluster based on the cultivation independent approach

    PubMed Central

    Singh, Archana; Subudhi, Enketeswara; Sahoo, Rajesh Kumar; Gaur, Mahendra

    2016-01-01

    Deulajhari hot spring is located in the Angul district of Odisha. The significance of this hot spring is the presence of the hot spring cluster adjacent to the cold spring which attracts the attention of microbiologists to understand the role of physio-chemical factors of these springs on bacterial community structure. Next-generation sequencing technology helps us to depict the pioneering microflora of any ecological niche based on metagenomic approach. Our study represents the first Illumina based metagenomic study of Deulajhari hot spring DH1, and DH2 of the cluster with temperature 65 °C to 55 °C respectively establishing a difference of 10 °C. Comprehensive study of microbiota of these two hot springs was done using the metagenomic sequencing of 16S rRNA of V3‐V4 region extracting metagenomic DNA from the two hot spring sediments. Sequencing community DNA reported about 28 phyla in spring DH1 of which the majority were Chloroflexi (22.98%), Proteobacteria (15.51%), Acidobacteria (14.51%), Chlorobi (9.52%), Nitrospirae (8.54%), and Armatimonadetes (7.07%), at the existing physiochemical conditions like; temperature 65 °C, pH 8.06, electro conductivity 0.020 dSm− 1, and total organic carbon (TOC) 3.76%. About 40 phyla were detected in cluster DH2 at the existing physiochemical parameters like temperature 55 °C, pH 8.10, electro conductivity 0.019 dSm− 1, and total organic carbon (TOC) 0.58% predominated with Chloroflexi (41.98%), Proteobacteria (10.74%), Nitrospirae (10.01%), Chlorobi (8.73%), Acidobacteria (6.73%) and Planctomycetes (3.73%). Approximately 68 class, 107 order, 171 genus and 184 species were reported in cluster DH1 but 102 class, 180 order, 375 genus and 411 species in cluster DH2. The comparative metagenomics study of the Deulajhari hot spring clusters DH1, and DH2 depicts the differential profile of the microbiota. Metagenome sequences of these two hot spring clusters are deposited to the SRA database and are available in

  2. Viral assemblage composition in Yellowstone acidic hot springs assessed by network analysis

    PubMed Central

    Bolduc, Benjamin; Wirth, Jennifer F; Mazurie, Aurélien; Young, Mark J

    2015-01-01

    Understanding of viral assemblage structure in natural environments remains a daunting task. Total viral assemblage sequencing (for example, viral metagenomics) provides a tractable approach. However, even with the availability of next-generation sequencing technology it is usually only possible to obtain a fragmented view of viral assemblages in natural ecosystems. In this study, we applied a network-based approach in combination with viral metagenomics to investigate viral assemblage structure in the high temperature, acidic hot springs of Yellowstone National Park, USA. Our results show that this approach can identify distinct viral groups and provide insights into the viral assemblage structure. We identified 110 viral groups in the hot springs environment, with each viral group likely representing a viral family at the sub-family taxonomic level. Most of these viral groups are previously unknown DNA viruses likely infecting archaeal hosts. Overall, this study demonstrates the utility of combining viral assemblage sequencing approaches with network analysis to gain insights into viral assemblage structure in natural ecosystems. PMID:26125684

  3. Viral assemblage composition in Yellowstone acidic hot springs assessed by network analysis.

    PubMed

    Bolduc, Benjamin; Wirth, Jennifer F; Mazurie, Aurélien; Young, Mark J

    2015-10-01

    Understanding of viral assemblage structure in natural environments remains a daunting task. Total viral assemblage sequencing (for example, viral metagenomics) provides a tractable approach. However, even with the availability of next-generation sequencing technology it is usually only possible to obtain a fragmented view of viral assemblages in natural ecosystems. In this study, we applied a network-based approach in combination with viral metagenomics to investigate viral assemblage structure in the high temperature, acidic hot springs of Yellowstone National Park, USA. Our results show that this approach can identify distinct viral groups and provide insights into the viral assemblage structure. We identified 110 viral groups in the hot springs environment, with each viral group likely representing a viral family at the sub-family taxonomic level. Most of these viral groups are previously unknown DNA viruses likely infecting archaeal hosts. Overall, this study demonstrates the utility of combining viral assemblage sequencing approaches with network analysis to gain insights into viral assemblage structure in natural ecosystems.

  4. Steady states and linear stability analysis of precipitation pattern formation at geothermal hot springs.

    PubMed

    Chan, Pak Yuen; Goldenfeld, Nigel

    2007-10-01

    A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs. PMID:17995057

  5. Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus

    NASA Technical Reports Server (NTRS)

    Miller, S. R.; Castenholz, R. W.

    2000-01-01

    The extension of ecological tolerance limits may be an important mechanism by which microorganisms adapt to novel environments, but it may come at the evolutionary cost of reduced performance under ancestral conditions. We combined a comparative physiological approach with phylogenetic analyses to study the evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus. Among the 20 laboratory clones of Synechococcus isolated from collections made along an Oregon hot spring thermal gradient, four different 16S rRNA gene sequences were identified. Phylogenies constructed by using the sequence data indicated that the clones were polyphyletic but that three of the four sequence groups formed a clade. Differences in thermotolerance were observed for clones with different 16S rRNA gene sequences, and comparison of these physiological differences within a phylogenetic framework provided evidence that more thermotolerant lineages of Synechococcus evolved from less thermotolerant ancestors. The extension of the thermal limit in these bacteria was correlated with a reduction in the breadth of the temperature range for growth, which provides evidence that enhanced thermotolerance has come at the evolutionary cost of increased thermal specialization. This study illustrates the utility of using phylogenetic comparative methods to investigate how evolutionary processes have shaped historical patterns of ecological diversification in microorganisms.

  6. Neotropical Andes hot springs harbor diverse and distinct planktonic microbial communities.

    PubMed

    Delgado-Serrano, Luisa; López, Gina; Bohorquez, Laura C; Bustos, José R; Rubiano, Carolina; Osorio-Forero, César; Junca, Howard; Baena, Sandra; Zambrano, María M

    2014-07-01

    Microbial explorations of hot springs have led to remarkable discoveries and improved our understanding of life under extreme conditions. The Andean Mountains harbor diverse habitats, including an extensive chain of geothermal heated water sources. In this study, we describe and compare the planktonic microbial communities present in five high-mountain hot springs with distinct geochemical characteristics, at varying altitudes and geographical locations in the Colombian Andes. The diversity and structure of the microbial communities were assessed by pyrosequencing the V5 - V6 region of the 16S rRNA gene. The planktonic communities varied in terms of diversity indexes and were dominated by the bacterial phyla Proteobacteria, Aquificae, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, and Thermotogae, with site-specific bacterial taxa also observed in some cases. Statistical analyses showed that these microbial communities were distinct from one another and that they clustered in a manner consistent with physicochemical parameters of the environment sampled. Multivariate analysis suggested that pH and sulfate were among the main variables influencing population structure and diversity. The results show that despite their geographical proximity and some shared geochemical characteristics, there were few shared operational taxonomic units (OTUs) and that community structure was influenced mainly by environmental factors that have resulted in different microbial populations.

  7. Geothermal resources in the Banbury Hot Springs area, Twin Falls County, Idaho

    USGS Publications Warehouse

    Lewis, R.E.; Young, H.W.

    1980-01-01

    Thermal water (30.0 to 72.0 degrees Celsius) is produced from 26 wells and 2 springs in the vicinity of Banbury Hot Springs near Buhl, Idaho. Thermal water is used for space heating of private residences, catfish and tropical fish production, greenhouse operation, swimming pools, and therapeutic baths. In 1979, 10 ,300 acre-feet of thermal water was utilized; heat discharged convectively from the geothermal system was about 1.09 x 10 to the 7th power calories per second. Decline in artesian head and discharge apparent in recorder charts from two wells may represent seasonal fluctuations or may reflect aquifer response to development of the resource. Thermal waters sampled are sodium bicarbonate in character and slightly alkaline. Mixing of a hot (72 degrees Celsius) water with local, cooler ground water can be shown from various relations between stable isotopes, chloride, and enthalpy. On the basis of concentration of trituim , age of the waters sampled is at least 100 years an perhaps more than 1,000 years. One water (33 degress Celsius) may be as young as 29 years. On the basis of silica, sodium-potassium-calcium, and sulfate-water geothermometers, best estimate of the maximum reservoir temperature for the thermal waters is between about 70 and 100 degrees Celsius. (USGS)

  8. Geothermal resources in the Banbury Hot Springs area, Twin Falls County, Idaho

    USGS Publications Warehouse

    Lewis, R.E.; Young, Harold William

    1982-01-01

    Thermal water 30.0 degrees to 72.0 degrees Celsius is produced from 26 wells and 2 springs in the vicinity of Banbury Hot Springs near Buhl, Idaho. Thermal water is used for residence heating, catfish and tropical fish production, greenhouse operation, swimming pools, and therapeutic baths. In 1979, 10,300 acre-feet of thermal water was utilized; heat discharged convectively from the geothermal system was about 1.1 x 107 calories per second. Decline in artesian head and discharge apparent in recorder charts from two wells may represent seasonal fluctuations or may reflect reservoir response to development of the resource. The thermal waters sampled are sodium carbonate or bicarbonate in character and slightly alkaline. Mixing of hot (72 degrees Celsius) water with local cooler ground water can be shown from various relations among stable isotopes, chloride, and enthalpy. On the basis of concentration of tritium, the age of most of the water sampled is at least 100 years and perhaps more than 1,000 years. Some water (33 degrees Celsius) may be as young as 29 years. On the basis of silica, sodium-potassium-calcium, and sulfate-water geothermometers, the best estimate of the maximum reservoir temperature for the thermal water is between 70 degrees and 100 degrees Celsius.

  9. Diversity of Cultured Thermophilic Anaerobes in Hot Springs of Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Lin, L.; Lu, Y.; Dong, X.; Liu, X.; Wei, Y.; Ji, X.; Zhang, C.

    2010-12-01

    Thermophilic anaerobes including Archaea and Bacteria refer to those growing optimally at temperatures above 50°C and do not use oxygen as the terminal electron acceptor for growth. Study on thermophilic anaerobes will help to understand how life thrives under extreme conditions. Meanwhile thermophilic anaerobes are of importance in potential application and development of thermophilic biotechnology. We have surveyed culturable thermophilic anaerobes in hot springs (pH6.5-7.5; 70 - 94°C) in Rehai of Tengchong, Bangnazhang of Longlin, Eryuan of Dali,Yunnan, China. 50 strains in total were cultured from the hot springs water using Hungate anaerobic technique, and 30 strains were selected based on phenotypic diversity for analysis of 16S rDNA sequences. Phylogenetic analysis showed that 28 strains belonged to the members of five genera: Caldanaerobacter, Calaramator, Thermoanaerobacter, Dictyoglomus and Fervidobacterium, which formed five branches on the phylogenetic tree. Besides, 2 strains of methanogenic archaea were obtained. The majority of the isolates were the known species, however, seven strains were identified as novel species affiliated to the five genera based on the lower 16S rDNA sequence similarities (less than 93 - 97%) with the described species. This work would provide the future study on their diversity, distribution among different regions and the potential application of thermophilic enzyme. Supported by State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences(SKLMR-080605)and the Foundation of State Natural Science (30660009, 30960022, 31081220175).

  10. Arsenic rich Himalayan hot spring metagenomics reveal genetically novel predator-prey genotypes.

    PubMed

    Sangwan, Naseer; Lambert, Carey; Sharma, Anukriti; Gupta, Vipin; Khurana, Paramjit; Khurana, Jitendra P; Sockett, R Elizabeth; Gilbert, Jack A; Lal, Rup

    2015-12-01

    Bdellovibrio bacteriovorus are small Deltaproteobacteria that invade, kill and assimilate their prey. Metagenomic assembly analysis of the microbial mats of an arsenic rich, hot spring was performed to describe the genotypes of the predator Bdellovibrio and the ecogenetically adapted taxa Enterobacter. The microbial mats were enriched with Bdellovibrio (1.3%) and several Gram-negative bacteria including Bordetella (16%), Enterobacter (6.8%), Burkholderia (4.8%), Acinetobacter (2.3%) and Yersinia (1%). A high-quality (47 contigs, 25X coverage; 3.5 Mbp) draft genome of Bdellovibrio (strain ArHS; Arsenic Hot Spring) was reassembled, which lacked the marker gene Bd0108 associated with the usual method of prey interaction and invasion for this genus, while maintaining genes coding for the hydrolytic enzymes necessary for prey assimilation. By filtering microbial mat samples (< 0.45 μm) to enrich for small predatory cell sizes, we observed Bdellovibrio-like cells attached side-on to E. coli through electron microscopy. Furthermore, a draft pan-genome of the dominant potential host taxon, Enterobacter cloacae ArHS (4.8 Mb), along with three of its viral genotypes (n = 3; 42 kb, 49 kb and 50 kb), was assembled. These data were further used to analyse the population level evolutionary dynamics (taxonomical and functional) of reconstructed genotypes.

  11. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment

    SciTech Connect

    Barns, S.M.; Fundyga, R.E.; Jeffries, M.W.; Pace, N.R.

    1994-03-01

    Of the three primary phylogenetic domains - Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes) - Archaea is the least understood in terms of its diversity, physiologies, and ecological panorama. Although many species of Crenarchaeota have been isolated, they constitute a relatively tight-knit cluster of lineages in phylogenetic analyses of rRNA sequences. It seemed possible that this limited diversity is merely apparent and reflects only a failure to culture organisms, not their absence. The authors reported here phylogenetic characterization of many archaeal small subunit rRNA gene sequences obtained by polymerase chain reaction amplification of mixed population DNA extracted directly from sediment of a hot spring in Yellowstone National Park. This approach obviates the need for cultivation to identify organisms. The analyses document the existence not only of species belonging to well-characterized crenarchaeal genera or families but also of crenarchaeal species for which no close relatives have so far been found. The large number of distinct archaeal sequence types retrieved from this single hot spring was unexpected and demonstrates that Crenarchaeota is a much more diverse group than was previously suspected. The results have impact on concepts of the phylogenetic organization of Archaea.

  12. Diversity of putative archaeal RNA viruses in metagenomic datasets of a yellowstone acidic hot spring.

    PubMed

    Wang, Hongming; Yu, Yongxin; Liu, Taigang; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-01-01

    Two genomic fragments (5,662 and 1,269 nt in size, GenBank accession no. JQ756122 and JQ756123, respectively) of novel, positive-strand RNA viruses that infect archaea were first discovered in an acidic hot spring in Yellowstone National Park (Bolduc et al., 2012). To investigate the diversity of these newly identified putative archaeal RNA viruses, global metagenomic datasets were searched for sequences that were significantly similar to those of the viruses. A total of 3,757 associated reads were retrieved solely from the Yellowstone datasets and were used to assemble the genomes of the putative archaeal RNA viruses. Nine contigs with lengths ranging from 417 to 5,866 nt were obtained, 4 of which were longer than 2,200 nt; one contig was 204 nt longer than JQ756122, representing the longest genomic sequence of the putative archaeal RNA viruses. These contigs revealed more than 50% sequence similarity to JQ756122 or JQ756123 and may be partial or nearly complete genomes of novel genogroups or genotypes of the putative archaeal RNA viruses. Sequence and phylogenetic analyses indicated that the archaeal RNA viruses are genetically diverse, with at least 3 related viral lineages in the Yellowstone acidic hot spring environment.

  13. Steady states and linear stability analysis of precipitation pattern formation at geothermal hot springs.

    PubMed

    Chan, Pak Yuen; Goldenfeld, Nigel

    2007-10-01

    A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.

  14. A Culture-Independent Survey of the Bacterial Community in a Radon Hot Spring

    NASA Astrophysics Data System (ADS)

    Anitori, Roberto P.; Trott, Cherida; Saul, David J.; Bergquist, Peter L.; Walter, Malcolm R.

    2002-08-01

    Paralana is an active, radon-containing hot spring situated in a region of South Australia's Flinders Ranges with a long history of hydrothermal activity. Our aim was to determine the bacterial composition of Paralana using a culture-independent, 16S rRNA-based technique. The presence of a diverse bacterial community was strongly suggested by the large number (~180) of different ribotypes obtained upon analysis of nine hot spring samples. DNA sequencing of Paralana 16S rRNA genes corroborated this observation, identifying representatives of seven confirmed and two candidate divisions of the domain Bacteria. These included Cyanobacteria, Proteobacteria (both β and δ subdivisions), the Cytophaga-Flexibacter-Bacteroides group, Low G+C Gram-positives, Nitrospira, green non-sulfur bacteria, green sulfur bacteria, OP8, and OP12. No known ionizing radiation-resistant Bacteria were identified. Only one Paralana 16S rRNA sequence type (recombinant B5D) was homologous to a sequence previously identified from a radioactive environment.

  15. Experimental simulation of evaporation-driven silica sinter formation and microbial silicification in hot spring systems.

    PubMed

    Orange, François; Lalonde, Stefan V; Konhauser, Kurt O

    2013-02-01

    Evaporation of silica-rich geothermal waters is one of the main abiotic drivers of the formation of silica sinters around hot springs. An important role in sinter structural development is also played by the indigenous microbial communities, which are fossilized and eventually encased in the silica matrix. The combination of these two factors results in a wide variety of sinter structures and fabrics. Despite this, no previous experimental fossilization studies have focused on evaporative-driven silica precipitation. We present here the results of several experiments aimed at simulating the formation of sinters through evaporation. Silica solutions at different concentrations were repeatedly allowed to evaporate in both the presence and absence of the cyanobacterium Synechococcus elongatus. Without microorganisms, consecutive silica additions led to the formation of well-laminated deposits. By contrast, when microorganisms were present, they acted as reactive surfaces for heterogeneous silica particle nucleation; depending on the initial silica concentration, the deposits were then either porous with a mixture of silicified and unmineralized cells, or they formed a denser structure with a complete entombment of the cells by a thick silica crust. The deposits obtained experimentally showed numerous similarities in terms of their fabric to those previously reported for natural hot springs, demonstrating the complex interplay between abiotic and biotic processes during silica sinter growth.

  16. Steady states and linear stability analysis of precipitation pattern formation at geothermal hot springs

    NASA Astrophysics Data System (ADS)

    Chan, Pak Yuen; Goldenfeld, Nigel

    2007-10-01

    A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.

  17. Microbial community analysis of a coastal hot spring in Kagoshima, Japan, using molecular- and culture-based approaches.

    PubMed

    Nishiyama, Minako; Yamamoto, Shuichi; Kurosawa, Norio

    2013-08-01

    Ibusuki hot spring is located on the coastline of Kagoshima Bay, Japan. The hot spring water is characterized by high salinity, high temperature, and neutral pH. The hot spring is covered by the sea during high tide, which leads to severe fluctuations in several environmental variables. A combination of molecular- and culture-based techniques was used to determine the bacterial and archaeal diversity of the hot spring. A total of 48 thermophilic bacterial strains were isolated from two sites (Site 1: 55.6°C; Site 2: 83.1°C) and they were categorized into six groups based on their 16S rRNA gene sequence similarity. Two groups (including 32 isolates) demonstrated low sequence similarity with published species, suggesting that they might represent novel taxa. The 148 clones from the Site 1 bacterial library included 76 operational taxonomy units (OTUs; 97% threshold), while 132 clones from the Site 2 bacterial library included 31 OTUs. Proteobacteria, Bacteroidetes, and Firmicutes were frequently detected in both clone libraries. The clones were related to thermophilic, mesophilic and psychrophilic bacteria. Approximately half of the sequences in bacterial clone libraries shared <92% sequence similarity with their closest sequences in a public database, suggesting that the Ibusuki hot spring may harbor a unique and novel bacterial community. By contrast, 77 clones from the Site 2 archaeal library contained only three OTUs, most of which were affiliated with Thaumarchaeota.

  18. Structural insights of microbial community of Deulajhari (India) hot spring using 16s-rRNA based metagenomic sequencing.

    PubMed

    Singh, Archana; Subudhi, Enketeswara

    2016-03-01

    Insights about the distribution of the microbial community prove to be the major goal of understanding microbial ecology which remains to be fully deciphered. Hot springs being hub for the thermophilic microbiota attract the attention of the microbiologists. Deulajhari hot spring cluster is located in the Angul district of Odisha. Covered within a wooded area, Deulajhari hot spring is also fed by the plant litter resulting in a relatively high amount of total organic content (TOC). For the first time, Illumina sequencing based biodiversity analysis of microbial composition is studied through amplicon metagenome sequencing of 16s rRNA targeting V3-V4 region using metagenomic DNA from the hot spring sediment. Over 28 phyla were detected through the amplicon metagenome sequencing of which the most dominating phyla at the existing physiochemical parameters like; temperature 69 °C, pH 8.09, electroconductivity 0.025 dSm(- 1) and total organic carbon 0.356%, were Proteobacteria (88.12%), Bacteriodetes (10.76%), Firmicutes (0.35%), Spirochetes (0.18%) and chloroflexi (0.11%). Approximately 713 species were observed at the above physiochemical parameters. The analysis of the metagenome provides the quantitative insights into microbial populations based on the sequence data in Deulajhari hot spring. Metagenome sequence is deposited to SRA database which is available at NCBI with accession no. SRX1459736.

  19. Biogeochemical characteristics of Kuan-Tzu-Ling, Chung-Lun and Bao-Lai hot springs in southern Taiwan.

    PubMed

    Maity, Jyoti Prakash; Liu, Chia-Chuan; Nath, Bibhash; Bundschuh, Jochen; Kar, Sandeep; Jean, Jiin-Shuh; Bhattacharya, Prosun; Liu, Jiann-Hong; Atla, Shashi B; Chen, Chien-Yen

    2011-01-01

    Hot springs are the important natural sources of geothermally heated groundwater from the Earth's crust. Kuan-Tzu-Ling (KTL), Chung-Lun (CL) and Bao-Lai (BL) are well-known hot springs in southern Taiwan. Fluid and mud (sediments) samples were collected from the eruption points of three hot springs for detailed biogeochemical characterization. The fluid sample displays relatively high concentrations of Na(+) and Cl(-) compared with K(+), Mg(2+), Ca(2+), NO(2) (-), and SO(4) (2-), suggesting a possible marine origin. The concentrations of Fe, Cr, Mn, Ni, V and Zn were significantly higher in the mud sediments compared with fluids, whereas high concentrations of As, Ba, Cu, Se, Sr and Rb were observed in the fluids. This suggests that electronegative elements were released during sediment-water interactions. High As concentration in the fluids was observed to be associated with low redox (Eh) conditions. The FTIR spectra of the humic acid fractions of the sediments showed the presence of possible functional groups of secondary amines, ureas, urethanesm (amide), and silicon. The sulfate-reducing deltaproteobacterium 99% similar to Desulfovibrio psychrotolerans (GU329907) were rich in the CL hot spring while mesophilic, proteolytic, thiosulfate- and sulfur-reducing bacterium that 99% similar to Clostridium sulfidigenes (GU329908) were rich in the BL hot spring.

  20. Spatial distribution of radioisotopes in the coast of Suez Gulf, southwestern Sinai and the impact of hot springs.

    PubMed

    Ramadan, Kh A; Seddeek, M K; Elnimr, T; Sharshar, T; Badran, H M

    2011-06-01

    This work describes the concentrations of radioisotopes in soil, sediment, wild plants and groundwater in southwestern Sinai. The study area extends from Suez to Abu Rudies along the eastern part of the Suez Gulf. It included two hot springs: Ayun Musa and Hammam Faraoun. No dependence of ¹³⁷Cs concentrations on any of the measured sand characteristics was found, including calcium carbonate. The enrichment of ²²⁶Ra in Hammam Faraoun hot spring was the most prominent feature. The ²²⁶Ra concentration in hot springs of Ayun Musa and Hammam Faraoun were 68 and 2377 Bq kg⁻¹ for sediments, 3.5 and 54.0 Bq kg⁻¹ for wild plants and 205 and 1945 mBq l⁻¹ for the groundwater, respectively. In addition, ²²⁶Ra activity concentration in local sand in the area of Hammam Faraoun was ∼14 times that of Ayun Musa. On the other hand, the ²³²Th concentrations were comparable in the two hot springs, while ¹³⁷Cs concentrations were relatively higher in Ayun Musa. The characteristics and radioelements studies support possible suggestions that the waters in the two hot springs have different contributions of sea and groundwaters crossing different geological layers where the water-rock interaction takes place.

  1. Environmental inputs that can influence carbon isotopic compositions of hot spring biofilms

    NASA Astrophysics Data System (ADS)

    Donatelli, J. L.; Havig, J. R.; Shock, E.

    2011-12-01

    The carbon isotopic compositions of hydrothermal biofilms are influenced by microbial carbon cycling, and can be correlated with the presence or absence of specific genes in environmental genomic analyses (Havig et al., 2011, JGR). Additional isotopic data on potential environmental sources of carbon will enable further tests of the specific pathways of carbon assimilation and cycling throughout hydrothermal ecosystems. Hot springs at Yellowstone National Park (YNP) are often located in open meadows or forested areas with varying amounts of vegetation and exposed soil surrounding the pools. These pools are open systems which have the potential to accumulate allochthonous materials via physical and biogenic processes. These inputs may affect the δ13C signatures of the hot spring waters and the biofilms associated with them. In the YNP hot springs we have studied since 2003, biofilms range in δ13C from -1.2 to -30.7%. Dissolved inorganic carbon (DIC) in coexisting fluids ranges from 4.3 to -3.9%. The heaviest biofilms typically show minimal isotopic fractionation from the DIC in coexisting fluids. DIC values are strongly influenced by inputs from magma degassing, water-rock reactions in the hydrothermal system, and the atmosphere. Dissolved organic carbon (DOC) values for the coexisting fluids range from -16.5 to -26.8%, which are within the range of biofilm δ13C values. DOC values will also be affected by diverse processes as precipitation infiltrates, reacts, and eventually returns to the surface as hydrothermal fluids, but may also be influenced by biologically derived inputs from the local environments where hot springs occur. In an effort to characterize the environmental context of hot springs, we have collected isotopic data on lodgepole pine needles, grasses, soils, insects and bison feces. Of these, the δ13C data for bison feces (-27.7 to -29.6%) are lighter than any of the DOC data. Pine needles (-26.3 to -29.1%) and soils (-24.8 to -27.1%) overlap with

  2. In situ ecophysiology of Aigarchaeota from an oxic, hot-spring filamentous 'streamer' community

    NASA Astrophysics Data System (ADS)

    Beam, J.; Jay, Z.; Tringe, S. G.; Glavina del Rio, T.; Rusch, D.; Schmid, M.; Wagner, M.; Inskeep, W.

    2014-12-01

    The candidate phylum Aigarchaeota contains thermophilic archaea from terrestrial, subsurface, and marine geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, an accurate description of their metabolism, potential ecological interactions, and role in biogeochemical cycling is lacking. Here we report possible ecological interactions and the in situ metabolism of an uncultivated lineage of Aigarchaeota from an oxic, terrestrial hot-spring filamentous 'streamer' community (Octopus Spring, pH = 8; T = 78 - 84 °C, Yellowstone National Park, Wyoming, USA). Fluorescence in situ hybridization (FISH) was combined with detailed genomic and transcriptomic reconstruction to elucidate the ecophysiological role of Aigarchaeota in these streamer communities. This novel population of Aigarchaeota are filamentous (~500 nm diameter by ~10-30 μm length), which is consistent with the morphology predicted by the presence and transcription of a single actin-encoding gene. Aigarchaeota filaments are intricately associated with other community members, which include both thermophilic bacteria and archaea. Metabolic reconstruction suggests that this aigarchaeon is an aerobic, chemoorganotroph. A single heme copper oxidase complex was identified in de novo genome assemblies, and was highly transcribed in environmental samples. Potential electron donors include acetate, fatty acids, sugars, peptides, and aromatic compounds. Transcripts related to genes specific to each of these potential electron donors were identified, indicating that this population of Aigarchaeota likely utilizes a broad range of reduced carbon substrates. Potential electron donors for this population may include extracellular polymeric substances produced by other microorganisms in close proximity. Flagellum genes were also highly transcribed, which suggests a potential mechanism for motility and/or cell-cell attachment

  3. Lipid Biomarkers and Stable Isotope Signatures of Microbial Mats in Hot Springs of Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Romanek, C. S.; Mills, G. L.; Jones, M. E.; Paddock, L.; Li, Y.; Zhang, C. L.; Wiegel, J.

    2004-12-01

    Various hot springs of the Uzon Caldera, Kamchatka, were analyzed for their chemical and stable isotope composition to better understand the relationship(s) between thermophilic microorganisms and the environments in which they live. The springs had water temperatures ranging from 40-90\\deg C and pH ranging from 5.6-5.9. Gases that emanated from the springs were composed predominantly of CO2 (20 to 90%), with lesser amounts of CH4, (< 20%), H2, NH3 and SO2. Because the springs were acidic, they contained little dissolved inorganic carbon (DIC: millimol L-1) and sulfide (< 200 ppb), yet in some cases where microbial activity was relatively high, these constituents reached the millimol L-1 and ppm range, respectively. Total biomass displayed a relatively large range of carbon isotope compositions that ranged from -5.7 to -22.4 per mil, which may reflect the large range of carbon sources, varied CO2 fixation pathways, or other unknown mechanisms. Microbial mats were freeze-dried and extracted for lipid biomarker analysis. The lipids were separated into hydrocarbon, sterol, ether lipid, free fatty acid, and phospholipid fatty acid (PLFA) fractions. Among these fractions, PLFA indicated the community structure and abundance for Bacteria while the ether lipid fraction provided analogous information for Archaea. Results of PLFA showed 16:0 as the most abundant fatty acid (33-44%), which is universal in all living organisms. Other significant biomarkers included 18:1ω (19 to 24%), 18:2ω (5 to 13%), 16:1ω (3 to 12%), and 18:0 (2 to 7%). These biomarkers are characteristic of cyanobacteria, green-sulfur bacteria, and green non-sulfur bacteria, respectively, which are common autotrophic organisms in terrestrial hot springs. On the other hand, biomarkers of heterotrophic bacteria, such as iso- and anteiso-15:0 were low (2-8%), indicating that the bacterial carbon cycle was dominated by autotrophic organisms. Analogous archaeal constituents were present in significant

  4. Geothermal heating from Pinkerton Hot Springs at Colorado Timberline Academy, Durango, Colorado. Final technical report

    SciTech Connect

    Allen, C.C.; Allen, R.W.; Beldock, J.

    1981-11-08

    The efforts to establish a greater pool of knowledge in the field of low temperature heat transfer for the application of geothermal spring waters to space heating are described. A comprehensive set of heat loss experiments involving passive radiant heating panels is conducted and the results presented in an easily interpretable form. Among the conclusions are the facts that heating a 65 to 70 F/sup 0/ space with 90 to 100 F/sup 0/ liquids is a practical aim. The results are compared with the much lower rates published in the American Society of Heating Refrigeration and Air Conditioning Engineers SYSTEMS, 1976. A heat exchange chamber consisting of a 1000 gallon three compartment, insulated and buried tank is constructed and a control and pumping building erected over the tank. The tank is intended to handle the flow of geothermal waters from Pinkerton Hot Springs at 50 GPM prior to the wasting of the spring water at a disposal location. Approximately 375,000 Btu per hour should be available for heating assuming a 15 F/sup 0/ drop in water temperature. A combination of the panel heat loss experiments, construction of the heat exchange devices and ongoing collection of heat loss numbers adds to the knowledge available to engineers in sizing low temperature heat systems, useful in both solar and geothermal applications where source temperature may be often below 110 F/sup 0/.

  5. Hydrogen-isotopic variability in fatty acids from Yellowstone National Park hot spring microbial communities

    NASA Astrophysics Data System (ADS)

    Osburn, Magdalena R.; Sessions, Alex L.; Pepe-Ranney, Charles; Spear, John R.

    2011-09-01

    We report the abundances and hydrogen-isotopic compositions (D/H ratios) of fatty acids extracted from hot-spring microbial mats in Yellowstone National Park. The terrestrial hydrothermal environment provides a useful system for studying D/H fractionations because the numerous microbial communities in and around the springs are visually distinct, separable, and less complex than those in many other aquatic environments. D/H fractionations between lipids and water ranged from -374‰ to +41‰ and showed systematic variations between different types of microbial communities. Lipids produced by chemoautotrophic hyperthermophilic bacteria, such as icosenoic acid (20:1), generally exhibited the largest and most variable fractionations from water (-374‰ to -165‰). This was in contrast to lipids characteristic of heterotrophs, such as branched, odd chain-length fatty acids, which had the smallest fractionations (-163‰ to +41‰). Mats dominated by photoautotrophs exhibited intermediate fractionations similar in magnitude to those expressed by higher plants. These data support the hypothesis that variations in lipid D/H are strongly influenced by central metabolic pathways. Shifts in the isotopic compositions of individual fatty acids across known ecological boundaries show that the isotopic signature of specific metabolisms can be recognized in modern environmental samples, and potentially recorded in ancient ones. Considering all sampled springs, the total range in D/H ratios is similar to that observed in marine sediments, suggesting that the trends observed here are not exclusive to the hydrothermal environment.

  6. Preferential soft-tissue preservation in the Hot Creek carbonate spring deposit, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Rainey, Dustin K.; Jones, Brian

    2010-05-01

    The relict Holocene Hot Creek carbonate spring deposit in southeast British Columbia is characterized by excellent preservation of soft-tissue organisms (e.g. cyanobacteria), but poor preservation of organisms with hard-tissue (e.g. wood, diatoms). The deposit is formed mainly of calcified cyanobacteria, with fewer mineralized macrophytes (plants), bryophytes (mosses), wood, and diatoms. Cyanobacteria grew as solitary filaments ( Lyngbya) and as radiating hemispherical colonies ( Rivularia). Both were preserved by encrustation and encapsulation while alive, and as casts after filament death and decay. Sheath impregnation was rare to absent. Filament encrustation, whereby calcite crystals nucleated on, and grew away from the sheath exterior, produced moulds that replicated external filament morphology, but hastened filament decay. Filament encapsulation, whereby calcite nucleated in the vicinity of, and grew towards the encapsulated filament, promoted sheath preservation even after trichome decay. Subsequent calcite precipitation inside the hollow sheath generated sheath casts. The inability of mineralizing spring water to penetrate durable cell walls meant that bryophytes, macrophytes, and most wood was preserved by encrustation. Some wood resisted complete decay for several thousand years, and its lignified cell walls allowed rare permineralizations. Diatoms were not preserved in the relict deposit because the frustules were dissolved by the basic spring water. Amorphous calcium carbonate produced by photosynthetic CO 2 removal may have acted as nucleation sites for physicochemically precipitated calcite. Thus, metabolic activities of floral organisms probably initiated biotic mineralization, but continuous inorganic calcite precipitation on and in flora ensured that soft tissues were preserved.

  7. Geochemistry of fluids from submarine hot springs at Punta de Mita, Nayarit, Mexico

    NASA Astrophysics Data System (ADS)

    Taran, Y. A.; Inguaggiato, S.; Marin, M.; Yurova, L. M.

    2002-06-01

    Thermal springs with a maximum measured temperature of 89°C discharge hot water and gas from a depth of 11 m, 400 m offshore of Punta Pantoque, located in the northern part of Bahı´a de Banderas, near Puerto Vallarta, Mexico. The composition of all water samples collected from the sea bottom is close to that of sea water. Nevertheless, it was possible to estimate the thermal endmember composition by extrapolating the sulfate concentration to zero. This endmember is similar in chemical composition both to waters of the Rio Purificacion and La Tuna thermal springs, located to the South along the Pacific coast of the Jalisco Block, and to pore waters from the deep-sea drilling cores from some accretionary complexes. Gas composition as well as isotopic composition of He and carbon from CO 2, CH 4 and C 2H 6 suggests an essentially thermo-biogenic origin for the gas and the presence of a high proportion of radiogenic, crustal helium. Isotopic composition of He in the Punta de Mita gas (0.4 Ra) is the lowest ever measured in Mexican hydrothermal gases. These findings do not support the idea that there exists a direct connection between the Punta de Mita springs and the last volcanic events which occurred in this area at ˜3 Ma. Rather, this hydrothermal activity is related to deep active faulting and the existence of a deep regional aquifer or local aquifers of connate waters underlying the granites of the Jalisco Block.

  8. Origin of platy calcite crystals in hot-spring deposits in the Kenya Rift Valley

    SciTech Connect

    Jones, B.; Renault, R.W.

    1998-09-01

    Platy calcite crystals, which have their c axis parallel to their shortest length axis, are common components of travertine deposits found around some hot springs in the Kenya Rift Valley. They are composite crystals formed of numerous paper-thin subcrystals. Individual plates allowed to grow without obstruction develop a hexagonal motif. The Kenyan crystals typically form in hot (>75 C) waters that have a low Ca content (<10 mg/l), a high CO{sub 2} content, and a high rate of CO{sub 2} degassing. At Chemurkeu, aggregates of numerous small platy crystals collectively form lattice crystals that superficially resemble ray crystals. The walls of the lattice crystals are formed of large platy crystals that have their long and intermediate length axes aligned parallel to the plane of the long axis of the lattice crystal. Internally, the lattice crystals are formed of small platy calcite crystals arranged in a boxlike pattern that creates the appearance of a lattice when viewed in thin section. Lattice crystals are highly porous, with each pore being enclosed by platy crystals. At Lorusio, travertines are mainly formed of pseudodentrites that are constructed by numerous small platy crystals attached to a main stem which is a large platy crystal that commonly curves along its long axis. The pseudodentrites are the main construction blocks in ledges and lilypads that form in the vent pool and spring outflow channels, where the water is too hot for microbes other than hyperthermophiles. The platy calcite crystals in the Kenyan travertines are morphologically similar to platy calcite crystals that form as scale in pipes in the geothermal fields of New Zealand and hydrothermal angel wing calcite from the La Fe mine in Mexico. Comparison of the Kenyan and New Zealand crystals indicates that platy calcite crystals form from waters with a low Ca{sup 2+} content and a high CO{sub 3}/Ca ratio due to rapid rates of CO{sub 2} degassing.

  9. Some investigations of the deposition of travertine from Hot Springs-I. The isotopic chemistry of a travertine-depositing spring

    USGS Publications Warehouse

    Friedman, I.

    1970-01-01

    The isotopic compositions of the travertine and of the hot spring solutions were studied at Main Springs and New Highland Terrace in the Mammoth Hot Springs area of Yellowstone Park. The springs issue at 74??C and a pH of 6.65 and the carbon isotopic composition of the travertine depositing at the orifice is +2%.??C13 (PDB). As the water travels out from the orifice, it cools and loses CO2. The travertine depositing at lower temperature is enriched in C13, reaching values of +4.8%. and the solution has a pH of 8.2 at 27??C. The ??C13 of the carbon species in solution is about -2.3%. at 74?? and about +4.3 at 27??C. Therefore, the difference in ??C13 between the solid and solution is approximately 4%. at 74?? and decreases to zero at about 20??C. These differences are shown to be due to kinetic (non-equilibrium) factors. The ??O18 contents of the travertine and water show that in most samples the carbonate oxygen is in equilibrium with the water O18 at the temperatures of deposition. This is especially true for travertine depositing slowly and at temperatures above about 50??C. Calculations based on pH and alkalinity titrations of the hot spring waters in situ show that at the spring orifice the water is very high in free CO2, which is quickly lost in transit. The springs are supersaturated with respect to both aragonite and calcite during most of their travel in the open air. The carbon isotopic composition of the travertine is similar to that in the marine carbonates that are adjacent to the springs and that are the probable source of the calcium carbonate. The travertine from inactive prehistoric springs near Mammoth has similar ??C13 and O18 to that from the active springs. Soda Butte, an inactive center 25 miles east of Mammoth, contains heavier carbon and oxygen than the springs near Mammoth. ?? 1970.

  10. Inversion modeling of multiple geophysical data sets for geothermal exploration: application to Roosevelt Hot Springs area. Final report

    SciTech Connect

    Savino, J.M.; Rodi, W.L.; Masso, J.F.

    1982-04-01

    The theoretical basis for modeling the arrival times of local earthquake P waves at a network of seismic stations is described. A technique for separating the dependence of network arrival times on velocity structure from the dependence on the earthquake location parameters is presented. Commented computer listings of the forward modeling algorithms developed in part under DOE support are given. The local arrival time and Bouguer gravity data sets acquired for the Roosevelt and Leach Hot Springs areas are described. The Leach data were found to be inadequate so the emphasis is on the editing and processing the Roosevelt Hot Springs data prior to inversion. The inversion model for the Roosevelt Hot Springs area obtained from a joint inversion of seismic and gravity data is described. The more robust features of the final model are discussed in light of the known geology and geophysics of the area and are compared to results obtained from related studies. (MHR)

  11. Disturbance, A Mechanism for Increased Microbial Diversity in a Yellowstone National Park Hot Spring Mixing Zone

    NASA Astrophysics Data System (ADS)

    Howells, A. E.; Oiler, J.; Fecteau, K.; Boyd, E. S.; Shock, E.

    2014-12-01

    The parameters influencing species diversity in natural ecosystems are difficult to assess due to the long and experimentally prohibitive timescales needed to develop causative relationships among measurements. Ecological diversity-disturbance models suggest that disturbance is a mechanism for increased species diversity, allowing for coexistence of species at an intermediate level of disturbance. Observing this mechanism often requires long timescales, such as the succession of a forest after a fire. In this study we evaluated the effect of mixing of two end member hydrothermal fluids on the diversity and structure of a microbial community where disturbance occurs on small temporal and spatial scales. Outflow channels from two hot springs of differing geochemical composition in Yellowstone National Park, one pH 3.3 and 36 °C and the other pH 7.6 and 61 °C flow together to create a mixing zone on the order of a few meters. Geochemical measurements were made at both in-coming streams and at a site of complete mixing downstream of the mixing zone, at pH 6.5 and 46 °C. Compositions were estimated across the mixing zone at 1 cm intervals using microsensor temperature and conductivity measurements and a mixing model. Qualitatively, there are four distinct ecotones existing over ranges in temperature and pH across the mixing zone. Community analysis of the 16S rRNA genes of these ecotones show a peak in diversity at maximal mixing. Principle component analysis of community 16S rRNA genes reflects coexistence of species with communities at maximal mixing plotting intermediate to communities at distal ends of the mixing zone. These spatial biological and geochemical observations suggest that the mixing zone is a dynamic ecosystem where geochemistry and biological diversity are governed by changes in the flow rate and geochemical composition of the two hot spring sources. In ecology, understanding how environmental disruption increases species diversity is a foundation

  12. Comparative study of the silica and cation geothermometry of the Malawi hot springs: Potential alternative energy source

    NASA Astrophysics Data System (ADS)

    Dulanya, Zuze; Morales-Simfors, Nury; Sivertun, Åke

    2010-06-01

    Malawi is one of the poorest countries in the world and one of the most densely populated in south-eastern Africa. Its major power source is hydro-electricity. During the past few years, the power generation capacity has been reduced, which has impacted negatively on the socio-economic development of the country. The country holds an enormous potential to generate geothermal energy due to the country's position within the Great African Rift valley. This could contribute to economic growth, poverty reduction and technological development in Malawi. The paper presents findings of research on comparisons between silica (quartz and chalcedony) and cation geothermometers (Na-K, Na-K-Ca and K-Mg) of hot springs in the Malawi Rift, in order to deduce the temperature at depth of selected hot springs. The saturation indices of most springs have a bearing on the geology of the areas where these hot springs are found. The Na-K geothermometers are, in general, higher than the Na-K-Ca geothermometer and the K-Mg geothermometer shows temperatures that are too low to be considered. The difference in the results between the different geothermometers may indicate shallow conditions of mixing with groundwater. Results also indicate that some hot springs have sufficient heat-generating capabilities and warrant further exploration work to assess their suitability for energy generation.

  13. Cultivation and properties of Echinamoeba thermarum n. sp., an extremely thermophilic amoeba thriving in hot springs.

    PubMed

    Baumgartner, Manuela; Yapi, Ahoua; Gröbner-Ferreira, Regina; Stetter, Karl O

    2003-08-01

    Here we describe a new, extremely thermophilic amoeba growing between 33 degrees C and 57 degrees C ( Topt.=50 degrees C). Isolates had been obtained from hot springs at Agnano Terme (Italy), Yellowstone National Park (USA), Kamchatka (Russia), and the Arenal Volcano (Costa Rica). They could be cultured monoxenically on a thermophilic alpha-proteobacterium. The morphology of the amoeba was studied using a microscope situated under a heatable polyacrylate hood. At 50 degrees C, the cells appeared flat with an irregular triangular or elongate shape, sometimes exhibiting fine spine-like subpseudopodia. On average, they were 22 microm long and 11 microm wide and had one nucleus with a central nucleolus. Based on morphology and on SSU rRNA comparisons, the amoeba belonged to the genus Echinamoeba, where it represents a new species. Referring to its extremely thermophilic lifestyle and its hydrothermal habitat, we name it E. thermarum. PMID:12910386

  14. Flood elevations for the Soleduck River at Sol Duc Hot Springs, Clallam County, Washington

    USGS Publications Warehouse

    Nelson, L.M.

    1983-01-01

    Elevations and inundation areas of a 100-year flood of the Soleduck River, Washington, were determined by the U.S. Geological Survey for the area in the vicinity of the Sol Duc Hot Springs resort, a public facility in the Olympic National Park that under Federal law must be located beyond or protected from damage by a 100-year flood. Results show that most flooding could be eliminated by raising parts of an existing dike. In general, little flood damage is expected, except at the southern end of an undeveloped airstrip that could become inundated and hazardous due to flow from a tributary. The airstrip is above the 100-year flood of the Soleduck River.

  15. Thermophilic biohydrogen production by an anaerobic heat treated-hot spring culture.

    PubMed

    Karadag, Dogan; Mäkinen, Annukka E; Efimova, Elena; Puhakka, Jaakko A

    2009-12-01

    Batch experiments were conducted to investigate the thermophilic biohydrogen production using an enrichment culture from a Turkish hot spring. Following the enrichment, the culture was heat treated at 100 degrees C for 10 min to select for spore-forming bacteria. H(2) production was accompanied by production of acetate, butyrate, lactate and ethanol. H(2) production was associated by acetate-butyrate type fermentation while accumulation of lactate and ethanol negatively affected the H(2) yield. H(2) production was highest in the temperature range from 49.6 to 54.8 degrees C and optimum values for initial pH and concentrations of iron, yeast extract and glucose were 6.5, 40 mg/l, 4-13.5 g/l, respectively. PCR-DGGE profiling showed that the heat treated culture consisted of species closely affiliated to genus Thermoanaerobacterium.

  16. Conceptual geologic model and native state model of the Roosevelt Hot Springs hydrothermal system

    SciTech Connect

    Faulder, D.D.

    1991-01-01

    A conceptual geologic model of the Roosevelt Hot Springs hydrothermal system was developed by a review of the available literature. The hydrothermal system consists of a meteoric recharge area in the Mineral Mountains, fluid circulation paths to depth, a heat source, and an outflow plume. A conceptual model based on the available data can be simulated in the native state using parameters that fall within observed ranges. The model temperatures, recharge rates, and fluid travel times are sensitive to the permeability in the Mineral Mountains. The simulation results suggests the presence of a magma chamber at depth as the likely heat source. A two-dimensional study of the hydrothermal system can be used to establish boundary conditions for further study of the geothermal reservoir. 33 refs., 9 figs.

  17. Conceptual geologic model and native state model of the Roosevelt Hot Springs hydrothermal system

    SciTech Connect

    Faulder, D.D.

    1991-01-01

    A conceptual geologic model of the Roosevelt Hot Springs hydrothermal system was developed by a review of the available literature. The hydrothermal system consists of a meteoric recharge area in the Mineral Mountains, fluid circulation paths to depth, a heat source, and an outflow plume. A conceptual model based on the available data can be simulated in the native state using parameters that fall within observed ranges. The model temperatures, recharge rates, and fluid travel times are sensitive to the permeability in the Mineral Mountains. The simulation results suggests the presence of a magma chamber at depth as the likely heat source. A two-dimensional study of the hydrothermal system can be used to establish boundary conditions for further study of the geothermal reservoir.

  18. North Western Spain hot springs are a source of lipolytic enzyme-producing thermophilic microorganisms.

    PubMed

    Deive, Francisco J; Alvarez, María S; Sanromán, M Angeles; Longo, Maria A

    2013-02-01

    Several hot springs in Galicia (North Western Spain) have been investigated as potential sources of lipolytic enzyme-producing thermophilic microorganisms. After isolating 12 esterase producing strains, 9 of them were assured to be true lipase producers, and consequently grown in submerged cultures, obtaining high extracellular activities by two of them. Furthermore, a preliminary partial characterization of the crude lipase, obtained by ultrafiltration of the cell-free culture supernatant, was carried out at several pH and temperature values. It is outstanding that several enzymes turned out to be multiextremozymes, since they had their optimum temperature and pH at typical values from thermoalkalophiles. The thermal stability in aqueous solution of the crude enzymes was also assayed, and the influence of some potential enzyme stabilizing compounds was tested. Finally, the viability of the selected microorganisms has been demonstrated at bioreactor scale.

  19. North Western Spain hot springs are a source of lipolytic enzyme-producing thermophilic microorganisms.

    PubMed

    Deive, Francisco J; Alvarez, María S; Sanromán, M Angeles; Longo, Maria A

    2013-02-01

    Several hot springs in Galicia (North Western Spain) have been investigated as potential sources of lipolytic enzyme-producing thermophilic microorganisms. After isolating 12 esterase producing strains, 9 of them were assured to be true lipase producers, and consequently grown in submerged cultures, obtaining high extracellular activities by two of them. Furthermore, a preliminary partial characterization of the crude lipase, obtained by ultrafiltration of the cell-free culture supernatant, was carried out at several pH and temperature values. It is outstanding that several enzymes turned out to be multiextremozymes, since they had their optimum temperature and pH at typical values from thermoalkalophiles. The thermal stability in aqueous solution of the crude enzymes was also assayed, and the influence of some potential enzyme stabilizing compounds was tested. Finally, the viability of the selected microorganisms has been demonstrated at bioreactor scale. PMID:22763779

  20. Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California

    USGS Publications Warehouse

    Kulp, T.R.; Hoeft, S.E.; Asao, M.; Madigan, M.T.; Hollibaugh, J.T.; Fisher, J.C.; Stolz, J.F.; Culbertson, C.W.; Miller, L.G.; Oremland, R.S.

    2008-01-01

    Phylogenetic analysis indicates that microbial arsenic metabolism is ancient and probably extends back to the primordial Earth. In microbial biofilms growing on the rock surfaces of anoxic brine pools fed by hot springs containing arsenite and sulfide at high concentrations, we discovered light-dependent oxidation of arsenite [As(III)] to arsenate [As(V)] occurring under anoxic conditions. The communities were composed primarily of Ectothiorhodospira-like purple bacteria or Oscillatoria-like cyanobacteria. A pure culture of a photosynthetic bacterium grew as a photoautotroph when As(III) was used as the sole photosynthetic electron donor. The strain contained genes encoding a putative As(V) reductase but no detectable homologs of the As(III) oxidase genes of aerobic chemolithotrophs, suggesting a reverse functionality for the reductase. Production of As(V) by anoxygenic photosynthesis probably opened niches for primordial Earth's first As(V)-respiring prokaryotes.

  1. Aquaculture facility potential at Boulder Hot Springs, Boulder, Montana. GTA Report No. 1

    SciTech Connect

    Keller, J.G.

    1981-11-01

    The potential of using geothermal water to develop a commercial aquaculture facility to raise channel catfish at Boulder Hot Springs, Montana is examined. Maximum catfish growth occurs in water with a temperature from 80/sup 0/F to 85/sup 0/F. This temperature can be maintaned when the 175/sup 0/F geothermal water is mixed with the available 55/sup 0/F water. The only economically viable culture considered was the raceway culture. The 4000 gpm supply of 55/sup 0/F water could supply 7 to 8 raceways with a total production of 269,000 to 307,000 pounds of catfish per year. This operation, discounting the purchase of land, would cost about $150,000 (1980).

  2. Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring

    NASA Astrophysics Data System (ADS)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Ta, Kaiwen

    2016-04-01

    The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, we studied in situ ammonia oxidation rates and the diversity of ammonia-oxidizing Archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface and bottom sediments were 4.80 and 5.30 nmol N g-1 h-1, respectively. Real-time quantitative polymerase chain reaction (qPCR) indicated that the archaeal 16S rRNA genes and amoA genes were present in the range of 0.128 to 1.96 × 108 and 2.75 to 9.80 × 105 gene copies g-1 sediment, respectively, while bacterial amoA was not detected. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic Candidatus Nitrosocaldus yellowstonii, which represented the most abundant operational taxonomic units (OTU) in both surface and bottom sediments. The archaeal predominance was further supported by fluorescence in situ hybridization (FISH) visualization. The cell-specific rate of ammonia oxidation was estimated to range from 0.410 to 0.790 fmol N archaeal cell-1 h-1, higher than those in the two US Great Basin hot springs. These results suggest the importance of archaeal rather than bacterial ammonia oxidation in driving the nitrogen cycle in terrestrial geothermal environments.

  3. Genome Analysis of a New Rhodothermaceae Strain Isolated from a Hot Spring.

    PubMed

    Goh, Kian Mau; Chan, Kok-Gan; Lim, Soon Wee; Liew, Kok Jun; Chan, Chia Sing; Shamsir, Mohd Shahir; Ee, Robson; Adrian, Tan-Guan-Sheng

    2016-01-01

    A bacterial strain, designated RA, was isolated from water sample of a hot spring on Langkawi Island of Malaysia using marine agar. Strain RA is an aerophilic and thermophilic microorganism that grows optimally at 50-60°C and is capable of growing in marine broth containing 1-10% (w/v) NaCl. 16S rRNA gene sequence analysis demonstrated that this strain is most closely related (<90% sequence identity) to Rhodothermaceae, which currently comprises of six genera: Rhodothermus (two species), Salinibacter (three species), Salisaeta (one species), Rubricoccus (one species), Rubrivirga (one species), and Longimonas (one species). Notably, analysis of average nucleotide identity (ANI) values indicated that strain RA may represent the first member of a novel genus of Rhodothermaceae. The draft genome of strain RA is 4,616,094 bp with 3630 protein-coding gene sequences. Its GC content is 68.3%, which is higher than that of most other genomes of Rhodothermaceae. Strain RA has genes for sulfate permease and arylsulfatase to withstand the high sulfur and sulfate contents of the hot spring. Putative genes encoding proteins involved in adaptation to osmotic stress were identified which encode proteins namely Na(+)/H(+) antiporters, a sodium/solute symporter, a sodium/glutamate symporter, trehalose synthase, malto-oligosyltrehalose synthase, choline-sulfatase, potassium uptake proteins (TrkA and TrkH), osmotically inducible protein C, and the K(+) channel histidine kinase KdpD. Furthermore, genome description of strain RA and comparative genome studies in relation to other related genera provide an overview of the uniqueness of this bacterium. PMID:27471502

  4. Microbial Fe(III) oxide reduction potential in Chocolate Pots hot spring, Yellowstone National Park.

    PubMed

    Fortney, N W; He, S; Converse, B J; Beard, B L; Johnson, C M; Boyd, E S; Roden, E E

    2016-05-01

    Chocolate Pots hot springs (CP) is a unique, circumneutral pH, iron-rich, geothermal feature in Yellowstone National Park. Prior research at CP has focused on photosynthetically driven Fe(II) oxidation as a model for mineralization of microbial mats and deposition of Archean banded iron formations. However, geochemical and stable Fe isotopic data have suggested that dissimilatory microbial iron reduction (DIR) may be active within CP deposits. In this study, the potential for microbial reduction of native CP Fe(III) oxides was investigated, using a combination of cultivation dependent and independent approaches, to assess the potential involvement of DIR in Fe redox cycling and associated stable Fe isotope fractionation in the CP hot springs. Endogenous microbial communities were able to reduce native CP Fe(III) oxides, as documented by most probable number enumerations and enrichment culture studies. Enrichment cultures demonstrated sustained DIR driven by oxidation of acetate, lactate, and H2 . Inhibitor studies and molecular analyses indicate that sulfate reduction did not contribute to observed rates of DIR in the enrichment cultures through abiotic reaction pathways. Enrichment cultures produced isotopically light Fe(II) during DIR relative to the bulk solid-phase Fe(III) oxides. Pyrosequencing of 16S rRNA genes from enrichment cultures showed dominant sequences closely affiliated with Geobacter metallireducens, a mesophilic Fe(III) oxide reducer. Shotgun metagenomic analysis of enrichment cultures confirmed the presence of a dominant G. metallireducens-like population and other less dominant populations from the phylum Ignavibacteriae, which appear to be capable of DIR. Gene (protein) searches revealed the presence of heat-shock proteins that may be involved in increased thermotolerance in the organisms present in the enrichments as well as porin-cytochrome complexes previously shown to be involved in extracellular electron transport. This analysis offers

  5. Genome Analysis of a New Rhodothermaceae Strain Isolated from a Hot Spring

    PubMed Central

    Goh, Kian Mau; Chan, Kok-Gan; Lim, Soon Wee; Liew, Kok Jun; Chan, Chia Sing; Shamsir, Mohd Shahir; Ee, Robson; Adrian, Tan-Guan-Sheng

    2016-01-01

    A bacterial strain, designated RA, was isolated from water sample of a hot spring on Langkawi Island of Malaysia using marine agar. Strain RA is an aerophilic and thermophilic microorganism that grows optimally at 50–60°C and is capable of growing in marine broth containing 1–10% (w/v) NaCl. 16S rRNA gene sequence analysis demonstrated that this strain is most closely related (<90% sequence identity) to Rhodothermaceae, which currently comprises of six genera: Rhodothermus (two species), Salinibacter (three species), Salisaeta (one species), Rubricoccus (one species), Rubrivirga (one species), and Longimonas (one species). Notably, analysis of average nucleotide identity (ANI) values indicated that strain RA may represent the first member of a novel genus of Rhodothermaceae. The draft genome of strain RA is 4,616,094 bp with 3630 protein-coding gene sequences. Its GC content is 68.3%, which is higher than that of most other genomes of Rhodothermaceae. Strain RA has genes for sulfate permease and arylsulfatase to withstand the high sulfur and sulfate contents of the hot spring. Putative genes encoding proteins involved in adaptation to osmotic stress were identified which encode proteins namely Na+/H+ antiporters, a sodium/solute symporter, a sodium/glutamate symporter, trehalose synthase, malto-oligosyltrehalose synthase, choline-sulfatase, potassium uptake proteins (TrkA and TrkH), osmotically inducible protein C, and the K+ channel histidine kinase KdpD. Furthermore, genome description of strain RA and comparative genome studies in relation to other related genera provide an overview of the uniqueness of this bacterium. PMID:27471502

  6. Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing

    PubMed Central

    Chan, Chia Sing; Chan, Kok-Gan; Tay, Yea-Ling; Chua, Yi-Heng; Goh, Kian Mau

    2015-01-01

    The Sungai Klah (SK) hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-m-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0–9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3-V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream) and geochemical parameters (broad temperature and pH range). It is speculated that symbiotic relationships occur between the members of the community. PMID:25798135

  7. Complex polar lipids of a hot spring cyanobacterial mat and its cultivated inhabitants

    NASA Technical Reports Server (NTRS)

    Ward, D. M.; Panke, S.; Kloppel, K. D.; Christ, R.; Fredrickson, H.

    1994-01-01

    The complex polar lipids of the hot spring cyanobacterial mat in the 50 to 55 degrees C region of Octopus Spring, Yellowstone National Park, and of thermophilic bacteria cultivated from this or similar habitats, were compared in an attempt to understand the microbial sources of the major lipid biomarkers in this community. Intact complex lipids were analyzed directly by fast atom bombardment mass spectrometry (FAB-MS), two-dimensional thin-layer chromatography (TLC), and combined TLC-FAB-MS. FAB-MS and TLC gave qualitatively similar results, suggesting that the mat contains major lipids most like those of the cyanobacterial isolate we studied, Synechococcus sp. strain Y-7c-s. These include monoglycosyl, diglycosyl, and sulfoquinosovyl diglycerides (MG, DG, and SQ, respectively) and phosphatidyl glycerol (PG). Though Chloroflexus aurantiacus also contains MG, DG, and PG, the fatty acid chain lengths of mat MGs, DGs, and PGs resemble more those of cyanobacterial than green nonsulfur bacterial lipids. FAB-MS spectra of the lipids of nonphototrophic bacterial isolates were distinctively different from those of the mat and phototrophic isolates. The lipids of these nonphototrophic isolates were not detected in the mat, but most could be detected when added to mat samples. The mat also contains major glycolipids and aminophospholipids of unknown structure and origin. FAB-MS and TLC did not always give quantitatively similar results. In particular, PG and SQ may give disproportionately high FAB-MS responses.

  8. Archaeal Community Structures in the Solfataric Acidic Hot Springs with Different Temperatures and Elemental Compositions

    PubMed Central

    Watanabe, Keiko; Yamamoto, Hideo; Yamamoto, Shuichi

    2013-01-01

    Archaeal 16S rRNA gene compositions and environmental factors of four distinct solfataric acidic hot springs in Kirishima, Japan were compared. The four ponds were selected by differences of temperature and total dissolved elemental concentration as follows: (1) Pond-A: 93°C and 1679 mg L−1, (2) Pond-B: 66°C and 2248 mg L−1, (3) Pond-C: 88°C and 198 mg L−1, and (4) Pond-D: 67°C and 340 mg L−1. In total, 431 clones of 16S rRNA gene were classified into 26 phylotypes. In Pond-B, the archaeal diversity was the highest among the four, and the members of the order Sulfolobales were dominant. The Pond-D also showed relatively high diversity, and the most frequent group was uncultured thermoacidic spring clone group. In contrast to Pond-B and Pond-D, much less diverse archaeal clones were detected in Pond-A and Pond-C showing higher temperatures. However, dominant groups in these ponds were also different from each other. The members of the order Sulfolobales shared 89% of total clones in Pond-A, and the uncultured crenarchaeal groups shared 99% of total Pond-C clones. Therefore, species compositions and biodiversity were clearly different among the ponds showing different temperatures and dissolved elemental concentrations. PMID:23710131

  9. Light stable isotope study of the Roosevelt Hot Springs thermal area, Southwestern Utah

    SciTech Connect

    Rohrs D.T.; Bowman, J.R.

    1980-05-01

    The isotopic composition of hydrogen, oxygen, and carbon has been determined for regional cold springs, thermal fluids, and rocks and minerals from the Roosevelt Hot Springs thermal area. The geothermal system has developed within plutonic granitic rocks and amphibolite facies gneiss, relying upon fracture-controlled permeability for the migration of the thermal fluids. Probably originating as meteoric waters in the upper elevations of the Mineral Mountains, the thermal waters sampled in the production wells display an oxygen isotopic shift of at least +1.2. Depletions of delta /sup 18/O in wole rock, K-feldspar, and biotite have a positive correlation with alteration intensity. W/R mass ratios, calculated from the isotopic shifts of rock and water, range up to 3.0 in a producing horizon of one well, although the K-feldspar has experienced only 30% exchange with the thermal waters. While veinlet quartz has equilibrated with the thermal waters, the /sup 18/O values of K-mica clay, an alteration product of plagioclase, mimic the isotopic composition of K-feldspar and whole rock. This suggests that locally small W/R ratios enable plagioclase to influence its alteration products by isotopic exchange.

  10. Onsen (hot springs) in Japan--transforming terrain into healing landscapes.

    PubMed

    Serbulea, Mihaela; Payyappallimana, Unnikrishnan

    2012-11-01

    Japan is situated on the Pacific fire rim and has a large number of hot springs (onsens). There are over 27,000 sources of such springs and the country has a well regulated system of onsens. Within this geographical and cultural peculiarities certain unique traditional health practices have evolved, prominent among which is Touji or onsen therapy. The article highlights various healing practices surrounding onsens, institutionalization of these practices, current policy regulations, standards and their contemporary challenges. This research used publicly available information from literature sources and data through expert interviews. It draws attention to the fact that touji has been marginalized in the recent health policies. The study highlights that onsen as a therapeutic landscape has an important role in maintaining health and wellbeing in the country and holds immense value in building social cohesion in local communities. The study points to the need for appropriate studies on the social and symbolic healing elements related to onsen landscapes, as well as the need for developing a comprehensive strategy for strengthening their culturally specific health management roles.

  11. Archaeal community structures in the solfataric acidic hot springs with different temperatures and elemental compositions.

    PubMed

    Satoh, Tomoko; Watanabe, Keiko; Yamamoto, Hideo; Yamamoto, Shuichi; Kurosawa, Norio

    2013-01-01

    Archaeal 16S rRNA gene compositions and environmental factors of four distinct solfataric acidic hot springs in Kirishima, Japan were compared. The four ponds were selected by differences of temperature and total dissolved elemental concentration as follows: (1) Pond-A: 93°C and 1679 mg L(-1), (2) Pond-B: 66°C and 2248 mg L(-1), (3) Pond-C: 88°C and 198 mg L(-1), and (4) Pond-D: 67°C and 340 mg L(-1). In total, 431 clones of 16S rRNA gene were classified into 26 phylotypes. In Pond-B, the archaeal diversity was the highest among the four, and the members of the order Sulfolobales were dominant. The Pond-D also showed relatively high diversity, and the most frequent group was uncultured thermoacidic spring clone group. In contrast to Pond-B and Pond-D, much less diverse archaeal clones were detected in Pond-A and Pond-C showing higher temperatures. However, dominant groups in these ponds were also different from each other. The members of the order Sulfolobales shared 89% of total clones in Pond-A, and the uncultured crenarchaeal groups shared 99% of total Pond-C clones. Therefore, species compositions and biodiversity were clearly different among the ponds showing different temperatures and dissolved elemental concentrations.

  12. Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat

    SciTech Connect

    Revsbech, N.P.; Ward, D.M.

    1984-08-01

    Microelectrodes were used to measure oxygen, pH, and oxygenic photosynthetic activity in a hot spring microbial mat (Octopus Spring, Yellowstone National Park), where the cyanobacterium Synechoccus lividus and the filamentous bacteria Chloroflexus aurantiacus are the only known phototrophs. The data showed very high biological activities in the topmost layers of the microbial mat, resulting in extreme values for oxygen and pH. At a 1-mm depth at a 55 C site, oxygen and pH reached 900 micro M and 9.4, respectively, just after solar noon, whereas anoxic conditions with pH of 7.2 were measured before sunrise. Although diurnal changes between these extremes occurred over hours during a diurnal cycle microbial activity was great enough to give the same response in 1 to 2 mm after artificial shading. Oxygenic photosynthesis was confined to a 0.5- to 1.1-mm layer at sites with temperatures at or above about 50 C, with maximum activities in the 55 to 60 C region. The data suggest that S. lividus is the dominant primary producer of the mat. 30 references, 5 figures.

  13. Complex polar lipids of a hot spring cyanobacterial mat and its cultivated inhabitants.

    PubMed

    Ward, D M; Panke, S; Kloppel, K D; Christ, R; Fredrickson, H

    1994-09-01

    The complex polar lipids of the hot spring cyanobacterial mat in the 50 to 55 degrees C region of Octopus Spring, Yellowstone National Park, and of thermophilic bacteria cultivated from this or similar habitats, were compared in an attempt to understand the microbial sources of the major lipid biomarkers in this community. Intact complex lipids were analyzed directly by fast atom bombardment mass spectrometry (FAB-MS), two-dimensional thin-layer chromatography (TLC), and combined TLC-FAB-MS. FAB-MS and TLC gave qualitatively similar results, suggesting that the mat contains major lipids most like those of the cyanobacterial isolate we studied, Synechococcus sp. strain Y-7c-s. These include monoglycosyl, diglycosyl, and sulfoquinosovyl diglycerides (MG, DG, and SQ, respectively) and phosphatidyl glycerol (PG). Though Chloroflexus aurantiacus also contains MG, DG, and PG, the fatty acid chain lengths of mat MGs, DGs, and PGs resemble more those of cyanobacterial than green nonsulfur bacterial lipids. FAB-MS spectra of the lipids of nonphototrophic bacterial isolates were distinctively different from those of the mat and phototrophic isolates. The lipids of these nonphototrophic isolates were not detected in the mat, but most could be detected when added to mat samples. The mat also contains major glycolipids and aminophospholipids of unknown structure and origin. FAB-MS and TLC did not always give quantitatively similar results. In particular, PG and SQ may give disproportionately high FAB-MS responses.

  14. Thioarsenate transformation by filamentous microbial mats thriving in an alkaline, sulfidic hot spring.

    PubMed

    Härtig, Cornelia; Cornelia, Härtig; Planer-Friedrich, Britta; Britta, Planer-Friedrich

    2012-04-17

    Thioarsenates dominate arsenic speciation in sulfidic geothermal waters, yet little is known about their fate in the environment. At Conch Spring, an alkaline hot spring in Yellowstone National Park, trithioarsenate transforms to arsenate under increasingly oxidizing conditions along the drainage channel, accompanied by an initial increase, then decrease of monothioarsenate and arsenite. On-site incubation tests were conducted using sterile-filtered water with and without addition of filamentous microbial mats from the drainage channel to distinguish the role of abiotic and biotic processes for arsenic species transformation. Abiotically, trithioarsenate was desulfidized to arsenate coupled to sulfide oxidation. Monothioarsenate, however, was inert. Biotic incubations proved that the intermediate accumulation of arsenite in the drainage channel is microbially catalyzed. In the presence of sulfide, microbially enhanced sulfide oxidation coupled to reduction of arsenate to arsenite could simply enhance abiotic desulfidation of trithioarsenate and potentially also monothioarsenate. However, we were also able to show, in sulfide-free medium, direct microbial transformation of monothioarsenate to arsenate. Some arsenite formed intermediately, which was subsequently also microbially oxidized to arsenate. This study is the first evidence for microbially mediated thioarsenate species transformation by (hyper)thermophilic prokaryotes. PMID:22380721

  15. Structure, Growth, and Decomposition of Laminated Algal-Bacterial Mats in Alkaline Hot Springs

    PubMed Central

    Doemel, W. N.; Brock, Thomas D.

    1977-01-01

    Laminated mats of unique character in siliceous alkaline hot springs of Yellowstone Park are formed predominantly by two organisms, a unicellular blue-green alga, Synechococcus lividus, and a filamentous, gliding, photosynthetic bacterium, Chloroflexus aurantiacus. The mats can be divided approximately into two major zones: an upper, aerobic zone in which sufficient light penetrates for net photosynthesis, and a lower, anaerobic zone, where photosynthesis does not occur and decomposition is the dominant process. Growth of the mat was followed by marking the mat surface with silicon carbide particles. The motile Chloroflexus migrates vertically at night, due to positive aerotaxis, responding to reduced O2 levels induced by dark respiration. The growth rates of mats were estimated at about 50 μm/day. Observations of a single mat at Octopus Spring showed that despite the rapid growth rate, the thickness of the mat remained essentially constant, and silicon carbide layers placed on the surface gradually moved to the bottom of the mat, showing that decomposition was taking place. There was a rapid initial rate of decomposition, with an apparent half-time of about 1 month, followed by a slower period of decomposition with a half-time of about 12 months. Within a year, complete decomposition of a mat of about 2-cm thickness can occur. Also, the region in which decomposition occurs is strictly anaerobic, showing that complete decomposition of organic matter from these organisms can occur in the absence of O2. Images PMID:16345254

  16. Thioarsenate transformation by filamentous microbial mats thriving in an alkaline, sulfidic hot spring.

    PubMed

    Härtig, Cornelia; Cornelia, Härtig; Planer-Friedrich, Britta; Britta, Planer-Friedrich

    2012-04-17

    Thioarsenates dominate arsenic speciation in sulfidic geothermal waters, yet little is known about their fate in the environment. At Conch Spring, an alkaline hot spring in Yellowstone National Park, trithioarsenate transforms to arsenate under increasingly oxidizing conditions along the drainage channel, accompanied by an initial increase, then decrease of monothioarsenate and arsenite. On-site incubation tests were conducted using sterile-filtered water with and without addition of filamentous microbial mats from the drainage channel to distinguish the role of abiotic and biotic processes for arsenic species transformation. Abiotically, trithioarsenate was desulfidized to arsenate coupled to sulfide oxidation. Monothioarsenate, however, was inert. Biotic incubations proved that the intermediate accumulation of arsenite in the drainage channel is microbially catalyzed. In the presence of sulfide, microbially enhanced sulfide oxidation coupled to reduction of arsenate to arsenite could simply enhance abiotic desulfidation of trithioarsenate and potentially also monothioarsenate. However, we were also able to show, in sulfide-free medium, direct microbial transformation of monothioarsenate to arsenate. Some arsenite formed intermediately, which was subsequently also microbially oxidized to arsenate. This study is the first evidence for microbially mediated thioarsenate species transformation by (hyper)thermophilic prokaryotes.

  17. Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures

    NASA Technical Reports Server (NTRS)

    Ward, D. M.; Santegoeds, C. M.; Nold, S. C.; Ramsing, N. B.; Ferris, M. J.; Bateson, M. M.

    1997-01-01

    We have begun to examine the basis for incongruence between hot spring microbial mat populations detected by cultivation or by 16S rRNA methods. We used denaturing gradient gel electrophoresis (DGGE) to monitor enrichments and isolates plated therefrom. At near extincting inoculum dilutions we observed Chloroflexus-like and cyanobacterial populations whose 16S rRNA sequences have been detected in the 'New Pit' Spring Chloroflexus mat and the Octopus Spring cyanobacterial mat. Cyanobacterial populations enriched from 44 to 54 degrees C and 56 to 63 degrees C samples at near habitat temperatures were similar to those previously detected in mat samples of comparable temperatures. However, a lower temperature enrichment from the higher temperature sample selected for the populations found in the lower temperature sample. Three Thermus populations detected by both DGGE and isolation exemplify even more how enrichment may bias our view of community structure. The most abundant population was adapted to the habitat temperature (50 degrees C), while populations adapted to 65 degrees C and 70 degrees C were 10(2)- and 10(4)-fold less abundant, respectively. However, enrichment at 70 degrees C favored the least abundant strain. Inoculum dilution and incubation at the habitat temperature favored the more numerically relevant populations. We enriched many other aerobic chemoorganotrophic populations at various inoculum dilutions and substrate concentrations, most of whose 16S rRNA sequences have not been detected in mats. A common feature of numerically relevant cyanobacterial, Chloroflexus-like and aerobic chemorganotrophic populations, is that they grow poorly and resist cultivation on solidified medium, suggesting plating bias, and that the medium composition and incubation conditions may not reflect the natural microenvironments these populations inhabit.

  18. Genome Sequence of the Red Pigment-Forming Meiothermus taiwanensis Strain RP Isolated from Paniphala Hot Spring, India.

    PubMed

    Mukherjee, Trinetra; Bose, Sucharita; Sen, Urmimala; Roy, Chayan; Rameez, Moidu Jameela; Ghosh, Wriddhiman; Mukhopadhyay, Subhra Kanti

    2016-01-01

    Here we report the draft genome sequence of Meiothermus taiwanensis strain RP (MCC 2966), isolated from the Paniphala hot spring of India, which contains genes encoding for enzymes of the methyl erythritol 4-phosphate (MEP) pathway of isoprenoid biosynthesis and carotenoid backbone synthesis. PMID:27365353

  19. Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska

    SciTech Connect

    Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

    1985-01-01

    An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

  20. Complete metagenome sequencing based bacterial diversity and functional insights from basaltic hot spring of Unkeshwar, Maharashtra, India.

    PubMed

    Mehetre, Gajanan T; Paranjpe, Aditi S; Dastager, Syed G; Dharne, Mahesh S

    2016-03-01

    Unkeshwar hot springs are located at geographical South East Deccan Continental basalt of India. Here, we report the microbial community analysis of this hot spring using whole metagenome shotgun sequencing approach. The analysis revealed a total of 848,096 reads with 212.87 Mbps with 50.87% G + C content. Metagenomic sequences were deposited in SRA database with accession number (SUB1242219). Community analysis revealed 99.98% sequences belonging to bacteria and 0.01% to archaea and 0.01% to Viruses. The data obtained revealed 41 phyla including bacteria and Archaea and including 719 different species. In taxonomic analysis, the dominant phyla were found as, Actinobacteria (56%), Verrucomicrobia (24%), Bacteriodes (13%), Deinococcus-Thermus (3%) and firmicutes (2%) and Viruses (2%). Furthermore, functional annotation using pathway information revealed dynamic potential of hot spring community in terms of metabolism, environmental information processing, cellular processes and other important aspects. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of each contig sequence by assigning KEGG Orthology (KO) numbers revealed contig sequences that were assigned to metabolism, organismal system, Environmental Information Processing, cellular processes and human diseases with some unclassified sequences. The Unkeshwar hot springs offer rich phylogenetic diversity and metabolic potential for biotechnological applications. PMID:26981391

  1. Complete metagenome sequencing based bacterial diversity and functional insights from basaltic hot spring of Unkeshwar, Maharashtra, India

    PubMed Central

    Mehetre, Gajanan T.; Paranjpe, Aditi S.; Dastager, Syed G.; Dharne, Mahesh S.

    2015-01-01

    Unkeshwar hot springs are located at geographical South East Deccan Continental basalt of India. Here, we report the microbial community analysis of this hot spring using whole metagenome shotgun sequencing approach. The analysis revealed a total of 848,096 reads with 212.87 Mbps with 50.87% G + C content. Metagenomic sequences were deposited in SRA database with accession number (SUB1242219). Community analysis revealed 99.98% sequences belonging to bacteria and 0.01% to archaea and 0.01% to Viruses. The data obtained revealed 41 phyla including bacteria and Archaea and including 719 different species. In taxonomic analysis, the dominant phyla were found as, Actinobacteria (56%), Verrucomicrobia (24%), Bacteriodes (13%), Deinococcus-Thermus (3%) and firmicutes (2%) and Viruses (2%). Furthermore, functional annotation using pathway information revealed dynamic potential of hot spring community in terms of metabolism, environmental information processing, cellular processes and other important aspects. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of each contig sequence by assigning KEGG Orthology (KO) numbers revealed contig sequences that were assigned to metabolism, organismal system, Environmental Information Processing, cellular processes and human diseases with some unclassified sequences. The Unkeshwar hot springs offer rich phylogenetic diversity and metabolic potential for biotechnological applications. PMID:26981391

  2. Genome Sequence of the Red Pigment-Forming Meiothermus taiwanensis Strain RP Isolated from Paniphala Hot Spring, India

    PubMed Central

    Mukherjee, Trinetra; Bose, Sucharita; Sen, Urmimala; Roy, Chayan; Rameez, Moidu Jameela; Ghosh, Wriddhiman

    2016-01-01

    Here we report the draft genome sequence of Meiothermus taiwanensis strain RP (MCC 2966), isolated from the Paniphala hot spring of India, which contains genes encoding for enzymes of the methyl erythritol 4-phosphate (MEP) pathway of isoprenoid biosynthesis and carotenoid backbone synthesis. PMID:27365353

  3. Rapid wood silicification in hot spring water: an explanation of silicification of wood during the Earth's history

    NASA Astrophysics Data System (ADS)

    Akahane, Hisatada; Furuno, Takeshi; Miyajima, Hiroshi; Yoshikawa, Toshiyuki; Yamamoto, Shigeru

    2004-07-01

    A hot spring water lake in Tateyama Hot Spring has a high content of silica and readily precipitates silica spheres and deposits of opal. Abundant fragments of naturally fallen wood impregnated with silica were found in the overflow stream of the lake. These silicifications resulted from the precipitation of silica spheres onto split surfaces or cell walls of the fallen wood. The textures of wood tissues are the same as those found on naturally silicified wood formed in the vicinity of volcanic regions in the geological record. These results explain the formation mechanism of certain naturally silicified wood fragments that seem to be formed under the same conditions as those found in the hot spring water. To confirm the silicification process, fresh wood pieces of alder wood ( Alnus pendula Matsumura) were placed in the hot spring water stream. Experimental wood fragments were silicified to nearly 40% by weight over a period of 7 years by the deposition of amorphous silica spheres in cell lumina of wood tissue. This study reveals that silicified wood can form under suitable conditions in time periods as short as tens to hundreds of years, and contributes to the understanding of the mechanisms forming silicified wood.

  4. Impacts of temperature and pH on the distribution of archaeal lipids in Yunnan hot springs, China.

    PubMed

    Wu, Weiyan; Zhang, Chuanlun L; Wang, Huanye; He, Liu; Li, Wenjun; Dong, Hailiang

    2013-01-01

    In culture experiments and many low temperature environments, the distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) commonly shows a strong correlation with temperature; however, this is often not the case in hot springs. We studied 26 hot springs in Yunnan, China, in order to determine whether temperature or other factors control the distribution of GDGTs in these environments. The hot springs ranged in temperature from 39.0 to 94.0°C, and in pH from 2.35 to 9.11. Water chemistry including nitrogen-, sulfur-, and iron species was also determined. Lipids from the samples were analyzed using liquid chromatography-mass spectrometry (LC-MS). Distributions of GDGTs in these hot springs were examined using cluster analysis, which resulted in two major groups. Group 1 was characterized by the lack of dominance of any individual GDGTs, while Group 2 was defined by the dominance of GDGT-0 or thaumarchaeol. Temperature was the main control on GDGT distribution in Group 1, whereas pH played an important role in the distribution of GDGTs in Group 2. However, no correlations were found between the distribution of GDGTs and any of the nitrogen-, sulfur-, or iron species. Results of this study indicate the dominance of temperature or pH control on archaeal lipid distribution, which can be better evaluated in the context of lipid classification.

  5. Genome Sequence of Anoxybacillus thermarum AF/04T, Isolated from the Euganean Hot Springs in Abano Terme, Italy.

    PubMed

    Poli, Annarita; Nicolaus, Barbara; Chan, Kok-Gan; Kahar, Ummirul Mukminin; Chan, Chia Sing; Goh, Kian Mau

    2015-05-21

    Anoxybacillus thermarum AF/04(T) was isolated from the Euganean hot springs in Abano Terme, Italy. The present work reports a high-quality draft genome sequence of strain AF/04(T). This work also provides useful insights into glycoside hydrolases, glycoside transferases, and sugar transporters that may be involved in cellular carbohydrate metabolism.

  6. Genome Sequence of Geobacillus sp. Strain ZGt-1, an Antibacterial Peptide-Producing Bacterium from Hot Springs in Jordan.

    PubMed

    Alkhalili, Rawana N; Hatti-Kaul, Rajni; Canbäck, Björn

    2015-07-23

    This paper reports the draft genome sequence of the firmicute Geobacillus sp. strain ZGt-1, an antibacterial peptide producer isolated from the Zara hot spring in Jordan. This study is the first report on genomic data from a thermophilic bacterial strain isolated in Jordan.

  7. Difference in the action mechanism of radon inhalation and radon hot spring water drinking in suppression of hyperuricemia in mice.

    PubMed

    Etani, Reo; Kataoka, Takahiro; Kanzaki, Norie; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro; Yamaoka, Kiyonori

    2016-06-01

    Although radon therapy is indicated for hyperuricemia, the underlying mechanisms of action have not yet been elucidated in detail. Therefore, we herein examined the inhibitory effects of radon inhalation and hot spring water drinking on potassium oxonate (PO)-induced hyperuricemia in mice. Mice inhaled radon at a concentration of 2000 Bq/m(3) for 24 h or were given hot spring water for 2 weeks. Mice were then administrated PO at a dose of 500 mg/kg. The results obtained showed that serum uric acid levels were significantly increased by the administration of PO. Radon inhalation or hot spring water drinking significantly inhibited elevations in serum uric acid levels through the suppression of xanthine oxidase activity in the liver. Radon inhalation activated anti-oxidative functions in the liver and kidney. These results suggest that radon inhalation inhibits PO-induced hyperuricemia by activating anti-oxidative functions, while hot spring water drinking may suppress PO-induced elevations in serum uric acid levels through the pharmacological effects of the chemical compositions dissolved in it.

  8. Difference in the action mechanism of radon inhalation and radon hot spring water drinking in suppression of hyperuricemia in mice

    PubMed Central

    Etani, Reo; Kataoka, Takahiro; Kanzaki, Norie; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro; Yamaoka, Kiyonori

    2016-01-01

    Although radon therapy is indicated for hyperuricemia, the underlying mechanisms of action have not yet been elucidated in detail. Therefore, we herein examined the inhibitory effects of radon inhalation and hot spring water drinking on potassium oxonate (PO)–induced hyperuricemia in mice. Mice inhaled radon at a concentration of 2000 Bq/m3 for 24 h or were given hot spring water for 2 weeks. Mice were then administrated PO at a dose of 500 mg/kg. The results obtained showed that serum uric acid levels were significantly increased by the administration of PO. Radon inhalation or hot spring water drinking significantly inhibited elevations in serum uric acid levels through the suppression of xanthine oxidase activity in the liver. Radon inhalation activated anti-oxidative functions in the liver and kidney. These results suggest that radon inhalation inhibits PO-induced hyperuricemia by activating anti-oxidative functions, while hot spring water drinking may suppress PO-induced elevations in serum uric acid levels through the pharmacological effects of the chemical compositions dissolved in it. PMID:27021217

  9. Imaging Near-Surface Controls on Hot Spring Expression Using Shallow Seismic Refraction in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Price, A. N.; Lindsey, C.; Fairley, J. P., Jr.; Larson, P. B.

    2015-12-01

    We used shallow seismic refraction to image near-surface materials in the vicinity of a small group of hot springs, located in the Morning Mist Springs area of Lower Geyser Basin, Yellowstone National Park, Wyoming. Seismic velocities in the area surveyed range from a low of 0.3 km/s to a high of approximately 2.5 km/s. The survey results indicate an irregular surface topography overlain by silty sediments. The observed seismic velocities are consistent with a subsurface model in which sorted sands and gravels, probably outwash materials from the Pinedale glaciation, are overlain by silts and fine sands deposited in the flat-lying areas of the Morning Springs area. These findings are supported by published geologic maps of the area and well logs from a nearby borehole. The near-surface materials appear to be saturated with discharging hydrothermal fluids of varying temperature, and interbedded with semi-lithified geothermal deposits (sinter). We hypothesize that the relatively low-conductivity deposits of fines at the surface may serve to confine a shallow, relatively low-temperature (sub-boiling) hydrothermal aquifer, and that the distribution of sinter in the shallow subsurface plays an important role in determining the geometry of hydrothermal discharge (hot springs) at the land surface. Few studies of the shallow controls on hot spring expression exist for the Yellowstone caldera, and the present study therefore offers a unique glimpse into near-subsurface fluid flow controls.

  10. Microbial Diversity of Acidic Hot Spring (Kawah Hujan B) in Geothermal Field of Kamojang Area, West Java-Indonesia

    PubMed Central

    Aditiawati, Pingkan; Yohandini, Heni; Madayanti, Fida; Akhmaloka

    2009-01-01

    Microbial communities in an acidic hot spring, namely Kawah Hujan B, at Kamojang geothermal field, West Java-Indonesia was examined using culture dependent and culture independent strategies. Chemical analysis of the hot spring water showed a characteristic of acidic-sulfate geothermal activity that contained high sulfate concentrations and low pH values (pH 1.8 to 1.9). Microbial community present in the spring was characterized by 16S rRNA gene combined with denaturing gradient gel electrophoresis (DGGE) analysis. The majority of the sequences recovered from culture-independent method were closely related to Crenarchaeota and Proteobacteria phyla. However, detail comparison among the member of Crenarchaeota showing some sequences variation compared to that the published data especially on the hypervariable and variable regions. In addition, the sequences did not belong to certain genus. Meanwhile, the 16S Rdna sequences from culture-dependent samples revealed mostly close to Firmicute and gamma Proteobacteria. PMID:19440252

  11. Hydrochemistry of the hot springs in western Sichuan province related to the Wenchuan MS 8.0 earthquake.

    PubMed

    Chen, Zhi; Du, Jianguo; Zhou, Xiaocheng; Yi, Li; Liu, Lei; Xie, Chao; Cui, Yueju; Li, Ying

    2014-01-01

    Hydrogeochemistry of 32 hot springs in the western Sichuan Province after the Wenchuan MS 8.0 earthquake was investigated by analyzing the concentrations of cation and anion and the isotopic compositions of hydrogen and oxygen. The water samples of the hot springs were collected four times from June 2008 to April 2010. Hydrogeochemical data indicated the water samples can be classified into 9 chemical types. Values of δ D and δ(18)O indicated that the spring waters were mainly derived from meteoric precipitation and affected by water-rock interaction and mixture of deep fluids. Concentrations of K(+)and SO4(-) of the samples from the Kangding district exhibited evident increases before the Wenchuan earthquake, indicating more supplement of deep fluids under the increase of tectonic stress. The chemical and isotopic variations of the water samples from the area closer to the epicenter area can be attributed to variation of regional stress field when the aftershock activities became weak.

  12. Magnetic and Electromagnetic Signatures around Polile Tshisa Hot Spring in the Northern Neotectonic Belt in the Eastern Cape Province, South Africa

    NASA Astrophysics Data System (ADS)

    Madi, Kakaba; Nyabeze, Peter K.; Gwavava, Oswald; Sekiba, Matome; Zhao, Baojin

    2016-08-01

    Finding productive boreholes in the Karoo fractured aquifers has never been an easy task. Fractured Karoo aquifers in the neotectonic zones in the Eastern Cape Province can be targeted for groundwater exploration. The Polile Tshisa hot spring is located in a seismo-tectonic region beset by neotectonics. Hot springs are indicative of circulation of groundwater at great depths along fault zones, and accordingly of neotectonics. The characterisation of hot springs by means of magnetic and electromagnetic methods can help infer the occurrence of structures which are favourable for groundwater potential. The Polile Tshisa hot spring is characterised by faults, fractures, and dolerite dykes. All these structures make the hot spring a good case study for groundwater exploration.

  13. Acclimation of killifish to thermal extremes of hot spring: Transcription of gonadal and liver heat shock genes.

    PubMed

    Akbarzadeh, Arash; Leder, Erica H

    2016-01-01

    In this study, we explored the hypothesis that killifish acclimate to thermal extremes through regulation of genes involved in stress and metabolism. We examined the liver and gonadal transcription of heat shock proteins (hsp70, hsp90a, hsp90b), glucokinase (gck), and high mobility group b1 (hmgb1) protein in wild killifish species from hot springs and rivers using quantitative real-time PCR. Moreover, we exposed a river killifish species to a long-term thermal regime of hot spring (37-40°C) and examined the liver transcription of the heat shock genes. Our results showed that hot spring killifish showed a significant, strong upregulation of liver hsp90a. Moreover, the testicular transcript levels of hsp90a, hsp90b, and hsp70 were higher in hot spring killifish than the river ones. The results of the common garden experiments showed that the transcripts of hsp70, hsp90b, and hmgb1 were mildly induced (> twofold) at the time when temperature reached to 37-40°C, while the transcripts of hsp90a were strongly induced (17-fold increase). The level of hsp90a was dramatically more upregulated when fish were maintained in thermal extreme (42-fold change higher than in ambient temperature). Moreover, a significant downregulation of gck transcripts was observed at the time when temperature was raised to 37-40°C (80-fold decrease) and during exposure to long-term thermal extreme (56-fold decrease). It can be concluded that the regulation of heat shock genes particularly hsp90a might be a key factor of the acclimation of fish to high temperature environments like hot springs. PMID:26459983

  14. Acclimation of killifish to thermal extremes of hot spring: Transcription of gonadal and liver heat shock genes.

    PubMed

    Akbarzadeh, Arash; Leder, Erica H

    2016-01-01

    In this study, we explored the hypothesis that killifish acclimate to thermal extremes through regulation of genes involved in stress and metabolism. We examined the liver and gonadal transcription of heat shock proteins (hsp70, hsp90a, hsp90b), glucokinase (gck), and high mobility group b1 (hmgb1) protein in wild killifish species from hot springs and rivers using quantitative real-time PCR. Moreover, we exposed a river killifish species to a long-term thermal regime of hot spring (37-40°C) and examined the liver transcription of the heat shock genes. Our results showed that hot spring killifish showed a significant, strong upregulation of liver hsp90a. Moreover, the testicular transcript levels of hsp90a, hsp90b, and hsp70 were higher in hot spring killifish than the river ones. The results of the common garden experiments showed that the transcripts of hsp70, hsp90b, and hmgb1 were mildly induced (> twofold) at the time when temperature reached to 37-40°C, while the transcripts of hsp90a were strongly induced (17-fold increase). The level of hsp90a was dramatically more upregulated when fish were maintained in thermal extreme (42-fold change higher than in ambient temperature). Moreover, a significant downregulation of gck transcripts was observed at the time when temperature was raised to 37-40°C (80-fold decrease) and during exposure to long-term thermal extreme (56-fold decrease). It can be concluded that the regulation of heat shock genes particularly hsp90a might be a key factor of the acclimation of fish to high temperature environments like hot springs.

  15. Greater temporal changes of sediment microbial community than its waterborne counterpart in Tengchong hot springs, Yunnan Province, China.

    PubMed

    Wang, Shang; Dong, Hailiang; Hou, Weiguo; Jiang, Hongchen; Huang, Qiuyuan; Briggs, Brandon R; Huang, Liuqin

    2014-12-19

    Temporal variation in geochemistry can cause changes in microbial community structure and diversity. Here we studied temporal changes of microbial communities in Tengchong hot springs of Yunnan Province, China in response to geochemical variations by using microbial and geochemical data collected in January, June and August of 2011. Greater temporal variations were observed in individual taxa than at the whole community structure level. Water and sediment communities exhibited different temporal variation patterns. Water communities were largely stable across three sampling times and dominated by similar microbial lineages: Hydrogenobaculum in moderate-temperature acidic springs, Sulfolobus in high-temperature acidic springs, and Hydrogenobacter in high-temperature circumneutral to alkaline springs. Sediment communities were more diverse and responsive to changing physicochemical conditions. Most of the sediment communities in January and June were similar to those in waters. However, the August sediment community was more diverse and contained more anaerobic heterotrophs than the January and June: Desulfurella and Acidicaldus in moderate-temperature acidic springs, Ignisphaera and Desulfurococcus in high-temperature acidic springs, the candidate division OP1 and Fervidobacterium in alkaline springs, and Thermus and GAL35 in neutral springs. Temporal variations in physicochemical parameters including temperature, pH, and dissolved organic carbon may have triggered the observed microbial community shifts.

  16. Multielement geochemistry of solid materials in geothermal systems and its applications. Part 1. Hot-water system at the Roosevelt Hot Springs KGRA, Utah

    SciTech Connect

    Bamford, R.W.; Christensen, O.D.; Capuano, R.M.

    1980-02-01

    Geochemical studies of the geothermal system at Roosevelt Hot Springs, Utah, have led to development of chemical criteria for recognition of major features of the system and to a three-dimensional model for chemical zoning in the system. Based on this improved level of understanding several new or modified geochemical exploration and assessment techniques have been defined and are probably broadly applicable to evaluation of hot-water geothermal systems. The main purpose of this work was the development or adaptation of solids geochemical exploration techniques for use in the geothermal environment. (MHR)

  17. Parallel geochemical and metagenomic datasets reveal biogeochemical cycling in a hot spring ecosystem

    NASA Astrophysics Data System (ADS)

    Meyer-Dombard, D. R.; Swingley, W.; Raymond, J.; Shock, E.

    2012-12-01

    Environmental sequence data (2,321 16S rRNA clones and 470 megabases of "metagenome" sequence) were produced from biofilms at five sites in the outflow of "Bison Pool" (BP), an alkaline hot spring in the Lower Geyser Basin of Yellowstone National Park. The outflow of BP is characterized by decreasing temperature, increasing pH, increasing dissolved oxygen, decreasing total sulfide, and changing availability of biological nutrients. Microbial life along a 22 m gradient at BP transitions from a 92°C chemotrophic streamer biofilm community in the source pool to a 56°C phototrophic mat community. Coordinated analysis of the BP Environmental Genome and a complementary contextual geochemical dataset of ~75 parameters has revealed biogeochemical cycling and metabolic and microbial community shifts within a hot spring ecosystem (1). In the BP outflow, genes diagnostic for sulfide oxidation, attributed to Aquificales in the chemosynthetic zone and Deinococcus-Thermus at the photosynthetic fringe, decrease in total number downstream. Geochemical data indicate that biological sulfide oxidation, an energy-yielding process in BP, occurs over this same range. While the genetic capacity for sulfate reduction in Thermoproteales at high temperature was found, inorganic sulfate reduction is only minimally energy-yielding at BP suggesting limited activity of these genes. Presence of apr, sat, and dsr genes in the photosynthetic mats may indicate sulfate reduction in micro-niches at depth within the biofilms, perhaps in response to increased availability of organic solutes. Carbon fixation tactics shift downstream in BP as well, as evidenced by the presence of genes associated with specific pathways and carbon isotope ratios. Capacity for the rTCA cycle, attributed to Aquificales and Thermoproteales, and the acetyl co-A pathway are found throughout BP, but are most prevalent in highest temperature sites. At lower temperature sites, fewer total carbon fixation genes were observed

  18. The effects on human health and hydrogeochemical characteristics of the Kirkgeçit and Ozancik Hot Springs, Canakkale, Turkey.

    PubMed

    Pehlivan, Rustem

    2003-06-01

    This investigation was carried out to determine the hydrogeochemical characteristics of the Kirkgeçit and Ozancik hot springs. The study areas are located northeast and southwest of the town of Can, Canakkale. During the investigation, geological maps of the hot springs and its surroundings were prepared, and hot waters and rock samples were collected from the study sites. The Paleogene-Neogene aged andesite, trachyandesite, andesitic tuff, silicified tuff and tuffites form the basement rocks in the Ozancik hot spring area. In the Kirkgeçit hot spring area, there are Lower Triassic aged mica and quartz schists at the basement rocks. The unit is covered by limestones and marbles of the same age. They are overlain by Quaternary alluvial deposits. A chemical analysis of the Kirkgeçit hot water indicates that it is rich in SO(4)2- (1200.2 mgL-1), Cl- (121.7 mgL-1), HCO3- (32.5 mg L-1), Na+ (494 mg L-1), K+ (30.2 mg L-1), Ca2+ (102 mg L-1), Mg2+ (15.2 mg L-1), and SiO2 (65.22 mg L-1). Chemical analysis of the Ozancik hot water indicates that it is rich in SO(4)2- (575 mg L-1), Cl- (193.2 mg L-1), HCO3- (98.5 mg L-1), Na+ (315 mg L-1), K+ (7.248 mg L-1), Ca2+ (103 mg L-1), Mg2+ (0.274 mg L-1), and SiO2 (43.20 mg L-1). The distribution of ions in the hot waters on the Schoeller diagram has an arrangement of r(Na(+) + K+) > rCa2+ > rMg2+ and r(SO(4)2-) > rCl- > r(HCO3-). In addition, the inclusion of Fe2+, Cu2+, Cr3+, Mn2+, Ni2+ and Hg2+ in the hot water samples indicates potential natural inorganic contamination. The water analysis carried out following the ICPMS-200 technique was evaluated according to the World Health Organisation and Turkish Standards. The use and the effects of the hot water on human health are also discussed in the paper.

  19. The effects on human health and hydrogeochemical characteristics of the Kirkgeçit and Ozancik Hot Springs, Canakkale, Turkey.

    PubMed

    Pehlivan, Rustem

    2003-06-01

    This investigation was carried out to determine the hydrogeochemical characteristics of the Kirkgeçit and Ozancik hot springs. The study areas are located northeast and southwest of the town of Can, Canakkale. During the investigation, geological maps of the hot springs and its surroundings were prepared, and hot waters and rock samples were collected from the study sites. The Paleogene-Neogene aged andesite, trachyandesite, andesitic tuff, silicified tuff and tuffites form the basement rocks in the Ozancik hot spring area. In the Kirkgeçit hot spring area, there are Lower Triassic aged mica and quartz schists at the basement rocks. The unit is covered by limestones and marbles of the same age. They are overlain by Quaternary alluvial deposits. A chemical analysis of the Kirkgeçit hot water indicates that it is rich in SO(4)2- (1200.2 mgL-1), Cl- (121.7 mgL-1), HCO3- (32.5 mg L-1), Na+ (494 mg L-1), K+ (30.2 mg L-1), Ca2+ (102 mg L-1), Mg2+ (15.2 mg L-1), and SiO2 (65.22 mg L-1). Chemical analysis of the Ozancik hot water indicates that it is rich in SO(4)2- (575 mg L-1), Cl- (193.2 mg L-1), HCO3- (98.5 mg L-1), Na+ (315 mg L-1), K+ (7.248 mg L-1), Ca2+ (103 mg L-1), Mg2+ (0.274 mg L-1), and SiO2 (43.20 mg L-1). The distribution of ions in the hot waters on the Schoeller diagram has an arrangement of r(Na(+) + K+) > rCa2+ > rMg2+ and r(SO(4)2-) > rCl- > r(HCO3-). In addition, the inclusion of Fe2+, Cu2+, Cr3+, Mn2+, Ni2+ and Hg2+ in the hot water samples indicates potential natural inorganic contamination. The water analysis carried out following the ICPMS-200 technique was evaluated according to the World Health Organisation and Turkish Standards. The use and the effects of the hot water on human health are also discussed in the paper. PMID:12901166

  20. Hot spring siliceous stromatolites from Yellowstone National Park: assessing growth rate and laminae formation.

    PubMed

    Berelson, W M; Corsetti, F A; Pepe-Ranney, C; Hammond, D E; Beaumont, W; Spear, J R

    2011-09-01

    Stromatolites are commonly interpreted as evidence of ancient microbial life, yet stromatolite morphogenesis is poorly understood. We apply radiometric tracer and dating techniques, molecular analyses and growth experiments to investigate siliceous stromatolite morphogenesis in Obsidian Pool Prime (OPP), a hot spring in Yellowstone National Park. We examine rates of stromatolite growth and the environmental and/or biologic conditions that affect lamination formation and preservation, both difficult features to constrain in ancient examples. The "main body" of the stromatolite is composed of finely laminated, porous, light-dark couplets of erect (surface normal) and reclining (surface parallel) silicified filamentous bacteria, interrupted by a less-distinct, well-cemented "drape" lamination. Results from dating studies indicate a growth rate of 1-5 cm year(-1) ; however, growth is punctuated. (14)C as a tracer demonstrates that stromatolite cyanobacterial communities fix CO(2) derived from two sources, vent water (radiocarbon dead) and the atmosphere (modern (14)C). The drape facies contained a greater proportion of atmospheric CO(2) and more robust silica cementation (vs. the main body facies), which we interpret as formation when spring level was lower. Systematic changes in lamination style are likely related to environmental forcing and larger scale features (tectonic, climatic). Although the OPP stromatolites are composed of silica and most ancient forms are carbonate, their fine lamination texture requires early lithification. Without early lithification, whether silica or carbonate, it is unlikely that a finely laminated structure representing an ancient microbial mat would be preserved. In OPP, lithification on the nearly diurnal time scale is likely related to temperature control on silica solubility. PMID:21777367

  1. Hot spring siliceous stromatolites from Yellowstone National Park: assessing growth rate and laminae formation.

    PubMed

    Berelson, W M; Corsetti, F A; Pepe-Ranney, C; Hammond, D E; Beaumont, W; Spear, J R

    2011-09-01

    Stromatolites are commonly interpreted as evidence of ancient microbial life, yet stromatolite morphogenesis is poorly understood. We apply radiometric tracer and dating techniques, molecular analyses and growth experiments to investigate siliceous stromatolite morphogenesis in Obsidian Pool Prime (OPP), a hot spring in Yellowstone National Park. We examine rates of stromatolite growth and the environmental and/or biologic conditions that affect lamination formation and preservation, both difficult features to constrain in ancient examples. The "main body" of the stromatolite is composed of finely laminated, porous, light-dark couplets of erect (surface normal) and reclining (surface parallel) silicified filamentous bacteria, interrupted by a less-distinct, well-cemented "drape" lamination. Results from dating studies indicate a growth rate of 1-5 cm year(-1) ; however, growth is punctuated. (14)C as a tracer demonstrates that stromatolite cyanobacterial communities fix CO(2) derived from two sources, vent water (radiocarbon dead) and the atmosphere (modern (14)C). The drape facies contained a greater proportion of atmospheric CO(2) and more robust silica cementation (vs. the main body facies), which we interpret as formation when spring level was lower. Systematic changes in lamination style are likely related to environmental forcing and larger scale features (tectonic, climatic). Although the OPP stromatolites are composed of silica and most ancient forms are carbonate, their fine lamination texture requires early lithification. Without early lithification, whether silica or carbonate, it is unlikely that a finely laminated structure representing an ancient microbial mat would be preserved. In OPP, lithification on the nearly diurnal time scale is likely related to temperature control on silica solubility.

  2. Geochemistry and microbial ecology in alkaline hot springs of Ambitle Island, Papua New Guinea.

    PubMed

    Meyer-Dombard, D'Arcy R; Amend, Jan P

    2014-07-01

    The availability of microbiological and geochemical data from island-based and high-arsenic hydrothermal systems is limited. Here, the microbial diversity in island-based hot springs on Ambitle Island (Papua New Guinea) was investigated using culture-dependent and -independent methods. Waramung and Kapkai are alkaline springs high in sulfide and arsenic, related hydrologically to previously described hydrothermal vents in nearby Tutum Bay. Enrichments were carried out at 24 conditions with varying temperature (45, 80 °C), pH (6.5, 8.5), terminal electron acceptors (O2, SO4 (2-), S(0), NO3 (-)), and electron donors (organic carbon, H2, As(III)). Growth was observed in 20 of 72 tubes, with media targeting heterotrophic metabolisms the most successful. 16S ribosomal RNA gene surveys of environmental samples revealed representatives in 15 bacterial phyla and 8 archaeal orders. While the Kapkai 4 bacterial clone library is primarily made up of Thermodesulfobacteria (74%), no bacterial taxon represents a majority in the Kapkai 3 and Waramung samples (40% Proteobacteria and 39% Aquificae, respectively). Deinococcus/Thermus and Thermotogae are observed in all samples. The Thermococcales dominate the archaeal clone libraries (65-85%). Thermoproteales, Desulfurococcales, and uncultured Eury- and Crenarchaeota make up the remaining archaeal taxonomic diversity. The culturing and phylogenetic results are consistent with the geochemistry of the alkaline, saline, and sulfide-rich fluids. When compared to other alkaline, island-based, high-arsenic, or shallow-sea hydrothermal communities, the Ambitle Island archaeal communities are unique in geochemical conditions, and in taxonomic diversity, richness, and evenness.

  3. Production and early preservation of lipid biomarkers in iron hot springs.

    PubMed

    Parenteau, Mary N; Jahnke, Linda L; Farmer, Jack D; Cady, Sherry L

    2014-06-01

    The bicarbonate-buffered anoxic vent waters at Chocolate Pots hot springs in Yellowstone National Park are 51-54°C, pH 5.5-6.0, and are very high in dissolved Fe(II) at 5.8-5.9 mg/L. The aqueous Fe(II) is oxidized by a combination of biotic and abiotic mechanisms and precipitated as primary siliceous nanophase iron oxyhydroxides (ferrihydrite). Four distinct prokaryotic photosynthetic microbial mat types grow on top of these iron deposits. Lipids were used to characterize the community composition of the microbial mats, link source organisms to geologically significant biomarkers, and investigate how iron mineralization degrades the lipid signature of the community. The phospholipid and glycolipid fatty acid profiles of the highest-temperature mats indicate that they are dominated by cyanobacteria and green nonsulfur filamentous anoxygenic phototrophs (FAPs). Diagnostic lipid biomarkers of the cyanobacteria include midchain branched mono- and dimethylalkanes and, most notably, 2-methylbacteriohopanepolyol. Diagnostic lipid biomarkers of the FAPs (Chloroflexus and Roseiflexus spp.) include wax esters and a long-chain tri-unsaturated alkene. Surprisingly, the lipid biomarkers resisted the earliest stages of microbial degradation and diagenesis to survive in the iron oxides beneath the mats. Understanding the potential of particular sedimentary environments to capture and preserve fossil biosignatures is of vital importance in the selection of the best landing sites for future astrobiological missions to Mars. This study explores the nature of organic degradation processes in moderately thermal Fe(II)-rich groundwater springs--environmental conditions that have been previously identified as highly relevant for Mars exploration.

  4. Production and early preservation of lipid biomarkers in iron hot springs.

    PubMed

    Parenteau, Mary N; Jahnke, Linda L; Farmer, Jack D; Cady, Sherry L

    2014-06-01

    The bicarbonate-buffered anoxic vent waters at Chocolate Pots hot springs in Yellowstone National Park are 51-54°C, pH 5.5-6.0, and are very high in dissolved Fe(II) at 5.8-5.9 mg/L. The aqueous Fe(II) is oxidized by a combination of biotic and abiotic mechanisms and precipitated as primary siliceous nanophase iron oxyhydroxides (ferrihydrite). Four distinct prokaryotic photosynthetic microbial mat types grow on top of these iron deposits. Lipids were used to characterize the community composition of the microbial mats, link source organisms to geologically significant biomarkers, and investigate how iron mineralization degrades the lipid signature of the community. The phospholipid and glycolipid fatty acid profiles of the highest-temperature mats indicate that they are dominated by cyanobacteria and green nonsulfur filamentous anoxygenic phototrophs (FAPs). Diagnostic lipid biomarkers of the cyanobacteria include midchain branched mono- and dimethylalkanes and, most notably, 2-methylbacteriohopanepolyol. Diagnostic lipid biomarkers of the FAPs (Chloroflexus and Roseiflexus spp.) include wax esters and a long-chain tri-unsaturated alkene. Surprisingly, the lipid biomarkers resisted the earliest stages of microbial degradation and diagenesis to survive in the iron oxides beneath the mats. Understanding the potential of particular sedimentary environments to capture and preserve fossil biosignatures is of vital importance in the selection of the best landing sites for future astrobiological missions to Mars. This study explores the nature of organic degradation processes in moderately thermal Fe(II)-rich groundwater springs--environmental conditions that have been previously identified as highly relevant for Mars exploration. PMID:24886100

  5. Microbial Fe(III) oxide reduction potential in Chocolate Pots hot spring, Yellowstone National Park.

    PubMed

    Fortney, N W; He, S; Converse, B J; Beard, B L; Johnson, C M; Boyd, E S; Roden, E E

    2016-05-01

    Chocolate Pots hot springs (CP) is a unique, circumneutral pH, iron-rich, geothermal feature in Yellowstone National Park. Prior research at CP has focused on photosynthetically driven Fe(II) oxidation as a model for mineralization of microbial mats and deposition of Archean banded iron formations. However, geochemical and stable Fe isotopic data have suggested that dissimilatory microbial iron reduction (DIR) may be active within CP deposits. In this study, the potential for microbial reduction of native CP Fe(III) oxides was investigated, using a combination of cultivation dependent and independent approaches, to assess the potential involvement of DIR in Fe redox cycling and associated stable Fe isotope fractionation in the CP hot springs. Endogenous microbial communities were able to reduce native CP Fe(III) oxides, as documented by most probable number enumerations and enrichment culture studies. Enrichment cultures demonstrated sustained DIR driven by oxidation of acetate, lactate, and H2 . Inhibitor studies and molecular analyses indicate that sulfate reduction did not contribute to observed rates of DIR in the enrichment cultures through abiotic reaction pathways. Enrichment cultures produced isotopically light Fe(II) during DIR relative to the bulk solid-phase Fe(III) oxides. Pyrosequencing of 16S rRNA genes from enrichment cultures showed dominant sequences closely affiliated with Geobacter metallireducens, a mesophilic Fe(III) oxide reducer. Shotgun metagenomic analysis of enrichment cultures confirmed the presence of a dominant G. metallireducens-like population and other less dominant populations from the phylum Ignavibacteriae, which appear to be capable of DIR. Gene (protein) searches revealed the presence of heat-shock proteins that may be involved in increased thermotolerance in the organisms present in the enrichments as well as porin-cytochrome complexes previously shown to be involved in extracellular electron transport. This analysis offers

  6. Consideration of Thermoelectric Power Generation by Using Hot Spring Thermal Energy or Industrial Waste Heat

    NASA Astrophysics Data System (ADS)

    Sasaki, Keiichi; Horikawa, Daisuke; Goto, Koichi

    2015-01-01

    Today, we face some significant environmental and energy problems such as global warming, urban heat island, and the precarious balance of world oil supply and demand. However, we have not yet found a satisfactory solution to these problems. Waste heat recovery is considered to be one of the best solutions because it can improve energy efficiency by converting heat exhausted from plants and machinery to electric power. This technology would also prevent atmospheric temperature increases caused by waste heat, and decrease fossil fuel consumption by recovering heat energy, thus also reducing CO2 emissions. The system proposed in this research generates electric power by providing waste heat or unharnessed thermal energy to built-in thermoelectric modules that can convert heat into electric power. Waste heat can be recovered from many places, including machinery in industrial plants, piping in electric power plants, waste incineration plants, and so on. Some natural heat sources such as hot springs and solar heat can also be used for this thermoelectric generation system. The generated power is expected to be supplied to auxiliary machinery around the heat source, stored as an emergency power supply, and so on. The attributes of this system are (1) direct power generation using hot springs or waste heat; (2) 24-h stable power generation; (3) stand-alone power system with no noise and no vibration; and (4) easy maintenance attributed to its simple structure with no moving parts. In order to maximize energy use efficiency, the temperature difference between both sides of the thermoelectric (TE) modules built into the system need to be kept as large as possible. This means it is important to reduce thermal resistance between TE modules and heat source. Moreover, the system's efficiency greatly depends on the base temperature of the heat sources and the material of the system's TE modules. Therefore, in order to make this system practical and efficient, it is necessary to

  7. Investigation of Induced Seismicity from a Geothermal System, Neal Hot Springs, Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Brenn, G. R.; Liberty, L. M.; Van Wijk, K.; Shaltry, D.; Colwell, C.

    2012-12-01

    Newly acquired geophysical data from an eleven-seismometer network surrounding the Neal Hot Springs (NHS) Geothermal Power Plant in eastern Oregon was analyzed for induced seismicity and geothermal fluid flow. Major faults associated with the Oregon-Idaho Graben and the western Snake River Plain provides pathways for deep geothermal fluid flow for the NHS hot-water system. Our short-period seismic stations, can detect regional events not in published earthquake catalogs. These stations have been collecting seismic data from the initiation of the geothermal system's development through fluid injection tests this past summer. Background seismic values were acquired before plant production to measure natural geothermal fluid activity, but no natural fluid flow seismicity was identified. Two local events located less than 10 km to the northeast of NHS along with a catalogued, 2.8 M regional event 200 km away were identified in the data set, verifying the sensitivity and capability of the passive seismic network to capture events that were to occur at NHS. We monitored seismic activity from production and development with 4-8 hour durations for the past 15 months. We identify repeated signals at approximately 2 Hz that likely represent fluid injection or drilling cycles. However, induced earthquakes were not identified during production activities. The lack of microseismic events could be the result of the shallow depth of the geothermal resource, approximately 850 m below the earth surface. Future studies include a receiver function analysis to determine crustal boundaries beneath NHS, along with further monitoring of induced seismicity due to geothermal fluid flow as the geothermal power plant comes online.

  8. Production and Early Preservation of Lipid Biomarkers in Iron Hot Springs

    PubMed Central

    Jahnke, Linda L.; Farmer, Jack D.; Cady, Sherry L.

    2014-01-01

    Abstract The bicarbonate-buffered anoxic vent waters at Chocolate Pots hot springs in Yellowstone National Park are 51–54°C, pH 5.5–6.0, and are very high in dissolved Fe(II) at 5.8–5.9 mg/L. The aqueous Fe(II) is oxidized by a combination of biotic and abiotic mechanisms and precipitated as primary siliceous nanophase iron oxyhydroxides (ferrihydrite). Four distinct prokaryotic photosynthetic microbial mat types grow on top of these iron deposits. Lipids were used to characterize the community composition of the microbial mats, link source organisms to geologically significant biomarkers, and investigate how iron mineralization degrades the lipid signature of the community. The phospholipid and glycolipid fatty acid profiles of the highest-temperature mats indicate that they are dominated by cyanobacteria and green nonsulfur filamentous anoxygenic phototrophs (FAPs). Diagnostic lipid biomarkers of the cyanobacteria include midchain branched mono- and dimethylalkanes and, most notably, 2-methylbacteriohopanepolyol. Diagnostic lipid biomarkers of the FAPs (Chloroflexus and Roseiflexus spp.) include wax esters and a long-chain tri-unsaturated alkene. Surprisingly, the lipid biomarkers resisted the earliest stages of microbial degradation and diagenesis to survive in the iron oxides beneath the mats. Understanding the potential of particular sedimentary environments to capture and preserve fossil biosignatures is of vital importance in the selection of the best landing sites for future astrobiological missions to Mars. This study explores the nature of organic degradation processes in moderately thermal Fe(II)-rich groundwater springs—environmental conditions that have been previously identified as highly relevant for Mars exploration. Key Words: Lipid biomarkers—Photosynthesis—Iron—Hot springs—Mars. Astrobiology 14, 502–521. PMID:24886100

  9. [Legionella contamination risk factors in non-circulating hot spring water].

    PubMed

    Karasudani, Tatsuya; Kuroki, Toshiro; Otani, Katsumi; Yamaguchi, Seiichi; Sasaki, Mie; Saito, Shioko; Fujita, Masahiro; Sugiyama, Kanji; Nakajima, Hiroshi; Murakami, Koichi; Taguri, Toshitsugu; Kuramoto, Tsuyoshi; Kura, Fumiaki; Yagita, Kenji; Izumiyama, Shinji; Amemura-Maekawa, Junko; Yamazaki, Toshio; Agata, Kunio; Inouye, Hiroo

    2009-01-01

    We examined water from 182 non-circulating hot spring bathing facilities in Japan for possible Legionella occurrence from June 2005 to December 2006, finding Legionella-positive cultures in 119 (29.5%) of 403 samples. Legionellae occurrence was most prevalent in bathtub water (39.4%), followed by storage tank water (23.8%), water from faucets at the bathtub edge (22.3%), and source-spring water (8.3%), indicating no statistically significant difference, in the number of legionellae, having an overall mean of 66 CFU/100mL. The maximum number of legionellae in water increased as water was sampled downstream:180 CFU/100 mL from source spring, 670 from storage tanks, 4,000 from inlet faucets, and 6,800 from bathtubs. The majority--85.7%--of isolated species were identified as L. pneumophila : L. pneumophila serogroup (SG) 1 in 22%, SG 5 in 21%, and SG 6 in 22% of positive samples. Multivariate logistic regression models used to determine the characteristics of facilities and sanitary management associated with Legionella contamination indicated that legionellae was prevalent in bathtub water under conditions where it was isolated from inlet faucet/pouring gate water (odds ratio [OR] = 6.98, 95% confidence interval [CI] = 2.14 to 22.8). Risk of occurrence was also high when the bathtub volume exceeded 5 m3 (OR = 2.74, 95% CI = 1.28 to 5.89). Legionellae occurrence was significantly reduced when the bathing water pH was lower than 6.0 (OR = 0.12, 95% CI = 0.02 to 0.63). Similarly, occurrence was rare in inlet faucet water or the upper part of the plumbing system for which pH was lower than 6.0 (OR = 0.06, 95% CI = 0.01 to 0.48), and when the water temperature was maintained at 55 degrees C or more (OR = 0.10, 95% CI = 0.01 to 0.77). We also examined the occurrence of amoeba, Mycobacterium spp., Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus in water samples. PMID:19227223

  10. Analysis of temperature-time data from 3 m drillholes at Crystal Hot Springs, Utah

    SciTech Connect

    Howell, J.; Chapman, D.S.

    1986-01-01

    A method for determining the background geothermal gradient values through the analysis of temperature measurements at multiple depths to 3 m and recorded over a time span of several days is presented. The analysis is based on the amplitude decay and phase shift of temperature waves with depth. Diurnal and other high frequency temperature variations are used to compute thermal diffusivities which in turn are used to model and remove the effect of the annual temperature wave. The analysis considers both a homogeneous half space and a two layer medium consisting of an overburden of finite thickness overlying a semi-infinite substratum. The method was tested in three holes in the Crystal Hot Springs geothermal field. Temperatures in each hole were recorded once a minute over a period of three days with a probe containing thermistors at eight different depths. Five of the thermistors were positioned at shallow depths (less than or equal to 0.5 m) to monitor diurnal and other high frequency waves and three at greater depths (greater than or equal to 1 m) to measure lower frequency variations. Since measurements were recorded at only three sites, the accuracy and reliability of the method is not fully evaluated. Potential problems to the method resulting from inaccurate model parameters and convective heat transport are investigated.

  11. Formation and fate of fermentation products in hot spring cyanobacterial mats

    SciTech Connect

    Anderson, K.L.; Tayne, T.A.; Ward, D.M.

    1987-10-01

    The fate of representative fermentation products (acetate, propionate, butyrate, lactate, and ethanol) in hot spring cyanobacterial mats was investigated. The major fate during incubations in the light was photoassimilation by filamentous bacteria resembling Chloroflexus aurantiacus. Some metabolism of all compounds occurred under dark aerobic conditions. Under dark anaerobic conditions, only lactate was oxidized extensively to carbon dioxide. Extended preincubation under dark anaerobic conditions did not enhance anaerobic catabolism of acetate, propionate, or ethanol. Acetogenesis of butyrate was suggested by the hydrogen sensitivity of butyrate conversion to acetate and by the enrichment of butyrate-degrading acetogenic bacteria. Accumulation of fermentation products which were not catabolized under dark anaerobic conditions revealed their importance. Acetate and propionate were the major fermentation products which accumulated in samples collected at temperatures ranging from 50 to 70/sup 0/C. Other organic acids and alcohols accumulated to a much lesser extent. Fermentation occurred mainly in the top 4 mm of the mat. Exposure to light decreased the accumulation of acetate and presumably of other fermentation products. The importance of interspecies hydrogen transfer was investigated by comparing fermentation product accumulation at a 65/sup 0/C site, with naturally high hydrogen levels, and a 55/sup 0/C site, where active methanogenesis prevented significant hydrogen accumulation. There was a greater relative accumulation of reduced products, notably ethanol, in the 65/sup 2/C mat.

  12. Molecular diversity of cyanobacteria inhabiting coniform structures and surrounding mat in a Yellowstone hot spring.

    PubMed

    Lau, Evan; Nash, Cody Z; Vogler, Detlev R; Cullings, K W

    2005-02-01

    Lithified coniform structures are common within cyanobacterial mats in Yellowstone National Park hot springs. It is unknown whether these structures and the mats from which they develop are inhabited by the same cyanobacterial populations. Denaturing gradient gel electrophoresis and sequencing and phylogenetic analysis of 16S rDNA was used to determine whether (1) three different morphological types of lithified coniform structures are inhabited by different cyanobacterial species, (2) these species are partitioned along a vertical gradient of these structures, and (3) lithified and non-lithified sections of mat are inhabited by different cyanobacterial species. Our results, based on multiple samplings, indicate that the cyanobacterial community compositions in the three lithified morphological types were identical and lacked any vertical differentiation. However, lithified and non-lithified portions of the same mat were inhabited by distinct and different populations of cyanobacteria. Cyanobacteria inhabiting lithified structures included at least one undefined Oscillatorialean taxon, which may represent the dominant cyanobacteria genus in lithified coniform stromatolites, Phormidium, three Synechococcus-like species, and two unknown cyanobacterial taxa. In contrast, the surrounding mats contained four closely related Synechococcus-like species. Our results indicate that the distribution of lithified coniform stromatolites may be dependent on the presence of one or more microorganisms, which are phylogenetically different from those inhabiting surrounding non-lithified mats.

  13. Screening of Swiss hot spring resorts for potentially pathogenic free-living amoebae.

    PubMed

    Gianinazzi, Christian; Schild, Marc; Zumkehr, Beatrice; Wüthrich, Fritz; Nüesch, Irina; Ryter, Regula; Schürch, Nadia; Gottstein, Bruno; Müller, Norbert

    2010-09-01

    Free-living amoebae (FLA) belonging to Acanthamoeba spp., Naegleria fowleri, Balamuthia mandrillaris, and Sappinia pedata are known to cause infections in humans and animals leading to severe brain pathologies. Worldwide, warm aquatic environments have been found to be suitable habitats for pathogenic FLA. The present study reports on screening for potentially pathogenic FLA in four hot spring resorts in Switzerland. Water samples were taken from water filtration units and from the pools, respectively. Amoebae isolated from samples taken during, or before, the filtration process were demonstrated to be morphologically and phylogenetically related to Stenoamoeba sp., Hartmannella vermiformis, Echinamoeba exundans, and Acanthamoeba healyi. With regard to the swimming pools, FLA were isolated only in one resort, and the isolate was identified as non-pathogenic and as related to E. exundans. Further investigations showed that the isolates morphologically and phylogenetically related to A. healyi displayed a pronounced thermotolerance, and exhibited a marked in vitro cytotoxicity upon 5-day exposure to murine L929 fibroblasts. Experimental intranasal infection of Rag2-immunodeficient mice with these isolates led to severe brain pathologies, and viable trophozoites were isolated from the nasal mucosa, brain tissue, and lungs post mortem. In summary, isolates related to A. healyi were suggestive of being potentially pathogenic to immunocompromised persons. However, the presence of these isolates was limited to the filtration units, and an effective threat for health can therefore be excluded.

  14. [Determination of natural radioactive nuclides in the travertine samples from Tamagawa hot spring].

    PubMed

    Hashimoto, T; Masumura, S; Takahashi, K; Sotobayashi, T

    1982-07-01

    The determination of natural radioactive nuclides was carried out for 7 travertine samples collected from Tamagawa hot spring by means of the non-distructive gamma-ray spectrometry and of the alpha-ray spectrometry. From the former measurements, the relative activity strength, due to 223Ra, 226Ra, and 228Th, and their ratios was obtained in comparison with the photopeak strength due to respective daughters, 228Ac, 214Bi, and 212Pb, and with the results from a monazite sand standard. One travertine sample was engaged to the alpha-ray spectrometric determination of Th isotopes after the chemical purification using a 234Th-yield tracer. On the basis of the resultant absolute content of 228Th, the 228Ra and 228Th contents in the remainder samples were evaluated to be the range of 3 approximately 80 Bq (81 approximately 2160 pCi)/g and 2 approximately 20 Bq (54 approximately pCi)/g respectively. These radioactive nuclides were verified to exist almost within a Hokutolite small crystals up to 90% and there are apparently the radioactive disequilibrium relations between 228Ra and 228Th among freshly deposited travertines. The presence of 227Ac in Hokutolite was also suggested from the detection of 227Th owing to 215Po-alpha peak. PMID:7178540

  15. Iron isotope characteristics of Hot Springs at Chocolate Pots, Yellowstone National Park.

    PubMed

    Wu, Lingling; Brucker, Rebecca Poulson; Beard, Brian L; Roden, Eric E; Johnson, Clark M

    2013-11-01

    Chocolate Pots Hot Springs in Yellowstone National Park is a hydrothermal system that contains high aqueous ferrous iron [∼0.1 mM Fe(II)] at circumneutral pH conditions. This site provides an ideal field environment in which to test our understanding of Fe isotope fractionations derived from laboratory experiments. The Fe(III) oxides, mainly produced through Fe(II) oxidation by oxygen in the atmosphere, have high ⁵⁶Fe/⁵⁴Fe ratios compared with the aqueous Fe(II). However, the degree of fractionation is less than that expected in a closed system at isotopic equilibrium. We suggest two explanations for the observed Fe isotope compositions. One is that light Fe isotopes partition into a sorbed component and precipitate out on the Fe(III) oxide surfaces in the presence of silica. The other explanation is internal regeneration of isotopically heavy Fe(II) via dissimilatory Fe(III) reduction farther down the flow path as well as deeper within the mat materials. These findings provide evidence that silica plays an important role in governing Fe isotope fractionation factors between reduced and oxidized Fe. Under conditions of low ambient oxygen, such as may be found on early Earth or Mars, significantly larger Fe isotope variations are predicted, reflecting the more likely attainment of Fe isotope equilibrium associated with slower oxidation rates under low-O₂ conditions. PMID:24219169

  16. Shotgun metagenomic sequencing based microbial diversity assessment of Lasundra hot spring, India.

    PubMed

    Mangrola, Amit V; Dudhagara, Pravin; Koringa, Prakash; Joshi, C G; Patel, Rajesh K

    2015-06-01

    This is the first report on the metagenomic approach for unveiling the microbial diversity of Lasundra hot spring, Gujarat State, India. High-throughput sequencing of community DNA was performed on an Ion Torrent PGM platform. Metagenome consisted of 606,867 sequences represent 98,567,305 bps size with an average length of 162 bps and 46% G + C content. Metagenome sequence information is available at EBI under EBI Metagenomic database with accession no. ERP009313. MG-RAST assisted community analysis revealed that 99.21% sequences were bacterial origin, 0.43% was fit to eukaryotes and 0.11% belongs to archaea. A total of 29 bacterial, 20 eukaryotic and 4 archaeal phyla were detected. Abundant genera were Bacillus (86.7%), Geobacillus (2.4%), Paenibacillus (1.0%), Clostridium (0.7%) and Listeria (0.5%), that represent 91.52% in metagenome. In functional analysis, Cluster of Orthologous Group (COG) based annotation revealed that 45.4% was metabolism connected and 19.6% falls in poorly characterized group. Subsystem based annotation approach suggests that the 14.0% was carbohydrates, 7.0% was protein metabolism and 3.0% genes for various stress responses together with the versatile presence of commercially useful traits. PMID:26484181

  17. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils.

    PubMed

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-06-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively. PMID:26273259

  18. Seasonal Patterns In Microbial Communities And Physicochemical Conditions In Hot Springs Of Tengchong, Yunnan Providence, China

    NASA Astrophysics Data System (ADS)

    Briggs, B. R.; Brodie, E.; Tom, L.; Dong, H.; Jiang, H.; Huang, Q.; Wang, S.; Hou, W.; Hust, W.; Huang, L.; Hedlund, B. P.; Zhang, C.; Dijkstra, P.; Hungate, B. A.

    2013-12-01

    Studies focusing on seasonal dynamics of microbial communities in terrestrial and marine environments are common; however, little is known about seasonal dynamics in high-temperature environments. Thus, our objective was to document the seasonal dynamics of both the physicochemical conditions and the microbial communities inhabiting hot springs in Tengchong County, Yunnan Province, China. The PhyloChip microarray detected 4882 operational taxonomic units (OTUs) within 79 bacterial phylum-level groups and 113 OTUs within 20 archaeal phylum-level groups, which are additional 54 bacterial phyla and 11 archaeal phyla to those that were previously described using pyrosequencing. Monsoon samples (June 2011) showed increased concentrations of potassium, total organic carbon, ammonium, calcium, sodium, and total nitrogen, and decreased ferrous iron relative to the dry season (January 2011). At the same time, the highly-ordered microbial communities present in January gave way to poorly-ordered communities in June, characterized by higher richness of Bacteria, including microbes related to mesophiles. These seasonal changes in geochemistry and community structure are likely due to high rainfall influx during the monsoon season and indicate that seasonal dynamics occurs in high-temperature environments experiencing significant changes in seasonal recharge. Thus, geothermal environments are not isolated from the surrounding environment and seasonality affects microbial ecology.

  19. Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov., a thermophilic bacterium isolated from a hot spring in Batman.

    PubMed

    Gul-Guven, Reyhan; Guven, Kemal; Poli, Annarita; Nicolaus, Barbara

    2008-12-01

    A new thermophilic spore-forming strain KG8(T) was isolated from the mud of Taslidere hot spring in Batman. Strain KG8(T) was aerobe, Gram-positive, rod-shaped, motile, occurring in pairs or filamentous. Growth was observed from 35-65 degrees C (optimum 55 degrees C) and at pH 5.5-9.5 (optimum pH 7.5). It was capable of utilizing starch, growth was observed until 3% NaCl (w/v) and it was positive for nitrate reduction. On the basis of 16S rRNA gene sequence similarity, strain KG8(T) was shown to be related most closely to Anoxybacillus species. Chemotaxonomic data (major isoprenoid quinone-menaquinone-7; major fatty acid-iso-C15:0 and iso-C17:0) supported the affiliation of strain KG8(T) to the genus Anoxybacillus. The results of DNA-DNA hybridization, physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain KG8(T). Based on these results we propose assigning a novel subspecies of Anoxybacillus kamchatkensis, to be named Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov. with the type strain KG8(T) (DSM 18475(T)=CIP 109280(T)).

  20. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils.

    PubMed

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-06-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively.

  1. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils

    PubMed Central

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-01-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively. PMID:26273259

  2. Cell wall and lipid composition of Isosphaera pallida, a budding eubacterium from hot springs.

    PubMed Central

    Giovannoni, S J; Godchaux, W; Schabtach, E; Castenholz, R W

    1987-01-01

    Isosphaera pallida is an unusual gliding, budding eubacterium recently isolated from North American hot springs. Electron micrographs of ultrathin sections revealed a cell wall atypical of eubacteria: two electrondense layers separated by an electron-transparent layer, with no evident peptidoglycan layer. Growth was not inhibited by penicillin. Cell walls were isolated from sheared cells by velocity sedimentation. The rigid-layer fraction, prepared from cell walls by treatment with boiling 10% sodium dodecyl sulfate, was hydrolyzed and chemically analyzed for muramic acid. This essential component of peptidoglycan was absent. Amino acid analysis demonstrated a proteinaceous wall structure. Pitlike surface structures seen in negatively stained whole cells and thin sections were correlated with periodically spaced perforations of the rigid sacculus. An analysis of the lipid composition of I. pallida revealed typical ester-linked lipids with unbranched fatty acids, in contrast to the isoprenyl ether-linked lipids of archaebacteria, which also have proteinaceous cell walls. Capnoids, unusual sulfonolipids which are present in gliding bacteria of the Cytophaga-Flexibacter group, were absent. Images PMID:3584067

  3. Cell wall and lipid composition of Isosphaera pallida, a budding eubacterium from hot springs.

    PubMed

    Giovannoni, S J; Godchaux, W; Schabtach, E; Castenholz, R W

    1987-06-01

    Isosphaera pallida is an unusual gliding, budding eubacterium recently isolated from North American hot springs. Electron micrographs of ultrathin sections revealed a cell wall atypical of eubacteria: two electrondense layers separated by an electron-transparent layer, with no evident peptidoglycan layer. Growth was not inhibited by penicillin. Cell walls were isolated from sheared cells by velocity sedimentation. The rigid-layer fraction, prepared from cell walls by treatment with boiling 10% sodium dodecyl sulfate, was hydrolyzed and chemically analyzed for muramic acid. This essential component of peptidoglycan was absent. Amino acid analysis demonstrated a proteinaceous wall structure. Pitlike surface structures seen in negatively stained whole cells and thin sections were correlated with periodically spaced perforations of the rigid sacculus. An analysis of the lipid composition of I. pallida revealed typical ester-linked lipids with unbranched fatty acids, in contrast to the isoprenyl ether-linked lipids of archaebacteria, which also have proteinaceous cell walls. Capnoids, unusual sulfonolipids which are present in gliding bacteria of the Cytophaga-Flexibacter group, were absent. PMID:3584067

  4. Iron isotope characteristics of Hot Springs at Chocolate Pots, Yellowstone National Park.

    PubMed

    Wu, Lingling; Brucker, Rebecca Poulson; Beard, Brian L; Roden, Eric E; Johnson, Clark M

    2013-11-01

    Chocolate Pots Hot Springs in Yellowstone National Park is a hydrothermal system that contains high aqueous ferrous iron [∼0.1 mM Fe(II)] at circumneutral pH conditions. This site provides an ideal field environment in which to test our understanding of Fe isotope fractionations derived from laboratory experiments. The Fe(III) oxides, mainly produced through Fe(II) oxidation by oxygen in the atmosphere, have high ⁵⁶Fe/⁵⁴Fe ratios compared with the aqueous Fe(II). However, the degree of fractionation is less than that expected in a closed system at isotopic equilibrium. We suggest two explanations for the observed Fe isotope compositions. One is that light Fe isotopes partition into a sorbed component and precipitate out on the Fe(III) oxide surfaces in the presence of silica. The other explanation is internal regeneration of isotopically heavy Fe(II) via dissimilatory Fe(III) reduction farther down the flow path as well as deeper within the mat materials. These findings provide evidence that silica plays an important role in governing Fe isotope fractionation factors between reduced and oxidized Fe. Under conditions of low ambient oxygen, such as may be found on early Earth or Mars, significantly larger Fe isotope variations are predicted, reflecting the more likely attainment of Fe isotope equilibrium associated with slower oxidation rates under low-O₂ conditions.

  5. Seasonal patterns in microbial communities inhabiting the hot springs of Tengchong, Yunnan Province, China.

    PubMed

    Briggs, Brandon R; Brodie, Eoin L; Tom, Lauren M; Dong, Hailiang; Jiang, Hongchen; Huang, Qiuyuan; Wang, Shang; Hou, Weiguo; Wu, Geng; Huang, Liuquin; Hedlund, Brian P; Zhang, Chuanlun; Dijkstra, Paul; Hungate, Bruce A

    2014-06-01

    Studies focusing on seasonal dynamics of microbial communities in terrestrial and marine environments are common; however, little is known about seasonal dynamics in high-temperature environments. Thus, our objective was to document the seasonal dynamics of both the physicochemical conditions and the microbial communities inhabiting hot springs in Tengchong County, Yunnan Province, China. The PhyloChip microarray detected 4882 operational taxonomic units (OTUs) within 79 bacterial phylum-level groups and 113 OTUs within 20 archaeal phylum-level groups, which are additional 54 bacterial phyla and 11 archaeal phyla to those that were previously described using pyrosequencing. Monsoon samples (June 2011) showed increased concentrations of potassium, total organic carbon, ammonium, calcium, sodium and total nitrogen, and decreased ferrous iron relative to the dry season (January 2011). At the same time, the highly ordered microbial communities present in January gave way to poorly ordered communities in June, characterized by higher richness of Bacteria, including microbes related to mesophiles. These seasonal changes in geochemistry and community structure are likely due to high rainfall influx during the monsoon season and indicate that seasonal dynamics occurs in high-temperature environments experiencing significant changes in seasonal recharge. Thus, geothermal environments are not isolated from the surrounding environment and seasonality affects microbial ecology.

  6. Isolation and characterization of pullulan-degrading Anoxybacillus species isolated from Malaysian hot springs.

    PubMed

    Chai, Yen Yen; Kahar, Ummirul Mukminin; Md Salleh, Madihah; Md Illias, Rosli; Goh, Kian Mau

    2012-06-01

    Two thermophilic bacteria (SK3-4 and DT3-1) were isolated from the Sungai Klah (SK) and Dusun Tua (DT) hot springs in Malaysia. The cells from both strains were rod-shaped, stained Gram positive and formed endospores. The optimal growth of both strains was observed at 55 degrees C and pH 7. Strain DT3-1 exhibited a higher tolerance to chloramphenicol (100 microg ml(-1)) but showed a lower tolerance to sodium chloride (2%, w/v) compared to strain SK3-4. Phylogenetic analysis based on 16S rRNA gene sequences revealed that both strains belong to the genus Anoxybacillus. High concentrations of 15:0 iso in the fatty acid profiles support the conclusion that both strains belong to the genus Anoxybacillus and exhibit unique fatty acid compositions and percentages compared to other Anoxybacillus species. The DNA G + C contents were 42.0 mol% and 41.8 mol% for strains SK3-4 and DT3-1, respectively. Strains SK3-4 and DT3-1 were able to degrade pullulan and to produce maltotriose and glucose, respectively, as their main end products. Based on phenotypic and chemotaxonomic characteristics, 16S rRNA gene sequences, and the DNA G + C content, we propose that strains SK3-4 and DT3-1 are new pullulan-degrading Anoxybacillus strains.

  7. Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous 'streamer' community.

    PubMed

    Beam, Jacob P; Jay, Zackary J; Schmid, Markus C; Rusch, Douglas B; Romine, Margaret F; Jennings, Ryan de M; Kozubal, Mark A; Tringe, Susannah G; Wagner, Michael; Inskeep, William P

    2016-01-01

    The candidate archaeal phylum 'Aigarchaeota' contains microorganisms from terrestrial and subsurface geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, a detailed description of their metabolic potential and in situ transcriptional activity is absent. Here, we report a comprehensive metatranscriptome-based reconstruction of the in situ metabolism of Aigarchaeota in an oxic, hot spring filamentous 'streamer' community. Fluorescence in situ hybridization showed that these newly discovered Aigarchaeota are filamentous, which is consistent with the presence and transcription of an actin-encoding gene. Aigarchaeota filaments are intricately associated with other community members, which include both bacteria (for example, filamentous Thermocrinis spp.) and archaea. Metabolic reconstruction of genomic and metatranscriptomic data suggests that this aigarchaeon is an aerobic, chemoorganoheterotroph with autotrophic potential. A heme copper oxidase complex was identified in the environmental genome assembly and highly transcribed in situ. Potential electron donors include acetate, fatty acids, amino acids, sugars and aromatic compounds, which may originate from extracellular polymeric substances produced by other microorganisms shown to exist in close proximity and/or autochthonous dissolved organic carbon (OC). Transcripts related to genes specific to each of these potential electron donors were identified, indicating that this aigarchaeon likely utilizes several OC substrates. Characterized members of this lineage cannot synthesize heme, and other cofactors and vitamins de novo, which suggests auxotrophy. We propose the name Candidatus 'Calditenuis aerorheumensis' for this aigarchaeon, which describes its filamentous morphology and its primary electron acceptor, oxygen. PMID:26140529

  8. Probability-based classifications for spatially characterizing the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region, Taiwan.

    PubMed

    Jang, Cheng-Shin

    2015-05-01

    Accurately classifying the spatial features of the water temperatures and discharge rates of hot springs is crucial for environmental resources use and management. This study spatially characterized classifications of the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region of Northern Taiwan by using indicator kriging (IK). The water temperatures and discharge rates of the springs were first assigned to high, moderate, and low categories according to the two thresholds of the proposed spring classification criteria. IK was then used to model the occurrence probabilities of the water temperatures and discharge rates of the springs and probabilistically determine their categories. Finally, nine combinations were acquired from the probability-based classifications for the spatial features of the water temperatures and discharge rates of the springs. Moreover, various combinations of spring water features were examined according to seven subzones of spring use in the study region. The research results reveal that probability-based classifications using IK provide practicable insights related to propagating the uncertainty of classifications according to the spatial features of the water temperatures and discharge rates of the springs. The springs in the Beitou (BT), Xingyi Road (XYR), Zhongshanlou (ZSL), and Lengshuikeng (LSK) subzones are suitable for supplying tourism hotels with a sufficient quantity of spring water because they have high or moderate discharge rates. Furthermore, natural hot springs in riverbeds and valleys should be developed in the Dingbeitou (DBT), ZSL, Xiayoukeng (XYK), and Macao (MC) subzones because of low discharge rates and low or moderate water temperatures. PMID:25917185

  9. Probability-based classifications for spatially characterizing the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region, Taiwan.

    PubMed

    Jang, Cheng-Shin

    2015-05-01

    Accurately classifying the spatial features of the water temperatures and discharge rates of hot springs is crucial for environmental resources use and management. This study spatially characterized classifications of the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region of Northern Taiwan by using indicator kriging (IK). The water temperatures and discharge rates of the springs were first assigned to high, moderate, and low categories according to the two thresholds of the proposed spring classification criteria. IK was then used to model the occurrence probabilities of the water temperatures and discharge rates of the springs and probabilistically determine their categories. Finally, nine combinations were acquired from the probability-based classifications for the spatial features of the water temperatures and discharge rates of the springs. Moreover, various combinations of spring water features were examined according to seven subzones of spring use in the study region. The research results reveal that probability-based classifications using IK provide practicable insights related to propagating the uncertainty of classifications according to the spatial features of the water temperatures and discharge rates of the springs. The springs in the Beitou (BT), Xingyi Road (XYR), Zhongshanlou (ZSL), and Lengshuikeng (LSK) subzones are suitable for supplying tourism hotels with a sufficient quantity of spring water because they have high or moderate discharge rates. Furthermore, natural hot springs in riverbeds and valleys should be developed in the Dingbeitou (DBT), ZSL, Xiayoukeng (XYK), and Macao (MC) subzones because of low discharge rates and low or moderate water temperatures.

  10. Comprehensive study of LASL Well C/T-2 Roosevelt Hot Springs KGRA, Utah, and applications to geothermal well logging

    SciTech Connect

    Glenn, W.E.; Hulen, J.B.; Nielson, D.L.

    1981-02-01

    Utah State Geothermal Well 9-1 in the Roosevelt Hot Springs KGRA, Beaver County, Utah, has been donated by Phillips Petroleum Company for calibration and testing of well-logging equipment in the hot, corrosive, geothermal environment. It is the second Calibration/Test Well (C/T-2) in the Geothermal Log Interpretation Program. A study of cuttings and well logs from Well C/T-2 was completed. This synthesis and data presentation contains most of the subsurface geologic information needed to effect the total evaluation of geophysical logs acquired in this geothermal calibration/test well, C/T-2.

  11. Metagenomics of Kamchatkan hot spring filaments reveal two new major (hyper)thermophilic lineages related to Thaumarchaeota.

    PubMed

    Eme, Laura; Reigstad, Laila J; Spang, Anja; Lanzén, Anders; Weinmaier, Thomas; Rattei, Thomas; Schleper, Christa; Brochier-Armanet, Céline

    2013-06-01

    Based on phylogenetic analyses and gene distribution patterns of a few complete genomes, a new distinct phylum within the Archaea, the Thaumarchaeota, has recently been proposed. Here we present analyses of six archaeal fosmid sequences derived from a microbial hot spring community in Kamchatka. The phylogenetic analysis of informational components (ribosomal RNAs and proteins) reveals two major (hyper-)thermophilic clades ("Hot Thaumarchaeota-related Clade" 1 and 2, HTC1 and HTC2) related to Thaumarchaeota, representing either deep branches of this phylum or a new archaeal phylum and provides information regarding the ancient evolution of Archaea and their evolutionary links with Eukaryotes.

  12. Cultivable diversity of thermophilic arsenite/ferrous-oxidizing microorganisms in hot springs of Taiwan

    NASA Astrophysics Data System (ADS)

    Lu, G.; Lin, Y.; Chang, Y.; Wang, P.; Lin, L.

    2009-12-01

    which are AH3, AH2S3 and ACC3 from almost all sampling sites. Positive heterotrophic enrichments at 80oC were also obtained from almost all sampling sites. Coccus was the dominant morphotype in this enrichment. One 16S rDNA sequence affiliated with Sulfolobus tokodaii was detected from MT enrichments at 80oC. Alicyclobacillus, Geobacillus, Thermus and Meiothermus related strains were purified from 50oC and 70oC heterotrophic enrichments for samples from LH05 SYK, MT and KTL. Physiological tests indicated that these Alicyclobacillus-related strains are firstly reported to be capable of relying solely on arsenite as the energy source. Hydrogenobaculum-related strains were isolated from AH2S3. Both H2 and S were required for growth. Their 16S rRNA sequences resembled Hydrogenobaculum acidophilum H55 obtained from the Yellowstone National Park of USA. The results expand the current view about the diversity of arsenite-resistant microbes in high temperature environments. More molecular and microscopic works are undergoing to characterize interactions between mineral and microbe in enrichments and natural settings and to place better constraints on the biological effect for Fe/As cycling in hot spring.

  13. Chemical, isotopic, and dissolved gas compositions of the hot springs of the Owyhee Uplands, Malheur County, Oregon

    USGS Publications Warehouse

    Mariner, R.H.; Young, H.W.; Evans, William C.; Nielson, Dennis L.

    1994-01-01

    Hot springs along the Owyhee River in southeastern Oregon between Three Forks and Lake Owyhee could be part of a north flowing regional system or a series of small separate geothermal systems Heat for the waters could be from a very young (Holocene) volcanic activity (basalt flows) of the Owyhee Uplands or the regional heat flow. The springs discharge warm to hot, dilute, slightly alkaline, sodium bicarbonate water. Chemically they are similar to the dilute thermal water at Bruneau Grand View and Twin Falls, Idaho. Maximum aquifer temperatures in the Owyhee Uplands, estimated from chemical geothermometry, are about 100°C. Dissolved helium concentrations, carbon 14 activity, and chemical and isotope data are examined fro systematic trends which would indicate a geothermal system of regional extent.

  14. Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hot-spring systems

    USGS Publications Warehouse

    Fournier, R.O.

    1979-01-01

    Thermal water ascending in a hot-spring system may cool by conduction of heat to the surrounding rock, by boiling, by mixing with cooler water, or by a combination of these processes. Complete or partial chemical reequilibration may occur as a result of this cooling. In spite of these complexities, in many places chemical compositions of hot-spring waters may be used to estimate underground conditions. A plot of enthalpy versus chloride is particularly useful for determining underground temperatures, salinities, and boiling and mixing relations. The utility of this approach is illustrated using hot-spring composition data from Cerro Prieto, Mexico, Orakeikorako, New Zealand, and Yellowstone National Park, Wyoming. ?? 1979.

  15. Flow rates in the East Pacific rise (21/sup 0/N) hot springs, and numerical investigations of two regimes of hydrothermal circulation

    SciTech Connect

    Converse, D.R.

    1985-01-01

    Flow rates of 0.7 to 2.4 m/s were measured in the hot springs on the East Pacific Rise (21/sup 0/N). We estimate that the Southwest, National Geographic, and the OBS vents collectively discharge 2 x 10/sup 8/ watts and 150 kg H/sub 2/O/S. The lifetimes of hot springs can not exceed 40,000 years because of the limited heat supply. Mechanical or chemical clogging of the flow routes may shorten these lifetime significantly. We predict that less than 3% of the sulfide particles debouched by the hot springs settle near the vents.

  16. Ammonia oxidation driven by archaea rather than bacteria in the hot spring at Tengchong geothermal field, China.

    NASA Astrophysics Data System (ADS)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Li, Jiwei; Ta, Kaiwen

    2015-04-01

    The occurrence of microbial mediated ammonia oxidation and these organisms are present in large numbers in natural environments indicated a potential biogeochemical role for them in the global nitrogen cycle. However, very little is understood about their role and contribution to nitrification in the high temperature extreme environments. Here we explore the ammonia oxidation rates and abundance of potential ammonia-oxidizing archaea (AOA) in upper and bottom sediments from Gongxiaoshe hot spring, Tengchong, Yunnan, China. The 15N-incorporating AOA cells and cell aggregated were detected with Fluorescence in situ hybridization (FISH) and Nano secondary ion mass spectrometry (Nano-SIMS). Ammonia oxidation rates measured using 15N-NO3- pool dilution in upper and bottom sediments (without NH4+ stimulated) were 4.8 and 5.3 nmol N g-1h-1, respectively. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both of the two spring sediments by 16S rRNA gene analysis. Furthermore, it should be noted that no ammonia-oxidizing bacterial clones detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present at 2.75-9.80×105 and 0.128-1.96×108 gene copies g-1 sediment. Based on the reaction rates and AOA abundance, we estimated the cell-specific nitrification rates were 0.41 to 0.79 fmol N archaeal cell-1 h-1, which are comparable to those observed in estuary environment. We suggest that AOA have the responsibility in nitrification in this hot spring, and these archaea rather than bacteria may be considered as a driver in nitrogen cycling in terrestrial hot ecosystems. Key words: ammonia-oxidizing archaea (AOA); nitrification; ammonia-oxidizing rate; hot spring;

  17. Using Phospholipids and Stable Carbon Isotopes to Assess Microbial Community Structures and Carbon Cycle Pathways in Kamchatka Hot Springs

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Romanek, C. S.; Burgess, E. A.; Wiegel, J.; Mills, G.; Zhang, C. L.

    2006-12-01

    Phospholipid fatty acid (PLFA) and stable carbon isotopes were used to assess the microbial community structures in Kamchatka hot springs. Eighteen mats or surface sediments were collected from hot springs having temperatures of 31 to 91°C and pHs of 4.9 to 8.5. These samples were clearly separated into three groups according to the bacterial PLFA: 1) those dominated by terminally branched odd-numbered fatty acids, 2) those dominated by C18:1 and 3) those dominated by C20:1. With support from other minor PLFA components, group 2 may be used as biomarkers for Chloroflexales or other phototrophic bacteria and group 3 for Aquificales, respectively. Among the sampled hot springs, the Arkashin pool represents the simplest microbial structure with members of Aquificales being the dominant primary producers. On the other hand, the Zavarzin pool may represent the most heterogeneous pool that may include members of Chloroflexales and Aquificales as primary producers. Bacterial 16S rDNA clone libraries confirmed the presence of these microbial groups in the two pools. Results of stable carbon isotope fractionation between CO2 source, bulk biomass and total PLFA showed that primary producers in the Arkashin pool primarily used the reductive tricarboxylic acid (rTCA) cycle (e.g., members of Aquificales); whereas the Zavarzin pool may be a mixture of the 3-hydroxypropionate (3-HP) pathway (e.g. members of Chloroflexales) and the rTCA cycle. Bacterial contribution using the Calvin cycle was not significant and may be less important in Kamchatka hot springs.

  18. Three-dimensional Q/sup -1/ model of the Coso Hot Springs known geothermal resource area

    SciTech Connect

    Young, C.; Ward, R.W.

    1980-05-10

    Observations of teleseismic P waves above geothermal systems exhibit travel time delays and anomalously high seismic attenuation, which is extremely useful in estimating the thermal regime and the potential of the system. A regional telemetered network of sixteen stations was operated by the U.S. Geological Survey in the Coso Hot Springs Known Geothermal Resources Area (KGRA) for such studies from September 1975 to October 1976. Subsequently, they deployed a portable Centipede array of 26 three-component stations near the center of anomaly. The seismograms of 44 events recorded by the telemetered array and nine events by the Centipede array were analyzed using the reduced spectral ratio technique to determine the differential attenuation factordeltat* for the events recorded with the highest signal-to-noise ratio. The deltat* variation observed across the Coso Hot Springs KGRA were small (<0.2 s). A three-dimensional generalized linear inversion of the deltat* observations was performed using a three-layer model. A shallow zone of high attenuation exists within the upper 5 km in a region bounded by Coso Hot Springs, Devils Kitchen, and Sugarloaf Mountain probably corresponding to a shallow vapor liquid mixture or 'lossy' near surface lithology. No zones of significantly high attenuation occur between 5- and 12-km depth. Between the depth of 12--20 km a thick zone of high attenuation (Q<50) exists, offset toward the east from the surface anomaly.

  19. Physico-chemical evolution of groundwater in tectonically active areas. Application to the Leana hot spring (Murcia Region, SE Spain)

    NASA Astrophysics Data System (ADS)

    Martínez, M.; Hornero, J.; Trujillo, C.

    2016-09-01

    Seismic events can affect the physico-chemical characteristics of groundwater. These anomalies are of a pre-seismic, co-seismic and post-seismic nature and correspond to pulse variations, sudden increases and decreases without return to initial values and upward or downward changes in trend. Continuous and in situ conductivity and temperature monitoring and periodic water sampling at a hot spring associated with neotectonic activity are of great interest for establishing predictive methods. This method is limited to the seismic activity affecting the fracturing system with which the hot spring is associated. The Region of Murcia and surroundings (southeast Spain) was selected as the study area for exploring the nature of these influences on groundwater. A hot spring in the Leana spa (Murcia) was equipped and monitored during the period 2006-2008, allowing for the in situ determination of conductivity and temperature as well as of major and minor constituents at the laboratory. Due to its proximity and related with fault network, we suggest that 86 % of earthquakes located between 0 and 10 km may affect in situ parameters of groundwater, and 75 % may affect laboratory determinations. This percentage drops in more distant zones. Of all earthquakes that seem to influence groundwater, 55 % of the in situ parameter anomalies and 53 % of laboratory were of a pre-seismic nature.

  20. An outbreak of pneumonia and meningitis caused by a previously undescribed gram-negative bacterium in a hot spring spa.

    PubMed Central

    Hubert, B.; de Mahenge, A.; Grimont, F.; Richard, C.; Peloux, Y.; de Mahenge, C.; Fleurette, J.; Grimont, P. A.

    1991-01-01

    An outbreak of infection caused by a previously undescribed Gram-negative bacterium affected people attending a hot (37 degrees C) spring spa in France in 1987. Thirty-five case of pneumonia and two cases of meningitis occurred. None of these patients died. Attack rates were significantly higher for patients above 70 years old and for male patients. An epidemiological comparison of the 26 hospitalized cases with 52 matched controls suggests that spa treatment early on the first day (OR = 4.8) and attendance at the vapour baths (OR = 10.7) were significant risk factors for acquiring the infection. Person-to-person spread was not thought to have occurred. The same bacterium was isolated from the hot spring water. All strains studied shows a single rRNA gene restriction pattern. Epidemiological data indicated that the thermal water was the source of infection. This outbreak stresses the need for increased surveillance of infections in people attending hot spring spas. PMID:1936159

  1. Hot and Saline Spring Behaviour in the Taupo Volcanic Zone and the North-East German Basin

    NASA Astrophysics Data System (ADS)

    Cacace, M.; Kissling, W.

    2012-04-01

    Hot springs occur in geothermal regions worldwide, and often have important economic or cultural values which can be threatened by geothermal developments. In this paper we describe models of hot springs in the Taupo Volcanic Zone (TVZ) in New Zealand, and of saline springs in the Northeast German Basin (NEGB). In New Zealand, the operation of the Wairakei geothermal power station in the 1950's and early 1960's lead to the collapse of the thermal area known as 'Geyser Valley', and more recently, the spring and Geyser activity in Rotorua was threatened by the widespread and uncontrolled drawoff of geothermal water for domestic use. Similarly, in the NEGB, discharge of saline springs poses serious challenges for groundwater management for agricultural and domestic use, having additional implications for future geothermal energy projects. Despite their obviously very different nature the springs in NEGB and TVZ do have some common characteristics: they both feed fluid to the surface from deeper (geothermal) aquifers through embedded hydrogeological heterogeneities (e.g. fracture systems, erosional gaps and unconformities in the internal stratigraphic sequence), and data shows that they both exhibit irregular flowrates, temperatures and chemistries. Currently used models of hot/saline springs do not show these types of behaviour and offer no understanding of the mechanisms of variability in either setting, or indeed the nature of the connections to deeper aquifers. In this paper we present early results from a study aimed at identifying the most important physical mechanisms governing the dynamics of these systems. We use the simulation code NaCl-Tough2 (Kissling, 2005a,b) to accurately represent the thermodynamics of fluids in both systems. Though relatively simplistic in terms of the modelled geometry these models provide new important insights into the variability of the observed flow dynamics as well as in their causative processes at depths. The results obtained

  2. Microbial community structures of novel Icelandic hot spring systems revealed by PhyloChip G3 analysis.

    PubMed

    Krebs, Jordan E; Vaishampayan, Parag; Probst, Alexander J; Tom, Lauren M; Marteinsson, Viggó Thór; Andersen, Gary L; Venkateswaran, Kasthuri

    2014-03-01

    Microbial community profiles of recently formed hot spring systems ranging in temperatures from 57°C to 100°C and pH values from 2 to 4 in Hveragerði (Iceland) were analyzed with PhyloChip G3 technology. In total, 1173 bacterial operational taxonomic units (OTUs) spanning 576 subfamilies and 38 archaeal OTUs covering 32 subfamilies were observed. As expected, the hyperthermophilic (∼100°C) spring system exhibited both low microbial biomass and diversity when compared to thermophilic (∼ 60°C) springs. Ordination analysis revealed distinct bacterial and archaeal diversity in geographically distinct hot springs. Slight variations in temperature (from 57°C to 64°C) within the interconnected pools led to a marked fluctuation in microbial abundance and diversity. Correlation and PERMANOVA tests provided evidence that temperature was the key environmental factor responsible for microbial community dynamics, while pH, H2S, and SO2 influenced the abundance of specific microbial groups. When archaeal community composition was analyzed, the majority of detected OTUs correlated negatively with temperature, and few correlated positively with pH.

  3. Small Scale Biodiversity of an Alkaline Hot Spring in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Walther, K.; Oiler, J.; Meyer-Dombard, D. R.

    2012-12-01

    To date, many phylogenetic diversity studies have been conducted in Yellowstone National Park (YNP) [1-7] focusing on the amplification of the 16S rRNA gene and "metagenomic" datasets. However, few reports focus on diversity at small scales. Here, we report on a small scale biodiversity study of sediment and biofilm communities within a confined area of a YNP hot spring, compare and contrast these communities to other sediment and biofilm communities from previous studies [1-7], and with other sediment and biofilm communities in the same system. Sediment and biofilm samples were collected, using a 30 x 50 cm sampling grid divided in 5 x 5 cm squares, which was placed in the outflow channel of "Bat Pool", an alkaline (pH 7.9) hot spring in YNP. Accompanying geochemical data included a full range of spectrophotometry measurements along with major ions, trace elements, and DIC/DOC. In addition, in situ temperature and conductivity arrays were placed within the grid location. The temperature array closest to the source varied between 83-88°C, while the temperature array 40 cm downstream varied between ~83.5-86.5°C. The two conductivity arrays yielded measurements of 5632 μS and 5710 μS showing little variation within the sampling area. Within the grid space, DO ranged from 0.5-1.33 mg/L, with relatively similar, but slightly lower values down the outflow channel. Sulfide values within the grid ranged from 1020-1671 μg/L, while sulfide values outside of the grid region fluctuated, but generally followed the trend of decreasing from source down the outflow. Despite the relative heterogeneity of chemical and physical parameters in the grid space, there was biological diversity in sediments and biofilms at the 5 cm scale. Small scale biodiversity was analyzed by selecting a representative number of samples from within the grid. DNA was extracted and variable regions V3 and V6 (Archaea and Bacteria, respectively) were sequenced with 454 pyrosequencing. The datasets

  4. Alicyclobacillus tengchongensis sp. nov., a thermo-acidophilic bacterium isolated from hot spring soil.

    PubMed

    Kim, Min Goo; Lee, Jae-Chan; Park, Dong-Jin; Li, Wen-Jun; Kim, Chang-Jin

    2014-10-01

    A thermo-acidophilic bacterium, designated strain ACK006(T), was isolated from the soil of a hot spring at Tengchong in China. Cells were Gram-staining-positive, motile, catalase-positive and oxidase-negative, spore-forming rods. The isolate grew aerobically at 30-50°C (optimum at 45°C), pH 2.0-6.0 (optimum pH 3.2) and 0-5.0% (w/v) NaCl (optimum 1% NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain ACK006(T) belongs to the genus Alicyclobacillus with the sequence similarity of 92.3, 92.4, 92.5, and 92.8% to Alicyclobacillus cycloheptanicus SCH(T), Alicyclobacillus ferrooxydans TC-34(T), Alicyclobacillus contaminans 3-A191(T) and Alicyclobacillus disulfidooxidans SD-11(T), respectively. Similarity to other species of the genus Alicyclobacillus was 90.3-92.8% and similarity to species of the genus Tumebacillus was 85.9-87.8%. The genomic DNA G+C content was 53.7 mol%. The predominant menaquinone was MK-7. Major fatty acids were ω-cycloheptane C18:0, iso-C17:0 and anteiso-C17:0. The cell-wall peptidoglycan was the A1γ type; containing meso-diaminopimelic acid as the diagnostic diamino acid. On the basis of polyphasic analysis from this study, strain ACK006(T) represents a novel species of the genus Alicyclobacillus for which the name Alicyclobacillus tengchongensis sp. nov. is proposed. The type strain is ACK006(T) (=KCTC 33022(T) =DSM 25924(T)).

  5. Evaluation of arabinofuranosidase and xylanase activities of Geobacillus spp. isolated from some hot springs in Turkey.

    PubMed

    Canakci, Sabriye; Inan, Kadriye; Kacagan, Murat; Belduz, Ali Osman

    2007-08-01

    Some hot springs located in the west of Turkey were investigated with respect to the presence of thermophilic microorganisms. Based on phenotyping characteristics and 16S rRNA gene sequence analysis, 16 of the isolates belonged to the genus Geobacillus and grew optimally at about 60 degrees C on nutrient agar. 16S rRNA gene sequence analysis showed that these isolates resembled Geobacillus species by > or = 97%, but SDS-PAGE profiles of these 16 isolates differ from some of the other species of the genus Geobacillus. However, it is also known that analysis of 16S rRNA gene sequences may be insufficient to distinguish between some species. It is proposed that recN sequence comparisons could accurately measure genome similarities for the Geobacillus genus. Based on recN sequence analysis, isolates 11, IT3, and 12 are strains of G stearothermophilus; isolate 14.3 is a strain of G thermodenitrificans; isolates 9.1, IT4.1, and 4.5 are uncertain and it is required to make further analysis. The presence of xylanase and arabinofuranosidase activities, and their optimum temperature and pH were also investigated. These results showed that 7 of the strains have both xylanase and arabinofuranosidase activities, 4 of them has only xylanase, and the remaning 5 strains have neither of these activities. The isolates 9.1, 7.1, and 3.3 have the highest temperature optima (80 degrees C), and 7.2, 9.1, AO4, 9.2, and AO17 have the highest pH optima (pH 8) of xylanase. Isolates 7.2, AO4, AC15, and 12 have optimum arabinofuranosidase activities at 75 degrees C, and only isolate AC 15 has the lowest pH of 5.5. PMID:18051594

  6. Production and Early Preservation of Lipid Biomarkers in Iron Hot Springs

    SciTech Connect

    Parenteau, Mary N.; Jahnke, Linda L.; Farmer, Jack D.; Cady, Sherry L.

    2014-06-01

    The bicarbonate-buffered anoxic vent waters at Chocolate Pots hot springs in Yellowstone National Park are 51–54°C, pH 5.5–6.0, and are very high in dissolved Fe(II) at 5.8–5.9 mg/L. The aqueous Fe(II) is oxidized by a combination of biotic and abiotic mechanisms and precipitated as primary siliceous nanophase iron oxyhydroxides (ferrihydrite). Four distinct prokaryotic photosynthetic microbial mat types grow on top of these iron deposits. Lipids were used to characterize the community composition of the microbial mats, link source organisms to geologically significant biomarkers, and investigate how iron mineralization degrades the lipid signature of the community. The phospholipid and glycolipid fatty acid profiles of the highest-temperature mats indicate that they are dominated by cyanobacteria and green nonsulfur filamentous anoxygenic phototrophs (FAPs). Diagnostic lipid biomarkers of the cyanobacteria include midchain branched mono- and dimethylalkanes and, most notably, 2-methylbacteriohopanepolyol. Diagnostic lipid biomarkers of the FAPs (Chloroflexus and Roseiflexus spp.) include wax esters and a long-chain tri-unsaturated alkene. Surprisingly, the lipid biomarkers resisted the earliest stages of microbial degradation and diagenesis to survive in the iron oxides beneath the mats. Understanding the potential of particular sedimentary environments to capture and preserve fossil biosignatures is of vital importance in the selection of the best landing sites for future astrobiological missions to Mars. Finally, this study explores the nature of organic degradation processes in moderately thermal Fe(II)-rich groundwater springs—environmental conditions that have been previously identified as highly relevant for Mars exploration.

  7. Caloramator boliviensis sp. nov., a thermophilic, ethanol-producing bacterium isolated from a hot spring.

    PubMed

    Crespo, Carla; Pozzo, Tania; Karlsson, Eva Nordberg; Alvarez, Maria Teresa; Mattiasson, Bo

    2012-07-01

    A novel moderately thermophilic, anaerobic, ethanol-producing bacterial strain, 45B(T), was isolated from a mixed sediment water sample collected from a hot spring at Potosi, Bolivia. The cells were straight to slightly curved rods approximately 2.5 µm long and 0.5 µm wide. The strain was Gram-stain-variable, spore-forming and monotrichously flagellated. Growth of the strain was observed at 45-65 °C and pH 5.5-8.0, with optima of 60 °C and pH 6.5. The substrates utilized by strain 45B(T) were xylose, cellobiose, glucose, arabinose, sucrose, lactose, maltose, fructose, galactose, mannose, glycerol, xylan, carboxymethylcellulose and yeast extract. The main fermentation product from xylose and cellobiose was ethanol (0.70 and 0.45 g ethanol per gram of consumed sugar, respectively). Acetate, lactate, propionate, carbon dioxide and hydrogen were also produced in minor quantities. 1,3-Propanediol was produced when glycerol-containing medium was supplemented with yeast extract. The major cellular fatty acids were anteiso-C(15:0), C(16:0), iso-C(16:0), C(15:1), iso-C(14:0), C(13:0) and C(14:0). The polar lipids diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an aminoglycolipid and 15 other unidentified lipids were predominant. The DNA G+C content of strain 45B(T) was 32.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence similarity revealed that strain 45B(T) is located within the Gram-type positive Bacillus-Clostridium branch of the phylogenetic tree. On the basis of morphological and physiological properties and phylogenetic analysis, strain 45B(T) represents a novel species, for which the name Caloramator boliviensis sp. nov. is proposed; the type strain is 45B(T) (=DSM 22065(T)=CCUG 57396(T)).

  8. Caldicoprobacter algeriensis sp. nov. a new thermophilic anaerobic, xylanolytic bacterium isolated from an Algerian hot spring.

    PubMed

    Bouanane-Darenfed, Amel; Fardeau, Marie-Laure; Grégoire, Patrick; Joseph, Manon; Kebbouche-Gana, Salima; Benayad, Tahar; Hacene, Hocine; Cayol, Jean-Luc; Ollivier, Bernard

    2011-03-01

    A thermophilic anaerobic bacterium (strain TH7C1(T)) was isolated from the hydrothermal hot spring of Guelma in the northeast of Algeria. Strain TH7C1(T) stained Gram-positive, was a non-motile rod appearing singly, in pairs, or as long chains (0.7-1 × 2-6 μm(2)). Spores were never observed. It grew at temperatures between 55 and 75°C (optimum 65°C) and at pH between 6.2 and 8.3 (optimum 6.9). It did not require NaCl for growth, but tolerated it up to 5 g l(-1). Strain TH7C1(T) is an obligatory heterotroph fermenting sugars including glucose, galactose, lactose, raffinose, fructose, ribose, xylose, arabinose, maltose, mannitol, cellobiose, mannose, melibiose, saccharose, but also xylan, and pyruvate. Fermentation of sugars only occurred in the presence of yeast extract (0.1%). The end-products from glucose fermentation were acetate, lactate, ethanol, CO(2), and H(2). Nitrate, nitrite, thiosulfate, elemental sulfur, sulfate, and sulfite were not used as electron acceptors. The G+C content of the genomic DNA was 44.7 mol% (HPLC techniques). Phylogenetic analysis of the small-subunit ribosomal RNA (rRNA) gene sequence indicated that strain TH7C1(T) was affiliated to Firmicutes, order Clostridiales, family Caldicoprobacteraceae, with Caldicoprobacter oshimai (98.5%) being its closest relative. Based on phenotypic, phylogenetic, and genetic characteristics, strain TH7C1(T) is proposed as a novel species of genus Caldicoprobacter, Caldicoprobacter algeriensis, sp. nov. (strain TH7C1(T) = DSM 22661(T) = JCM 16184(T)).

  9. Caldicellulosiruptor changbaiensis sp. nov., a cellulolytic and hydrogen-producing bacterium from a hot spring.

    PubMed

    Bing, Wei; Wang, Honglei; Zheng, Baisong; Zhang, Feng; Zhu, Guangshan; Feng, Yan; Zhang, Zuoming

    2015-01-01

    A novel thermophilic bacterial strain, CBS-Z(T), was isolated from a terrestrial hot spring in the Changbai Mountains, PR China. Cells of strain CBS-Z(T) were short straight rods without flagella and had Gram-positive cell walls. Growth was observed at 40-90 °C (optimum 75 °C) and at pH 5.6-8.6 (optimum pH 7.8). The primary end-products from the fermentation of filter paper by strain CBS-Z(T) were acetate, lactate, H2, and CO2. The main cellular fatty acids were iso-C17:0, iso-C14:0 3-OH and C16:0. The G+C content of the genomic DNA was 36.08 mol%. Multiple sequence alignment of the 16S rRNA gene sequence and phylogenetic analyses indicated that strain CBS-Z(T) belongs to the genus Caldicellulosiruptor and the most similar micro-organism was Caldicellulosiruptor saccharolyticus DSM 8903(T) (96.36% 16S rRNA gene sequence similarity); the 16S rRNA gene sequence similarity of strain CBS-Z(T) to other species was below 95%. Based on its phylogenetic and phenotypic characteristics, strain CBS-Z(T) represents a novel species of the genus Caldicellulosiruptor, for which the name Caldicellulosiruptor changbaiensis sp. nov. is proposed. The type strain is CBS-Z(T) ( =DSM 26941(T) =CGMCC 1.5180(T)).

  10. Crenalkalicoccus roseus gen. nov., sp. nov., a thermophilic bacterium isolated from alkaline hot springs.

    PubMed

    Ming, Hong; Duan, Yan-Yan; Yin, Yi-Rui; Meng, Xiao-Lin; Li, Shuai; Zhou, En-Min; Huang, Jian-Rong; Nie, Guo-Xing; Li, Wen-Jun

    2016-06-01

    Two closely related thermophilic bacterial strains, designated YIM 78023T and YIM 78058, were isolated from samples collected from two alkaline hot springs in Tengchong county, Yunnan province, south-west China. The novel isolates were Gram-stain-negative, non-motile, aerobic ovoid- to coccoid-shaped and non-spore-forming. Strain YIM 78023T grew at 20-60 ºC and pH 6.0-9.0 with optimal growth observed at 40-50 ºC and pH 8.0, while strain YIM 78058 grew at 25-60 ºC and pH 6.0-10.0 with optimal growth at 45-50 ºC and pH 8.0. Phylogenetic analysis based on 16S rRNA gene sequences affiliated these two isolates within the family Acetobacteraceae with high sequence similarities to members of the genera Roseomonas and Belnapia (all sequence similarities <94.5 %). In addition to the above two genera, these strains also clustered with the genera Craurococcus and Paracraurococcus (having sequence similarities <93.3 %) in the phylogenetic tree, but with a distinct lineage within the family Acetobacteraceae. The major ubiquinone was Q-10 and the major fatty acids observed were C18:1ω7c, summed feature 4 and C16:0. The genomic DNA G+C contents observed for strains YIM 78023T and YIM 78058 were 74.3 and 74.0 mol%, respectively. Morphological, phylogenetic and chemotaxonomic results suggest that strains YIM 78023T and YIM 78058 are representatives of a novel species of a new genus within the family Acetobacteraceae, for which the name Crenalkalicoccus roseus gen. nov., sp. nov. is proposed. The type strain of Crenalkalicoccus roseus is YIM 78023T (=JCM 19657T=KACC 17825T). PMID:27001292

  11. Crenobacter luteus gen. nov., sp. nov., isolated from a hot spring.

    PubMed

    Dong, Lei; Ming, Hong; Zhou, En-Min; Yin, Yi-Rui; Liu, Lan; Feng, Hui-Geng; Xian, Wen-Dong; Nie, Guo-Xing; Li, Wen-Jun

    2015-01-01

    A slightly thermophilic, Gram-staining-negative and strictly aerobic bacteria, designated strain YIM 78141(T), was isolated from a sediment sample collected at Hehua hot spring, Tengchong, Yunnan province, south-west China. Cells of the strain were short-rod-shaped and colonies were yellowish and circular. The strain grew at pH 6.0-10.0 (optimum, pH 8.0-9.0) and 10-55 °C (optimum, 40-50 °C). Phylogenetic analyses based on 16S rRNA gene sequence comparison demonstrated that strain YIM 78141(T) belongs to the family Neisseriaceae, and strain YIM 78141(T) also showed low levels of 16S rRNA gene sequence similarity (below 93.4%) with all other genera in this family. The only quinone was ubiquinone 8 and the genomic DNA G+C content was 67.3 mol%. Major fatty acids (>5%) were C12:0, C16:0, C18:1ω7c and summed feature 3. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phospholipids of unknown structure containing aminoglycophospholipid and three unidentified polar lipids. On the basis of the morphological, physiological and biochemical characteristics as well as genotypic data, this strain should be classified as a representative of a novel genus and species of the family Neisseriaceae, for which the name Crenobacter luteus gen. nov., sp. nov. is proposed. The type strain is YIM 78141(T) ( =BCRC 80650(T) =KCTC 32558(T) =DSM 27258(T)).

  12. Cecembia rubra sp. nov., a thermophilic bacterium isolated from a hot spring sediment.

    PubMed

    Duan, Yan-Yan; Ming, Hong; Dong, Lei; Yin, Yi-Rui; Meng, Xiao-Lin; Zhou, En-Min; Zhang, Jian-Xin; Nie, Guo-Xing; Li, Wen-Jun

    2015-07-01

    A Gram-staining negative, rod-shaped bacterium, designated strain YIM 78110(T), was isolated from a sediment sample collected from Hehua hot spring in Tengchong, Yunnan province, south-west China. The taxonomic status of strain YIM 78110(T) was confirmed by a polyphasic approach. 16S rRNA gene sequence analysis indicated that strain YIM 78110(T) belongs to the genus Cecembia, displaying 96.8% and 94.7% sequence similarity with the two most closely related type strains, Cecembia calidifontis RQ-33(T) and Cecembia lonarensis LW9T, respectively. The low value of DNA-DNA hybridization (52.3 ± 2.3%) between strain YIM 78110(T) and its closest neighbour, Cecembia calidifontis RQ-33(T), indicated that this new isolate represented a different genomic species in the genus Cecembia. The temperature for growth ranged from 30 to 50 °C. The pH for growth ranged from pH 4.0 to 10.0, with NaCl tolerance of 0.5-6.0% (w/v). The predominant menaquinone of strain YIM 78110(T) was MK-7 and the major polar lipid was phosphatidylethanolamine. The major fatty acids were iso-C15:0 and C15:0. The DNA G+C content was 47.1 mol%. On the basis of physiological, biochemical and phylogenetic analyses, it is proposed that strain YIM 78110(T) represents a novel species of the genus Cecembia, for which the name Cecembia rubra sp. nov. is proposed. The type strain is YIM 78110(T) ( = CCTCC AB2013287(T) = DSM 28057(T)).

  13. Crenalkalicoccus roseus gen. nov., sp. nov., a thermophilic bacterium isolated from alkaline hot springs.

    PubMed

    Ming, Hong; Duan, Yan-Yan; Yin, Yi-Rui; Meng, Xiao-Lin; Li, Shuai; Zhou, En-Min; Huang, Jian-Rong; Nie, Guo-Xing; Li, Wen-Jun

    2016-06-01

    Two closely related thermophilic bacterial strains, designated YIM 78023T and YIM 78058, were isolated from samples collected from two alkaline hot springs in Tengchong county, Yunnan province, south-west China. The novel isolates were Gram-stain-negative, non-motile, aerobic ovoid- to coccoid-shaped and non-spore-forming. Strain YIM 78023T grew at 20-60 ºC and pH 6.0-9.0 with optimal growth observed at 40-50 ºC and pH 8.0, while strain YIM 78058 grew at 25-60 ºC and pH 6.0-10.0 with optimal growth at 45-50 ºC and pH 8.0. Phylogenetic analysis based on 16S rRNA gene sequences affiliated these two isolates within the family Acetobacteraceae with high sequence similarities to members of the genera Roseomonas and Belnapia (all sequence similarities <94.5 %). In addition to the above two genera, these strains also clustered with the genera Craurococcus and Paracraurococcus (having sequence similarities <93.3 %) in the phylogenetic tree, but with a distinct lineage within the family Acetobacteraceae. The major ubiquinone was Q-10 and the major fatty acids observed were C18:1ω7c, summed feature 4 and C16:0. The genomic DNA G+C contents observed for strains YIM 78023T and YIM 78058 were 74.3 and 74.0 mol%, respectively. Morphological, phylogenetic and chemotaxonomic results suggest that strains YIM 78023T and YIM 78058 are representatives of a novel species of a new genus within the family Acetobacteraceae, for which the name Crenalkalicoccus roseus gen. nov., sp. nov. is proposed. The type strain of Crenalkalicoccus roseus is YIM 78023T (=JCM 19657T=KACC 17825T).

  14. A Metastable Equilibrium Model for the Relative Abundances of Microbial Phyla in a Hot Spring

    PubMed Central

    Dick, Jeffrey M.; Shock, Everett L.

    2013-01-01

    Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as “Bison Pool” in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities, assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the

  15. Thermoactinomyces khenchelensis sp. nov., a filamentous bacterium isolated from soil sediment of a terrestrial hot spring.

    PubMed

    Mokrane, Salim; Bouras, Noureddine; Meklat, Atika; Lahoum, Abdelhadi; Zitouni, Abdelghani; Verheecke, Carol; Mathieu, Florence; Schumann, Peter; Spröer, Cathrin; Sabaou, Nasserdine; Klenk, Hans-Peter

    2016-02-01

    A novel thermophilic filamentous bacterium, designated strain T36(T), was isolated from soil sediment sample from a hot spring source collected in Khenchela province, Algeria. Strain T36(T) was identified as a member of the genus Thermoactinomyces by a polyphasic approach. Strain T36(T) was observed to form white aerial mycelium and non-coloured to pale yellow substrate mycelium, both producing endospores, sessile or borne by short sporophores. The optimum growth temperature and pH were found to be 37-55 °C and 7.0-9.0, respectively and the optimum NaCl concentration for growth was found to be 0-7 % (w/v). The diagnostic diamino acid in the cell wall peptidoglycan was identified as meso-diaminopimelic acid. The predominant menaquinone of strain T36(T) was identified as MK-7 (H0). The major fatty acids were found to be iso-C15:0 and iso-C17:0. The phospholipids detected were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphoglycolipid. The chemotaxonomic properties of strain T36(T) are consistent with those shared by members of the genus Thermoactinomyces. 16S rRNA gene sequence analysis indicated that the sequence similarities between strain T36(T) and Thermoactinomyces species with validly published names were less than 98 %. Based on the combined genotypic and phenotypic evidence, it is proposed that strain T36(T) should be classified as representative of a novel species, for which the name Thermoactinomyces khenchelensis sp. nov. is proposed. The type strain is T36(T) (=DSM 45951(T) = CECT 8579(T)). PMID:26678783

  16. Thermus amyloliquefaciens sp. nov., isolated from a hot spring sediment sample.

    PubMed

    Yu, Tian-Tian; Ming, Hong; Yao, Ji-Cheng; Zhou, En-Min; Park, Dong-Jin; Hozzein, Wael N; Kim, Chang-Jin; Wadaan, Mohammed A M; Li, Wen-Jun

    2015-08-01

    A Gram-stain-negative, aerobic bacterium, designated strain YIM 77409T, was isolated from the Niujie hot spring in the Eryuan county of Dali, Yunnan province, south-west China. Cells of the strain were rod-shaped and colonies were yellow and circular. The strain grew at pH 6.0-8.0 (optimum, pH 7.0) and 50-70°C (optimum, 60-65°C). The predominant menaquinone was MK-8 and the DNA G+C content was 66.4 mol%. Major fatty acids (>10 %) were iso-C15 : 0 and iso-C17 : 0.The polar lipids consisted of one aminophospholipid, one phospholipid and two glycolipids. 16S rRNA gene sequence analysis showed that strain YIM 77409T formed a cluster with Thermus scotoductus DSM 8553T, Thermus antranikianii DSM 12462T, Thermus caliditerrae YIM 77925T and Thermus tengchongensis YIM 77924T, with highest 16S rRNA gene sequence similarity to T. scotoductus DSM 8553T (97.57%). However, DNA-DNA hybridization indicated that strain YIM 77409T should be viewed as a representative of a novel species, as there was only 30.6 ± 1.6% reassociation with T. scotoductus DSM 8553T. On the basis of the morphological and chemotaxonomic characteristics, as well as the genotypic data, it is proposed that strain YIM 77409T represents a novel species of the genus Thermus, with the name Thermus amyloliquefaciens sp. nov. The type strain is YIM 77409T ( = DSM 25898T = KCTC 32024T). PMID:25920724

  17. Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area

    SciTech Connect

    Faulds, James E.

    2013-12-31

    Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998

  18. Draft Genome Sequence of Anoxybacillus suryakundensis Strain JS1T (DSM 27374T) Isolated from a Hot Spring in Jharkhand, India

    PubMed Central

    Deep, Kamal; Poddar, Abhijit; Whitman, William B.

    2016-01-01

    Anoxybacillus suryakundensis strain JS1T, a facultative anaerobic, moderately thermophilic, alkalitolerant bacterium, was isolated from a hot spring. The estimated genome is 2.6 Mb and encodes 2,668 proteins. PMID:27516513

  19. Draft Genome Sequence of Anoxybacillus suryakundensis Strain JS1T (DSM 27374T) Isolated from a Hot Spring in Jharkhand, India.

    PubMed

    Deep, Kamal; Poddar, Abhijit; Whitman, William B; Das, Subrata K

    2016-01-01

    Anoxybacillus suryakundensis strain JS1(T), a facultative anaerobic, moderately thermophilic, alkalitolerant bacterium, was isolated from a hot spring. The estimated genome is 2.6 Mb and encodes 2,668 proteins. PMID:27516513

  20. PCR detection and analysis of the free-living amoeba Naegleria in hot springs in Yellowstone and Grand Teton National Parks.

    PubMed

    Sheehan, Kathy B; Fagg, Jennifer A; Ferris, Michael J; Henson, Joan M

    2003-10-01

    Free-living thermotolerant amoebae pose a significant health risk to people who soak and swim in habitats suitable for their growth, such as hot springs. In this survey of 23 different hot springs in Yellowstone and Grand Teton National Parks, we used PCR with primer sets specific for Naegleria to detect three sequence types that represent species not previously described, as well as a fourth sequence type identified as the pathogen Naegleria fowleri.

  1. Oxidative and reductive transformations of arsenic by photosynthetic microbial communities from hot springs on Pahoa Island, Mono Lake, California

    NASA Astrophysics Data System (ADS)

    Kulp, T. R.; Hoeft, S. E.; Miller, L. G.; Culbertson, C. W.; Baesman, S. M.; Oremland, R. S.

    2007-12-01

    The shoreline of Pahoa Island in hypersaline Mono Lake in California is characterized by numerous volcanogenic hot springs that display a wide range of temperatures between 30 and 85 degrees C. A variety of distinctive photosynthetic microbial mats are evident in these hot springs and their spatial distribution appears to be a function of water temperature. The suboxic hydrothermal waters of these seeps typically contain ~100 uM dissolved arsenic, which is rapidly oxidized from arsenite [As(III)] to arsenate [As(V)] as the springs flow over these microbial communities. We conducted experiments with anaerobic cultures of red or green photosynthetic bacteria from these hot springs, which we amended with radio-labeled 73As(III) or 73As(V) and incubated at 42 degrees C to measure arsenite oxidation and arsenate reduction activity. In order to assess the potential for As(III) to serve as an electron donor during anoxygenic photosynthesis, As(III) oxidation incubations were conducted under both light and dark conditions. Both light and dark incubations of these thermophiles rapidly oxidized amendments of 100 uM As(III) within 7 hours of incubation, however no significant difference was observed in the rate of As(III) oxidation for light compared to dark samples. Arsenate reduction was also observed in both light and dark anaerobic cultures after 48 hours incubation. In all cases, As oxidation or reduction activity was eliminated by autoclaving. These results suggest that biological As(III) oxidation by these bacteria is primarily a mechanism of detoxification or chemoautotrophy, however the potential significance of As(III) as a photosynthetic electron acceptor will be discussed.

  2. Temperature Adaptations in the Terminal Processes of Anaerobic Decomposition of Yellowstone National Park and Icelandic Hot Spring Microbial Mats

    PubMed Central

    Sandbeck, Kenneth A.; Ward, David M.

    1982-01-01

    The optimum temperatures for methanogenesis in microbial mats of four neutral to alkaline, low-sulfate hot springs in Yellowstone National Park were between 50 and 60°C, which was 13 to 23°C lower than the upper temperature for mat development. Significant methanogenesis at 65°C was only observed in one of the springs. Methane production in samples collected at a 51 or 62°C site in Octopus Spring was increased by incubation at higher temperatures and was maximal at 70°C. Strains of Methanobacterium thermoautotrophicum were isolated from 50, 55, 60, and 65°C sites in Octopus Spring at the temperatures of the collection sites. The optimum temperature for growth and methanogenesis of each isolate was 65°C. Similar results were found for the potential rate of sulfate reduction in an Icelandic hot spring microbial mat in which sulfate reduction dominated methane production as a terminal process in anaerobic decomposition. The potential rate of sulfate reduction along the thermal gradient of the mat was greatest at 50°C, but incubation at 60°C of the samples obtained at 50°C increased the rate. Adaptation to different mat temperatures, common among various microorganisms and processes in the mats, did not appear to occur in the processes and microorganisms which terminate the anaerobic food chain. Other factors must explain why the maximal rates of these processes are restricted to moderate temperatures of the mat ecosystem. PMID:16346109

  3. "Cold" and "hot" thermal anomalies/events during spring and autumn in Poland

    NASA Astrophysics Data System (ADS)

    Graczyk, Dariusz; Szwed, Małgorzata; Choryński, Adam

    2014-05-01

    Regular air temperatures' changes, as an effect of succession of the seasons, are a part of people's everyday life. When winters and summers are not characterised by extreme thermal conditions, people are well prepared and there are no losses for agriculture and economy or human health consequences observed. A similar situation takes place in case of typical springs and autumns, where normally no too low or too high air temperatures occur. The situation becomes totally different when the air temperature significantly exceeds frames of typical temperature for particular months or seasons. Appearance of winter conditions during months in which they are not expected may lead to losses in different branches of the economy e.g. transport or agriculture. Heat in non-summer months potentially brings less damages for the economy, but it might be a great threat for human health, especially for those with cardiological diseases, and it may result in thermal discomfort. If these conditions last for sufficient period of time, they may cause disorders in plant vegetation cycles. One element of the discussion held on the global warming which has been observed since the half of the twentieth century, is the question of how this effects the occurrence of climatic anomalies. Does it result in an decrease of "cold" thermal anomalies and in an increase of frequency of "hot" anomalies? Or does it increase the occurrence of both types of these events? In this research there will be performed an analysis of the occurrence of conditions typical for winter months, outside the climatic winter (December, January, February) at ten locations in the area of Poland. During the months directly close to this period (November and March) the threshold for winter conditions will be maximum temperature below 0 oC which means occurrence of frost all day long. For other non-summer months the threshold will be mean daily temperature below 0 oC meaning low temperatures during the day, not only morning

  4. Identification And Survival Of Bacteriohopanepolyol In A Hot Spring Microbial Mat

    NASA Technical Reports Server (NTRS)

    Janke, Linda L.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    The polar lipids of a hot spring microbial mat located in Yellowstone National Park were examined for the presence of bacteriohopanepolvols (BHP). BHP are a group of molecules consisting of a hopanoid (peotacyclic triterpene) linked via a n-alkyl polyhydroxylated chain to a variety of polar end groups. BHP have been isolated in varying amounts from phylogenetically diverse eubacterial groups including cyanobacteria, methanotrophs and the Rhodospirillaceae. The hopanoids are excellent biomarkers and have been detected in sedimentary rocks as old as 1.7 bya. In order to interpret the ancient organic record, it is important to understand the abundance, source and fate of such biomarker compounds in microbial mats. A 40 sq cm mat section was taken from a 52 to 55 C site in the effluent channel of Octopus Spring and was sampled vertically over approximately 16 mm. The first 5-6 mm was sectioned into a top green layer (310 mg dry weight) and several subjacent, deep orange layers (240 and 250 mg, respectively). The lower 10 mm of the mat was sectioned into two gelatinous orange layers containing a siliceous gritty material (260 and 440 mg) which increased with depth, and a bottom layer composed almost exclusively of siliceous sinter (4.1 g). The progressive decrease in total organic carbon from 45% in the top green layer to only 4% in the bottom layer reflects the observed increase in siliceous deposition. GC-MS analysis of the phospholipid and glycolipid fatty acids yielded predominantly saturated normal chain acids, n-15 to n-18, and iso-branched acids, i-15 to i-17. Small amounts of unsaturated fatty acids (16:1, two positional isomers of 18:1, and two cyclopropyl acids, C(sub 17) and C(sub 19)) were present mainly in the top layer. Esterified fatty acid which is a good index for intact cellular membrane, i.e. viable organisms, was highest in the top two layers (203 and 231 micro g/mg total lipid, respectively) and gradually decreased to 66 micro g/mg total lipid in

  5. Trigonal dendritic calcite crystals forming from hot spring waters at Waikite, North Island, New Zealand

    SciTech Connect

    Jones, B.; Renault, R.W.; Rosen, M.R.

    2000-05-01

    Amorphous silica and calcite form the deposits in the vent and on the discharge apron of Waikite Spring 100 (WS-100), which is located in the Waikite Geothermal area on North Island, New Zealand. These precipitates formed from spring water that has a temperature of >90 C and a pH of 8.1--8.8. The opaline silica is restricted to areas around the vent where cooling and evaporation of the spring water triggered precipitation. The calcite deposits in the spring vent and on the discharge apron are formed of large (up to 15 cm long) asymmetrical dendrite crystals that are characterized by multiple levels of branching. Branches grew preferentially from the downflow side of their parent branch. All branches have a trigonal transverse cross section except in areas where competition for growth space induced merger of neighboring crystals. The primary branches of the dendrite crystals are (sub)perpendicular to the substrate even in areas where the discharge apron slopes at a high angle (up to 80{degree}). On the steeper parts of the discharge apron, the plate-like primary branches form the floors of the small terrace pools whereas their distal edges form the rims of the pools. Growth of these dendrite crystals is attributed to abiotic processes. High levels of saturation with respect to calcite were caused by rapid CO{sub 2} degassing of the sheets of spring water that flowed down the steep discharge apron. Calcite crystals with different crystal morphologies characterize other springs near this spring. The variation in crystal morphologies from spring to spring is attributed to different levels of saturation that are related to the initial PCO{sub 2} of the spring water upon discharge and the rate of CO{sub 2} degassing at each spring.

  6. Sub-glacial Origin of the Hot Springs Bay Valley hydrothermal System, Akutan, Alaska

    NASA Astrophysics Data System (ADS)

    Stelling, P. L.; Tobin, B.; Knapp, P.

    2015-12-01

    Exploration for geothermal energy in Hot Springs Bay Valley (HSBV) on Akutan Island, Alaska, has revealed a rich hydrothermal history, including what appears to be a stage of peak activity during a significant glacial period. Alteration mineralogy observed in 754 m of drill core recovered from the outflow zone is dominated by chlorite and includes minor smectite clays, a suite of zeolite species and several moderately high-temperature hydrothermal minerals (epidote/clinozoisite, prehnite, adularia and wairakite). The latter minerals each have minimum formation temperatures exceeding 200 oC, and fluid inclusion results in related calcite crystals indicate temperatures of formation to be as high as 275 oC, some 100 oC hotter than the modern boiling point with depth (BPD) curve at that depth (>62 m). In order to maintain liquid temperatures this high, the pressure during mineralization must have been substantially greater (~680 bar), a pressure change equivalent to erosion of ~280 m of rock (ρ=2.5 g/cm3). Although glacial erosion rates are too low (0.034 mm/yr; Bekele et al., 2003) for this amount of erosion to occur in a single glaciation, glacial melting and ablation are substantially more rapid (~100 mm/yr; Bekele et al., 2003; Person et al., 2012). Thus, a more probable scenario than pure erosion is that peak hydrothermal conditions occurred during a large glacial event, with the added pressure from the overlying ice allowing the high temperature minerals to form closer to the ground surface. Subsequent melting of the ice eroded upper tributary valleys and upper levels of the originally smectite-rich alteration assemblage, explaining the paucity of swelling clays in the region. We present mineralogical, fluid inclusion and geochronologic evidence to support these conclusions, and discuss the general implications of sub-glacial hydrothermal system formation and geothermal resource potential. References: Bekele, E., Rostron, B. and Person, M. (2003) Fluid pressure

  7. Anoxybacillus suryakundensis sp. nov, a Moderately Thermophilic, Alkalitolerant Bacterium Isolated from Hot Spring at Jharkhand, India

    PubMed Central

    Deep, Kamal; Poddar, Abhijit; Das, Subrata K.

    2013-01-01

    Four closely related facultative anaerobe, moderately thermophilic, Gram positive rods (JS1T, JS5, JS11, and JS15) were isolated from sediment samples from a hot spring at Suryakund, Jharkhand, India. Colonies were pale yellow, rough surface with uneven edges on TSA after 72 h incubation. Heterotrophic growth was observed at 40-60°C and pH 5.5-11.5; optimum growth occurred at 55°C and pH 7.5. 16S rRNA gene sequence analysis revealed the strains belong to genus Anoxybacillus. DNA-DNA homology values among strains were above 70% and showed distinct ERIC and REP PCR profile. On the basis of morphology and biochemical characteristics, strain JS1T was studied further. Strain JS1T showed 99.30% sequence similarity with A. flavithermus subsp. yunnanensis, 99.23% with A. mongoliensis, 99.16% with A. eryuanensis, 98.74% with A. flavithermus subsp. flavithermus, 98.54% with A. tengchongensis, 98.51% with A. pushchinoensis, 97.91% with A. thermarum, 97.82% with A. kaynarcensis, 97.77% with A. ayderensis and A. kamchatkensis, 97.63% with A. salavatliensis, 97.55% with A. kestanbolensis, 97.48% with A. contaminans, 97.27% with A. gonensis and 97.17% with A. voinovskiensis. In 16S rRNA secondary structure based phylogenetic comparison, strain JS1T was clustered with Anoxybacillus eryuanensis, A. mongoliensis, and A. flavithermus subsp. yunnanensis and showed 15 species specific base substitutions with maximum variability in helix 6. Moreover, DNA-DNA relatedness between JS1T and the closely related type strains were well below 70%. The DNA G+C content was 42.1 mol%. The major fatty acids were C15:0 iso, C16:0 iso and C17:0iso. The polar lipids were a phosphatidylgylycerol, a diphosphatidylglycerol, a phosphatidylethnolamine, a phosphatidylcholine, a phosphatidyl monomethylethanolamine and four unknown lipids. Based on polyphasic approach, strain JS1T represent a novel species of the genus Anoxybacillus for which Anoxybacillus suryakundensis sp. nov. is proposed. The type

  8. Caloramator quimbayensis sp. nov., an anaerobic, moderately thermophilic bacterium isolated from a terrestrial hot spring.

    PubMed

    Rubiano-Labrador, Carolina; Baena, Sandra; Díaz-Cárdenas, Carolina; Patel, Bharat K C

    2013-04-01

    An anaerobic, moderately thermophilic, terminal-spore-forming bacterium, designated strain USBA A(T), was isolated from a terrestrial hot spring located at an altitude of 2683 m in the Andean region of Colombia (04° 50' 14.0″ N 75° 32' 53.4″ W). Cells of strain USBA A(T) were Gram-stain-positive, straight to slightly curved rods (0.9×2.5 µm), that were arranged singly or in pairs, and were motile by means of flagella. Growth occurred at 37-55 °C and pH 6.0-8.0, with a doubling time of 2 h under the optimal conditions (50 °C and pH 7.0). Glucose fermentation in strain USBA A(T) required yeast extract or peptone (each at 0.2 %, w/v). The novel strain fermented sugars, amino acids, Casamino acids, propanol, propionate, starch and dextrin, but no growth was observed on galactose, lactose, xylose, histidine, serine, threonine, benzoate, butyrate, lactate, pyruvate, succinate, methanol, ethanol, glycerol, casein, gelatin or xylan. The end products of glucose fermentation were formate, acetate, ethanol and lactate. Strain USBA A(T) did not grow autotrophically (with CO2 as carbon source and H2 as electron donor) and did not reduce thiosulfate, sulfate, elemental sulfur, sulfite, vanadium (V) or Fe (III) citrate. Growth of strain USBA A(T) was inhibited by ampicillin, chloramphenicol, kanamycin, penicillin and streptomycin (each at 10 µg ml(-1)). The predominant fatty acids were iso-C15 : 0, C16 : 0 and iso-C17 : 0 and the genomic DNA G+C content was 32.6 mol%. 16S rRNA gene sequence analysis indicated that strain USBA A(T) belonged in the phylum Firmicutes and that its closest relative was Caloramator viterbiensis JW/MS-VS5(T) (95.0 % sequence similarity). A DNA-DNA relatedness value of only 30 % was recorded in hybridization experiments between strain USBA A(T) and Caloramator viterbiensis DSM 13723(T). Based on the phenotypic, chemotaxonomic and phylogenetic evidence and the results of the DNA-DNA hybridization experiments, strain USBA A

  9. [An outbreak of legionellosis in a new facility of hot spring bath in Hiuga City].

    PubMed

    Yabuuchi, Eiko; Agata, Kunio

    2004-02-01

    Following cerebrating ceremony in 20 June 2002, for the completion of Hiuga Sun-Park Hot Spring Bath "Ofunade-no-Yu" facilities, Miyazaki Prefecture, Kyushu Island, 200 neighbors were invited each day to experience bathing on 20 and 21 June. The Bath "Ofunade-no-Yu" officially opened on 1 July 2002. On 18 July, Hiuga Health Center was informed that 3 suspected Legionella pneumonia patients in a hospital and all of them have bathing history of "Ofunade-no-Yu". Health Center officers notified Hiuga City, the main proprietor of the Bath business, that on-site inspection on sanitary managements will be done next day and requested the City to keep the bath facilities as they are. On 19 July, Health Center officers collected bath water from seven places and recommended voluntary-closing of "Ofunade-no-Yu" business. Because of various reasons, Hiuga City did not accept the recommendation and continued business up to 23 July. Because Legionella pneumophila serogroup 1 strains from 4 patients' sputa and several bath water specimens were determined genetically similar by Pulsed Field Gel Electrophoresis of Sfi I-cut DNA. "Ofunede-no-Yu" was regarded as the source of infection of this outbreak. On 24 July, "Ofunade-no-Yu" accepted the Command to prohibit the business. Among 19,773 persons who took the bath during the period from 20 June to 23 July, 295 became ill, and 7 died. Among them, 34 were definitely diagnosed as Legionella pneumonia due to L. pneumophila SG 1, by either one or two tests of positive sputum culture, Legionella-specific urinary antigen, and significant rise of serum antibody titer against L. pneumophila SG 1. In addition to the 8 items shown by Miyazaki-Prefecture Investigation Committee as the cause of infection. Hiuga City Investigation Committee pointed out following 3 items: 1) Insufficient knowledge and understanding of stuffs on Legionella and legionellosis; 2) Residual water in tubing system after trial runs might lead multiplication of legionellae

  10. Nocardioides pakistanensis sp. nov., isolated from a hot water spring of Tatta Pani in Pakistan.

    PubMed

    Amin, Arshia; Ahmed, Iftikhar; Habib, Neeli; Abbas, Saira; Xiao, Min; Hozzein, Wael N; Li, Wen-Jun

    2016-08-01

    A Gram-staining positive, non-spore forming, non-pigmented and non-motile bacterium, designated as NCCP-1340(T), was isolated from a hot water spring, Tatta Pani, Pakistan. Cells of strain NCCP-1340(T) were observed to be aerobic, rod shaped, catalase and urease positive but H2S production and oxidase negative. Growth was observed at pH 6.0-8.0 (optimum pH 7.0) and at 20-40 °C (optimum 37 °C). The strain could tolerate 0-8 % NaCl (optimum 2 %, w/v). Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain NCCP-1340(T) belongs to the genus Nocardioides and is closely related to Nocardioides iriomotensis JCM 17985(T) (96.8 %), Nocardioides daedukensis KCTC 19601(T) (96.6 %), Nocardioides jensenii KCTC 9134(T) (96.1 %) and Nocardioides daejeonensis KCTC 19772(T) (96.1 %). The DNA-DNA relatedness values of strain NCCP-1340(T) with N. iriomotensis JCM 17985(T), N. daedukensis KCTC 19601(T) and N. jensenii KCTC 9134(T) were found to be less than 53 %. The DNA G+C content of strain NCCP-1340(T) was determined to be 71.8 mol  %. The affiliation of strain NCCP-1340(T) to the genus Nocardioides was further supported by chemotaxonomic data which showed the presence of MK-8(H4) as major menaquinone system; iso-C16:0, C17:0, C16:0 10-methyl, iso-C15:0 and C 15:0 as major cellular fatty acids; and diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and unidentified glycolipids and polar lipids in the polar lipids profile. The cell wall peptidoglycan contained LL-diaminopimelic acid as the diagnostic amino acid. On the basis of physiological and biochemical characteristics and the phylogenetic analyses, strain NCCP-1340(T) can be distinguished from the closely related taxa and thus represents a novel species of the genus Nocardioides, for which the name Nocardioides pakistanensis sp. nov. is proposed with the type strain NCCP-1340(T) (= DSM 29942(T) = JCM 30630(T)).

  11. Caloramator quimbayensis sp. nov., an anaerobic, moderately thermophilic bacterium isolated from a terrestrial hot spring.

    PubMed

    Rubiano-Labrador, Carolina; Baena, Sandra; Díaz-Cárdenas, Carolina; Patel, Bharat K C

    2013-04-01

    An anaerobic, moderately thermophilic, terminal-spore-forming bacterium, designated strain USBA A(T), was isolated from a terrestrial hot spring located at an altitude of 2683 m in the Andean region of Colombia (04° 50' 14.0″ N 75° 32' 53.4″ W). Cells of strain USBA A(T) were Gram-stain-positive, straight to slightly curved rods (0.9×2.5 µm), that were arranged singly or in pairs, and were motile by means of flagella. Growth occurred at 37-55 °C and pH 6.0-8.0, with a doubling time of 2 h under the optimal conditions (50 °C and pH 7.0). Glucose fermentation in strain USBA A(T) required yeast extract or peptone (each at 0.2 %, w/v). The novel strain fermented sugars, amino acids, Casamino acids, propanol, propionate, starch and dextrin, but no growth was observed on galactose, lactose, xylose, histidine, serine, threonine, benzoate, butyrate, lactate, pyruvate, succinate, methanol, ethanol, glycerol, casein, gelatin or xylan. The end products of glucose fermentation were formate, acetate, ethanol and lactate. Strain USBA A(T) did not grow autotrophically (with CO2 as carbon source and H2 as electron donor) and did not reduce thiosulfate, sulfate, elemental sulfur, sulfite, vanadium (V) or Fe (III) citrate. Growth of strain USBA A(T) was inhibited by ampicillin, chloramphenicol, kanamycin, penicillin and streptomycin (each at 10 µg ml(-1)). The predominant fatty acids were iso-C15 : 0, C16 : 0 and iso-C17 : 0 and the genomic DNA G+C content was 32.6 mol%. 16S rRNA gene sequence analysis indicated that strain USBA A(T) belonged in the phylum Firmicutes and that its closest relative was Caloramator viterbiensis JW/MS-VS5(T) (95.0 % sequence similarity). A DNA-DNA relatedness value of only 30 % was recorded in hybridization experiments between strain USBA A(T) and Caloramator viterbiensis DSM 13723(T). Based on the phenotypic, chemotaxonomic and phylogenetic evidence and the results of the DNA-DNA hybridization experiments, strain USBA A

  12. Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA

    USGS Publications Warehouse

    Werner, C.; Hurwitz, S.; Evans, William C.; Lowenstern, J. B.; Bergfeld, D.; Heasler, H.; Jaworowski, C.; Hunt, A.

    2008-01-01

    We characterize and quantify volatile emissions at Hot Spring Basin (HSB), a large acid-sulfate region that lies just outside the northeastern edge of the 640??ka Yellowstone Caldera. Relative to other thermal areas in Yellowstone, HSB gases are rich in He and H2, and mildly enriched in CH4 and H2S. Gas compositions are consistent with boiling directly off a deep geothermal liquid at depth as it migrates toward the surface. This fluid, and the gases evolved from it, carries geochemical signatures of magmatic volatiles and water-rock reactions with multiple crustal sources, including limestones or quartz-rich sediments with low K/U (or 40*Ar/4*He). Variations in gas chemistry across the region reflect reservoir heterogeneity and variable degrees of boiling. Gas-geothermometer temperatures approach 300????C and suggest that the reservoir feeding HSB is one of the hottest at Yellowstone. Diffuse CO2 flux in the western basin of HSB, as measured by accumulation-chamber methods, is similar in magnitude to other acid-sulfate areas of Yellowstone and is well correlated to shallow soil temperatures. The extrapolation of diffuse CO2 fluxes across all the thermal/altered area suggests that 410 ?? 140??t d- 1 CO2 are emitted at HSB (vent emissions not included). Diffuse fluxes of H2S were measured in Yellowstone for the first time and likely exceed 2.4??t d- 1 at HSB. Comparing estimates of the total estimated diffuse H2S emission to the amount of sulfur as SO42- in streams indicates ~ 50% of the original H2S in the gas emission is lost into shallow groundwater, precipitated as native sulfur, or vented through fumaroles. We estimate the heat output of HSB as ~ 140-370??MW using CO2 as a tracer for steam condensate, but not including the contribution from fumaroles and hydrothermal vents. Overall, the diffuse heat and volatile fluxes of HSB are as great as some active volcanoes, but they are a small fraction (1-3% for CO2, 2-8% for heat) of that estimated for the entire

  13. [An outbreak of legionellosis in a new facility of hot spring bath in Hiuga City].

    PubMed

    Yabuuchi, Eiko; Agata, Kunio

    2004-02-01

    Following cerebrating ceremony in 20 June 2002, for the completion of Hiuga Sun-Park Hot Spring Bath "Ofunade-no-Yu" facilities, Miyazaki Prefecture, Kyushu Island, 200 neighbors were invited each day to experience bathing on 20 and 21 June. The Bath "Ofunade-no-Yu" officially opened on 1 July 2002. On 18 July, Hiuga Health Center was informed that 3 suspected Legionella pneumonia patients in a hospital and all of them have bathing history of "Ofunade-no-Yu". Health Center officers notified Hiuga City, the main proprietor of the Bath business, that on-site inspection on sanitary managements will be done next day and requested the City to keep the bath facilities as they are. On 19 July, Health Center officers collected bath water from seven places and recommended voluntary-closing of "Ofunade-no-Yu" business. Because of various reasons, Hiuga City did not accept the recommendation and continued business up to 23 July. Because Legionella pneumophila serogroup 1 strains from 4 patients' sputa and several bath water specimens were determined genetically similar by Pulsed Field Gel Electrophoresis of Sfi I-cut DNA. "Ofunede-no-Yu" was regarded as the source of infection of this outbreak. On 24 July, "Ofunade-no-Yu" accepted the Command to prohibit the business. Among 19,773 persons who took the bath during the period from 20 June to 23 July, 295 became ill, and 7 died. Among them, 34 were definitely diagnosed as Legionella pneumonia due to L. pneumophila SG 1, by either one or two tests of positive sputum culture, Legionella-specific urinary antigen, and significant rise of serum antibody titer against L. pneumophila SG 1. In addition to the 8 items shown by Miyazaki-Prefecture Investigation Committee as the cause of infection. Hiuga City Investigation Committee pointed out following 3 items: 1) Insufficient knowledge and understanding of stuffs on Legionella and legionellosis; 2) Residual water in tubing system after trial runs might lead multiplication of legionellae

  14. Nocardioides pakistanensis sp. nov., isolated from a hot water spring of Tatta Pani in Pakistan.

    PubMed

    Amin, Arshia; Ahmed, Iftikhar; Habib, Neeli; Abbas, Saira; Xiao, Min; Hozzein, Wael N; Li, Wen-Jun

    2016-08-01

    A Gram-staining positive, non-spore forming, non-pigmented and non-motile bacterium, designated as NCCP-1340(T), was isolated from a hot water spring, Tatta Pani, Pakistan. Cells of strain NCCP-1340(T) were observed to be aerobic, rod shaped, catalase and urease positive but H2S production and oxidase negative. Growth was observed at pH 6.0-8.0 (optimum pH 7.0) and at 20-40 °C (optimum 37 °C). The strain could tolerate 0-8 % NaCl (optimum 2 %, w/v). Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain NCCP-1340(T) belongs to the genus Nocardioides and is closely related to Nocardioides iriomotensis JCM 17985(T) (96.8 %), Nocardioides daedukensis KCTC 19601(T) (96.6 %), Nocardioides jensenii KCTC 9134(T) (96.1 %) and Nocardioides daejeonensis KCTC 19772(T) (96.1 %). The DNA-DNA relatedness values of strain NCCP-1340(T) with N. iriomotensis JCM 17985(T), N. daedukensis KCTC 19601(T) and N. jensenii KCTC 9134(T) were found to be less than 53 %. The DNA G+C content of strain NCCP-1340(T) was determined to be 71.8 mol  %. The affiliation of strain NCCP-1340(T) to the genus Nocardioides was further supported by chemotaxonomic data which showed the presence of MK-8(H4) as major menaquinone system; iso-C16:0, C17:0, C16:0 10-methyl, iso-C15:0 and C 15:0 as major cellular fatty acids; and diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and unidentified glycolipids and polar lipids in the polar lipids profile. The cell wall peptidoglycan contained LL-diaminopimelic acid as the diagnostic amino acid. On the basis of physiological and biochemical characteristics and the phylogenetic analyses, strain NCCP-1340(T) can be distinguished from the closely related taxa and thus represents a novel species of the genus Nocardioides, for which the name Nocardioides pakistanensis sp. nov. is proposed with the type strain NCCP-1340(T) (= DSM 29942(T) = JCM 30630(T)). PMID:27170166

  15. Microbial Fe(III) Oxide Reduction in Chocolate Pots Hot Springs, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Fortney, N. W.; Roden, E. E.; Boyd, E. S.; Converse, B. J.

    2014-12-01

    Previous work on dissimilatory iron reduction (DIR) in Yellowstone National Park (YNP) has focused on high temperature, low pH environments where soluble Fe(III) is utilized as an electron acceptor for respiration. Much less attention has been paid to DIR in lower temperature, circumneutral pH environments, where solid phase Fe(III) oxides are the dominant forms of Fe(III). This study explored the potential for DIR in the warm (ca. 40-50°C), circumneutral pH Chocolate Pots hot springs (CP) in YNP. Most probable number (MPN) enumerations and enrichment culture studies confirmed the presence of endogenous microbial communities that reduced native CP Fe(III) oxides. Enrichment cultures demonstrated sustained DIR coupled to acetate and lactate oxidation through repeated transfers over ca. 450 days. Pyrosequencing of 16S rRNA genes indicated that the dominant organisms in the enrichments were closely affiliated with the well known Fe(III) reducer Geobacter metallireducens. Additional taxa included relatives of sulfate reducing bacterial genera Desulfohalobium and Thermodesulfovibrio; however, amendment of enrichments with molybdate, an inhibitor of sulfate reduction, suggested that sulfate reduction was not a primary metabolic pathway involved in DIR in the cultures. A metagenomic analysis of enrichment cultures is underway in anticipation of identifying genes involved in DIR in the less well-characterized dominant organisms. Current studies are aimed at interrogating the in situ microbial community at CP. Core samples were collected along the flow path (Fig. 1) and subdivided into 1 cm depth intervals for geochemical and microbiological analysis. The presence of significant quantities of Fe(II) in the solids indicated that DIR is active in situ. A parallel study investigated in vitro microbial DIR in sediments collected from three of the coring sites. DNA was extracted from samples from both studies for 16S rRNA gene and metagenomic sequencing in order to obtain a

  16. Modeling fluid flow and heat transfer at Basin and Range faults: preliminary results for Leach hot springs, Nevada

    USGS Publications Warehouse

    López, Dina L.; Smith, Leslie; Storey, Michael L.; Nielson, Dennis L.

    1994-01-01

    The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.

  17. Hydrochemistry of the Hot Springs in Western Sichuan Province Related to the Wenchuan MS 8.0 Earthquake

    PubMed Central

    Chen, Zhi; Zhou, Xiaocheng; Yi, Li; Liu, Lei; Xie, Chao; Cui, Yueju; Li, Ying

    2014-01-01

    Hydrogeochemistry of 32 hot springs in the western Sichuan Province after the Wenchuan MS 8.0 earthquake was investigated by analyzing the concentrations of cation and anion and the isotopic compositions of hydrogen and oxygen. The water samples of the hot springs were collected four times from June 2008 to April 2010. Hydrogeochemical data indicated the water samples can be classified into 9 chemical types. Values of δD and δ18O indicated that the spring waters were mainly derived from meteoric precipitation and affected by water-rock interaction and mixture of deep fluids. Concentrations of K+and SO4− of the samples from the Kangding district exhibited evident increases before the Wenchuan earthquake, indicating more supplement of deep fluids under the increase of tectonic stress. The chemical and isotopic variations of the water samples from the area closer to the epicenter area can be attributed to variation of regional stress field when the aftershock activities became weak. PMID:24892106

  18. Calculating Hot Spring/Atmospheric Coupling Using the Coefficient of Convective Heat Transfer

    NASA Astrophysics Data System (ADS)

    Lindsey, C.; Price, A. N.; Fairley, J. P., Jr.; Larson, P. B.

    2015-12-01

    We calculated the correlation between discharge temperature and wind speed for multiple hydrothermal springs, both in the Alvord Basin of southeast Oregon and our primary field location in Yellowstone National Park, using spring temperatures, wind speeds, and air temperatures logged at three minute intervals for multiple days. We find that some hydrothermal springs exhibit strong coupling with wind speed and/or air temperatures. The three springs described in this work display this strong coupling, with correlations between wind speed and spring temperature as high as 70 percent; as a result, we can use the changes in spring temperature as a proxy for changes in the coefficient of convective heat transfer (h) between the springs and the atmosphere. The coefficient of convective heat transfer is a complex parameter to measure, but is a necessary input to many heat and mass flux analyses. The results of this study provide a way to estimate h for springs with strong atmospheric coupling, which is a critical component of a total energy balance for hydrothermal discharge areas.

  19. Biological Sources of Branched Glycerol Dialkyl Glycerol Tetraethers (brGDGTs) in Terrestrial Hot Springs: A Possible Link Between Nitrogen-cycling Bacteria and brGDGT Production

    NASA Astrophysics Data System (ADS)

    Wang, J. X.; Xie, W.; Boyd, E. S.; Hedlund, B. P.; Zhang, C.

    2014-12-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are common in peat, soil, lakes, rivers and hot springs. To seek the potential biological sources of brGDGTs in geothermal environments, we investigated 65 hot springs in the Yellowstone National Park (USA) and Tengchong (China). Together with previously published data from hot springs in the Great Basin (USA) and Tibet (China), we found that the abundance of brGDGTs tended to peak in springs with pH > 8. This contrasts with previous observations indicating an abundance of brGDGTs in acidic soils and peat bogs, suggesting a different biological source and function for lipids in these environments. In support of this hypothesis, a comparison of Cyclization ratios of Branched Tetraethers (CBT) between hot springs and surrounding soils indicated that more brGDGTs with cyclopentane moieties were produced in alkaline hot springs than in nearby low-temperature soils. Since Acidobacteria (the likely source of brGDGTs in peat bog environments) tend to have low CBT ratios, these data suggest a different source for brGDGTs in hot spring environments. RDA and regression analysis integrating brGDGT compounds and nitrogen species indicate that Bacteria involved in the nitrogen biogeochemical cycle (ammonia oxidation and nitrite reduction) may be related to the production of brGDGTs in terrestrial hot springs. However, direct evidence showing the link between nitrogen-cycling bacteria and brGDGT production has yet to be demonstrated under laboratory conditions. Nevertheless, our study expands the possibility of brGDGT sources into bacterial communities in terrestrial geothermal systems where Acidobacteria are absent or only a minor component.

  20. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. The origin of thiosulfate in hot spring waters

    USGS Publications Warehouse

    Xu, Y.; Schoonen, M.A.A.; Nordstrom, D.K.; Cunningham, K.M.; Ball, J.W.

    1998-01-01

    Thiosulfate (S2O2-3), polythionate (SxO2-6), dissolved sulfide (H2S), and sulfate (SO2-4) concentrations in thirty-nine alkaline and acidic springs in Yellowstone National Park (YNP) were determined. The analyses were conducted on site, using ion chromatography for thiosulfate, polythionate, and sulfate, and using colorimetry for dissolved sulfide. Thiosulfate was detected at concentrations typically less than 2 ??mol/L in neutral and alkaline chloride springs with low sulfate concentrations (C1-/SO2-4 > 25). The thiosulfate concentration levels are about one to two orders of magnitude lower than the concentration of dissolved sulfide in these springs. In most acid sulfate and acid sulfate-chloride springs (Cl-/SO2-4 < 10), thiosulfate concentrations were also typically lower than 2 ??mol/L. However, in some chloride springs enriched with sulfate (Cl-/SO2-4 between 10 to 25), thiosulfate was found at concentrations ranging from 9 to 95 ??mol/L, higher than the concentrations of dissolved sulfide in these waters. Polythionate was detected only in Cinder Pool, Norris Geyser basin, at concentrations up to 8 ??mol/L, with an average S-chain-length from 4.1 to 4.9 sulfur atoms. The results indicate that no thiosulfate occurs in the deeper parts of the hydrothermal system. Thiosulfate may form, however, from (1) hydrolysis of native sulfur by hydrothermal solutions in the shallower parts (<50 m) of the system, (2) oxidation of dissolved sulfide upon mixing of a deep hydrothermal water with aerated shallow groundwater, and (3) the oxidation of dissolved sulfide by dissolved oxygen upon discharge of the hot spring. Upon discharge of a sulfide-containing hydrothermal water, oxidation proceeds rapidly as atmospheric oxygen enters the water. The transfer of oxygen is particularly effective if the hydrothermal discharge is turbulent and has a large surface area.

  1. Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes

    USGS Publications Warehouse

    McKenzie, W.F.; Truesdell, A.H.

    1977-01-01

    The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested as a geothermometer in three areas of the western United States. Limited analyses of spring and borehole fluids and existing experimental rate studies suggest that dissolved sulfate and water are probably in isotopic equilibrium in all reservoirs of significant size with temperatures above ca. 140??C and that little re-equilibration occurs during ascent to the surface. The geothermometer is, however, affected by changes in ??18O of water due to subsurface boiling and dilution and by addition of sulfate of nearsurface origin. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures of 360, 240, and 142??C, respectively. ?? 1976.

  2. Identification of Novel Positive-Strand RNA Viruses by Metagenomic Analysis of Archaea-Dominated Yellowstone Hot Springs

    PubMed Central

    Bolduc, Benjamin; Shaughnessy, Daniel P.; Wolf, Yuri I.; Koonin, Eugene V.; Roberto, Francisco F.

    2012-01-01

    There are no known RNA viruses that infect Archaea. Filling this gap in our knowledge of viruses will enhance our understanding of the relationships between RNA viruses from the three domains of cellular life and, in particular, could shed light on the origin of the enormous diversity of RNA viruses infecting eukaryotes. We describe here the identification of novel RNA viral genome segments from high-temperature acidic hot springs in Yellowstone National Park in the United States. These hot springs harbor low-complexity cellular communities dominated by several species of hyperthermophilic Archaea. A viral metagenomics approach was taken to assemble segments of these RNA virus genomes from viral populations isolated directly from hot spring samples. Analysis of these RNA metagenomes demonstrated unique gene content that is not generally related to known RNA viruses of Bacteria and Eukarya. However, genes for RNA-dependent RNA polymerase (RdRp), a hallmark of positive-strand RNA viruses, were identified in two contigs. One of these contigs is approximately 5,600 nucleotides in length and encodes a polyprotein that also contains a region homologous to the capsid protein of nodaviruses, tetraviruses, and birnaviruses. Phylogenetic analyses of the RdRps encoded in these contigs indicate that the putative archaeal viruses form a unique group that is distinct from the RdRps of RNA viruses of Eukarya and Bacteria. Collectively, our findings suggest the existence of novel positive-strand RNA viruses that probably replicate in hyperthermophilic archaeal hosts and are highly divergent from RNA viruses that infect eukaryotes and even more distant from known bacterial RNA viruses. These positive-strand RNA viruses might be direct ancestors of RNA viruses of eukaryotes. PMID:22379100

  3. Identification of novel positive-strand RNA viruses by metagenomic analysis of archaea-dominated Yellowstone hot springs.

    PubMed

    Bolduc, Benjamin; Shaughnessy, Daniel P; Wolf, Yuri I; Koonin, Eugene V; Roberto, Francisco F; Young, Mark

    2012-05-01

    There are no known RNA viruses that infect Archaea. Filling this gap in our knowledge of viruses will enhance our understanding of the relationships between RNA viruses from the three domains of cellular life and, in particular, could shed light on the origin of the enormous diversity of RNA viruses infecting eukaryotes. We describe here the identification of novel RNA viral genome segments from high-temperature acidic hot springs in Yellowstone National Park in the United States. These hot springs harbor low-complexity cellular communities dominated by several species of hyperthermophilic Archaea. A viral metagenomics approach was taken to assemble segments of these RNA virus genomes from viral populations isolated directly from hot spring samples. Analysis of these RNA metagenomes demonstrated unique gene content that is not generally related to known RNA viruses of Bacteria and Eukarya. However, genes for RNA-dependent RNA polymerase (RdRp), a hallmark of positive-strand RNA viruses, were identified in two contigs. One of these contigs is approximately 5,600 nucleotides in length and encodes a polyprotein that also contains a region homologous to the capsid protein of nodaviruses, tetraviruses, and birnaviruses. Phylogenetic analyses of the RdRps encoded in these contigs indicate that the putative archaeal viruses form a unique group that is distinct from the RdRps of RNA viruses of Eukarya and Bacteria. Collectively, our findings suggest the existence of novel positive-strand RNA viruses that probably replicate in hyperthermophilic archaeal hosts and are highly divergent from RNA viruses that infect eukaryotes and even more distant from known bacterial RNA viruses. These positive-strand RNA viruses might be direct ancestors of RNA viruses of eukaryotes.

  4. Identification of Novel Positive-Strand RNA Viruses by Metagenomic Analysis of Archaea-Dominated Yellowstone Hot Springs

    SciTech Connect

    Benjamin Bolduc; Daniel P. Shaughnessy; Yuri I. Wolf; Eugene V. Koonin; Francisco F. Roberto; Mark Young

    2012-05-01

    There are no known RNA viruses that infect Archaea. Filling this gap in our knowledge of viruses will enhance our understanding of the relationships between RNA viruses from the three domains of cellular life and, in particular, could shed light on the origin of the enormous diversity of RNA viruses infecting eukaryotes. We describe here the identification of novel RNA viral genome segments from high-temperature acidic hot springs in Yellowstone National Park in the United States. These hot springs harbor low-complexity cellular communities dominated by several species of hyperthermophilic Archaea. A viral metagenomics approach was taken to assemble segments of these RNA virus genomes from viral populations isolated directly from hot spring samples. Analysis of these RNA metagenomes demonstrated unique gene content that is not generally related to known RNA viruses of Bacteria and Eukarya. However, genes for RNA-dependent RNA polymerase (RdRp), a hallmark of positive-strand RNA viruses, were identified in two contigs. One of these contigs is approximately 5,600 nucleotides in length and encodes a polyprotein that also contains a region homologous to the capsid protein of nodaviruses, tetraviruses, and birnaviruses. Phylogenetic analyses of the RdRps encoded in these contigs indicate that the putative archaeal viruses form a unique group that is distinct from the RdRps of RNA viruses of Eukarya and Bacteria. Collectively, our findings suggest the existence of novel positive-strand RNA viruses that probably replicate in hyperthermophilic archaeal hosts and are highly divergent from RNA viruses that infect eukaryotes and even more distant from known bacterial RNA viruses. These positive-strand RNA viruses might be direct ancestors of RNA viruses of eukaryotes.

  5. Calculation of the Relative Chemical Stabilities of Proteins as a Function of Temperature and Redox Chemistry in a Hot Spring

    PubMed Central

    Dick, Jeffrey M.; Shock, Everett L.

    2011-01-01

    Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems. PMID:21853048

  6. Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.

    SciTech Connect

    Goranson, Colin

    2005-03-01

    Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

  7. Metabolic characteristics of dominant microbes and key rare species from an acidic hot spring in Taiwan revealed by metagenomics

    DOE PAGESBeta

    Lin, Kuei -Han; Liao, Ben -Yang; Chang, Hao -Wei; Huang, Shiao -Wei; Chang, Ting -Yan; Yang, Cheng -Yu; Wang, Yu -Bin; Lin, Yu-Teh Kirk; Wu, Yu -Wei; Tang, Sen -Lin; et al

    2015-12-03

    Microbial diversity and community structures in acidic hot springs have been characterized by 16S rRNA gene-based diversity surveys. However, our understanding regarding the interactions among microbes, or between microbes and environmental factors, remains limited. In the present study, a metagenomic approach, followed by bioinformatics analyses, were used to predict interactions within the microbial ecosystem in Shi-Huang-Ping (SHP), an acidic hot spring in northern Taiwan. Characterizing environmental parameters and potential metabolic pathways highlighted the importance of carbon assimilatory pathways. Four distinct carbon assimilatory pathways were identified in five dominant genera of bacteria. Of those dominant carbon fixers, Hydrogenobaculum bacteria outcompeted othermore » carbon assimilators and dominated the SHP, presumably due to their ability to metabolize hydrogen and to withstand an anaerobic environment with fluctuating temperatures. Furthermore, most dominant microbes were capable of metabolizing inorganic sulfur-related compounds (abundant in SHP). However, Acidithiobacillus ferrooxidans was the only species among key rare microbes with the capability to fix nitrogen, suggesting a key role in nitrogen cycling. In addition to potential metabolic interactions, based on the 16S rRNAs gene sequence of Nanoarchaeum-related and its potential host Ignicoccus-related archaea, as well as sequences of viruses and CRISPR arrays, we inferred that there were complex microbe-microbe interactions. In conclusion, our study provided evidence that there were numerous microbe-microbe and microbe-environment interactions within the microbial community in an acidic hot spring. We proposed that Hydrogenobaculum bacteria were the dominant microbial genus, as they were able to metabolize hydrogen, assimilate carbon and live in an anaerobic environment with fluctuating temperatures.« less

  8. Metabolic characteristics of dominant microbes and key rare species from an acidic hot spring in Taiwan revealed by metagenomics

    SciTech Connect

    Lin, Kuei -Han; Liao, Ben -Yang; Chang, Hao -Wei; Huang, Shiao -Wei; Chang, Ting -Yan; Yang, Cheng -Yu; Wang, Yu -Bin; Lin, Yu-Teh Kirk; Wu, Yu -Wei; Tang, Sen -Lin; Yu, Hon -Tsen

    2015-12-03

    Microbial diversity and community structures in acidic hot springs have been characterized by 16S rRNA gene-based diversity surveys. However, our understanding regarding the interactions among microbes, or between microbes and environmental factors, remains limited. In the present study, a metagenomic approach, followed by bioinformatics analyses, were used to predict interactions within the microbial ecosystem in Shi-Huang-Ping (SHP), an acidic hot spring in northern Taiwan. Characterizing environmental parameters and potential metabolic pathways highlighted the importance of carbon assimilatory pathways. Four distinct carbon assimilatory pathways were identified in five dominant genera of bacteria. Of those dominant carbon fixers, Hydrogenobaculum bacteria outcompeted other carbon assimilators and dominated the SHP, presumably due to their ability to metabolize hydrogen and to withstand an anaerobic environment with fluctuating temperatures. Furthermore, most dominant microbes were capable of metabolizing inorganic sulfur-related compounds (abundant in SHP). However, Acidithiobacillus ferrooxidans was the only species among key rare microbes with the capability to fix nitrogen, suggesting a key role in nitrogen cycling. In addition to potential metabolic interactions, based on the 16S rRNAs gene sequence of Nanoarchaeum-related and its potential host Ignicoccus-related archaea, as well as sequences of viruses and CRISPR arrays, we inferred that there were complex microbe-microbe interactions. In conclusion, our study provided evidence that there were numerous microbe-microbe and microbe-environment interactions within the microbial community in an acidic hot spring. We proposed that Hydrogenobaculum bacteria were the dominant microbial genus, as they were able to metabolize hydrogen, assimilate carbon and live in an anaerobic environment with fluctuating temperatures.

  9. Identification of 18S ribosomal DNA genotype of Acanthamoeba from hot spring recreation areas in the central range, Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, Bing-Mu; Ma, Po-Hua; Liou, Tai-Sheng; Chen, Jung-Sheng; Shih, Feng-Cheng

    2009-04-01

    SummaryAcanthamoeba is a free-living amoebae ubiquitous to aquatic environments. Within the genus a few species are recognized as opportunistic potential human pathogens, which cause granulomatous amoebic encephalitis (GAE) and keratitis. Infections of keratitis are frequently reported through wearing lens while swimming in the non-disinfected aquatic environment. Contaminations in hot tubs, spas and public baths are also possible. As a result, in this study, we identified Acanthamoeba based on the PCR amplification with a genus-specific primer pair and investigated the distribution of Acanthamoeba at five hot spring recreation areas in central range, Taiwan. We gathered data on factors potentially associated with the pathogen's distribution, including various sampling sites, aquatic environment, physical and microbiological water quality parameters. Spring water was collected from 55 sites and Acanthamoeba was detected in 9 (16.4%). The most frequently detected was Acanthamoeba griffini, followed by Acanthamoeba jacobsi. Legionella were detected in 18 (32.7%) of the sites sampled in this study. The species of Legionella identified included Legionella pneumophila serotype 6, serotype 1, and Legionella erythra. Overall, 9.1% of the samples contained both Acanthamoeba and Legionella. The prevalence of Acanthamoeba was contrary to the levels of microbiological indicators recommended by Taiwan CDC, and no significant differences (Mann-Whitney U test, P < 0.05) were observed between the presence/absence of Acanthamoeba and water quality parameters. Results of this survey confirm the existence of Acanthamoeba in Taiwan spring recreation areas. Acanthamoeba, the organism responsible for the majority of Acanthamoeba keratitis and can serve as vehicles for facultative pathogens, should be considered a potential threat for health associated with human activities in spring recreation areas of Taiwan.

  10. Genome sequencing and annotation of Laceyella sacchari strain GS 1-1, isolated from hot spring, Chumathang, Leh, India.

    PubMed

    Kaur, Navjot; Arora, Amit; Kumar, Narender; Mayilraj, Shanmugam

    2014-12-01

    We report the 3.3-Mb draft genome of Laceyella sacchari strain GS 1-1, isolated from hot spring water sample, Chumathang, Leh, India. Draft genome of strain GS 1-1 consists of 3, 324, 316 bp with a G + C content of 48.8% and 3429 predicted protein coding genes and 75 RNAs. Geobacillus thermodenitrificans strain NG80-2, Geobacillus kaustophilus strain HTA426 and Geobacillus sp. Strain G11MC16 are the closest neighbors of the strain GS 1-1.

  11. Isolation of a new thermohalophilic Thermus thermophilus strain from hot spring, able to grow on a renewable source of polysaccharide.

    PubMed

    Romano, Ida; Lama, Licia; Moriello, Vincenzo Schiano; Poli, Annarita; Gambacorta, Agata; Nicolaus, Barbara

    2004-01-01

    A thermohalophilic strain, Samu-Sal, isolated from hot springs of the Mount Grillo (Baia, Naples, Italy) at a depth of 60 m, according to its genotypic analyses is related to Thermus genus and should be classified as a new strain of Thermus thermophilus. Strain Samu-SA1 grew using, as sole carbon source, a polysaccharide extracted from waste industrial tomato process with a yield of 3.5 g l(-1). Strain Samu-SA1 synthesized several alpha- and beta-glycosidases.

  12. Diverse subaerial and sublacustrine hot spring settings of the Cerro Negro epithermal system (Jurassic, Deseado Massif), Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Guido, Diego M.; Campbell, Kathleen A.

    2012-06-01

    The Late Jurassic (~ 150 Ma) Cerro Negro volcanic-epithermal-geothermal system (~ 15 km2 area), Deseado Massif, Patagonia, Argentina, includes two inferred volcanic emission centers characterized by rhyolitic domes linked along NW-SE regional faults that are associated with deeper level Au/Ag mineralization to the NW, and with shallow epithermal quartz veins and mainly travertine surface hot spring manifestations to the SE. Some travertines are silica-replaced, and siliceous and mixed silica-carbonate geothermal deposits also are found. Five hot spring-related facies associations were mapped in detail, which show morphological and textural similarities to Pleistocene-Recent geothermal deposits at Yellowstone National Park (U.S.A.), the Kenya Rift Valley, and elsewhere. They are interpreted to represent subaerial travertine fissure ridge/mound deposits (low-flow spring discharge) and apron terraces (high-flow spring discharge), as well as mixed silica-carbonate lake margin and shallow lake terrace vent-conduit tubes, stromatolitic mounds, and volcano-shaped cones. The nearly 200 mapped fossil vent-associated deposits at Cerro Negro are on a geographical and numerical scale comparable with subaerial and sublacustrine hydrothermal vents at Mammoth Hot Springs, and affiliated with Yellowstone Lake, respectively. Overall, the Cerro Negro geothermal system yields paleoenvironmentally significant textural details of variable quality, owing to both the differential preservation potential of particular subaerial versus subaqueous facies, as well as to the timing and extent of carbonate diagenesis and silica replacement of some deposits. For example, the western fault associated with the Eureka epithermal quartz vein facilitated early silicification of the travertine deposits in the SE volcanic emission center, thereby preserving high-quality, microbial macro- and micro-textures of this silica-replaced "pseudosinter." Cerro Negro provides an opportunity to reconstruct

  13. Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09

    USGS Publications Warehouse

    Kresse, Timothy M.; Hays, Phillip D.

    2009-01-01

    A study was conducted by the U.S Geological Survey in cooperation with the Arkansas State Highway and Transportation Department to characterize the source and hydrogeologic conditions responsible for thermal water in a domestic well 5.5 miles east of Hot Springs National Park, Hot Springs, Arkansas, and to determine the degree of hydraulic connectivity between the thermal water in the well and the hot springs in Hot Springs National Park. The water temperature in the well, which was completed in the Stanley Shale, measured 33.9 degrees Celsius, March 1, 2006, and dropped to 21.7 degrees Celsius after 2 hours of pumping - still more than 4 degrees above typical local groundwater temperature. A second domestic well located 3 miles from the hot springs in Hot Springs National Park was discovered to have a thermal water component during a reconnaissance of the area. This second well was completed in the Bigfork Chert and field measurement of well water revealed a maximum temperature of 26.6 degrees Celsius. Mean temperature for shallow groundwater in the area is approximately 17 degrees Celsius. The occurrence of thermal water in these wells raised questions and concerns with regard to the timing for the appearance of the thermal water, which appeared to coincide with construction (including blasting activities) of the Highway 270 bypass-Highway 70 interchange. These concerns were heightened by the planned extension of the Highway 270 bypass to the north - a corridor that takes the highway across a section of the eroded anticlinal complex responsible for recharge to the hot springs of Hot Springs National Park. Concerns regarding the possible effects of blasting associated with highway construction near the first thermal well necessitated a technical review on the effects of blasting on shallow groundwater systems. Results from available studies suggested that propagation of new fractures near blasting sites is of limited extent. Vibrations from blasting can result in

  14. Pseudomonas guguanensis sp. nov., a gammaproteobacterium isolated from a hot spring.

    PubMed

    Liu, You-Cheng; Young, Li-Sen; Lin, Shih-Yao; Hameed, Asif; Hsu, Yi-Han; Lai, Wei-An; Shen, Fo-Ting; Young, Chiu-Chung

    2013-12-01

    An aerobic, Gram-stain-negative, rod-shaped bacterium (designated strain CC-G9A(T)), motile by a polar-flagellum, was isolated from a hot spring water sample in Taiwan. Strain CC-G9A(T) could grow at 20-42 °C, pH 6.0-10.0 and tolerate up to 7% (w/v) NaCl. The 16S rRNA gene sequence analysis of strain CC-G9A(T) showed pairwise sequence similarity to Pseudomonas mendocina LMG 1223(T) (97.7%), Pseudomonas alcaligenes ATCC 14909(T) (97.8 %), Pseudomonas alcaliphila DSM 17744(T) (97.8 %), Pseudomonas toyotomiensis JCM 15604(T) (97.6 %), Pseudomonas oleovorans subsp. lubricantis DSM 21016(T) (97.6 %) and Pseudomonas argentinensis BCRC 17807(T) (97.5 %), and lower sequence similarity to other species of the genus Pseudomonas. According to DNA-DNA association analysis, the relatedness of strain CC-G9A(T) to P. mendocina BCRC 10458(T), P. alcaliphila DSM 17744(T), P. alcaligenes BCRC 11893(T), P. oleovorans subsp. lubricantis DSM 21016(T), P. argentinensis BCRC 17807(T) and P. oleovorans subsp. oleovorans BCRC 11902 was 55.1±3.1, 13.7±1.5, 14.1±1.8, 58.5±1.1, 28.9±2.0 and 28.6±1.8 %, respectively. The evolutionary trees reconstructed based on 16S rRNA, gyrB and rpoB gene sequences revealed varying phylogenetic neighbourhoods of strain CC-G9A(T) with regard to the most closely related type strains. The predominant quinone system was ubiquinone (Q-9) and the DNA G+C content was 64.3±1.3 mol%. The major fatty acids were C10 : 0 3-OH, C12 : 0, C12 : 0 3-OH, C16 : 0 and summed features 3 and 8 consisting of C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c, respectively. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol. According to distinct phylogenetic, phenotypic and chemotaxonomic features, strain CC-G9A(T) is proposed to represent a novel species within the genus Pseudomonas for which the name Pseudomonas guguanensis sp. nov. is proposed. The type

  15. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park.

    PubMed

    Bowen De León, Kara; Gerlach, Robin; Peyton, Brent M; Fields, Matthew W

    2013-01-01

    The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park (YNP), Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatures (44°C, 63°C, 75°C). The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi) at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus) at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44 and 63°C springs and a thermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different) to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts.

  16. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park.

    PubMed

    Bowen De León, Kara; Gerlach, Robin; Peyton, Brent M; Fields, Matthew W

    2013-01-01

    The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park (YNP), Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatures (44°C, 63°C, 75°C). The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi) at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus) at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44 and 63°C springs and a thermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different) to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts. PMID:24282404

  17. Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes.

    PubMed

    Jiménez, Diego Javier; Andreote, Fernando Dini; Chaves, Diego; Montaña, José Salvador; Osorio-Forero, Cesar; Junca, Howard; Zambrano, María Mercedes; Baena, Sandra

    2012-01-01

    A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level) acidic hot spring El Coquito (EC). A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation), and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes. Analysis of genes involved in the nitrogen cycle indicated the presence of dissimilatory nitrate reduction to N2 (narGHI, nirS, norBCDQ and nosZ), associated with Proteobacteria-like sequences. Genes involved in the sulfur cycle (cysDN, cysNC and aprA) indicated adenylsulfate and sulfite production that were affiliated to several bacterial species. In summary, metagenomic sequence data provided insight regarding the structure and possible functions of this hot spring microbial community, describing some groups potentially involved in the nitrogen and sulfur cycling in this environment. PMID:23251687

  18. San Andreas fault geometry at Desert Hot Springs, California, and its effects on earthquake hazards and groundwater

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Gandhok, G.

    2009-01-01

    The Mission Creek and Banning faults are two of the principal strands of the San Andreas fault zone in the northern Coachella Valley of southern California. Structural characteristics of the faults affect both regional earthquake hazards and local groundwater resources. We use seismic, gravity, and geological data to characterize the San Andreas fault zone in the vicinity of Desert Hot Springs. Seismic images of the upper 500 m of the Mission Creek fault at Desert Hot Springs show multiple fault strands distributed over a 500 m wide zone, with concentrated faulting within a central 200 m wide area of the fault zone. High-velocity (up to 5000 m=sec) rocks on the northeast side of the fault are juxtaposed against a low-velocity (6.0) earthquakes in the area (in 1948 and 1986) occurred at or near the depths (~10 to 12 km) of the merged (San Andreas) fault. Large-magnitude earthquakes that nucleate at or below the merged fault will likely generate strong shaking from guided waves along both fault zones and from amplified seismic waves in the low-velocity basin between the two fault zones. The Mission Creek fault zone is a groundwater barrier with the top of the water table varying by 60 m in depth and the aquifer varying by about 50 m in thickness across a 200 m wide zone of concentrated faulting.

  19. Structural and Functional Insights from the Metagenome of an Acidic Hot Spring Microbial Planktonic Community in the Colombian Andes

    PubMed Central

    Jiménez, Diego Javier; Andreote, Fernando Dini; Chaves, Diego; Montaña, José Salvador; Osorio-Forero, Cesar; Junca, Howard; Zambrano, María Mercedes; Baena, Sandra

    2012-01-01

    A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level) acidic hot spring El Coquito (EC). A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation), and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes. Analysis of genes involved in the nitrogen cycle indicated the presence of dissimilatory nitrate reduction to N2 (narGHI, nirS, norBCDQ and nosZ), associated with Proteobacteria-like sequences. Genes involved in the sulfur cycle (cysDN, cysNC and aprA) indicated adenylsulfate and sulfite production that were affiliated to several bacterial species. In summary, metagenomic sequence data provided insight regarding the structure and possible functions of this hot spring microbial community, describing some groups potentially involved in the nitrogen and sulfur cycling in this environment. PMID:23251687

  20. Chemical indicators of subsurface temperature applied to hot spring waters of Yellowstone National Park, Wyoming, U.S.A.

    USGS Publications Warehouse

    Fournier, R.O.; Truesdell, A.H.

    1970-01-01

    Under favorable conditions the chemistry of hot springs may give reliable indications of subsurface temperatures and circulation patterns. These chemical indicators can be classified by the type of process involved: {A table is presented}. All these indicators have certain limitations. The silica geothermometer gives results independent of the local mineral suite and gas partial pressures, but may be affected by dilution. Alkali ratios are strongly affected by the local mineral suite and the formation of complex ions. Carbonate-chloride ratios are strongly affected by subsurface PCO2. The relative concentration of volatiles can be very misleading in high-pressure liquid systems. In Yellowstone National Park most thermal waters issue from hot, shallow aquifers with pressures in excess of hydrostatic by 2 to 6 bars and with large flows (the flow of hot spring water from the Park is greater than 4000 liters per second). These conditions should be ideal for the use of chemical indicators to estimate aquifer temperatures. In five drill holes aquifer temperatures were within 2??C of that predicted from the silica content of nearby hot springs; the temperature level off at a lower value than predicted in only one hole, and in four other holes drilling was terminated before the predicted aquifer temperature was reached. The temperature-Na/K ratio relationship does not follow any published experimental or empirical curve for water-feldspar or water-clay reactions. We suspect that ion exchange reactions involving zeolites in the Yellowstone rocks result in higher Na/K ratios at given temperatures than result from feldspar or clay reactions. Comparison of SiO2 and Cl/(HCO3 + CO3) suggest that because of higher subsurface PCO2 in Upper Geyser Basin a given Cl/(HCO3 + CO3) ratio there means a higher temperature than in Lower Geyser Basin. No correlation was found in Yellowstone Park between the subsurface regions of highest temperature and the relative concentration of volatile

  1. Metagenomic Evaluation of Bacterial and Archaeal Diversity in the Geothermal Hot Springs of Manikaran, India

    PubMed Central

    Pathak, Ashish; Green, Stefan J.; Joshi, Amit; Chauhan, Ashvini

    2015-01-01

    Bacterial and archaeal diversity in geothermal spring water were investigated using 16S rRNA gene amplicon metagenomic sequencing. This revealed the dominance of Firmicutes, Aquificae, and the Deinococcus-Thermus group in this thermophilic environment. A number of sequences remained taxonomically unresolved, indicating the presence of potentially novel microbes in this unique habitat. PMID:25700403

  2. Metagenomic evaluation of bacterial and archaeal diversity in the geothermal hot springs of manikaran, India.

    PubMed

    Bhatia, Sonu; Batra, Navneet; Pathak, Ashish; Green, Stefan J; Joshi, Amit; Chauhan, Ashvini

    2015-02-19

    Bacterial and archaeal diversity in geothermal spring water were investigated using 16S rRNA gene amplicon metagenomic sequencing. This revealed the dominance of Firmicutes, Aquificae, and the Deinococcus-Thermus group in this thermophilic environment. A number of sequences remained taxonomically unresolved, indicating the presence of potentially novel microbes in this unique habitat.

  3. Geochemical controls on microbial community composition from varied hot spring environments

    NASA Astrophysics Data System (ADS)

    Mitchell, K. R.; Hall, J. R.; Windman, T.; Shock, E. L.; Rodman, A. W.; Nordstrom, D.; Shanks, W.; Morgan, L. A.; Reysenbach, A.; Takacs-Vesbach, C. D.

    2008-12-01

    The microbial diversity of Yellowstone thermal features has been studied for decades; however, a majority of this research has been restricted to a handful of springs, or been focused on a single organism. Therefore, a synthesis of the factors determining the distribution and diversity of Yellowstone thermophiles parkwide has not been possible. The diversity of bacterial and archaeal 16S rRNA genes and the associated geochemistry of 104 Yellowstone thermal springs were surveyed to determine the relationship between geochemistry and microbial community composition. Bacterial or archaeal 16S rRNA genes were detected in 86 of our springs (temperature and pH ranged 35-95°C and 1.7-9.2, respectively). By combining phylogenetic analyses of the microbial communities with geochemical data, controls on the community composition were determined. The potential energy available to the microbial communities for reactions that are putative metabolic pathways are modeled. This modeling is based on thermodynamic disequilibrium calculations for coupled redox reactions. This information is used to infer energetically favorable reactions giving insight on what metabolisms are likely important in a spring. The communities sampled grouped into five general types based on organisms and likely terminal electron accepting processes. By combining molecular analysis of the microbial communities with geochemical measurements and energetic calculations, a more comprehensive view of life in thermal environments is presented.

  4. Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park.

    PubMed

    Langner, H W; Jackson, C R; McDermott, T R; Inskeep, W P

    2001-08-15

    Geothermal springs within Yellowstone National Park (YNP) often contain arsenic (As) at concentrations of 10-40 microM, levels that are considered toxic to many organisms. Arsenite (As(III)) is often the predominant valence state at the point of discharge but is rapidly oxidized to arsenate (As(V)) during transport in shallow surface water. The current study was designed to establish rates and possible mechanisms of As(III) oxidation and to characterize the geochemical environment associated with predominant microbial mats in a representative acid-sulfate-chloride (pH 3.1) thermal (58-62 degrees C) spring in Norris Basin, YNP. At the spring origin, total soluble As was predominantly As(III) at concentrations of 33 microM. No oxidation of As(III) was detected over the first 2.7 m downstream from the spring source, corresponding to an area dominated by a yellow filamentous S0-rich microbial mat However, rapid oxidation of As(III) to As(V) was observed between 2.7 and 5.6 m, corresponding to termination of the S0-rich mats, decreases in dissolved sulfide, and commencement of a brown Fe/As-rich mat. Rates of As(II) oxidation were estimated, yielding an apparent first-order rate constant of 1.2 min(-1) (half-life = 0.58 min). The oxidation of As(III) was shown to require live organisms present just prior to and within the Fe/As-rich mat. Complementary analytical tools used to characterize the brown mat revealed an As:Fe molar ratio of 0.7 and suggested that this filamentous microbial mat contains iron(III) oxyhydroxide coprecipitated with As(V). Results from the current work are the first to provide a comprehensive characterization of microbially mediated As(III) oxidation and the geochemical environments associated with microbial mats in acid-sulfate-chloride springs of YNP.

  5. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park. 1: The origin of thiosulfate in hot spring waters

    SciTech Connect

    Xu, Y.; Schoonen, M.A.A.; Nordstrom, D.K.; Cunningham, K.M.; Ball, J.W.

    1998-12-01

    Thiosulfate (S{sub 2}O{sub 3}{sup 2{minus}}), polythionate (S{sub x}O{sub 6}{sup 2{minus}}), dissolved sulfide (H{sub 2}S), and sulfate (SO{sub 4}{sup 2{minus}}) concentrations in thirty-nine alkaline and acidic springs in Yellowstone National Park (YNP) were determined. The analyses were conducted on site, using ion chromatography for thiosulfate, polythionate, and sulfate, and using colorimetry for dissolved sulfide. Thiosulfate was detected at concentrations typically less than 2 {micro}mol/L in neutral and alkaline chloride springs with low sulfate concentrations (Cl{sup {minus}}/SO{sub 4}{sup 2{minus}} > 25). The thiosulfate concentration levels are about one to two orders of magnitude lower than the concentration of dissolved sulfide in these springs. In most acid sulfate and acid sulfate-chloride springs (Cl{sup {minus}}/SO{sub 4}{sup 2{minus}} < 10), thiosulfate concentrations were also typically lower than 2 {micro}mol/L. However, in some chloride springs enriched with sulfate (Cl{sup {minus}}/SO{sub 4}{sup 2{minus}} between 10 and 25), thiosulfate was found at concentrations ranging from 9 to 95 {micro}mol/L, higher than the concentrations of dissolved sulfide in these waters. Polythionate was detected only in Cinder Pool, Norris Geyser basin, at concentrations up to 8 {micro}mol/L, with an average S-chain-length from 4.1 to 4.9 sulfur atoms. The results indicate that no thiosulfate occurs in the deeper parts of the hydrothermal system. Thiosulfate may form, however, from (1) hydrolysis of native sulfur by hydrothermal solutions in the shallower parts (<50 m) of the system, (2) oxidation of dissolved sulfide upon mixing of a deep hydrothermal water with aerated shallow groundwater, and (3) the oxidation of dissolved sulfide by dissolved oxygen upon discharge of the hot spring. Upon discharge of a sulfide-containing hydrothermal water, oxidation proceeds rapidly as atmospheric oxygen enters the water. The transfer of oxygen is particularly effective if the

  6. Korarchaeota Diversity, Biogeography, and Abundance in Yellowstone and Great Basin Hot Springs and Ecological Niche Modeling Based on Machine Learning

    PubMed Central

    Miller-Coleman, Robin L.; Dodsworth, Jeremy A.; Ross, Christian A.; Shock, Everett L.; Williams, Amanda J.; Hartnett, Hilairy E.; McDonald, Austin I.; Havig, Jeff R.; Hedlund, Brian P.

    2012-01-01

    Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7–8.5 at concentrations up to 6.6×106 16S rRNA gene copies g−1 wet sediment. In Yellowstone National Park (YNP), Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB), Korarchaeota were most abundant at spring sources of pH<7.2 with high particulate C content and high alkalinity, which are likely to be buffered by the carbonic acid system. It is therefore likely that at least two different geological mechanisms in YNP and GB springs create the neutral to mildly acidic pH that is optimal for Korarchaeota. A classification support vector machine (C-SVM) trained on single analytes, two analyte combinations, or vectors from non-metric multidimensional scaling models was able to predict springs as Korarchaeota-optimal or sub-optimal habitats with accuracies up to 95%. To our knowledge, this is the most extensive analysis of the geochemical habitat of any high-level microbial taxon and the first application of a C-SVM to

  7. Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning.

    PubMed

    Miller-Coleman, Robin L; Dodsworth, Jeremy A; Ross, Christian A; Shock, Everett L; Williams, Amanda J; Hartnett, Hilairy E; McDonald, Austin I; Havig, Jeff R; Hedlund, Brian P

    2012-01-01

    Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7-8.5 at concentrations up to 6.6×10(6) 16S rRNA gene copies g(-1) wet sediment. In Yellowstone National Park (YNP), Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB), Korarchaeota were most abundant at spring sources of pH<7.2 with high particulate C content and high alkalinity, which are likely to be buffered by the carbonic acid system. It is therefore likely that at least two different geological mechanisms in YNP and GB springs create the neutral to mildly acidic pH that is optimal for Korarchaeota. A classification support vector machine (C-SVM) trained on single analytes, two analyte combinations, or vectors from non-metric multidimensional scaling models was able to predict springs as Korarchaeota-optimal or sub-optimal habitats with accuracies up to 95%. To our knowledge, this is the most extensive analysis of the geochemical habitat of any high-level microbial taxon and the first application of a C-SVM to

  8. Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles.

    PubMed

    Liu, Lan; Salam, Nimaichand; Jiao, Jian-Yu; Jiang, Hong-Chen; Zhou, En-Min; Yin, Yi-Rui; Ming, Hong; Li, Wen-Jun

    2016-07-01

    The class Actinobacteria has been a goldmine for the discovery of antibiotics and has attracted interest from both academics and industries. However, an absence of novel approaches during the last few decades has limited the discovery of new microbial natural products useful for industries. Scientists are now focusing on the ecological aspects of diverse environments including unexplored or underexplored habitats and extreme environments in the search for new metabolites. This paper reports on the diversity of culturable actinobacteria associated with hot springs located in Tengchong County, Yunnan Province, southwestern China. A total of 58 thermophilic actinobacterial strains were isolated from the samples collected from ten hot springs distributed over three geothermal fields (e.g., Hehua, Rehai, and Ruidian). Phylogenetic positions and their biosynthetic profiles were analyzed by sequencing 16S rRNA gene and three biosynthetic gene clusters (KS domain of PKS-I, KSα domain of PKS-II and A domain of NRPS). On the basis of 16S rRNA gene phylogenetic analysis, the 58 strains were affiliated with 12 actinobacterial genera: Actinomadura Micromonospora, Microbispora, Micrococcus, Nocardiopsis, Nonomuraea, Promicromonospora, Pseudonocardia, Streptomyces, Thermoactinospora, Thermocatellispora, and Verrucosispora, of which the two novel genera Thermoactinospora and Thermocatellisopora were recently described from among these strains. Considering the biosynthetic potential of these actinobacterial strains, 22 were positive for PCR amplification of at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, and NRPS). These actinobacteria were further subjected to antimicrobial assay against five opportunistic human pathogens (Acinetobacter baumannii, Escherichia coli, Micrococcus luteus, Staphylococcus aureus and Streptococcus faecalis). All of the 22 strains that were positive for PCR amplification of at least one of the biosynthetic gene domains exhibited

  9. Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles.

    PubMed

    Liu, Lan; Salam, Nimaichand; Jiao, Jian-Yu; Jiang, Hong-Chen; Zhou, En-Min; Yin, Yi-Rui; Ming, Hong; Li, Wen-Jun

    2016-07-01

    The class Actinobacteria has been a goldmine for the discovery of antibiotics and has attracted interest from both academics and industries. However, an absence of novel approaches during the last few decades has limited the discovery of new microbial natural products useful for industries. Scientists are now focusing on the ecological aspects of diverse environments including unexplored or underexplored habitats and extreme environments in the search for new metabolites. This paper reports on the diversity of culturable actinobacteria associated with hot springs located in Tengchong County, Yunnan Province, southwestern China. A total of 58 thermophilic actinobacterial strains were isolated from the samples collected from ten hot springs distributed over three geothermal fields (e.g., Hehua, Rehai, and Ruidian). Phylogenetic positions and their biosynthetic profiles were analyzed by sequencing 16S rRNA gene and three biosynthetic gene clusters (KS domain of PKS-I, KSα domain of PKS-II and A domain of NRPS). On the basis of 16S rRNA gene phylogenetic analysis, the 58 strains were affiliated with 12 actinobacterial genera: Actinomadura Micromonospora, Microbispora, Micrococcus, Nocardiopsis, Nonomuraea, Promicromonospora, Pseudonocardia, Streptomyces, Thermoactinospora, Thermocatellispora, and Verrucosispora, of which the two novel genera Thermoactinospora and Thermocatellisopora were recently described from among these strains. Considering the biosynthetic potential of these actinobacterial strains, 22 were positive for PCR amplification of at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, and NRPS). These actinobacteria were further subjected to antimicrobial assay against five opportunistic human pathogens (Acinetobacter baumannii, Escherichia coli, Micrococcus luteus, Staphylococcus aureus and Streptococcus faecalis). All of the 22 strains that were positive for PCR amplification of at least one of the biosynthetic gene domains exhibited

  10. Chemical studies of selected trace elements in hot-spring drainages of Yellowstone National Park

    SciTech Connect

    Stauffer, R.E.; Jenne, E.A.; Ball, J.W.

    1980-01-01

    Intensive chemical studies were made of S(-II), O/sub 2/, Al, Fe, Mn, P, As(III), As(V), and Li in waters from two high-Cl, low Ca-Mg hotspring drainages in the Lower Geyser Basin, a warm spring system rich in Ca and Mg in the Yellowstone Canyon area, and the Madison River system above Hebgen Lake. Analyses were also made of other representative thermal waters from the Park.

  11. Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs) in U.S. Great Basin hot springs.

    PubMed

    Hedlund, Brian P; Paraiso, Julienne J; Williams, Amanda J; Huang, Qiuyuan; Wei, Yuli; Dijkstra, Paul; Hungate, Bruce A; Dong, Hailiang; Zhang, Chuanlun L

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (bGDGTs) are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31-95°C; pH: 6.8-10.7). bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal). The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS(-)) and positively with properties of oxygenated, low temperature sites (O2, NO(-) 3). Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤70°C).

  12. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring.

    PubMed

    Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki

    2016-06-25

    We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ. PMID:27297893

  13. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring

    PubMed Central

    Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki

    2016-01-01

    We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ. PMID:27297893

  14. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring.

    PubMed

    Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki

    2016-06-25

    We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ.

  15. Discovery and Characterization of a Thermostable and Highly Halotolerant GH5 Cellulase from an Icelandic Hot Spring Isolate.

    PubMed

    Zarafeta, Dimitra; Kissas, Dimitrios; Sayer, Christopher; Gudbergsdottir, Sóley R; Ladoukakis, Efthymios; Isupov, Michail N; Chatziioannou, Aristotelis; Peng, Xu; Littlechild, Jennifer A; Skretas, Georgios; Kolisis, Fragiskos N

    2016-01-01

    With the ultimate goal of identifying robust cellulases for industrial biocatalytic conversions, we have isolated and characterized a new thermostable and very halotolerant GH5 cellulase. This new enzyme, termed CelDZ1, was identified by bioinformatic analysis from the genome of a polysaccharide-enrichment culture isolate, initiated from material collected from an Icelandic hot spring. Biochemical characterization of CelDZ1 revealed that it is a glycoside hydrolase with optimal activity at 70°C and pH 5.0 that exhibits good thermostability, high halotolerance at near-saturating salt concentrations, and resistance towards metal ions and other denaturing agents. X-ray crystallography of the new enzyme showed that CelDZ1 is the first reported cellulase structure that lacks the defined sugar-binding 2 subsite and revealed structural features which provide potential explanations of its biochemical characteristics.

  16. Discovery and Characterization of a Thermostable and Highly Halotolerant GH5 Cellulase from an Icelandic Hot Spring Isolate.

    PubMed

    Zarafeta, Dimitra; Kissas, Dimitrios; Sayer, Christopher; Gudbergsdottir, Sóley R; Ladoukakis, Efthymios; Isupov, Michail N; Chatziioannou, Aristotelis; Peng, Xu; Littlechild, Jennifer A; Skretas, Georgios; Kolisis, Fragiskos N

    2016-01-01

    With the ultimate goal of identifying robust cellulases for industrial biocatalytic conversions, we have isolated and characterized a new thermostable and very halotolerant GH5 cellulase. This new enzyme, termed CelDZ1, was identified by bioinformatic analysis from the genome of a polysaccharide-enrichment culture isolate, initiated from material collected from an Icelandic hot spring. Biochemical characterization of CelDZ1 revealed that it is a glycoside hydrolase with optimal activity at 70°C and pH 5.0 that exhibits good thermostability, high halotolerance at near-saturating salt concentrations, and resistance towards metal ions and other denaturing agents. X-ray crystallography of the new enzyme showed that CelDZ1 is the first reported cellulase structure that lacks the defined sugar-binding 2 subsite and revealed structural features which provide potential explanations of its biochemical characteristics. PMID:26741138

  17. Discovery and Characterization of a Thermostable and Highly Halotolerant GH5 Cellulase from an Icelandic Hot Spring Isolate

    PubMed Central

    Zarafeta, Dimitra; Kissas, Dimitrios; Sayer, Christopher; Gudbergsdottir, Sóley R.; Ladoukakis, Efthymios; Isupov, Michail N.; Chatziioannou, Aristotelis; Peng, Xu; Littlechild, Jennifer A.; Skretas, Georgios; Kolisis, Fragiskos N.

    2016-01-01

    With the ultimate goal of identifying robust cellulases for industrial biocatalytic conversions, we have isolated and characterized a new thermostable and very halotolerant GH5 cellulase. This new enzyme, termed CelDZ1, was identified by bioinformatic analysis from the genome of a polysaccharide-enrichment culture isolate, initiated from material collected from an Icelandic hot spring. Biochemical characterization of CelDZ1 revealed that it is a glycoside hydrolase with optimal activity at 70°C and pH 5.0 that exhibits good thermostability, high halotolerance at near-saturating salt concentrations, and resistance towards metal ions and other denaturing agents. X-ray crystallography of the new enzyme showed that CelDZ1 is the first reported cellulase structure that lacks the defined sugar-binding 2 subsite and revealed structural features which provide potential explanations of its biochemical characteristics. PMID:26741138

  18. Determination of Iron Ion in the Water of a Natural Hot Spring Using Microfluidic Paper-based Analytical Devices.

    PubMed

    Ogawa, Kazuma; Kaneta, Takashi

    2016-01-01

    Microfluidic paper-based analytical devices (μPADs) were used to detect the iron ion content in the water of a natural hot spring in order to assess the applicability of this process to the environmental analysis of natural water. The μPADs were fabricated using a wax printer after the addition of hydroxylamine into the detection reservoirs to reduce Fe(3+) to Fe(2+), 1,10-phenanthroline for the forming of a complex, and poly(acrylic acid) for ion-pair formation with an acetate buffer (pH 4.7). The calibration curve of Fe(3+) showed a linearity that ranged from 100 to 1000 ppm in the semi-log plot whereas the color intensity was proportional to the concentration of Fe(3+) and ranged from 40 to 350 ppm. The calibration curve represented the daily fluctuation in successive experiments during four days, which indicated that a calibration curve must be constructed for each day. When freshly prepared μPADs were compared with stored ones, no significant difference was found. The μPADs were applied to the determination of Fe(3+) in a sample of water from a natural hot spring. Both the accuracy and the precision of the μPAD method were evaluated by comparisons with the results obtained via conventional spectrophotometry. The results of the μPADs were in good agreement with, but less precise than, those obtained via conventional spectrophotometry. Consequently, the μPADs offer advantages that include rapid and miniaturized operation, although the precision was poorer than that of conventional spectrophotometry.

  19. Isolation, identification and screening of antimicrobial thermophilic Streptomyces sp. Al-Dhabi-1 isolated from Tharban hot spring, Saudi Arabia.

    PubMed

    Al-Dhabi, Naif Abdullah; Esmail, Galal Ali; Duraipandiyan, Veeramuthu; Valan Arasu, Mariadhas; Salem-Bekhit, Mounir M

    2016-01-01

    The strain Streptomyces sp. Al-Dhabi-1 was isolated from soil sediments collected from Tharban hot spring in the southern west of Saudi Arabia using actinomycetes isolation agar and starch casein agar at 55 °C. Identification of the isolate was done according to morphological, physiological and biochemical characteristics and 16S rRNA sequence similarity as well. 16S rRNA sequence and blast analyses confirmed that the isolate belonging to the genus Streptomyces. The sequence was submitted to GenBank with accession number (KF815080). Ethyl acetate extract of Streptomyces sp. Al-Dhabi-1 showed good antimicrobial activities against tested pathogenic microbes. Minimum inhibitory concentration results showed that the best values were observed against S. agalactiae (<0.039 mg/ml) and Klebsiella pneumonia (0.125 mg/ml). Minimum inhibitory concentration of Al-Dhabi-1 against fungi; Cryptococcus neoformans (0.078 mg/ml), C. albicans (0.156 mg/ml), A. niger (0.625 mg/ml), and T. mentagrophytes (0.156 mg/ml). GC-MS analysis was used for the chemical profile of ethyl acetate extract. Benzeneacetic acid (16.02 %) and acetic acid 2-phenylethyl ester (10.35 %) were the major compounds among 31 substances found the ethyl acetate extract. According to the results of antimicrobial activity against pathogenic microbes, it is clear that the actinomycetes from hot springs with extreme environments are promising source for antimicrobial compounds. PMID:26515082

  20. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand.

    PubMed

    Hug, Katrin; Maher, William A; Stott, Matthew B; Krikowa, Frank; Foster, Simon; Moreau, John W

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  1. Regulatory, Land Ownership, and Water Availability Factors for a Magma Well: Long Valley Caldera and Coso Hot Springs, California

    SciTech Connect

    Blackett, Robert

    1985-09-01

    The U.S. Department of Energy is currently engaged in a program to demonstrate the engineering feasibility of extracting thermal energy from high-level molten magma bodies. The program is being carried out under the direction of Sandia National Laboratories where a number of individual projects support the overall program. The existing program elements include (1) high-temperature materials compatibility testing; (2) studies of properties of melts of various compositions; and (3) the investigation of the economics of a magma energy extraction system. Another element of the program is being conducted with the cooperation of the U.S. Geological Survey, and involves locating and outlining magma bodies at selected sites using various geophysical techniques. The ultimate goal here will be to define the limits of a magma body as a drilling target. During an earlier phase of the program, more than twenty candidate study sites considered were evaluated based upon: (1) the likelihood of the presence of a shallow magma chamber, (2) the accessibility of the site, and (3) physical and institutional constraints associated with each site with respect to performing long-term experiments. From these early phase activities, the number of candidate sites were eventually narrowed to just 2. The sites currently under consideration are Coso Hot Springs and the Long Valley caldera (Figure 1). This report describes certain attributes of these sites in order to help identify potential problems related to: (1) state and federal regulations pertaining to geothermal development; (2) land ownership; and (3) water resource availability. The information sources used in this study were mainly maps, publications, and informative documents gathered from the California Division of Oil and Gas and the U.S. Department of the Interior. Environmental studies completed for the entire Long Valley caldera study area, and for portions of the Coso Hot Springs study area were also used for reference.

  2. Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring

    NASA Technical Reports Server (NTRS)

    Pierson, B. K.; Parenteau, M. N.; Griffin, B. M.

    1999-01-01

    At Chocolate Pots Hot Springs in Yellowstone National Park the source waters have a pH near neutral, contain high concentrations of reduced iron, and lack sulfide. An iron formation that is associated with cyanobacterial mats is actively deposited. The uptake of [(14)C]bicarbonate was used to assess the impact of ferrous iron on photosynthesis in this environment. Photoautotrophy in some of the mats was stimulated by ferrous iron (1.0 mM). Microelectrodes were used to determine the impact of photosynthetic activity on the oxygen content and the pH in the mat and sediment microenvironments. Photosynthesis increased the oxygen concentration to 200% of air saturation levels in the top millimeter of the mats. The oxygen concentration decreased with depth and in the dark. Light-dependent increases in pH were observed. The penetration of light in the mats and in the sediments was determined. Visible radiation was rapidly attenuated in the top 2 mm of the iron-rich mats. Near-infrared radiation penetrated deeper. Iron was totally oxidized in the top few millimeters, but reduced iron was detected at greater depths. By increasing the pH and the oxygen concentration in the surface sediments, the cyanobacteria could potentially increase the rate of iron oxidation in situ. This high-iron-content hot spring provides a suitable model for studying the interactions of microbial photosynthesis and iron deposition and the role of photosynthesis in microbial iron cycling. This model may help clarify the potential role of photosynthesis in the deposition of Precambrian banded iron formations.

  3. Isolation, identification and screening of antimicrobial thermophilic Streptomyces sp. Al-Dhabi-1 isolated from Tharban hot spring, Saudi Arabia.

    PubMed

    Al-Dhabi, Naif Abdullah; Esmail, Galal Ali; Duraipandiyan, Veeramuthu; Valan Arasu, Mariadhas; Salem-Bekhit, Mounir M

    2016-01-01

    The strain Streptomyces sp. Al-Dhabi-1 was isolated from soil sediments collected from Tharban hot spring in the southern west of Saudi Arabia using actinomycetes isolation agar and starch casein agar at 55 °C. Identification of the isolate was done according to morphological, physiological and biochemical characteristics and 16S rRNA sequence similarity as well. 16S rRNA sequence and blast analyses confirmed that the isolate belonging to the genus Streptomyces. The sequence was submitted to GenBank with accession number (KF815080). Ethyl acetate extract of Streptomyces sp. Al-Dhabi-1 showed good antimicrobial activities against tested pathogenic microbes. Minimum inhibitory concentration results showed that the best values were observed against S. agalactiae (<0.039 mg/ml) and Klebsiella pneumonia (0.125 mg/ml). Minimum inhibitory concentration of Al-Dhabi-1 against fungi; Cryptococcus neoformans (0.078 mg/ml), C. albicans (0.156 mg/ml), A. niger (0.625 mg/ml), and T. mentagrophytes (0.156 mg/ml). GC-MS analysis was used for the chemical profile of ethyl acetate extract. Benzeneacetic acid (16.02 %) and acetic acid 2-phenylethyl ester (10.35 %) were the major compounds among 31 substances found the ethyl acetate extract. According to the results of antimicrobial activity against pathogenic microbes, it is clear that the actinomycetes from hot springs with extreme environments are promising source for antimicrobial compounds.

  4. Phototrophs in High-Iron-Concentration Microbial Mats: Physiological Ecology of Phototrophs in an Iron-Depositing Hot Spring

    PubMed Central

    Pierson, B. K.; Parenteau, M. N.; Griffin, B. M.

    1999-01-01

    At Chocolate Pots Hot Springs in Yellowstone National Park the source waters have a pH near neutral, contain high concentrations of reduced iron, and lack sulfide. An iron formation that is associated with cyanobacterial mats is actively deposited. The uptake of [14C]bicarbonate was used to assess the impact of ferrous iron on photosynthesis in this environment. Photoautotrophy in some of the mats was stimulated by ferrous iron (1.0 mM). Microelectrodes were used to determine the impact of photosynthetic activity on the oxygen content and the pH in the mat and sediment microenvironments. Photosynthesis increased the oxygen concentration to 200% of air saturation levels in the top millimeter of the mats. The oxygen concentration decreased with depth and in the dark. Light-dependent increases in pH were observed. The penetration of light in the mats and in the sediments was determined. Visible radiation was rapidly attenuated in the top 2 mm of the iron-rich mats. Near-infrared radiation penetrated deeper. Iron was totally oxidized in the top few millimeters, but reduced iron was detected at greater depths. By increasing the pH and the oxygen concentration in the surface sediments, the cyanobacteria could potentially increase the rate of iron oxidation in situ. This high-iron-content hot spring provides a suitable model for studying the interactions of microbial photosynthesis and iron deposition and the role of photosynthesis in microbial iron cycling. This model may help clarify the potential role of photosynthesis in the deposition of Precambrian banded iron formations. PMID:10584006

  5. Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring.

    PubMed

    Pierson, B K; Parenteau, M N; Griffin, B M

    1999-12-01

    At Chocolate Pots Hot Springs in Yellowstone National Park the source waters have a pH near neutral, contain high concentrations of reduced iron, and lack sulfide. An iron formation that is associated with cyanobacterial mats is actively deposited. The uptake of [(14)C]bicarbonate was used to assess the impact of ferrous iron on photosynthesis in this environment. Photoautotrophy in some of the mats was stimulated by ferrous iron (1.0 mM). Microelectrodes were used to determine the impact of photosynthetic activity on the oxygen content and the pH in the mat and sediment microenvironments. Photosynthesis increased the oxygen concentration to 200% of air saturation levels in the top millimeter of the mats. The oxygen concentration decreased with depth and in the dark. Light-dependent increases in pH were observed. The penetration of light in the mats and in the sediments was determined. Visible radiation was rapidly attenuated in the top 2 mm of the iron-rich mats. Near-infrared radiation penetrated deeper. Iron was totally oxidized in the top few millimeters, but reduced iron was detected at greater depths. By increasing the pH and the oxygen concentration in the surface sediments, the cyanobacteria could potentially increase the rate of iron oxidation in situ. This high-iron-content hot spring provides a suitable model for studying the interactions of microbial photosynthesis and iron deposition and the role of photosynthesis in microbial iron cycling. This model may help clarify the potential role of photosynthesis in the deposition of Precambrian banded iron formations.

  6. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand

    PubMed Central

    Hug, Katrin; Maher, William A.; Stott, Matthew B.; Krikowa, Frank; Foster, Simon; Moreau, John W.

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55–75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18–25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  7. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand.

    PubMed

    Hug, Katrin; Maher, William A; Stott, Matthew B; Krikowa, Frank; Foster, Simon; Moreau, John W

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  8. Composition of ammonia-oxidizing archaea and their contribution to nitrification in a high-temperature hot spring

    NASA Astrophysics Data System (ADS)

    Chen, S.; Peng, X.-T.; Xu, H.-C.; Ta, K.-W.

    2015-10-01

    The oxidation of ammonia by microbes and associated organisms has been shown to occur in diverse natural environments. However, the contribution of ammonia-oxidizing archaea to nitrification in high-temperature environments remains unclear. Here, we studied in situ ammonia oxidation rates and the abundance of ammonia-oxidizing archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface sinter and bottom sediments were 4.8 and 5.3 nmol N g-1 h-1, respectively. Relative abundances of Crenarchaea in both samples were determined by fluorescence in situ hybridization (FISH). Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic "Candidatus Nitrosocaldus yellowstonii", which represented the most abundant operation taxonomic units (OTU) in both sediments. Furthermore, bacterial amoA was not detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present in the range of 2.75 to 9.80 × 105 and 0.128 to 1.96 × 108 gene copies g-1 sediment. The cell-specific nitrification rates were estimated to be in the range of 0.41 to 0.79 fmol N archaeal cell-1 h-1, which is consistent with earlier estimates in estuary environments. This study demonstrated that AOA were widely involved in nitrification in this hot spring. It further indicated the importance of archaea rather than bacteria in driving the nitrogen cycle in terrestrial geothermal environments.

  9. Raman and SEM analysis of a biocolonised hot spring travertine terrace in Svalbard, Norway

    PubMed Central

    Jorge-Villar, Susana E; Benning, Liane G; Edwards, Howell GM

    2007-01-01

    Background A profile across 8 layers from a fossil travertine terrace from a low temperature geothermal spring located in Svalbard, Norway has been studied using both Raman spectroscopy and SEM (Scanning Electron Microscopy) techniques to identify minerals and organic life signals. Results Calcite, anatase, quartz, haematite, magnetite and graphite as well as scytonemin, three different carotenoids, chlorophyll and a chlorophyll-like compound were identified as geo- and biosignatures respectively, using 785 and/or 514 nm Raman laser excitation wavelengths. No morphological biosignatures representing remnant microbial signals were detected by high-resolution imaging, although spectral analyses indicated the presence of organics. In contrast, in all layers, Raman spectra identified a series of different organic pigments indicating little to no degradation or change of the organic signatures and thus indicating the preservation of fossil biomarker compounds throughout the life time of the springs despite the lack of remnant morphological indicators. Conclusion With a view towards planetary exploration we discuss the implications of the differences in Raman band intensities observed when spectra were collected with the different laser excitations. We show that these differences, as well as the different detection capability of the 785 and 514 nm laser, could lead to ambiguous compound identification. We show that the identification of bio and geosignatures, as well as fossil organic pigments, using Raman spectroscopy is possible. These results are relevant since both lasers have been considered for miniaturized Raman spectrometers for planetary exploration. PMID:17697380

  10. Phototrophic phylotypes dominate mesothermal microbial mats associated with hot springs in Yellowstone National Park.

    PubMed

    Ross, Kimberly A; Feazel, Leah M; Robertson, Charles E; Fathepure, Babu Z; Wright, Katherine E; Turk-Macleod, Rebecca M; Chan, Mallory M; Held, Nicole L; Spear, John R; Pace, Norman R

    2012-07-01

    The mesothermal outflow zones (50-65°C) of geothermal springs often support an extensive zone of green and orange laminated microbial mats. In order to identify and compare the microbial inhabitants of morphologically similar green-orange mats from chemically and geographically distinct springs, we generated and analyzed small-subunit ribosomal RNA (rRNA) gene amplicons from six mesothermal mats (four previously unexamined) in Yellowstone National Park. Between three and six bacterial phyla dominated each mat. While many sequences bear the highest identity to previously isolated phototrophic genera belonging to the Cyanobacteria, Chloroflexi, and Chlorobi phyla, there is also frequent representation of uncultured, unclassified members of these groups. Some genus-level representatives of these dominant phyla were found in all mats, while others were unique to a single mat. Other groups detected at high frequencies include candidate divisions (such as the OP candidate clades) with no cultured representatives or complete genomes available. In addition, rRNA genes related to the recently isolated and characterized photosynthetic acidobacterium "Candidatus Chloracidobacterium thermophilum" were detected in most mats. In contrast to microbial mats from well-studied hypersaline environments, the mesothermal mats in this study accrue less biomass and are substantially less diverse, but have a higher proportion of known phototrophic organisms. This study provides sequences appropriate for accurate phylogenetic classification and expands the molecular phylogenetic survey of Yellowstone microbial mats.

  11. Geologic Map of the Neal Hot Springs Geothermal Area - GIS Data

    DOE Data Explorer

    Faulds, James E.

    2013-03-31

    Neal Hot Springs—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Three cross‐sections. - Locations of production, injection, and exploration wells. - Locations of 40Ar/39Ar samples. - Location of XRF geochemical samples. - 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics (model not in the ESRI geodatabase).

  12. Enrichment of Thermophilic Ammonia-Oxidizing Archaea from an Alkaline Hot Spring in the Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Huang, Z.; Jiang, H.; Wiegel, J.; Li, W.; Dong, H.

    2010-12-01

    One of the major advances in the nitrogen cycle is the recent discovery of ammonia oxidation by archaea. While culture-independent studies have revealed occurrence of ammonia-oxidizing archaea (AOA) in nearly every surface niche on earth, most of these microorganisms have resisted isolation and so far only a few species have been identified. The Great Basin contains numerous hot springs, which are characterized by moderately high temperature (40-65 degree C) and circumneutral or alkaline pH. Unique thermophilic archaea have been identified based on molecular DNA and lipid biomarkers; some of which may be ammonia oxidizers. This study aims to isolate some of these archaea from a California hot spring that has pH around 9.0 and temperature around 42 degree C. Mat material was collected from the spring and transported on ice to the laboratory. A synthetic medium (SCM-5) was inoculated with the mat material and the culture was incubated under varying temperature (35-65 degree C) and pH (7.0-10.0) conditions using antibiotics to suppress bacterial growth. Growth of the culture was monitored by microscopy, decrease in ammonium and increase in nitrite, and increases in Crenarchaeota and AOA abundances over time. Clone libraries were constructed to compare archaeal community structures before and after the enrichment experiment. Temperature and pH profiles indicated that the culture grew optimally at pH 9.0 and temperature 45 degree C, which are consistent with the geochemical conditions of the natural environment. Phylogenetic analysis showed that the final OTU was distantly related to all known hyperthermophilic archaea. Analysis of the amoA genes showed two OTUs in the final culture; one of them was closely related to Candidatus Nitrososphaera gargensis. However, the enrichment culture always contained bacteria and attempts to separate them from archaea have failed. This highlights the difficulty in bringing AOA into pure culture and suggests that some of the AOA may

  13. Biogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand

    SciTech Connect

    Jones, B.; Renaut, R.W.; Rosen, M.R.

    1997-01-01

    Before anthropogenic modifications, Ohaaki Pool (Broadlands-Ohaaki) and Dragon`s Mouth Geyser (Wairakei) emitted waters at temperatures of 93--98 C. The siliceous sinter that precipitated around their vents has the characteristics of geyserite, a dense laminated deposit of presumed abiogenic origin, that was precipitated from waters too hot (>73C) to support microbes other than thermophilic bacteria. Petrographic and SEM examinations of the sinters show that they incorporate columnar stromatolites and silicified, laminated stromatolitic mats that contain well-preserved filamentous microbes. At both localities the microbes lack evidence of desiccation or shrinkage, which implies that they were silicified rapidly at or shortly after their death. Although boiling and very hot (>90 C) waters were discharged, temperatures at many sites surrounding the vents remained sufficiently low and moist to support a microbial community that included thermophilic bacteria and cyanobacteria. In these cooler niches, the microbes and their biofilms served as highly favorable templates for the nucleation and growth of amorphous silica, and collectively provided a microbial framework for the laminated accretionary sinter. Some columnar, spicular, and stratiform geyserites are probably not abiotic precipitates, but are true silica stromatolites.

  14. Draft Genome Sequence of High-Temperature-Adapted Protochlamydia sp. HS-T3, an Amoebal Endosymbiotic Bacterium Found in Acanthamoeba Isolated from a Hot Spring in Japan.

    PubMed

    Yamaguchi, Hiroyuki; Matsuo, Junji; Yamazaki, Tomohiro; Ishida, Kasumi; Yagita, Kenji

    2015-02-05

    Here, we report the draft genome sequence of high-temperature-adapted Protochlamydia sp. strain HS-T3, an environmental chlamydia. This bacterium is an amoebal endosymbiont, found in Acanthamoeba isolated from a hot spring in Japan. Strain HS-T3 readily grew in mammalian cells at 37°C, a characteristic not previously reported for environmental chlamydiae.

  15. Analysis of the metatranscriptome of microbial communities of an alkaline hot sulfur spring revealed different gene encoding pathway enzymes associated with energy metabolism.

    PubMed

    Tripathy, Swetaleena; Padhi, Soumesh Kumar; Mohanty, Sriprakash; Samanta, Mrinal; Maiti, Nikhil Kumar

    2016-07-01

    Alkaline sulfur hot springs notable for their specialized and complex ecosystem powered by geothermal energy are abundantly rich in different chemotrophic and phototrophic thermophilic microorganisms. Survival and adaptation of these organisms in the extreme environment is specifically related to energy metabolism. To gain a better understanding of survival mechanism of the organisms in these ecosystems, we determined the different gene encoding enzymes associated with anaerobic pathways of energy metabolism by applying the metatranscriptomics approach. The analysis of the microbial population of hot sulfur spring revealed the presence of both aerobic and anaerobic organisms indicating dual mode of lifestyle of the community members. Proteobacteria (28.1 %) was the most dominant community. A total of 988 reads were associated with energy metabolism, out of which 33.7 % of the reads were assigned to nitrogen, sulfur, and methane metabolism based on KEGG classification. The major lineages of hot spring communities were linked with the anaerobic pathways. Different gene encoding enzymes (hao, nir, nar, cysH, cysI, acs) showed the involvement of microbial members in nitrification, denitrification, dissimilatory sulfate reduction, and methane generation. This study enhances our understanding of important gene encoding enzymes involved in energy metabolism, required for the survival and adaptation of microbial communities in the hot spring.

  16. Distribution of sequence-based types of legionella pneumophila serogroup 1 strains isolated from cooling towers, hot springs, and potable water systems in China.

    PubMed

    Qin, Tian; Zhou, Haijian; Ren, Hongyu; Guan, Hong; Li, Machao; Zhu, Bingqing; Shao, Zhujun

    2014-04-01

    Legionella pneumophila serogroup 1 causes Legionnaires' disease. Water systems contaminated with Legionella are the implicated sources of Legionnaires' disease. This study analyzed L. pneumophila serogroup 1 strains in China using sequence-based typing. Strains were isolated from cooling towers (n = 96), hot springs (n = 42), and potable water systems (n = 26). Isolates from cooling towers, hot springs, and potable water systems were divided into 25 sequence types (STs; index of discrimination [IOD], 0.711), 19 STs (IOD, 0.934), and 3 STs (IOD, 0.151), respectively. The genetic variation among the potable water isolates was lower than that among cooling tower and hot spring isolates. ST1 was the predominant type, accounting for 49.4% of analyzed strains (n = 81), followed by ST154. With the exception of two strains, all potable water isolates (92.3%) belonged to ST1. In contrast, 53.1% (51/96) and only 14.3% (6/42) of cooling tower and hot spring, respectively, isolates belonged to ST1. There were differences in the distributions of clone groups among the water sources. The comparisons among L. pneumophila strains isolated in China, Japan, and South Korea revealed that similar clones (ST1 complex and ST154 complex) exist in these countries. In conclusion, in China, STs had several unique allelic profiles, and ST1 was the most prevalent sequence type of environmental L. pneumophila serogroup 1 isolates, similar to its prevalence in Japan and South Korea.

  17. Arsenic Removal from Drinking Water by Adsorptive Media - U.S. EPA Demonstration Project at Hot Springs Mobile Home Park in Willard, Utah - Final Performance Evaluation Report

    EPA Science Inventory

    This report documents activities performed for and results obtained from the arsenic removal treatment technology demonstration project at the Hot Springs Mobile Home Park (HSMHP) in Willard, UT. The objectives of the project were to evaluate the effectiveness of Adsorbsia™ GTO™...

  18. Draft Genome Sequence of Tepidiphilus thermophilus Strain JHK30T (JCM 19170T) Isolated from a Terrestrial Hot Spring in India

    PubMed Central

    Poddar, Abhijit; Lepcha, Rinchen T.; Whitman, William B.

    2016-01-01

    Tepidiphilus thermophilus strain JHK30T was isolated from a hot spring at Surajkund, Jharkhand, India. It is a Gram-negative rod, nonsporulating, aerobic, and motile. The estimated genome is 2.3 Mb, with 2,186 protein-coding sequences. PMID:27516519

  19. Draft Genome Sequence of Tepidiphilus thermophilus Strain JHK30T (JCM 19170T) Isolated from a Terrestrial Hot Spring in India.

    PubMed

    Poddar, Abhijit; Lepcha, Rinchen T; Whitman, William B; Das, Subrata K

    2016-01-01

    Tepidiphilus thermophilus strain JHK30(T) was isolated from a hot spring at Surajkund, Jharkhand, India. It is a Gram-negative rod, nonsporulating, aerobic, and motile. The estimated genome is 2.3 Mb, with 2,186 protein-coding sequences. PMID:27516519

  20. Analysis of the metatranscriptome of microbial communities of an alkaline hot sulfur spring revealed different gene encoding pathway enzymes associated with energy metabolism.

    PubMed

    Tripathy, Swetaleena; Padhi, Soumesh Kumar; Mohanty, Sriprakash; Samanta, Mrinal; Maiti, Nikhil Kumar

    2016-07-01

    Alkaline sulfur hot springs notable for their specialized and complex ecosystem powered by geothermal energy are abundantly rich in different chemotrophic and phototrophic thermophilic microorganisms. Survival and adaptation of these organisms in the extreme environment is specifically related to energy metabolism. To gain a better understanding of survival mechanism of the organisms in these ecosystems, we determined the different gene encoding enzymes associated with anaerobic pathways of energy metabolism by applying the metatranscriptomics approach. The analysis of the microbial population of hot sulfur spring revealed the presence of both aerobic and anaerobic organisms indicating dual mode of lifestyle of the community members. Proteobacteria (28.1 %) was the most dominant community. A total of 988 reads were associated with energy metabolism, out of which 33.7 % of the reads were assigned to nitrogen, sulfur, and methane metabolism based on KEGG classification. The major lineages of hot spring communities were linked with the anaerobic pathways. Different gene encoding enzymes (hao, nir, nar, cysH, cysI, acs) showed the involvement of microbial members in nitrification, denitrification, dissimilatory sulfate reduction, and methane generation. This study enhances our understanding of important gene encoding enzymes involved in energy metabolism, required for the survival and adaptation of microbial communities in the hot spring. PMID:27290724

  1. Investigation of Microbial Diversity in Geothermal Hot Springs in Unkeshwar, India, Based on 16S rRNA Amplicon Metagenome Sequencing.

    PubMed

    Mehetre, Gajanan T; Paranjpe, Aditi; Dastager, Syed G; Dharne, Mahesh S

    2016-02-25

    Microbial diversity in geothermal waters of the Unkeshwar hot springs in Maharashtra, India, was studied using 16S rRNA amplicon metagenomic sequencing. Taxonomic analysis revealed the presence of Bacteroidetes, Proteobacteria, Cyanobacteria, Actinobacteria, Archeae, and OD1 phyla. Metabolic function prediction analysis indicated a battery of biological information systems indicating rich and novel microbial diversity, with potential biotechnological applications in this niche.

  2. Distribution of sequence-based types of legionella pneumophila serogroup 1 strains isolated from cooling towers, hot springs, and potable water systems in China.

    PubMed

    Qin, Tian; Zhou, Haijian; Ren, Hongyu; Guan, Hong; Li, Machao; Zhu, Bingqing; Shao, Zhujun

    2014-04-01

    Legionella pneumophila serogroup 1 causes Legionnaires' disease. Water systems contaminated with Legionella are the implicated sources of Legionnaires' disease. This study analyzed L. pneumophila serogroup 1 strains in China using sequence-based typing. Strains were isolated from cooling towers (n = 96), hot springs (n = 42), and potable water systems (n = 26). Isolates from cooling towers, hot springs, and potable water systems were divided into 25 sequence types (STs; index of discrimination [IOD], 0.711), 19 STs (IOD, 0.934), and 3 STs (IOD, 0.151), respectively. The genetic variation among the potable water isolates was lower than that among cooling tower and hot spring isolates. ST1 was the predominant type, accounting for 49.4% of analyzed strains (n = 81), followed by ST154. With the exception of two strains, all potable water isolates (92.3%) belonged to ST1. In contrast, 53.1% (51/96) and only 14.3% (6/42) of cooling tower and hot spring, respectively, isolates belonged to ST1. There were differences in the distributions of clone groups among the water sources. The comparisons among L. pneumophila strains isolated in China, Japan, and South Korea revealed that similar clones (ST1 complex and ST154 complex) exist in these countries. In conclusion, in China, STs had several unique allelic profiles, and ST1 was the most prevalent sequence type of environmental L. pneumophila serogroup 1 isolates, similar to its prevalence in Japan and South Korea. PMID:24463975

  3. U, Th, and Pb isotopes in hot springs on the Juan de Fuca Ridge

    NASA Technical Reports Server (NTRS)

    Chen, J. H.

    1987-01-01

    Concentrations and isotopic compositions of U, Th, and Pb in three hydrothermal fluids from the Juan de Fuca Ridge were determined from samples obtained by the Alvin submersible. The samples were enriched in Pb and Th relative to deep-sea water, and were deficient in U. No clear relationship with Mg was found, suggesting nonideal mixing between the hot hydrothermal fluids and the cold ambient seawater. Values for U-234/U-238 have a seawater signature, and show a U-234 enrichment relative to the equilibrium value. The Pb isotopic composition has a uniform midocean ridge basalt signature, and it is suggested that Pb in these fluids may represent the best average value of the local oceanic crust.

  4. Cultivation of aerobic chemoorganotrophic proteobacteria and gram-positive bacteria from a hot spring microbial mat.

    PubMed Central

    Nold, S C; Kopczynski, E D; Ward, D M

    1996-01-01

    The diversity of aerobic chemoorganotrophic bacteria inhabiting the Octopus Spring cyanobacterial mat community (Yellowstone National Park) was examined by using serial-dilution enrichment culture and a variety of enrichment conditions to cultivate the numerically significant microbial populations. The most abundant bacterial populations cultivated from dilutions to extinction were obtained from enrichment flasks which contained 9.0 x 10(2) primary producer (Synechococcus spp.) cells in the inoculum. Two isolates exhibited 16S rRNA nucleotide sequences typical of beta-proteobacteria. One of these isolates contained a 16S rRNA sequence identical to a sequence type previously observed in the mat by molecular retrieval techniques. Both are distantly related to a new sequence directly retrieved from the mat and contributed by a beta-proteobacterial community member. Phenotypically diverse gram-positive isolates genetically similar to Bacillus flavothermus were obtained from a variety of dilutions and enrichment types. These isolates exhibited identical 16S rRNA nucleotide sequences through a variable region of the molecule. Of the three unique sequences observed, only one had been previously retrieved from the mat, illustrating both the inability of the cultivation methods to describe the composition of a microbial community and the limitations of the ability of molecular retrieval techniques to describe populations which may be less abundant in microbial communities. PMID:8899976

  5. Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential

    PubMed Central

    Klatt, Christian G; Wood, Jason M; Rusch, Douglas B; Bateson, Mary M; Hamamura, Natsuko; Heidelberg, John F; Grossman, Arthur R; Bhaya, Devaki; Cohan, Frederick M; Kühl, Michael; Bryant, Donald A; Ward, David M

    2011-01-01

    Phototrophic microbial mat communities from 60 °C and 65 °C regions in the effluent channels of Mushroom and Octopus Springs (Yellowstone National Park, WY, USA) were investigated by shotgun metagenomic sequencing. Analyses of assembled metagenomic sequences resolved six dominant chlorophototrophic populations and permitted the discovery and characterization of undescribed but predominant community members and their physiological potential. Linkage of phylogenetic marker genes and functional genes showed novel chlorophototrophic bacteria belonging to uncharacterized lineages within the order Chlorobiales and within the Kingdom Chloroflexi. The latter is the first chlorophototrophic member of Kingdom Chloroflexi that lies outside the monophyletic group of chlorophototrophs of the Order Chloroflexales. Direct comparison of unassembled metagenomic sequences to genomes of representative isolates showed extensive genetic diversity, genomic rearrangements and novel physiological potential in native populations as compared with genomic references. Synechococcus spp. metagenomic sequences showed a high degree of synteny with the reference genomes of Synechococcus spp. strains A and B′, but synteny declined with decreasing sequence relatedness to these references. There was evidence of horizontal gene transfer among native populations, but the frequency of these events was inversely proportional to phylogenetic relatedness. PMID:21697961

  6. Geologic map of the Gila Hot Springs 7.5' quadrangle and the Cliff Dwellings National Monument, Catron and Grant Counties, New Mexico

    USGS Publications Warehouse

    Ratté, James C.; Gaskill, David L.; Chappell, James R.

    2014-01-01

    The Gila Hot Springs quadrangle is of geologic interest with respect to four major features, which are: 1)\tThe caves of the Gila Cliff Dwellings National Monument 2)\tThe hot springs associated with the faults of the Gila Hot Springs graben 3)\tThe Alum Mountain rhyolite dome and eruptive center 4)\tA proposed segment of the southeastern wall of the Gila Cliff Dwellings caldera The Gila Cliff Dwellings National Monument consists of two tracts. The caves that were inhabited by the Mogollon people in the 14th century are in the main tract near the mouth of Cliff Dweller Canyon in the Little Turkey Park 7.5' quadrangle adjoining the northwest corner of the Gila Hot Springs quadrangle. The second tract includes the Cliff Dwellings National Monument Visitor Center at the confluence of the West and Middle Forks of the Gila River in the northwest corner of the Gila Hot Springs quadrangle. Both quadrangles are within the Gila National Forest and the Gila Wilderness except for a narrow corridor that provides access to the National Monument and the small ranching and residential community at Gila Center in the Gila River valley. The caves in Cliff Dweller Canyon were developed in the Gila Conglomerate of probable Miocene? and Pleistocene? age in this area by processes of lateral corrosion and spring sapping along the creek in Cliff Dweller Canyon. The hot springs in the Gila River valley are localized along faults in the deepest part of the Gila Hot Springs graben, which cuts diagonally northwest-southeast across the central part of the quadrangle. Some of the springs provide domestic hot water for space heating and agriculture in the Gila River valley and represent a possible thermal resource for development at the Cliff Dwellings National Monument. The Alum Mountain rhyolite dome and eruptive center in the southwestern part of the quadrangle is a colorful area of altered and mineralized rocks that is satellitic to the larger Copperas Canyon eruptive center, both being

  7. A preliminary study of older hot spring alteration in Sevenmile Hole, Grand Canyon of the Yellowstone River, Yellowstone Caldera, Wyoming

    USGS Publications Warehouse

    Larson, P.B.; Phillips, A.; John, D.; Cosca, M.; Pritchard, C.; Andersen, A.; Manion, J.

    2009-01-01

    Erosion in the Grand Canyon of the Yellowstone River, Yellowstone Caldera (640??ka), Wyoming, has exposed a cross section of older hydrothermal alteration in the canyon walls. The altered outcrops of the post-collapse tuff of Sulphur Creek (480??ka) extend from the canyon rim to more than 300??m beneath it. The hydrothermal minerals are zoned, with an advanced argillic alteration consisting of an association of quartz (opal) + kaolinite ?? alunite ?? dickite, and an argillic or potassic alteration association with quartz + illite ?? adularia. Disseminated fine-grained pyrite or marcasite is ubiquitous in both alteration types. These alteration associations are characteristic products of shallow volcanic epithermal environments. The contact between the two alteration types is about 100??m beneath the rim. By analogy to other active geothermal systems including active hydrothermal springs in the Yellowstone Caldera, the transition from kaolinite to illite occurred at temperatures in the range 150 to 170????C. An 40Ar/39Ar age on alunite of 154,000 ?? 16,000??years suggests that hydrothermal activity has been ongoing since at least that time. A northwest-trending linear array of extinct and active hot spring centers in the Sevenmile Hole area implies a deeper structural control for the upflowing hydrothermal fluids. We interpret this deeper structure to be the Yellowstone Caldera ring fault that is covered by the younger tuff of Sulphur Creek. The Sevenmile Hole altered area lies at the eastern end of a band of hydrothermal centers that may mark the buried extension of the Yellowstone Caldera ring fault across the northern part of the Caldera. ?? 2009 Elsevier B.V.

  8. Incipient silicification of recent conifer wood at a Yellowstone hot spring

    NASA Astrophysics Data System (ADS)

    Hellawell, Jo; Ballhaus, Chris; Gee, Carole T.; Mustoe, George E.; Nagel, Thorsten J.; Wirth, Richard; Rethemeyer, Janet; Tomaschek, Frank; Geisler, Thorsten; Greef, Karin; Mansfeldt, Tim

    2015-01-01

    A branch of lodgepole pine (Pinus contorta) from a silica sinter apron of Cistern Spring, Yellowstone National Park, is partially mineralized with silica gel. The distribution of Si mapped in transverse sections of the branch suggests that mineralization was episodic. Early silica-rich solutions used the cellular structures in the wood as pathways, in particular the axial tracheids and rays. Later solutions infiltrated into the branch through shrinkage cracks along the decorticated branch's periphery. Among the tracheids, a distinct preference is noted for silica precipitates to line lumina of the earlywood tracheids, suggesting that this differential concentration in silica may reflect seasonal growth and water uptake in a live tree. Raman spectroscopy identifies the silica phases as amorphous silica gel. Secondary electron images of radial sections along the tracheids demonstrate that the distribution of silica is heterogeneous on a micrometer scale. Silica gel precipitates form micro spheroids with a spherical substructure that extends down to the sub-nanometer scale. All cell walls are templated with a monolayer consisting of closely spaced silica gel nano spheres around 100 nm in diameter. Transmission electron microscopy of focused ion beam sections through cell walls of partially mineralized tracheids reveals that the permineralization of cellular structures and the replacement of organic material by silica are processes that go hand in hand. The branch is dated with the 14C chronometer to 140 ± 33 years, underlining that the silicification reactions that preserve wood in the fossil record can be very rapid. Textural considerations of Si distribution in the wood suggest that the early stages of silicification in this branch date from a time when the pine tree was still alive.

  9. Crenotalea thermophila gen. nov., sp. nov., a member of the family Chitinophagaceae isolated from a hot spring.

    PubMed

    Hanada, Satoshi; Tamaki, Hideyuki; Nakamura, Kazunori; Kamagata, Yoichi

    2014-04-01

    A thermophilic aerobic bacterium designated strain STH-1-Y1(T) was isolated from sulfur-turf in a Japanese hot spring (Okuhodaka hot spring, Gifu Pref.). Colonies of strain STH-1-Y1(T) were yellow and low convex morphology with a slightly irregular fringe. Cells were slender long rods, 0.4-0.6 µm wide and 1.2-3.0 µm long. The isolate was an obligate aerophilic organism, and could not grow by fermentation or nitrate respiration. The isolate had a thermophilic trait, and could grow at 35-60 °C and pH 5.5-7.5; maximum growth occurred at 55 °C and pH 7.0 with a doubling time of 1.9 h. The Biolog and API tests suggested that strain STH-1-Y1(T) was able to use various sugars such as glucose, lactose, mannose, maltose, trehalose, cellobiose and sucrose, but could not use sugar alcohols other than glycerol, i.e. adonitol, arabitol, erythritol, inositol, mannitol, sorbitol and xylitol. Lactate and glutamate could be used, but other fatty acids, i.e. acetate, citrate, propionate and succinate could not. Gelatin, casein, starch and glycogen were hydrolysed, but neither chitin nor agar was degraded. Cells lacked flexirubin and showed oxidase and catalase activities. The major respiratory quinone was menaquinone-7 (MK-7), and major cellular fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, iso-C17 : 0 and anteiso-C15 : 0. No unsaturated fatty acids were detected. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain STH-1-Y1(T) was closely related to the family Chitinophagaceae within the phylum Bacteroidetes. However, the isolate was evenly distant from all members in this family with sequence similarities of 87-89 %. These significantly low sequence similarities strongly suggested that strain STH-1-Y1(T) represents a novel species in a new genus of the family Chitinophagaceae within the phylum Bacteroidetes. Based on phenotypic and phylogenetic characteristics, the name Crenotalea thermophila gen. nov., sp. nov. is proposed. The type

  10. U, Th, and Pb isotopes in hot springs on the Juan de Fuca Ridge

    SciTech Connect

    Chen, J.H.

    1987-10-10

    The concentrations and isotopic compositions of U, Th, and Pb in three hydrothermal fluids from the Juan de Fuca Ridge were determined. The samples consisted of 10.2--57.6% of the pure hydrothermal end-members based on Mg contents. The Pb contents of the samples ranged from 34 to 87 ng/g, U from 1.3 to 3.0 ng/g, and Th from 0.2 to 7.7 pg/g. These samples showed large enrichments of Pb and Th relative to deep-sea water and some depletion of U. They did not show coherent relationships with Mg, however, indicating nonideal mixings between the hot hydrothermal fluids and cold ambient seawater. Particles filtered from these hydrothermal fluids contained significant amounts of Th and Pb which may effectively increase the concentration of these elements in the fluids when acidified. The /sup 234/U//sup 238/U values in all samples show a /sup 234/U enrichment relative to the equilibrium value and have a seawater signature. The Pb isotopic composition of the Juan de Fuca hydrothermal fluids resembles that of 21 /sup 0/N East Pacific Rise and has a uniform mid-ocean ridge basalt signature. The hydrothermal systems at oceanic spreading ridges have circulated through a large volume of basalts. Therefore Pb in these fluids may represent the best average value of the local oceanic crust. From the effects of U deposition from seawater to the crust and Pb extraction from rock to the ocean, the U/Pb ratio in the hydrothermally altered oceanic crust may be increased significantly. copyright American Geophysical Union 1987

  11. Chemistry of Hot Spring Pool Waters in Calamba and Los Banos and Potential Effect on the Water Quality of Laguna De Bay

    NASA Astrophysics Data System (ADS)

    Balangue, M. I. R. D.; Pena, M. A. Z.; Siringan, F. P.; Jago-on, K. A. B.; Lloren, R. B.; Taniguchi, M.

    2014-12-01

    Since the Spanish Period (1600s), natural hot spring waters have been harnessed for balneological purposes in the municipalities of Calamba and Los Banos, Laguna, south of Metro Manila. There are at more than a hundred hot spring resorts in Brgy. Pansol, Calamba and Tadlac, Los Banos. These two areas are found at the northern flanks of Mt. Makiling facing Laguna de Bay. This study aims to provide some insights on the physical and chemical characteristics of hot spring resorts and the possible impact on the lake water quality resulting from the disposal of used water. Initial ocular survey of the resorts showed that temperature of the pool water ranges from ambient (>300C) to as high as 500C with an average pool size of 80m3. Water samples were collected from a natural hot spring and pumped well in Los Banos and another pumped well in Pansol to determine the chemistry. The field pH ranges from 6.65 to 6.87 (Pansol springs). Cation analysis revealed that the thermal waters belonged to the Na-K-Cl-HCO3 type with some trace amount of heavy metals. Methods for waste water disposal are either by direct discharge down the drain of the pool or by discharge in the public road canal. Both methods will dump the waste water directly into Laguna de Bay. Taking in consideration the large volume of waste water used especially during the peak season, the effect on the lake water quality would be significant. It is therefore imperative for the environmental authorities in Laguna to regulate and monitor the chemistry of discharges from the pool to protect both the lake water as well as groundwater quality.

  12. Production and consumption of hydrogen in hot spring microbial mats dominated by a filamentous anoxygenic photosynthetic bacterium.

    PubMed

    Otaki, Hiroyo; Everroad, R Craig; Matsuura, Katsumi; Haruta, Shin

    2012-01-01

    Microbial mats containing the filamentous anoxygenic photosynthetic bacterium Chloroflexus aggregans develop at Nakabusa hot spring in Japan. Under anaerobic conditions in these mats, interspecies interaction between sulfate-reducing bacteria as sulfide producers and C. aggregans as a sulfide consumer has been proposed to constitute a sulfur cycle; however, the electron donor utilized for microbial sulfide production at Nakabusa remains to be identified. In order to determine this electron donor and its source, ex situ experimental incubation of mats was explored. In the presence of molybdate, which inhibits biological sulfate reduction, hydrogen gas was released from mat samples, indicating that this hydrogen is normally consumed as an electron donor by sulfate-reducing bacteria. Hydrogen production decreased under illumination, indicating that C. aggregans also functions as a hydrogen consumer. Small amounts of hydrogen may have also been consumed for sulfur reduction. Clone library analysis of 16S rRNA genes amplified from the mats indicated the existence of several species of hydrogen-producing fermentative bacteria. Among them, the most dominant fermenter, Fervidobacterium sp., was successfully isolated. This isolate produced hydrogen through the fermentation of organic carbon. Dispersion of microbial cells in the mats resulted in hydrogen production without the addition of molybdate, suggesting that simultaneous production and consumption of hydrogen in the mats requires dense packing of cells. We propose a cyclic electron flow within the microbial mats, i.e., electron flow occurs through three elements: S (elemental sulfur, sulfide, sulfate), C (carbon dioxide, organic carbon) and H (di-hydrogen, protons).

  13. Delignification of disposable wooden chopsticks waste for fermentative hydrogen production by an enriched culture from a hot spring.

    PubMed

    Phummala, Kanthima; Imai, Tsuyoshi; Reungsang, Alissara; Chairattanamanokorn, Prapaipid; Sekine, Masahiko; Higuchi, Takaya; Yamamoto, Koichi; Kanno, Ariyo

    2014-06-01

    Hydrogen (H2) production from lignocellulosic materials may be enhanced by removing lignin and increasing the porosity of the material prior to enzymatic hydrolysis. Alkaline pretreatment conditions, used to delignify disposable wooden chopsticks (DWC) waste, were investigated. The effects of NaOH concentration, temperature and retention time were examined and it was found that retention time had no effect on lignin removal or carbohydrate released in enzymatic hydrolysate. The highest percentage of lignin removal (41%) was obtained with 2% NaOH at 100°C, correlated with the highest carbohydrate released (67 mg/g pretreated DWC) in the hydrolysate. An enriched culture from a hot spring was used as inoculum for fermentative H2 production, and its optimum initial pH and temperature were determined to be 7.0 and 50°C, respectively. Furthermore, enzymatic hydrolysate from pretreated DWC was successfully demonstrated as a substrate for fermentative H2 production by the enriched culture. The maximum H2 yield and production rate were achieved at 195 mL H2/g total sugars consumed and 116 mL H2/(L·day), respectively.

  14. Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment

    SciTech Connect

    Not Available

    1994-02-01

    The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

  15. Complete genome sequence of the thermophilic Thermus sp. CCB_US3_UF1 from a hot spring in Malaysia.

    PubMed

    Teh, Beng Soon; Lau, Nyok-Sean; Ng, Fui Ling; Abdul Rahman, Ahmad Yamin; Wan, Xuehua; Saito, Jennifer A; Hou, Shaobin; Teh, Aik-Hong; Najimudin, Nazalan; Alam, Maqsudul

    2015-01-01

    Thermus sp. strain CCB_US3_UF1 is a thermophilic bacterium of the genus Thermus, a member of the family Thermaceae. Members of the genus Thermus have been widely used as a biological model for structural biology studies and to understand the mechanism of microbial adaptation under thermal environments. Here, we present the complete genome sequence of Thermus sp. CCB_US3_UF1 isolated from a hot spring in Malaysia, which is the fifth member of the genus Thermus with a completely sequenced and publicly available genome (Genbank date of release: December 2, 2011). Thermus sp. CCB_US3_UF1 has the third largest genome within the genus. The complete genome comprises of a chromosome of 2.26 Mb and a plasmid of 19.7 kb. The genome contains 2279 protein-coding and 54 RNA genes. In addition, its genome revealed potential pathways for the synthesis of secondary metabolites (isoprenoid) and pigments (carotenoid). PMID:26457128

  16. Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India

    PubMed Central

    Panda, Mrunmaya Kumar; Sahu, Mahesh Kumar; Tayung, Kumananda

    2013-01-01

    Background and Objectives Thermophilic bacteria are less studied but important group of microorganisms due to their ability to produce industrial enzymes. Materials and Methods In this study, thermophilic bacteria were isolated from hot spring of Tarabalo, India. A bacterium that could tolerate high temperatures was characterized by morphology, biochemistry and sequencing of its 16S rRNA gene. The isolate was screened for protease and amylase activity. Phylogenetic affiliations and G+C content of the isolate was studied. Results The bacterium with the ability to tolerate high temperatures was identified as Bacillus sp. both by morphology, biochemistry and sequencing of its 16S rRNA gene. BLAST search analysis of the sequence showed maximum identity with Bacillus amyloliquefaciens (99% similarity). Strain exhibited considerable protease activity. Phylogenetic analysis of the isolate revealed close affiliation with thermophilic Bacillus species. The G+C content was found to be 54.7%. Conclusion The study confirmed that the isolated Bacillus sp. to be a true thermophile and could be a source of thermostable protease which can be exploited for pharmaceutical and industrials applications. PMID:23825735