Science.gov

Sample records for mangrove sediments exposed

  1. Diversity of ndo genes in mangrove sediments exposed to different sources of polycyclic aromatic hydrocarbon pollution.

    PubMed

    Gomes, Newton C Marcial; Borges, Ludmila R; Paranhos, Rodolfo; Pinto, Fernando N; Krögerrecklenfort, Ellen; Mendonça-Hagler, Leda C S; Smalla, Kornelia

    2007-11-01

    Polycyclic aromatic hydrocarbon (PAH) pollutants originating from oil spills and wood and fuel combustion are pollutants which are among the major threats to mangrove ecosystems. In this study, the composition and relative abundance in the sediment bacterial communities of naphthalene dioxygenase (ndo) genes which are important for bacterial adaptation to environmental PAH contamination were investigated. Three urban mangrove sites which had characteristic compositions and levels of PAH compounds in the sediments were selected. The diversity and relative abundance of ndo genes in total community DNA were assessed by a newly developed ndo denaturing gradient gel electrophoresis (DGGE) approach and by PCR amplification with primers targeting ndo genes with subsequent Southern blot hybridization analyses. Bacterial populations inhabiting sediments of urban mangroves under the impact of different sources of PAH contamination harbor distinct ndo genotypes. Sequencing of cloned ndo amplicons comigrating with dominant DGGE bands revealed new ndo genotypes. PCR-Southern blot analysis and ndo DGGE showed that the frequently studied nah and phn genotypes were not detected as dominant ndo types in the mangrove sediments. However, ndo genotypes related to nagAc-like genes were detected, but only in oil-contaminated mangrove sediments. The long-term impact of PAH contamination, together with the specific environmental conditions at each site, may have affected the abundance and diversity of ndo genes in sediments of urban mangroves.

  2. Diversity of ndo Genes in Mangrove Sediments Exposed to Different Sources of Polycyclic Aromatic Hydrocarbon Pollution▿

    PubMed Central

    Gomes, Newton C. Marcial; Borges, Ludmila R.; Paranhos, Rodolfo; Pinto, Fernando N.; Krögerrecklenfort, Ellen; Mendonça-Hagler, Leda C. S.; Smalla, Kornelia

    2007-01-01

    Polycyclic aromatic hydrocarbon (PAH) pollutants originating from oil spills and wood and fuel combustion are pollutants which are among the major threats to mangrove ecosystems. In this study, the composition and relative abundance in the sediment bacterial communities of naphthalene dioxygenase (ndo) genes which are important for bacterial adaptation to environmental PAH contamination were investigated. Three urban mangrove sites which had characteristic compositions and levels of PAH compounds in the sediments were selected. The diversity and relative abundance of ndo genes in total community DNA were assessed by a newly developed ndo denaturing gradient gel electrophoresis (DGGE) approach and by PCR amplification with primers targeting ndo genes with subsequent Southern blot hybridization analyses. Bacterial populations inhabiting sediments of urban mangroves under the impact of different sources of PAH contamination harbor distinct ndo genotypes. Sequencing of cloned ndo amplicons comigrating with dominant DGGE bands revealed new ndo genotypes. PCR-Southern blot analysis and ndo DGGE showed that the frequently studied nah and phn genotypes were not detected as dominant ndo types in the mangrove sediments. However, ndo genotypes related to nagAc-like genes were detected, but only in oil-contaminated mangrove sediments. The long-term impact of PAH contamination, together with the specific environmental conditions at each site, may have affected the abundance and diversity of ndo genes in sediments of urban mangroves. PMID:17905873

  3. Rare Earth elements as sediment tracers in Mangrove ecosystems

    NASA Astrophysics Data System (ADS)

    Ramanathan, A. L.; Swathi, S.

    2013-05-01

    environments leading to preferential removal of MREE and LREE by adsorption and precipitation as Fe-Mn oxy-hydroxides in sediments. PAAS normalised plots also depicted slightly convex sub-parallel shale like patterns with alike enrichment.The same characteristics have been observed for sediments for Kaveri River validating that the sediments brought down during fluvial transport, is the source of REE in Pichavaram. Strong positive Eu anomalies suggested prevalence of reducing conditions as well as it indicated source from the natural weathering of the post Archean charnockitic and gneissic terrain in the course of river Kaveri. Role of different mangroves species in controlling the REE distribution in sediments was also observed . Tidally influenced cores showed complexity of environment these sites were exposed to. Factor analysis delineated three main processes controlling REE distribution in Pichavaram, namely natural weathering, inherent physico-chemical processes and in-situ biogeochemical processes occurring in this hypersaline mangrove environment.

  4. Coastal sediment elevation change following anthropogenic mangrove clearing

    NASA Astrophysics Data System (ADS)

    Hayden, Heather L.; Granek, Elise F.

    2015-11-01

    Coastal mangrove forests along tropical shorelines serve as an important interface between land and sea. They provide a physical buffer protecting the coastline from erosion and act as sediment "traps" catching terrestrial sediment, thus preventing smothering of subtidal coral reefs. Coastal development that removes mangrove habitat may impact adjacent nearshore coral reefs through sedimentation and nutrient loading. We examined differences in sediment elevation change between patches of open-coast intact and anthropogenically cleared red mangroves (Rhizophora mangle) on the east side of Turneffe Atoll, Belize, to quantify changes following mangrove clearing. Samples were collected over a 24 month period at five study sites, each containing paired intact (+mangrove) and cleared (-mangrove) plots. Five sediment elevation pins were deployed in each plot: behind areas cleared of mangroves (-mangrove) and behind adjacent intact mangroves (+mangrove). Sediment elevation increased at intact mangrove sites (M = +3.83 mm, SE = 0.95) whereas cleared mangrove areas suffered elevation loss (M = -7.30 mm, SE = 3.38). Mangroves inshore of partial or continuous gaps in the adjacent fringing reefs had higher rates of elevation loss (M = -15.05 mm) than mangroves inshore of continuous fringing reefs (M = -1.90 mm). Our findings provide information on potential effects of mangrove clearing and the role of offshore habitat characteristics on coastal sediment trapping and maintenance of sediment elevation by mangroves. With implications for coastline capacity to adjust to sea level rise, these findings are relevant to management of coastal fringing mangrove forests across the Caribbean.

  5. Mangrove succession enriches the sediment microbial community in South China

    PubMed Central

    Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai

    2016-01-01

    Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession. PMID:27265262

  6. Mangrove succession enriches the sediment microbial community in South China.

    PubMed

    Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai

    2016-06-06

    Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession.

  7. Mangrove succession enriches the sediment microbial community in South China

    NASA Astrophysics Data System (ADS)

    Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai

    2016-06-01

    Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession.

  8. Mangrove sedimentation and response to relative sea-level rise

    USGS Publications Warehouse

    Woodroffe, CD; Rogers, K.; Mckee, Karen L.; Lovelock, CE; Mendelssohn, IA; Saintilan, N.

    2016-01-01

    Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions influence mangrove distributions, primarily related to elevation and hydroperiod; this review considers how these adjust through time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks; tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon, but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas Surface Elevation Table-Marker Horizon measurements (SET-MH) provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in continuing decline in their extent throughout the tropics.

  9. Mangrove Sedimentation and Response to Relative Sea-Level Rise

    NASA Astrophysics Data System (ADS)

    Woodroffe, C. D.; Rogers, K.; McKee, K. L.; Lovelock, C. E.; Mendelssohn, I. A.; Saintilan, N.

    2016-01-01

    Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions, related primarily to elevation and hydroperiod, influence mangrove distributions; this review considers how these distributions change over time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks, and tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas measurements made using surface elevation tables and marker horizons provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in a continuing decline in their extent throughout the tropics. *

  10. Mangrove Sedimentation and Response to Relative Sea-Level Rise.

    PubMed

    Woodroffe, C D; Rogers, K; McKee, K L; Lovelock, C E; Mendelssohn, I A; Saintilan, N

    2016-01-01

    Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions, related primarily to elevation and hydroperiod, influence mangrove distributions; this review considers how these distributions change over time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks, and tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas measurements made using surface elevation tables and marker horizons provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in a continuing decline in their extent throughout the tropics.

  11. Microbial diversity in Brazilian mangrove sediments - a mini review.

    PubMed

    Ghizelini, Angela Michelato; Mendonça-Hagler, Leda Cristina Santana; Macrae, Andrew

    2012-10-01

    The importance and protection of mangrove ecosystems has been recognized in Brazilian Federal law since 1965. Being protected in law, however, has not always guaranteed their protection in practice. Mangroves are found in coastal and estuarine locations, which are prime real estate for the growth of cities, ports and other economic activities important for Brazilian development. In this mini-review we introduce what mangroves are and why they are so important. We give a brief overview of the microbial diversity found in mangrove sediments and then focus on diversity studies from Brazilian mangroves. We highlight the breadth and depth of knowledge about mangrove microbial communities gained from studying Brazilian mangroves. We report on the exciting findings of molecular microbial ecology methods that have been very successfully applied to study bacterial communities. We note that there have been fewer studies that focus on fungal communities and that fungal diversity studies deserve more attention. The review ends with a look at how a combination of new molecular biology methods and isolation studies are being developed to monitor and conserve mangrove ecosystems and their associated microbial communities. These recent studies are having a global impact and we hope they will help to protect and re-establish mangrove ecosystems.

  12. Microbial diversity in Brazilian mangrove sediments – a mini review

    PubMed Central

    Ghizelini, Angela Michelato; Mendonça-Hagler, Leda Cristina Santana; Macrae, Andrew

    2012-01-01

    The importance and protection of mangrove ecosystems has been recognized in Brazilian Federal law since 1965. Being protected in law, however, has not always guaranteed their protection in practice. Mangroves are found in coastal and estuarine locations, which are prime real estate for the growth of cities, ports and other economic activities important for Brazilian development. In this mini-review we introduce what mangroves are and why they are so important. We give a brief overview of the microbial diversity found in mangrove sediments and then focus on diversity studies from Brazilian mangroves. We highlight the breadth and depth of knowledge about mangrove microbial communities gained from studying Brazilian mangroves. We report on the exciting findings of molecular microbial ecology methods that have been very successfully applied to study bacterial communities. We note that there have been fewer studies that focus on fungal communities and that fungal diversity studies deserve more attention. The review ends with a look at how a combination of new molecular biology methods and isolation studies are being developed to monitor and conserve mangrove ecosystems and their associated microbial communities. These recent studies are having a global impact and we hope they will help to protect and re-establish mangrove ecosystems. PMID:24031949

  13. The Microbiome of Brazilian Mangrove Sediments as Revealed by Metagenomics

    PubMed Central

    Andreote, Fernando Dini; Jiménez, Diego Javier; Chaves, Diego; Dias, Armando Cavalcante Franco; Luvizotto, Danice Mazzer; Dini-Andreote, Francisco; Fasanella, Cristiane Cipola; Lopez, Maryeimy Varon; Baena, Sandra; Taketani, Rodrigo Gouvêa; de Melo, Itamar Soares

    2012-01-01

    Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04) in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H2S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments. PMID:22737213

  14. The microbiome of Brazilian mangrove sediments as revealed by metagenomics.

    PubMed

    Andreote, Fernando Dini; Jiménez, Diego Javier; Chaves, Diego; Dias, Armando Cavalcante Franco; Luvizotto, Danice Mazzer; Dini-Andreote, Francisco; Fasanella, Cristiane Cipola; Lopez, Maryeimy Varon; Baena, Sandra; Taketani, Rodrigo Gouvêa; de Melo, Itamar Soares

    2012-01-01

    Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04) in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H(2)S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments.

  15. Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments

    USGS Publications Warehouse

    Sweetman, A.K.; Middelburg, J.J.; Berle, A.M.; Bernardino, A.F.; Schander, C.; Demopoulos, A.W.J.; Smith, C.R.

    2010-01-01

    To evaluate how mangrove invasion and removal can modify benthic carbon cycling processes and ecosystem functioning, we used stable-isotopically labelled algae as a deliberate tracer to quantify benthic respiration and C-flow through macrofauna and bacteria in sediments collected from (1) an invasive mangrove forest, (2) deforested mangrove sites 2 and 6 years after removal of above-sediment mangrove biomass, and (3) two mangrove-free, control sites in the Hawaiian coastal zone. Sediment oxygen consumption (SOC) rates were significantly greater in the mangrove and mangrove removal site experiments than in controls and were significantly correlated with total benthic (macrofauna and bacteria) biomass and sedimentary mangrove biomass (SMB). Bacteria dominated short-term C-processing of added microalgal-C and benthic biomass in sediments from the invasive mangrove forest habitat. In contrast, macrofauna were the most important agents in the short-term processing of microalgal-C in sediments from the mangrove removal and control sites. Mean faunal abundance and short term C-uptake rates in sediments from both removal sites were significantly higher than in control cores, which collectively suggest that community structure and short-term C-cycling dynamics in habitats where mangroves have been cleared can remain fundamentally different from un-invaded mudflat sediments for at least 6-yrs following above-sediment mangrove removal. In summary, invasion by mangroves can lead to large shifts in benthic ecosystem function, with sediment metabolism, benthic community structure and short-term C-remineralization dynamics being affected for years following invader removal. ?? 2010 Author(s).

  16. Nocardiopsissediminis sp. nov., isolated from mangrove sediment.

    PubMed

    Muangham, Supattra; Suksaard, Paweena; Mingma, Ratchanee; Matsumoto, Atsuko; Takahashi, Yōko; Duangmal, Kannika

    2016-10-01

    A filamentous actinomycete, designated strain 1SS5-02T, was isolated from mangrove sediment collected from Ranong province, Thailand. The strain formed aerial and substrate mycelia composed of long, branched hyphae. Aerial mycelia differentiated into non-motile, rod-shaped spores. The organism contained meso-diaminopimelic acid and no diagnostic sugars in whole-cell hydrolysates. The predominant menaquinones were MK-11(H4), MK-11(H6) and MK-11(H8). Polar lipids comprised phosphatidylcholine, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, two unidentified phospholipids and four unidentified lipids. The major fatty acids were iso-C16 : 0, C18 : 1ω9c, 10-methyl C18 : 0 and anteiso-C17 : 0. The G+C content of the genomic DNA was 73.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 1SS5-02T belonged to the genus Nocardiopsis. The strain showed the highest degree of 16S rRNA gene sequence similarity with 'Nocardiopsis mangrovei' HA11166 (97.9 %) and Nocardiopsis trehalosi VKM Ac-942T (97.8 %). However, strain 1SS5-02T could be distinguished from its nearest phylogenetic relatives in the genus Nocardiopsis on the basis of DNA-DNA relatedness values and the combination of phenotypic properties. On the basis of polyphasic taxonomy, strain 1SS5-02T is considered to represent a novel species of the genus Nocardiopsis, for which the name Nocardiopsis sediminis sp. nov. is proposed. The type strain is 1SS5-02T (=BCC 75410T=NBRC 110934T).

  17. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia).

    PubMed

    Marchand, C; Fernandez, J-M; Moreton, B

    2016-08-15

    Because of their physico-chemical inherent properties, mangrove sediments may act as a sink for pollutants coming from catchments. The main objective of this study was to assess the distribution of some trace metals in the tissues of various mangrove plants developing downstream highly weathered ferralsols, taking into account metals partitioning in the sediment. In New Caledonia, mangroves act as a buffer between open-cast mines and the world's largest lagoon. As a result of the erosion of lateritic soils, Ni and Fe concentrations in the sediment were substantially higher than the world average. Whatever the mangrove stand and despite low bioaccumulation and translocations factors, Fe and Ni were also the most abundant metals in the different plant tissues. This low bioaccumulation may be explained by: i) the low availability of metals, which were mainly present in the form of oxides or sulfur minerals, and ii) the root systems acting as barriers towards the transfer of metals to the plant. Conversely, Cu and Zn metals had a greater mobility in the plant, and were characterized by high bioconcentration and translocation factors compared to the other metals. Cu and Zn were also more mobile in the sediment as a result of their association with organic matter. Whatever the metal, a strong decrease of trace metal stock was observed from the landside to the seaside of the mangrove, probably as a result of the increased reactivity of the sediment due to OM enrichment. This reactivity lead to higher dissolution of bearing phases, and thus to the export of dissolved trace metals trough the tidal action. Cu and Zn were the less concerned by the phenomenon probably as a result of higher plant uptake and their restitution to the sediment with litter fall in stands where tidal flushing is limited.

  18. Ni cycling in mangrove sediments from New Caledonia

    NASA Astrophysics Data System (ADS)

    Noël, Vincent; Morin, Guillaume; Juillot, Farid; Marchand, Cyril; Brest, Jessica; Bargar, John R.; Muñoz, Manuel; Marakovic, Grégory; Ardo, Sandy; Brown, Gordon E.

    2015-11-01

    Covering more than 70% of tropical and subtropical coastlines, mangrove intertidal forests are well known to accumulate potentially toxic trace metals in their sediments, and thus are generally considered to play a protective role in marine and lagoon ecosystems. However, the chemical forms of these trace metals in mangrove sediments are still not well known, even though their molecular-level speciation controls their long-term behavior. Here we report the vertical and lateral changes in the chemical forms of nickel, which accumulates massively in mangrove sediments downstream from lateritized ultramafic deposits from New Caledonia, where one of nature's largest accumulations of nickel occurs. To accomplish this we used Ni K-edge Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy data in combination with microscale chemical analyses using Scanning Electron Microscopy coupled with Energy-Dispersive X-ray Spectroscopy (SEM-EDXS). After Principal Component and Target Transform analyses (PCA-TT), the EXAFS data of the mangrove sediments were reliably least-squares fitted by linear combination of 3-components chosen from a large model compound spectral database including synthetic and natural Ni-bearing sulfides, clay minerals, oxyhydroxides, and organic complexes. Our results show that in the inland salt flat Ni is hosted in minerals inherited from the eroded lateritic materials, i.e. Ni-poor serpentine (44-58%), Ni-rich talc (20-31%), and Ni-goethite (18-24%). In contrast, in the hydromorphic sediments beneath the vegetated Avicennia and Rhizophora stands, a large fraction of Ni is partly redistributed into a neoformed smectite pool (20-69% of Ni-montmorillonite), and Ni speciation significantly changes with depth in the sediment. Indeed, Ni-rich talc (25-56%) and Ni-goethite (15-23%) disappear below ∼15 cm depth in the sediment and are replaced by Ni-sorbed pyrite (23-52%) in redox-active intermediate depth layers and by pyrite (34-55%) in the deepest

  19. Sedimentation within and among mangrove forests along a gradient of geomorphological settings

    NASA Astrophysics Data System (ADS)

    Adame, María Fernanda; Neil, David; Wright, Sara F.; Lovelock, Catherine E.

    2010-01-01

    Coastal wetlands provide important ecological services to the coastal zone, one of which is sediment retention. In this study we investigated sediment retention across a range of geomorphological settings and across vegetation zones comprising coastal wetlands. We selected six coastal wetlands dominated by mangroves over a gradient from riverine to tidal settings in Southeast Queensland, Australia. Each site was comprised of three distinct vegetation communities distributed as parallel zones to the coast line: seaward fringe mangroves, landward scrub mangroves and saltmarsh/ cyanobacteria mat of the high intertidal zone. We measured suspended sediment retention and sedimentation rates. Additionally, in order to assess the origin of sediment transported and deposited in the mangroves, glomalin, a novel terrestrial soil carbon tracer, was used. Our results show a mean average sedimentation of 0.64 ± 0.01 mg cm -2 spring tide -1, which was variable within sites, regardless of geomorphological setting. However, geomorphological setting influenced spatial patterns of sediment deposition. Riverine mangroves had a more homogeneous distribution of sediments across the intertidal zone than tidal mangroves, where most sedimentation occurred in the fringe zone. Overall, the fringe zone retained the majority of sediment entering the coastal wetland during a tidal cycle with 0.90 ± 0.22 mg cm -2 spring tide -1, accounting for 52.5 ± 12.5% of the total sedimentation. The presence of glomalin in suspended sediments, and thus the relative importance of terrigenous sediment, was strongly influenced by geomorphological setting, with riverine mangroves receiving more glomalin in suspended solids than tidal mangroves. Glomalin was also differentially deposited within the vegetation zones at different geomorphological settings: primarily at the fringe zone of tidal mangroves and within the scrub zone of riverine mangroves. The differences we observed in the spatial distribution of

  20. Suspended sediment in tidal currents: an often-neglected pollutant that aggravates mangrove degradation.

    PubMed

    Fu, Weiguo; Liu, Daomin; Yin, Qilin; Wu, Yanyou; Li, Pingping

    2014-07-15

    In this study, the influence of sediments deposited on the leaves of different mangrove species due to tidal movements on photosynthetic characteristics and chlorophyll fluorescence of the species was explored. The degree of accelerated degradation among different mangrove species was also obtained. Results show that the leaves of mangrove species have varying degrees of sediment deposition. Sediment deposition leads to photosynthetic reduction and physiological stress among Kandelia candel, Aegiceras corniculatum, and Avicennia marina in the Quanzhou Bay. Thus, the deposition of suspended sediments from tidal currents is an important environmental factor that accelerates the degradation of some mangrove species.

  1. Sediment properties and CO2 efflux from intact and cleared temperate mangrove forests

    NASA Astrophysics Data System (ADS)

    Bulmer, R. H.; Lundquist, C. J.; Schwendenmann, L.

    2015-10-01

    Temperate mangrove forests in New Zealand have increased in area over recent decades. Expansion of temperate mangroves in New Zealand is associated with perceived loss of other estuarine habitats, and decreased recreational and amenity values, resulting in clearing of mangrove forests. In the tropics, changes in sediment characteristics and carbon efflux have been reported following mangrove clearance. This is the first study in temperate mangrove (Avicennia marina) forests investigating the impact of clearing on sediment CO2 efflux and associated biotic and abiotic factors. Sediment CO2 efflux rates from intact (168.5 ± 45.8 mmol m-2 d-1) and cleared (133.9 ± 37.2 mmol m-2 d-1) mangrove forests in New Zealand are comparable to rates measured in tropical mangrove forests. We did not find a significant difference in sediment CO2 efflux rates between intact and cleared temperate mangrove forests. Pre-shading the sediment for more than 30 min prior to dark chamber measurements was found to have no significant effect on sediment CO2 efflux. This suggests that the continuation of photosynthetic CO2 uptake by biofilm communities was not occurring after placement of dark chambers. Rather, above-ground mangrove biomass, sediment temperature and chlorophyll a concentration were the main factors explaining the variability in sediment CO2 efflux in intact mangrove forests. The main factors influencing sediment CO2 efflux in cleared mangrove forest sites were sediment organic carbon concentration, nitrogen concentration and sediment grain size. Our results show that greater consideration should be given regarding the rate of carbon released from mangrove forest following clearance and the relative contribution to global carbon emissions.

  2. Dynamics of suspended sediment exchange and transport in a degraded mangrove creek in Kenya.

    PubMed

    Kitheka, Johnson U; Ongwenyi, George S; Mavuti, Kenneth M

    2002-12-01

    This study focuses on sediment exchange dynamics in Mwache Creek, a shallow tidal mangrove wetland in Kenya. The surface area of the creek is 17 km2 at high water spring. The creek experiences semidiurnal tides with tidal ranges of 3.2 m and 1.4 m during spring and neap tides, respectively. The creek is ebb dominant in the frontwater zone main channel and is flood dominant in the backwater zone main channel. During rainy season, the creek receives freshwater and terrigenous sediments from the seasonal Mwache River. Heavy supply of terrigenous sediments during the El Niño of 1997-1998 led to the huge deposition of sediments (10(60 tonnes) in the wetland that caused massive destruction of the mangrove forest in the upper region. In this study, sea level, tidal discharges, tidal current velocities, salinity, total suspended sediment concentrations (TSSC) and particulate organic sediment concentrations (POSC) measured in stations established within the main channel and also within the mangrove forests, were used to determine the dynamics of sediment exchange between the frontwater and backwater zones of the main channel including also the exchange with mangrove forests. The results showed that during wet seasons, the high suspended sediment concentration associated with river discharge and tidal resuspension of fine channel-bed sediment accounts for the inflow of highly turbid water into the degraded mangrove forest. Despite the degradation of the mangrove forest, sediment outflow from the mangrove forest was considerably less than the inflow. This caused a net trapping of sediment in the wetland. The net import of the sediment dominated in spring tide during both wet and dry season and during neap tide in the wet season. However, as compared to heavily vegetated mangrove wetlands, the generally degraded Mwache Creek mangrove wetland sediment trapping efficiency is low as the average is about 30% for the highly degraded backwater zone mangrove forest and 65% in the

  3. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes

    NASA Astrophysics Data System (ADS)

    Kristensen, Erik

    2008-02-01

    The benthic fauna in mangrove forests is usually dominated by burrowing sesarmid (Grapsidae) and fiddler crabs (Ocypodidae). They are herbivores that retain, bury, macerate and ingest litter and microalgal mats. Most species within these two groups actively dig and maintain burrows in the sediment as a refuge from predation and environmental extremes. Based on the current knowledge on the biology and ecology of these crabs, it seems obvious that their activities have considerable impact on ecosystem functioning. However, no convincing conceptual framework has yet been defined into which the role of these crabs can be identified and characterized. The attributes by which these abundant animals affect the microbial and biogeochemical functional diversity fit well into the concept of ecosystem engineering. The conceptualization of mangrove benthic communities within this framework is distinguished and documented by examples provided from the most recent literature on mangrove ecosystem functioning. It appears that the features and processes driving the engineering effects on distribution and activity of associated organisms operate differently for sesarmid and fiddler crabs. The most obvious and well-documented difference between engineering effects of the two types of crab seems to be associated with foraging. More attention must be devoted in the future to elucidate engineering aspects related to crab burrows in mangrove environments. Particularly comparative work on the burrow-dwelling life styles of the two types of crab is needed.

  4. Methane Dynamics in Sediments from Mangrove-dominated Costal Lagoons

    NASA Astrophysics Data System (ADS)

    Chuang, P. C.; Paytan, A.; Young, M. B.

    2014-12-01

    Porewater methane and sulfate concentrations from cored sediments have been measured in two coastal mangrove ecosystems (Celestún and Chelem Lagoons) on the Yucatán Peninsula, Mexico. Methane exists in shallow sediments while sulfate is not depleted and stable carbon isotopes of methane (-87.27‰ ~ -62.08‰) imply high methane fluxes/production rates below and within the cored sediment depths. The preliminary results from a transport-reaction model show that methane emitted to the water column from these sediments could be 17.8 mg m-2 d-1 in Celestún Lagoon and much higher (565 mg m-2 d-1) in Chelem Lagoon. Since the water depths are shallow (mostly less than 100 cm), the high fluxes of methane could contribute to the atmosphere. The objectives of this study will aim to understand the biogeochemical cycles for methane and sulfate in sediments. A numerical transport-reaction model will be applied to the sedimentary geochemical data (methane, sulfate, chloride, particulate organic carbon (POC) and stable carbon isotopes of headspace methane) from the two lagoons to estimate sulfate reduction, methane oxidation and production rates and advective methane fluxes. The modeled results will be used to discuss the role of methane from mangrove areas and their potential contribution to the global methane cycle.

  5. Vegetation and sediment characteristics in an expanding mangrove forest in New Zealand

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Gao, Jay; Cheung, Alan; Liu, Baolin; Schwendenmann, Luitgard; Costello, Mark John

    2013-12-01

    Mangrove expansion in inlets has been widely observed in the North Island of New Zealand over recent decades. There is just one mangrove species in New Zealand, Avicennia marina var. resinifera. Our main objective was to investigate the response of mangroves to sedimentary patterns. Remote sensing and GIS was used to quantify the change in mangrove area. Vegetation and sediment characteristics were studied across seasons from December 2009 to August 2010. Comparison of digital images in 1940 and 2003 revealed that the mangrove area in our study inlet had increased by 21%. The mangroves created a rim of high fringe mangroves surrounding high-density but low height trees in the interior. The relatively low pH level and seasonally fluctuating pore water total dissolved salt (TDS) concentration reveal potentially stressful conditions in the interior mangrove zone, which may influence the forest structure in the interior.

  6. Sensitivity of the sediment trapping capacity of an estuarine mangrove forest

    NASA Astrophysics Data System (ADS)

    Willemsen, P. W. J. M.; Horstman, E. M.; Borsje, B. W.; Friess, D. A.; Dohmen-Janssen, C. M.

    2016-11-01

    Intertidal mangrove forests exist in a dynamic coastal environment that is increasingly impacted by human interference, leading to habitat fragmentation, reduced habitat quality and changing hydrodynamic and geomorphological conditions. Biophysical feedback mechanisms are essential to maintain mangrove ecosystems under such changing conditions, for example by facilitating sediment deposition during periods of tidal flooding to allow for long-term coastal accretion. However, human interferences affect these biophysical interactions. This study investigated the consequences of two widespread anthropogenic intervention scenarios on biophysical interactions in mangroves: sediment starvation (reduced sediment supply) and coastal squeeze (limited landward accommodation space). Field observations of hydrodynamics and sediment dynamics were conducted in Mandai mangrove fringing the sheltered northern shore of Singapore. A process-based numerical model (Delft3D) of this field site was set-up, providing accurate approximations of the observed flow velocities and deposition rates. This model was used for a scenario analysis of the initial response of the sediment trapping capacity in the mangrove system to instantaneous changes related to anthropogenic interventions. This analysis showed increased deposition rates in major parts of the mangrove when sediment supplies increased (up to three times more deposition after 1 tide) or when the landward accommodation space of the mangrove was extended (+ 17% deposition). A comparison of the outcomes of these scenarios with the current state of the mangrove underlined a lack of short-term sediment trapping capacity, affecting the (longer-term) adaptive capacity of the system. Thus, at present Mandai mangrove is potentially affected by reduced sediment supply and limited landward accommodation space. Importantly, actions to reduce this anthropogenic influence could enhance mangroves' sediment trapping capacity, facilitating increased

  7. Distribution, Fraction, and Ecological Assessment of Heavy Metals in Sediment-Plant System in Mangrove Forest, South China Sea.

    PubMed

    Li, Ruili; Chai, Minwei; Qiu, Guo Yu

    2016-01-01

    Overlying water, sediment, rhizosphere sediment and mangrove seedlings in the Futian mangrove forest were analyzed for heavy metals. The results showed that mangrove plant acidified sediment and increased organic matter contents. Except for chromium (Cr), nickel (Ni) and copper (Cu) in Aegiceras corniculatum sediment, heavy metals in all sediments were higher than in overlying water, rhizosphere sediment and mangrove root. Heavy metals in Avicennia marina sediments were higher than other sediments. The lower heavy metal biological concentration factors (BCFs) and translocation factors (TFs) indicated that mangrove plant adopted exclusion strategy. The geo-accumulation index, potential ecological risk index and risk assessment code (RAC) demonstrated that heavy metals have posed a considerable ecological risk, especially for cadmium (Cd). Heavy metals (Cr, Ni, Cu and Cd) mainly existed in the reducible fractions. These findings provide actual heavy metal accumulations in sediment-plant ecosystems in mangrove forest, being important in designing the long-term management and conservation policies for managers of mangrove forest.

  8. Heavy metal concentration in mangrove surface sediments from the north-west coast of South America.

    PubMed

    Fernández-Cadena, J C; Andrade, S; Silva-Coello, C L; De la Iglesia, R

    2014-05-15

    Mangrove ecosystems are coastal estuarine systems confined to the tropical and subtropical regions. The Estero Salado mangrove located in Guayaquil, Ecuador, has suffered constant disturbances during the past 20 years, due to industrial wastewater release. However, there are no published data for heavy metals present in its sediments and the relationship with anthropogenic disturbance. In the present study, metal concentrations were evaluated in surface sediment samples of the mangrove, showing that B, Cd, Cu, Pb, Se, V, and Zn levels exceeded those declared in international environmental quality standards. Moreover, several metals (Pb, Sn, Cd, Ag, Mo, Zn and Ni) could be linked to the industrial wastewater present in the studied area. In addition, heavy metal levels detected in this mangrove are higher than previous reports on mangrove sediments worldwide, indicating that this mangrove ecosystem is one of the most disrupted on earth.

  9. Geochemical partitioning of Cu and Ni in mangrove sediments: relationships with their bioavailability.

    PubMed

    Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita

    2015-04-15

    Sequential extraction study was performed to determine the concentrations of non-residual metal-complexes in the mangrove sediments from the Divar Island, (west coast of India). Accumulation of metal in the mangrove roots (from the same location) was determined and used as an indicator of bioavailability of metal. An attempt was made to establish a mechanistic linkage between the non-residual metal complexes and their bioavailability in the mangrove system. The non-residual fractions of Cu and Ni were mainly associated with Fe/Mn oxyhydroxide and organic phases in the sediments. A part of these metal fractions were bioavailable in the system. These two phases were the major controlling factors for Ni speciation and their bioavailability in the studied sediments. However, Cu was found to interact more strongly with the organic phases than Ni in the mangrove sediments. Organic phases in the mangrove sediments acted as buffer to control the speciation and bioavailability of Cu in the system.

  10. Magnetic susceptibility and element composition mangrove sediments in Malang, East Java

    NASA Astrophysics Data System (ADS)

    Azzahro, Rosyida; Zulaikah, Siti; Diantoro, Markus; Budi, Pranitha Septiana

    2017-07-01

    Mangrove sediment has a unique environmental absorption characteristics, as it has two sources of sediment which are from allocthonous sediment and authochtonous sediment. In this research, the mangrove sediment samples are taken from Clungup Mangrove Conservation in Malang, East Java, Indonesia. The samples are taken from four spots around the mouth of the river, and four spots around mangrove conservation. Those samples are analyzed based on the magnetic characteristics and the element composition to reveal the magnetic properties and element composition so in the future they can be used as indicators to trace the source of magnetic minerals that are precipitated in the mangrove ecosystem. The magnetic susceptibility value based on mass for mangrove sediment around the river area h as the range of (38,8-2130)×10-8m3kg-1, while for the conservation area has the range of (0,97-122,5)×10-8m3kg-1. Based on XRF analysis, the mangrove sediment both from the river area and mangrove conservation area has a non-metallic element S, Br, metallic element Ca, Si, Al, K, Ti, Sr, and heavy metallic element Fe, Ni, Cu, Cr, Zn, Zr, Mn, and V, with the highest concentration of Fe element followed by Ca, Al, Si, and Ti.

  11. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment.

    PubMed

    Andrade, Luiza L; Leite, Deborah C A; Ferreira, Edir M; Ferreira, Lívia Q; Paula, Geraldo R; Maguire, Michael J; Hubert, Casey R J; Peixoto, Raquel S; Domingues, Regina M C P; Rosado, Alexandre S

    2012-08-30

    Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Mangrove sediment was sampled from 0-5, 15-20 and 35-40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0-5 cm) being greater than in both deeper sediment layers (15-20 and 35-40 cm), which were similar to each other.

  12. Endo- and exoglucanase activities in bacteria from mangrove sediment

    PubMed Central

    Júnior, Fábio Lino Soares; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipola; Taketani, Rodrigo Gouvêa; de Souza Lima, André Oliveira; Melo, Itamar Soares; Andreote, Fernando Dini

    2013-01-01

    The mangrove ecosystem is an unexplored source for biotechnological applications. In this unique environment, endemic bacteria have the ability to thrive in the harsh environmental conditions (salinity and anaerobiosis), and act in the degradation of organic matter, promoting nutrient cycles. Thus, this study aimed to assess the cellulolytic activities of bacterial groups present in the sediment from a mangrove located in Ilha do Cardoso (SP, Brazil). To optimize the isolation of cellulolytic bacteria, enrichments in two types of culture media (tryptone broth and minimum salt medium), both supplemented with 5% NaCl and 1% of cellulose, were performed. Tests conducted with the obtained colonies showed a higher occurrence of endoglycolytic activity (33 isolates) than exoglycolytic (19 isolates), and the degradation activity was shown to be modulated by the presence of NaCl. The isolated bacteria were clustered by BOX-PCR and further classified on the basis of partial 16S rRNA sequences as Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes or Bacteroidetes. Therefore, this study highlights the importance of studies focusing on the endemic species found in mangroves to exploit them as novel biotechnological tools for the degradation of cellulose. PMID:24516466

  13. Endo- and exoglucanase activities in bacteria from mangrove sediment.

    PubMed

    Soares Júnior, Fábio Lino; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipola; Taketani, Rodrigo Gouvêa; de Souza Lima, André Oliveira; Melo, Itamar Soares; Andreote, Fernando Dini

    2013-01-01

    The mangrove ecosystem is an unexplored source for biotechnological applications. In this unique environment, endemic bacteria have the ability to thrive in the harsh environmental conditions (salinity and anaerobiosis), and act in the degradation of organic matter, promoting nutrient cycles. Thus, this study aimed to assess the cellulolytic activities of bacterial groups present in the sediment from a mangrove located in Ilha do Cardoso (SP, Brazil). To optimize the isolation of cellulolytic bacteria, enrichments in two types of culture media (tryptone broth and minimum salt medium), both supplemented with 5% NaCl and 1% of cellulose, were performed. Tests conducted with the obtained colonies showed a higher occurrence of endoglycolytic activity (33 isolates) than exoglycolytic (19 isolates), and the degradation activity was shown to be modulated by the presence of NaCl. The isolated bacteria were clustered by BOX-PCR and further classified on the basis of partial 16S rRNA sequences as Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes or Bacteroidetes. Therefore, this study highlights the importance of studies focusing on the endemic species found in mangroves to exploit them as novel biotechnological tools for the degradation of cellulose.

  14. Ni cycling in mangrove sediments from New Caledonia

    NASA Astrophysics Data System (ADS)

    Noel, V. S.; Morin, G.; Juillot, F.; Marchand, C.; Brest, J.; Bargar, J.; Munoz, M.; Ardo, S.; Brown, G. E.

    2014-12-01

    In New Caledonia, mangroves receive large inputs of lateritic materials eroded from massive ultramafic deposits enriched in Fe, Ni, Mn, Cr, and Co. Because of the major physicochemical gradients, especially redox gradients, that characterize these ecosystems, mineralogical transformations may influence the crystal-chemistry and bioavailability of Ni and its mobility towards a lagoon of over 20,000 km2. Bulk and spatially resolved chemical analyses by SEM-EDXS were coupled with Ni K-edge X-ray absorption fine structure (XAFS) spectroscopy analysis to characterize the vertical and lateral changes in Ni speciation across the intertidal zone of a mangrove forest in the Vavouto Bay (New Caledonia) where Ni concentrations range from 1000 to 5300 mg•kg-1. XAFS results indicate that phyllosilicates and goethite inherited from the eroded lateritic materials are the dominant Ni-bearing phases in the surface horizons of the mangrove sediments. They are fully preserved at depth in the dry and oxic salt flat area, located on the inland side of the coast. In contrast, beneath the vegetated Rhizophoras and Avicennias stands Ni-bearing goethites rapidly diminish with increasing depth in the anoxic horizons of the sediments, and pyrite and organic complexes become the dominant Ni-containing species. Moreover, Ni incorporation in pyrite is more developed in the sediments beneath the intermediate Avicennia stand than beneath the Rhizophora stand that is closest to the shore. Such lateral changes in Ni speciation may be related to reoxidation of Ni-bearing pyrites in the Rhizophora stand, which is subject to periodic alternation of reducing and oxidizing events due to tidal fluctuations. These major changes in Ni speciation could significantly influence Ni mobility across the interidal zone. Indeed, as estimated with respect to Ti concentration, which is taken as a geochemical invariant, Ni is found to be immobile in the salt flat, to accumulate beneath the Avicennia stand, and to

  15. Meiofauna distribution in a mangrove forest exposed to shrimp farm effluents (New Caledonia).

    PubMed

    Della Patrona, L; Marchand, C; Hubas, C; Molnar, N; Deborde, J; Meziane, T

    2016-08-01

    Meiofauna abundance, biomass and individual size were studied in mangrove sediments subjected to shrimp farm effluents in New Caledonia. Two strategies were developed: i) meiofauna examination during the active (AP) and the non-active (NAP) periods of the farm in five mangrove stands characteristics of the mangrove zonation along this coastline, ii) meiofauna examination every two months during one year in the stand the closest to the pond (i.e. Avicennia marina). Thirteen taxonomic groups of meiofauna were identified, with nematodes and copepods being the most abundant ones. Meiofauna abundance and biomass increased from the land side to the sea side of the mangrove probably as a result of the increased length of tidal immersion. Abundance of total meiofauna was not significantly different before and after the rearing period. However, the effluent-receiving mangrove presented twice the meiofauna abundance and biomass than the control one. Among rare taxa, mites appeared extremely sensitive to this perturbation.

  16. Distribution and accumulation of mercury and copper in mangrove sediments in Shenzhen, the world's most rapid urbanized city.

    PubMed

    Li, Ruili; Xu, Hualin; Chai, Minwei; Qiu, Guo Yu

    2016-02-01

    To investigate the influence of mangrove forest on heavy metal accumulation and storage in intertidal sediments, core sediments from natural mangrove, restored mangrove, and adjacent mud flat spanning the intertidal zone along the south coastline of the most heavily urbanized Deep bay, Guangdong province, China were analyzed. The average concentrations of mercury (Hg) in surface sediments of natural mangrove and restored mangrove were 172 and 151 ng g(-1), whereas those of copper (Cu) were 75 and 50 μg g(-1), respectively. Compared to those from other typical mangrove wetlands of the world, the metal levels in Shenzhen were at median to high levels, which is consistent with the fact that Shenzhen is in high exploitation and its mangrove suffer intensive impact from human activities. Hg and Cu concentration profiles indicated a higher metal accumulation in surface layers of sediments, in agreement with enrichment of organic matter contents. Maximum concentration, enrichment factors, and excess (background-deducted) concentration inventories of metals (Hg and Cu) were substantially different between environments, decreasing from natural mangrove sediments to restored mangrove sediments to mud flat. Furthermore, metal inputs to Futian mangrove decreased in the order natural mangrove > restored mangrove > mud flat, indicating that mangrove facilitated the accumulation and storage of Hg and Cu in sediment layers.

  17. Distribution and accumulation of polybrominated diphenyl ethers (PBDEs) in Hong Kong mangrove sediments.

    PubMed

    Zhu, Haowen; Wang, Ying; Wang, Xiaowei; Luan, Tiangang; Tam, Nora F Y

    2014-01-15

    Polybrominated diphenyl ethers (PBDEs) have been used extensively as brominated flame retardants in various polymers, and have become serious environmental contaminants, particularly in coastal sediments. Mangrove wetlands are important coastal ecosystems in tropical and subtropical regions, and mangrove sediments are often the pollutant sinks due to their close proximity with human activities. In Hong Kong, sediment samples collected from five mangrove swamps were found to be contaminated with PBDEs and the eight measured BDE congeners, including BDE-28, -47, -99, -100, -153, -154, -183 and -209 were detected in all mangrove sediments, indicating that these pollutants were widespread in Hong Kong mangrove wetlands. Among the five swamps, relatively high concentrations of PBDEs were recorded in Mai Po mangrove swamp in the northwestern Hong Kong, which is part of the RAMSAR site but is severely influenced by the pollution from the Pearl River Delta. The depth profile of PBDEs in sediment cores collected from Mai Po also showed the inputs of PBDEs in this mangrove swamp increased year by year. In all sediments, the concentrations of BDE-209 were 1-2 orders of magnitude higher than the other congeners in the same sediment. The concentrations of BDE-209 and ∑PBDEs (defined as the sum of seven targeted BDE congeners except BDE-209) ranged from 1.53 to 75.9 ng g(-1) and from 0.57 to 14.4 ng g(-1), respectively. Among the targeted BDE congeners except BDE-209, slightly different composition was recorded among samples collected from different locations, with BDE-153 and -183 being the pre-dominated congeners. In all mangrove swamps, except Tai O in the southwest of Hong Kong, ∑PBDEs concentrations showed a common trend of landward>seaward>mudflat. The concentrations of ∑PBDEs were significantly correlated with total organic matter (TOM) content in sediments but not with the sediment particle sizes in each mangrove swamp.

  18. Sediment carbon and nutrient fluxes from cleared and intact temperate mangrove ecosystems and adjacent sandflats.

    PubMed

    Bulmer, Richard H; Schwendenmann, Luitgard; Lohrer, Andrew M; Lundquist, Carolyn J

    2017-12-01

    The loss of mangrove ecosystems is associated with numerous impacts on coastal and estuarine function, including sediment carbon and nutrient cycling. In this study we compared in situ fluxes of carbon dioxide (CO2) from the sediment to the atmosphere, and fluxes of dissolved inorganic nutrients and oxygen across the sediment-water interface, in intact and cleared mangrove and sandflat ecosystems in a temperate estuary. Measurements were made 20 and 25months after mangrove clearance, in summer and winter, respectively. Sediment CO2 efflux was over two-fold higher from cleared than intact mangrove ecosystems at 20 and 25months after mangrove clearance. The higher CO2 efflux from the cleared site was explained by an increase in respiration of dead root material along with sediment disturbance following mangrove clearance. In contrast, sediment CO2 efflux from the sandflat site was negligible (≤9.13±1.18mmolm(-2)d(-1)), associated with lower sediment organic matter content. The fluxes of inorganic nutrients (NH4(+), NOx and PO4(3-)) from intact and cleared mangrove sediments were low (≤20.37±18.66μmolm(-2)h(-)(1)). The highest NH4(+) fluxes were measured at the sandflat site (69.21±13.49μmolm(-2)h(-)(1)). Lower inorganic nutrient fluxes within the cleared and intact mangrove sites compared to the sandflat site were associated with lower abundance of larger burrowing macrofauna. Further, a higher fraction of organic matter, silt and clay content in mangrove sediments may have limited nutrient exchange. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Kinetic speciation and bioavailability of copper and nickel in mangrove sediments.

    PubMed

    Chakraborty, Parthasarathi; Chakraborty, Sucharita; Ramteke, Darwin; Chennuri, Kartheek

    2014-11-15

    An attempt was made to establish a mechanistic linkage between chemical speciation of copper and nickel, and their bioavailability in mangrove ecosystem. Kinetic speciation study was performed to determine the concentrations of labile metal-complexes and their dissociation rate constants in mangrove sediments. Concentrations of copper and nickel in the mangrove roots were used as indicators of their bioavailability. It was found that the bioaccumulation of both the metals gradually increased with the increasing concentrations of the labile metal complexes and their dissociation rate constants in the mangrove sediments. This study shows that concentration of labile metal (copper and nickel) complexes and their dissociation rate constants in mangrove sediment can be a good indicator of their bioavailability.

  20. Are exploited mangrove molluscs exposed to Persistent Organic Pollutant contamination in Senegal, West Africa?

    PubMed

    Bodin, N; N'Gom Ka, R; Le Loc'h, F; Raffray, J; Budzinski, H; Peluhet, L; Tito de Morais, L

    2011-06-01

    The surface sediments, two bivalves (Arca senilis and Crassostera gasar) and three gastropods (Conus spp., Hexaplex duplex and Pugilina morio) from two Senegalese stations, Falia (Sine-Saloum Estuary) and Fadiouth (Petite Côte), were analyzed for their pollutant organic persistent contamination (polychlorinated biphenyls PCBs; organochlorinated pesticides OCPs; polybrominated diphenyl ethers PBDEs). Results revealed significant levels of PCBs, DDTs and lindane in mangrove sediments ranging from 0.3 to 19.1, 0.3 to 15.9, and 0.1 to 1.9 ng g(-1) d.w., respectively. Among the other POPs analysed, only hexachlorobenzene, heptachlor and trans-nonachlor for OCPs, as well as BDE47 and BDE99 congeners for PBDEs were detected at very low concentrations, generally not of concern. POP levels and patterns were in good accordance with literature data available for other tropical developing countries. A seasonal quantitative difference was highlighted with higher levels of PCBs and DDTs in sediments after the wet season, likely due to the strong wash-out of residues from inland to the marine ecosystems during the rainy season. The observed pattern of DDT and its metabolites pointed out probable recent applications of DDT for public health emergencies in Senegal. Exploited molluscs were exposed to the same POP compounds as those measured in sediments. They presented OCP levels within the same range as in sediments, while significant higher concentrations of PCBs were observed in shellfish soft tissues revealing a higher bioaccumulation potential mainly due to the lipophilicity of these compounds. Finally, the influence of the reproduction cycle on POP levels through lipid content variations was highlighted, minimizing potential differences in POP bioaccumulation between shellfish species. From an ecotoxicological and public health point of view, results from this study revealed that POPs in sediments from the Petite Côte and the Sine-Saloum Estuary would not cause toxic effects

  1. Organic matter content and particle size modifications in mangrove sediments as responses to sea level rise.

    PubMed

    Sanders, Christian J; Smoak, Joseph M; Waters, Mathew N; Sanders, Luciana M; Brandini, Nilva; Patchineelam, Sambasiva R

    2012-06-01

    Mangroves sediments contain large reservoirs of organic material (OM) as mangrove ecosystems produce large quantities and rapidly burial OM. Sediment accumulation rates of approximately 2.0 mm year(-1), based on (210)Pb(ex) dating, were estimated at the margin of two well-developed mangrove forest in southern Brazil. Regional data point to a relative sea level (RSL) rise of up to ∼4.0 mm year(-1). This RSL rise in turn, may directly influence the origin and quantity of organic matter (OM) deposited along mangrove sediments. Lithostratigraphic changes show that sand deposition is replacing the mud (<63 μm) fraction and OM content is decreasing in successively younger sediments. Sediment accumulation in coastal areas that are not keeping pace with sea level rise is potentially conducive to the observed shifts in particle size and OM content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: a tale of two mangroves

    Treesearch

    Richard A. MacKenzie; Patra B. Foulk; J. Val Klump; Kimberly Weckerly; Joko Purbospito; Daniel Murdiyarso; Daniel C. Donato; Vien Ngoc Nam

    2016-01-01

    Increased sea level is the climate change effect expected to have the greatest impact on mangrove forest survival. Mangroves have survived extreme fluctuations in sea level in the past through sedimentation and belowground carbon (C) accumulation, yet it is unclear what factors may influence these two parameters. We measured sedimentation, vertical accretion, and...

  3. Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments.

    PubMed

    Varon-Lopez, Maryeimy; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipolla; Durrer, Ademir; Melo, Itamar Soares; Kuramae, Eiko Eurya; Andreote, Fernando Dini

    2014-03-01

    Mangrove soils are anaerobic environments rich in sulphate and organic matter. Although the sulphur cycle is one of the major actors in this ecosystem, little is known regarding the sulphur bacteria communities in mangrove soils. We investigated the abundance, composition and diversity of sulphur-oxidizing (SOB) and sulphate-reducing (SRB) bacteria in sediments from three Brazilian mangrove communities: two contaminated, one with oil (OilMgv) and one with urban waste and sludge (AntMgv), and one pristine (PrsMgv). The community structures were assessed using quantitative real-time polymerase chain reaction (qPCR), polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and clone libraries, using genes for the enzymes adenosine-5'-phosphosulphate reductase (aprA) and sulphite reductase (Dsr) (dsrB). The abundance for qPCR showed the ratio dsrB/aprA to be variable among mangroves and higher according to the gradient observed for oil contamination in the OilMgv. The PCR-DGGE patterns analysed by Nonmetric Multidimensional Scaling revealed differences among the structures of the three mangrove communities. The clone libraries showed that Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria were the most abundant groups associated with sulphur cycling in mangrove sediments. We conclude that the microbial SOB and SRB communities in mangrove soils are different in each mangrove forest and that such microbial communities could possibly be used as a proxy for contamination in mangrove forests.

  4. Characterizing the parent and oxygenated polycyclic aromatic hydrocarbons in mangrove sediments of Hong Kong.

    PubMed

    Wang, Xiaowei; Yuan, Ke; Yang, Lihua; Lin, Li; Tam, Nora F Y; Chen, Baowei; Luan, Tiangang

    2015-09-15

    Parent and oxygenated polycyclic aromatic hydrocarbons (PAHs) were investigated in mangrove sediments of Hong Kong. Most of the analytes were detected, and the dominant carbonylic and hydroxylated PAHs in mangrove sediments were 9-fluorenone and 2-hydroxy fluorene, respectively. The concentration of 9-fluorenone and 9,10-anthraquinone was higher than their parent PAHs. Moreover, the concentration of total organic matter (TOM) related with those of the parent PAHs and carbonylic PAHs, except for hydroxylated PAHs, which indicated that TOM was not the only factor regulating the distribution of oxygenated PAHs. Nevertheless, the parent PAHs in mangrove sediments was correlated positively with carbonylic PAHs which demostrated not only the similar source but also the fate of these two compound class. However, hydroxylated PAHs had different source by comparing with parent PAHs and carbonylic PAHs, they were probably originated from biodegradation and accumulated in mangrove sediments.

  5. Relative influence of sediment variables on mangrove community assembly in Leizhou Peninsula, China.

    PubMed

    Liu, Jing; Ma, Keming; Qu, Laiye

    2017-04-15

    Effective conservation of mangroves requires a complete understanding of vegetation structure and identification of the variables most important to their assembly. Using canonical correspondence analysis (CCA) combined with variation partition, we determined the independent and joint effects of sediment variables, including physicochemical characteristics and heavy metals, on mangrove community assemblies in the overstory and understory in Leizhou Peninsula, China. The results indicated that the contributions of sediment physicochemical variables to community assembly were greater than were those of heavy metals, particularly in overstory vegetation. However, the independent contributions of heavy metals were higher in understory mangrove vegetation than in the overstory. The TOC, TP, and salinity of the sediment, distance from the coastline, and concentration of As were limiting factors for mangrove assembly in overstory vegetation, while understory vegetation may be affected to a greater degree by the distance from the coastline, electrical conductivity, and concentration of As and Pb in the sediment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Influence of mangrove reforestation on heavy metal accumulation and speciation in intertidal sediments.

    PubMed

    Zhou, Yan-Wu; Zhao, Bo; Peng, Yi-Sheng; Chen, Gui-Zhu

    2010-08-01

    To investigate the influence of mangrove reforestation on heavy metal accumulation and speciation in intertidal sediments, core sediments from a restored mangrove forest and adjacent mud flat in Yifeng Estuary (southeastern China) were analyzed. The chemical speciation of heavy metals (Pb, Zn, Cu, Cr and Ni) was determined according to a sequential extraction procedure. Special attention was paid to the upper 20cm of sediment, in which metal accumulation was enhanced and speciation was obviously modified. Mangrove reforestation decreased the concentrations of all metals in the acid-soluble fraction and increased metal concentrations in the oxidizable fraction. Increased Pb, Zn and Cu concentrations and decreased Ni and Cr concentrations were observed in the reducible fraction. These results suggest that mangrove reforestation facilitated the accumulation of heavy metals in the upper sediment layers but decreased their bioavailability and mobility. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Multi-tool assessment of trace metals in mangroves combining sediment and clam sampling, DGT passive samplers and caged mussels.

    PubMed

    Estrada, Elvagris Segovia; Juhel, Guillaume; Han, Ping; Kelly, Barry C; Lee, Wei Kit; Bayen, Stéphane

    2017-01-01

    The rapid loss of mangroves globally has triggered a call for a better understanding of this habitat, including its dynamics and the threats it is exposed to. The present paper reports the study of trace metals at nine mangrove sites in Singapore in 2012/2013, using the simultaneous application of various tools, namely sediment analyses, the technique of diffusive gradients in thin-films (DGT) and caged/native bivalves (for both chemical and biomarker analyses). DGT devices were successfully deployed over 28days in tropical mangrove waters, and the concentration measured with DGT showed significant correlation with the accumulation for Cu, Zn and Cd in caged mussels, and Cu for native clams, supporting the relevance of DGT to predict metal bioaccumulation. Concentrations in mangrove sediment are reported for As, Cd, Co, Cr, Cu, Ni, Pb and Zn. Sediment levels on a dry weight (dw) basis of Cu (ND-219.5μg/g dw) and Zn (ND-502μg/g dw) exceeded general sediment quality criteria at two sites. Most notably for these two metals, investigations based on the four tools (DGT, sediments, caged mussels and clams) were all able to segregate sites above and below the sediment quality guideline. This was further supported by a range of significant linear correlations between the measurements obtained with the various tools. The present findings support that these monitoring tools are comparable in the field to provide a time-integrated assessment of metals such as Cu and Zn. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Mangroves and Sediments - It's not all about mud!

    NASA Astrophysics Data System (ADS)

    Lokier, Stephen; Paul, Andreas; Fiorini, Flavia

    2016-04-01

    Mangals occur both as natural mangals and as plantations along the Arabian Gulf coastline of the United Arab Emirates (UAE). Over recent years there has been a significant campaign to extend the area of the mangrove forests, a project that has resulted in significant dredging activity in tandem with the planting of mangrove samplings. The philosophy for this operation has been in order to increase coastal protection from erosion and as a bid to somewhat offset the UAE's carbon footprint. This project, along with significant coastal infrastructure development, has, regrettably, reduced the number of mangal settings that may be considered as pristine. With this in mind, we have undertaken an extensive sampling campaign in order to fully characterise the sediments associated within the depositional sub-environments of mangal systems. Satellite imagery and ground-based reconnaissance were employed to identify a natural mangal area to the East of Abu Dhabi Island. Within this area, a transect was established across a naturally-occurring mangal channel system. Along-transect sampling stations were selected in order to reflect the range of environmental conditions, both in terms of energy and in relation to the degree of tidal exposure. At each station an array of environmental parameters were monitored. These included, but were not limited to, temperature, salinity, current velocity and turbidity. The surface sediment at each sample station was regularly sampled and returned to the laboratory where it was subjected to a range of analysis including grain size and modal analysis, identification of biota and measurement of total organic content. The results of this study allow us to develop a mangal sediment facies map that accurately establishes the relationships between sediments, depositional setting and environmental parameters. These results can be employed to inform the interpretation of ancient successions deposited under similar conditions. Further, the findings of

  9. Mangrovimonas xylaniphaga sp. nov. isolated from estuarine mangrove sediment of Matang Mangrove Forest, Malaysia.

    PubMed

    Dinesh, Balachandra; Furusawa, Go; Amirul, A A

    2017-01-01

    A Gram-staining-negative, aerobic, rod-shaped, yellow-orange-pigmented, gliding bacterium, designated as strain ST2L12(T), was isolated from estuarine mangrove sediment from Matang Mangrove Forest, Perak, Malaysia. Strain ST2L12(T) grew at 15-39 °C, pH 6-8 and in 1-6 % (w/v) NaCl. This strain was able to degrade xylan and casein. 16S rRNA gene sequence analysis showed 95.3-92.8 % similarity to members of the genera Mangrovimonas, Meridianimaribacter, Sediminibacter, Gaetbulibacter and Hoppeia. Phylogenetic analysis indicated that it belonged to the family Flavobacteriaceae. Respiratory quinone present was menaquinone-6 (MK-6), and the DNA G+C content was 38.3 mol%. The predominant fatty acids were iso-C15:0, iso-C15:1, C15:0 and iso-C17:0 3-OH. Moreover, previous genome comparison study showed that the genome of ST2L12(T) is 1.4 times larger compared to its closest relative, Mangrovimonas yunxiaonensis LYYY01(T). Phenotypic, fatty acid, 16S rRNA gene sequence and previous genome data indicate that strain ST2L12(T) represents a novel species of the genus Mangrovimonas in the family Flavobacteriaceae, for which the name Mangrovimonas xylaniphaga sp. nov. is proposed. The type strain of Mangrovimonas xylaniphaga is ST2L12(T) (=LMG 28914(T)=JCM 30880(T)).

  10. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment

    PubMed Central

    2012-01-01

    Background Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Results Mangrove sediment was sampled from 0–5, 15–20 and 35–40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Conclusions Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0–5 cm) being greater than in both deeper sediment layers (15–20 and 35–40 cm), which were similar to each other. PMID:22935169

  11. Abundance and Genetic Diversity of nifH Gene Sequences in Anthropogenically Affected Brazilian Mangrove Sediments

    PubMed Central

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk

    2012-01-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  12. Cumulative impacts of hurricanes on Florida mangrove ecosystems: Sediment deposition, storm surges and vegetation

    USGS Publications Warehouse

    Smith, T. J.; Anderson, G.H.; Balentine, K.; Tiling, G.; Ward, G.A.; Whelan, K.R.T.

    2009-01-01

    Hurricanes have shaped the structure of mangrove forests in the Everglades via wind damage, storm surges and sediment deposition. Immediate effects include changes to stem size-frequency distributions and to species relative abundance and density. Long-term impacts to mangroves are poorly understood at present. We examine impacts of Hurricane Wilma on mangroves and compare the results to findings from three previous storms (Labor Day, Donna, Andrew). Surges during Wilma destroyed ??? 1,250 ha of mangroves and set back recovery that started following Andrew. Data from permanent plots affected by Andrew and Wilma showed no differences among species or between hurricanes for stem mortality or basal area lost. Hurricane damage was related to hydro-geomorphic type of forest. Basin mangroves suffered significantly more damage than riverine or island mangroves. The hurricane by forest type interaction was highly significant. Andrew did slightly more damage to island mangroves. Wilma did significantly more damage to basin forests. This is most likely a result of the larger and more spatially extensive storm surge produced by Wilma. Forest damage was not related to amount of sediment deposited. Analyses of reports from Donna and the Labor Day storm indicate that some sites have recovered following catastrophic disturbance. Other sites have been permanently converted into a different ecosystem, namely intertidal mudflats. Our results indicate that mangroves are not in a steady state as has been recently claimed. ?? 2009 The Society of Wetland Scientists.

  13. Distribution and speciation of mercury in surficial sediments from main mangrove wetlands in China.

    PubMed

    Ding, Z H; Liu, J L; Li, L Q; Lin, H N; Wu, H; Hu, Z Z

    2009-09-01

    The purpose of this study was to establish the distribution, speciation and bioavailability of mercury in mangrove sediments. A systemic survey of surficial sediments from 13 mangrove wetlands of China was carried out. Hg concentrations ranged from 2.3-903.6ngg(-1), with an average value of 189.4ngg(-1). Of the 13 areas surveyed, the Hg content in sediments was similar to background levels in 6 areas but was much higher in the other seven areas. Hg levels were affected by natural and anthropogenic factors, including terrestrial pollutants, geomorphic properties, and indirectly by economic status. Hg levels were positively correlated with organic matter, pH, and silt and clay fractions, but Hg was negatively correlated with sand fraction. In most mangrove wetlands, Hg existed primarily in the form of volatile Hg. Hg is easily bioaccumulated in mangrove wetlands and may be the natural source of Hg emissions to the atmosphere.

  14. Microcosm study on fate of polybrominated diphenyl ethers (PBDEs) in contaminated mangrove sediment.

    PubMed

    Zhu, Haowen; Wang, Ying; Tam, Nora F Y

    2014-01-30

    Polybrominated diphenyl ethers (PBDEs) are toxic and ubiquitous environmental contaminants, but their fate in aquatic environments is not clear. A mangrove microcosm study was employed to investigate the fate of two abundant congeners, BDE-47 and BDE-209, in contaminated sediment. After seven months, more than 90% of the spiked BDE-47 in the mangrove sediment was removed with the formation of lower brominated PBDEs, including BDE-28, -17, -15, -8, -7/4, suggesting that microbial debromination was the main contributor. Debromination of BDE-209 was also observed in the sediment but its dissipation rate was significantly lower than BDE-47. All these congeners were taken up, translocated and accumulated into the tissues of two typical mangrove plants, Kandelia obovata and Avicennia marina. PBDEs, even at very high contamination levels, in the sediment (5000ngg(-1)) and the debrominated congeners did not pose any adverse effect on the dry weight, augmentation and root/shoot ratio of either mangrove species. This is the first study to reveal that anaerobic microbial debromination and uptake by mangrove plants are the key processes controlling the fate of PBDEs in mangrove sediment. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Occurrence, profiles, and ecological risks of polybrominated diphenyl ethers in mangrove sediments of Shantou, China.

    PubMed

    Liu, Xu-Cheng; Wu, Wen-Cheng; Zhang, Yin-Bo; Wang, Tao; Zhao, Jian-Gang; Chen, Zhang-He

    2016-11-23

    Surface sediments were collected from three mangrove wetlands (Yifeng Xi, Shuanghan, and Su'ai Wan) in Shantou coastal zone of South China to investigate spatial distributions of polybrominated diphenyl ethers (PBDEs). The results demonstrate that PBDEs were detected in all the samples, indicating their widespread occurrence in coastal sediments of the studied area. Σ9PBDEs (defined as the sum of nine targeted PBDE congeners except BDE-209) and BDE-209 are in the range of 2.3 to 11.5 and 16.7 to 58.2 ng/g, respectively. BDE-209 is the dominant PBDE congener in all sediment samples. The sediment concentrations of ∑9PBDEs and BDE-209 among the three wetlands decrease in the order of Su'ai Wan > Shuanghan > Yifeng Xi. The concentrations of ∑9PBDEs are higher in mangrove sediments than in mudflats, but no obvious regularity can be found on the correlation between mangrove species and PBDE levels in sediments. The contents of total organic carbon are moderately correlated with BDE-209 concentrations in sediments but not with ∑9PBDE concentrations. The samples collected from different locations show slightly different composition profiles except BDE-209, with BDE-100 and BDE-47 being the pre-dominated congeners. The mudflats exhibit higher abundances of tri- to hexa-substituted congeners than the mangrove sediments. Ecological risk assessment demonstrates that the surface sediments from Shantou may pose a potential ecological risk of exposure to sediment-dwelling organisms.

  16. Spatial and Vertical Distribution of Dechlorane Plus in Mangrove Sediments of the Pearl River Estuary, South China.

    PubMed

    Sun, Yu-Xin; Zhang, Zai-Wang; Xu, Xiang-Rong; Hao, Qin-Wei; Hu, Yong-Xia; Zheng, Xiao-Bo; Luo, Xiao-Jun; Diao, Zeng-Hui; Mai, Bi-Xian

    2016-10-01

    Thirty surface sediments and three sediment cores were collected from mangrove wetlands in the Pearl River Estuary of South China to investigate the spatial and vertical distribution of Dechlorane Plus (DP). DP concentrations in the mangrove surface sediments ranged from 0.0130 to 1.504 ng/g dry weight (dw). DP concentrations in sediments from Shenzhen were significantly greater than those from Guangzhou and Zhuhai. Anti-Cl11-DP, the dechlorinated product of anti-DP, was also detected in the mangrove sediments with concentrations ranged from not detected to 0.0198 ng/g dw. Significant positive relationship between anti-Cl11-DP and anti-DP levels was observed in the mangrove sediments, suggesting that photo and/or microbial degradation of anti-DP might occur in the sediments. The f anti values in the mangrove sediments were close to those in the technical DP products, suggesting that stereoselective enrichment of anti-DP may not exist in the mangrove sediments. DP concentrations in the mangrove sediment cores generally showed an increasing trend from the bottom to top layers. This is the first study to report the occurrence of DP and its degradation product in the mangrove wetlands.

  17. Bottom sediments affect Sonneratia mangrove forests in the prograding Mekong delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Nardin, William; Woodcock, Curtis E.; Fagherazzi, Sergio

    2016-08-01

    Mangrove forests exert a strong influence on tropical deltas by trapping sediments discharged by rivers and by stabilizing the substrate with roots. Understanding the dynamics of sediments and morphology in and around mangrove forests is critical in order to assess the resilience of coastlines in a period of accelerated sea level rise. In this research, sediment samples, mangrove forest characteristics, and remote sensing data are used to investigate the relationship between mangroves and sediment substrate in the Mekong Delta, Vietnam. Our data show a significant correlation between percent of sand in bottom sediments and density of Sonneratia caseolaris forest. We ascribe this result to higher sediment disturbance in muddy areas that prevents seedling establishment. This correlation potentially allows the determination of substrate characteristics from vegetation attributes detected by remote sensing, despite the impenetrability of the forest canopy. The results presented herein suggest that a supply of sand from the river and hydrodynamic processes moving the sand ashore control the density of the Sonneratia mangrove forests at this location, promoting tidal flat colonization and canopy expansion.

  18. Effect of high sedimentation rates on surface sediment dynamics and mangrove growth in the Porong River, Indonesia.

    PubMed

    Sidik, Frida; Neil, David; Lovelock, Catherine E

    2016-06-15

    Large quantities of mud from the LUSI (Lumpur Sidoarjo) volcano in northeastern Java have been channeled to the sea causing high rates of sediment delivery to the mouth of the Porong River, which has a cover of natural and planted mangroves. This study investigated how the high rates of sediment delivery affected vertical accretion, surface elevation change and the growth of Avicennia sp., the dominant mangrove species in the region. During our observations in 2010-2011 (4-5years after the initial volcanic eruption), very high rates of sedimentation in the forests at the mouth of the river gave rise to high vertical accretion of over 10cmy(-1). The high sedimentation rates not only resulted in reduced growth of Avicennia sp. mangrove trees at the two study sites at the Porong River mouth, but also gave rise to high soil surface elevation gains.

  19. Petroleum pollution in mangrove forests sediments from Qeshm Island and Khamir Port-Persian Gulf, Iran.

    PubMed

    Ebrahimi-Sirizi, Zohreh; Riyahi-Bakhtiyari, Alireza

    2013-05-01

    The concentrations of total polycyclic aromatic hydrocarbons (PAHs) and 22 individual PAH compounds in 42 surface sediments collected from the mangrove forest of Qeshm Island and Khamir Port (Persian Gulf) were analyzed. PAHs concentrations ranged from 259 to 5,376 ng g(-1) dry weight with mean and median values of 1,585 and 1,146 ng g(-1), respectively. The mangrove sediments had higher percentages of lower molecular weight PAHs and the PAH profiles were dominated by naphthalene. Ratio values of specific PAH compounds were calculated to evaluate the possible source of PAH contamination. This ratios suggesting that the mangrove sediments have a petrogenic input of PAHs. Sediment quality guidelines were conducted to assess the toxicity of PAH compounds. The levels of total PAHs at all of stations except one station, namely Q6, were below the effects range low. Also, concentrations of naphthalene in some stations exceeded the effects range median.

  20. Streptomyces mangrovi sp. nov., isolated from mangrove forest sediment.

    PubMed

    Yousif, Ghada; Busarakam, Kanungnid; Kim, Byung-Yong; Goodfellow, Michael

    2015-09-01

    A Streptomyces strain isolated from a mangrove sediment was classified using a polyphasic approach. The organism, isolate GY1(T), was found to have chemical and morphological properties typical of members of the genus Streptomyces. The isolate was shown to form a distinct phyletic line within the Streptomyces radiopugnans 16S rRNA gene subclade and to be closely related to the type strain of Streptomyces fenhuangensis (98.7 % similarity). It is also closely related to the type strain of Streptomyces bakulensis which was also closely related to members of the Streptomyces glaucosporus 16S rRNA gene subclade. Isolate GY1(T) was distinguished readily from the S. barkulensis type strain and from species classified in the S. radiopugnans clade using a combination of morphological and physiological properties, including a requirement for seawater for growth. Based on the genotypic and phenotypic data, it is proposed that isolate GY1(T) (=NCIMB 14980(T), NRRL B-69296(T)) be classified in the genus Streptomyces as Streptomyces mangrovi sp. nov.

  1. Anaerobic biodegradation of PAHs in mangrove sediment with amendment of NaHCO3.

    PubMed

    Li, Chun-Hua; Wong, Yuk-Shan; Wang, Hong-Yuan; Tam, Nora Fung-Yee

    2015-04-01

    Mangrove sediment is unique in chemical and biological properties. Many of them suffer polycyclic aromatic hydrocarbon (PAH) contamination. However, the study on PAH biological remediation for mangrove sediment is deficient. Enriched PAH-degrading microbial consortium and electron acceptor amendment are considered as two effective measures. Compared to other electron acceptors, the study on CO2, which is used by methanogens, is still seldom. This study investigated the effect of NaHCO3 amendment on the anaerobic biodegradation of four mixed PAHs, namely fluorene (Fl), phenanthrene (Phe), fluoranthene (Flua) and pyrene (Pyr), with or without enriched PAH-degrading microbial consortium in mangrove sediment slurry. The trends of various parameters, including PAH concentrations, microbial population size, electron-transport system activities, electron acceptor and anaerobic gas production were monitored. The results revealed that the inoculation of enriched PAH-degrading consortium had a significant effect with half lives shortened by 7-13 days for 3-ring PAHs and 11-24 days for 4-ring PAHs. While NaHCO3 amendment did not have a significant effect on the biodegradation of PAHs and other parameters, except that CO2 gas in the headspace of experimental flasks was increased. One of the possible reasons is that mangrove sediment contains high concentrations of other electron acceptors which are easier to be utilized by anaerobic bacteria, the other one is that the anaerobes in mangrove sediment can produce enough CO2 gas even without adding NaHCO3.

  2. Exploring the diversity of bacterial communities in sediments of urban mangrove forests.

    PubMed

    Marcial Gomes, Newton C; Borges, Ludmila R; Paranhos, Rodolfo; Pinto, Fernando N; Mendonça-Hagler, Leda C S; Smalla, Kornelia

    2008-10-01

    Municipal sewage, urban runoff and accidental oil spills are common sources of pollutants in urban mangrove forests and may have drastic effects on the microbial communities inhabiting the sediment. However, studies on microbial communities in the sediment of urban mangroves are largely lacking. In this study, we explored the diversity of bacterial communities in the sediment of three urban mangroves located in Guanabara Bay (Rio de Janeiro, Brazil). Analysis of sediment samples by means of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments suggested that the overall bacterial diversity was not significantly affected by the different levels of hydrocarbon pollution at each sampling site. However, DGGE and sequence analyses provided evidences that each mangrove sediment displayed a specific structure bacterial community. Although primer sets for Pseudomonas, alphaproteobacterial and actinobacterial groups also amplified ribotypes belonging to taxa not intended to be enriched, sequence analyses of dominant DGGE bands revealed ribotypes related to Alteromonadales, Burkholderiales, Pseudomonadales, Rhodobacterales and Rhodocyclales. Members of these groups were often shown to be involved in aerobic or anaerobic degradation of hydrocarbon pollutants. Many of these sequences were only detected in the sampling sites with high levels of anthropogenic inputs of hydrocarbons. Many dominant DGGE ribotypes showed low levels of sequence identity to known sequences, indicating a large untapped bacterial diversity in mangrove ecosystems.

  3. Bacterial communities reflect the spatial variation in pollutant levels in Brazilian mangrove sediment.

    PubMed

    Peixoto, R; Chaer, G M; Carmo, F L; Araújo, F V; Paes, J E; Volpon, A; Santiago, G A; Rosado, A S

    2011-02-01

    The majority of oil from oceanic oil spills converges on coastal ecosystems such as mangrove forests. A major challenge to mangrove bioremediation is defining the mangrove's pollution levels and measuring its recuperation from pollution. Bioindicators can provide a welcome tool for defining such recovery. To determine if the microbial profiles reflected variation in the pollutants, samples from different locations within a single mangrove with a history of exposure to oil were chemically characterised, and the microbial populations were evaluated by a comprehensive range of conventional and molecular methods. Multivariate ordination of denaturing gradient gel electrophoresis (DGGE) microbial community fingerprints revealed a pronounced separation between the sediment and rhizosphere samples for all analysed bacterial communities (Bacteria, Betaproteobacteria, Alphaproteobacteria, Actinobacteria and Pseudomonas). A Mantel test revealed significant relationships between the sediment chemical fertility and oil-derived pollutants, most of the bacterial community fingerprints from sediment samples, and the counts by different cultivation strategies. The level of total petroleum hydrocarbons was significantly associated with the Bacteria and Betaproteobacteria fingerprints, whereas anthracene and the total level of polycyclic aromatic hydrocarbons were associated with the Actinobacteria. These results show that microbial communities from the studied mangrove reflect the spatial variation of the chemicals in the sediment, demonstrating the specific influences of oil-derived pollutants.

  4. Culturable populations of Acinetobacter can promptly respond to contamination by alkanes in mangrove sediments.

    PubMed

    Rocha, Lidianne L; Colares, Geórgia B; Angelim, Alysson L; Grangeiro, Thalles B; Melo, Vânia M M

    2013-11-15

    This study evaluated the potential of bacterial isolates from mangrove sediments to degrade hexadecane, an paraffin hydrocarbon that is a large constituent of diesel and automobile lubricants. From a total of 18 oil-degrading isolates obtained by an enrichment technique, four isolates showed a great potential to degrade hexadecane. The strain MSIC01, which was identified by 16S rRNA gene sequencing as Acinetobacter sp., showed the best performance in degrading this hydrocarbon, being capable of completely degrading 1% (v/v) hexadecane within 48 h without releasing biosurfactants. Its hydrophobic surface probably justifies its potential to degrade high concentrations of hexadecane. Thus, the sediments from the studied mangrove harbour bacterial communities that are able to use oil as a carbon source, which is a particularly interesting feature due to the risk of oil spills in coastal areas. Moreover, Acinetobacter sp. MSIC01 emerged as a promising candidate for applications in bioremediation of contaminated mangrove sediments.

  5. Tungsten- and cobalt-dominated heavy metal contamination of mangrove sediments in Shenzhen, China.

    PubMed

    Xu, Songjun; Lin, Chuxia; Qiu, Penghua; Song, Yan; Yang, Wenhuai; Xu, Guanchang; Feng, Xiaodan; Yang, Qian; Yang, Xiu; Niu, Anyi

    2015-11-15

    A baseline investigation into heavy metal status in the mangrove sediments was conducted in Shenzhen, China where rapid urban development has caused severe environmental contamination. It is found that heavy metal contamination in this mangrove wetland is characterized by the dominant presence of tungsten and cobalt, which is markedly different from the neighboring Hong Kong and other parts of the world. The vertical variation pattern of these two metals along the sediment profile differed from other heavy metals, suggesting an increasing influx of tungsten and cobalt into the investigated mangrove habitat, as a result of uncontrolled discharge of industrial wastewater from factories that produce or use chemical compounds or alloys containing these two heavy metals. Laboratory simulation experiment indicated that seawater had a stronger capacity to mobilize sediment-borne tungsten and cobalt, as compared to deionized water, diluted acetic, sulfuric and nitric acids.

  6. Characterisation of the effect of a simulated hydrocarbon spill on diazotrophs in mangrove sediment mesocosm.

    PubMed

    Taketani, Rodrigo Gouvêa; dos Santos, Henrique Fragoso; van Elsas, Jan Dirk; Rosado, Alexandre Soares

    2009-10-01

    An analysis of the effect of an oil spill on mangrove sediments was carried out by contamination of mesocosms derived from two different mangroves, one with a history of contamination and one pristine. The association between N(2) fixers and hydrocarbon degradation was assessed using quantitative PCR (qPCR) for the genes rrs and nifH, nifH clone library sequencing and total petroleum hydrocarbon (TPH) quantification using gas chromatography. TPH showed that the microbial communities of both mangroves were able to degrade the hydrocarbons added; however, whereas the majority of oil added to the mesocosm derived from the polluted mangrove was degraded in the 75 days of the experiment, there was only partially degradation in the mesocosm derived from the pristine mangrove. qPCR showed that the addition of oil led to an increase in rrs gene copy numbers in both mesocosms, having almost no effect on the nifH copy numbers in the pristine mangrove. Sequencing of nifH clones indicated that the changes promoted by the oil in the polluted mangrove were greater than those observed in the pristine mesocosm. The main effect observed in the polluted mesocosm was the selection of a single phylotype which is probably adapted to the presence of petroleum. These results, together with previous reports, give hints about the relationship between N(2) fixation and hydrocarbon degradation in natural ecosystems.

  7. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years

    NASA Astrophysics Data System (ADS)

    Gonneea, Meagan Eagle; Paytan, Adina; Herrera-Silveira, Jorge A.

    2004-10-01

    Mangrove ecosystems may be a source of organic carbon and nutrients to adjacent coastal systems on one hand and provide a sedimentary sink for organic carbon on the other. The balance between these two functions may be sensitive to both natural and anthropogenically induced variability, yet these effects have not been thoroughly evaluated in mangrove ecosystems. We determine organic matter sources and carbon burial rates over the past 160 years in three lagoons on the Yucatan Peninsula, Mexico. Carbon isotopes and C/N elemental ratios are utilized to trace the three sources contributing to sedimentary organic matter, mangroves, seagrasses and phytoplankton, while nitrogen isotopes are used to elucidate potential post-depositional biogeochemical transformations in mangrove lagoon sediments. All three organic matter sources contribute to organic carbon burial. Phytoplankton and mangroves are the dominant sources of organic matter in lagoon bank sediments and seagrasses are a significant source to central lagoon sediments. Organic carbon burial rates are higher at the lagoon fringes, where mangrove vegetation dominates, than in seagrass-dominated mid-lagoon areas. A reduction in mangrove contribution to the sedimentary organic matter pool concurrent with reduced total organic carbon burial rates is observed in the recent past at all three lagoons studied. Natural cycles in sediment organic matter source over the past 160 years are observed in a high-resolution core. These fluctuations correspond to climatic variability in this region, as recorded in deep-sea foraminiferal assemblages. Additional work is required in order to differentiate between recent anthropogenic perturbations and natural variability in organic carbon sources and burial rates within these ecosystems.

  8. Early diagenesis of carbohydrates and lignin in mangrove sediments subject to variable redox conditions (French Guiana)

    NASA Astrophysics Data System (ADS)

    Marchand, C.; Disnar, J. R.; Lallier-Vergès, E.; Lottier, N.

    2005-01-01

    A comparative study of lignin and neutral carbohydrate compositions, combined with C, N and δ 13C analyses, was carried out on sedimentary cores, and on various vascular plant species collected in mangrove swamps of French Guiana. The main purpose of this study was to assess the diagenesis of carbohydrates and lignin in brackish to hypersaline fine-grained mangrove sediments characterized by great changes in redox conditions. Distribution of carbohydrates in sediments reflects both the lability of these compounds and their efficient recycling. They are subject to selective degradation, cellulosic glucose and xylose appearing to be the two most labile neutral sugars. In contrast a relative increase in arabinose, rhamnose, fucose and hemicellulosic glucose between plants and sediments, suggests that they may be more refractory and/or that they also derive from microbial synthesis. The total carbon from lignin-derived phenols is higher in sediments than in mangrove plants as a consequence of their rather refractory character. Nevertheless, evidence of lignin decomposition was found to be independent of local environmental conditions. The various redox processes that occur in mangrove sediments depend on plant species, stages in forest development and season. Different redox conditions induce different mechanisms for the decomposition of lignin and thus induce changes in phenol distributions. At depth, in most mangroves, an increase in (Ad/Al) v ratios and in deoxy sugars (fucose and rhamnose) content was significantly correlated with increased proportions of oxidized allochthonous organic debris deriving from the Amazonian detrital discharge, thus suggesting a specific source effect rather than a diagenesis induced change. Therefore, this study illustrates that both lignin and cellulose, derived from vascular plant debris, can be degraded in waterlogged mangrove sediments, and that their distribution depends on environmental conditions.

  9. Sedimentation in mangroves and coral reefs in a wet tropical island, Pohnpei, Micronesia

    NASA Astrophysics Data System (ADS)

    Victor, Steven; Neth, Leinson; Golbuu, Yimnang; Wolanski, Eric; Richmond, Robert H.

    2006-02-01

    A six-month-long study was conducted of the fate of turbid river plumes from the Enipein watershed in Pohnpei, Federated States of Micronesia. Pohnpei is one of the wettest places on earth, with a mean annual rainfall exceeding 4 m in the lowlands and 8 m in the highlands. The river waters were clear of sediment except after major storms with rainfall exceeding 5 cm day -1. Following a storm, the river plume spread in the mangrove fringed estuary and in the coral reef lagoon. The waters were highly stratified in temperature, salinity, and suspended sediment concentration. The brackish water was flushed out in four days, while the suspended sediment all settled out in the estuary, in the mangroves, and in the lagoon including on the coral reefs, in less than one day. The mean rate of sedimentation exceeded 35 mg cm -2 d -1 both over the mangroves and on the adjacent coral reefs. While this leads to no detrimental effects on the mangroves, sediment smothers corals and leads to substantial coral mortality in the lagoon. The mud is not flushed out from the lagoon because there are no strong currents from waves or tides. This high sedimentation rate is attributable to poor farming and land-use practices on the upland areas.

  10. Mercury methylation in sediments of a Brazilian mangrove under different vegetation covers and salinities.

    PubMed

    de Oliveira, Diana Ciannella Martins; Correia, Raquel Rose Silva; Marinho, Claudio Cardoso; Guimarães, Jean Remy Davée

    2015-05-01

    The presence and formation of methylmercury (MMHg), a highly toxic form of Hg, in mangrove ecosystems is poorly studied. Therefore the aim of this study was to evaluate mercury methylation potentials in sediment, litter and root samples (Avicennia shaueriana and Spartina alterniflora) from different regions of a mangrove ecosystem, as well as the influence of salinity on methylation. Sediment was sampled under different depths and in mangrove regions with different plant covers and salinities. All samples were incubated with (203)Hg and MM(203)Hg was extracted and measured by liquid scintillation. MMHg was formed in all samples and sites tested including plant roots and litter. Higher Hg methylation was found in the superficial fraction of sediments (0.47-7.82%). Infralittoral sandy sediment had low MMHg formation (0.44-1.61%). Sediment under Rhizophora mangle had lower MMHg formation (0.018-2.23%) than under A. shaueriana (0.2-4.63%) and Laguncularia racemosa (0.08-7.82). MMHg formation in sediment tended to increase with salinity but the differences were not significant. Therefore, MMHg formation occurs in different sites of mangrove ecosystems and may be an important threat that requires further study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effectiveness of bacterial inoculum and mangrove plants on remediation of sediment contaminated with polycyclic aromatic hydrocarbons.

    PubMed

    Tam, N F Y; Wong, Y S

    2008-01-01

    The remediation of mangrove sediment contaminated with mixed polycyclic aromatic hydrocarbons (PAHs) having 3-, 4- and 5-rings by natural attenuation, bioaugmentation, phytoremediation and its combination was compared by greenhouse microcosm studies. At Days 90 and 154, the decreases of PAHs in contaminated mangrove sediment by phytoremediation, planted with one-year old Aegiceras corniculatum, and bioaugmentation, the inoculation of PAH-degrading bacterial strains isolated from mangrove sediment, either SCSH (Mycobacterium parafortuitum) or SAFY (Sphingobium yanoikuyae), were not better than that by natural attenuation (the non-vegetated and un-inoculated microcosms). The populations of SCSH and SAFY in sediment could not be maintained even with repeated inoculation, suggesting that the two isolates were not able to compete with the indigenous microbes and had little enhancement effect. Although some PAHs were accumulated in roots, root uptake only accounted for <15% of the spiked PAHs and the effect of plants on remediation were also insignificant. At the end of the 154-day experiment, the mass balance calculation revealed that the overall losses of PAHs by phytoremediation were comparable to that by bioaugmentation but were lower than that by natural attenuation, especially for the high molecular weight PAHs. Under natural attenuation, around 90% fluorene, 80% phenanthrene, 70% fluoranthene, 68% pyrene and 32% benzo[a]pyrene in contaminated sediment were removed. These results demonstrated that the mangrove sediment itself had sufficient indigenous microorganisms capable of naturally remedying PAH contamination.

  12. Distribution, fraction, and ecological risk assesment of heavy metals in sediment-plant system in mangrove forest, South China Sea

    NASA Astrophysics Data System (ADS)

    LI, R.; Shen, X.; Li, Y. H.; Chai, M. W.; Qiu, G. Y.

    2015-12-01

    Overlying water, sediment, rhizosphere sediment and mangrove seedlings in Futian mangrove forest were analyzed for heavy metals. The results showed that mangrove plant acidified sediment and increased organic matter contents. Except for chromium (Cr), nickel (Ni) and copper (Cu) in Aegiceras corniculatum sediment, heavy metals in all sediments were higher than in overlying water, rhizosphere sediment and mangrove root. Heavy metals in Avicennia marina sediments were higher than other sediments. The lower heavy metal biological concentration factors (BCFs) and translocation factors (TFs) indicated that mangrove plant adopted exclusion strategy. The geo-accumulation index, potential ecological risk index and risk assessment code (RAC) demonstrated that heavy metals have posed a considerable ecological risk, especially for cadmium (Cd). Heavy metals (Cr, Ni, Cu and Cd) mainly existed in the reducible fractions. The RAC values of heavy metals indicated that heavy metals have posed a considerable ecological risk to the biota, especially for Cd. These findings provide actual heavy metal accumulations in sediment-plant ecosystems in mangrove forest, being important in designing the long-term management and conservation policies for managers of mangrove forest.

  13. Distribution, Fraction, and Ecological Assessment of Heavy Metals in Sediment-Plant System in Mangrove Forest, South China Sea

    PubMed Central

    Li, Ruili; Chai, Minwei; Qiu, Guo Yu

    2016-01-01

    Overlying water, sediment, rhizosphere sediment and mangrove seedlings in the Futian mangrove forest were analyzed for heavy metals. The results showed that mangrove plant acidified sediment and increased organic matter contents. Except for chromium (Cr), nickel (Ni) and copper (Cu) in Aegiceras corniculatum sediment, heavy metals in all sediments were higher than in overlying water, rhizosphere sediment and mangrove root. Heavy metals in Avicennia marina sediments were higher than other sediments. The lower heavy metal biological concentration factors (BCFs) and translocation factors (TFs) indicated that mangrove plant adopted exclusion strategy. The geo-accumulation index, potential ecological risk index and risk assessment code (RAC) demonstrated that heavy metals have posed a considerable ecological risk, especially for cadmium (Cd). Heavy metals (Cr, Ni, Cu and Cd) mainly existed in the reducible fractions. These findings provide actual heavy metal accumulations in sediment-plant ecosystems in mangrove forest, being important in designing the long-term management and conservation policies for managers of mangrove forest. PMID:26800267

  14. Methane flux from mangrove sediments along the southwestern coast of Puerto Rico

    SciTech Connect

    Sotomayor, D.; Corredor, J.E.; Morell, J.M. )

    1994-03-01

    Although the sediments of coastal marine mangrove forests have been considered a minor source of atmospheric methane, these estimate have been based on sparse data from similar areas. We have gathered evidence that shows that external nutrient and freshwater loading in mangrove sediments may have a significant effect on methane flux. Experiments were performed to examine methane fluxes from anaerobic sediments in a mangrove forest subjected to secondary sewage effluents on the southwestern coast of Puerto Rico. Emission rates were measured in situ using a static chamber technique, and subsequent laboratory analysis of samples was by gas chromatography using a flame ionization detector. Results indicate that methane flux rates were lowest at the landward fringe nearest to the effluent discharge, higher in the seaward fringe occupied by red mangroves, and highest in the transition zone between black and red mangrove communities, with average values of 4 mg CH[sub 4] m[sup [minus]2] d[sup [minus]1], 42 mg CH[sub 4] m[sup [minus]2] d[sup [minus]1], and 82 mg CH[sub 4] m[sup [minus]2] d[sup [minus]1], respectively. Overall mean values show these sediments may emit as much as 40 times more methane than unimpacted pristine areas. Pneumatophores of Aviciennia germinans have been found to serve as conduits to the atmosphere for this gas. Fluctuating water level overlying the mangrove sediment is an important environmental factor controlling seasonal and interannual CH[sub 4] flux variations. Environmental controls such as freshwater inputs and increased nutrient loading influence in situ methane emissions from these environments. 34 refs., 3 figs., 3 tabs.

  15. Diversity and Distribution of Archaea in the Mangrove Sediment of Sundarbans

    PubMed Central

    Bhattacharyya, Anish; Majumder, Niladri Shekhar; Basak, Pijush; Mukherji, Shayantan; Roy, Debojyoti; Nag, Sudip; Haldar, Anwesha; Chattopadhyay, Dhrubajyoti; Mitra, Suparna; Bhattacharyya, Maitree; Ghosh, Abhrajyoti

    2015-01-01

    Mangroves are among the most diverse and productive coastal ecosystems in the tropical and subtropical regions. Environmental conditions particular to this biome make mangroves hotspots for microbial diversity, and the resident microbial communities play essential roles in maintenance of the ecosystem. Recently, there has been increasing interest to understand the composition and contribution of microorganisms in mangroves. In the present study, we have analyzed the diversity and distribution of archaea in the tropical mangrove sediments of Sundarbans using 16S rRNA gene amplicon sequencing. The extraction of DNA from sediment samples and the direct application of 16S rRNA gene amplicon sequencing resulted in approximately 142 Mb of data from three distinct mangrove areas (Godkhali, Bonnie camp, and Dhulibhashani). The taxonomic analysis revealed the dominance of phyla Euryarchaeota and Thaumarchaeota (Marine Group I) within our dataset. The distribution of different archaeal taxa and respective statistical analysis (SIMPER, NMDS) revealed a clear community shift along the sampling stations. The sampling stations (Godkhali and Bonnie camp) with history of higher hydrocarbon/oil pollution showed different archaeal community pattern (dominated by haloarchaea) compared to station (Dhulibhashani) with nearly pristine environment (dominated by methanogens). It is indicated that sediment archaeal community patterns were influenced by environmental conditions. PMID:26346219

  16. Diversity and Distribution of Archaea in the Mangrove Sediment of Sundarbans.

    PubMed

    Bhattacharyya, Anish; Majumder, Niladri Shekhar; Basak, Pijush; Mukherji, Shayantan; Roy, Debojyoti; Nag, Sudip; Haldar, Anwesha; Chattopadhyay, Dhrubajyoti; Mitra, Suparna; Bhattacharyya, Maitree; Ghosh, Abhrajyoti

    2015-01-01

    Mangroves are among the most diverse and productive coastal ecosystems in the tropical and subtropical regions. Environmental conditions particular to this biome make mangroves hotspots for microbial diversity, and the resident microbial communities play essential roles in maintenance of the ecosystem. Recently, there has been increasing interest to understand the composition and contribution of microorganisms in mangroves. In the present study, we have analyzed the diversity and distribution of archaea in the tropical mangrove sediments of Sundarbans using 16S rRNA gene amplicon sequencing. The extraction of DNA from sediment samples and the direct application of 16S rRNA gene amplicon sequencing resulted in approximately 142 Mb of data from three distinct mangrove areas (Godkhali, Bonnie camp, and Dhulibhashani). The taxonomic analysis revealed the dominance of phyla Euryarchaeota and Thaumarchaeota (Marine Group I) within our dataset. The distribution of different archaeal taxa and respective statistical analysis (SIMPER, NMDS) revealed a clear community shift along the sampling stations. The sampling stations (Godkhali and Bonnie camp) with history of higher hydrocarbon/oil pollution showed different archaeal community pattern (dominated by haloarchaea) compared to station (Dhulibhashani) with nearly pristine environment (dominated by methanogens). It is indicated that sediment archaeal community patterns were influenced by environmental conditions.

  17. [Spatial characteristics of grain size of surface sediments in mangrove wetlands in Gaoqiao of Zhanjiang, Guangdong province of South China].

    PubMed

    Zhu, Yao-Jun; Bourgeois, C; Lin, Guang-Xuan; Wu, Xiao-Dong; Guo, Ju-Lan; Guo, Zhi-Hua

    2012-08-01

    Mangrove wetland is an important type of coastal wetlands, and also, an important sediment trap. Sediment is an essential medium for mangrove recruitment and development, which records the environmental history of mangrove wetlands and can be used for the analysis of material sources and the inference of the materials depositing process, being essential to the ecological restoration and conservation of mangrove. In this paper, surface sediment samples were collected along a hydrodynamic gradient in Gaoqiao, Zhanjiang Mangrove National Nature Reserve in 2011. The characteristics of the surface sediments were analyzed based on grain size analysis, and the prediction surfaces were generated by the geo-statistical methods with ArcGIS 9.2 software. A correlation analysis was also conducted on the sediment organic matter content and the mangrove community structure. In the study area, clay and silt dominated the sediment texture, and the mean content of sand, silt, and clay was (27.8 +/- 15.4)%, (40.3 +/- 15.4)%, and (32.1 +/- 11.4)%, respectively. The spatial gradient of the sediment characteristics was expressed in apparent interpolation raster. With increasing distance from the seawall, the sediment sand content increased, clay content decreased, and silt content was relatively stable at a certain level. There was a positive correlation between the contents of sediment organic matter and silt, and a negative correlation between the contents of sediment organic matter and sand. Much more sediment organic matter was located at the high tide area with weak tide energy. There existed apparent discrepancies in the characteristics of the surface sediments in different biotopes. The sediment characteristics had definite correlations with the community structure of mangroves, reflecting the complicated correlations between the hydrodynamic conditions and the mangroves.

  18. Mangrove carbon sink. Do burrowing crabs contribute to sediment carbon storage? Evidence from a Kenyan mangrove system

    NASA Astrophysics Data System (ADS)

    Andreetta, Anna; Fusi, Marco; Cameldi, Irene; Cimò, Filippo; Carnicelli, Stefano; Cannicci, Stefano

    2014-01-01

    Mangrove ecosystems are acknowledged as a significant carbon reservoir, with a potential key role as carbon sinks. Little however is known on sediment/soil capacity to store organic carbon and the impact of benthic fauna on soil organic carbon (SOC) stock in mangrove C-poor soils. This study aimed to investigate the effects of macrobenthos on SOC storage and dynamic in mangrove forest at Gazi Bay (Kenya). Although the relatively low amount of organic carbon (OC%) in these soils, they resulted in the presence of large ecosystem carbon stock comparable to other forest ecosystems. SOC at Gazi bay ranged from 3.6 kg m- 2 in a Desert-like belt to 29.7 kg m- 2 in the Rhizophora belt considering the depth soil interval from 0 cm to 80 cm. The high spatial heterogeneity in the distribution and amount of SOC seemed to be explained by different dominant crab species and their impact on the soil environment. A further major determinant was the presence, in the subsoil, of horizons rich in organic matter, whose dating pointed to their formation being associated with sea level rise over the Holocene. Dating and soil morphological characters proved to be an effective support to discuss links between the strategies developed by macrobenthos and soil ecosystem functioning.

  19. The Galeta Oil Spill. II. Unexpected Persistence of Oil Trapped in Mangrove Sediments

    NASA Astrophysics Data System (ADS)

    Burns, K. A.; Garrity, S. D.; Jorissen, D.; MacPherson, J.; Stoelting, M.; Tierney, J.; Yelle-Simmons, L.

    1994-04-01

    Sediment chemistry studies, undertaken as part of the long-term assessment of the Bahı´a las Minas (Panamá) oil spill, showed the unexpected persistence of the full range of aromatic hydrocarbon residues of the spilled crude oil in anoxic muds of coastal mangroves. Mangrove muds served as long-term reservoirs for chronic contamination of contiguous coastal communities for over 5 years. One result of the repeated history of oil pollution incidents along this coast was an increased proportion of dead mangrove ( Rhizophora mangle) roots in sediment cores which was related to contaminant loading and was detectable for at least 20 years after major oil spills. We suggest that this is the minimum time-scale that is to be expected for the loss of toxicity of oil trapped in muddy coastal habitats impacted by catastrophic oil spills.

  20. Vertical distribution of dehalogenating bacteria in mangrove sediment and their potential to remove polybrominated diphenyl ether contamination.

    PubMed

    Pan, Ying; Chen, Juan; Zhou, Haichao; Farzana, Shazia; Tam, Nora F Y

    2016-12-26

    The removal and degradation of polybrominated diphenyl ethers (PBDEs) in sediments are not clear. The vertical distribution of total and dehalogenating bacteria in sediment cores collected from a typical mangrove swamp in South China and their intrinsic degradation potential were investigated. These bacterial groups had the highest abundances in surface sediments (0-5cm). A 5-months microcosm experiment also showed that surface sediments had the highest rate to remove BDE-47 than deeper sediments (5-30cm) under anaerobic condition. The deeper sediments, being more anaerobic, had lower population of dehalogenating bacteria leading to a weaker BDE-47 removal potential than surface sediments. Stepwise multiple regression analysis indicated that Dehalococcoides spp. were the most important dehalogenating bacteria affecting the anaerobic removal of BDE-47 in mangrove sediments. This is the first study reporting that mangrove sediments harbored diverse groups of dehalogenating bacteria and had intrinsic potential to remove PBDE contamination.

  1. Effects of Fiddler Crab Burrows on Sediment Properties in the Mangrove Mudflats of Sungai Sepang, Malaysia.

    PubMed

    Mokhtari, Mohammad; Abd Ghaffar, Mazlan; Usup, Gires; Che Cob, Zaidi

    2016-01-19

    In mangrove ecosystems, litter fall accumulates as refractory organic carbon on the sediment surface and creates anoxic sediment layers. Fiddler crabs, through their burrowing activity, translocate oxygen into the anoxic layers and promote aerobic respiration, iron reduction and nitrification. In this study, the effects of four species of fiddler crabs (Uca triangularis, Uca rosea, Uca forcipata and Uca paradussumieri) on organic content, water content, porosity, redox potential and solid phase iron pools of mangrove sediments were investigated. In each crab's habitat, six cores down to 30 cm depth were taken from burrowed and non-burrowed sampling plots. Redox potential and oxidized iron pools were highest in surface sediment, while porosity, water and organic content were higher in deeper sediment. Reduced iron (Fe (II)) and redox potential were significantly different between burrowed and non-burrowed plots. Crab burrows extend the oxidized surface layer down to 4 cm depth and through the oxidation effect, reduce the organic content of sediments. The effects of burrows varied between the four species based on their shore location. The oxidation effect of burrows enhance the decomposition rate and stimulate iron reduction, which are processes that are expected to play an important role in biogeochemical properties of mangrove sediments.

  2. Effects of Fiddler Crab Burrows on Sediment Properties in the Mangrove Mudflats of Sungai Sepang, Malaysia

    PubMed Central

    Mokhtari, Mohammad; Abd Ghaffar, Mazlan; Usup, Gires; Che Cob, Zaidi

    2016-01-01

    In mangrove ecosystems, litter fall accumulates as refractory organic carbon on the sediment surface and creates anoxic sediment layers. Fiddler crabs, through their burrowing activity, translocate oxygen into the anoxic layers and promote aerobic respiration, iron reduction and nitrification. In this study, the effects of four species of fiddler crabs (Uca triangularis, Uca rosea, Uca forcipata and Uca paradussumieri) on organic content, water content, porosity, redox potential and solid phase iron pools of mangrove sediments were investigated. In each crab’s habitat, six cores down to 30 cm depth were taken from burrowed and non-burrowed sampling plots. Redox potential and oxidized iron pools were highest in surface sediment, while porosity, water and organic content were higher in deeper sediment. Reduced iron (Fe (II)) and redox potential were significantly different between burrowed and non-burrowed plots. Crab burrows extend the oxidized surface layer down to 4 cm depth and through the oxidation effect, reduce the organic content of sediments. The effects of burrows varied between the four species based on their shore location. The oxidation effect of burrows enhance the decomposition rate and stimulate iron reduction, which are processes that are expected to play an important role in biogeochemical properties of mangrove sediments. PMID:26797647

  3. Metals in sediments and mangrove oysters (Crassostrea rhizophorae) from the Caroni Swamp, Trinidad.

    PubMed

    Kanhai, La Daana K; Gobin, Judith F; Beckles, Denise M; Lauckner, Bruce; Mohammed, Azad

    2014-03-01

    Metals can have significant impacts on inhabitants of mangrove swamps as well as consumers of mangrove-associated fauna. Yet, for several Caribbean islands, assessments regarding the impact of metals on such ecosystems are particularly sparse. The present study investigated the distribution and potential impact of Cd, Cr, Cu, Ni, Pb and Zn in the Caroni Swamp, Trinidad and Tobago's largest mangrove ecosystem. Surface sediments and mangrove oysters (Crassostrea rhizophorae) from 10 sites in the swamp were analysed for the 6 identified metals. The concentration ranges (in μg/g dry wt.) of metals in sediments from Caroni Swamp were: Zn (113.4-264.6), Cr (27-69.7), Ni (10.7-41.1) and Cu (11-40.7). Based on Canadian Sediment Quality Guidelines (CSQGs), metals in sediments posed a low to medium risk to aquatic life. The concentration ranges (in μg/g wet wt.) for metals in Crassostrea rhizophorae tissues were: Zn (123.2-660), Cu (4.2-12.3), Ni (0.1-5.5), Pb (0.1-0.9), Cr (0.2-0.3) and Cd (0.1-0.2). Multiple evaluations indicated that zinc posed a potential threat to the health of oyster consumers. Information from this study is vital for managing the Caroni Swamp, safeguarding the health of consumers of shellfish on this Caribbean island and serving as a useful baseline for future local and regional risk assessments.

  4. Contaminant profiles for surface water, sediment, flora and fauna associated with the mangrove fringe along middle and lower East Tampa Bay

    EPA Science Inventory

    Contaminant concentrations are reported for surface water, sediment, seagrass, mangroves, Florida Crown conch, blue crabs and fish collected during 2010-2011 from the mangrove fringe along eastern Tampa Bay. Concentrations of trace metals, chlorinated pesticides, atrazine, total ...

  5. Contaminant profiles for surface water, sediment, flora and fauna associated with the mangrove fringe along middle and lower East Tampa Bay

    EPA Science Inventory

    Contaminant concentrations are reported for surface water, sediment, seagrass, mangroves, Florida Crown conch, blue crabs and fish collected during 2010-2011 from the mangrove fringe along eastern Tampa Bay. Concentrations of trace metals, chlorinated pesticides, atrazine, total ...

  6. Mangrove growth in New Zealand estuaries: the role of nutrient enrichment at sites with contrasting rates of sedimentation.

    PubMed

    Lovelock, Catherine E; Feller, Ilka C; Ellis, Joanne; Schwarz, Ann Maree; Hancock, Nicole; Nichols, Pip; Sorrell, Brian

    2007-09-01

    Mangrove forest coverage is increasing in the estuaries of the North Island of New Zealand, causing changes in estuarine ecosystem structure and function. Sedimentation and associated nutrient enrichment have been proposed to be factors leading to increases in mangrove cover, but the relative importance of each of these factors is unknown. We conducted a fertilization study in estuaries with different sedimentation histories in order to determine the role of nutrient enrichment in stimulating mangrove growth and forest development. We expected that if mangroves were nutrient-limited, nutrient enrichment would lead to increases in mangrove growth and forest structure and that nutrient enrichment of trees in our site with low sedimentation would give rise to trees and sediments that converged in terms of functional characteristics on control sites in our high sedimentation site. The effects of fertilizing with nitrogen (N) varied among sites and across the intertidal zone, with enhancements in growth, photosynthetic carbon gain, N resorption prior to leaf senescence and the leaf area index of canopies being significantly greater at the high sedimentation sites than at the low sedimentation sites, and in landward dwarf trees compared to seaward fringing trees. Sediment respiration (CO(2) efflux) was higher at the high sedimentation site than at the low one sedimentation site, but it was not significantly affected by fertilization, suggesting that the high sedimentation site supported greater bacterial mineralization of sediment carbon. Nutrient enrichment of the coastal zone has a role in facilitating the expansion of mangroves in estuaries of the North Island of New Zealand, but this effect is secondary to that of sedimentation, which increases habitat area and stimulates growth. In estuaries with high sediment loads, enrichment with N will cause greater mangrove growth and further changes in ecosystem function.

  7. Anthropogenic impact on mangrove sediments triggers differential responses in the heavy metals and antibiotic resistomes of microbial communities.

    PubMed

    Cabral, Lucélia; Júnior, Gileno Vieira Lacerda; Pereira de Sousa, Sanderson Tarciso; Dias, Armando Cavalcante Franco; Lira Cadete, Luana; Andreote, Fernando Dini; Hess, Matthias; de Oliveira, Valéria Maia

    2016-09-01

    Mangroves are complex and dynamic ecosystems highly dependent on diverse microbial activities. In the last decades, these ecosystems have been exposed to and affected by diverse human activities, such as waste disposal and accidental oil spills. Complex microbial communities inhabiting the soil and sediment of mangroves comprise microorganisms that have developed mechanisms to adapt to organic and inorganic contaminants. The resistance of these microbes to contaminants is an attractive property and also the reason why soil and sediment living microorganisms and their enzymes have been considered promising for environmental detoxification. The aim of the present study was to identify active microbial genes in heavy metals, i.e., Cu, Zn, Cd, Pb and Hg, and antibiotic resistomes of polluted and pristine mangrove sediments through the comparative analysis of metatranscriptome data. The concentration of the heavy metals Zn, Cr, Pb, Cu, Ni, Cd, and Hg and abundance of genes and transcripts involved in resistance to toxic compounds (the cobalt-zinc-cadmium resistance protein complex; the cobalt-zinc-cadmium resistance protein CzcA and the cation efflux system protein CusA) have been closely associated with sites impacted with petroleum, sludge and other urban waste. The taxonomic profiling of metatranscriptome sequences suggests that members of Gammaproteobacteria and Deltaproteobacteria classes contribute to the detoxification of the polluted soil. Desulfobacterium autotrophicum was the most abundant microorganism in the oil-impacted site and displayed specific functions related to heavy metal resistance, potentially playing a key role in the successful persistence of the microbial community of this site.

  8. 18S rDNA Sequences from Microeukaryotes Reveal Oil Indicators in Mangrove Sediment

    PubMed Central

    Santos, Henrique F.; Cury, Juliano C.; Carmo, Flavia L.; Rosado, Alexandre S.; Peixoto, Raquel S.

    2010-01-01

    Background Microeukaryotes are an effective indicator of the presence of environmental contaminants. However, the characterisation of these organisms by conventional tools is often inefficient, and recent molecular studies have revealed a great diversity of microeukaryotes. The full extent of this diversity is unknown, and therefore, the distribution, ecological role and responses to anthropogenic effects of microeukaryotes are rather obscure. The majority of oil from oceanic oil spills (e.g., the May 2010 accident in the Gulf of Mexico) converges on coastal ecosystems such as mangroves, which are threatened with worldwide disappearance, highlighting the need for efficient tools to indicate the presence of oil in these environments. However, no studies have used molecular methods to assess the effects of oil contamination in mangrove sediment on microeukaryotes as a group. Methodology/Principal Findings We evaluated the population dynamics and the prevailing 18S rDNA phylotypes of microeukaryotes in mangrove sediment microcosms with and without oil contamination, using PCR/DGGE and clone libraries. We found that microeukaryotes are useful for monitoring oil contamination in mangroves. Our clone library analysis revealed a decrease in both diversity and species richness after contamination. The phylogenetic group that showed the greatest sensitivity to oil was the Nematoda. After contamination, a large increase in the abundance of the groups Bacillariophyta (diatoms) and Biosoecida was detected. The oil-contaminated samples were almost entirely dominated by organisms related to Bacillariophyta sp. and Cafeteria minima, which indicates that these groups are possible targets for biomonitoring oil in mangroves. The DGGE fingerprints also indicated shifts in microeukaryote profiles; specific band sequencing indicated the appearance of Bacillariophyta sp. only in contaminated samples and Nematoda only in non-contaminated sediment. Conclusions/Significance We believe that

  9. 18S rDNA sequences from microeukaryotes reveal oil indicators in mangrove sediment.

    PubMed

    Santos, Henrique F; Cury, Juliano C; Carmo, Flavia L; Rosado, Alexandre S; Peixoto, Raquel S

    2010-08-26

    Microeukaryotes are an effective indicator of the presence of environmental contaminants. However, the characterisation of these organisms by conventional tools is often inefficient, and recent molecular studies have revealed a great diversity of microeukaryotes. The full extent of this diversity is unknown, and therefore, the distribution, ecological role and responses to anthropogenic effects of microeukaryotes are rather obscure. The majority of oil from oceanic oil spills (e.g., the May 2010 accident in the Gulf of Mexico) converges on coastal ecosystems such as mangroves, which are threatened with worldwide disappearance, highlighting the need for efficient tools to indicate the presence of oil in these environments. However, no studies have used molecular methods to assess the effects of oil contamination in mangrove sediment on microeukaryotes as a group. We evaluated the population dynamics and the prevailing 18S rDNA phylotypes of microeukaryotes in mangrove sediment microcosms with and without oil contamination, using PCR/DGGE and clone libraries. We found that microeukaryotes are useful for monitoring oil contamination in mangroves. Our clone library analysis revealed a decrease in both diversity and species richness after contamination. The phylogenetic group that showed the greatest sensitivity to oil was the Nematoda. After contamination, a large increase in the abundance of the groups Bacillariophyta (diatoms) and Biosoecida was detected. The oil-contaminated samples were almost entirely dominated by organisms related to Bacillariophyta sp. and Cafeteria minima, which indicates that these groups are possible targets for biomonitoring oil in mangroves. The DGGE fingerprints also indicated shifts in microeukaryote profiles; specific band sequencing indicated the appearance of Bacillariophyta sp. only in contaminated samples and Nematoda only in non-contaminated sediment. We believe that the microeukaryotic targets indicated by our work will be of great

  10. Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential.

    PubMed

    Guo, C L; Zhou, H W; Wong, Y S; Tam, N F Y

    2005-01-01

    Surface sediment samples were collected from seven mangrove swamps in Hong Kong SAR with different degrees of contamination. The total concentrations of 16 PAHs in these sediments ranged from 169.41 to 1058.37 ng g(-1) with the highest concentration found in Ma Wan and the lowest in Kei Ling Ha Lo Wai mangrove swamp. In each swamp, three bacterial consortia were enriched from sediments using phenanthrene (Phe) as the sole carbon and energy source, and individual bacterial colony showing Phe degradation was isolated and identified by 16S rDNA gene sequence. The consortia enriched from Sai Keng and Ho Chung sediments had highest ability to degrade mixed PAHs in liquid medium, with 90% Phe and Fla (fluoranthene) degraded in 7 days. On the other hand, Kei Ling Ha Lo Wai-enriched consortia degraded less than 40% Phe and Fla. Pyrene (Pyr) was hardly degraded by the consortia enriched from sediments. Bacterial isolates, namely Rhodococcus (HCCS), Sphingomonas (MWFG) and Paracoccus (SPNT) were capable to degrade mixed PAHs (Phe + Fla + Pyr). Their degradation percentages could be lower, comparable or even higher than their respective enriched consortia, depending on the consortium and the type of PAH compounds. These results suggest that PAH-degrading bacteria enriched from mangrove sediments, either as a mixed culture or as a single isolate could be used for PAHs bioremediation.

  11. Mangrove sediments reveal records of development during the previous century (Coffs Creek estuary, Australia).

    PubMed

    Conrad, Stephen R; Santos, Isaac R; Brown, Dylan R; Sanders, Luciana M; van Santen, Michelle L; Sanders, Christian J

    2017-09-15

    A mangrove sediment core was studied to evaluate possible pollution of an urban estuary in Coffs Harbour, Australia. The heavy metal and nutrient profiles revealed a ~2.5-fold enrichment in more recent sediments. Lead-210 dating showed increasing phosphorous (P) and copper (Cu) accumulation following agricultural activity and population growth in the catchment after 1950. In contrast, nitrogen (N) did not show enrichment suggesting no external sources. Mercury (Hg) depositional fluxes and recent enrichment may be associated to an increase in fossil fuel emissions in the region. Down-core lead (Pb) profiles reflect an increase in leaded gasoline in the 1950s, then a decrease as a result of phasing out leaded gasoline in 1986. The heavy metal and nutrient depositional fluxes are well preserved in mangrove sediments and were related to historical events in the catchment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Geochemical characterization of mangrove sediments of the Zuari estuarine system, West coast of India

    NASA Astrophysics Data System (ADS)

    Noronha-D'Mello, Cheryl A.; Nayak, G. N.

    2015-12-01

    The grain size, clay mineralogy and geochemistry were studied in the sediment cores collected from the mangrove environments of the Zuari estuary to understand sources and factors affecting accumulation, mobility, bioavailability and toxicity of metals. Finer sediments, organic matter and metals were higher in the middle estuary and canal sediments while coarser sediments with fewer metal concentrations were seen in the lower estuary. Kaolinite, smectite, illite and traces of chlorite constituted the clay mineral assemblage and had a minor influence on metal distributions. In the study area, the hydrodynamic conditions changed from lower estuary towards the upstream regions owing to mixing of riverine and sea water that led to finer sediment deposition in the middle estuary. The variations in metal abundance were attributed to a difference in hydrodynamic conditions regulated by the tide, freshwater flow and geomorphology of the Zuari estuary. The results revealed that the estuary received material from natural weathering of rocks as well as from anthropogenic sources such as mining and industrial/domestic discharges. Enrichment factor and Geo-accumulation index showed that Fe, Mn and Cr were enriched in the mangrove sediments whereas fractionation of metals revealed that concentrations of bioavailable Mn pose a considerable risk to biota. Increased accumulation of Fe and Mn in the upper middle estuary and canal sediments, trap trace metals that may considerably affect sediment quality and dredging of these sediments can cause re-suspension and mobilize metals from loosely bound sedimentary forms to the water column.

  13. Trace metals in sediments and benthic animals from aquaculture ponds near a mangrove wetland in Southern China.

    PubMed

    Wu, Hao; Liu, Jinling; Bi, Xiangyang; Lin, Guanghui; Feng, Christopher C; Li, Zhengjie; Qi, Fei; Zheng, Tianling; Xie, Liqi

    2017-04-15

    In this study, we measured the concentrations of trace metals (Cr, Cu, Zn, As, Cd, Pb and Hg) in typical cultured animals (crabs, clams, and shrimps) and sediments from aquaculture ponds nearby mangrove wetlands in Zhangjiang estuary, China. The contents of Cr, Cu, Cd, and Pb in mangrove sediments were significantly higher than those in pond sediments, while an inverse distribution was observed for Zn, As, and Hg. Significantly higher concentrations of trace metals were found in clams from the mangrove mudflats compared to those from the aquaculture ponds. The sources of trace metals in the clams were primarily from organic fertilizer, whereas those in the shrimp were from contaminated sediment. The results of geo-accumulation index and the ecological risk assessment indicated that the aquaculture ponds near the mangrove wetlands in this subtropical estuary posed a special risk of endogenous and exogenous trace metal pollution to nearby systems.

  14. The effect of mangrove reforestation on the accumulation of PCBs in sediment from different habitats in Guangdong, China.

    PubMed

    Zhao, Bo; Zhou, Yan-Wu; Chen, Gui-Zhu

    2012-08-01

    To investigate the influence of mangrove reforestation on the accumulation of PCBs, the concentrations and homologue patterns of polychlorinated biphenyls in surface sediments from different mangrove forests and their adjacent mud flats in Guangdong Province were determined. The total PCB concentrations in the sediments ranged from 3.03 to 46.62 ng g⁻¹ (dry weight). Differences in the accumulation and distribution of PCBs were found between the mangrove sites and the mud flats. Furthermore, the natural forests and restored mangrove forests of native species showed slight PCB contamination, whereas the exotic species Sonneratia apetala exacerbated the PCB pollution at certain sites. It was suggested that the native mangrove species Kandelia candel and Aegiceras corniculatum could represent good choices for the phytoremediation of PCB contamination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Dissimilatory nitrate reduction to ammonium conserves nitrogen in anthropogenically affected subtropical mangrove sediments in Southeast China.

    PubMed

    Cao, Wenzhi; Yang, Jingxin; Li, Ying; Liu, Baoli; Wang, Feifei; Chang, Changtang

    2016-09-15

    In this study, basic sediment properties, nutrient flux, and nitrogen cycle (including denitrification, anaerobic ammonium oxidation [anammox], nitrification, and dissimilatory nitrate reduction to ammonium [DNRA]) were investigated at two sampling sites with different tree ages in the mangrove region of the Jiulong River Estuary, China. The results show that sediments at mangrove flat area have relatively strong capability to reduce NO3(-), in which the DNRA rate is relatively high (204.53±48.32μmolNm(-2)h(-1)), which is approximately 75.7-85.9% of the total NO3(-) reduction, while the denitrification and anammox rates are relatively low - only approximately 5.6-9.5% and 8.5-14.8% of the total NO3(-) reduction, respectively. Thus, in the nitrogen-enriched subtropical mangrove system, DNRA is the main pathway to reduce NO3(-), and most of the input nitrogen is conserved as NH4(+) in the system, which assures high productivity of the mangrove system.

  16. [Diversity and bioactivities of culturable marine actinobacteria isolated from mangrove sediment in Indian Ocean].

    PubMed

    He, Jie; Zhang, Daofeng; Xu, Ying; Zhang, Xiaomei; Tang, Shukun; Xu, Lihua; Li, Wenjun

    2012-10-04

    In order to explore the diversity, antimicrobial activity and enzyme-producing activity of marine actinobacteria isolated from mangrove sediments in Indian Ocean. Eight sediments collected from mangrove sediments in Indian Ocean were treated by the plate dilution method and spread on 24 isolation media only containing sole carbon source for energy. Marine actinobacteria were isolated and identified by 16S rRNA gene sequence analysis. The antimicrobial activity and enzyme-producing activity of isolated strains were further detected by spot planting method. In total 139 representative strains were selected from 521 isolates, and they were further sequenced and performed phylogenetic analysis based on their 16S rRNA gene sequences. There were 35 strains identified as potential novel species. Antimicrobial activity was detected in Bacillus subtilis, Candida albicans, Escherichia coli, Staphylococcus aureus, Aspergillus niger. Enzyme-producing activity for protease cellulase, amylase and esterase were 36.5%, 26.5%, 22.4% and 15.9%, respectively. Diverse marine actinobacteria were discovered in mangrove sediment in Indian Ocean, which have antimicrobial and enzyme activity.

  17. Toxicity of sediments from a mangrove forest patch in an urban area in Pernambuco (Brazil).

    PubMed

    Oliveira, D D; Souza-Santos, L P; Silva, H K P; Macedo, S J

    2014-06-01

    Industrial and urban residues are discharged every day to the rivers and may arrive at the mangrove forest and prejudice the quality of the environment and the organisms present there. The mangrove forest patch studied is encircled by an urban area of the city of Recife (Brazil) that has approximate 1.5 million inhabitants and is one of the most industrialized centers in Northeast Brazil. The aim of this study was to assess the quality of the sediments of this mangrove patch in terms of metal contamination and ecotoxicology. Samples of surface sediment were collected in six stations for toxicological tests and trace metal determination (Cr, Zn, Mn, Fe, Cu, Pb, Co and Ni), in July and August, 2006 (rainy season); and in January and February 2007 (dry season). Toxicity tests with solid-phase sediments were carried out with the copepod Tisbe biminiensis in order to observe lethal and sub-lethal endpoints and correlate them with chemical data. In June, there were no observed lethal effect, but two stations presented sub-lethal effects. In January, lethal effect occurred in three stations and sub-lethal in one station. The levels for Zn and Cr were at higher levels than international proposed guidelines (NOAA). There was a negative significant correlation between the copepods׳ fecundity, and Zn and Cr concentrations. Therefore, the studied sediments can be considered to have potential toxic to benthos due to the high content of Zn and Cr. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Spatial Variations of the Methanogenic Communities in the Sediments of Tropical Mangroves

    PubMed Central

    Jing, Hongmei; Cheung, Shunyan; Zhou, Zhi; Wu, Chen; Nagarajan, Sanjay; Liu, Hongbin

    2016-01-01

    Methane production by methanogens in mangrove sediments is known to contribute significantly to global warming, but studies on the shift of methanogenic community in response to anthropogenic contaminations were still limited. In this study, the effect of anthropogenic activities in the mangrove sediments along the north and south coastlines of Singapore were investigated by pyrosequencing of the mcrA gene. Our results showed that hydrogenotrophic, acetoclastic and methylotrophic methanogens coexist in the sediments. The predominance of the methylotrophic Methanosarcinales reflects the potential for high methane production as well as the possible availability of low acetate and high methylated C-1 compounds as substrates. A decline in the number of acetoclastic/methylotrophic methanogens in favor of hydrogenotrophic methanogens was observed along a vertical profile in Sungei Changi, which was contaminated by heavy metals. The diversity of methanogens in the various contaminated stations was significantly different from that in a pristine St. John’s Island. The spatial variation in the methanogenic communities among the different stations was more distinct than those along the vertical profiles at each station. We suggest that the overall heterogeneity of the methanogenic communities residing in the tropical mangrove sediments might be due to the accumulated effects of temperature and concentrations of nitrate, cobalt, and nickel. PMID:27684479

  19. Distribution and Potential Toxicity of Trace Metals in the Surface Sediments of Sundarban Mangrove Ecosystem, Bangladesh

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Ramanathan, A.; Mathukumalli, B. K. P.; Datta, D. K.

    2014-12-01

    The distribution, enrichment and ecotoxocity potential of Bangladesh part of Sundarban mangrove was investigated for eight trace metals (As, Cd, Cr, Cu, Fe, Mn, Pb and Zn) using sediment quality assessment indices. The average concentration of trace metals in the sediments exceeded the crustal abundance suggesting sources other than natural in origin. Additionally, the trace metals profile may be a reflection of socio-economic development in the vicinity of Sundarban which further attributes trace metals abundance to the anthropogenic inputs. Geoaccumulation index suggests moderately polluted sediment quality w.r.t. Ni and As and background concentrations for Al, Fe, Mn, Cu, Zn, Pb, Co, As and Cd. Contamination factor analysis suggested low contamination by Zn, Cr, Co and Cd, moderate by Fe, Mn, Cu and Pb while Ni and As show considerable and high contamination, respectively. Enrichment factors for Ni, Pb and As suggests high contamination from either biota or anthropogenic inputs besides natural enrichment. As per the three sediment quality guidelines, Fe, Mn, Cu, Ni, Co and As would be more of a concern with respect to ecotoxicological risk in the Sundarban mangroves. The correlation between various physiochemical variables and trace metals suggested significant role of fine grained particles (clay) in trace metal distribution whereas owing to low organic carbon content in the region the organic complexation may not be playing significant role in trace metal distribution in the Sundarban mangroves.

  20. Contamination and potential biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments of Xiamen, China.

    PubMed

    Tian, Yun; Luo, Yuan-rong; Zheng, Tian-ling; Cai, Li-zhe; Cao, Xiao-xing; Yan, Chong-ling

    2008-06-01

    Five stations were established in the Fenglin mangrove area of Xiamen, China to determine the concentrations of polycyclic aromatic hydrocarbons (PAHs) and the numbers of PAH-degrading bacteria in surface sediments. Assessing the biodegradation potential of indigenous microorganisms and isolating the high molecule weight (HMW)-PAH degrading bacteria was also one of the aims of this work. The results showed that the total PAH concentration of sediments was 222.59 ng g(-1) dry weight, whereas the HMW-PAH benzo(a)pyrene (BaP) had the highest concentration among 16 individual PAH compounds. The variation in the numbers of PAH-degrading bacteria was 2.62 x 10(2)-5.67 x 10(4)CFU g(-1) dry weight. The addition of PAHs showed a great influence in increasing the microbial activity in mangrove sediments. A bacterial consortium, which could utilize BaP as the sole source of carbon and energy, and which was isolated from mangrove sediments and enriched in liquid medium for nearly one year degraded 32.8% of BaP after 63 days incubation.

  1. Influence of Macrofaunal Burrows on Extracellular Enzyme Activity and Microbial Abundance in Subtropical Mangrove Sediment.

    PubMed

    Luo, Ling; Gu, Ji-Dong

    2016-09-13

    Bioturbation and bioirrigation induced by burrowing macrofauna are recognized as important processes in aquatic sediment since macrofaunal activities lead to the alteration of sediment characteristics. However, there is a lack of information on how macrofauna influence microbial abundance and extracellular enzyme activity in mangrove sediment. In this study, the environmental parameters, extracellular enzyme activities, and microbial abundance were determined and their relationships were explored. Sediment samples were taken from the surface (S) and lower layer (L) without burrow, as well as crab burrow wall (W) and bottom of crab burrow (B) located at the Mai Po Nature Reserve, Hong Kong. The results showed that the burrowing crabs could enhance the activities of oxidase and hydrolases. The highest activities of phenol oxidase and acid phosphatase were generally observed in B sediment, while the highest activity of N-acetyl-glucosaminidase was found in W sediment. The enzymatic stoichiometry indicated that the crab-affected sediment had similar microbial nitrogen (N) and phosphorous (P) availability relative to carbon (C), lower than S but higher than L sediment. Furthermore, it was found that the highest abundance of both bacteria and fungi was shown in S sediment, and B sediment presented the lowest abundance. Moreover, the concentrations of phosphorus and soluble phenolics in crab-affected sediment were almost higher than the non-affected sediment. The alterations of phenolics, C/P and N/P ratios as well as undetermined environmental factors by the activities of crabs might be the main reasons for the changes of enzyme activity and microbial abundance. Finally, due to the important role of phenol oxidase and hydrolases in sediment organic matter (SOM) decomposition, it is necessary to take macrofaunal activities into consideration when estimating the C budget in mangrove ecosystem in the future.

  2. Effects of experimental sedimentation on the phenological dynamics and leaf traits of replanted mangroves at Gazi bay, Kenya.

    PubMed

    Okello, Judith A; Robert, Elisabeth M R; Beeckman, Hans; Kairo, James G; Dahdouh-Guebas, Farid; Koedam, Nico

    2014-08-01

    Sedimentation results in the creation of new mudflats for mangroves to colonize among other benefits. However, large sediment input in mangrove areas may be detrimental to these forests. The dynamics of phenological events of three mangrove tree species (Avicennia marina, Ceriops tagal, and Rhizophora mucronata) were evaluated under experimental sediment burial simulating sedimentation levels of 15, 30, and 45 cm.While there was generally no shift in timing of phenological events with sedimentation, the three mangrove tree species each responded differently to the treatments.Partially buried A. marina trees produced more leaves than the controls during the wet season and less during the dry season. Ceriops tagal on the other hand had higher leaf loss and low replacement rates in the partially buried trees during the first 6 months of the experiment but adapted with time, resulting in either equal or higher leaf emergence rates than the controls.Rhizophora mucronata maintained leaf emergence and loss patterns as the unaffected controls but had a higher fecundity and productivity in the 15-cm sedimentation level.The results suggest that under incidences of large sedimentation events (which could be witnessed as a result of climate change impacts coupled with anthropogenic disturbances), mangrove trees may capitalize on "advantages" associated with terrestrial sediment brought into the biotope, thus maintaining the pattern of phenological events.

  3. Effects of experimental sedimentation on the phenological dynamics and leaf traits of replanted mangroves at Gazi bay, Kenya

    PubMed Central

    Okello, Judith A; Robert, Elisabeth M R; Beeckman, Hans; Kairo, James G; Dahdouh-Guebas, Farid; Koedam, Nico

    2014-01-01

    Sedimentation results in the creation of new mudflats for mangroves to colonize among other benefits. However, large sediment input in mangrove areas may be detrimental to these forests. The dynamics of phenological events of three mangrove tree species (Avicennia marina, Ceriops tagal, and Rhizophora mucronata) were evaluated under experimental sediment burial simulating sedimentation levels of 15, 30, and 45 cm. While there was generally no shift in timing of phenological events with sedimentation, the three mangrove tree species each responded differently to the treatments. Partially buried A. marina trees produced more leaves than the controls during the wet season and less during the dry season. Ceriops tagal on the other hand had higher leaf loss and low replacement rates in the partially buried trees during the first 6 months of the experiment but adapted with time, resulting in either equal or higher leaf emergence rates than the controls. Rhizophora mucronata maintained leaf emergence and loss patterns as the unaffected controls but had a higher fecundity and productivity in the 15-cm sedimentation level. The results suggest that under incidences of large sedimentation events (which could be witnessed as a result of climate change impacts coupled with anthropogenic disturbances), mangrove trees may capitalize on “advantages” associated with terrestrial sediment brought into the biotope, thus maintaining the pattern of phenological events. PMID:25473472

  4. Bacterial interactions and implications for oil biodegradation process in mangrove sediments.

    PubMed

    Grativol, Adriana Daudt; Marchetti, Albany A; Wetler-Tonini, Rita M; Venancio, Thiago M; Gatts, Carlos En; Thompson, Fabiano L; Rezende, Carlos E

    2017-05-15

    Mangrove sediment harbors a unique microbiome and is a hospitable environment for a diverse group of bacteria capable of oil biodegradation. Our goal was to understand bacterial community dynamics from mangrove sediments contaminated with heavy-oil and to evaluate patterns potentially associated with oil biodegradation is such environments. We tested the previously proposed hypothesis of a two-phase pattern of petroleum biodegradation, under which key events in the degradation process take place in the first three weeks after contamination. Two sample sites with different oil pollution histories were compared through T-RFLP analyses and using a pragmatic approach based on the Microbial Resource Management Framework. Our data corroborated the already reported two-phase pattern of oil biodegradation, although the original proposed explanation related to the biophysical properties of the soil is questioned, opening the possibility to consider other plausible hypotheses of microbial interactions as the main drivers of this pattern. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Total petroleum hydrocarbons in sediments from the coastline and mangroves of the northern Persian Gulf.

    PubMed

    Mohebbi-Nozar, Seyedeh Laili; Zakaria, Mohamad Pauzi; Ismail, Wan Ruslan; Mortazawi, Mohammad Seddiq; Salimizadeh, Maryam; Momeni, Mohammad; Akbarzadeh, Gholamali

    2015-06-15

    To provide baseline information for the marine ecosystem of Hormozgan province, the distribution of petroleum hydrocarbons was evaluated in 52 stations involved in the mangrove and coastline ecosystem. Coastline sampling sites included areas facing harbor, river, domestic and industrial discharge. Sediment samples were analyzed based on ultraviolet fluorescence spectroscopy. Petroleum hydrocarbons showed narrow variations ranging from non-detectable (ND) to 1.71 and from 0.2 to 0.63μg/g dry weight for coastline and mangrove sediments, respectively. The detected concentrations for total petroleum hydrocarbons were lower than guideline values for ecological risk. Furthermore, the minimum environmental risk was confirmed by background levels for the Persian Gulf, the Sea of Oman, and detected values for reference areas. The results were regarded as background data in the studied area, and, considering the rapid expansion of activities related to the petroleum industry in Hormozgan province, the continuous monitoring of pollutants is recommended.

  6. Brominated flame retardants in mangrove sediments of the Pearl River Estuary, South China: spatial distribution, temporal trend and mass inventory.

    PubMed

    Zhang, Zai-Wang; Sun, Yu-Xin; Sun, Kai-Feng; Xu, Xiang-Rong; Yu, Shen; Zheng, Tian-Ling; Luo, Xiao-Jun; Tian, Yun; Hu, Yong-Xia; Diao, Zeng-Hui; Mai, Bi-Xian

    2015-03-01

    Sediments were collected from three mangrove wetlands in the Pearl River Estuary (PRE) of South China to investigate spatial and temporal distributions of polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE). Concentrations of ΣPBDEs, DBDPE and BTBPE in mangrove sediments of the PRE ranged from 1.25-206, 0.364-34.9, and not detected-0.794 ng g(-1) dry weight, respectively. The highest concentrations of ΣPBDEs, DBDPE and BTBPE were found at the mangrove wetland from Shenzhen, followed by Zhuhai and Guangzhou, showing the dependence on the proximity to urban areas. PBDEs were the predominant brominated flame retardants (BFRs) in mangrove sediments. The concentrations of ΣPBDEs, DBDPE and BTBPE in sediment cores showed an increasing trend from the bottom to top layers, reflecting the increasing usage of these BFRs. The inventories of ΣPBDEs, DBDPE and BTBPE in mangrove sediments were 1962, 245, and 4.10 ng cm(-2), respectively. This is the first study to report the occurrence of DBDPE and BTBPE in mangrove ecosystems.

  7. Effects of three different PAHs on nitrogen-fixing bacterial diversity in mangrove sediment.

    PubMed

    Sun, Fu-Lin; Wang, You-Shao; Sun, Cui-Ci; Peng, Ya-Lan; Deng, Chao

    2012-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are of great environmental and human health concerns due to their widespread occurrence, persistence and carcinogenic properties. There is now compelling evidence that the mangrove sediment microbial structure is susceptible to PAHs contamination. The study aimed to assess the effects of PAHs on the nitrogen-fixing bacterial community of mangrove sediment. Three types of PAHs, naphthalene (NAP), a two-ring PAH; fluorene (FLU), a three-ring PAH; and pyrene (PYR), a four-ring PAH; were applied at three doses. After 7 and 24 days of incubation, the nitrogen-fixing bacterial population and diversity were evidenced in the nifH gene polymerase chain reaction denaturing gradient gel electrophoresis profile. DGGE pattern shows that the nitrogen-fixing bacterial community changed significantly with the types and doses of PAHs, and the incubation time. As far as single PAH is concerned, high concentration of PAH has larger impact on the nitrogen-fixing bacteria than low concentration of PAH. Besides, among the three types of PAHs, NAP has the greatest short term toxicity; PYR has the strongest long-term impact, whereas FLU has relatively higher long-time effect. Multidimensional scaling analysis and correspondence analysis are two reliable multivariate analysis methods for investigating the relationship between the nitrogen-fixing bacterial community and PAHs contamination. Investigating the effect of PAHs on the nitrogen-fixing bacterial diversity could yield useful information for understanding the process of biogeochemical cycling of nitrogen in mangrove sediment. The present study reveals that nitrogen-fixing bacterial community can be used as an important parameter indicating the impact of PAHs on mangrove sediment ecosystem.

  8. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments.

    PubMed

    Rocha, Lidianne L; Colares, Geórgia B; Nogueira, Vanessa L R; Paes, Fernanda A; Melo, Vânia M M

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole.

  9. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    PubMed Central

    Rocha, Lidianne L.; Colares, Geórgia B.; Nogueira, Vanessa L. R.; Paes, Fernanda A.; Melo, Vânia M. M.

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole. PMID:26989418

  10. River-Borne Sediment Exports, Sedimentation Rates, and Influence on Benthos and Leaflitter Breakdown in Southern Caribbean Mangroves (uraba, Colombia)

    NASA Astrophysics Data System (ADS)

    Blanco, J. F.; Taborda, A.; Arroyave, A.

    2011-12-01

    Deposition of river-borne sediments is a major issue in coastal ecosystems worldwide, but no study has been conducted in Neotropical mangroves. Mangroves in the Urabá Gulf (Southern Caribbean coast of Colombia) receive one of the highest sediment loads (<0.10-0.77 x 106 ton yr-1) of the Caribbean region from rivers crossing an extensive banana crop district. Annual sedimentation rates were computed based in monthly samplings (2009-2010) in mangrove fringes across the Turbo River Delta using bottom-fixed 1L-cylinders (n=15). A significant spatial variation (0.04-0.9 ton m-2 yr-1) was observed among sampling stations within the delta, but the highest trapping occurred on river's main channel (2.54 ton m-2 yr-1). Temporal variation was smaller than spatial variation. Monitoring (twenty 1-m2 quadrats x 3 sites x 12 months) of a dominant mangrove-floor gastropod (Neritina virginea) observed a positive increase of density (4-125 ind. m-2: One-way ANOVA: p<0.001) along a sedimentation gradient (monthly means for low and high sedimentation sites: 3-69 kg m-2 yr-1). The role of N. virginea on leaflitter breakdown relative to sedimentation level was experimentally tested in a black mangrove (Avicennia germinans) stand by using 180 wire-mesh cages (15 x 15 x 25 cm) placed on the forest floor as experimental units, to prevent snail and crab access. After clearing existing snails and litter from the muddy bottom, each cage was placed and 1 senescent leaf of A. germinans and 7 snails were introduced (previously weighed) (snail abundance was similar to background densities). Three levels of area-weighed sedimentation rates (1, 3 and 18 g per cage) were daily added to test the impacts of the field-observed sedimentation gradient. The experiment was carried out during one month. Fresh leaf mass was different among treatments during the first week, increasing in proportion to the sedimentation rate probably due to leaf soaking. However, there was no difference in fresh leaf weight

  11. Factors influencing arsenic concentrations and species in mangrove surface sediments from south-east NSW, Australia.

    PubMed

    Hettiarachchi, S R; Maher, W A; Krikowa, F; Ubrihien, R

    2017-02-01

    Arsenic concentrations and speciation of 55 mangrove surface sediment samples from the south-eastern coast of NSW, Australia, have been measured. Arsenic concentrations were in the range 1.6-8.6 μg/g dry mass. All arsenic concentration values were well below 20 μg/g, the ANZEC/ARMCANZ interim sediment quality guideline-low trigger value. The bulk sediment pH was 6.0-7.3 and Eh -80 to -260 mV. The sediments contained variable silt-clay (2-30 % w/w), iron (668-12721 μg/g), manganese (1-115 μg/g), sulphur (70-18400 μg/g) and carbon (5-90 mg/g) concentrations. Arsenic concentrations correlated with silt and clay content, iron and manganese concentrations, indicating silt-clay particles covered and coated with iron and manganese (oxy) hydroxides scavenged arsenic. Arsenic extracted with 0.5 M phosphoric acid (68-95 %) was present only as inorganic arsenic (55-91 %), indicating that other arsenic species such as arsenobetaine derived from marine animal tissues rapidly degrade in sediments. The unextractable arsenic was correlated with increases in organic carbon, iron and manganese content. In conclusion, the cycling of arsenic in mangrove sediments is essentially the cycling of inorganic arsenic and primarily controlled by the redox cycling of carbon, sulphur, iron and manganese.

  12. Early-diagenetic processes in marine mangrove sediments from Guadeloupe, French West Indies

    NASA Astrophysics Data System (ADS)

    Crémière, Antoine; Sebilo, Mathieu; Strauss, Harald; Gros, Olivier; Laverman, Anniet M.

    2014-05-01

    Sediment and pore-water geochemistry were investigated in two short sediment cores from the Manche-à-eau lagoon (Guadeloupe, French Caribbean island) surrounded by mangroves trees. These sediments present high total organic carbon content, ranging between 10 to 18 % wt, mainly originating from mangrove litter fall. Oxygen is depleted in the first few millimetres of the sediment indicating active organic carbon degradation. Seawater sulphate is entirely consumed within the first 20 cm of the sediments and total organic carbon content decreases with depth pointing out that early-diagenetic degradation of organic matter occurs with sulphate reduction. Sulphide produced as the results of sulphate reduction partly reacts with detrital iron-bearing minerals and precipitates as pyrite which is consistent with high amounts of sulphur in the sediments (4-5 % wt). The sulphur isotopic composition (δ34S) of both dissolved sulphate and sulphide in pore-water increases with depth displaying a large apparent isotopic fractionation (Δ34S) between both species of 65-80o as a result of bacterial sulphate reduction. Scanning electron microscopy investigation reveals that a part of the carbonate alkalinity produced either by organic matter oxidation or anaerobic methane oxidation leads to authigenic carbonates precipitation. These results provide straightforward evidence that carbon and sulphur biogeochemical cycles are intimately governed by sedimentary microbial activity.

  13. Multivariate and Geoaccumulation Index evaluation in mangrove surface sediment of Mengkabong lagoon, Sabah.

    PubMed

    Praveena, S M; Ahmed, A; Radojevic, M; Abdullah, M H; Aris, A Z

    2008-07-01

    Spatial variations in estuarine intertidal sediment have been often related to such environmental variables as salinity, sediment types, heavy metals and base cations. However, there have been few attempts to investigate the difference condition between high and low tides relationships and to predict their likely responses in an estuarine environment. This paper investigates the linkages between environmental variables and tides of estuarine intertidal sediment in order to provide a basis for describing the effect of tides in the Mengkabong lagoon, Sabah. Multivariate statistical technique, principal components analysis (PCA) was employed to better interpret information about the sediment and its controlling factors in the intertidal zone. The calculation of Geoaccumulation Index (I(geo)) suggests the Mengkabong mangrove sediments are having background concentrations for Al, Cu, Fe, and Zn and unpolluted for Pb. Extra efforts should therefore pay attention to understand the mechanisms and quantification of different pathways of exchange within and between intertidal zones.

  14. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park

    USGS Publications Warehouse

    Smoak, Joseph M.; Breithaupt, Joshua L.; Smith, Thomas J.; Sanders, Christian J.

    2013-01-01

    The goal of this investigation was to examine how sediment accretion and organic carbon (OC) burial rates in mangrove forests respond to climate change. Specifically, will the accretion rates keep pace with sea-level rise, and what is the source and fate of OC in the system? Mass accumulation, accretion and OC burial rates were determined via 210Pb dating (i.e. 100 year time scale) on sediment cores collected from two mangrove forest sites within Everglades National Park, Florida (USA). Enhanced mass accumulation, accretion and OC burial rates were found in an upper layer that corresponded to a well-documented storm surge deposit. Accretion rates were 5.9 and 6.5 mm yr−1 within the storm deposit compared to overall rates of 2.5 and 3.6 mm yr−1. These rates were found to be matching or exceeding average sea-level rise reported for Key West, Florida. Organic carbon burial rates were 260 and 393 g m−2 yr−1 within the storm deposit compared to 151 and 168 g m−2 yr−1 overall burial rates. The overall rates are similar to global estimates for OC burial in marine wetlands. With tropical storms being a frequent occurrence in this region the resulting storm surge deposits are an important mechanism for maintaining both overall accretion and OC burial rates. Enhanced OC burial rates within the storm deposit could be due to an increase in productivity created from higher concentrations of phosphorus within storm-delivered sediments and/or from the deposition of allochthonous OC. Climate change-amplified storms and sea-level rise could damage mangrove forests, exposing previously buried OC to oxidation and contribute to increasing atmospheric CO2 concentrations. However, the processes described here provide a mechanism whereby oxidation of OC would be limited and the overall OC reservoir maintained within the mangrove forest sediments.

  15. Brachyuran crab community structure and associated sediment reworking activities in pioneer and young mangroves of French Guiana, South America

    NASA Astrophysics Data System (ADS)

    Aschenbroich, Adélaïde; Michaud, Emma; Stieglitz, Thomas; Fromard, François; Gardel, Antoine; Tavares, Marcos; Thouzeau, Gérard

    2016-12-01

    This study in French Guiana evaluates the changes of crab assemblages and their bioturbation activities between mangrove early stages (pioneer and young mangrove) and within stages by taking their spatial heterogeneity (tidal channels, flat areas, pools) into account. The results show differences in crab assemblage structure between and within the early stages of mangrove in relation to microhabitat and sediment characteristics. The sediment reworking rates are a function of the biomass or density of particular species (Ucides cordatus, Uca cumulanta) and burrower functional groups. Crab species or functional interactions mediate changes in sediment reworking rates suggesting the need to consider entire benthic communities rather than single species. This study suggests that the role of the microhabitat in determining the biologically-induced sediment reworking rates depends on the age of the mangrove. Feeding activity results in a sediment turnover of 11.7 ± 9.7 gdw m-2 day-1 and 6.8 ± 3.0 gdw m-2 day-1 in the pioneer and young mangroves, respectively. Burrow maintenance excavates 40.5 ± 7.4 gdw m-2 day-1 and 251.3 ± 419.7 gdw m-2 day-1 in the pioneer and young mangroves, respectively. Upscaling to the studied area (Sinnamary estuary: 6 km2), shows that 500 tons.day-1 and 20 tons.day-1 of sediments could be excavated and pelletized, respectively, during the spring tides of the dry season. Thus, biological sediment reworking would greatly contribute to the sedimentary dynamics of the Guianese mangroves under Amazonian influence.

  16. Seasonal variation in nitrous oxide and methane emissions from subtropical estuary and coastal mangrove sediments, Australia.

    PubMed

    Allen, D; Dalal, R C; Rennenberg, H; Schmidt, S

    2011-01-01

    Mangrove sediments can act as sources of the greenhouse trace gases, nitrous oxide (N(2) O) and methane (CH(4) ). Confident reporting of trace gas emissions from mangrove sediments at local levels is important for regional emissions inventories, since small changes in N(2) O and CH(4) fluxes greatly influence greenhouse gas budgets due to their high global warming potentials. It is also important to identify the drivers of trace gas emission, to prioritize management for minimising emissions. We measured N(2) O and CH(4) fluxes and abiotic sediment parameters at midday low tide in winter and summer seasons, at four sites (27°33'S, 152°59'E) ranging from estuary to ocean sub-tropical mangrove sediments, having varied anthropogenic impacts. At all sites, sediment N(2) O and CH(4) emissions were significantly lower during winter (7-26 μg N(2) O m(-2) · h(-1); 47-466 μg CH(4) m(-2) · h(-1)) compared to summer (28-202 μg N(2) Om(-2) · h(-1); 247-1570 μg CH(4) m(-2) · h(-1)). Sediment temperature, ranging from 18 to 33°C, strongly influenced N(2) O and CH(4) emissions. Highest emissions (202 μg N(2) O m(-2) · h(-1), 1570 μg CH(4) m(-2) · h(-1) ) were detected at human-impacted estuary sites, which generally had higher total carbon (<8%) and total nitrogen (<0.4%) in sediments and reduced salinity (<16 dS · m(-1)). Large between-site variation highlights the need for regular monitoring of sub-tropical mangroves to capture short-lived, episodic N(2) O and CH(4) flux events that are affected by sediment biophysico-chemical conditions at site level. This is important, particularly at sites receiving anthropogenic nutrients, and that have variable freshwater inputs and tidal hydrology. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. PAHs contamination and bacterial communities in mangrove surface sediments of the Jiulong River Estuary, China.

    PubMed

    Tian, Y; Liu, H J; Zheng, T L; Kwon, K K; Kim, S J; Yan, C L

    2008-01-01

    Sixteen sediment samples collected from eight transects in a mangrove swamp of the Jiulong River Estuary, Fujian, China were investigated for their content of polycyclic aromatic hydrocarbons (PAHs) and the biodegradation potential of the indigenous microorganisms. The bacterial community structures in the mangrove sediments and in enrichment cultures were also investigated. The results showed that the total PAHs concentration of mangrove sediments ranged from 280 to 1074 ng g(-1) dry weight, that the PAHs composition pattern in the mangrove sediments was dominated by high molecular weight PAH components (4-6 rings), and that Benzo[ghi]perylene and Indeno[1,2,3-cd]pyrene were the most dominant at different stations. Abundant PAH-degrading bacteria were found in all the stations, the values of phenanthrene-degrading bacteria ranged from 5.85 x 10(4) to 7.80 x 10(5) CFU g(-1) dry weight, fluoranthene-degrading bacteria ranged from 5.25 x 10(4) to 5.79 x 10(5) CFU g(-1) dry weight, pyrene-degrading bacteria ranged from 3.10 x 10(4) to 6.97 x 10(5) CFU g(-1) dry weight and the benzo(a)pyrene-degrading bacteria ranged from 5.25 x 10(4) to 7.26 x 10(5) CFU g(-1) dry weight. DGGE analysis of PCR-amplified 16S rDNA gene fragments confirmed that there was a remarkable shift in the composition of the bacterial community due to the addition of the different model PAH compound phenanthrene (three ring PAH), fluoranthene(four ring PAH), pyrene(four ring PAH) and benzo(a)pyrene(five ring PAH) during enrichment batch culture. Eleven strains were obtained with different morphology and different degradation ability. The presence of common bands for microbial species in the cultures and in the native mangrove sediment DNA indicated that these strains could be potential in situ PAH-degraders.

  18. Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron(III) in mangrove sediment slurry.

    PubMed

    Li, Chun-Hua; Wong, Yuk-Shan; Tam, Nora Fung-Yee

    2010-11-01

    Mangrove sediment, influenced by tidal cycles, switches between low-oxygen and non-oxygen conditions, and iron is abundant in it. Polycyclic aromatic hydrocarbon (PAH) contamination often occurs in mangrove wetlands. In the present paper, the effects of iron [Fe(III)] amendment on the biodegradation of four mixed PAHs, namely fluorene (Fl), phenanthrene (Phe), fluoranthene (Flua) and pyrene (Pyr), in mangrove sediment slurries, with and without the inoculation of the enriched PAH-degrading bacterial consortia, under low-oxygen (2 + or - 0.3% O(2)) and non-oxygen (0% O(2)) conditions were investigated. Under both oxygen conditions and for all four PAHs, the highest PAHs biodegradation was observed in the groups with the inoculation of the enriched PAH-degrading consortia, while the groups without the inoculum and without Fe(III) amendment had the lowest biodegradation. However, the amendment of Fe(III) did not show any significant improvement on the biodegradation of all the four mixed PAHs.

  19. Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments

    PubMed Central

    Li, Meng; Cao, Huiluo; Hong, Yiguo

    2010-01-01

    We investigated the diversity, spatial distribution, and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in sediment samples of different depths collected from a transect with different distances to mangrove forest in the territories of Hong Kong. Both the archaeal and bacterial amoA genes (encoding ammonia monooxygenase subunit A) from all samples supported distinct phylogenetic groups, indicating the presences of niche-specific AOA and AOB in mangrove sediments. The higher AOB abundances than AOA in mangrove sediments, especially in the vicinity of the mangrove trees, might indicate the more important role of AOB on nitrification. The spatial distribution showed that AOA had higher diversity and abundance in the surface layer sediments near the mangrove trees (0 and 10 m) but lower away from the mangrove trees (1,000 m), and communities of AOA could be clustered into surface and bottom sediment layer groups. In contrast, AOB showed a reverse distributed pattern, and its communities were grouped by the distances between sites and mangrove trees, indicating mangrove trees might have different influences on AOA and AOB community structures. Furthermore, the strong correlations among archaeal and bacterial amoA gene abundances and their ratio with NH4+, salinity, and pH of sediments indicated that these environmental factors have strong influences on AOA and AOB distributions in mangrove sediments. In addition, AOA diversity and abundances were significantly correlated with hzo gene abundances, which encodes the key enzyme for transformation of hydrazine into N2 in anaerobic ammonium-oxidizing (anammox) bacteria, indicating AOA and anammox bacteria may interact with each other or they are influenced by the same controlling factors, such as NH4+. The results provide a better understanding on using mangrove wetlands as biological treatment systems for removal of nutrients. Electronic supplementary material The online version of this

  20. Using a sedimentation scanner to determine mangrove health responses to sedimentation derived from dredging. An example from northwestern Australia.

    PubMed

    Mellor, Peter; Willson, Nicola; Claydon, Nadene; Paling, Erik I; Parker, Belinda; Wylie, Nicole; Mackey, Paul; Houridis, Harry

    2017-05-31

    A sedimentation scanner was used to measure daily sediment height at 10 sites associated with a 14 million cubic metre dredging project in Port Hedland harbour, Western Australia, between July 2011 and May 2012. Data were collected from seven potential impact sites, where up to 35 mm of additional sedimentation was predicted via modelling to result from dredging and at three reference sites, where background variation was monitored. A variety of mangrove habitat health indices from each site (including leaf area and health, pneumatophore and faunal burrow density) were collected before, during and after dredging. Despite predictions, most impact sites received between 0 and 10 mm over the dredging period, with one site experiencing a gain of 28 mm. Reference sites received between 2 and 28 mm which was attributed to natural processes. It was concluded that the health of Avicennia marina (Forssk.) Vierh. and Rhizophora stylosa Griff., the most common mangroves, were neither affected by a net sedimentation up to 28 mm of over a period of 11 months (i.e. 30.5 mm y(-1)) nor rapid changes over shorter time periods such as 14 mm over two days. This technology could be deployed in any tidally influenced sedimentary environment where short-term processes were of interest.

  1. Anaerobic oxidation of dimethylsulfide and methanethiol in mangrove sediments is dominated by sulfate-reducing bacteria.

    PubMed

    Lyimo, Thomas J; Pol, Arjan; Harhangi, Harry R; Jetten, Mike S M; Op den Camp, Huub J M

    2009-12-01

    The oxidation of dimethylsulfide and methanethiol by sulfate-reducing bacteria (SRB) was investigated in Tanzanian mangrove sediments. The rate of dimethylsulfide and methanethiol accumulation in nonamended sediment slurry (control) incubations was very low while in the presence of the inhibitors tungstate and bromoethanesulfonic acid (BES), the accumulation rates ranged from 0.02-0.34 to 0.2-0.4 nmol g FW sediment(-1) h(-1), respectively. Degradation rates of methanethiol and dimethylsulfide added were 2-10-fold higher. These results point to a balance of production and degradation. Degradation was inhibited much stronger by tungstate than by BES, which implied that SRB were more important. In addition, a new species of SRB, designated strain SD1, was isolated. The isolate was a short rod able to utilize a narrow range of substrates including dimethylsulfide, methanethiol, pyruvate and butyrate. Strain SD1 oxidized dimethylsulfide and methanethiol to carbon dioxide and hydrogen sulfide with sulfate as the electron acceptor and exhibited a low specific growth rate of 0.010 +/- 0.002 h(-1), but a high affinity for its substrates. The isolated microorganism could be placed in the genus Desulfosarcina (the most closely related cultured species was Desulfosarcina variabilis, 97% identity). Strain SD1 represents a member of the dimethylsulfide/methanethiol-consuming SRB population in mangrove sediments.

  2. Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan.

    PubMed

    Bacosa, Hernando P; Suto, Koichi; Inoue, Chihiro

    2013-01-01

    Mangroves constitute valuable coastal resources that are vulnerable to oil pollution. One of the major processes to remove oil from contaminated mangrove sediment is microbial degradation. A study on heavy oil- and hydrocarbon-degrading bacterial consortia from mangrove sediments in Okinawa, Japan was performed to evaluate their capacity to biodegrade and their microbial community composition. Surface sediment samples were obtained from mangrove sites in Okinawa (Teima, Oura, and Okukubi) and enriched with heavy oil as the sole carbon and energy source. The results revealed that all enriched microbial consortia degraded more than 20% of heavy oil in 21 days. The K1 consortium from Okukubi site showed the most extensive degradative capacity after 7 and 21 days. All consortia degraded more than 50% of hexadecane but had little ability to degrade polycyclic aromatic hydrocarbons (PAHs). The consortia were dominated by Pseudomonas or Burkholderia. When incubated in the presence of hydrocarbon compounds, the active bacterial community shifted to favor the dominance of Pseudomonas. The K1 consortium was a superior degrader, demonstrating the highest ability to degrade aliphatic and aromatic hydrocarbon compounds; it was even able to degrade heavy oil at a concentration of 15%(w/v). The dominance and turn-over of Pseudomonas and Burkholderia in the consortia suggest an important ecological role for and relationship between these two genera in the mangrove sediments of Okinawa.

  3. Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India

    PubMed Central

    2010-01-01

    Background Sundarban is the world's largest coastal sediment comprising of mangrove forest which covers about one million hectares in the south-eastern parts of India and southern parts of Bangladesh. The microbial diversity in this sediment is largely unknown till date. In the present study an attempt has been made to understand the microbial diversity in this sediment using a cultivation-independent molecular approach. Results Two 16 S rRNA gene libraries were constructed and partial sequencing of the selected clones was carried out to identify bacterial strains present in the sediment. Phylogenetic analysis of partially sequenced 16 S rRNA gene sequences revealed the diversity of bacterial strains in the Sundarban sediment. At least 8 different bacterial phyla were detected. The major divisions of detected bacterial phyla were Proteobacteria (alpha, beta, gamma, and delta), Flexibacteria (CFB group), Actinobacteria, Acidobacteria, Chloroflexi, Firmicutes, Planctomycetes and Gammatimonadates. Conclusion The gammaproteobacteria were found to be the most abundant bacterial group in Sundarban sediment. Many clones showed similarity with previously reported bacterial lineages recovered from various marine sediments. The present study indicates a probable hydrocarbon and oil contamination in this sediment. In the present study, a number of clones were identified that have shown similarity with bacterial clones or isolates responsible for the maintenance of the S-cycle in the saline environment. PMID:20163727

  4. Heavy metal contamination and ecological risk in Futian mangrove forest sediment in Shenzhen Bay, South China.

    PubMed

    Li, Rongyu; Li, Ruili; Chai, Minwei; Shen, Xiaoxue; Xu, Hualin; Qiu, Guoyu

    2015-12-15

    Surface sediments in the Futian mangrove forest (South China) were analyzed for heavy metals including cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb) and zinc (Zn). The heavy metal distributions varied greatly in surface sediments, reflecting some sediment heterogeneity. The heavy metal concentrations decreased in the order of Zn>Cr>Pb>Cu>Cd. According to the mean probable effects level quotient, the combination of studied metals had a 21% probability of being toxic. The potential ecological risk index and geo-accumulation index also revealed high metal contamination. Cd was of primary concern due to its higher assessment values and potential for adverse biological effects. Multivariate analysis implied that clay and silt played a significant role in raising the levels of Cr, Cu and Zn. The percentage of mobile heavy metals was relatively higher, without considerable ecological risk to the biota based on the risk assessment code.

  5. Effect of root exudates on sorption, desorption, and transport of phenanthrene in mangrove sediments.

    PubMed

    Jia, Hui; Lu, Haoliang; Dai, Minyue; Hong, Hualong; Liu, Jingchun; Yan, Chongling

    2016-08-15

    The effect of root exudates on the environmental behaviors of phenanthrene in mangrove sediments is poorly understood. In order to evaluate their influence, comprehensive laboratory experiments were performed using batch equilibrium and thin-layer chromatography (TLC) analyses. In the presence of root exudates, sorption of phenanthrene was inhibited, whereas desorption and mobility were promoted, and were elevated as root exudate concentrations increased. Among the three representative low molecular weight organic acids (LMWOAs) (citric, oxalic, and acetic acids), citric acid promoted desorption and mobility of phenanthrene more effectively than the other two. In addition, application of artificial root exudates (AREs) enhanced phenanthrene desorption, and mobility was always lower than that with the same concentration of LMWOAs, suggesting that LMWOAs predominantly affected the fate of phenanthrene in sediments. The results of this study could enhance our understanding of the mobility of persistent organic pollutants in sediment-water system.

  6. Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama

    USGS Publications Warehouse

    Lovelock, C.E.; Feller, Ilka C.; McKee, K.L.; Thompson, R.

    2005-01-01

    Mangrove forest structure and sediment characteristics were examined in the extensive mangroves of Bocas del Toro, Republic of Panama. Forest structure was characterized to determine if spatial vegetation patterns were repeated over the Bocas del Toro landscape. Using a series of permanent plots and transects we found that the forests of Bocas del Toro were dominated by Rhizophora mangle with very few individuals of Avicennia germinans and Laguncularia racemosa. Despite this low species diversity, there was large variation in forest structure and in edaphic conditions (salinity, concentration of available phosphorus, Eh and sulphide concentration). Aboveground biomass varied 20-fold, from 6.8 Mg ha-1 in dwarf forests to 194.3 Mg ha-1 in the forests fringing the land. But variation in forest structure was predictable across the intertidal zone. There was a strong tree height gradient from seaward fringe (mean tree height 3.9 m), decreasing in stature in the interior dwarf forests (mean tree height 0.7 m), and increasing in stature in forests adjacent to the terrestrial forest (mean tree height 4.1 m). The predictable variation in forest structure emerges due to the complex interactions among edaphic and plant factors. Identifying predictable patterns in forest structure will aid in scaling up the ecosystem services provided by mangrove forests in coastal landscapes. Copyright 2005 College of Arts and Sciences.

  7. Quantifying Methane Fluxes in Sediments from Mangrove-dominated Costal Lagoons

    NASA Astrophysics Data System (ADS)

    Chuang, P.; Young, M. B.; Paytan, A.

    2012-12-01

    Many studies have focused on methane emission from wetland sediments to the water column and atmosphere. However, there is growing evidence that organic rich, highly productive coastal areas such as mangrove-dominated lagoons and estuaries may have high rates of atmospheric methane flux, particularly in polluted areas. Dissolved methane concentrations in surface water and sediments have been measured in two coastal mangrove ecosystems (Celestún and Chelem Lagoons) on the Yucatán Peninsula, Mexico and the estimated diffusive methane fluxes to the atmosphere in both lagoons can reach to 2600 and 80 kg CH4/yr respectively with a much larger yet not quantified ebullition flux . The objectives of this study are to understand the sources and sinks for methane in sediments, how much methane is released from the sediment to water column and the relative contribution of diffusive and bubble fluxes. In addition rates/percentages of methane oxidized in the sediment and water column that lower methane flux to the atmosphere are quantified. Sedimentary geochemical data (methane, sulfate, chloride, particulate organic carbon (POC) and stable carbon isotopes of headspace methane) from the two lagoons were also measured to determine the impact of different salinities and degrees of pollution on POC mineralization and methane fluxes. Stable carbon isotopes of methane data indicate gas productions mainly by CO2 reduction with minor acetate fermentation signatures. A numerical transport-reaction model will be apply to the data to estimate sulfate reduction, methane oxidation and production rates and advective methane fluxes. The modeled results will be compared to methane bubble fluxes measured by flux chambers to obtain total methane emissions from sediment and discuss the role of methane from mangriove areas in impacting global climate change.

  8. Sediment source, turbidity maximum, and implications for mud exchange between channel and mangroves in an Amazonian estuary

    NASA Astrophysics Data System (ADS)

    Asp, Nils Edvin; Gomes, Vando José Costa; Ogston, Andrea; Borges, José Carlos Corrêa; Nittrouer, Charles Albert

    2016-02-01

    The tide-dominated eastern sector of the Brazilian Amazonian coast includes large mangrove areas and several estuaries, including the estuary associated with the Urumajó River. There, the dynamics of suspended sediments and delivery mechanisms for mud to the tidal flats and mangroves are complex and were investigated in this study. Four longitudinal measuring campaigns were carried out, encompassing spring/neap tides and dry/rainy seasons. During spring tides, water levels were measured simultaneously at 5 points along the estuary. Currents, salinity, and suspended sediment concentrations (SSCs) were measured over the tidal cycle in a cross section at the middle sector of the estuary. Results show a marked turbidity maximum zone (TMZ) during the rainy season, with a 4-km upstream displacement from neap to spring tide. During dry season, the TMZ was conspicuous only during neap tide and dislocated about 5 km upstream and was substantially less apparent in comparison to that observed during rainy season. The results show that mud is being concentrated in the channel associated with the TMZ especially during the rainy season. At this time, a substantial amount of the mud is washed out from mangroves to the estuarine channel and hydrodynamic/salinity conditions for TMZ formation are optimal. As expected, transport to the mangrove flats is most effective during spring tide and substantially reduced at neap tide, when mangroves are not being flooded. During the dry season, mud is resuspended from the bed in the TMZ sector and is a source of sediment delivered to the tidal flats and mangroves. The seasonal variation of the sediments on the seabed is in agreement with the variation of suspended sediments as well.

  9. EXAFS analysis of iron cycling in mangrove sediments downstream a lateritized ultramafic watershed (Vavouto Bay, New Caledonia)

    NASA Astrophysics Data System (ADS)

    Noël, Vincent; Marchand, Cyril; Juillot, Farid; Ona-Nguema, Georges; Viollier, Eric; Marakovic, Gregory; Olivi, Luca; Delbes, Ludovic; Gelebart, Frédéric; Morin, Guillaume

    2014-07-01

    Mangrove forests are the dominant intertidal ecosystem of tropical coastlines. In New Caledonia, mangroves act as a buffer zone between massive Fe lateritic deposits and a lagoon partly registered by UNESCO as a World Heritage site. The New Caledonian mangroves are characterized by a botanical gradient composed of three main vegetal stands (i.e., Rhizophora spp., Avicennia marina and salt flat), which relies on the duration of tidal immersion that imposes gradients of pore-water salinity, oxygenation, and organic content in the sediment. In the present study, we have determined the distribution and speciation of Fe in mangrove sediments along this botanical gradient by using X-ray absorption spectroscopy (XAS) at the Fe K-edge. Both XANES and EXAFS results show that iron speciation strongly follows the redox boundaries marking the intertidal and depth zonations. Fe-bearing minerals eroded from lateritic outcrops, mainly goethite (α-FeOOH) and phyllosilicates (serpentine and talc), are the major Fe hosts in the upward horizons. These mineral species progressively disappear with increasing depth where pyrite (FeS2) forms, in the hydromorphic Rhizophora and Avicennia zones. Sulfate reduction is not observed in the drier salt flat zone. In addition to these reduction processes, intense re-oxidation of aqueous Fe(II) and pyrite leads to the formation of poorly ordered ferrihydrite, lepidocrocite (γ-FeOOH) and likely goethite in the upper sediments beneath Avicennia and Rhizophora stands. The relative proportion of the newly formed poorly ordered ferrihydrite and lepidocrocite is found to be higher in the Rhizophora mangrove stand, which is the closest to the shore. Tidal fluctuations may thus be a major cause for continuous Fe reduction-oxidation cycles in the vegetated mangrove stands, which could significantly affect the iron mass balance in mangrove systems.

  10. Detection by denaturing gradient gel electrophoresis of ammonia-oxidizing bacteria in microcosms of crude oil-contaminated mangrove sediments.

    PubMed

    dos Santos, A C F; Marques, E L S; Gross, E; Souza, S S; Dias, J C T; Brendel, M; Rezende, R P

    2012-01-27

    Currently, the effect of crude oil on ammonia-oxidizing bacterium communities from mangrove sediments is little understood. We studied the diversity of ammonia-oxidizing bacteria in mangrove microcosm experiments using mangrove sediments contaminated with 0.1, 0.5, 1, 2, and 5% crude oil as well as non-contaminated control and landfarm soil from near an oil refinery in Camamu Bay in Bahia, Brazil. The evolution of CO(2) production in all crude oil-contaminated microcosms showed potential for mineralization. Cluster analysis of denaturing gradient gel electrophoresis-derived samples generated with primers for gene amoA, which encodes the functional enzyme ammonia monooxygenase, showed differences in the sample contaminated with 5% compared to the other samples. Principal component analysis showed divergence of the non-contaminated samples from the 5% crude oil-contaminated sediment. A Venn diagram generated from the banding pattern of PCR-denaturing gradient gel electrophoresis was used to look for operational taxonomic units (OTUs) in common. Eight OTUs were found in non-contaminated sediments and in samples contaminated with 0.5, 1, or 2% crude oil. A Jaccard similarity index of 50% was found for samples contaminated with 0.1, 0.5, 1, and 2% crude oil. This is the first study that focuses on the impact of crude oil on the ammonia-oxidizing bacterium community in mangrove sediments from Camamu Bay.

  11. The role of biogenic structures on the biogeochemical functioning of mangrove constructed wetlands sediments--a mesocosm approach.

    PubMed

    Penha-Lopes, Gil; Kristensen, Erik; Flindt, Mogens; Mangion, Perrine; Bouillon, Steven; Paula, José

    2010-04-01

    Benthic metabolism (measured as CO(2) production) and carbon oxidation pathways were evaluated in 4 mangrove mesocosms subjected daily to seawater or 60% sewage in the absence or presence of mangrove trees and biogenic structures (pneumatophores and crab burrows). Total CO(2) emission from darkened sediments devoid of biogenic structures at pristine conditions was comparable during inundation (immersion) and air exposure (emersion), although increased 2-7 times in sewage contaminated mesocosms. Biogenic structures increased low tide carbon gas emissions at contaminated (30%) and particularly pristine conditions (60%). When sewage was loaded into the mesocosms under unvegetated and planted conditions, iron reduction was substituted by sulfate reduction and contribution of aerobic respiration to total metabolism remained above 50%. Our results clearly show impacts of sewage on the partitioning of electron acceptors in mangrove sediment and confirm the importance of biogenic structures for biogeochemical functioning but also on greenhouse gases emission.

  12. Influence of the phenols on the biogeochemical behavior of cadmium in the mangrove sediment.

    PubMed

    Li, Jian; Liu, Jingchun; Lu, Haoliang; Jia, Hui; Yu, Junyi; Hong, Hualong; Yan, Chongling

    2016-02-01

    Phenols exert a great influence on the dynamic process of Cd in the soil-plant interface. We investigated the influence of phenols on the biogeochemical behavior of cadmium in the rhizosphere of Avicennia marina (Forsk) Vierh. All combinations of four levels of cadmium (0, 1, 2 and 4 mg/kg DW) and two levels of phenol (0 and 15 mg/kg DW) were included in the experimental design. We found that phenols facilitated increasing concentrations of exchangeable cadmium (Ex-Cd), acid volatile sulfide (AVS) and reactive solid-phase Fe (II) in sediments, and iron in plants, but inhibited Cd accumulation in iron plaque and roots. The concentrations of AVS and reactive solid-phase Fe (II) were significantly positively correlated with Cd treatment. As for the biogeochemical behavior of Cd in mangrove sediments, this research revealed that phenols facilitated activation and mobility of Cd. They disturbed the "source-sink" balance of Cd and turned it into a "source", whilst decreasing Cd absorption in A. marina. Additionally, phenols facilitated iron absorption in the plant and alleviated the Fe limit for mangrove plant growth.

  13. Integrated assessment of mangrove sediments in the Camamu Bay (Bahia, Brazil).

    PubMed

    Paixão, Joana F; de Oliveira, Olívia M C; Dominguez, José M L; Almeida, Edna dos Santos; Carvalho, Gilson Correia; Magalhães, Wagner F

    2011-03-01

    Camamu Bay, an Environmentally Protected Area, may be affected by the pressures of tourism and oil exploration in the adjacent continental platform. The current quality of the mangrove sediments was evaluated by porewater bioassays using embryos of Crassostrea rhizophorae and by an analysis of benthic macrofauna and its relationships with organic compounds, trace metals and bioavailability. Porewater toxicity varied from low to moderate in the majority of the samples, and polychaetes dominated the benthos. The Grande Island sampling station (Station 1) presented more sandy sediments, differentiated macrobenthic assemblages and the highest metal concentrations in relation to other stations and guideline values, and it was the only station that indicated a possible bioavailability of metals. The origin of the metals (mainly barium) is most likely associated with the barite ore deposits located in the Grande and Pequena islands. These results may be useful for future assessment of the impact of oil exploration in the coastal region. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Mercury methylation and sulfate reduction rates in mangrove sediments, Rio de Janeiro, Brazil: The role of different microorganism consortia.

    PubMed

    Correia, Raquel Rose Silva; Guimarães, Jean Remy Davée

    2017-01-01

    Recent studies have shown Hg methylation in mangrove sediments, however, little is known about the different microorganism consortia involved. We investigated the participation of prokaryotes in general, iron-reducing bacteria-IRB, sulfate-reducing bacteria-SRB, methanogens and fungi in Hg methylation and sulfate reduction rates (SRR) in mangrove sediments using iron amendments for IRB and specific inhibitors for the other microorganisms. Sediment samples were collected from two mangrove zones, tidal flat and mangrove forest (named root sediments). Samples were incubated with (203)Hg or (35)SO4(2-) and Me(203)Hg/(35)Sulfur were measured by liquid scintillation. Methylmercury (MeHg) formation was significantly reduced when SRB (87.7%), prokaryotes (76%) and methanogens (36.5%) were inhibited in root sediments, but only SRB (51.6%) and prokaryotes (57.3%) in tidal flat. However, in the tidal flat, inhibition of methanogens doubled Hg methylation (104.5%). All inhibitors (except fungicide) significantly reduced SRR in both zones. In iron amended tidal flat samples, Hg methylation increased 56.5% at 100 μg g(-1) and decreased at 500 and 1000 μg g(-1) (57.8 and 82%). In the roots region, however, MeHg formation gradually decreased in response to Fe amendments from 100 μg g(-1) (37.7%) to 1000 μg g(-1) (93%). SRR decreased in all iron amendments. This first simultaneous evaluation of Hg methylation and sulfate-reduction and of the effect of iron and inhibitors on both processes suggest that SRB are important Hg methylators in mangrove sediments. However, it also suggests that SRB activity could not explain all MeHg formation. This implies the direct or indirect participation of other microorganisms such as IRB and methanogens and a complex relationship among these groups.

  15. Changes in community structure of sediment bacteria along the Florida coastal everglades marsh-mangrove-seagrass salinity gradient.

    PubMed

    Ikenaga, Makoto; Guevara, Rafael; Dean, Amanda L; Pisani, Cristina; Boyer, Joseph N

    2010-02-01

    Community structure of sediment bacteria in the Everglades freshwater marsh, fringing mangrove forest, and Florida Bay seagrass meadows were described based on polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) patterns of 16S rRNA gene fragments and by sequencing analysis of DGGE bands. The DGGE patterns were correlated with the environmental variables by means of canonical correspondence analysis. There was no significant trend in the Shannon-Weiner index among the sediment samples along the salinity gradient. However, cluster analysis based on DGGE patterns revealed that the bacterial community structure differed according to sites. Not only were these salinity/vegetation regions distinct but the sediment bacteria communities were consistently different along the gradient from freshwater marsh, mangrove forest, eastern-central Florida Bay, and western Florida Bay. Actinobacteria- and Bacteroidetes/Chlorobi-like DNA sequences were amplified throughout all sampling sites. More Chloroflexi and members of candidate division WS3 were found in freshwater marsh and mangrove forest sites than in seagrass sites. The appearance of candidate division OP8-like DNA sequences in mangrove sites distinguished these communities from those of freshwater marsh. The seagrass sites were characterized by reduced presence of bands belonging to Chloroflexi with increased presence of those bands related to Cyanobacteria, gamma-Proteobacteria, Spirochetes, and Planctomycetes. This included the sulfate-reducing bacteria, which are prevalent in marine environments. Clearly, bacterial communities in the sediment were different along the gradient, which can be explained mainly by the differences in salinity and total phosphorus.

  16. Pharmaceutically active compounds and endocrine disrupting chemicals in water, sediments and mollusks in mangrove ecosystems from Singapore.

    PubMed

    Bayen, Stéphane; Estrada, Elvagris Segovia; Juhel, Guillaume; Kit, Lee Wei; Kelly, Barry C

    2016-08-30

    This study investigated the occurrence of bisphenol A (BPA), atrazine and selected pharmaceutically active compounds (PhACs) in mangrove habitats in Singapore in 2012-2013, using multiple tools (sediment sampling, POCIS and filter feeder molluscs). Using POCIS, the same suite of contaminants (atrazine, BPA and eleven PhACs) was detected in mangrove waters in 28-days deployments in both 2012 and 2013. POCIS concentrations ranged from pg/L to μg/L. Caffeine, BPA, carbamazepine, E1, triclosan, sulfamerazine, sulfamethazine, and lincomycin were also detected in mangrove sediments from the low pg/g dw (e.g. carbamazepine) to ng/g dw (e.g. BPA). The detection of caffeine, carbamazepine, BPA, sulfamethoxazole or lincomycin in bivalve tissues also showed that these chemicals are bioavailable in the mangrove habitat. Since there are some indications that some pharmaceutically active substances may be biologically active in the low ppb range in marine species, further assessment should be completed based on ecotoxicological data specific to mangrove species.

  17. Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatan, Mexico

    USGS Publications Warehouse

    Chuang, P. C.; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A.; Paytan, Adina

    2016-01-01

    Porewater profiles in sediment cores from mangrove-dominated coastal lagoons (Celestún and Chelem) on the Yucatán Peninsula, Mexico, reveal the widespread coexistence of dissolved methane and sulfate. This observation is interesting since dissolved methane in porewaters is typically oxidized anaerobically by sulfate. To explain the observations we used a numerical transport-reaction model that was constrained by the field observations. The model suggests that methane in the upper sediments is produced in the sulfate reduction zone at rates ranging between 0.012 and 31 mmol m−2 d−1, concurrent with sulfate reduction rates between 1.1 and 24 mmol SO42− m−2 d−1. These processes are supported by high organic matter content in the sediment and the use of non-competitive substrates by methanogenic microorganisms. Indeed sediment slurry incubation experiments show that non-competitive substrates such as trimethylamine (TMA) and methanol can be utilized for microbial methanogenesis at the study sites. The model also indicates that a significant fraction of methane is transported to the sulfate reduction zone from deeper zones within the sedimentary column by rising bubbles and gas dissolution. The shallow depths of methane production and the fast rising methane gas bubbles reduce the likelihood for oxidation, thereby allowing a large fraction of the methane formed in the sediments to escape to the overlying water column.

  18. Structural equation modelling reveals factors regulating surface sediment organic carbon content and CO2 efflux in a subtropical mangrove.

    PubMed

    Ouyang, Xiaoguang; Lee, Shing Yip; Connolly, Rod M

    2017-02-01

    Mangroves are blue carbon ecosystems that sequester significant carbon but release CO2, and to a lesser extent CH4, from the sediment through oxidation of organic carbon or from overlying water when flooded. Previous studies, e.g. Leopold et al. (2015), have investigated sediment organic carbon (SOC) content and CO2 flux separately, but could not provide a holistic perspective for both components of blue carbon. Based on field data from a mangrove in southeast Queensland, Australia, we used a structural equation model to elucidate (1) the biotic and abiotic drivers of surface SOC (10cm) and sediment CO2 flux; (2) the effect of SOC on sediment CO2 flux; and (3) the covariation among the environmental drivers assessed. Sediment water content, the percentage of fine-grained sediment (<63μm), surface sediment chlorophyll and light condition collectively drive sediment CO2 flux, explaining 41% of their variation. Sediment water content, the percentage of fine sediment, season, landform setting, mangrove species, sediment salinity and chlorophyll collectively drive surface SOC, explaining 93% of its variance. Sediment water content and the percentage of fine sediment have a negative impact on sediment CO2 flux but a positive effect on surface SOC content, while sediment chlorophyll is a positive driver of both. Surface SOC was significantly higher in Avicennia marina (2994±186gm(-2), mean±SD) than in Rhizophora stylosa (2383±209gm(-2)). SOC was significantly higher in winter (2771±192gm(-2)) than in summer (2599±211gm(-2)). SOC significantly increased from creek-side (865±89gm(-2)) through mid (3298±137gm(-2)) to landward (3933±138gm(-2)) locations. Sediment salinity was a positive driver of SOC. Sediment CO2 flux without the influence of biogenic structures (crab burrows, aerial roots) averaged 15.4mmolm(-2)d(-1) in A. marina stands under dark conditions, lower than the global average dark flux (61mmolm(-2)d(-1)) for mangroves.

  19. Spatio-temporal variations in the composition of organic matter in surface sediments of a mangrove receiving shrimp farm effluents (New Caledonia).

    PubMed

    Aschenbroich, Adélaïde; Marchand, Cyril; Molnar, Nathalie; Deborde, Jonathan; Hubas, Cédric; Rybarczyk, Hervé; Meziane, Tarik

    2015-04-15

    In order to investigate spatio-temporal variations in the composition and origin of the benthic organic matter (OM) at the sediment surface in mangrove receiving shrimp farm effluents, fatty acid (FA) biomarkers, natural stable isotopes (δ(13)C and δ(15)N), C:N ratios and chlorophyll-a (chl-a) concentrations were determined during the active and the non-active period of the farm. Fatty acid compositions in surface sediments within the mangrove forest indicated that organic matter inputs varied along the year as a result of farm activity. Effluents were the source of fresh particulate organic matter for the mangrove, as evidenced by the unsaturated fatty acid (UFA) distribution. The anthropogenic MUFA 18:1ω9 was not only accumulated at the sediment surface in some parts of the mangrove, but was also exported to the seafront. Direct release of bacteria and enhanced in situ production of fungi, as revealed by specific FAs, stimulated mangrove litter decomposition under effluent runoff condition. Also, microalgae released from ponds contributed to maintain high benthic chl-a concentrations in mangrove sediments in winter and to a shift in microphytobenthic community assemblage. Primary production was high whether the farm released effluent or not which questioned the temporary effect of shrimp farm effluent on benthic microalgae dynamic. This study outlined that mangrove benthic organic matter was qualitatively and quantitatively affected by shrimp farm effluent release and that responses to environmental condition changes likely depended on mangrove stand characteristics.

  20. Differences in benthic fauna and sediment among mangrove ( Avicennia marina var. australasica) stands of different ages in New Zealand

    NASA Astrophysics Data System (ADS)

    Morrisey, D. J.; Skilleter, G. A.; Ellis, J. I.; Burns, B. R.; Kemp, C. E.; Burt, K.

    2003-03-01

    Management of coastal environments requires understanding of ecological relationships among different habitats and their biotas. Changes in abundance and distribution of mangroves, like those of other coastal habitats, have generally been interpreted in terms of changes in biodiversity or fisheries resources within individual stands. In several parts of their range, anthropogenically increased inputs of sediment to estuaries have led to the spread of mangroves. There is, however, little information on the relative ecological properties, or conservational values, of stands of different ages. The faunal, floral and sedimentological properties of mangrove ( Avicennia marina var. australasica) stands of two different ages in New Zealand has been compared. Older (>60 years) and younger (3-12 years) stands showed clear separation on the basis of environmental characteristics and benthic macrofauna. Numbers of faunal taxa were generally larger at younger sites, and numbers of individuals of several taxa were also larger at these sites. The total number of individuals was not different between the two age-classes, largely due to the presence of large numbers of the surface-living gastropod Potamopyrgus antipodarum at the older sites. It is hypothesized that as mangrove stands mature, the focus of faunal diversity may shift from the benthos to animals living on the mangrove plants themselves, such as insects and spiders, though these were not included in the present study. Differences in the faunas were coincident with differences in the nature of the sediment. Sediments in older stands were more compacted and contained more organic matter and leaf litter. Measurement of leaf chemistry suggested that mangrove plants in the younger stands were able to take up more N and P than those in the older stands.

  1. Impacts of mangrove density on surface sediment accretion, belowground biomass and biogeochemistry in Puttalam Lagoon, Sri Lanka

    USGS Publications Warehouse

    Phillips, D.H.; Kumara, M.P.; Jayatissa, L.P.; Krauss, Ken W.; Huxham, M.

    2017-01-01

    Understanding the effects of seedling density on sediment accretion, biogeochemistry and belowground biomass in mangrove systems can help explain ecological functioning and inform appropriate planting densities during restoration or climate change mitigation programs. The objectives of this study were to examine: 1) impacts of mangrove seedling density on surface sediment accretion, texture, belowground biomass and biogeochemistry, and 2) origins of the carbon (C) supplied to the mangroves in Palakuda, Puttalam Lagoon, Sri Lanka. Rhizophora mucronata propagules were planted at densities of 6.96, 3.26, 1.93 and 0.95 seedlings m−2along with an unplanted control (0 seedlings m−2). The highest seedling density generally had higher sediment accretion rates, finer sediments, higher belowground biomass, greatest number of fine roots and highest concentrations of C and nitrogen (N) (and the lowest C/N ratio). Sediment accretion rates, belowground biomass (over 1370 days), and C and N concentrations differed significantly between seedling densities. Fine roots were significantly greater compared to medium and coarse roots across all plantation densities. Sulphur and carbon stable isotopes did not vary significantly between different density treatments. Isotope signatures suggest surface sediment C (to a depth of 1 cm) is not derived predominantly from the trees, but from seagrass adjacent to the site.

  2. Effectiveness of remediation of metal-contaminated mangrove sediments (Sydney estuary, Australia).

    PubMed

    Birch, Gavin; Nath, Bibhash; Chaudhuri, Punarbasu

    2015-04-01

    Industrial activities and urbanization have had a major consequence for estuarine ecosystem health and water quality globally. Likewise, Sydney estuary has been significantly impacted by widespread, poor industrial practices in the past, and remediation of legacy contaminants have been undertaken in limited parts of this waterway. The objective of the present investigation was to determine the effectiveness of remediation of a former Pb-contaminated industrial site in Homebush Bay on Sydney estuary (Australia) through sampling of inter-tidal sediments and mangrove (Avicennia marina) tissue (fine nutritive roots, pneumatophores, and leaves). Results indicate that since remediation 6 years previously, Pb and other metals (Cu, Ni and Zn) in surficial sediment have increased to concentrations that approach pre-remediation levels and that they were considerably higher than pre-settlement levels (3-30 times), as well as at the reference site. Most metals were compartmentalized in fine nutritive roots with bio-concentration factors greater than unity, while tissues of pneumatophores and leaves contained low metal concentrations. Lead concentrations in fine nutritive root, pneumatophore, and leaf tissue of mangroves from the remediated site were similar to trees in un-remediated sites of the estuary and were substantially higher than plants at the reference site. The situation for Zn in fine nutritive root tissue was similar. The source of the metals was either surface/subsurface water from the catchment or more likely remobilized contaminated sediment from un-remediated parts of Homebush Bay. Results of this study demonstrate the problems facing management in attempting to reduce contamination in small parts of a large impacted area to concentrations below local base level.

  3. Responses of bacterial and archaeal communities to nitrate stimulation after oil pollution in mangrove sediment revealed by Illumina sequencing.

    PubMed

    Wang, Lei; Huang, Xu; Zheng, Tian-Ling

    2016-08-15

    This study aimed to investigate microbial responses to nitrate stimulation in oiled mangrove mesocosm. Both supplementary oil and nitrate changed the water and sediment chemical properties contributing to the shift of microbial communities. Denitrifying genes nirS and nirK were increased several times by the interaction of oil spiking and nitrate addition. Bacterial chao1 was reduced by oil spiking and further by nitrate stimulation, whereas archaeal chao1 was only inhibited by oil pollution on early time. Sampling depth explained most of variation and significantly impacted bacterial and archaeal communities, while oil pollution only significantly impacted bacterial communities (p<0.05). Despite explaining less variation, nitrate addition coupled with oil spiking enhanced the growth of hydrocarbon degraders in mangrove. The findings demonstrate the impacts of environmental factors and their interactions in shaping microbial communities during nitrate stimulation. Our study suggests introducing genera Desulfotignum and Marinobacter into oiled mangrove for bioaugmentation.

  4. Ecotoxicological impact assessment of some heavy metals and their distribution in some fractions of mangrove sediments from Red Sea, Egypt.

    PubMed

    El-Said, Ghada F; Youssef, Doaa H

    2013-01-01

    The total and fraction concentrations of heavy metals (Mn, Cu, Ni, Pb, Co, and Cd) were analyzed in some sediment fractions (Φ2, Φ3, Φ4, Φ5) of selected mangrove ecosystems collected from the Egyptian Red Sea shoreline. The results revealed that manganese had the highest mean value (133 ± 97 mg/kg) followed by copper (49.9 ± 46.0 mg/kg), nickel (28.1 ± 11.8 mg/kg), lead (19 ± 13 mg/kg), cobalt (6.7 ± 4.0 mg/kg), and cadmium (3.327 ± 1.280 mg/kg). The concentrations of heavy metals in the different sediment fractions showed that there was a preferential accumulation of Cu, Co, Mn, and to a lesser degree Cd in the silt and clay fractions rather than in the sand-sized. The sediment quality was performed by using some sediment quality guidelines. Additionally, the contamination and the risk assessment of these heavy metals were achieved by different methods including, potential ecological risk index, contamination factor, pollution load index, and geoaccumulation index. According to the Sediment Quality Guidelines comparisons, the concentrations of Mn and Pb were low and showed no possibility of detrimental effects on the local environment. The levels of Cu and Ni were high, however, could not be considered to present serious threat to the mangrove ecosystem. The data showed that the mangrove ecosystems were affected by the Cd risk.

  5. Tropical mangrove sediments as a natural inoculum for efficient electroactive biofilms.

    PubMed

    Salvin, Paule; Roos, Christophe; Robert, Florent

    2012-09-01

    Chronoamperometry is known to be an efficient way to form electroactive biofilms (EAB) on conductive electrodes. For the first time, tropical mangrove sediments are analyzed as a potential inoculum to form MFC anodes with the use of acetate as substrate. The performance of the EAB-coated carbon cloth electrodes are evaluated according to the maximal current density, the coulombic efficiency and the cyclic voltammogramms. Working electrodes (WE) polarized at -0.2V/SCE gave better results compared to -0.4V/SCE and 0.0 V/SCE. The maximal current density attained was 12A/m(2) with a CE of 24%. Contributions of the EAB in the generation of current were discussed and mechanisms of electronic transfer by the bacteria were discussed. Epifluorescence and SEM images showed the evolution of the biofilms on the electrode surface and the heterogeneity of the structure.

  6. Electrochemical and microbial monitoring of multi-generational electroactive biofilms formed from mangrove sediment.

    PubMed

    Rivalland, Caroline; Madhkour, Sonia; Salvin, Paule; Robert, Florent

    2015-12-01

    Electroactive biofilms were formed from French Guiana mangrove sediments for the analysis of bacterial communities' composition. The electrochemical monitoring of three biofilm generations revealed that the bacterial selection occurring at the anode, supposedly leading microbial electrochemical systems (MESs) to be more efficient, was not the only parameter to be taken into account so as to get the best electrical performance (maximum current density). Indeed, first biofilm generations produced a stable current density reaching about 18 A/m(2) while second and third generations produced current densities of about 10 A/m(2). MES bacterial consortia were characterized thanks to molecular biology techniques: DGGE and MiSeq® sequencing (Illumina®). High-throughput sequencing data statistical analysis confirmed preliminary DGGE data analysis, showing strong similarities between electroactive biofilms of second and third generations, but also revealing both selection and stabilization of the biofilms.

  7. Diversity and abundance of ammonia-oxidizing archaea and bacteria in polluted mangrove sediment.

    PubMed

    Cao, Huiluo; Li, Meng; Hong, Yiguo; Gu, Ji-Dong

    2011-11-01

    Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. Recent research results show that ammonia-oxidizing archaea (AOA) are both abundant and diverse in a range of ecosystems. In this study, we examined the abundance and diversity of AOA and ammonia-oxidizing beta-proteobacteria (AOB) in estuarine sediments in Hong Kong for two seasons using the ammonia monooxygenase A subunit gene (amoA) as molecular biomarker. Relationships between diversity and abundance of AOA and AOB and physicochemical parameters were also explored. AOB were more diverse but less abundant than AOA. A few phylogenetically distinct amoA gene clusters were evident for both AOA and AOB from the mangrove sediment. Pearson moment correlation analysis and canonical correspondence analysis (CCA) were used to explore physicochemical parameters potentially important to AOA and AOB. Metal concentrations were proposed to contribute potentially to the distributions of AOA while total phosphorus (TP) was correlated to the distributions of AOB. Quantitative PCR estimates indicated that AOA were more abundant than AOB in all samples, but the ratio of AOA/AOB (from 1.8 to 6.3) was smaller than most other studies by one to two orders. The abundance of AOA or AOB was correlated with pH and temperature while the AOA/AOB ratio was with the concentrations of ammonium. Several physicochemical factors, rather than any single one, affect the distribution patterns suggesting that a combination of factors is involved in shaping the dynamics of AOA and AOB in the mangrove ecosystem. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. Organic geochemistry and pore water chemistry of sediments from Mangrove Lake, Bermuda

    USGS Publications Warehouse

    Hatcher, P.G.; Simoneit, B.R.T.; MacKenzie, F.T.; Neumann, A.C.; Thorstenson, D.C.; Gerchakov, S.M.

    1982-01-01

    Mangrove Lake, Bermuda, is a small coastal, brackish-water lake that has accumulated 14 m of banded, gelatinous, sapropelic sediments in less than 104 yr. Stratigraphic evidence indicates that Mangrove Lake's sedimentary environment has undergone three major depositional changes (peat, freshwater gel, brackish-water gel) as a result of sea level changes. The deposits were examined geochemically in an effort to delineate sedimentological and diagenetic changes. Gas and pore water studies include measurements of sulfides, ammonia, methane, nitrogen gas, calcium, magnesium, chloride, alkalinity, and pH. Results indicate that sulfate reduction is complete, and some evidence is presented for bacterial denitrification and metal sulfide precipitation. The organic-rich sapropel is predominantly algal in origin, composed mostly of carbohydrates and insoluble macromolecular organic matter called humin with minor amounts of proteins, lipids, and humic acids. Carbohydrates and proteins undergo hydrolysis with depth in the marine sapropel but tend to be preserved in the freshwater sapropel. The humin, which has a predominantly aliphatic structure, increases linearly with depth and composes the greatest fraction of the organic matter. Humic acids are minor components and are more like polysaccharides than typical marine humic acids. Fatty acid distributions reveal that the lipids are of an algal and/or terrestrial plant source. Normal alkanes with a total concentration of 75 ppm exhibit two distribution maxima. One is centered about n-C22 with no odd/even predominance, suggestive of a degraded algal source. The other is centered at n-C31 with a distinct odd/even predominance indicative of a vascular plant origin. Stratigraphic changes in the sediment correlate to observed changes in the gas and pore water chemistry and the organic geochemistry. ?? 1982.

  9. Micro-spatial variation of elemental distribution in estuarine sediment and their accumulation in mangroves of Indian Sundarban.

    PubMed

    Bakshi, Madhurima; Ram, S S; Ghosh, Somdeep; Chakraborty, Anindita; Sudarshan, M; Chaudhuri, Punarbasu

    2017-05-01

    This work describes the micro-spatial variation of elemental distribution in estuarine sediment and bioaccumulation of those elements in different mangrove species of the Indian Sundarbans. The potential ecological risk due to such elemental load on this mangrove-dominated habitat is also discussed. The concentrations of elements in mangrove leaves and sediments were determined using energy-dispersive X-ray fluorescence spectroscopy. Sediment quality and potential ecological risks were assessed from the calculated indices. Our data reflects higher concentration of elements, e.g., Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb, in the sediment, as compared to that reported by earlier workers. Biological concentration factors for K, Ca, Mn, Fe, Cu, and Zn in different mangroves indicated gradual elemental bioaccumulation in leaf tissues (0.002-1.442). Significant variation was observed for elements, e.g., Ni, Mn, and Ca, in the sediments of all the sites, whereas in the plants, significant variation was found for P, S, Cl, K, Ca, Mn, Fe, Cu, and Zn. This was mostly due to the differences in uptake and accumulation potential of the plants. Various sediment quality indices suggested the surface sediments to be moderately contaminated and suffering from progressive deterioration. Cu, Cr, Zn, Mn, and Ni showed higher enrichment factors (0.658-1.469), contamination factors (1.02-2.7), and geo-accumulation index (0.043-0.846) values. The potential ecological risk index values considering Cu, Cr, Pb, and Zn were found to be within "low ecological risk" category (20.04-24.01). However, Cr and Ni in the Sundarban mangroves exceeded the effect range low and probable effect level limits. Strong correlation of Zn with Fe and K was observed, reflecting their similar transportation and accumulation process in both sediment and plant systems. The plant-sediment elemental correlation was found to be highly non-linear, suggesting role of some physiological and edaphic factors in

  10. Kinetics of trace metal removal from tidal water by mangrove sediments under different redox conditions

    NASA Astrophysics Data System (ADS)

    Suzuki, K. N.; Machado, E. C.; Machado, W.; Bellido, A. V. B.; Bellido, L. F.; Osso, J. A.; Lopes, R. T.

    2014-02-01

    The extent in which redox conditions can affect the removal kinetics of 58Co and 65Zn from tidal water by mangrove sediments was evaluated in microcosm experiments, simulating a tidal flooding period of 6 h. The average half-removal time (t1/2) of 58Co from overlaying water was slightly higher (7.3 h) under an N2-purged water column than under an aerated water column (5.4 h). A lower difference was found for 65Zn (1.9 h vs. 1.5 h, respectively). Average removals of 58Co activities from water were 54.6% (N2 treatment) and 43.5% (aeration treatment), whereas these values were 88.0% and 92.7% for 65Zn, respectively. Very contrasting sorption kinetics of different radiotracers occurred, while more oxidising conditions favoured only a slightly higher removal. Average 58Co and 65Zn inventories within sediments were 30.4% and 18.8% higher in the aeration treatment, respectively. A stronger particle-reactive behaviour was found for 65Zn that was less redox-sensitive and more efficiently removed by sediments than 58Co.

  11. Using orthogonal design to determine optimal conditions for biodegradation of phenanthrene in mangrove sediment slurry.

    PubMed

    Chen, Jian Lin; Au, Kwai Chi; Wong, Yuk Shan; Tam, Nora Fung Yee

    2010-04-15

    In the present paper, the effects of four factors, each at three levels, on biodegradation of phenanthrene, a 3-ring PAH, in contaminated mangrove sediment slurry were investigated using the orthogonal experimental design. The factors and levels were (i) sediment types (clay loam, clayey and sandy); (ii) different inoculums (Sphingomonas sp., a mixture of Sphingomonas sp. and Mycobacterium sp., and without inoculum); (iii) presence of other PAHs (fluorene, pyrene, and none); and (iv) different salinities (5, 15 and 25 ppt). Variance analysis based on the percentages of Phe biodegradation showed that the presence of other PAHs had little effect on phenanthrene biodegradation. The kinetics of phenanthrene biodegradation in all experiments was best fitted by the first order rate model. The highest first order rate constant, k value was 0.1172 h(-1) with 97% Phe degradation; while the lowest k value was 0.0004 and phenanthrene was not degraded throughout the 7-d experiment. The p values of k for the four factors followed the same trend as that for the biodegradation percentage. Difference analysis revealed that optimal phenanthrene biodegradation would take place in clay loam sediment slurry at low salinity (5 to 15 ppt) with the inoculation of both Sphingomonas sp. and Mycobacterium sp.

  12. Screening of novel actinobacteria and characterization of the potential isolates from mangrove sediment of south coastal India.

    PubMed

    Arumugam, T; Senthil Kumar, P; Kameshwar, R; Prapanchana, K

    2017-03-30

    The importance of the current research is to investigate the different types of samples from the various mangrove sediments; as source of actinobacteria from the mangrove wet soil. Potential isolate screening by antimicrobial activity and identified actinobacteria was characterized based on cultural morphology, physiological and biochemical characteristics. Three different types of media were used to isolate actinobacteria from various geographical region of mangrove soil sediment and the genotype locus was recognized by 16S rDNA. Totally 144 actinobacteria isolates were recovered from 10 samples using three media. The most active culture media in the isolation of actinobacteria were ISP2 and Glycerol Yeast Extract Agar. Among 144 isolates, 38 isolates (26.38%) exhibited antimicrobial activity. Out of 38 isolates, potentially active 2 cultures were further supported for morphological and biochemical characterization analysis. Most of the isolates were produced pharmaceutically important enzymes such as protease, amylase, lipase, cellulose and also revealed antimicrobial activity against tested microorganism. The enriched salt, pH and temperature tolerance of the actinobacteria isolates to discharge commercially valuable primary and secondary bioactive metabolites. The present results functionally characterize novel mangrove actinobacteria and their metabolites for commercial interest in pharmaceutical industry.

  13. Effect of data pre-treatment procedures on principal component analysis: a case study for mangrove surface sediment datasets.

    PubMed

    Praveena, Sarva Mangala; Kwan, Ong Wei; Aris, Ahmad Zaharin

    2012-11-01

    Principal component analysis (PCA) is capable of handling large sets of data. However, lack of consistent method in data pre-treatment and its importance are the limitations in PCA applications. This study examined pre-treatments methods (log (x + 1) transformation, outlier removal, and granulometric and geochemical normalization) on dataset of Mengkabong Lagoon, Sabah, mangrove surface sediment at high and low tides. The study revealed that geochemical normalization using Al with outliers removal resulted in a better classification of the mangrove surface sediment than that outliers removal, granulometric normalization using clay and log (x + 1) transformation. PCA output using geochemical normalization with outliers removal demonstrated associations between environmental variables and tides of mangrove surface sediment, Mengkabong Lagoon, Sabah. The PCA outputs at high and low tides also provided to better interpret information about the sediment and its controlling factors in the intertidal zone. The study showed data pre-treatment method to be a useful procedure to standardize the datasets and reducing the influence of outliers.

  14. Profiles and inventories of organic pollutants in sediments from the central Beibu Gulf and its coastal mangroves.

    PubMed

    Kaiser, David; Schulz-Bull, Detlef E; Waniek, Joanna J

    2016-06-01

    Sediment cores from the central Beibu Gulf and its northern coastal mangroves were analyzed for polycyclic aromatic hydrocarbons (PAH), the organo-chlorine pesticides dichlorodiphenyltrichloroethane (DDT) and hexachlorobenzene (HCB), and polychlorinated biphenyls (PCB), to reconstruct the organic pollution history of developing south-west China. Reflecting regional development, in the gulf ∑PAH (38-74 ng g(-1)) decreased towards the surface after peak concentrations near 10 cm, while ∑DDT (ND - 0.5 ng g(-1)) increased due to fresh inputs, and HCB (ND - 0.04 ng g(-1)) occurred only in surface sediments. Profiles in mangrove sediments showed a continuing local scale increase in ∑PAH (29-438 ng g(-1)) as well as ∑DDT (0.2-41.0 ng g(-1)) and HCB (0.01-1.01 ng g(-1)) pollution, despite some variability. No trend was evident for ∑PCB (ND - 0.22 ng g(-1)), which was not detected in the central gulf. Calculated loads estimate that 2816 ng cm(-2) PAHs and 7 ng cm(-2) DDTs are stored in depositional areas of the Beibu Gulf. Mangrove sediments, threatened by land-use-change, contain 1400-4600 ng cm(-2) PAHs and 34-39 ng cm(-2) DDTs.

  15. Ecological risk assessments and context-dependence analysis of heavy metal contamination in the sediments of mangrove swamp in Leizhou Peninsula, China.

    PubMed

    Liu, Jing; Ma, Keming; Qu, Laiye

    2015-11-15

    Sediments in eight types of mangroves were sampled in the Leizhou Peninsula. Heavy metals were analyzed to investigate the effects on metal distribution of mangrove communities, to evaluate contamination levels, identify sources and relationships between the two. Results showed that mangrove communities have effects on most heavy metal distributions in sediments, especially in the sediment with shrub communities of Aegiceras corniculatum where the contents of many metals are highest. As, Cr and Ni were identified as metal pollutants of primary concern, while Cd was of no concern. Zn, Pb, As mainly originated from anthropogenic source while the other metals are geogenic. Heavy metal distributions were affected by the independent and joint effects of landscape and sediment context; landscape context explains more variations in heavy metals than does sediment physicochemical variables. Total sulfur, total phosphorus and total potassium in sediment, and the existence of paddy field and forest land within 2000m around the sampling sites are significant variables also.

  16. Insight into the long-term effect of mangrove species on removal of polybrominated diphenyl ethers (PBDEs) from BDE-47 contaminated sediments.

    PubMed

    Chen, Juan; Wang, Chao; Shen, Zhi-Jun; Gao, Gui-Feng; Zheng, Hai-Lei

    2017-01-01

    Polybrominated diphenyl ethers (PBDEs) have become ubiquitous environmental contaminants, particularly in mangrove wetlands. However, little is known about the long-term effect of mangrove plants on PBDE removal from contaminated sediments. A 12-month microcosm experiment was conducted to understand the effect of two mangrove species, namely Avicennia marina (Am) and Aegiceras corniculatum (Ac), on PBDE removal from the sediments spiked with 2000ngg(-1) dry weight of BDE-47, and to explore the microbial mechanism responsible for the planting-induced effects on BDE-47 removal. Results showed that planting of mangrove species, either Am or Ac, could accelerate BDE-47 removal from contaminated sediments during the 12months experiment, mainly through enhancing microbial degradation process. In particular, Am sediment had significantly higher BDE-47 degradation efficiency compared with Ac sediment, which may be mainly attributed to higher activities of urease and dehydrogenase, as well as higher 16S rRNA gene copies of total bacteria and organohalide-respiring bacteria (OHRB) in Am sediment. Moreover, planting could shift sediment bacterial community composition and selectively enrich some bacterial genera responsible for PBDE degradation. Such selective enrichment effect of Am on the potential PBDE-degrading bacteria differed distinctly from that of Ac. These results indicated that long-term planting of mangrove species, especially Am, could significantly promote BDE-47 removal from the contaminated sediments by enhancing microbial activity, increasing total bacterial and OHRB abundances and altering bacterial community composition.

  17. Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatán, Mexico

    NASA Astrophysics Data System (ADS)

    Chuang, P.-C.; Young, M. B.; Miller, L. G.; Herrera-Silveira, J. A.; Paytan, A.

    2015-11-01

    Methane, sulfate and chloride concentrations in sediment porewater from two coastal mangrove ecosystems (Celestún and Chelem Lagoons) on the Yucatán Peninsula, Mexico were measured. In these sediments methane exists in shallow sediments where sulfate is not depleted, and sulfate reduction is actively occurring. A transport-reaction model depicting the various production and consumption processes for methane and sulfate is used to elucidate processes responsible for this observation. The model illustrates that methane in the upper sediments is produced in-situ supported by high dissolved organic matter as well as by non-competitive substrates. In addition methane is contributed to porewater in the upper sediments, where sulfate reduction occurs, by transport from deeper zones within the sedimentary column through bubbles dissolution and diffusion. The shallow methane production and accumulation depths in these sediments promote high methane fluxes to the water column and atmosphere.

  18. Test system for exposing fish to resuspended, contaminated sediment

    USGS Publications Warehouse

    Cope, W.G.; Wiener, J.G.; Steingraeber, M.T.

    1996-01-01

    We describe a new test system for exposing fish to resuspended sediments and associated contaminants. Test sediments were resuspended by revolving test chambers on rotating shafts driven by an electric motor. The timing, speed, and duration of test-chamber revolution were controlled by a rheostat and electronic timer. Each chamber held 45 litres of water and accommodated about 49 g of test fish. The system described had three water baths, each holding six test chambers. We illustrate the performance of this system with results from a 28-day test in which juvenile bluegills Lepomis macrochirus were exposed to resuspended, riverine sediments differing in texture and cadmium content. The test had one sediment-free control and five sediment treatments, with three replicates (chambers) per treatment and 25 fish per replicate. Two-thirds (30 litres) of the test water and sediment in each chamber was renewed weekly. The mean concentration of total suspended solids (TSS) did not vary among treatments; the grand-mean TSS in the five sediment treatments was 975 mg litre−1, similar to the target TSS of 1000 mg litre−1. At the end of the test, an average of 50% of the introduced cadmium was associated with the suspended sediment compartment, whereas the filtered (0.45 μm) water contained 0.4% and bluegills 1.8% of the cadmium.

  19. Seasonal dynamics of ammonia/ammonium-oxidizing prokaryotes in oxic and anoxic wetland sediments of subtropical coastal mangrove.

    PubMed

    Wang, Yong-Feng; Feng, Yao-Yu; Ma, Xiaojun; Gu, Ji-Dong

    2013-09-01

    Mangrove wetlands are an important ecosystem in tropical and subtropical regions, and the sediments may contain both oxic and anoxic zones. In this study, ammonia/ammonium-oxidizing prokaryotes (AOPs) in yellow and black sediments with vegetation and non-vegetated sediments in a mangrove wetland of subtropical Hong Kong were investigated in winter and summer. The phylogenetic diversity of anammox bacterial 16S rRNA genes and archaeal and bacterial amoA genes (encoding ammonia monooxygenase alpha-subunit) were analyzed using PCR amplification and denaturing gradient gel electrophoresis to reveal their community structures. Quantitative PCR was also used to detect their gene abundances. The results showed that seasonality had little effect, but sediment type had a noticeable influence on the community structures and abundances of anammox bacteria. For ammonia-oxidizing archaea (AOA), seasonality had a small effect on their community structures, but a significant effect on their abundances: AOA amoA genes were significantly higher in winter than in summer. In winter, the vegetated yellow sediments had lower AOA amoA genes than the other types of sediments, but in summer, the vegetated yellow sediments had higher AOA amoA genes than the other types of sediments. Sediment type had no apparent effect on AOA community structures in winter. In summer, however, the vegetated yellow sediments showed obviously different AOA community structures from the other types of sediments. For ammonia-oxidizing bacteria (AOB), seasonality had a significant effect on their community structures and abundances: AOB amoA genes in winter were apparently higher than in summer, and AOB community structures were different between winter and summer. Sediment type had little effect on AOB community structures, but had a noticeable effect on the abundances: AOB amoA genes of the vegetated yellow sediments were obviously lower than the black ones in both seasons. This study has demonstrated that

  20. Biodegradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments.

    PubMed

    Shahriari Moghadam, Mohsen; Ebrahimipour, Gholamhossein; Abtahi, Behrooz; Ghassempour, Alireza; Hashtroudi, Mehri Seyed

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) biodegradation in contaminated sediment is an attractive remediation technique and its success depends on the optimal condition for the PAH-degrading isolates. The aims of the current study was to isolate and identify PAHs-degrading bacteria from surface sediments of Nayband Bay and to evaluate the efficiency of statistically based experimental design for the optimization of phenanthrene (Phe) and Fluorene (Flu) biodegradation performed by enriched consortium. PAHs degrading bacteria were isolated from surface sediments. Purified strains were then identified by 16S rDNA gene sequence analysis. Taguchi L16 (4(5)) was employed to evaluate the optimum biodegradation of Phe and Flu by the enriched consortium. Total of six gram-negative bacterial strains including Marinobacter hydrocarbonoclasticus, Roseovarius pacificus, Pseudidiomarina sediminum and 3 unidentified strains were isolated from enrichment consortium, using Fluorene (Flu) and phenanthrene (Phe) as the sole carbon and energy source. The enriched consortium showed highest degradation abilities (64.0% Flu and 58.4% Phe degraded in 7 days) in comparison to a single strain cultures or mixtures. Maximum biodegradation efficiency was occur at temperature = 35°C; pH = 8; inoculum size = 0. 4 OD600nm; salinity = 40 ppt; C/N ratio = 100:10. In conclusion our results showed that, indigenous bacteria from mangrove surface sediments of Nayband Bay have high potential to degrade Flu and Phe with the best results achieved when enriched consortium was used.

  1. Mechanisms of damage to corals exposed to sedimentation.

    PubMed

    Weber, Miriam; de Beer, Dirk; Lott, Christian; Polerecky, Lubos; Kohls, Katharina; Abed, Raeid M M; Ferdelman, Timothy G; Fabricius, Katharina E

    2012-06-12

    We investigated the mechanisms leading to rapid death of corals when exposed to runoff and resuspended sediments, postulating that the killing was microbially mediated. Microsensor measurements were conducted in mesocosm experiments and in naturally accumulated sediment on corals. In organic-rich, but not in organic-poor sediment, pH and oxygen started to decrease as soon as the sediment accumulated on the coral. Organic-rich sediments caused tissue degradation within 1 d, whereas organic-poor sediments had no effect after 6 d. In the harmful organic-rich sediment, hydrogen sulfide concentrations were low initially but increased progressively because of the degradation of coral mucus and dead tissue. Dark incubations of corals showed that separate exposures to darkness, anoxia, and low pH did not cause mortality within 4 d. However, the combination of anoxia and low pH led to colony death within 24 h. When hydrogen sulfide was added after 12 h of anoxia and low pH, colonies died after an additional 3 h. We suggest that sedimentation kills corals through microbial processes triggered by the organic matter in the sediments, namely respiration and presumably fermentation and desulfurylation of products from tissue degradation. First, increased microbial respiration results in reduced O(2) and pH, initiating tissue degradation. Subsequently, the hydrogen sulfide formed by bacterial decomposition of coral tissue and mucus diffuses to the neighboring tissues, accelerating the spread of colony mortality. Our data suggest that the organic enrichment of coastal sediments is a key process in the degradation of coral reefs exposed to terrestrial runoff.

  2. Organic carbon burial rates in mangrove sediments: Strengthening the global budget

    NASA Astrophysics Data System (ADS)

    Breithaupt, Joshua L.; Smoak, Joseph M.; Smith, Thomas J., III; Sanders, Christian J.; Hoare, Armando

    2012-09-01

    Mangrove wetlands exist in the transition zone between terrestrial and marine environments and as such were historically overlooked in discussions of terrestrial and marine carbon cycling. In recent decades, mangroves have increasingly been credited with producing and burying large quantities of organic carbon (OC). The amount of available data regarding OC burial in mangrove soils has more than doubled since the last primary literature review (2003). This includes data from some of the largest, most developed mangrove forests in the world, providing an opportunity to strengthen the global estimate. First-time representation is now included for mangroves in Brazil, Colombia, Malaysia, Indonesia, China, Japan, Vietnam, and Thailand, along with additional data from Mexico and the United States. Our objective is to recalculate the centennial-scale burial rate of OC at both the local and global scales. Quantification of this rate enables better understanding of the current carbon sink capacity of mangroves as well as helps to quantify and/or validate the other aspects of the mangrove carbon budget such as import, export, and remineralization. Statistical analysis of the data supports use of the geometric mean as the most reliable central tendency measurement. Our estimate is that mangrove systems bury 163 (+40; -31) g OC m-2 yr-1 (95% C.I.). Globally, the 95% confidence interval for the annual burial rate is 26.1 (+6.3; -5.1) Tg OC. This equates to a burial fraction that is 42% larger than that of the most recent mangrove carbon budget (2008), and represents 10-15% of estimated annual mangrove production. This global rate supports previous conclusions that, on a centennial time scale, 8-15% of all OC burial in marine settings occurs in mangrove systems.

  3. Organic carbon burial rates in mangrove sediments: strengthening the global budget

    USGS Publications Warehouse

    Breithaupt, J.; Smoak, Joseph M.; Smith, Thomas J.; Sanders, Christian J.; Hoare, Armando

    2012-01-01

    Mangrove wetlands exist in the transition zone between terrestrial and marine environments and as such were historically overlooked in discussions of terrestrial and marine carbon cycling. In recent decades, mangroves have increasingly been credited with producing and burying large quantities of organic carbon (OC). The amount of available data regarding OC burial in mangrove soils has more than doubled since the last primary literature review (2003). This includes data from some of the largest, most developed mangrove forests in the world, providing an opportunity to strengthen the global estimate. First-time representation is now included for mangroves in Brazil, Colombia, Malaysia, Indonesia, China, Japan, Vietnam, and Thailand, along with additional data from Mexico and the United States. Our objective is to recalculate the centennial-scale burial rate of OC at both the local and global scales. Quantification of this rate enables better understanding of the current carbon sink capacity of mangroves as well as helps to quantify and/or validate the other aspects of the mangrove carbon budget such as import, export, and remineralization. Statistical analysis of the data supports use of the geometric mean as the most reliable central tendency measurement. Our estimate is that mangrove systems bury 163 (+40; -31) g OC m-2 yr-1 (95% C.I.). Globally, the 95% confidence interval for the annual burial rate is 26.1 (+6.3; -5.1) Tg OC. This equates to a burial fraction that is 42% larger than that of the most recent mangrove carbon budget (2008), and represents 10–15% of estimated annual mangrove production. This global rate supports previous conclusions that, on a centennial time scale, 8–15% of all OC burial in marine settings occurs in mangrove systems.

  4. Vertical distribution and anaerobic biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments in Hong Kong, South China.

    PubMed

    Li, Chun-Hua; Zhou, Hong-Wei; Wong, Yuk-Shan; Tam, Nora Fung-Yee

    2009-10-15

    The vertical distribution of polycyclic aromatic hydrocarbons (PAHs) at different sediment depths, namely 0-2 cm, 2-4 cm, 4-6 cm, 6-10 cm, 10-15 cm and 15-20 cm, in one of the most contaminated mangrove swamps, Ma Wan, Hong Kong was investigated. It was the first time to study the intrinsic potential of deep sediment to biodegrade PAHs under anaerobic conditions and the abundance of electron acceptors in sediment for anaerobic degradation. Results showed that the total PAHs concentrations (summation of 16 US EPA priority PAHs) increased with sediment depth. The lowest concentration (about 1300 ng g(-1) freeze-dried sediment) and the highest value (around 5000 ng g(-1) freeze-dried sediment) were found in the surface layer (0-2 cm) and deeper layer (10-15 cm), respectively. The percentage of high molecular weight (HMW) PAHs (4 to 6 rings) to total PAHs was more than 89% at all sediment depths. The ratio of phenanthrene to anthracene was less than 10 while fluoranthene to pyrene was around 1. Negative redox potentials (Eh) were recorded in all of the sediment samples, ranging from -170 to -200 mv, with a sharp decrease at a depth of 6 cm then declined slowly to 20 cm. The results suggested that HMW PAHs originated from diesel-powered fishing vessels and were mainly accumulated in deep anaerobic sediments. Among the electron acceptors commonly used by anaerobic bacteria, sulfate was the most dominant, followed by iron(III), nitrate and manganese(IV) was the least. Their concentrations also decreased with sediment depth. The population size of total anaerobic heterotrophic bacteria increased with sediment depth, reaching the peak number in the middle layer (4-6 cm). In contrast, the aerobic heterotrophic bacterial count decreased with sediment depth. It was the first time to apply a modified electron transport system (ETS) method to evaluate the bacterial activities in the fresh sediment under PAH stress. The vertical drop of the ETS activity suggested that the

  5. Biodegradation of benzo[a]pyrene by bacterial consortium isolated from mangrove sediment.

    PubMed

    Aziz, A; Agamuthu, P; Alaribe, F O; Fauziah, S H

    2017-03-27

    Benzo[a]pyrene is a high-molecular-weight polycyclic aromatic hydrocarbon highly recalcitrant in nature and thus harms the ecosystem and/or human health. Therefore, its removal from the marine environment is crucial. This research focuses on benzo[a]pyrene degradation by using enriched bacterial isolates in consortium under saline conditions. Bacterial isolates capable of using benzo[a]pyrene as sole source of carbon and energy were isolated from enriched mangrove sediment. These isolates were identified as Ochrobactrum anthropi, Stenotrophomonas acidaminiphila, and Aeromonas salmonicida ss salmonicida. Isolated O. anthropi and S. acidaminiphila degraded 26% and 20%, respectively, of an initial benzo[a]pyrene concentration of 20 mg/L after 8 days of incubation in seawater (28 ppm of NaCl). Meanwhile, the bacterial consortium decomposed 41% of an initial 50 mg/L benzo[a]pyrene concentration after 8 days of incubation in seawater (28 ppm of NaCl). The degradation efficiency of benzo[a]pyrene increased to 54%, when phenanthrene was supplemented as a co-metabolic substrate. The order of biodegradation rate by temperature was 30°C > 25°C > 35°C. Our results suggest that co-metabolism by the consortium could be a promising biodegradation strategy for benzo[a]pyrene in seawater.

  6. Biohydrogen Production and Kinetic Modeling Using Sediment Microorganisms of Pichavaram Mangroves, India

    PubMed Central

    Mullai, P.; Sridevi, K.

    2013-01-01

    Mangrove sediments host rich assemblages of microorganisms, predominantly mixed bacterial cultures, which can be efficiently used for biohydrogen production through anaerobic dark fermentation. The influence of process parameters such as effect of initial glucose concentration, initial medium pH, and trace metal (Fe2+) concentration was investigated in this study. A maximum hydrogen yield of 2.34, 2.3, and 2.6 mol H2 mol−1 glucose, respectively, was obtained under the following set of optimal conditions: initial substrate concentration—10,000 mg L−1, initial pH—6.0, and ferrous sulphate concentration—100 mg L−1, respectively. The addition of trace metal to the medium (100 mg L−1 FeSO4 ·7H2O) enhanced the biohydrogen yield from 2.3 mol H2 mol−1 glucose to 2.6 mol H2 mol−1 glucose. Furthermore, the experimental data was subjected to kinetic analysis and the kinetic constants were estimated with the help of well-known kinetic models available in the literature, namely, Monod model, logistic model and Luedeking-Piret model. The model fitting was found to be in good agreement with the experimental observations, for all the models, with regression coefficient values >0.92. PMID:24319679

  7. Phylogenetic analysis and antimicrobial activities of Streptomyces isolates from mangrove sediment.

    PubMed

    Satheeja, Santhi V; Jebakumar, Solomon R D

    2011-02-01

    The phylogeny of members of Streptomyces bacteria isolated from mangrove sediments in the Manakudi estuary near the Arabian Sea, India, was analyzed in the present study. Among the 35 different isolates, five organisms, JS-9, JS-11, JS-12, JS-13 and JS-20, exhibited potent antimicrobial effects against methicillin-resistant Staphylococcus aureus (clinical isolate) and methicillin-susceptible S. aureus MTCC 3160 and Salmonella typhi MTCC 733; all other isolates displayed intermediate antimicrobial effects. RFLP analysis of HaeIII and BstUI double-digested 16S rRNA gene fragments of the isolates were distinguished into 20 distinct RFLP types, with the genetic similarity coefficient varying from 0.57 to 0.97. On average, 17 RFLP markers were observed from approximately 50 to 350 bp size and all the RFLP types showed significant genetic polymorphism by clustering into three major clusters. Phylogenetic analysis showed that the 20-member Streptomyces isolates were divided into three major clusters and they shared 97.2-99.8% sequence identity to the 16S rRNA gene sequences of the Streptomyces taxons of marine origin. The distribution of the isolates revealed that the distinct Streptomyces groups were clustered in the phylogenetic tree and there was a good correlation between the diversity of the antimicrobial phenotype and that of the 16S rRNA gene.

  8. Sodium chloride concentration determines exoelectrogens in anode biofilms occurring from mangrove-grown brackish sediment.

    PubMed

    Miyahara, Morio; Kouzuma, Atsushi; Watanabe, Kazuya

    2016-10-01

    Single-chamber microbial fuel cells (MFCs) were inoculated with mangrove-grown brackish sediment (MBS) and continuously supplied with an acetate medium containing different concentrations of NaCl (0-1.8M). Different from MFCs inoculated with paddy-field soil (high power outputs were observed between 0.05 and 0.1M), power outputs from MBS-MFCs were high at NaCl concentrations from 0 to 0.6M. Amplicon-sequence analyses of anode biofilms suggest that different exoelectrogens occurred from MBS depending on NaCl concentrations; Geobacter occurred abundantly below 0.1M, whereas Desulfuromonas was abundant from 0.3M to 0.6M. These results suggest that NaCl concentration is the major determinant of exoelectrogens that occur in anode biofilms from MBS. It is also suggested that MBS is a potent source of microbes for MFCs to be operated in a wide range of NaCl concentrations.

  9. Pseudomonas aestus sp. nov., a plant growth-promoting bacterium isolated from mangrove sediments.

    PubMed

    Vasconcellos, Rafael L F; Santos, Suikinai Nobre; Zucchi, Tiago Domingues; Silva, Fábio Sérgio Paulino; Souza, Danilo Tosta; Melo, Itamar Soares

    2017-07-12

    Strain CMAA 1215(T), a Gram-reaction-negative, aerobic, catalase positive, polarly flagellated, motile, rod-shaped (0.5-0.8 × 1.3-1.9 µm) bacterium, was isolated from mangrove sediments, Cananéia Island, Brazil. Analysis of the 16S rRNA gene sequences showed that strain CMAA 1215(T) forms a distinct phyletic line within the Pseudomonas putida subclade, being closely related to P. plecoglossicida ATCC 700383(T), P. monteilii NBRC 103158(T), and P. taiwanensis BCRC 17751(T) of sequence similarity of 98.86, 98.73, and 98.71%, respectively. Genomic comparisons of the strain CMAA 1215(T) with its closest phylogenetic type strains using average nucleotide index (ANI) and DNA:DNA relatedness approaches revealed 84.3-85.3% and 56.0-63.0%, respectively. A multilocus sequence analysis (MLSA) performed concatenating 16S rRNA, gyrB and rpoB gene sequences from the novel species was related with Pseudomonas putida subcluster and formed a new phylogenetic lineage. The phenotypic, physiological, biochemical, and genetic characteristics support the assignment of CMAA 1215(T) to the genus Pseudomonas, representing a novel species. The name Pseudomonas aestus sp.nov. is proposed, with CMAA 1215(T) (=NRRL B-653100(T) = CBMAI 1962(T)) as the type strain.

  10. Use of ciliates (Protozoa: Ciliophora) as bioindicator to assess sediment quality of two constructed mangrove sewage treatment belts in Southern China.

    PubMed

    Chen, Qing-Hua; Xu, Run-Lin; Tam, Nora F Y; Cheung, Siu Gin; Shin, Paul K S

    2008-01-01

    To complement physical and chemical data, information of biological communities is important to assess the qualities of mangrove sediments receiving wastewater. Ciliate communities have cosmopolitan distribution, short life cycle and high sensitivity to pollutants, which make them useful as biological indicators of the sediment environment. In most literature, ciliates are widely used as bioindicators for the state of water quality. In this study, the physico-chemical parameters and ciliate community structure of surface sediment collected at different sampling points from two constructed mangrove (Aegiceras and Sonneratia) belts for treatment of municipal sewage in southern China were investigated. Results showed that most (> 80%) of the 216 species ciliates identified at the two constructed mangrove belts were either omnivorous or bacterivorous. Sediment redox potential (Eh) was considered an important factor to govern the distribution of ciliate species within the mangrove sediment. The saprobic system originally derived from freshwater ecosystem was used to evaluate the saprobic degrees of these constructed mangrove belts. Saprobic index (SI) values declined from the sewage inlet to the outlet points of the constructed belts, suggesting better sediment quality at the outlet point caused by treatment processes within the mangrove belt system. Sediment quality of the sewage outlet area of the constructed Aegiceras belt was determined as class II-III (SI = 2.48), while that of the Sonneratia belt was as class III (SI = 2.71) according to the saprobic classification, indicating that a better sewage treatment efficiency was apparent in the Aegiceras than Sonneratia belt. The present data suggested that ciliates could serve as a good bioindicator in assessing organically polluted sediment qualities.

  11. Effects of root exudates on the leachability, distribution, and bioavailability of phenanthrene and pyrene from mangrove sediments.

    PubMed

    Jia, Hui; Lu, Haoliang; Liu, Jingchun; Li, Jian; Dai, Minyue; Yan, Chongling

    2016-03-01

    In this study, column leaching experiments were used to evaluate the leachability, distribution and bioavailability of phenanthrene and pyrene by root exudates from contaminated mangrove sediments. We observed that root exudates significantly promoted the release and enhanced the bioavailability of phenanthrene and pyrene from sediment columns. The concentration of phenanthrene and pyrene and cumulative content released from the analyzed sediment samples following root exudate rinsing decreased in the following order: citric acid > oxalic acid > malic acid. After elution, the total concentrations of phenanthrene and pyrene in sediment layers followed a descending order of bottom (9-12 cm) > middle (5-7 cm) > top (0-3 cm). Furthermore, a positive correlation between leachate pH values and PAH concentrations of the leachate was found. Consequently, the addition of root exudates can increase the leachability and bioavailability of phenanthrene and pyrene.

  12. An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay, Pacific Panama.

    PubMed

    Defew, Lindsey H; Mair, James M; Guzman, Hector M

    2005-05-01

    Due to the growing rate of urbanisation in many tropical coastal areas, there continues to be an increasing concern in relation to the impact of anthropogenic activities on mangrove forests. Punta Mala Bay is located on the Pacific coast of Panama and suffers from intense anthropogenic activities that are potentially harmful to the remaining mangrove forests. Field observations reveal that the mangrove stand within Punta Mala Bay receives high inputs of untreated domestic sewage, storm water run-off and a range of diffuse inputs from shipping activities. Results from analysis of eight metals (Mn, Cu, Zn, Ni, Pb, Fe, Cr, Cd) showed that Fe, Zn and Pb were in concentrations high enough to conclude moderate to serious contamination within the bay, and thus pose the most threat to the regeneration and growth of the mangrove. However, previous biological surveys indicate ongoing mangrove regeneration and domination of stand structure by Laguncularia racemosa, together with high numbers of seedlings and saplings.

  13. Quantification and source identification of polycyclic aromatic hydrocarbons in core sediments from Sundarban mangrove wetland, India.

    PubMed

    Domínguez, C; Sarkar, S K; Bhattacharya, A; Chatterjee, M; Bhattacharya, B D; Jover, E; Albaigés, J; Bayona, J M; Alam, Md A; Satpathy, K K

    2010-07-01

    The distribution and potential sources of 16 polycyclic aromatic hydrocarbons (PAHs) in sediment cores (<63 microm particle size) of the Sundarban mangrove wetland, northeastern coast of Bay of Bengal (India), were investigated by gas chromatography coupled to mass spectrometry. The total concentrations of 16 PAHs ( summation operator(16)PAHs) ranged from 132 to 2938 ng/g, with a mean of 634 ng/g, and the sum of 10 out of 16 priority PAHs ( summation operator(10)PAH) varied from 123 to 2441 ng/g, with a mean of 555 ng/g, and the 5 carcinogenic PAHs (benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, and dibenz[a,h]anthracene) accounted for 68-73% of the priority PAHs. Maximum concentrations of the sediment core were obtained at subsoil depth of 12-16 cm. The prevalence of four to six aromatic ring PAHs and cross-plots of specific isomer ratios such as phenanthrene/anthracene, fluoranthene/pyrene, and methylphenanthrenes/phenanthrene suggested the predominance of wood and coal combustion sources, the atmospheric deposition, and surface runoff to be the major transport pathways. A good correlation existed between the benzo[a]pyrene level and the total PAH concentrations, making this compound a potential molecular marker for PAH pollution. Total TEQ (S) (carc) values calculated for samples varied from 6.95 ng/g TEQ (S) (carc) to 119 ng/g TEQ (S) (carc) , with an average of 59 ng/g dry weight TEQ (S) (carc) . The baseline data can be used for regular monitoring, considering the industrial and agricultural growth around this coastal environment.

  14. Hydrodynamic and geomorphological controls on suspended sediment transport in mangrove creek systems, a case study: Cocoa Creek, Townsville, Australia

    NASA Astrophysics Data System (ADS)

    Bryce, S.; Larcombe, P.; Ridd, P. V.

    2003-03-01

    In tide-dominated sedimentary systems, close relationships exist between tidal hydrodynamics, sediment transport and geomorphology. Tropical coastlines contain many tide-dominated mangrove creeks, yet few studies to date have examined the detail of such relationships for these environments. Time-series observations of tidal height, currents and suspended sediment concentrations were taken between 1992 and 1996 in Cocoa Creek, a mangrove creek system near Townsville, NE Australia. The creek and surrounding mangrove swamps and salt flats were surveyed with an echo-sounder and total survey station, respectively. For 'within-channel' tides, the flood tide is always the fastest, at up to 0.5 m s -1. In contrast, for overbank tides (i.e. tidal height > + 1.5 m Australian Height Datum, AHD) ebb currents are fastest in July, December and January, but flood currents are fastest in August and September, at up to 1 m s -1 in both cases. The tidal asymmetry of overbank tides in Cocoa Creek is controlled by the interaction between offshore tidal forcing and the intertidal storage effect of the mangrove swamps and salt flats, with the result being that during certain periods of the year there tends to be a predominance of either faster flood or ebb velocities on overbank tides. Significant tidal suspended sediment transport in the channel is only initiated at overbank height. On overbank tides, measured net suspended sediment fluxes in the channel are mostly seaward-directed (up to 180 t per tidal cycle). However, the net flux measured over a neap-spring period may be either landwards or seawards (up to 465 and 60 t, respectively). Furthermore, on the larger overbank tides (where the maximum tidal height >+1.85 m AHD) net sediment fluxes may be reduced because of a limited supply of available material. Thus hydrodynamic and sediment sampling durations of up to a month may not be representative of long-term trends. Given that our large dataset has not identified a clear long

  15. Archaeal diversity and the extent of iron and manganese pyritization in sediments from a tropical mangrove creek (Cardoso Island, Brazil)

    NASA Astrophysics Data System (ADS)

    Otero, X. L.; Lucheta, A. R.; Ferreira, T. O.; Huerta-Díaz, M. A.; Lambais, M. R.

    2014-06-01

    Even though several studies on the geochemical processes occurring in mangrove soils and sediments have been performed, information on the diversity of Archaea and their functional roles in these ecosystems, especially in subsurface environments, is scarce. In this study, we have analyzed the depth distribution of Archaea and their possible relationships with the geochemical transformations of Fe and Mn in a sediment core from a tropical mangrove creek, using 16S rRNA gene profiling and sequential extraction of different forms of Fe and Mn. A significant shift in the archaeal community structure was observed in the lower layers (90-100 cm), coinciding with a clear decrease in total organic carbon (TOC) content and an increase in the percentage of sand. The comparison of the archaeal communities showed a dominance of methanogenic Euryarchaeota in the upper layers (0-20 cm), whereas Crenarchaeota was the most abundant taxon in the lower layers. The dominance of methanogenic Euryarchaeota in the upper layer of the sediment suggests the occurrence of methanogenesis in anoxic microenvironments. The concentrations of Fe-oxyhydroxides in the profile were very low, and showed positive correlation with the concentrations of pyrite and degrees of Fe and Mn pyritization. Additionally, a partial decoupling of pyrite formation from organic matter concentration was observed, suggesting excessive Fe pyritization. This overpyritization of Fe can be explained either by the anoxic oxidation of methane by sulfate and/or by detrital pyrite tidal transportation from the surrounding mangrove soils. The higher pyritization levels observed in deeper layers of the creek sediment were also in agreement with its Pleistocenic origin.

  16. Impact of nitrogen pollution/deposition on extracellular enzyme activity, microbial abundance and carbon storage in coastal mangrove sediment.

    PubMed

    Luo, Ling; Meng, Han; Wu, Ruo-Nan; Gu, Ji-Dong

    2017-06-01

    This study applied different concentration of NaNO3 solution to simulate the effect of inorganic nitrogen (N) deposition/pollution on carbon (C) storage in coastal mangrove sediment through observing the changes of enzyme activity and microbial abundance. Sediment collected from mangrove forest (MG) and intertidal zone (IZ) were incubated with different N rates (0 (control), 5 (low-N) and 20 (high-N) μg N g(-1) dry sediment, respectively). After incubation, the activities of phenol oxidase (PHO) and acid phosphatase (ACP) were enhanced, but β-glucosidase (GLU) and N-β-acetyl-glucosaminidase (NAG) activities were reduced by N addition. The altered enzymatic stoichiometries by N input implied that microbial phosphorus (P) limitation was increased, whereas C and N limitation were alleviated. Besides, N input decreased the bacterial abundance but increased fungal abundance in both types of sediment. The increased pH and soluble phenolics along with the exacerbated P limitation by N addition might explain these changes. Furthermore, sediment with N addition (except high-N treated MG sediment) showed a trend of C sequestration, which might be largely caused by the decrease of bacterial abundance and GLU activity. However, MG sediment with high-N suggested a trend of C loss, and the possible reason for this discrepancy might be the relatively higher increase of PHO and ACP activity. To better understand the influence of N deposition/pollution on C cycling, the long-term N effect on microorganisms, enzymes, and thus C storage should be paid more attention in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Comparison of fate profiles of PAHs in soil, sediments and mangrove leaves after oil spills by QSAR and QSPR.

    PubMed

    Tansel, Berrin; Lee, Mengshan; Tansel, Derya Z

    2013-08-15

    First order removal rates for 15 polyaromatic hydrocarbons (PAHs) in soil, sediments and mangrove leaves were compared in relation to the parameters used in fate transport analyses (i.e., octanol-water partition coefficient, organic carbon-water partition coefficient, solubility, diffusivity in water, HOMO-LUMO gap, molecular size, molecular aspect ratio). The quantitative structure activity relationships (QSAR) and quantitative structure property relationships (QSPR) showed that the rate of disappearance of PAHs is correlated with their diffusivities in water as well as molecular volumes in different media. Strong correlations for the rate of disappearance of PAHs in sediments could not be obtained in relation to most of the parameters evaluated. The analyses showed that the QSAR and QSPR correlations developed for removal rates of PAHs in soils would not be adequate for sediments and plant tissues.

  18. Differential bioaccumulation and translocation patterns in three mangrove plants experimentally exposed to iron. Consequences for environmental sensing.

    PubMed

    Arrivabene, Hiulana Pereira; Campos, Caroline Quenupe; Souza, Iara da Costa; Wunderlin, Daniel Alberto; Milanez, Camilla Rozindo Dias; Machado, Silvia Rodrigues

    2016-08-01

    Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle were experimentally exposed to increasing levels of iron (0, 10, 20 and 100 mg L(-1) added Fe(II) in Hoagland's nutritive medium). The uptake and translocation of iron from roots to stems and leaves, Fe-secretion through salt glands (Avicennia schaueriana and Laguncularia racemosa) as well as anatomical and histochemical changes in plant tissues were evaluated. The main goal of this work was to assess the diverse capacity of these plants to detect mangroves at risk in an area affected by iron pollution (Vitoria, Espírito Santo, Brazil). Results show that plants have differential patterns with respect to bioaccumulation, translocation and secretion of iron through salt glands. L. racemosa showed the best environmental sensing capacity since the bioaccumulation of iron in both Fe-plaque and roots was higher and increased as the amount of added-iron rose. Fewer changes in translocation factors throughout increasing added-iron were observed in this species. Furthermore, the amount of iron secreted through salt glands of L. racemosa was strongly inhibited when exposed to added-iron. Among three studied species, A. schaueriana showed the highest levels of iron in stems and leaves. On the other hand, Rhizophora mangle presented low values of iron in these compartments. Even so, there was a significant drop in the translocation factor between aerial parts with respect to roots, since the bioaccumulation in plaque and roots of R. mangle increased as iron concentration rose. Moreover, rhizophores of R. mangle did not show changes in bioaccumulation throughout the studied concentrations. So far, we propose L. racemosa as the best species for monitoring iron pollution in affected mangroves areas. To our knowledge, this is the first detailed report on the response of these plants to increasing iron concentration under controlled conditions, complementing existing data on the behavior of the same plants

  19. Spatially varying drag within a wave-exposed mangrove forest and on the adjacent tidal flat

    NASA Astrophysics Data System (ADS)

    Mullarney, Julia C.; Henderson, Stephen M.; Reyns, Johan A. H.; Norris, Benjamin K.; Bryan, Karin R.

    2017-09-01

    Mangroves have been shown to protect shorelines against damage from the combined hydrodynamic forces of waves and tides, owing to the presence of roots (pneumatophores) and tree trunks that enhance vegetative drag. However, field measurements within these environments are limited. We present field observations of flows from the seaward coast of Cù Lao Dung Island (Sóc Trăng Province) in the Mekong Delta, Vietnam. Measurements were made in two different seasons along a transect that crosses from mudflats to mangrove forest. Flows are also explored using an idealised numerical model. Both the data and model capture the flow transitions from mudflat across the fringing region to the forest interior. We observe a rotation of the obliquely incident flows toward an orientation nearly perpendicular to the vegetated/unvegetated boundary. The momentum balances governing the large-scale flow are assessed and indicate the relative importance of friction, winds and depth-averaged pressure forces. In the forest, drag coefficients were 10-30 times greater than values usually observed for bottom friction, with particularly effective friction in the regions of dense pneumatophores at the fringe and when water depths were lower than the height of the pneumatophores. Pressure gradient balances suggest that the drag induced by bottom friction from pneumatophores was dominant relative to drag from the larger, but sparser, tree trunks.

  20. Sources, distribution and risk assessment of polycyclic aromatic hydrocarbons in the mangrove sediments of Thane Creek, Maharashtra, India.

    PubMed

    Sukhdhane, K S; Pandey, P K; Vennila, A; Purushothaman, C S; Ajima, M N O

    2015-05-01

    The sources, distribution and risk assessment of polycyclic aromatic hydrocarbons (PAHs) were investigated in the mangrove sediments of Trombay and Vashi, along the Thane Creek, Maharashtra, India, for a period of 6 months. The results showed that the concentration of Ʃ15 PAHs ranged from 902.58 to 1643.60 and from 930.69 to 1158.30 ng g(-1) in Trombay and Vashi, respectively. Trombay showed significantly higher PAH concentration (p < 0.05) than Vashi. The four carcinogenic PAHs, (benzo(b)fluorathene, benzo(k)fluorathene, Indeno(1,2,3-cd)pyrene and dibenz(a,h)anthracene) accounted for maximum concentration of the total PAHs. Specific PAH diagnostic indices and the molecular index indicated the presence of both pyrolytic and petrogenic sources with the predominance of pyrolytic origin. A positive correlation (r = 0.736, p < 0.05) existed between the benzo(k)fluorathene level and total PAHs, suggesting the use of this compound as a potential molecular marker for PAH pollution in mangrove sediment. Assessments of potential environmental risks associated with PAHs in this study revealed that the sediment was moderately polluted with high molecular weight PAHs. The study reports the baseline data that can be used for regular monitoring of contamination level considering the heavy industrialization and urbanization along the creek and its coastal region.

  1. Total microbial activity and microbial composition of a mangrove sediment are reduced by oil pollution at a site in the Arabian Gulf.

    PubMed

    El-Tarabily, Khaled A

    2002-02-01

    In a study carried out to determine the effect of oil pollution on the microbiota of sediment associated with mangroves in the United Arab Emirates, sediment samples were collected from oil-polluted and nonpolluted mangrove sites. The levels of the total recoverable hydrocarbons and the polycyclic aromatic hydrocarbons assayed were noticeably higher in the polluted sediment. Microbial activity as measured by the hydrolysis of fluorescein diacetate and by the total populations of the culturable aerobic and anaerobic bacteria, streptomycete and non-streptomycete actinomycetes, and filamentous fungi and yeasts was significantly (P < 0.05) lower in the polluted than in the nonpolluted sediment. The estimated total aerobic and anaerobic hydrocarbon-utilizing bacteria were significantly (P < 0.05) higher in the polluted than in the nonpolluted sediments. Four days after the addition of the water-soluble fractions of the light Arabian crude oil to the nonpolluted sediment, at 10 different concentrations, there was a significant (P < 0.05) reduction (65%) in the microbial activity of the sediment compared with that of nonamended sediment. Concentrations of water-soluble fractions at 0.1% and above significantly and progressively reduced microbial activity, with total cessation of activity recorded at levels >50%. This study is the first to evaluate the effect of oil pollution on aerobic and anaerobic microbial flora of sediment of mangrove communities.

  2. Spatial distribution of glomalin-related soil protein and its relationship with sediment carbon sequestration across a mangrove forest.

    PubMed

    Wang, Qiang; Lu, Haoliang; Chen, Jingyan; Hong, Hualong; Liu, Jingchun; Li, Junwei; Yan, Chongling

    2017-09-16

    Arbuscular mycorrhizal (AM) fungi produce a recalcitrant glycoprotein, (glomalin-related soil protein (GRSP)), which can contribute to soil carbon sequestration. Here we made a first study to characterize the spatial distribution of GRSP fractions in a mangrove forest at Zhangjiang Estuary, Southeastern China and to explore potential contributions of GRSP to sediment organic carbon (SOC) in this forest. We identified GRSP fractions in surface sediments, as well as those at a depth of 50 cm. The contents of easily extractable GRSP (EE-GRSP), total GRSP (T-GRSP), GRSP in particulate organic matter (POM-GRSP) and GRSP in pore water (PW-GRSP) ranged between 1.20-2.22mgg(-1), 1.38-2.61mgg(-1), 1.45-10.78mgg(-1) and 10.35-39.65mgL(-1) respectively, and these four GRSPs are significantly affected by sample sites and sediment layers. Carbon in GRSP accounted for 2.8-5.9% of SOC and its contributions can far exceed that of microbial biomass carbon (0.21-0.73%) in the 0-50cm sediment layers. Our data indicate that GRSP could be transported by pore water and accumulated in sediment profiles. The non-linear regression analysis revealed that as SOC and particulate organic carbon (POC) contents decrease, GRSP proportions increase, indicating the increase of the recalcitrant carbon offsetting the effects of mangrove carbon loss, especially labile C. Regression and ordination analyses indicated that GRSP fractions were mainly positively correlated with sediment carbon fractions and spore density but were negatively correlated with sand, pH. Strikingly, the unfavorable environmental factors for microbial organisms, especially AM fungi, prove to be able to promote the production or accumulation of GRSP. We propose that there are two different pathways for affecting the pool size of GRSP in mangrove ecosystems: (i) directly via indigenous AM fungi propagules; (ii) or via the GRSP transport and deposition by pore water and tides. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effects of flooding and aging on phytoremediation of typical polycyclic aromatic hydrocarbons in mangrove sediments by Kandelia obovata seedlings.

    PubMed

    Li, Rui-Long; Liu, Bei-Bei; Zhu, Ya-Xian; Zhang, Yong

    2016-06-01

    A laboratory experiment was conducted to evaluate the effects of flooding and aging on the phytoremediation of naphthalene (Nap), anthracene (Ant) and benzo[a]pyrene (B[a]P) in mangrove sediment by Kandelia obovata (K. obovata) Druce seedlings. Flooding increased dissipation efficiency in the rhizosphere zone from 69.47% to 82.45%, 64.27% to 80.41%, and 61.55% to 78.31% for Nap, Ant and B[a]P, respectively. Aging decreased dissipation efficiency significantly. Further investigation demonstrated that increased enzyme activity was one of important factors for increasing PAHs dissipation rates in flooded mangrove sediments. Moreover, a novel method for in situ quantitative investigation of PAHs distribution in root tissues was established using microscopic fluorescence spectra analysis. Subsequently, the effects of flooding and aging on the distribution of PAHs in root tissues were evaluated using this established method. The order of bioavailable fractions of PAHs after phytoremediation was as follows: non-aging/non-flooding>flooding>aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Differential responses of ammonia/ammonium-oxidizing microorganisms in mangrove sediment to amendment of acetate and leaf litter.

    PubMed

    Wang, Yong-Feng; Li, Xiao-Yan; Gu, Ji-Dong

    2014-04-01

    The effects of acetate and leaf litter powder on ammonia/ammonium-oxidizing microorganisms (AOMs) in mangrove sediment were investigated in a laboratory incubation study for a period of 60 days. The results showed that different AOMs responded differently to the addition of acetate and leaf litter. A higher diversity of anaerobic ammonium-oxidizing (anammox) bacteria was observed when acetate or leaf litter was added than the control. However, acetate and leaf litter generally inhibited the growth of anammox bacteria despite that leaf litter promoted their growth in the first 5 days. The inhibitory effects on anammox bacteria were more pronounced by acetate than by leaf litter. Neither acetate nor leaf litter affected ammonia-oxidizing archaea (AOA) community structures, but promoted their growth. For ammonia-oxidizing bacteria (AOB), the addition of acetate or leaf litter resulted in changes of community structures and promoted their growth in the early phase of the incubation. In addition, the promoting effects by leaf litter on AOB growth were more obvious than acetate. These results indicated that organic substances affect AOM community structures and abundances. The study suggests that leaf litter has an important influence on the community structures and abundances of AOMs in mangrove sediment and affects the nitrogen cycle in such ecosystem.

  5. Aliphatic and polycyclic aromatic hydrocarbons in surface sediments collected from mangroves with different levels of urbanization in southern Brazil.

    PubMed

    Assunção, Maíra Algarve; Frena, Morgana; Santos, Ana Paula Stein; Dos Santos Madureira, Luiz Augusto

    2017-06-15

    Three mangroves located in southern Brazil, Carijós (CA), Rio Tavares (RT) and Itacorubi (ITA), with distinct anthropogenic influences, were assessed with regard to the presence of aliphatic and polycyclic aromatic hydrocarbons (PAH). In this study, the n-alkane concentrations ranged from 1.9μg g(-1) (CA) to 55.6μg g(-1) (ITA) (dry weight). The carbon preference index (CPI) ranged from 2.1 to 7.9 and values for the terrestrial/aquatic ratio (TAR) were >1. Thus, both indexes indicated the predominance of sediment of terrestrial origin, mainly comprised of higher plants. Concentrations of total PAH ranged from 6.8ng g(-1) (RT) to 437.3ng g(-1) (ITA). The PAH isomeric ratios indicated that these compounds originated mainly from pyrogenic sources. Nevertheless, levels of n-alkanes in the three mangroves were relatively low and they are considered typical of uncontaminated surface sediments, while the level of contamination with PAH was classified as low to moderate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Two new Beggiatoa species inhabiting marine mangrove sediments in the Caribbean.

    PubMed

    Jean, Maïtena R N; Gonzalez-Rizzo, Silvina; Gauffre-Autelin, Pauline; Lengger, Sabine K; Schouten, Stefan; Gros, Olivier

    2015-01-01

    Beggiatoaceae, giant sulphur-oxidizing bacteria, are well known to occur in cold and temperate waters, as well as hydrothermal vents, where they form dense mats on the floor. However, they have never been described in tropical marine mangroves. Here, we describe two new species of benthic Beggiatoaceae colonizing a marine mangrove adjacent to mangrove roots. We combined phylogenetic and lipid analysis with electron microscopy in order to describe these organisms. Furthermore, oxygen and sulphide measurements in and ex situ were performed in a mesocosm to characterize their environment. Based on this, two new species, Candidatus Maribeggiatoa sp. and Candidatus Isobeggiatoa sp. inhabiting tropical marine mangroves in Guadeloupe were identified. The species identified as Candidatus Maribeggiatoa group suggests that this genus could harbour a third cluster with organisms ranging from 60 to 120 μm in diameter. This is also the first description of an Isobeggiatoa species outside of Arctic and temperate waters. The multiphasic approach also gives information about the environment and indications for the metabolism of these bacteria. Our study shows the widespread occurrence of members of Beggiatoaceae family and provides new insight in their potential role in shallow-water marine sulphide-rich environments such as mangroves.

  7. Two New Beggiatoa Species Inhabiting Marine Mangrove Sediments in the Caribbean

    PubMed Central

    Jean, Maïtena R. N.; Gonzalez-Rizzo, Silvina; Gauffre-Autelin, Pauline; Lengger, Sabine K.; Schouten, Stefan; Gros, Olivier

    2015-01-01

    Beggiatoaceae, giant sulphur-oxidizing bacteria, are well known to occur in cold and temperate waters, as well as hydrothermal vents, where they form dense mats on the floor. However, they have never been described in tropical marine mangroves. Here, we describe two new species of benthic Beggiatoaceae colonizing a marine mangrove adjacent to mangrove roots. We combined phylogenetic and lipid analysis with electron microscopy in order to describe these organisms. Furthermore, oxygen and sulphide measurements in and ex situ were performed in a mesocosm to characterize their environment. Based on this, two new species, Candidatus Maribeggiatoa sp. and Candidatus Isobeggiatoa sp. inhabiting tropical marine mangroves in Guadeloupe were identified. The species identified as Candidatus Maribeggiatoa group suggests that this genus could harbour a third cluster with organisms ranging from 60 to 120 μm in diameter. This is also the first description of an Isobeggiatoa species outside of Arctic and temperate waters. The multiphasic approach also gives information about the environment and indications for the metabolism of these bacteria. Our study shows the widespread occurrence of members of Beggiatoaceae family and provides new insight in their potential role in shallow-water marine sulphide-rich environments such as mangroves. PMID:25689402

  8. Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: application of acid leachable technique.

    PubMed

    Janaki-Raman, D; Jonathan, M P; Srinivasalu, S; Armstrong-Altrin, J S; Mohan, S P; Ram-Mohan, V

    2007-01-01

    Core sediments from Mullipallam Creek of Muthupet mangroves on the southeast coast of India were analyzed for texture, CaCO(3), organic carbon, sulfur and acid leachable trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd). Textural analysis reveals a predominance of mud while CaCO(3) indicates dissolution in the upper half of the core, and reprecipitation of carbonates in reduction zones. Trace metals are diagenetically modified and anthropogenic processes control Pb and, to some extent, Ni, Zn and Fe. A distinct event is identified at 90 cm suggesting a change in deposition. Strong relationship of trace metals with Fe indicates that they are associated with Fe-oxyhydroxides. The role of carbonates in absorbing trace metals is evident from their positive relationship with trace metals. Comparison of acid leachable trace metals indicates increase in concentrations in the study area and the sediments act as a sink for trace metals contributed from multiple sources.

  9. Anthropogenic organic contaminants in water, sediments and benthic organisms of the mangrove-fringed Segara Anakan Lagoon, Java, Indonesia.

    PubMed

    Dsikowitzky, Larissa; Nordhaus, Inga; Jennerjahn, Tim C; Khrycheva, Polina; Sivatharshan, Yoganathan; Yuwono, Edy; Schwarzbauer, Jan

    2011-04-01

    Segara Anakan, a mangrove-fringed coastal lagoon in Indonesia, has a high diversity of macrobenthic invertebrates and is increasingly affected by human activities. We found > 50 organic contaminants in water, sediment and macrobenthic invertebrates from the lagoon most of which were polycyclic aromatic compounds (PACs). Composition of PACs pointed to petrogenic contamination in the eastern lagoon. PACs mainly consisted of alkylated PAHs, which are more abundant in crude oil than parent PAHs. Highest total PAC concentration in sediment was above reported toxicity thresholds for aquatic invertebrates. Other identified compounds derived from municipal sewage and also included novel contaminants like triphenylphosphine oxide. Numbers of stored contaminants varied between species which is probably related to differences in microhabitat and feeding mode. Most contaminants were detected in Telescopium telescopium and Polymesoda erosa. Our findings suggest that more attention should be paid to the risk potential of alkylated PAHs, which has hardly been addressed previously.

  10. Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator.

    PubMed

    Usman, Adel R A; Alkredaa, Raed S; Al-Wabel, M I

    2013-11-01

    The aim of this study was to investigate the concentrations and pollution status of heavy metals (Cu, Cd, Ni, Pb, Zn and Cr) in the mangrove surface sediments from the Farasan Island, Coast of Red Sea, Saudi Arabia. The ability of mangroves (Avicennia marina) to accumulate and translocate heavy metal within their different compartments was also investigated. Five sampling sites were chosen for collection of sediments and different compartments (leaf, branch and root) of A. marina. The results showed that the maximum and average concentrations of Cd, Cu and Pb in the studied area exceeded their world average concentration of shale. Additionally, only the maximum concentration of Zn exceeded its world average shale concentration. Based on the quality guidelines of sediment (SQGs), the collected sediment samples were in moderate to heavy rate for Cu, non-polluted to heavy rate for Pb and Zn, and non-polluted to moderate rate for Cr and Ni. The average metal concentrations of A. marina in the studied area were observed in the order Cu (256.0-356.6mgkg(-1))>Zn (29.5-36.8mgkg(-1))>Cr (8.15-14.9mgkg(-1))>Ni (1.37-4.02mgkg(-1))>Cd (not detectable-1.04mgkg(-1))>Pb (not detectable). Based on bio-concentration factors (BCF), their most obtained values were considered too high (>1), suggesting that A. marina can be considered as a high-efficient plant for bioaccumulation of heavy metals. Among all metals, Cu and Cr were highly bio-accumulated in different parts of A. marina. In terms of heavy metal contamination control via phyto-extraction, our findings suggest also that A. marina may be classified as potential accumulator for Cu in aboveground parts, as indicated by higher metal accumulation in the leaves combined with bio-concentration factor (BCF) and translocation factor (TF) values >1.

  11. Alteration of extracellular enzyme activity and microbial abundance by biochar addition: Implication for carbon sequestration in subtropical mangrove sediment.

    PubMed

    Luo, Ling; Gu, Ji-Dong

    2016-11-01

    Biochar has attracted more and more attention due to its essential role in adsorbing pollutants, improving soil fertility, and modifying greenhouse gas emission. However, the influences of biochar on extracellular enzyme activity and microbial abundance are still lack and debatable. Currently, there is no information about the impact of biochar on the function of mangrove ecosystems. Therefore, we explored the effects of biochar on extracellular enzyme activity and microbial abundance in subtropical mangrove sediment, and further estimated the contribution of biochar to C sequestration. In this study, sediments were amended with 0 (control), 0.5, 1.0 and 2.0% of biochar and incubated at 25 °C for 90 days. After incubation, enzyme activities, microbial abundance and the increased percentage of sediment organic C content were determined. Both increase (phenol oxidase and β-glucosidase) and decrease (peroxidase, N-acetyl-glucosaminidase and acid phosphatase) of enzyme activities were observed in biochar treatments, but only peroxidase activity showed statistical significance (at least p < 0.01) compared to the control. Moreover, the activities of all enzymes tested were significantly related to the content of biochar addition (at least p < 0.05). On the other hand, bacterial and fungal abundance in biochar treatments were remarkably lower than control (p < 0.001), and the significantly negative relationship (p < 0.05) between bacterial abundance and the content of biochar was found. Additionally, the increased percentage of organic C gradually increased with biochar addition rate, which provided evidence for applying biochar to mitigate climate change. Given the importance of microorganisms and enzyme activities in sediment organic matter decomposition, the increased C sequestration might be explained by the large decrease of microbial abundance and enzyme activity after biochar intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Distribution and Normalization of Heavy Metal Concentrations in Mangrove and Lagoonal Sediments from Mazatlán Harbor (SE Gulf of California)

    NASA Astrophysics Data System (ADS)

    Soto-Jiménez, M. F.; Páez-Osuna, F.

    2001-09-01

    Concentrations of heavy metals, carbonates, organic carbon and granulometry were examined in sediments from 60 sites within Mazatlán Harbor and adjacent areas. Regional distribution had a strong (for Al, Fe, Li and Ni) and weak (for Cd, Co, Cr, Pb, V and Zn) seaward concentration gradient decreasing from the upper lagoon. The highest concentrations for most metals occurred in fine-grained sediments from Infiernillo Estuary, the upper lagoon and the industrial zone. In contrast, lower levels were usually found in the sandy sediments of the navigation channel, port entrance and an area associated with sewage outfall. Analysis of transects in mangrove and lagoonal sediments indicated that the amount of fine material and organic carbon increases towards the margins where mangrove sediments exist. While metal variations were not clearly observed in most of the metals examined; only Ni, V, Pb and Cu showed a slight tendency to increase towards the margins. Sometimes lagoonal sediments had redox and texture characteristics comparable to those from mangrove substrate, thus competing because of a similar capture capacity of metals. Metal data were normalized against Al and Li using a combination of normalization techniques (95% prediction intervals, regional anomalies and enrichment factor). It was found that Al and Li were good normalizers for most of the examined metals and they are important constituents of one or more of the major fine-grained heavy metal carrier(s) and adequately reflect the granulometric variability in the sediments of the study area.

  13. Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatán, Mexico

    NASA Astrophysics Data System (ADS)

    Chuang, Pei-Chuan; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A.; Paytan, Adina

    2016-05-01

    Porewater profiles in sediment cores from mangrove-dominated coastal lagoons (Celestún and Chelem) on the Yucatán Peninsula, Mexico, reveal the widespread coexistence of dissolved methane and sulfate. This observation is interesting since dissolved methane in porewaters is typically oxidized anaerobically by sulfate. To explain the observations we used a numerical transport-reaction model that was constrained by the field observations. The model suggests that methane in the upper sediments is produced in the sulfate reduction zone at rates ranging between 0.012 and 31 mmol m-2 d-1, concurrent with sulfate reduction rates between 1.1 and 24 mmol SO42- m-2 d-1. These processes are supported by high organic matter content in the sediment and the use of non-competitive substrates by methanogenic microorganisms. Indeed sediment slurry incubation experiments show that non-competitive substrates such as trimethylamine (TMA) and methanol can be utilized for microbial methanogenesis at the study sites. The model also indicates that a significant fraction of methane is transported to the sulfate reduction zone from deeper zones within the sedimentary column by rising bubbles and gas dissolution. The shallow depths of methane production and the fast rising methane gas bubbles reduce the likelihood for oxidation, thereby allowing a large fraction of the methane formed in the sediments to escape to the overlying water column.

  14. Distribution and ecological risk assessment of heavy metals in surface sediments of a typical restored mangrove-aquaculture wetland in Shenzhen, China.

    PubMed

    Feng, Jianxiang; Zhu, Xiaoshan; Wu, Hao; Ning, Cunxin; Lin, Guanghui

    2017-01-07

    The restoration of wetlands has attracted the attention in different countries. Restored coastal wetlands, especially urban wetlands, are sensitive to external pressures. Thus, it is necessary to evaluate the efficiency of the restoration of coastal wetlands, which benefits their management and functional maintenance. In this study, a restored mangrove-aquaculture system in Waterlands Resort at Shenzhen was selected for analysis. The distribution and ecological risk assessment of heavy metals in surface sediments were investigated. The results showed that restoration could effectively decrease the heavy metal concentrations in the sediment, while the restored mangrove posed a moderate ecological risk. Most of the heavy metal concentrations were higher during the dry season compared with the wet season. In addition, during the whole investigation, the sediment quality remained failed to achieve the marine sediment criteria required for aquaculture in China.

  15. Documenting Fine-Sediment Import and Export for Two Contrasting Mesotidal Flats Sediment Flux through the Mekong Tidal River, Delta and Mangrove Shoreline Instrumentation to Support Investigation of Large Tropical Deltas

    DTIC Science & Technology

    2013-09-30

    scales), and thereby validate localized measurements and numerical models of sediment transport for diverse tidal systems (tidal flats, mangrove forests...likely transported landward from the continental shelf. 3) bathymetry – A simple single-beam depth finder gave good cross-channel bathymetric data...and A.S. Ogston, in preparation, Fluvial sediment dispersal through an insular sea: modern sedimentation associated with the Skagit River delta

  16. Diversity and Antimicrobial Activities of Actinobacteria Isolated from Tropical Mangrove Sediments in Malaysia

    PubMed Central

    Lee, Learn-Han; Zainal, Nurullhudda; Azman, Adzzie-Shazleen; Eng, Shu-Kee; Goh, Bey-Hing; Yin, Wai-Fong; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan

    2014-01-01

    The aim of this study was to isolate and identify Actinobacteria from Malaysia mangrove forest and screen them for production of antimicrobial secondary metabolites. Eighty-seven isolates were isolated from soil samples collected at 4 different sites. This is the first report to describe the isolation of Streptomyces, Mycobacterium, Leifsonia, Microbacterium, Sinomonas, Nocardia, Terrabacter, Streptacidiphilus, Micromonospora, Gordonia, and Nocardioides from mangrove in east coast of Malaysia. Of 87 isolates, at least 5 isolates are considered as putative novel taxa. Nine Streptomyces sp. isolates were producing potent antimicrobial secondary metabolites, indicating that Streptomyces isolates are providing high quality metabolites for drug discovery purposes. The discovery of a novel species, Streptomyces pluripotens sp. nov. MUSC 135T that produced potent secondary metabolites inhibiting the growth of MRSA, had provided promising metabolites for drug discovery research. The biosynthetic potential of 87 isolates was investigated by the detection of polyketide synthetase (PKS) and nonribosomal polyketide synthetase (NRPS) genes, the hallmarks of secondary metabolites production. Results showed that many isolates were positive for PKS-I (19.5%), PKS-II (42.5%), and NRPS (5.7%) genes, indicating that mangrove Actinobacteria have significant biosynthetic potential. Our results highlighted that mangrove environment represented a rich reservoir for isolation of Actinobacteria, which are potential sources for discovery of antimicrobial secondary metabolites. PMID:25162061

  17. Diversity and antimicrobial activities of actinobacteria isolated from tropical mangrove sediments in Malaysia.

    PubMed

    Lee, Learn-Han; Zainal, Nurullhudda; Azman, Adzzie-Shazleen; Eng, Shu-Kee; Goh, Bey-Hing; Yin, Wai-Fong; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan

    2014-01-01

    The aim of this study was to isolate and identify Actinobacteria from Malaysia mangrove forest and screen them for production of antimicrobial secondary metabolites. Eighty-seven isolates were isolated from soil samples collected at 4 different sites. This is the first report to describe the isolation of Streptomyces, Mycobacterium, Leifsonia, Microbacterium, Sinomonas, Nocardia, Terrabacter, Streptacidiphilus, Micromonospora, Gordonia, and Nocardioides from mangrove in east coast of Malaysia. Of 87 isolates, at least 5 isolates are considered as putative novel taxa. Nine Streptomyces sp. isolates were producing potent antimicrobial secondary metabolites, indicating that Streptomyces isolates are providing high quality metabolites for drug discovery purposes. The discovery of a novel species, Streptomyces pluripotens sp. nov. MUSC 135(T) that produced potent secondary metabolites inhibiting the growth of MRSA, had provided promising metabolites for drug discovery research. The biosynthetic potential of 87 isolates was investigated by the detection of polyketide synthetase (PKS) and nonribosomal polyketide synthetase (NRPS) genes, the hallmarks of secondary metabolites production. Results showed that many isolates were positive for PKS-I (19.5%), PKS-II (42.5%), and NRPS (5.7%) genes, indicating that mangrove Actinobacteria have significant biosynthetic potential. Our results highlighted that mangrove environment represented a rich reservoir for isolation of Actinobacteria, which are potential sources for discovery of antimicrobial secondary metabolites.

  18. In situ visualization and quantitative investigation of the distribution of polycyclic aromatic hydrocarbons in the micro-zones of mangrove sediment.

    PubMed

    Li, Ruilong; Zhu, Yaxian; Zhang, Yong

    2016-12-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in the micro-zones of mangrove sediment is a predominant factors determining PAH bioavailability. In this study, a novel method for the in situ visualization (via microscope) and quantitative investigation of the PAH distribution in the micro-zones of mangrove sediment was established using microscopic fluorescence spectral analysis combined with derivative synchronous fluorescence spectroscopy (MFSA-DSFS). The MFSA-DSFS method significantly suppressed the background fluorescence signal of the sediment (the S/N values increased by over two orders of magnitude). The proportion of the nonpolar organic carbon content in the particulate organic matter (POM) rather than its content in the total organic matter (TOM) showed a significantly positive correlation with the uneven PAH distribution (Relative DC-M values) evaluated using the established method (p < 0.05). The extent of the uneven PAH distribution in the micro-zones of aged sediment was higher than that in the spiked sediment. Moreover, the distribution pattern of the PAHs within the mangrove sediment changed to become more homogeneous in the presence of low-molecular-weight organic acids (LMWOAs), which primarily contribute to increasing the POM content.

  19. Occurrence of heavy metals and radionuclides in sediments and seawater in mangrove ecosystems in Pattani Bay, Thailand.

    PubMed

    Kaewtubtim, Pungtip; Meeinkuirt, Weeradej; Seepom, Sumalee; Pichtel, John

    2017-03-01

    Mangrove ecosystems in Pattani Bay, Thailand are considered representatives for monitoring the occurrence of anthropogenic and natural pollution due to metal and radionuclide contamination. Sediments and seawater were collected from five locations to determine metal (Cd, Cr, Cu, Mn, Ni, Zn, and Pb) and radionuclide ((226)Ra, (232)Th, and (40)K) concentrations. Spatial variations in metal and radionuclide concentrations were determined among the sampling sites. A geoaccumulation index (I geo ) and enrichment factor (EF) were used to classify the impacts of metals from anthropogenic point sources. Significant values for I geo and EF were measured for Pb in site 4 (I geo 0.65; EF 28.2) and Cd in site 1 (I geo 1.48; EF 46.2). EF values in almost all sampling sites were >1 which indicates anthropogenic pollution. To assess the potential public hazard of radioactivity, the average radium equivalent activity (Raeq), the external hazard index (H ex), the internal hazard index (H in), the absorbed dose rate in air (D), and the annual effective outdoor dose rate (E) were determined. Based on these measurements, it is concluded that the probability of human health risk from radionuclides is low. However, the absorbed dose in air (D) values in sites 4 and 5 were greater than the global average value of 55 nGy h(-1), indicating that sediments in these locations pose a radiological hazard. The data obtained in this study provides useful information on metal and radionuclide background levels in mangrove sediments and seawater, and can be applied toward human health risk assessment and metal and radionuclide mapping.

  20. Mangrove Crab Ucides cordatus Removal Does Not Affect Sediment Parameters and Stipule Production in a One Year Experiment in Northern Brazil.

    PubMed

    Pülmanns, Nathalie; Mehlig, Ulf; Nordhaus, Inga; Saint-Paul, Ulrich; Diele, Karen

    2016-01-01

    Mangrove crabs influence ecosystem processes through bioturbation and/or litter feeding. In Brazilian mangroves, the abundant and commercially important crab Ucides cordatus is the main faunal modifier of microtopography establishing up to 2 m deep burrows. They process more than 70% of the leaf litter and propagule production, thus promoting microbial degradation of detritus and benefiting microbe-feeding fiddler crabs. The accelerated nutrient turn-over and increased sediment oxygenation mediated by U. cordatus may enhance mangrove tree growth. Such positive feed-back loop was tested in North Brazil through a one year crab removal experiment simulating increased harvesting rates in a mature Rhizophora mangle forest. Investigated response parameters were sediment salinity, organic matter content, CO2 efflux rates of the surface sediment, and reduction potential. We also determined stipule fall of the mangrove tree R. mangle as a proxy for tree growth. Three treatments were applied to twelve experimental plots (13 m × 13 m each): crab removal, disturbance control and control. Within one year, the number of U. cordatus burrows inside the four removal plots decreased on average to 52% of the initial number. Despite this distinct reduction in burrow density of this large bioturbator, none of the measured parameters differed between treatments. Instead, most parameters were clearly influenced by seasonal changes in precipitation. Hence, in the studied R. mangle forest, abiotic factors seem to be more important drivers of ecosystem processes than factors mediated by U. cordatus, at least within the studied timespan of one year.

  1. Mangrove Crab Ucides cordatus Removal Does Not Affect Sediment Parameters and Stipule Production in a One Year Experiment in Northern Brazil

    PubMed Central

    2016-01-01

    Mangrove crabs influence ecosystem processes through bioturbation and/or litter feeding. In Brazilian mangroves, the abundant and commercially important crab Ucides cordatus is the main faunal modifier of microtopography establishing up to 2 m deep burrows. They process more than 70% of the leaf litter and propagule production, thus promoting microbial degradation of detritus and benefiting microbe-feeding fiddler crabs. The accelerated nutrient turn-over and increased sediment oxygenation mediated by U. cordatus may enhance mangrove tree growth. Such positive feed-back loop was tested in North Brazil through a one year crab removal experiment simulating increased harvesting rates in a mature Rhizophora mangle forest. Investigated response parameters were sediment salinity, organic matter content, CO2 efflux rates of the surface sediment, and reduction potential. We also determined stipule fall of the mangrove tree R. mangle as a proxy for tree growth. Three treatments were applied to twelve experimental plots (13 m × 13 m each): crab removal, disturbance control and control. Within one year, the number of U. cordatus burrows inside the four removal plots decreased on average to 52% of the initial number. Despite this distinct reduction in burrow density of this large bioturbator, none of the measured parameters differed between treatments. Instead, most parameters were clearly influenced by seasonal changes in precipitation. Hence, in the studied R. mangle forest, abiotic factors seem to be more important drivers of ecosystem processes than factors mediated by U. cordatus, at least within the studied timespan of one year. PMID:27907093

  2. Trace metal fractionation in the Pichavaram mangrove-estuarine sediments in southeast India after the tsunami of 2004.

    PubMed

    Ranjan, Rajesh Kumar; Singh, Gurmeet; Routh, Joyanto; Ramanathan, Al

    2013-10-01

    The geochemistry of coastal sediments of southern India was altered after the tsunami in 2004. A five-step sequential extraction procedure was applied to assess the effects of tsunami on mobility and redistribution of selected elements (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn). Ten surface sediments and three cores were analyzed for different metal fractions (exchangeable, carbonate, reduced, oxidized, and residual). Total metal concentrations increased in mangrove sediments after the tsunami, but their spatial distribution did not show significant variation (except Mn). The sediments were mixed by the tsunami, and there was lack of variation in metal concentrations in different fractions with depth (except Pb and Mn). High concentrations of Pb and Zn occurred in the oxide fractions, whereas Cu, Cr, Cd, and Ni were high in the organic and sulfide-rich fractions. Metals in the residual fraction (lattice bound) had the highest concentration suggesting their non-availability and limited biological uptake in the system. Most of the metals (except Mn) do not constitute a risk based on the different geochemical indices.

  3. Metabolism and biochemical pathway of n-butyl benzyl phthalate by Pseudomonas fluorescens B-1 isolated from a mangrove sediment.

    PubMed

    Xu, Xiang-Rong; Li, Hua-Bin; Gu, Ji-Dong

    2007-11-01

    n-Butyl benzyl phthalate (BBP) is an endocrine-disrupting chemical. Biodegradation of BBP was investigated using the bacterium Pseudomonas fluorescens B-1 isolated from mangrove sediment of Mai Po Nature Reserve of Hong Kong. The microorganism was capable of utilizing BBP as the sole source of carbon and energy while BBP was degraded in 6 days under aerobic batch culture conditions. The optimum pH, temperature, and salinity for BBP degradation by P. fluorescens B-1 was found to be 7.0, 37 degrees C, and 15 per thousand, respectively. Biodegradation of BBP was fitted to the first-order kinetics model. The process of BBP biodegradation was monitored by reversed-phase high-performance liquid chromatography with ultra-violet detection after solid-phase extraction. The major metabolites of BBP degradation were identified as mono-butyl phthalate, mono-benzyl phthalate, phthalic acid, and benzoic acid by gas chromatography-mass spectrometry. BBP-degrading activity of P. fluorescens B-1 was found mostly in the soluble fraction associated with the smaller fragments of cellular membranes. Results suggest that mineralization of BBP can be achieved by microorganism of the mangrove environment.

  4. Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper.

    PubMed

    Gonzalez-Mendoza, Daniel; Moreno, Adriana Quiroz; Zapata-Perez, Omar

    2007-08-01

    To evaluate the role of phytochelatins and metallothioneins in heavy metal tolerance of black mangrove Avicennia germinans, 3-month-old seedlings were exposed to cadmium or copper for 30 h, under hydroponic conditions. Degenerate Mt2 and PCS primers were synthesized based on amino acid and nucleotide alignment sequences reported for Mt2 and PCS in other plant species found in GenBank. Total RNA was isolated from A. germinans leaves and two partial fragments of metallothionein and phytochelatin synthase genes were isolated. Gene expression was evaluated with reverse transcripatase-polymerase chain reaction (RT-PCR) amplification technique. Temporal analysis showed that low Cd2+ and Cu2+ concentrations caused a slight (but not significant) increase in AvMt2 expression after a 16 h exposure time, while AvPCS expression showed a significant increase under the same conditions but only after 4h. Results strongly suggest that the rapid increase in AvPCS expression may contribute to Cd2+ and Cu2+ detoxification. Moreover, we found that A. germinans has the capacity to over-express both genes (AvMt2 and AvPCS), which may constitute a coordinated detoxification response mechanism targeting non-essential metals. Nonetheless, our results confirm that AvPCS was the most active gene involved in the regulation of essential metals (e.g., Cu2+) in A. germinans leaves.

  5. Trace metals in the giant tiger prawn Penaeus monodon and mangrove sediments of the Tanzania coast: Is there a risk to marine fauna and public health?

    PubMed

    Rumisha, Cyrus; Mdegela, Robinson H; Kochzius, Marc; Leermakers, Martine; Elskens, Marc

    2016-10-01

    Mangroves ecosystems support livelihood and economic activities of coastal communities in the tropics and subtropics. Previous reports have documented the inefficiency of waste treatment facilities in Tanzania to contain trace metals. Therefore, the rapidly expanding coastal population and industrial sector is likely to threaten mangrove ecosystems with metal pollution. This study analysed trace metals in 60 sediment samples and 160 giant tiger prawns from the Tanzanian coast in order to document the distribution of trace metals and to establish if measured levels present a threat to mangrove fauna and are of public health importance. High levels of Cr, Co, Cu, Fe, Mn, Ni, and V was observed in mangroves of river Pangani, Wami, and Rufiji. Multivariate analysis showed that they originate mainly from weathering and erosion in the river catchments. Extreme enrichment of Cd was observed in a mangrove affected by municipal sewage. The distribution of Hg, Pb, and Zn was related with urbanisation and industrial activities along the coast. The metal pollution index was high at Pangani, Saadani, and Rufiji, suggesting that these estuarine mangroves are also affected by human activities in the catchment. Moderate to considerable ecological risks were observed in all sampled mangroves, except for Kilwa Masoko. It was revealed that As, Cd, and Hg present moderate risks to fauna. High levels of Cu, Fe and Zn were observed in prawns but the level of the non-essential Cd, Hg, and Pb did not exceed the maximum allowed levels for human consumption. However, based on the trends of fish consumption in the country, weekly intake of Hg is likely to exceed provisional tolerable weekly intake level, especially in fishing communities. This calls for measures to control Hg emissions and to strengthen sewage and waste treatment in coastal cities and urban centres in the basin of major rivers.

  6. Mangroves and shoreline change on Molokai, Hawaii: Assessing the role of introduced Rhizophora mangle in sediment dynamics and coastal change using remote sensing and GIS

    NASA Astrophysics Data System (ADS)

    D'Iorio, Margaret Mary

    The Florida red mangrove, Rhizophora mangle, was introduced to the high volcanic island of Molokai, Hawaii in 1902 to trap sediment and stabilize eroding coastal mudflats along the island's reef-fringed south coast. This prolific invasive species now occupies 2.4 km2 of inter-tidal land and borders approximately 20% of the south coast shoreline. Integrating the fundamentals of remote sensing and Geographical Information Systems, this research investigates the effects of mangrove introduction on sediment dynamics and coastal change on south Molokai throughout the 20th century and provides a baseline of mangrove distribution, a detailed record of shoreline change rates, and a chronological history of island land use and environmental change. Monitoring of coastal change associated with mangroves is essential to understanding how natural coastal ecosystems react to alien species introductions and adapt overall to changing climatic regimes. Comparing the accuracy of various remote sensing instruments and processing techniques, this study has shown that the remote sensing with modern airborne and satellite sensors offers an effective management tool for mapping baseline conditions and monitoring change in remote island environments like that on the south coast of Molokai. Shoreline change assessment found that shoreline change rates on the island's south coast varied both alongshore and through time and that the dominant change has been one of progradation. Rates of change peaked in the early part of the 20th century and have since decayed exponentially over time. Changing land use practices coupled with the introduction of invasive species may have strongly influenced observed variability in rates of coastal change. Field observations and sediment analysis suggest that sediment transfer across the coastal boundary on the mangrove-fringed south coast is relatively limited and appears to be mainly event-driven. For shallow, reef-fringed, coastal regions vulnerable to

  7. Antimicrobial Activity and Phylogenetic Analysis of Streptomyces Parvulus Dosmb-D105 Isolated from the Mangrove Sediments of Andaman Islands.

    PubMed

    Baskaran, R; Mohan, P M; Sivakumar, K; Kumar, Ashok

    2016-03-01

    Actinomycetes, especially species of Streptomyces are prolific producers of pharmacologically significant compounds accounting for about 70% of the naturally derived antibiotics that are presently in clinical use. In this study, we used five solvents to extract the secondary metabolites from marine Streptomyces parvulus DOSMB-D105, which was isolated from the mangrove sediments of the South Andaman Islands. Among them, ethyl acetate crude extract showed maximum activity against 11 pathogenic bacteria and six fungi. Presence of bioactive compounds in the ethyl acetate extract was determined using GC-MS and the compounds detected in the ethyl acetate extract were matched with the National Institute of Standards and Technology (NIST) library. Totally eight compounds were identified and the prevalent compounds were 2 steroids, 2 alkaloids, 2 plasticizers, 1 phenolic and 1 alkane. Present study revealed that S. parvulus DOSMB-D105 is a promising species for the isolation of valuable bioactive compounds to combat pathogenic microbes.

  8. Biological risk, source and pollution history of organochlorine pesticides (OCPs) in the sediment in Nansha mangrove, South China.

    PubMed

    Wu, Qihang; Leung, Jonathan Y S; Yuan, Xin; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Li, Yang

    2015-07-15

    In the last century, organochlorine pesticides (OCPs) have been extensively used, especially in South China, to promote crop yield. In view of their toxicity, persistence and bioavailability, however, the Chinese government has attempted to regulate their production and use. We aimed to examine the biological risk, source and pollution history of OCPs in the sediment in Nansha mangrove which is located in the industrial region in South China. Results showed that HCHs and DDTs, mainly originating from lindane and technical DDT respectively, were the dominant OCPs, but their concentrations were too low to cause adverse effects on biota. In the last decade, the total concentration of HCHs showed a decreasing trend, whereas DDTs remained stable, despite their limited input. This suggests that management of HCHs was effective, while more management efforts should be put on DDTs, especially the use of dicofol and technical DDT, in future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The role of cross-shore tidal dynamics in controlling intertidal sediment exchange in mangroves in Cù Lao Dung, Vietnam

    NASA Astrophysics Data System (ADS)

    Bryan, Karin R.; Nardin, William; Mullarney, Julia C.; Fagherazzi, Sergio

    2017-09-01

    Mangroves are halophytic plants common in tropical and sub-tropical environments. Their roots and pneumatophores strongly affect intertidal hydrodynamics and related sediment transport. Here, we investigate the role tree and root structures may play in altering tidal currents and the effect of these currents on the development of intertidal landscapes in mangrove-dominated environments. We use a one-dimensional Delft3D model, forced using typical intertidal slopes and vegetation characteristics from two sites with contrasting slope on Cù Lao Dung within the Mekong Delta in Vietnam, to examine the vegetation controls on tidal currents and suspended sediment transport as the tides propagate into the forest. Model results show that vegetation characteristics at the seaward fringe determine the shape of the cross-shore bottom profile, with sparse vegetation leading to profiles that are close to linear, whereas with dense vegetation resulting in a convex intertidal topography. Examples showing different profile developments are provided from a variety of published studies, ranging from linear profiles in sandier sites, and distinctive convex profiles in muddier sites. As expected, profile differences in the model are caused by increased dissipation due to enhanced drag caused by vegetation; however, the reduction of flow shoreward in sparsely vegetated or non-vegetated cases was similar, indicating that shallowing of the profile and slope effects play a dominant role in dissipation. Here, tidal velocities are measured in the field using transects of Acoustic Doppler Current Profilers, and confirm that cross-shore tidal currents diminish quickly as they move over the fringe of the forest; they then stay fairly consistent within the outer few 100 m of the forest, indicating that the fringing environment is likely a region of deposition. An understanding of how vegetation controls the development of topography is critical to predicting the resilience of these sensitive

  10. Quantifying the seasonal and spatial variability of sedimentation in a mesotidal mangrove stand on a mega delta

    NASA Astrophysics Data System (ADS)

    Hale, R. P.; Goodbred, S. L., Jr.; Wilson, C.; Peters, C.; Bain, R. L.; Tasich, C. M.

    2016-12-01

    A one-year study of environmental conditions in the Sundarbans National Forest (SNF; SW Bangladesh) examined the relative importance of several factors controlling sedimentation in a mesotidal mangrove stand. This region receives almost no direct input from the Ganges-Brahmaputra-Meghna Rivers (GBM), however 25% of the 1*109 tons/y of sediment delivered by these rivers to the Bay of Bengal is subsequently transported inland via tidal activity (e.g., Rogers et al., 2013). We hope to clarify the relative importance of several primary controls on sedimentation in the SNF. These factors include platform inundation duration (ID) and depth, suspended sediment concentration (SSC), and settling velocity (from sediment grain size). We use data from instruments deployed in the tidal channel and on the tidal platform, sediment samples collected in the tidal channel, and sedimentation rates observed at two locations on the tidal platform. The perimeter station (PS) is near a primary channel, while the interior station (IS) is located 6 river km inland, near a smaller, secondary channel. Maximum inundation depth is relatively consistent throughout the year, although the tidal wave form varies seasonally. ID varies considerably, with the monsoon experiencing 10x longer flood periods than the dry season over the course of an individual spring-neap tide cycle. Tidal-channel SSC co-varies with GBM discharge, and can approach 3 g/l during the monsoon, compared to <0.5 g/l in the dry season. Accordingly, we observe 1-5 cm of deposition during the monsoon, and <1 cm during the dry season. Despite being located 6 km from the primary tidal channel, the IS typically floods before the PS, resulting in 4x and 1.25x longer ID at IS during the dry season and monsoon, respectively. Sediment grain size decreases towards the SNF interior from 30 um to 15 um (D50), with no obvious seasonal trend. Settling velocity is sufficiently rapid to completely clear the water column during slack high water

  11. Polycyclic aromatic hydrocarbons (PAHs) in surface sediment and oysters (Crassostrea rhizophorae) from mangrove of Guadeloupe: levels, bioavailability, and effects.

    PubMed

    Ramdine, Gaëlle; Fichet, Denis; Louis, Max; Lemoine, Soazig

    2012-05-01

    Surface sediment and oysters (Crassostrea rhizophorae) from the coastlines of Guadeloupe were analysed for polycyclic aromatic hydrocarbons (PAHs) using GC/MS. Biomarkers of oxidative stress were used to assess the response of these oysters to hydrocarbons exposure. The total concentration of PAHs in the sediment ranged from 49 to 1065 ng/g dw, while concentrations in oyster ranged from 66 to 961 ng/g dw. Molecular indices based on isomeric PAHs ratios characterize the pollution sources and show that most of the contaminations in sediment originate from pyrolytic inputs. Bioaccumulation factors (BAFs) have been related to isomeric ratio calculated for oysters in order to refine PAHs sources. The variations of BAFs observed in the different compounds resulted from different uptake pathways in the mangrove oysters according to the type of inputs. Response of biomarkers showed inhibition of catalase and an increase of lipid peroxidation at the station where PAHs concentrations were the highest. Taken together, data obtained point to the relevance of considering environmental conditions as factors influencing biomarker responses in environmental monitoring programs. These data also indicate the need for regular environmental follow-up studies in Guadeloupe. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Diversity of Bacillus-like bacterial community in the sediments of the Bamenwan mangrove wetland in Hainan, China.

    PubMed

    Liu, Min; Cui, Ying; Chen, Yuqing; Lin, Xiangzhi; Huang, Huiqin; Bao, Shixiang

    2017-03-01

    Members of the genus Bacillus and related spore-forming genera are ubiquitous. However, Bacillus-like species isolated from marine sediments have attracted less interest than their terrestrial relatives. Here, we investigated the diversity of Bacillus-like bacterial communities in the sediments of the Bamenwan mangrove wetland in Hainan, China, using culture-dependent and culture-independent methods, and present the first report on this subject. We also discovered some potential novel species from the sediment samples. Four families, Bacillaceae (58%), Paenibacillaceae (22%), Alicyclobacillaceae (15%), and Planococcaceae (5%), and 9 genera, Bacillus (42%), Paenibacillus (16%), Halobacillus (13%), Alicyclobacillus (11%), Rummeliibacillus (5%), Cohnella (5%), Tumebacillus (4%), Pontibacillus (3%), and Aneurinibacillus (2%), were identified by pyrosequencing. In contrast, only 4 genera, Bacillus (57%), Paenibacillus (23%), Halobacillus (14%), and Virgibacillus (6%), were detected by the culture-dependent method. In the 16S rDNA sequencing analysis, the isolates HB12036 and HB12037 were closest to Bacillus okuhidensis Kh10-101(T) and Paenibacillus xylanilyticus XIL14(T) with similarities of 94.8% and 95.9%, respectively, indicating that these were novel species. Bacillus sp. HB12035 and HB12040 exhibited antimicrobial activity against Staphylococcus aureus ATCC 25923, and Bacillus sp. HB12033 exhibited antimicrobial activity against Ustilago scitaminea Syd.

  13. Source and distribution of organic matter in surface sediments from mangroves on the island of Itaparica, Bahia/Brazil.

    PubMed

    Santos, Elisângela Costa; Celino, Joil José; Santos, Vera Lúcia Cancio Souza; Bispo De Souza, José Roberto

    2013-12-01

    Elemental analysis and isotopic composition evaluated the impact of human activity at the surface sediments in the largest island of Todos os Santos Bay, northeastern Brazil. Saturated hydrocarbons (n-alkanes and isoprenoids) by gas chromatography coupled with a flame ionization detector and (13)C by mass spectrometer were determined from 30 surface sediment samples in mangroves at the Itaparica Island (Bahia-Brazil) in the rainy and dry season. These data, distribution, and ratio of carbon/nitrogen showed a mixture of sources: continental, marine, and anthropogenic ones. From the chromatographic profiles, light oil contamination was observed in the dry regions of Baiacu, Campinas, and Ponta Grossa, while in Jiribatuba it was observed during the rainy season. However, δ(13)C results during dry and rainy season in the presence of oil also showed in Misericordia and Cacha Prego districts for both periods and Ponta Grossa during the rainy season. Principal component analysis, using a correlation matrix, revealed the latent relationships among all the surface sediment stations investigated and confirmed our analytical results.

  14. DNA strand breaks in grass shrimp embryos exposed to highway runoff sediments and sediments with coal fly ash.

    PubMed

    Lee, Richard F; Niencheski, Luis Felipe H; Brinkley, Karrie

    2008-07-01

    Embryo production was reduced in female grass shrimp exposed to sediments with added coal fly ash and to sediments collected from an estuarine station containing high PAH concentrations due to its proximity to a highway storm drain. Grass shrimp embryos exposed to pore water from the high PAH and high metal sediments showed both reduced hatching and increases in DNA strand breaks (comet assay). Sediments with added coal fly ash had high concentrations of vanadium and selenium which may have contributed to effects similar to those observed with sediments with high PAH. The embryo pore water bioassay (hatching/DNA strand breaks) gave results comparable to those observed for reproduction effects (reduced embryo production/embryo hatching) with female grass shrimp exposed to whole sediment.

  15. Validation of Ucides cordatus as a bioindicator of oil contamination and bioavailability in mangroves by evaluating sediment and crab PAH records.

    PubMed

    Nudi, Adriana Haddad; de Luca Rebello Wagener, Angela; Francioni, Eleine; de Lemos Scofield, Arthur; Sette, Carla B; Veiga, Alvaro

    2007-04-01

    This study is aimed at verifying the relevance of Ucides cordatus as a bioindicator of oil contamination and PAH bioavailability in mangrove sediments. For this, crabs and sediment cores were sampled from five mangroves, including an area suspected of contamination derived from an MF380 oil spillage, and analyzed for the 16 PAH in the USEPA priority list as well as for the five series of alkylated homologues. Concentrations in sediments varied from 35 microg kg-1 in the lower core layer of the control area to 33,000 microg kg-1 in the upper layer of the most contaminated area. Total PAH contents in crabs varied from 206 to 62,000 microg kg-1 and were closely correlated to that in sediments. In general, individual PAH profiles in both matrices were in good agreement. Phenanthrenes, however, were more predominant in crabs making up to 30-46% of the Total PAH. Accumulation factors found in the range of 0.7 to 35 were highly variable even after normalizing concentrations for organic carbon and lipid content. Survival in highly contaminated environment and reliable record of environmental contamination in the tissue provide evidence that U. cordatus is an excellent bioindicator for oil in mangroves.

  16. Water-sediment interactions for Hyalella azteca exposed to uranium-spiked sediment.

    PubMed

    Alves, L C; Borgmann, U; Dixon, D G

    2008-05-01

    Data on the toxicity of uranium in sediments to Hyalella azteca and the effect of overlying water chemistry are limited. This study exposed H. azteca to sediments spiked with U (0-10,000 microg U/g dry weight) and five different overlying waters, which varied independently in hardness and alkalinity. Water pH had a major effect on U bioavailability and uptake by H. azteca. Uranium toxicity was higher when overlying water pH was low, while desorption of U into the overlying water increased with increasing pH. There appears to be little effect of Ca on U uptake, other than its influence on U speciation. Experiments with caged animals indicate that U accumulation and toxicity occur mainly through the dissolved phase rather than the solid phase. Uranium bioaccumulation is a more reliable indicator of U toxicity than U concentration in water or sediment. Uranium bioaccumulation in the H. azteca and U adsorption to sediment can be satisfactorily explained using saturation models.

  17. Air emissions from exposed contaminated sediments and dredged material

    SciTech Connect

    Valsaraj, K.T.; Ravikrishna, R.; Reible, D.D.; Thibodeaux, L.J.; Choy, B.; Price, C.B.; Brannon, J.M.; Myers, T.E.; Yost, S.

    1999-01-01

    The sediment-to-air fluxes of two polycyclic aromatic hydrocarbons (phenanthrene and pyrene) and a heterocyclic aromatic hydrocarbon (dibenzofuran) from a laboratory-contaminated sediment and those of three polycyclic aromatic hydrocarbons (naphthalene, phenanthrene, and pyrene) from three field sediments were investigated in experimental microcosms. The flux was dependent on the sediment moisture content, air-filled porosity, and the relative humidity of the air flowing over the sediment surface. The mathematical model predictions of flux from the laboratory-spiked sediment agreed with observed values. The fluxes of compounds with higher hydrophobicity were more air-side resistance controlled. Conspicuous differences were observed between the fluxes from the laboratory-spiked and two of the three field sediments. Two field sediments showed dramatic increases in mass-transfer resistances with increasing exposure time and had significant fractions of oil and grease. The proposed mathematical model was inadequate for predicting the flux from the latter field sediments. Sediment reworking enhanced the fluxes from the field sediments due to exposure of fresh solids to the air. Variations in flux from the lab-spiked sediment as a result of change in air relative humidity were due to differences in retardation of chemicals on a dry or wet surface sediment. High moisture in the air over the dry sediment increased the competition for sorption sites between water and contaminant and increased the contaminant flux.

  18. Ecophysiological differences between three mangrove seedlings (Kandelia obovata, Aegiceras corniculatum, and Avicennia marina) exposed to chilling stress.

    PubMed

    Peng, Ya-Lan; Wang, You-Shao; Fei, Jiao; Sun, Cui-Ci; Cheng, Hao

    2015-10-01

    Although the cold-resistant ability of mangroves varies greatly with species, the physiological mechanism remains unclear. The chilling stress effects on morphological changes, photosynthetic pigments, reactive oxygen species (ROS), malondialdehyde (MDA) and several antioxidants, were studied in leaves of three mangrove seedlings (Kandelia obovata, Aegiceras corniculatum and Avicennia marina). Results showed that both K. obovata and A. corniculatum exhibited lighter chilling damage, lower chilling injury rates and higher survival rates compared to A. marina. Reductions of chlorophylls (Chls) were observed in all the three mangroves, and the highest was detected in A. marina. Significant increases in content of ROS (hydrogen peroxide, H2O2; hydroxyl radicals, OH⋅) and MDA were observed in both A. marina and A. corniculatum, whereas chilling stressed K. obovata showed a decrease in H2O2 content, constant OH⋅ level and instantaneous increase of MDA. The contents of proline and water-soluble protein exhibited similar stress-time dependent increases in all mangroves, while A. corniculatum showed the highest increase of proline and relatively higher increase of water-soluble protein. The catalase activities significantly decreased with stress time in all mangroves, while K. obovata showed the least reduction. An increase in ascorbic acid (AsA) content and activities of superoxide dismutase, peroxidase (POD), and ascorbate peroxidase (APX) were also detected in all the three mangroves, while K. obovata showed the highest increases. These results indicate that chilling-tolerance of mangroves is associated with the efficiency of antioxidants, as confirmed by principal component analysis. The AsA, APX and POD in K. obovata may play more important role in control of oxidative stresses than those in the other two species. Furthermore, the higher cold-resistance of A. corniculatum compared to A. marina may be partly associated with its higher proline accumulation. The

  19. Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: a baseline study before Sundarban oil spill of December, 2014.

    PubMed

    Kumar, Alok; Ramanathan, Al; Prasad, M B K; Datta, Dilip; Kumar, Manoj; Sappal, Swati Mohan

    2016-05-01

    The distribution, enrichment, and ecotoxicity potential of Bangladesh part of Sundarban mangrove was investigated for eight trace metals (As, Cd, Cr, Cu, Fe, Mn, Pb, and Zn) using sediment quality assessment indices. The average concentration of trace metals in the sediments exceeded the crustal abundance suggesting sources other than natural in origin. Additionally, the trace metals profile may be a reflection of socio-economic development in the vicinity of Sundarban which further attributes trace metals abundance to the anthropogenic inputs. A total of eleven surficial sediment samples were collected along a vertical transect along the freshwater-saline water gradient. The sediment samples were digested using EPA 3051 method and were analyzed on ICP-MS. Geo-accumulation index suggests moderately polluted sediment quality with respect to Ni and As and background concentrations for Al, Fe, Mn, Cu, Zn, Pb, Co, As, and Cd. Contamination factor analysis suggested low contamination by Zn, Cr, Co, and Cd, moderate by Fe, Mn, Cu, and Pb while Ni and As show considerable and high contamination, respectively. Enrichment factors for Ni, Pb, and As suggests high contamination from either biota or anthropogenic inputs besides natural enrichment. As per the three sediment quality guidelines, Fe, Mn, Cu, Ni, Co, and As would be more of a concern with respect to ecotoxicological risk in the Sundarban mangroves. The correlation between various physiochemical variables and trace metals suggested significant role of fine grained particles (clay) in trace metal distribution whereas owing to low organic carbon content in the region the organic complexation may not be playing significant role in trace metal distribution in the Sundarban mangroves.

  20. Nutrient dynamics in mangrove crab burrow sediments subjected to anthropogenic input

    NASA Astrophysics Data System (ADS)

    Mchenga, Islam S. S.; Tsuchiya, Makoto

    2008-02-01

    Bioturbation by burrowing macroinvertebrates has a major impact on sediment properties, pollutant redistribution, and biogeochemical cycling. We assessed the impact of bioturbation on the nutrient dynamics and organic matter of sediments receiving anthropogenic inputs in the Manko wetland, located in southern Okinawa, Japan. We compared sediments that were and were not subjected to the activities of the tidal-flat crab Helice formosensis. The fatty acid composition of sediments indicated that different sources contributed to the organic matter profile. Agricultural and domestic waste discharge seemed to induce a high amount of green macroalgae and bacteria in the tidal flat. Sediments without crabs exhibited 2.1-2.4× more NH 4-N release, which was associated with a low C/N ratio during the summer. In the crab burrow sediments, NO 3-N concentrations were 1.4-1.9× more pronounced during winter. A significant correlation existed between NO 3-N and NO 2-N concentrations in sediments of the burrow chamber (r = 0.837, p < 0.02) and the mixed zone of burrow opening shaft and chamber (r = 0.885, p < 0.01). We suggest that burrow wall sediments provide ideal conditions for nitrate reduction (denitrification). H. formosensis thus contributes to balancing the effects of anthropogenic inputs by removing nitrogen loads in sediments.

  1. Changes of soluble proteins in leaf and thylakoid exposed in high saline condition of a mangrove taxa Bruguiera gymnorrhiza.

    PubMed

    Behera, Bishnupriya; Das, Anath Bandhu; Mohanty, Prasanna

    2009-01-01

    One-year-old seedlings of Bruguiera gymnorrhiza (L) Savingay were exposed to 500 mM NaCl for 6d under hydroponic culture condition to characterize the changes in leaf and thylakoid protein profiles in response to short-term salt exposures. Significant changes in leaf dry mass, chlorophylls and soluble leaf proteins were observed in short term of salt exposures, as it happens under tidal situations in nature. Chlorophyll a/b ratio showed decrease of light harvesting efficiency in salt treatment. Total soluble proteins in leaves were extracted from control and NaCl-treated plants at 2d intervals and were analyzed by SDS-PAGE. Intensity of several protein bands of different molecular mass of leaf protein profile ranging from 10 to 86 kDa (10, 16, 23, 33, 37, 42, 44, 50 and 86 kDa) were decreased due to high salt treatment. Out of these, 16, 23 and 33 kDa protein bands decreased dramatically from 1-3 fold but recovered in 7d growth, except the 33 kDa band. SDSPAGE profile of thylakoid protein revealed that both number and the intensity of several protein bands got altered by salt concentration. However, 33 kDa protein band of thylakoid reappeared in recovery that might not be of the same characteristics with same molecular mass as shown in total leaf protein profile. The numbers of major bands found in SDS-PAGE were reduced when analyzed in urea-SDS-PAGE to minimize protein aggregations by high salt. It was noted that 47 kDa disappeared while some proteins of apparent molecular mass like 23 kDa, 33 kDa, 37 kDa and 50 kDa degraded to minor bands. Partial restoration of protein bands occurred when the salt-treated plants were brought back to initial growth condition. These results clearly demonstrate that short term high salt concentration could cause major alterations to photosynthetic apparatus of a true non salt-secreting tree mangrove Bruguiera gymnorrhiza and adapted against fluctuation of salinity by altering leaf protein pool relatively more than the thylakoid

  2. Mangrove forests

    Treesearch

    Ariel E. Lugo; Ernesto. Medina

    2014-01-01

    The mangrove environment is not globally homogeneous, but involves many environmental gradients to which mangrove species must adapt and overcome to maintain the familiar structure and physiognomy associated with the mangrove ecosystem. The stature of mangroves, measured by tree height, decreases along the following environmental gradients from low to high salinity,...

  3. The Assessment of Mangrove Sediment Quality in Mengkabong Lagoon: An Index Analysis Approach

    ERIC Educational Resources Information Center

    Praveena, Sarva M.; Radojevic, Miroslav; Abdullah, Mohd H.

    2007-01-01

    The objectives of this study are to use different types of indexes to assess the current pollution status in Mengkabong lagoon and select the best index to describe the Mengkabong sediment quality. The indexes used in this study were Enrichment Factor (EF), Geo-accumulation Index (Igeo), Pollution Load Index (PLI) and Marine Sediment Pollution…

  4. Distribution, mobility, and pollution assessment of Cd, Cu, Ni, Pb, Zn, and Fe in intertidal surface sediments of Sg. Puloh mangrove estuary, Malaysia.

    PubMed

    Udechukwu, Bede Emeka; Ismail, Ahmad; Zulkifli, Syaizwan Zahmir; Omar, Hishamuddin

    2015-03-01

    Sungai Puloh mangrove estuary supports a large diversity of macrobenthic organisms and provides social benefits to the local community. Recently, it became a major recipient of heavy metals originating from industries in the hinterland as a result of industrialization and urbanization. This study was conducted to evaluate mobility and pollution status of heavy metals (Cd, Cu, Ni, Pb, Zn, and Fe) in intertidal surface sediments of this area. Surface sediment samples were collected based on four different anthropogenic sources. Metals concentrations were analyzed using an atomic absorption spectrophotometer (AAS). Results revealed that the mean concentrations were Zn (1023.68 ± 762.93 μg/g), Pb (78.8 ± 49.61 μg/g), Cu (46.89 ± 43.79 μg/g), Ni (35.54 ± 10.75 μg/g), Cd (0.94 ± 0.29 μg/g), and Fe (7.14 ± 0.94%). Most of the mean values of analyzed metals were below both the interim sediment quality guidelines (ISQG-low and ISQG-high), except for Pb concentration (above ISQG-low) and Zn concentration (above ISQG-high), thus suggesting that Pb and Zn may pose some environmental concern. Cadmium, Pb, and Zn concentrations were above the threshold effect level (TEL), indicating seldom adverse effect of these metals on macrobenthic organisms. Pollution load index (PLI) indicated deterioration and other indices revealed the intertidal surface sediment is moderately polluted with Cd, Pb, and Zn. Therefore, this mangrove area requires urgent attention to mitigate further contamination. Finally, this study will contribute to data sources for Malaysia in establishing her own ISQG since it is a baseline study with detailed contamination assessment indices for surface sediment of intertidal mangrove area.

  5. Mercury and methylmercury distribution in the intertidal surface sediment of a heavily anthrophogenically impacted saltwater-mangrove-sediment interplay zone.

    PubMed

    Haris, Hazzeman; Aris, Ahmad Zaharin; Mokhtar, Mazlin Bin

    2017-01-01

    Total mercury (THg) and methylmercury (MeHg) concentrations were determined from sediment samples collected from thirty sampling stations in Port Klang, Malaysia. Three stations had THg concentrations exceeding the threshold effect level of the Florida Department of Environmental Protection and the Canadian interim sediment quality guidelines. THg and MeHg concentrations were found to be concentrated in the Lumut Strait where inputs from the two most urbanized rivers in the state converged (i.e. Klang River and Langat River). This suggests that Hg in the study area likely originated from the catchments of these rivers. MeHg made up 0.06-94.96% of the sediment's THg. There is significant positive correlation (p < 0.01) between THg and MeHg concentrations. Significant positive correlation (p < 0.05) was also observed between fine sediment particles (i.e. clay and silt) with MeHg concentrations. Sediment particle size, however, was not found to have any influence on THg concentrations in the sediment in the study area.

  6. Biodegradation of anthracene and benz[a]anthracene by two Fusarium solani strains isolated from mangrove sediments.

    PubMed

    Wu, Yi-Rui; Luo, Zhu-Hua; Vrijmoed, L L P

    2010-12-01

    An investigation was undertaken on the biodegradation of two kinds of polycyclic aromatic hydrocarbons (PAHs), anthracene (ANT) and benz[a]anthracene (BAA), by fungi isolated from PAH-contaminated mangrove sediments environment in Ma Wan, Hong Kong. ANT (50mg l(-1)) and BAA (20mg l(-1)), respectively, were added to mineral salt medium initially for screening of PAH-degrading fungi, and finally two fungal species capable of using ANT or BAA as the sole carbon source were isolated and identified as Fusariumsolani species. Removal of ANT and BAA reached 40% and 60% of the added amount, respectively, after 40 days of incubation. A total of six metabolites were isolated and characterized by solid phase microextraction (SPME) combined with gas chromatography-mass spectrometry (GC/MS), which indicate that F.solani degraded both ANT and BAA via their respective quinone molecules to generate phthalic acid. Free extracellular laccase was detected during the degradation process without detectable lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP), suggesting that laccase might play an important role in the transformation of PAHs compounds.

  7. An efficient biosurfactant-producing bacterium Selenomonas ruminantium CT2, isolated from mangrove sediment in south of Thailand.

    PubMed

    Saimmai, Atipan; Onlamool, Theerawat; Sobhon, Vorasan; Maneerat, Suppasil

    2013-01-01

    Biosurfactant-producing bacteria, isolate CT2, was isolated from mangrove sediment in the south of Thailand. The sequence of the 16S rRNA gene from isolate CT2 showed 100 % similarity with Selenomonas ruminantium. The highest biosurfactant production (5.02 g/l) was obtained when the cells were grown on minimal salt medium containing 15 g/l molasses and 1 g/l commercial monosodium glutamate supplemented with 1 g/l NaCl, 0.1 g/l leucine, 5 % (v/v) inoculum size at 30 °C and 150 rpm after 54 h of cultivation. The biosurfactant obtained by extraction with ethyl acetate showed high surface tension reduction (25.5 mN/m), a small CMC value (8 mg/l), thermal and pH stability with respect to surface tension reduction and emulsification activity and a high level of salt tolerance. The biosurfactant obtained was confirmed as a lipopeptide by using a biochemical test, FT-IR, MNR and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance PAHs solubility.

  8. Contamination of polycyclic aromatic hydrocarbons (PAHs) in surface sediments and plants of mangrove swamps in Shenzhen, China.

    PubMed

    Li, Fenglan; Zeng, Xiaokang; Yang, Junda; Zhou, Kai; Zan, Qijie; Lei, Anping; Tam, Nora F Y

    2014-08-30

    The concentrations of 16 individual and total polycyclic aromatic hydrocarbons (∑PAHs) in sediments, roots and leaves of three mangrove swamps in Shenzhen, China, namely Futian, Baguang and Waterlands, were determined. The mean concentration of ∑PAHs in Futian (4480 ng g(-1)) was significantly higher than that in Baguang (1262 ng g(-1)) and Waterlands (2711 ng g(-1)). Among the 16 PAHs, the concentration of naphthalene was the highest. Based on the ratios of phenanthrene/anthracene and fluoranthene/pyrene, PAHs in Futian and Waterlands came from petrogenic and pyrolytic sources, while Baguang was mainly from pyrolytic. More PAHs were accumulated in leaves, as reflected by its higher mean concentration of ∑PAHs (3697 ng g(-1)) and bioconcentration factor of PAHs (BCF) (>1.5) than that in roots. The BCF values in plants collected from Futian were significantly higher than that from Waterlands. These results indicated that more attention should be paid to the PAH contamination in Futian.

  9. Abilities and genes for PAH biodegradation of bacteria isolated from mangrove sediments from the central of Thailand.

    PubMed

    Wongwongsee, Wanwasan; Chareanpat, Promchat; Pinyakong, Onruthai

    2013-09-15

    PAH-degrading bacteria, including Novosphingobium sp. PCY, Microbacterium sp. BPW, Ralstonia sp. BPH, Alcaligenes sp. SSK1B, and Achromobacter sp. SSK4, were isolated from mangrove sediments. These isolates degraded 50-76% of 100 mg/l phenanthrene within 2 weeks. Strains PCY and BPW also degraded pyrene at 98% and 71%, respectively. Furthermore, all of them probably produced biosurfactants in the presence of hydrocarbons. Interestingly, PCY has a versatility to degrade various PAHs. Molecular techniques and plasmid curing remarkably revealed the presence of the alpha subunit of pyrene dioxygenase gene (nidA), involving in its pyrene/phenanthrene degrading ability, located on megaplasmid of PCY which has never before been reported in sphingomonads. Moreover, genes encoding ferredoxin, reductase, extradiol dioxygenase (bphA3A4C) and exopolysaccharide biosynthetase, which may be involved in PAH degradation and biosurfactant production, were also found in PCY. Therefore, we conclude that these isolates, especially PCY, can be the candidates for use as inoculums in the bioremediation.

  10. Settlement success of Favia fragum planulae exposed to different sediment types and concentrations from southern Puerto Rico

    EPA Science Inventory

    Sedimentation has been reported to adversely affect coral ecosystems, but the precise effects of sediment on coral larval settlement and metamorphosis are not well understood. Planulae from laboratory-cultured Favia fragum colonies were collected and exposed to sediment collected...

  11. Settlement success of Favia fragum planulae exposed to different sediment types and concentrations from southern Puerto Rico

    EPA Science Inventory

    Sedimentation has been reported to adversely affect coral ecosystems, but the precise effects of sediment on coral larval settlement and metamorphosis are not well understood. Planulae from laboratory-cultured Favia fragum colonies were collected and exposed to sediment collected...

  12. Linkage between speciation of Cd in mangrove sediment and its bioaccumulation in total soft tissue of oyster from the west coast of India.

    PubMed

    Chakraborty, Parthasarathi; Ramteke, Darwin; Gadi, Subhadra Devi; Bardhan, Pratirupa

    2016-05-15

    This study established a mechanistic linkage between Cd speciation and bioavailability in mangrove system from the west coast of India. High bioaccumulation of Cd was found in the oyster (Crassostrea sp.) even at low Cd loading in the bottom sediment. Bioaccumulation of Cd in the oyster gradually increased with the increasing concentrations of water soluble, exchangeable and carbonate/bicarbonate forms of Cd in the sediments. Fe/Mn oxyhydroxide phase was found to control Cd bioavailability in the sediment system. Cd-associated with sedimentary organic matter was bioavailable and organic ligands in the sediments were poor chelating agents for Cd. This study suggests that bioaccumulation of Cd in oyster (Crassostrea sp.) depends not on the total Cd concentration but on the speciation of Cd in the system.

  13. Arsenic and mercury contamination of sediments of geothermal springs, mangrove lagoon and the Santispac bight, Bahía Concepción, Baja California peninsula.

    PubMed

    Leal-Acosta, María Luisa; Shumilin, Evgueni; Mirlean, Nicolai; Sapozhnikov, Dmitry; Gordeev, Vyacheslav

    2010-12-01

    In order to find out the environmental impact on the coastal zone, the composition of sediments of the intertidal geothermal hot spring zone and adjacent area of Playa Santispac in the pristine Bahía Concepción (Baja California peninsula) was studied. High concentrations of As (13-111 mg kg⁻¹) and Hg (0.55-25.2 mg kg⁻¹) were found in the sediments of the geothermal sources. Arsenic and Hg concentrations decrease rapidly in the adjacent small mangrove lagoon sediments and reach background levels (0.7-2.6 mg kg⁻¹ and 6-60 μg kg⁻¹ respectively) in the marine sediments collected in front of Playa Santispac.

  14. Enhanced greenhouse gas emission from exposed sediments along a hydroelectric reservoir during an extreme drought event

    NASA Astrophysics Data System (ADS)

    Jin, Hyojin; Yoon, Tae Kyung; Lee, Seung-Hoon; Kang, Hojeong; Im, Jungho; Park, Ji-Hyung

    2016-12-01

    An active debate has been underway on the magnitude and duration of carbon (C) emissions from hydroelectric reservoirs, yet little attention has been paid to stochastic C emissions from reservoir sediments during extreme climatic events. A rare opportunity for field measurements of CO2 efflux from a hydroelectric reservoir in Korea during an extreme drought event was used to examine how prolonged droughts can affect microbial organic matter processing and the release of CO2, CH4 and N2O from exposed sediments. Chamber measurements of CO2 efflux along an exposed sediment transect, combined with high-frequency continuous sensor measurements of the partial pressure of CO2 (pCO2) in the reservoir surface water, exhibited extraordinary pulses of CO2 from exposed sediments and the turbulent inflowing water in contrast to a small CO2 sink in the main water body of the reservoir and a low efflux of CO2 from the flooded sediment. Significant increases in the production of CO2, CH4 and N2O observed in a laboratory incubation of sediments, together with enhanced activities of phenol oxidase and three hydrolases, indicate a temporary activation of microbial organic matter processing in the drying sediment. The results suggest that drought-triggered pulses of greenhouse gas emission from exposed sediments can offset the C accumulation in reservoir sediments over time scales of years to decades, reversing the trend of declining C emissions from aging reservoirs.

  15. Contaminant profiles for surface water, sediment, flora and fauna associated with the mangrove fringe along middle and lower eastern Tampa Bay.

    PubMed

    Lewis, M A; Russell, M J

    2015-06-15

    Contaminant concentrations are reported for surface water, sediment, flora and fauna collected during 2010-2011 from the mangrove fringe along eastern Tampa Bay, Florida. Concentrations of trace metals, chlorinated pesticides, atrazine, total polycyclic aromatic hydrocarbons, and polychlorinated biphenyls were species-, chemical- and location-specific. Contaminants in sediments did not exceed proposed individual sediment quality guidelines. Most sediment quality assessment quotients were less than one indicating the likelihood of no inhibitory effect based on chemical measurements alone. Faunal species typically contained more contaminants than plant species; seagrass usually contained more chemicals than mangroves. Bioconcentration factors for marine angiosperms were usually less than 10 and ranged between 1 and 31. Mercury concentrations (ppm) in blue crabs and fish did not exceed the U.S. Environmental Protection Agency fish tissue criterion of 0.3 and the U.S. Food and Drug Administration action level of 1.0. In contrast, total mercury concentrations in faunal species often exceeded guideline values for wildlife consumers of aquatic biota.

  16. ORGANOCHLORINE PESTICIDES (OCS) AND POLYCHLORINATED BIPHENYLS (PCBS) IN SEDIMENTS AND CRABS (Chasmagnathus granulata, DANA, 1851) FROM MANGROVES OF GUANABARA BAY, RIO DE JANEIRO STATE, BRAZIL

    PubMed Central

    de Souza, Alexandre Santos; Torres, João Paulo Machado; Meire, Rodrigo Ornellas; Neves, Rafael Curcio; Couri, Márcia Souto; Serejo, Cristiana Silveira

    2008-01-01

    Organochlorinated compounds, seven indicator PCB congeners, DDT and its main metabolites, were determined in sediment and crab (Chasmagnathus granulata) samples collected from mangrove areas near Rio de Janeiro, Brazil. Samples were analysed according to the FAO/SIDA protocols using continuous non-polar solvent extraction and a conventional GC-ECD apparatus. The highest levels of total PCB congeners and total DDT metabolites in sediments (184.16 and 37.40 ng.g−1d.w. respectively) and crab eggs (570.62 and 98.22 ng.g−1d.w. respectively) were found at impacted mangroves. The higher PCB congeners than DDT metabolites levels suggesting a stronger industrial impact in this area. The results indicate that the population density of crab is negatively affected by sediment contamination that is reflected basically by the organochlorine content in the female eggs. The organochlorine concentration in eggs is more significant to evaluate or estimate an impact of these pollutants upon C. granulata population than the organochlorine concentration in sediment samples. PMID:18485446

  17. Organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) in sediments and crabs (Chasmagnathus granulata, Dana, 1851) from mangroves of Guanabara Bay, Rio de Janeiro State, Brazil.

    PubMed

    de Souza, Alexandre Santos; Torres, João Paulo Machado; Meire, Rodrigo Ornellas; Neves, Rafael Curcio; Couri, Márcia Souto; Serejo, Cristiana Silveira

    2008-08-01

    Organochlorinated compounds, seven indicator PCB congeners, DDT and its main metabolites, were determined in sediment and crab (Chasmagnathus granulata) samples collected from mangrove areas near Rio de Janeiro, Brazil. Samples were analysed according to the FAO/SIDA protocols using continuous non-polar solvent extraction and a conventional GC-ECD apparatus. The highest levels of total PCB congeners and total DDT metabolites in sediments (184.16 and 37.40 ng g(-1)d.w. respectively) and crab eggs (570.62 and 98.22 ng g(-1)d.w. respectively) were found at impacted mangroves. The higher PCB congeners than DDT metabolites levels suggesting a stronger industrial impact in this area. The results indicate that the population density of crab is negatively affected by sediment contamination that is reflected basically by the organochlorine content in the female eggs. The organochlorine concentration in eggs is more significant to evaluate or estimate an impact of these pollutants upon C. granulata population than the organochlorine concentration in sediment samples.

  18. Modelling metallothionein induction in the liver of Sparus aurata exposed to metal-contaminated sediments.

    PubMed

    Costa, P M; Repolho, T; Caeiro, S; Diniz, M E; Moura, I; Costa, M H

    2008-09-01

    Metallothionein (MT) in the liver of gilthead seabreams (Sparus aurata L., 1758) exposed to Sado estuary (Portugal) sediments was quantified to assess the MT induction potential as a biomarker of sediment-based contamination by copper (Cu), cadmium (Cd), lead (Pb) and arsenic (As). Sediments were collected from two control sites and four sites with different levels of contamination. Sediment Cu, Cd, Pb, As, total organic matter (TOM) and fine fraction (FF) levels were determined. Generalized linear models (GLM) allowed integration of sediment parameters with liver Cu, Cd, Pb, As and MT concentrations. Although sediment metal levels were lower than expected, we relate MT with liver Cd and also with interactions between liver and sediment Cu and between liver Cu and TOM. We suggest integrating biomarkers and environmental parameters using statistical models such as GLM as a more sensitive and reliable technique for sediment risk assessment than traditional isolated biomarker approaches.

  19. Mangrove postcard

    USGS Publications Warehouse

    Ball, Lianne C.

    2016-07-14

    Mangrove ecosystems protect vulnerable coastlines from storm effects, recycle nutrients, stabilize shorelines, improve water quality, and provide habitat for commercial and recreational fish species as well as for threatened and endangered wildlife. U.S. Geological Survey scientists conduct research on mangrove ecosystems to provide reliable scientific information about their ecology, productivity, hydrological processes, carbon storage stress response, and restoration success. The Mangrove Science Network is a collaboration of USGS scientists focused on working with natural resource managers to develop and conduct research to inform decisions on mangrove management and restoration. Information about the Mangrove Science Network can be found at: http://www.usgs.gov/ecosystems/environments/mangroves.html.

  20. Assessing diversity and phytoremediation potential of mangroves for copper contaminated sediments in Subic Bay, Philippines

    USDA-ARS?s Scientific Manuscript database

    Toxic metal pollution of water and soil is a major environmental problem and most conventional remediation approaches may not provide adequate solutions. An alternative way of reducing copper (Cu) concentration from contaminated sediments is through phytoremediation. Presently, there are few researc...

  1. Phosphorous fractionation in mangrove sediments of Kerala, south west coast of India: the relative importance of inorganic and organic phosphorous fractions.

    PubMed

    Resmi, P; Manju, M N; Gireeshkumar, T R; Ratheesh Kumar, C S; Movitha, M; Shameem, K; Chandramohanakumar, N

    2016-06-01

    The study of phosphorous dynamics in mangrove ecosystems of the northern Kerala coast aims to delineate its relationships with other biogeochemical parameters. Our intension is to check the validity of the hypothesis that these mangrove ecosystems act as an efficient trap of organic phosphorous by acting as P sink. The dissolved inorganic phosphate displayed higher concentration in monsoon that could be correlated with higher P leaching from mangrove litter as well as terrigenous input during wet season. Fe(OOH)≈P was much higher in monsoon (235.23 to 557.70 μg g(-1)) and lower in pre-monsoon (36.50 to 154.97 μg g(-1)), and displayed significant contribution towards the inorganic sedimentary P fractions. In monsoon, adsorption of P on iron hydroxides is enhanced by fresh water conditions, but pre-monsoon is characterised by the reductive dissolution of iron oxy hydroxides and the subsequent efflux of P to water column. CaCO3≈Pinorg may be present as an inert fraction in the sediment matrix, and did not display any interrelationship with other geochemical parameters. The abundant total organic P (25 to 73 %) fractions, largely derived from P bound with humic/fulvic acid, played a major role in immobilising P and regulating its dynamics in the nearby estuarine and coastal environment.

  2. Faunal Burrows Alter the Diversity, Abundance, and Structure of AOA, AOB, Anammox and n-Damo Communities in Coastal Mangrove Sediments.

    PubMed

    Chen, Jing; Gu, Ji-Dong

    2017-07-01

    In the present work, the diversity, community structures, and abundances of aerobic ammonia-oxidizing archaea (AOA) and bacteria (AOB), anaerobic ammonium-oxidizing (anammox) bacteria, and denitrifying anaerobic methane oxidization (n-damo) bacteria were unraveled in the bioturbated areas of the coastal Mai Po mangrove sediments. Results indicated that the bioturbation by burrowing in mangrove sediments was associated with higher concentration of NH4(+) but lower concentrations of both NO2(-) and NO3(-), and increase in diversity and richness of both AOA and AOB, but relatively lower diversity and richness of n-damo bacteria. The phylotypes of anammox bacterial community were significantly increased while their phylogenetic lineages observed in the less bioturbated areas were also maintained. Infauna also showed a great impact on the composition of n-damo bacterial phylotypes and burrowing activity altered the n-damo community structure profoundly in the sampled areas. The communities of n-damo bacteria in the surrounding bulk sediments showed similar structures to marine n-damo communities, but those on the burrow wall and in the ambient surface layer had a freshwater pattern, which was different from previous findings in Mai Po wetland. On the other hand, the abundances of AOA, AOB, and n-damo bacteria were greatly stimulated on burrow walls while the abundance of anammox bacteria remained unchanged. Infaunal burrows and mangrove roots affected the relative abundance of AOA and AOB. The benthic infauna stimulated the abundances of AOA, AOB, anammox, and n-damo bacteria. Furthermore, NH4(+) and NO2(-) were important environmental factors changing the structure of each group. The communities of anammox and n-damo bacteria in bioturbated areas showed a competitive relationship.

  3. The risk assessment of heavy metals in Futian mangrove forest sediment in Shenzhen Bay (South China) based on SEM-AVS analysis.

    PubMed

    Chai, Minwei; Shen, Xiaoxue; Li, Ruili; Qiu, Guoyu

    2015-08-15

    The risks of heavy metal in Futian mangrove forest sediment were assessed using the acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) methods. The results indicated that AVS distributions were more variable than the SEM distributions at all 16 sampling sites. The positive correlation between AVS and SEM indicated that their similar formative and existing conditions and that AVS acted as an important carrier for SEM. The major SEM component was Zn (69.7.3-94.2%), whereas the Cd contribution (the most toxic metal present) to SEM was no more than 1%. The possible adverse effects caused by heavy metals at ten sampling sites may be due to higher levels of SEMs, rather than AVSs. The total organic carbon (TOC) was an important metal-binding phase in the sediments. Taking into account the TOC concentration, there were no adverse effects due to heavy metals in any of the Futian mangrove forest sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Responses of juvenile southern flounder exposed to Deepwater Horizon oil-contaminated sediments.

    PubMed

    Brown-Peterson, Nancy J; Krasnec, Michelle O; Lay, Claire R; Morris, Jeffrey M; Griffitt, Robert J

    2016-09-27

    The Deepwater Horizon oil spill released millions of barrels of crude oil into the northern Gulf of Mexico, much of which remains associated with sediments and can have continuing impacts on biota. Juvenile southern flounder (Paralichthys lethostigma) were exposed for 28 d in the laboratory under controlled conditions to reference and Deepwater Horizon oil-contaminated sediments collected from coastal Louisiana to assess the impacts on an ecologically and commercially important benthic fish. The measured polycyclic aromatic hydrocarbon (PAH) concentrations in the sediments ranged from 0.25 mg/kg to 3940 mg/kg suite of 50 PAH analytes (tPAH50). Mortality increased with both concentration and duration of exposure. Exposed flounder length and weight was lower compared to controls after 28 d of exposure to the sediments with the highest PAH concentration, but condition factor was significantly higher in these fish compared with all other treatments. Histopathological analyses showed increased occurrence of gill abnormalities, including telangiectasis, epithelial proliferation, and fused lamellae in flounder exposed to sediments with the highest tPAH50 concentrations. In addition, hepatic vascular congestion and macrovesicular vacuolation were observed in flounder exposed to the more contaminated sediments. These data suggest that chronic exposure to field collected oil-contaminated sediments results in a variety of sublethal impacts to a benthic fish, with implications for long-term recovery from oil spills. Environ Toxicol Chem 2016;9999:1-10. © 2016 SETAC.

  5. Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution.

    PubMed

    Frey, S K; Gottschall, N; Wilkes, G; Grégoire, D S; Topp, E; Pintar, K D M; Sunohara, M; Marti, R; Lapen, D R

    2015-01-01

    When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution.

  6. [Mercury and copper accumulation during last fifty years and their potential ecological risk assessment in sediment of mangrove wetland of Shenzhen, China].

    PubMed

    Li, Rui-Li; Chai, Min-Wei; Qiu, Guo-Yu; He, Bei

    2012-12-01

    The processes of sediment transport and deposition can record some relative anthropogenic information in gulf region. Chronological analysis of the sediment core collected from mangrove wetland in Shenzhen Bay showed that the sedimentation rate was about 1.38 cm x a(-1). Soil buck density, pH, electrical conductivity (EC) and total organic carbon (TOC) changed in range of 0.36-0.71 g x cm(-3), 6-7, 2.93 x 10(3) -4.97 x 10(3) microS x cm(-1), and 1.5% - 3.8%, respectively. With the increase of soil depth, the soil buck density and EC increased gradually. However, the TOC decreased, with no significant change of pH. Contents of Hg and Cu in the whole depth of core ranged between 92-196 ng x g(-1) and 29-83 microg x g(-1), respectively. And both of them in sediment increased firstly and then decreased with the increasing soil depth. At 14 cm depth, contents of Hg and Cu reached up to the highest levels. Correspondingly, the ecological risk of Hg and Cu changed similarly with the contents of Hg and Cu. At 14 cm depth, the ecological risk indexes of Hg and Cu were at the highest levels of 39.10 and 13.85, respectively. The potential ecological risks of both Hg and Cu in sediments were mild. The rapid economical development of Hong Kong in 1960-1985 and Shenzhen in 1985-2000 contributed much to the Hg and Cu accumulation in mangrove wetland of Shenzhen Bay, China. Since the year of 2000, the reduction in contents of Hg and Cu has been expected as a consequence of the adoption of contamination control policies, improving the environment for growth of mangrove. In conclusion, the variations of core sediment heavy metal contents and its ecological risk assessment along the vertical profile reveal the interaction processes and extent of anthropogenic influences from the areas around the Shenzhen Bay and the catchments.

  7. Distribution, diversity and abundance of bacterial laccase-like genes in different particle size fractions of sediments in a subtropical mangrove ecosystem.

    PubMed

    Luo, Ling; Zhou, Zhi-Chao; Gu, Ji-Dong

    2015-10-01

    This study investigated the diversity and abundance of bacterial lacasse-like genes in different particle size fractions, namely sand, silt, and clay of sediments in a subtropical mangrove ecosystem. Moreover, the effects of nutrient conditions on bacterial laccase-like communities as well as the correlation between nutrients and, both the abundance and diversity indices of laccase-like bacteria in particle size fractions were also studied. Compared to bulk sediments, Bacteroidetes, Caldithrix, Cyanobacteria and Chloroflexi were dominated in all 3 particle-size fractions of intertidal sediment (IZ), but Actinobacteria and Firmicutes were lost after the fractionation procedures used. The diversity index of IZ fractions decreased in the order of bulk > clay > silt > sand. In fractions of mangrove forest sediment (MG), Verrucomicrobia was found in silt, and both Actinobacteria and Bacteroidetes appeared in clay, but no new species were found in sand. The declining order of diversity index in MG fractions was clay > silt > sand > bulk. Furthermore, the abundance of lacasse-like bacteria varied with different particle-size fractions significantly (p < 0.05), and decreased in the order of sand > clay > silt in both IZ and MG fractions. Additionally, nutrient availability was found to significantly affect the diversity and community structure of laccase-like bacteria (p < 0.05), while the total organic carbon contents were positively related to the abundance of bacterial laccase-like genes in particle size fractions (p < 0.05). Therefore, this study further provides evidence that bacterial laccase plays a vital role in turnover of sediment organic matter and cycling of nutrients.

  8. Exploring the effects of black mangrove (Avicennia germinans) expansions on nutrient cycling in smooth cordgrass (Spartina alterniflora) marsh sediments of southern Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Henry, K. M.; Twilley, R. R.

    2011-12-01

    Located at the northernmost extent of mangroves in the Gulf of Mexico, coastal Louisiana (LA) provides an excellent opportunity to study the effects of a climate-induced vegetation shift on nutrient cycling within an ecosystem. Climate throughout the Gulf Coast region is experiencing a general warming trend and scientists predict both hotter summers (+1.5 to 4 °C) and warmer winters (+1.5 to 5.5 °C) by 2100. Over the last two decades, mild winter temperatures have facilitated the expansion of black mangrove trees (Avicennia germinans) into the smooth cordgrass (Spartina alterniflora) along parts of the LA coast. Due to differences in morphology and physiology between these two species, the expansion of Avicennia has the potential to greatly alter sediment biogeochemistry, especially nutrient cycling. With such an extensive history of coastal nutrient enrichment and eutrophication in the Mississippi River delta, it is important to understand how nutrient cycling, retention, and removal in this region will be affected by this climate-induced vegetation expansion. We examined the effect of this species shift on porewater salinity, sulfide, and dissolved inorganic nutrient concentrations (nitrite, nitrate, ammonium, and phosphate) as well as sediment oxidation-reduction potential, bulk density, and nutrient content (carbon, nitrogen, phosphorus). We also measured net dinitrogen (N2:Ar), oxygen, and dissolved inorganic nutrient fluxes on intact, non-vegetated sediment cores collected from both Spartina and Avicennia habitats. Spartina sediments were more reducing, with higher concentrations of sulfides and ammonium. We found no significant difference between Spartina and Avicennia sediment dinitrogen, oxygen, or dissolved inorganic nutrient fluxes. Net dinitrogen fluxes for both habitat types were predominately positive, indicating higher rates of denitrification than nitrogen fixation at these sites. Sediments were primarily a nitrate sink, but functioned as both a

  9. Molecular responses of European flounder (Platichthys flesus) chronically exposed to contaminated estuarine sediments.

    PubMed

    Williams, Tim D; Davies, Ian M; Wu, Huifeng; Diab, Amer M; Webster, Lynda; Viant, Mark R; Chipman, J Kevin; Leaver, Michael J; George, Stephen G; Moffat, Colin F; Robinson, Craig D

    2014-08-01

    Molecular responses to acute toxicant exposure can be effective biomarkers, however responses to chronic exposure are less well characterised. The aim of this study was to determine chronic molecular responses to environmental mixtures in a controlled laboratory setting, free from the additional variability encountered with environmental sampling of wild organisms. Flounder fish were exposed in mesocosms for seven months to a contaminated estuarine sediment made by mixing material from the Forth (high organics) and Tyne (high metals and tributyltin) estuaries (FT) or a reference sediment from the Ythan estuary (Y). Chemical analyses demonstrated that FT sediment contained significantly higher concentrations of key environmental pollutants (including polycyclic aromatic hydrocarbons (PAHs), chlorinated biphenyls and heavy metals) than Y sediment, but that chronically exposed flounder showed a lack of differential accumulation of contaminants, including heavy metals. Biliary 1-hydroxypyrene concentration and erythrocyte DNA damage increased in FT-exposed fish. Transcriptomic and (1)H NMR metabolomic analyses of liver tissues detected small but statistically significant alterations between fish exposed to different sediments. These highlighted perturbance of immune response and apoptotic pathways, but there was a lack of response from traditional biomarker genes. Gene-chemical association annotation enrichment analyses suggested that polycyclic aromatic hydrocarbons were a major class of toxicants affecting the molecular responses of the exposed fish. This demonstrated that molecular responses of sentinel organisms can be detected after chronic mixed toxicant exposure and that these can be informative of key components of the mixture.

  10. In Situ Micrometeorological Mercury Fluxes From Tidally-Exposed Wetland Sediments

    NASA Astrophysics Data System (ADS)

    Smith, L. M.; Reinfelder, J. R.

    2007-12-01

    Major research efforts have examined the influx of mercury to estuaries from point and non-point sources. However, little is known about the efflux of gaseous elemental mercury (Hgº) from tidally-exposed estuarine sediments back to the atmosphere, a potentially important re-distribution pathway of mercury on watershed to global scales. In the New Jersey Meadowlands in northeastern New Jersey, U.S.A., this route may be particularly important due to the high degree (sediment mercury concentrations up to 51 ug g-1 dry weight) and large areal extent of mercury contamination, coupled with the vast sediment surface area exposed to the atmosphere at low tide. Sediment-air vertical fluxes of mercury were studied at a tidal salt marsh within the New Jersey Meadowlands, Hudson County, NJ) in August 2005, May 2006, and June 2007. Vertical fluxes were estimated from in situ measurements of vertical concentration gradients of total gaseous Hg (>95% elemental Hg) coupled with vertical wind speed profiles and atmospheric stability correction factors for momentum and water vapor. Sediment-air mercury fluxes ranged from -461 to +253 ng m-2 h-1 and were highest during periods of peak solar radiation. Laboratory flux chamber studies with sediments from the New Jersey Meadowlands, and from the nearby Raritan and Passaic River estuaries demonstrate the importance of UV light and sulfide as controlling factors in mercury volatilization from tidally exposed sediments.

  11. Rapid release of mercury from intertidal sediments exposed to solar radiation: a field experiment.

    PubMed

    Canário, João; Vale, Carlos

    2004-07-15

    There is increasing evidence of the primary importance of photochemical reactions and transfer of gaseous mercury to the atmosphere. Although mercury in aquatic sediments is efficiently retained, resuspension and bioturbation in intertidal sediments may expose temporarily anoxic sediments to solar radiation. Field experiments were performed to investigate these processes. Anoxic sediments from two areas in the Tagus estuary with different degrees of Hg contamination (experiments I and II) were homogenized and distributed into two sets of 36 uncovered Petri dishes. The samples were placed on the intertidal sediments and exposed to direct solar radiation and kept under dark (control) for 6-8 h. The decrease rates of acid volatile sulfides (abrupt in the first 3 h) and of pyrite (linear) were the same in sediments under solar radiation and dark. The total Hg concentrations were relatively constant in sediments kept in dark, but decreased from 17.6 to 7.65 and 3.45 to 1.35 nmol g(-1) in experiments I and II, respectively. In those exposed to solar radiation during the period of higher UV intensity. Similar evolutions were found in nonreactive Hg in pore waters (3.00-2.59 and 0.725-0.105 nM). On the contrary, reactive Hg was higher in pore waters of the sediments exposed to solar radiation and increased with time, from 424 to 845 pM and 53 to 193 pM. These results indicate that most mercury released in pore waters was photochemically reduced in a short period of time and escaped rapidly to the atmosphere. Episodes of bottom resuspension and bioturbation in the intertidal sediments enhance the transfer of gaseous mercury to the atmosphere.

  12. Interactive effects of cadmium and pyrene on contaminant removal from co-contaminated sediment planted with mangrove Kandelia obovata (S., L.) Yong seedlings.

    PubMed

    Wang, Wenyun; Zhang, Xuefeng; Huang, Jing; Yan, Chongling; Zhang, Qiong; Lu, Haoliang; Liu, Jingchun

    2014-07-15

    The interactive effects of cadmium (Cd) and pyrene (Pyr) on contaminant removal from co-contaminated sediment planted with Kandelia obovata were investigated by a pot experiment. We found that dry weight of plant was significantly decreased under high level of Cd-Pyr combined stress. High Pyr caused the increase of Cd toxicity to K. obovata under high Cd stress because more Cd translocated to the plant tissues. Cd toxicity inhibited Pyr degradation in co-contaminated sediments and higher Pyr degradation was found in the rhizosphere than that in the non-rhizosphere sediment under high Cd treatment. The total number of microorganisms in sediments tended to decrease with increasing Cd under Cd-Pyr combined stress and more amount existed in the rhizosphere sediment. In conclusion, Cd and Pyr removal by K. obovata can influence interactions between these two pollutants in co-contaminated sediment. This suggests that this mangrove can effectively remedy sites co-contaminated with these two types of contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Examining (239+240)Pu, (210)Pb and historical events to determine carbon, nitrogen and phosphorus burial in mangrove sediments of Moreton Bay, Australia.

    PubMed

    Sanders, Christian J; Santos, Isaac R; Maher, Damien T; Breithaupt, Joshua L; Smoak, Joseph M; Ketterer, Michael; Call, Mitchell; Sanders, Luciana; Eyre, Bradley D

    2016-01-01

    Two sediment cores were collected in a mangrove forest to construct geochronologies for the previous century using natural and anthropogenic radionuclide tracers. Both sediment cores were dated using (239+240)Pu global fallout signatures as well as (210)Pb, applying both the Constant Initial Concentration (CIC) and the Constant Rate of Supply (CRS) models. The (239+240)Pu and CIC model are interpreted as having comparable sediment accretion rates (SAR) below an apparent mixed region in the upper ∼5 to 10 cm. In contrast, the CRS dating method shows high sediment accretion rates in the uppermost intervals, which is substantially reduced over the lower intervals of the 100-year record. A local anthropogenic nutrient signal is reflected in the high total phosphorus (TP) concentration in younger sediments. The carbon/nitrogen molar ratios and δ(15)N values further support a local anthropogenic nutrient enrichment signal. The origin of these signals is likely the treated sewage discharge to Moreton Bay which began in the early 1970s. While the (239+240)Pu and CIC models can only produce rates averaged over the intervals of interest within the profile, the (210)Pb CRS model identifies elevated rates of sediment accretion, organic carbon (OC), nitrogen (N), and TP burial from 2000 to 2013. From 1920 to 2000, the three dating methods provide similar OC, N and TP burial rates, ∼150, 10 and 2 g m(-2) year(-1), respectively, which are comparable to global averages.

  14. PCB congeners and hexachlorobenzene biota sediment accumulation factors for Macoma nasuta exposed to sediments with different total organic carbon contents

    SciTech Connect

    Boese, B.L.; Lee, H. II; Randall, R. . Pacific Ecosystems Branch); Winsor, M.; Echols, S.; Pelletier, J. . Hatfield Marine Science Center)

    1995-02-01

    Deposit-feeding marine clams (Macoma nasuta) were exposed for 119 d to three sediment types that varied in total organic carbon (TOC) from 0.8 to 2.5%. Sediments were spiked with equal concentrations of 13 polychlorinated biphenyl congeners and hexachlorobenzene. Tissue residues were measured, and steady-state bioaccumulation factors (BAFs), the corresponding lipid, and TOC-normalized biota sediment accumulation factors (BSAFs) were determined. The BSAFs were less variable than were the BAFs with the exception of compounds with log K[sub ow] > 7. Many of the BSAFs exceeded 1.7, which is a calculated maximum value based on partitioning alone. Although BSAFs varied with sediment type and compound, the use of a BSAF of 4 as a screening level for neutral organic compounds in assessing dredge materials is supported by the present study.

  15. Uptake pathway for Ag bioaccumulation in three benthic invertebrates exposed to contaminated sediments

    USGS Publications Warehouse

    Yoo, H.; Lee, J.-S.; Lee, B.-G.; Lee, I.T.; Schlekat, C.E.; Koh, C.-H.; Luoma, S.N.

    2004-01-01

    We exposed 3 benthic invertebrates, the clam Macoma balthica, the polychaete Neanthes arenaceodentata and the amphipod Leptocheirus plumulosus, to Ag-contaminated sediments to evaluate the relative importance of various uptake routes (sediments, porewater or overlying water, and supplementary food) for Ag bioaccumulation. Silver bioaccumulation was evaluated at 4 levels of sediment Ag (0.1, 0,3, 1,2 and 3.3 ??mol Ag g-1) and 2 levels of acid-volatile sulfide (AVS), <0.5 or ???40 ??mol g-1, and compared among food treatments with or without Ag contamination, or with different food rations. L. plumulosus were incubated for 35 d in the Ag-contaminated sediments after 3 mo of Ag-sediment equilibration, and M. balthica and N. arenaceodentata for 19 d after 5 mo equilibration. Ag bioaccumulation in the 3 organisms was significantly correlated with 1N HCl-extractable Ag concentrations (Ag-SEM: simultaneously extracted Ag with AVS) in sediments. The Ag concentrations in porewater and overlying water were greatest in the sediments with least AVS, consistent with previous studies. Nevertheless, the amphipod and clam exposed to oxic sediments (<0.5 ??mol AVS g-1) accumulated amounts of Ag similar to those accumulated by organisms exposed to anoxic sediments (???40 ??mol AVS g-1), when Ag-SEM levels were comparable. The dissolved Ag source was important for bioaccumulation in the polychaete N. arenaceodentata. Amphipods fed Ag-contaminated food contained ???1.8-fold more tissue Ag concentrations than those fed uncontaminated food. As suggested in kinetic (DYMBAM) modeling studies, ingestion of contaminated sediments and food were the principle routes of Ag bioaccumulation by the benthic invertebrates during chronic exposure, but the relative importance of each uptake route differed among species.

  16. Effect of Mn(IV) on the biodegradation of polycyclic aromatic hydrocarbons under low-oxygen condition in mangrove sediment slurry.

    PubMed

    Li, Chun-Hua; Ye, Chun; Wong, Yuk-Shan; Tam, Nora Fung-Yee

    2011-06-15

    This study investigated the effect of manganese [Mn(IV)] amendment on the anaerobic biodegradation of four mixed PAHs, namely fluorene (Fl), phenanthrene (Phe), fluoranthene (Flua) and pyrene (Pyr) under low-oxygen condition, with and without the inoculation of enriched PAH-degrading bacterial consortia, in mangrove sediment slurries. The results revealed that the addition of Mn(IV) significantly inhibited PAH biodegradation, the rate of which was about 31-70% lower than the one of the groups without Mn(IV) addition. The amendment of Mn(IV) also showed adverse effect on the population size of enriched PAH-degrading bacteria and bacterial activity. The analysis results on the concentrations of Mn(II) and Mn(IV) indicated that Mn(IV) was converted to Mn(II) fast, the latter was the predominate manganese form in the mangrove sediment slurries through the whole experimental period. The Mn(II) toxicity to microorganisms was considered the main reason for inhibition of the PAH-biodegradation. On the other hand, the inoculation of the enriched PAH-degrading consortia significantly enhanced the biodegradation rates of all four PAHs, and the biodegradation rates of 3-rings (Fl, Phe) and 4-rings (Flua, Pyr) PAHs were enhanced by 14-15% and 21-34%, respectively.

  17. Potential Ecological Effects of Contaminants in the Exposed Par Pond Sediments

    SciTech Connect

    Paller, M.H.; Wike, L.D.

    1996-08-01

    Sediment and small mammal samples were collected from the exposed sediments of Par Pond in early 1995, shortly before the reservoir was refilled after a 4-year drawdown. Sampling was confined to elevations between 58 and 61 meters (190 and 200 feet) above mean sea level, which includes the sediments likely to be exposed if the Par Pond water level is permitted to fluctuate naturally. Both soil and small mammal samples were analyzed for a number of radionuclides and metals. Some of the soil samples were also analyzed for organic contaminants. The objective of the study was to determine if contaminant levels in the Par Pond sediments were high enough to cause deleterious ecological effects.

  18. Can mangrove plantation enhance the functional diversity of macrobenthic community in polluted mangroves?

    PubMed

    Leung, Jonathan Y S; Cheung, Napo K M

    2017-03-15

    Mangrove plantation is widely applied to re-establish the plant community in degraded mangroves, but its effectiveness to restore the ecological functions of macrobenthic community remains poorly known, especially when pollution may overwhelm its potential positive effect. Here, we tested the effect of mangrove plantation on the ecological functions of macrobenthic community in a polluted mangrove by analyzing biological traits of macrobenthos and calculating functional diversity. Mangrove plantation was shown to enhance the functional diversity and restore the ecological functions of macrobenthic community, depending on seasonality. Given the polluted sediment, however, typical traits of opportunistic species (e.g. small and short-lived) prevailed in all habitats and sampling times. We conclude that mangrove plantation can help diversify the ecological functions of macrobenthic community, but its effectiveness is likely reduced by pollution. From the management perspective, therefore, pollution sources must be stringently regulated and mangrove plantation should be conducted to fully recover degraded mangroves.

  19. Metallothionein and bioaccumulation of cadmium in juvenile bluegills exposed to aqueous and sediment-associated cadmium

    SciTech Connect

    Cope, W.G.

    1991-01-01

    The author evaluated metallothionein (MT), free (unbound) hepatic cadmium and whole body cadmium as indicators of cadmium exposure in juvenile bluegills Lepomis macrochirus in laboratory tests. Two types of cadmium exposure were tested; aqueous and sediment-associated. In the aqueous tests, fish were exposed to cadmium (0.0 to 32.3 [mu]g/L) in an intermittent-flow diluter. In the sediment-associated cadmium test, fish were exposed to resuspended river sidment containing 1.3 to 21.4 [mu]g Cd/g (dry weight) at a nominal total suspended solids concentration of 1,000 mg/L in revolving, circular glass exposure chambers. Total cadmium concentrations were measured in various bluegill liver fractions, whole bluegill, water, and resuspended sediment to assess the partitioning and bioaccumulation of cadmium after the tests. Mean concentrations of MT and free cadmium in bluegill livers and concentrations of cadmium in whole bluegills were positively correlated with aqueous cadmium concentration and were equally suitable as indicators of aqueous cadmium exposure. Sediment-associated cadmium was biologically available, but to a lesser extent than aqueous cadmium. Cadmium concentrations in whole bluegills exposed to resuspended river sediment were 1.5- to 3.5-fold the concentrations in bluegills in sediment-free controls. Free cadmium and MT concentrations in bluegill liver and whole-body cadmium concentrations in bluegills were positively correlated with the cadmium concentrations in filtered water, resuspended sediment, and bulk river sediment; however, whole-body cadmim concentrations were a more sensitive indicator of exposure to sediment-associated cadmium than either free cadmium or MT concentratons in liver.

  20. Desulfobaculum xiamenensis gen. nov., sp. nov., a member of the family Desulfovibrionaceae isolated from marine mangrove sediment.

    PubMed

    Zhao, Chao; Gao, Zhaoming; Qin, Qiwei; Li, Fuying; Ruan, Lingwei

    2012-07-01

    A taxonomic study was carried out on strain P1(T), which was isolated from mangrove sediment samples collected from Qinglan Port (Hainan, China). Cells were curved rods, that were motile, with a single polar flagellum. The strain was non-spore-forming with a cell size of 0.6×1.5-2.2 µm. Catalase and oxidase activities were not detected. Growth was observed in the temperature range 22-44 °C (optimum, 35-40 °C) and pH range 5.5-8.5 (optimum, pH 7.0). NaCl was required for growth and tolerated at up to 3.5% (w/v) (optimum, 0.5%). Strain P1(T) utilized hydrogen, succinate, L-malate, citrate, oxalate, DL-lactate, pyruvate, or cysteine as electron donors, and sulfate or sulfite as electron acceptors. Fermentation products from pyruvate were acetate, H(2) and CO(2). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain P1(T) formed a distinct evolutionary lineage within the family Desulfovibrionaceae. Strain P1(T) was most closely related to members of the genera Desulfovibrio (92.0-94.3% 16S rRNA gene sequence similarity), Desulfocurvus (91.1%), Bilophila (87.9%) and Lawsonia (86.0%) of the family Desulfovibrionaceae. The DNA G+C content of strain P1(T) was 64.5 mol% and the major cellular fatty acids were iso-C(15:0) (18.8%), anteiso-C(15:0) (5.0%), C(16:0) (14.2%) and iso-C(17:1)ω9c (24.4%). The predominant menaquinone was MK-7 (97%). Major polar lipids were phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol. Strain P1(T) was distinguishable from members of phylogenetically related genera by differences in several phenotypic properties. On the basis of the phenotypic and phylogenetic data, strain P1(T) represents a novel species of a new genus, for which the name Desulfobaculum xiamenensis gen. nov., sp. nov. is proposed. The type strain of Desulfobaculum xiamenensis is P1(T) (=CGMCC 1.5166(T)=DSM 24233(T)).

  1. Elemental composition, distribution and control of biogenic silica in the anthropogenically disturbed and pristine zone inter-tidal sediments of Indian Sundarbans mangrove-estuarine complex.

    PubMed

    Dhame, Shreya; Kumar, Alok; Ramanathan, Al; Chaudhari, Punarbasu

    2016-10-15

    Spatial distribution and interrelationship among organic nutrients - silica and carbon - and various lithogenic elements were investigated in the surficial sediments of Matla estuary and Core Zone of Indian Sundarbans Reserve Forest using spatial analysis and multivariate statistics. Biogenic silica (BSi), an important parameter for coastal biogeochemisry, was measured using Si-time alkaline leaching method. BSi concentration ranged from 0.01% to 0.85% with higher concentrations in upstream region of Matla estuary and attenuated values towards the bay, seemingly due to changes in hydrodynamics and land use conditions. Spatial distribution of BSi did not exhibit significant correlation with sediment parameters of organic carbon (OC), elemental composition and clay content. However, it showed significant contrasting trends with total phosphorus (TP) and total silica of human influenced Matla estuary sediments as well as the dissolved silica (DSi) of its surface waters. Anthropogenic influence on sediment geochemistry is discernable with the presence of higher concentrations of organic and inorganic elements in Matla estuary than in Core Zone sediments. Spatial variation trends are often challenging to interpret due to multiple sources of input, varying energy and salinity conditions and constant physical, chemical and biological alterations occurring in the environment. Nonetheless, it is certain that anthropogenic activities have a substantial influence on biogeochemical processes of Sundarbans mangrove-estuarine complex and potentially the coastal ocean. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. BIOMARKER RESPONSES IN MACOMA NASUTA (BIVALVIA) EXPOSED TO SEDIMENTS FROM NORTHERN SAN FRANCISCO BAY. (R826940)

    EPA Science Inventory

    Abstract

    Our study investigates biomarker responses and survival of Macoma nasuta exposed to sediments collected from six locations in northern San Francisco Bay. Biomarkers analyzed were stress proteins (hsp70) in gill, mantle and digestive gland, lysosomal mem...

  3. BIOMARKER RESPONSES IN MACOMA NASUTA (BIVALVIA) EXPOSED TO SEDIMENTS FROM NORTHERN SAN FRANCISCO BAY. (R826940)

    EPA Science Inventory

    Abstract

    Our study investigates biomarker responses and survival of Macoma nasuta exposed to sediments collected from six locations in northern San Francisco Bay. Biomarkers analyzed were stress proteins (hsp70) in gill, mantle and digestive gland, lysosomal mem...

  4. Similarity analysis of PAH and PCB bioaccumulation patterns in sediment-exposed Chironomus tentans larvae

    SciTech Connect

    Wood, L.W.; O`Keefe, P.; Bush, B.

    1997-02-01

    Larvae of the aquatic insect Chironomus tentans were exposed at the third or fourth instar stage to sediments collected near the outfalls of two aluminum foundries and an aluminum fabrication plant. Biota and sediment bioaccumulation factors (BFs), based on wet tissue weights and dry sediment weights, ranged from 0.07 to 0.27 for polycyclic aromatic hydrocarbons (PAHs) and from 0.22 to 1.42 for polychlorinated biphenyls (PCBs). A higher rate of metabolism of PAHs compared with PCBs could explain the differences in BF values for the two groups of chemicals. It was found, using community similarity procedures from the field of ecology, that the congener patterns for PAHs and PCBs bioaccumulated by the larvae differed from the pattern of the same compounds in the sediments to which they were exposed. Affinity analysis indicated that the larvae favored the higher molecular weight PAH and PCB congeners. Preferential ingestion of sediments with defined particle size ranges, metabolism, and octanol/water partition coefficients (log K{sub ow}) are factors that may have influenced the bioaccumulation patterns. However, no single factor could adequately account for the differences between the larval and sediment patterns.

  5. Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons.

    PubMed

    Wang, Yuanyuan; Fang, Ling; Lin, Li; Luan, Tiangang; Tam, Nora F Y

    2014-03-01

    This work evaluated the roles of the low-molecular-weight organic acids (LMWOAs) from root exudates and the dehydrogenase activity in the rhizosphere sediments of three mangrove plant species on the removal of mixed PAHs. The results showed that the concentrations of LMWOAs and dehydrogenase activity changed species-specifically with the levels of PAH contamination. In all plant species, the concentration of citric acid was the highest, followed by succinic acid. For these acids, succinic acid was positively related to the removal of all the PAHs except Chr. Positive correlations were also found between the removal percentages of 4-and 5-ring PAHs and all LMWOAs, except citric acid. LMWOAs enhanced dehydrogenase activity, which positively related to PAH removal percentages. These findings suggested that LMWOAs and dehydrogenase activity promoted the removal of PAHs. Among three mangrove plants, Bruguiera gymnorrhiza, the plant with the highest root biomass, dehydrogenase activity and concentrations of LMWOAs, was most efficient in removing PAHs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Recent advances in understanding Colombian mangroves

    NASA Astrophysics Data System (ADS)

    Polanía, J.; Urrego, L. E.; Agudelo, C. M.

    2015-02-01

    Throughout the last 15 years, researchers at the National University of Colombia at Medellin have studied Colombian mangroves. Remote sensing, pollen analysis of superficial and deep sediments, Holocene coastal vegetation dynamics, sediment dating using 14C and 210Pb, sampling in temporary plots, sampling in temporary and permanent plots, and other techniques have been applied to elucidate long- and short-term mangrove community dynamics. The studied root fouling community is structured by several regulatory mechanisms; habitat heterogeneity increases species richness and abundance. Fringe mangroves were related to Ca concentration in the soil and the increased dominance of Laguncularia racemosa and other nonmangrove tree species, while the riverine mangroves were associated with Mg concentration and the dominance of Rhizophora mangle. The seedling and mangrove tree distributions are determined by a complex gradient of natural and anthropogenic disturbances. Mangrove pollen from surface sediments and the existing vegetation and geomorphology are close interrelated. Plant pollen of mangrove and salt marsh reflects environmental and disturbance conditions, and also reveals forest types. Forest dynamics in both coasts and their sensitivity of to anthropogenic processes are well documented in the Late Quaternary fossil record. Our studies of short and long term allow us to predict the dynamics of mangroves under different scenarios of climate change and anthropogenic stress factors that are operating in Colombian coasts. Future research arises from these results on mangrove forests dynamics, sea-level rise at a fine scale using palynology, conservation biology, and carbon dynamics.

  7. Physiological aspects of mangrove (Laguncularia racemosa) grown in microcosms with oil-degrading bacteria and oil contaminated sediment.

    PubMed

    Sodré, Vanessa; Caetano, Vanessa S; Rocha, Renata M; Carmo, Flávia L; Medici, Leonardo O; Peixoto, Raquel S; Rosado, Alexandre S; Reinert, Fernanda

    2013-01-01

    To assess the severity of oil spills on mangroves, diagnosis of the vegetation health is crucial. Some aspects of photosynthesis such as photochemical efficiency and leaf pigment composition together with the level of oxidative stress may constitute reliable indicators for vegetation health. To test this approach 14 month old Laguncularia racemosa were contaminated with 5 L m(-2) of the marine fuel oil MF-380 and treated with an oil degrading bacterial consortium in microcosms. Contamination resulted in a 20% decrease in shoot dry weight after 128 days. Photochemical efficiency, pigment content, catalase and ascorbate peroxidase remained unchanged. Multivariate ordination of DGGE microbial community fingerprints revealed a pronounced separation between the oil contaminated and the non-contaminated samples. Further studies are necessary before physiological parameters can be recommended as indicators for plant's health in oil polluted mangroves. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Physiological and biochemical responses in the leaves of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) exposed to multiple heavy metals.

    PubMed

    Huang, Guo-Yong; Wang, You-Shao

    2010-10-15

    The accumulation of heavy metals and their effect on photosynthetic pigments, proline, glutathione (GSH) and phytochelatins (PCs-SH) were studied in the leaves of two mangrove plants seedlings (Kandelia candel and Bruguiera gymnorrhiza) grown for 30 days in the nutrient solution containing four different concentrations of Cd(2+), Pb(2+) and Hg(2+) (T(1), T(2), T(3) and T(4)). An increase in Cd, Pb and Hg content was found in the leaves of both species exposed to multiple heavy metal stress, whereas higher heavy metal levels (>T(1)) led to a remarkable breakdown of chlorophyll in the leaves of both species. The content of proline, GSH and PCs-SH in the leaves of both species exhibited a significant increase in response to heavy metal stress, at least under most of experimental conditions. Increased contents of proline, GSH and PCs-SH in metal-treated plants suggest that metal tolerance in both K. candel and B. gymnorrhiza might be associated to the efficiency of these antioxidants. Moreover, proline, GSH and PCs-SH in K. candel may play more important role in ameliorating the effect of heavy metal toxicity than those in B. gymnorrhiza.

  9. Belowground dynamics in mangrove ecosystems

    USGS Publications Warehouse

    McKee, Karen L.

    2004-01-01

    Mangrove ecosystems are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal communities are important coastal ecosystems that are valued for a variety of ecological and societal goods and services (fig. 1). Mangrove wetlands are important filters of materials moving between the land and sea, trapping sediment, nutrients, and pollutants in runoff from uplands and preventing their direct introduction into sensitive marine ecosystems such as seagrass beds and coral reefs. Mangroves serve as nursery grounds and refuge for a variety of organisms and are consequently vital to the biological productivity of coastal waters. Furthermore, because mangroves are highly resilient to disturbances such as hurricanes, they represent a self-sustaining, protective barrier for human populations living in the coastal zone. Mangrove ecosystems also contribute to shoreline stabilization through consolidation of unstable mineral sediments and peat formation. In order to help conserve mangrove ecoystems, scientists with the United States Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand the dynamics that impact these vital ecosystems.

  10. Authigenic pyrite formation and re-oxidation as an indicator of an unsteady-state redox sedimentary environment: Evidence from the intertidal mangrove sediments of Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Ding, Hai; Yao, Suping; Chen, Jun

    2014-04-01

    Two cores of intertidal mangrove sediments from the Tanmen and Qinglan Harbors on Hainan Island, China, were investigated for their geochemical characteristics of carbon, nitrogen, iron and sulfur and the pyrite morphology and framboidal pyrite size distribution. A modified sequential iron extraction procedure revealed extremely high FeHR/FeT ratios (0.81±0.07, n=28). The pyrite results determined by the nitric acid digestion and chromium reduction method show a strong correlation (r=0.91, n=28), indicating that most of the chromium-reducible sulfur is pyrite, whereas the proportion of elemental sulfur is minor. The organic carbon concentrations and the atomic C/N ratios demonstrate that the organic carbon in the mangrove sediments is derived predominantly from higher plants. The chromium-reducible sulfur (CRS) values show a good linear logarithmic correlation with the total organic carbon (TOC), indicating that the process of sulfate reduction increases rapidly with the concentration of TOC at Qinglan Harbor (QL), which has low TOC contents (<5 wt%). In contrast, sulfate reduction increases slowly with high TOC (>5 wt%) at Tanmen Harbor (TM). These data suggest that pyrite formation at the QL site is controlled by the TOC contents, whereas at the TM site, the primary factor controlling the pyritization process is the supply rate of sulfate. Both sites have significantly high sulfate contents (average 1.67±0.45 wt% and 0.80±0.32 wt% at Tanmen and Qinglan, respectively), which are isotopically depleted in 34S (average -6.15±7.17‰ and -6.72±7.33‰ at Tanmen and Qinglan, respectively) suggesting that the sulfate is mainly from the reoxidation of reduced sulfides (mainly pyrite) instead of seawater sulfate during burial. The distributions of pyrite textures suggest that the pyrite in the mangrove swamps is formed mainly as framboids and only a few pyrite crystals are formed directly as euhedral crystals. The high mean diameters and standard deviations (7.0±4

  11. The role of sediment ingestion in exposing wood ducks to lead

    USGS Publications Warehouse

    Beyer, W.N.; Blus, L.J.; Henny, C.J.; Audet, D.

    1997-01-01

    Waterfowl on lateral lakes of the Coeur d'Alene River and on Lake Coeur d'Alene have been poisoned for many years by lead (Pb) from mining and smelting. In 1992 we undertook a study in the area to determine the importance of sediment ingestion in exposing wood ducks (Aix sponsa) to Pb. Digesta were removed from the intestines of wood ducks collected from contaminated and reference areas. The average Pb concentration in digesta of wood ducks from the contaminated area was 32 ppm dry weight. The sediment content was estimated to average less than 2% of the dry weight of the wood duck diet. Lead concentrations in digesta were closely correlated with concentrations of acid-insoluble ash, Al, Ti and Fe in digesta, and these four variables are associated with sediment. Samples containing low concentrations of these variables also had low concentrations of Pb. These results suggest that most of the Pb in the digesta came from ingested sediment, rather than from plant material in the diet. The importance of ingested sediment as a source of lead was unexpected, because wood ducks are surface feeders on aquatic plants and they rarely dabble beneath the surface or feed on the bottom. However, it appears that sediment ingestion is sometimes the principal route of exposure to environmental contaminants that are not readily taken up by plants and invertebrates, and this route should be considered in risk assessments of waterfowl.

  12. Cloning of circadian rhythmic pathway genes and perturbation of oscillation patterns in endocrine disrupting chemicals (EDCs)-exposed mangrove killifish Kryptolebias marmoratus.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Lee, Bo-Young; Hwang, Un-Ki; Lee, Yong Sung; Lee, Jae-Seong

    2014-08-01

    To investigate the effect of endocrine disrupting chemicals (EDCs) on the circadian rhythm pathway, we cloned clock and circadian rhythmic pathway-associated genes (e.g. Per2, Cry1, Cry2, and BMAL1) in the self-fertilizing mangrove killifish Kryptolebias marmoratus. The promoter region of Km-clock had 1 aryl hydrocarbon receptor element (AhRE, GTGCGTGACA) and 8 estrogen receptor (ER) half-sites, indicating that the AhRE and ER half sites would likely be associated with regulation of clock protein activity during EDCs-induced cellular stress. The Km-clock protein domains (bHLH, PAS1, PAS2) were highly conserved in five additional fish species (zebrafish, Japanese medaka, Southern platyfish, Nile tilapia, and spotted green pufferfish), suggesting that the fish clock protein may play an important role in controlling endogenous circadian rhythms. The promoter regions of Km-BMAL1, -Cry1, -Cry2, and -Per2 were found to contain several xenobiotic response elements (XREs), indicating that EDCs may be able to alter the expression of these genes. To analyze the endogenous circadian rhythm in K. marmoratus, we measured expression of Km-clock and other circadian rhythmic genes (e.g. Per2, Cry1, Cry2, and BMAL1) in different tissues, and found ubiquitous expression, although there were different patterns of transcript amplification during different developmental stages. In an estrogen (E2)-exposed group, Km-clock expression was down-regulated, however, a hydroxytamoxifen (TMX, nonsteroid estrogen antagonist)-exposed group showed an upregulated pattern of Km-clock expression, suggesting that the expression of Km-clock is closely associated with exposure to EDCs. In response to the exposure of bisphenol A (BPA) and 4-tert-octyphenol (OP), Km-clock expression was down-regulated in the pituitary/brain, muscle, and skin in both gender types (hermaphrodite and secondary male). In juvenile K. marmoratus liver tissue, expression of Km-clock and other circadian rhythmic pathway

  13. Comparative Sediment Transport Between Exposed and Reef Protected Beaches Under Different Hurricane Conditions

    NASA Astrophysics Data System (ADS)

    Miret, D.; Enriquez, C.; Marino-Tapia, I.

    2016-12-01

    Many world coast regions are subjected to tropical cyclone activity, which can cause major damage to beaches and infrastructure on sediment dominated coasts. The Caribbean Sea has on average 4 hurricanes per year, some of them have caused major damage to coastal cities in the past 25 years. For example, Wilma, a major hurricane that hit SE Mexico in October 2005 generated strong erosion at an exposed beach (Cancun), while beach accretion was observed 28 km south at a fringing reef protected beach (Puerto Morelos). Hurricanes with similar intensity and trajectory but different moving speeds have been reported to cause a different morphological response. The present study analyses the morphodynamic response to the hydrodynamic conditions of exposed and reef protected beaches, generated by hurricanes with similar intensities but different trajectories and moving speeds. A non-stationary Delft3D Wave model is used to generate large scale wind swell conditions and local sea wind states and coupled with Delft3D Flow model to study the connection between the continental shelf and surf zones exchanges. The model is validated with hydrodynamic data gathered during Wilma, and morphological conditions measured before and after the event. Preliminary results show that erosion appears at the exposed beach and a predominant exchange between north and south dominates the shelf sediment transport (figure 1). Onshore driven flows over the reef crest input sediment in the reef protected beach. It is expected that for a same track but faster moving speed, southward sediment transport will have less time to develop and accretion at the reef protected site would be less evident or inexistent. The study can be used as a prediction tool for shelf scale sediment transport exchange driven by hurricanes.

  14. Mangrove Bacterial Diversity and the Impact of Oil Contamination Revealed by Pyrosequencing: Bacterial Proxies for Oil Pollution

    PubMed Central

    dos Santos, Henrique Fragoso; Cury, Juliano Carvalho; do Carmo, Flávia Lima; dos Santos, Adriana Lopes; Tiedje, James; van Elsas, Jan Dirk; Rosado, Alexandre Soares; Peixoto, Raquel Silva

    2011-01-01

    Background Mangroves are transitional coastal ecosystems in tropical and sub-tropical regions and represent biologically important and productive ecosystems. Despite their great ecological and economic importance, mangroves are often situated in areas of high anthropogenic influence, being exposed to pollutants, such as those released by oil spills. Methodology/Principal Findings A microcosm experiment was conducted, which simulated an oil spill in previously pristine mangrove sediment. The effect of the oil spill on the extant microbial community was studied using direct pyrosequencing. Extensive bacterial diversity was observed in the pristine mangrove sediment, even after oil contamination. The number of different OTUs only detected in contaminated samples was significantly higher than the number of OTUs only detected in non-contaminated samples. The phylum Proteobacteria, in particular the classes Gammaproteobacteria and Deltaproteobacteria, were prevalent before and after the simulated oil spill. On the other hand, the order Chromatiales and the genus Haliea decreased upon exposure to 2 and 5% oil, these are proposed as sensitive indicators of oil contamination. Three other genera, Marinobacterium, Marinobacter and Cycloclasticus increased their prevalence when confronted with oil. These groups are possible targets for the biomonitoring of the impact of oil in mangrove settings. Conclusions/Significance We suggest the use of sequences of the selected genera as proxies for oil pollution, using qPCR assessments. The quantification of these genera in distinct mangrove systems in relation to the local oil levels would permit the evaluation of the level of perturbance of mangroves, being useful in field monitoring. Considering the importance of mangroves to many other environments and the susceptibility of such areas to oil spills this manuscript will be of broad interest. PMID:21399677

  15. Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution.

    PubMed

    dos Santos, Henrique Fragoso; Cury, Juliano Carvalho; do Carmo, Flávia Lima; dos Santos, Adriana Lopes; Tiedje, James; van Elsas, Jan Dirk; Rosado, Alexandre Soares; Peixoto, Raquel Silva

    2011-03-02

    Mangroves are transitional coastal ecosystems in tropical and sub-tropical regions and represent biologically important and productive ecosystems. Despite their great ecological and economic importance, mangroves are often situated in areas of high anthropogenic influence, being exposed to pollutants, such as those released by oil spills. A microcosm experiment was conducted, which simulated an oil spill in previously pristine mangrove sediment. The effect of the oil spill on the extant microbial community was studied using direct pyrosequencing. Extensive bacterial diversity was observed in the pristine mangrove sediment, even after oil contamination. The number of different OTUs only detected in contaminated samples was significantly higher than the number of OTUs only detected in non-contaminated samples. The phylum Proteobacteria, in particular the classes Gammaproteobacteria and Deltaproteobacteria, were prevalent before and after the simulated oil spill. On the other hand, the order Chromatiales and the genus Haliea decreased upon exposure to 2 and 5% oil, these are proposed as sensitive indicators of oil contamination. Three other genera, Marinobacterium, Marinobacter and Cycloclasticus increased their prevalence when confronted with oil. These groups are possible targets for the biomonitoring of the impact of oil in mangrove settings. We suggest the use of sequences of the selected genera as proxies for oil pollution, using qPCR assessments. The quantification of these genera in distinct mangrove systems in relation to the local oil levels would permit the evaluation of the level of perturbance of mangroves, being useful in field monitoring. Considering the importance of mangroves to many other environments and the susceptibility of such areas to oil spills this manuscript will be of broad interest.

  16. Mangrove Swamps

    EPA Pesticide Factsheets

    Mangrove swamps are coastal wetlands found in tropical and subtropical regions. They are characterized by halophytic (salt loving) trees, shrubs and other plants growing in brackish to saline tidal waters.

  17. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades.

    USGS Publications Warehouse

    Breithaupt, Josh L.; Smoak, Joseph M.; Smith, Thomas J.; Sanders, Christian J.

    2014-01-01

    The objective of this research was to measure temporal variability in accretion and mass sedimentation rates (including organic carbon (OC), total nitrogen (TN), and total phosphorous (TP)) from the past century in a mangrove forest on the Shark River in Everglades National Park, USA. The 210Pb Constant Rate of Supply model was applied to six soil cores to calculate annual rates over the most recent 10, 50, and 100 year time spans. Our results show that rates integrated over longer timeframes are lower than those for shorter, recent periods of observation. Additionally, the substantial spatial variability between cores over the 10 year period is diminished over the 100 year record, raising two important implications. First, a multiple-decade assessment of soil accretion and OC burial provides a more conservative estimate and is likely to be most relevant for forecasting these rates relative to long-term processes of sea level rise and climate change mitigation. Second, a small number of sampling locations are better able to account for spatial variability over the longer periods than for the shorter periods. The site average 100 year OC burial rate, 123 ± 19 (standard deviation) g m-2yr-1, is low compared with global mangrove values. High TN and TP burial rates in recent decades may lead to increased soil carbon remineralization, contributing to the low carbon burial rates. Finally, the strong correlation between OC burial and accretion across this site signals the substantial contribution of OC to soil building in addition to the ecosystem service of CO2 sequestration.

  18. Microbial diversity of mangrove sediment in Shenzhen Bay and gene cloning, characterization of an isolated phytase-producing strain of SPC09 B. cereus.

    PubMed

    Zhang, Shengpeng; Liao, Shao-An; Yu, Xiaoyuan; Lu, Hongwu; Xian, Jian-An; Guo, Hui; Wang, Anli; Xie, Jian

    2015-06-01

    Phytases hydrolyze phytate to release inorganic phosphate, which decreases the requirement for phosphorus in fertilizers for crops and thus reduces environmental pollutants. This study analyzed microbial communities in rhizosphere sediment, collected in September 2012 from Shenzhen Bay, Guangdong, China, using high-throughput pyrosequencing; the results showed that the dominant taxonomic phyla were Chloroflexi, Firmicutes, and Proteobacteria, and the proportion of the beneficial bacteria, Bacillus, was 4.95 %. Twenty-nine culturable, phytase-producing bacteria were isolated, their phosphorus solubilization capacity was analyzed, and they were taxonomically characterized. Their phylogenetic placement was determined using 16S ribosomal RNA (rRNA) gene sequence analysis. The result shows that most of the isolates are members of the order Bacillales, although seven strains of Enterobacteriales, two strains of Pseudomonadales, and one strain of Oceanospirillales were also identified. The phytase gene was cloned from SPC09, Bacillus cereus, which showed the highest phosphorus solubilizing ability among the isolated strains. The gene encoded a primary translation product of 335 amino acids. A construct including the 1005-nt ORF fragment, Bc-phy, was transformed into Escherichia coli. The recombinant phytase was produced and purified, which revealed the temperature optima at 60 °C and pH optima at 6.5. The assessment by quantitative PCR (qPCR) showed an abundance of bacteria containing the Bc-phy gene; the level was generally higher in the mangrove forest than in the tidal flats and in surface soil compared to bottom soil, and the highest value was obtained in June. Herein, we report on the cloning, characterization, and activity of a novel phytase isolated from a mangrove system.

  19. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Breithaupt, Joshua L.; Smoak, Joseph M.; Smith, Thomas J.; Sanders, Christian J.

    2014-10-01

    The objective of this research was to measure temporal variability in accretion and mass sedimentation rates (including organic carbon (OC), total nitrogen (TN), and total phosphorous (TP)) from the past century in a mangrove forest on the Shark River in Everglades National Park, USA. The 210Pb Constant Rate of Supply model was applied to six soil cores to calculate annual rates over the most recent 10, 50, and 100 year time spans. Our results show that rates integrated over longer timeframes are lower than those for shorter, recent periods of observation. Additionally, the substantial spatial variability between cores over the 10 year period is diminished over the 100 year record, raising two important implications. First, a multiple-decade assessment of soil accretion and OC burial provides a more conservative estimate and is likely to be most relevant for forecasting these rates relative to long-term processes of sea level rise and climate change mitigation. Second, a small number of sampling locations are better able to account for spatial variability over the longer periods than for the shorter periods. The site average 100 year OC burial rate, 123 ± 19 (standard deviation) g m-2 yr-1, is low compared with global mangrove values. High TN and TP burial rates in recent decades may lead to increased soil carbon remineralization, contributing to the low carbon burial rates. Finally, the strong correlation between OC burial and accretion across this site signals the substantial contribution of OC to soil building in addition to the ecosystem service of CO2 sequestration.

  20. Geochemistry and bioavailability of mudflats and mangrove sediments and their effect on bioaccumulation in selected organisms within a tropical (Zuari) estuary, Goa, India.

    PubMed

    Dias, Heidy Q; Nayak, G N

    2016-04-15

    Metals are non-degradable in the aquatic environment and play a vital role in estuarine biogeochemistry but could also be detrimental to associated biota. A comparative evaluation of the trace metal concentrations (Fe, Mn, Zn, Cu, Ni, and Co) was carried out in the Zuari estuary, Goa during the post-monsoon season of 2013 at six locations, each representing three mangrove and three mudflat regions. In addition, fractionation of trace metals in sediments was performed to provide information on the mobility, distribution, bioavailability and toxicity. Special attention was paid to the marine mollusks viz. bivalves and gastropods that are extensively used as bio-indicators in coastal pollution. Considering the percentage of metals in the sequentially extracted fractions, the order of mobility from most to least bioavailable forms was Mn > Zn > Cu > Ni > Co > Fe. Mn maintained high bioavailability (average around 60%) in Fe-Mn oxide and carbonate bound forms indicating that Mn is readily available for biota uptake. The bioavailability of Fe was on an average of around 6% whereas other metals like Cu, Zn, Ni and Co were around 19% to 34%. When the bioavailable values were compared with standard Screening Quick Reference Table (SQUIRT), Zn showed higher toxicity level and bioavailability in the lower estuary. On the basis of calculated Bio Sediment Accumulation Factors (BSAF's), overall trend in bioaccumulation was in the order of Cu > Zn > Mn > Ni > Co > Fe. Metal Pollution Index (MPI) computed was higher for gastropods than bivalves. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Coastal regime shifts: rapid responses of coastal wetlands to changes in mangrove cover.

    PubMed

    Guo, Hongyu; Weaver, Carolyn; Charles, Sean P; Whitt, Ashley; Dastidar, Sayantani; D'Odorico, Paolo; Fuentes, Jose D; Kominoski, John S; Armitage, Anna R; Pennings, Steven C

    2017-03-01

    Global changes are causing broad-scale shifts in vegetation communities worldwide, including coastal habitats where the borders between mangroves and salt marsh are in flux. Coastal habitats provide numerous ecosystem services of high economic value, but the consequences of variation in mangrove cover are poorly known. We experimentally manipulated mangrove cover in large plots to test a set of linked hypotheses regarding the effects of changes in mangrove cover. We found that changes in mangrove cover had strong effects on microclimate, plant community, sediment accretion, soil organic content, and bird abundance within 2 yr. At higher mangrove cover, wind speed declined and light interception by vegetation increased. Air and soil temperatures had hump-shaped relationships with mangrove cover. The cover of salt marsh plants decreased at higher mangrove cover. Wrack cover, the distance that wrack was distributed from the water's edge, and sediment accretion decreased at higher mangrove cover. Soil organic content increased with mangrove cover. Wading bird abundance decreased at higher mangrove cover. Many of these relationships were non-linear, with the greatest effects when mangrove cover varied from zero to intermediate values, and lesser effects when mangrove cover varied from intermediate to high values. Temporal and spatial variation in measured variables often peaked at intermediate mangrove cover, with ecological consequences that are largely unexplored. Because different processes varied in different ways with mangrove cover, the "optimum" cover of mangroves from a societal point of view will depend on which ecosystem services are most desired.

  2. Changes in biotic and abiotic processes following mangrove clearing

    NASA Astrophysics Data System (ADS)

    Granek, Elise; Ruttenberg, Benjamin I.

    2008-12-01

    Mangrove forests, important tropical coastal habitats, are in decline worldwide primarily due to removal by humans. Changes to mangrove systems can alter ecosystem properties through direct effects on abiotic factors such as temperature, light and nutrient supply or through changes in biotic factors such as primary productivity or species composition. Despite the importance of mangroves as transitional habitats between land and sea, little research has examined changes that occur when they are cleared. We examined changes in a number of biotic and abiotic factors following the anthropogenic removal of red mangroves ( Rhizophora mangle) in the Panamanian Caribbean, including algal biomass, algal diversity, algal grazing rates, light penetration, temperature, sedimentation rates and sediment organic content. In this first study examining multiple ecosystem-level effects of mangrove disturbance, we found that areas cleared of mangroves had higher algal biomass and richness than intact mangrove areas. This increase in algal biomass and richness was likely due to changes in abiotic factors (e.g. light intensity, temperature), but not biotic factors (fish herbivory). Additionally the algal and cyanobacterial genera dominating mangrove-cleared areas were rare in intact mangroves and included a number of genera that compete with coral for space on reefs. Interestingly, sedimentation rates did not differ between intact and cleared areas, but the sediments that accumulated in intact mangroves had higher organic content. These findings are the first to demonstrate that anthropogenic clearing of mangroves changes multiple biotic and abiotic processes in mangrove forests and that some of these changes may influence adjacent habitats such as coral reefs and seagrass beds. Additional research is needed to further explore the community and ecosystem-level effects of mangrove clearing and their influence on adjacent habitats, but it is clear that mangrove conservation is an

  3. Heavy metal release from metal-sulfide contaminated lake sediments exposed to artificial aeration

    SciTech Connect

    Schaumloffel, J.C.; Filby, R.H.; Moore, B.C.

    1995-12-01

    Hypolimnetic aeration (a form of artificial aeration) has gained popularity in recent years as a lake restoration and management tool. The addition of oxygen to eutrophic lakes by hypolimnetic aeration has been shown to increase overall water quality, without disturbing thermal stratification. The effects of increasing dissolved oxygen levels by aeration on the chemistry of heavy metals in lakes where the sediments are contaminated and the possible repercussions, however, have yet to be investigated. In this laboratory study, sediments collected from a lake contaminated with metal-sulfides were exposed to various levels of dissolved oxygen in the overyling water column. concentrations of zinc, cadmium, and lead in the water column were shown to increase concomitantly with increasing concentrations of sulfate in the water as aeration progressed. The effects of varying concentrations of dissolved oxygen, as well as other factors effecting the availability of previously insoluble heavy metals will be discussed.

  4. Global change impacts on mangrove ecosystems

    USGS Publications Warehouse

    McKee, Karen L.

    2004-01-01

    Mangroves are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal forests are important coastal ecosystems that are valued for a variety of ecological and societal goods and services. Major local threats to mangrove ecosystems worldwide include clearcutting and trimming of forests for urban, agricultural, or industrial expansion; hydrological alterations; toxic chemical spills; and eutrophication. In many countries with mangroves, much of the human population resides in the coastal zone, and their activities often negatively impact the integrity of mangrove forests. In addition, eutrophication, which is the process whereby nutrients build up to higher than normal levels in a natural system, is possibly one of the most serious threats to mangroves and associated ecosystems such as coral reefs. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand global impacts on these significant ecosystems.Changes in climate and other factors may also affect mangroves, but in complex ways. Global warming may promote expansion of mangrove forests to higher latitudes and accelerate sea-level rise through melting of polar ice or steric expansion of oceans. Changes in sea level would alter flooding patterns and the structure and areal extent of mangroves. Climate change may also alter rainfall patterns, which would in turn change local salinity regimes and competitive interactions of mangroves with other wetland species. Increases in frequency or intensity of tropical storms and hurricanes in combination with sea-level rise may alter erosion and sedimentation rates in mangrove forests. Another global change factor that may directly affect mangrove growth is increased atmospheric carbon dioxide (CO2), caused by burning of fossil fuels and other factors. Elevated CO2 concentration may increase mangrove growth by stimulating photosynthesis or improving water use

  5. Coral reefs chronically exposed to river sediment plumes in the southwestern Caribbean: Rosario Islands, Colombia.

    PubMed

    Restrepo, Juan D; Park, Edward; Aquino, Samia; Latrubesse, Edgardo M

    2016-05-15

    Politicians do not acknowledge the devastating impacts riverine sediments can have on healthy coral reef ecosystems during environmental debates in Caribbean countries. Therefore, regional and/or local decision makers do not implement the necessary measures to reduce fluvial sediment fluxes on coral reefs. The Magdalena River, the main contributor of continental fluxes into the Caribbean Sea, delivers water and sediment fluxes into the Rosario Islands National Park, an important marine protected area in the southwestern Caribbean. Until now, there is no scientific consensus on the presence of sediment fluxes from the Magdalena River in the coral reefs of the Rosario Islands. Our hypothesis is that high sediment and freshwater inputs from the Magdalena have been present at higher acute levels during the last decade than previously thought, and that these runoff pulses are not flashy. We use in-situ calibrated MODIS satellite images to capture the spatiotemporal variability of the distribution of suspended sediment over the coral reefs. Furthermore, geochemical data are analyzed to detect associated sedimentation rates and pollutant dispersion into the coastal zone. Results confirm that turbidity levels have been much higher than previous values presented by national environmental authorities on coral reefs off Colombia over the last decade. During the 2003-2013-period most of the Total Suspended Sediments (TSS) values witnessed in the sampled regions were above 10mg/l, a threshold value of turbidity for healthy coral reef waters. TSS concentrations throughout the analyzed time were up to 62.3mg/l. Plume pulses were more pronounced during wet seasons of La Niña events in 2002-2003, 2007-2008, and 2009-2010. Reconstructed time series of MODIS TSS indicates that coral reef waters were exposed to river plumes between 19.6 and 47.8% of the entire period of analysis (2000-2013). Further analyses of time series of water discharge and sediment load into the coastal zone

  6. Biological responses of juvenile European sea bass (Dicentrarchus labrax) exposed to contaminated sediments.

    PubMed

    De Domenico, Elena; Mauceri, Angela; Giordano, Daniela; Maisano, Maria; Giannetto, Alessia; Parrino, Vincenzo; Natalotto, Antonino; D'Agata, Alessia; Cappello, Tiziana; Fasulo, Salvatore

    2013-11-01

    Multiple anthropogenic activities present along coastal environments may affect the health status of aquatic ecosystems. In this study, specimens of European sea bass (Dicentrarchus labrax) were exposed for 30 days to highly contaminated sediment collected from the industrial area between Augusta and Priolo (Syracuse, Italy), defined as the most mercury polluted site in the Mediterranean. The aim was to evaluate the responses of juvenile D. labrax to highly contaminated sediments, particularly enriched in Hg, in order to enhance the scarce knowledge on the potential compensatory mechanisms developed by organisms under severe stress conditions. Apoptotic and proliferative activities [cell turnover: Proliferating Cell Nuclear Antigen (PCNA) and FAS Ligand (FasL)], onset of hypoxic condition [hypoxia: Hypoxia Inducibile Factor-1α (HIF-1α)], and changes in the neuroendocrine control mechanisms [neurotransmission: Tyrosine Hydroxylase (TH), Choline Acetyltransferase (ChAT), Acetylcholinesterase (AChE), 5-Hydroxytryptamine (5-HT) and 5-Hydroxytryptamine receptor 3 (5-HT3)] were investigated in sea bass gill tissues. In the specimens exposed to the polluted sediment, the occurrence of altered cell turnover may result in impaired gas exchange that leads to a condition of "functional hypoxia". Changes in neurotransmission pathways were also observed, suggesting a remodeling process as an adaptive response to increase the O2-carrying capacity and restore the normal physiological conditions of the gills. Overall, these findings demonstrated that although chronic exposure to heavy metal polluted sediments alters the functioning of both the nervous and endocrine systems, as well as plasticity of the gill epithelium, fish are able to trigger a series of physiological adjustments or adaptations interfering with specific neuroendocrine control mechanisms that enable their long-term survival.

  7. Potential human health risks from toxic metals via mangrove snail consumption and their ecological risk assessments in the habitat sediment from Peninsular Malaysia.

    PubMed

    Cheng, Wan Hee; Yap, Chee Kong

    2015-09-01

    Samples of mangrove snails Nerita lineata and surface sediments were collected from nine geographical sampling sites in Peninsular Malaysia to determine the concentrations of eight metals. For the soft tissues, the ranges of metal concentrations (μg g(-1) dry weight (dw)) were 3.49-9.02 for As, 0.69-6.25 for Cd, 6.33-25.82 for Cu, 0.71-6.53 for Cr, 221-1285 for Fe, 1.03-50.47 for Pb, and 102.7-130.7 for Zn while Hg as 4.00-64.0 μg kg(-1) dw(-1). For sediments, the ranges were 21.81-59.49 for As, 1.11-2.00 for Cd, 5.59-28.71 for Cu, 18.93-62.91 for Cr, 12973-48916 for Fe, 25.36-172.57 for Pb, and 29.35-130.34 for Zn while for Hg as 2.66-312 μg kg(-1) dw(-1). To determine the ecological risks on the surface habitat sediments, sediment quality guidelines (SQGs), the geochemical indices, and potential ecological risk index (PERI) were used. Based on the SQGs, all the metals investigated were most unlikely to cause any adverse effects. Based on geoaccumulation index and enrichment factor, the sediments were also not polluted by the studied metals. The PERI values based on As, Cd, Cu, Cr, Hg, Pb and Zn in this study were found as 'low ecological risk'. In order to assess the potential health risks, the estimated daily intakes (EDI) of snails were found to be all lower than the RfD guidelines for all metals, except for Pb in some sites investigated. Furthermore, the calculated target hazard quotients (THQ) were found to be less than 1. However, the calculated total target hazard quotients (TTHQ) from all sites were found to be more than 1 for high level consumers except KPPuteh. Therefore, moderate amount of intake is advisable to avoid human health risks to the consumers.

  8. Pacific lamprey (Entosphenus tridentatus) ammocoetes exposed to contaminated Portland Harbor sediments: Method development and effects on survival, growth, and behavior

    USGS Publications Warehouse

    Unrein, Julia R.; Morris, Jeffrey M.; Chitwood, Rob S.; Lipton, Joshua; Peers, Jennifer; van de Wetering, Stan; Schreck, Carl B.

    2016-01-01

    Many anthropogenic disturbances have contributed to the decline of Pacific lampreys (Entosphenus tridentatus), but potential negative effects of contaminants on lampreys are unclear. Lamprey ammocoetes are the only detritivorous fish in the lower Willamette River, Oregon, USA, and have been observed in Portland Harbor sediments. Their long benthic larval stage places them at risk from the effects of contaminated sediment. The authors developed experimental methods to assess the effects of contaminated sediment on the growth and behavior of field-collected ammocoetes reared in a laboratory. Specifically, they developed methods to assess individual growth and burrowing behavior. Burrowing performance demonstrated high variability among contaminated sediments; however, ammocoetes presented with noncontaminated reference sediment initiated burrowing more rapidly and completed it faster. Ammocoete reemergence from contaminated sediments suggests avoidance of some chemical compounds. The authors conducted long-term exposure experiments on individually held ammocoetes using sediment collected from their native Siletz River, which included the following: contaminated sediments collected from 9 sites within Portland Harbor, 2 uncontaminated reference sediments collected upstream, 1 uncontaminated sediment with characteristics similar to Portland Harbor sediments, and clean sand. They determined that a 24-h depuration period was sufficient to evaluate weight changes and observed no mortality or growth effects in fish exposed to any of the contaminated sediments. However, the effect on burrowing behavior appeared to be a sensitive endpoint, with potentially significant implications for predator avoidance.

  9. Pacific lamprey (Entosphenus tridentatus) ammocoetes exposed to contaminated Portland Harbor sediments: Method development and effects on survival, growth, and behavior.

    PubMed

    Unrein, Julia R; Morris, Jeffrey M; Chitwood, Rob S; Lipton, Joshua; Peers, Jennifer; van de Wetering, Stan; Schreck, Carl B

    2016-08-01

    Many anthropogenic disturbances have contributed to the decline of Pacific lampreys (Entosphenus tridentatus), but potential negative effects of contaminants on lampreys are unclear. Lamprey ammocoetes are the only detritivorous fish in the lower Willamette River, Oregon, USA, and have been observed in Portland Harbor sediments. Their long benthic larval stage places them at risk from the effects of contaminated sediment. The authors developed experimental methods to assess the effects of contaminated sediment on the growth and behavior of field-collected ammocoetes reared in a laboratory. Specifically, they developed methods to assess individual growth and burrowing behavior. Burrowing performance demonstrated high variability among contaminated sediments; however, ammocoetes presented with noncontaminated reference sediment initiated burrowing more rapidly and completed it faster. Ammocoete reemergence from contaminated sediments suggests avoidance of some chemical compounds. The authors conducted long-term exposure experiments on individually held ammocoetes using sediment collected from their native Siletz River, which included the following: contaminated sediments collected from 9 sites within Portland Harbor, 2 uncontaminated reference sediments collected upstream, 1 uncontaminated sediment with characteristics similar to Portland Harbor sediments, and clean sand. They determined that a 24-h depuration period was sufficient to evaluate weight changes and observed no mortality or growth effects in fish exposed to any of the contaminated sediments. However, the effect on burrowing behavior appeared to be a sensitive endpoint, with potentially significant implications for predator avoidance. Environ Toxicol Chem 2016;35:2092-2102. © 2016 SETAC. © 2016 SETAC.

  10. Gene biomarkers in diatom Thalassiosira pseudonana exposed to polycyclic aromatic hydrocarbons from contaminated marine surface sediments.

    PubMed

    Carvalho, Raquel N; Burchardt, Alina D; Sena, Fabrizio; Mariani, Giulio; Mueller, Anne; Bopp, Stephanie K; Umlauf, Gunther; Lettieri, Teresa

    2011-01-17

    Marine diatoms have a key role in the global carbon fixation and therefore in the ecosystem. We used Thalassiosira pseudonana as a model organism to assess the effects of exposure to environmental pollutants at the gene expression level. Diatoms were exposed to polycyclic aromatic hydrocarbons mixture (PAH) from surface sediments collected at a highly PAH contaminated area of the Mediterranean Sea (Genoa, Italy), due to intense industrial and harbor activities. The gene expression data for exposure to the sediment-derived PAH mixture was compared with gene expression data for in vitro exposure to specific polycyclic aromatic hydrocarbons. The data shows that genes involved in stress response, silica uptake, and metabolism were regulated both upon exposure to the sediment-derived PAH mixture and to the single component. Complementary monitoring of silica in the diatom cultures provide further evidence of a reduced cellular uptake of silica as an end-point for benzo[a]pyrene exposure that could be linked with the reduced gene and protein expression of the silicon transporter protein. However some genes showed differences in regulation indicating that mixtures of structurally related chemical compounds can elicit a slightly different gene expression response compared to that of a single component. The paper provides indications on the specific pathways affected by PAH exposure and shows that selected genes (silicon transporter, and silaffin 3) involved in silica uptake and metabolism could be suitable molecular biomarkers of exposure to PAHs.

  11. Hydrodynamic and Sediment Responses of Open Channels to Exposed Pipe Encasements

    PubMed Central

    Mao, J. Q.; Zhang, H. Q.; Dai, H. C.; Yuan, B. H.; Hu, T. F.

    2015-01-01

    The effects of exposed pipe encasements on the local variation of hydrodynamic and sediment conditions in a river channel are examined. Laboratory experiments are performed to assess the response of water level, flow regime and bed deformation to several representative types of concrete encasements. The experimental conditions considered are: three types of exposed pipe encasements exposed on the bed, including trapezoidal shape, circular-arc shape and polygonal shape, and three sets of discharges, including annual discharge, once-in-3-year flood, and once-in-50-year flood. Our experiments show that: (1) the amount of backwater definitely depends on the encasement geometric shape and the background discharge; (2) smaller discharges generally tend to induce local scour of river bed downstream of the encasement, and the order of sensitivity of bed deformation to the encasement geometric shape is trapezoidal > circular-arc > polygonal; (3) comparatively speaking, the polygonal encasement may be considered as a suitable protective structure for pipelines across alluvial rivers, with relatively modest effects on the local hydrodynamic conditions and bed stabilization. PMID:26588840

  12. Description of Verrucosispora qiuiae sp. nov., isolated from mangrove swamp sediment, and emended description of the genus Verrucosispora.

    PubMed

    Xi, Lijun; Zhang, Limin; Ruan, Jisheng; Huang, Ying

    2012-07-01

    A Micromonospora-like strain, RtIII47(T), was isolated from a mangrove swamp in Sanya, Hainan Province, China. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the strain had a close association with the genus Verrucosispora and shared the highest sequence similarity with Verrucosispora lutea YIM 013(T) (98.0%). The strain also showed high 16S rRNA gene sequence similarities to Micromonospora olivasterospora DSM 43868(T) (97.9%), Plantactinospora mayteni YIM 61359(T) (97.9%), Salinispora tropica CNB-440(T) (97.8%), Micromonospora peucetia DSM 43363(T) (97.7%), Micromonospora auratinigra TT1-11(T) (97.7%), Verrucosispora sediminis CGMCC 4.3550(T) (97.6%) and Salinispora arenicola CNH-643(T) (97.5%). Phylogenetic analysis based on the gyrB gene sequence supported the conclusion that strain RtIII47(T) should be assigned to the genus Verrucosispora. DNA-DNA relatedness between strain RtIII47(T) and the most closely related type strain, V. lutea YIM 013(T), was less than 40%. Chemotaxonomic results confirmed the taxonomic position of the isolate in the genus Verrucosispora, and revealed differences at the species level in polar lipids, whole-cell sugars and DNA G+C content. A combination of physiological and biochemical tests also distinguished this strain from other Verrucosispora species. Based on genotypic and phenotypic observations, strain RtIII47(T) (=CGMCC 4.5826(T) =NBRC 106684(T)) is proposed as the type strain of a novel species, Verrucosispora qiuiae sp. nov. An emended description of the genus Verrucosispora is also provided.

  13. Potential Activity, Size, and Structure of Sulfate-Reducing Microbial Communities in an Exposed, Grazed and a Sheltered, Non-Grazed Mangrove Stand at the Red Sea Coast

    PubMed Central

    Balk, Melike; Keuskamp, Joost A.; Laanbroek, Hendrikus J.

    2015-01-01

    After oxygen, sulfate is the most important oxidant for the oxidation of organic matter in mangrove forest soils. As sulfate reducers are poor competitors for common electron donors, their relative success depends mostly on the surplus of carbon that is left by aerobic organisms due to oxygen depletion. We therefore hypothesized that sulfate-cycling in mangrove soils is influenced by the size of net primary production, and hence negatively affected by mangrove degradation and exploitation, as well as by carbon-exporting waves. To test this, we compared quantitative and qualitative traits of sulfate-reducing communities in two Saudi-Arabian mangrove stands near Jeddah, where co-occurring differences in camel-grazing pressure and tidal exposure led to a markedly different stand height and hence primary production. Potential sulfate reduction rates measured in anoxic flow-through reactors in the absence and presence of additional carbon sources were significantly higher in the samples from the non-grazed site. Near the surface (0–2 cm depth), numbers of dsrB gene copies and culturable cells also tended to be higher in the non-grazed sites, while these differences were not detected in the sub-surface (4–6 cm depth). It was concluded that sulfate-reducing microbes at the surface were indeed repressed at the low-productive site as could be expected from our hypothesis. At both sites, sulfate reduction rates as well as numbers of the dsrB gene copies and viable cells increased with depth suggesting repression of sulfate reduction near the surface in both irrespective of production level. Additionally, sequence analysis of DNA bands obtained from DGGE gels based on the dsrB gene, showed a clear difference in dominance of sulfate-reducing genera belonging to the Deltaproteobacteria and the Firmicutes between sampling sites and depths. PMID:26733999

  14. Biological responses of Lumbriculus variegatus exposed to fluoranthene-spiked sediment.

    PubMed

    Landrum, P F; Gedeon, M L; Burton, G A; Greenberg, M S; Rowland, C D

    2002-04-01

    Lumbriculus variegatus was used as a bioassay organism to examine the impact of the sediment-associated polycyclic aromatic hydrocarbon (PAH) fluoranthene on behavior, reproduction, and toxicokinetics. The number of worms increased between the beginning and end of the experiment at 59 microg x g(-1) fluoranthene, but at the next higher treatment (108 microg x g(-1)) the number of worms found was lower and not different from the control. Worms exposed to 95 microg x g(-1) also exhibited increased reproduction when fed a yeast-cerophyl-trout chow mixture. On a total biomass basis, only the 95 microg x g(-1) exposure with food exhibited a statistically significant increase over the nonfed control. Evaluation of reproduction at the two highest treatments was compromised by a brief aeration failure 2 days before the end of the experiment. The behavioral responses were followed as changes in biological burial rate (sediment reworking rate) of a 137Cs-labeled marker layer. The biological burial rate increased toward a plateau as the concentration increased from the control (3.9 microg x g(-1) dry weight total PAH) to 355 microg x g(-1) dry weight fluoranthene in sediment. The aeration failure had minimal impact on the determination of reworking rate because all the data for the rate determination were collected prior to the aeration failure. Uptake and elimination rates declined with increasing treatment concentration across the range of fluoranthene concentrations, 59-355 microg x g(-1) dry weight sediment. The disconnect between the increasing biological burial rates and the decreasing toxicokinetics rates with increasing exposure concentration demonstrates that the toxicokinetic processes are dominated by uptake and elimination to interstitial water. The bioaccumulation factor (concentration in the organisms on a wet weight basis divided by the concentration in sediment on a dry weight basis) ranged from 0.92 to 1.88 on day 10 and declined to a range of 0.52 to 0.99 on

  15. Hydrocarbon biomarkers responses in the bivalve, Tivela mactroides, exposed to polluted sediments.

    PubMed

    Sardi, A E; Ramos, R; García, E M

    2013-01-01

    The objective of this work was to evaluate the potential use of the bivalve Tivela mactroides, as a Caribbean sentinel species. Organisms were collected from a relatively clean sandy beach, and were exposed to a gradient of petroleum hydrocarbon-polluted sediments for periods of 3, 4 and 6 days, after which their activity levels of biotransformation enzymes were measured. NADPH-cytochrome c reductase, glutathione transferase and cytochrome b5 activities increased according to total hydrocarbon concentration, whereas NADH-cytochrome ferricyanide reductase activity decreased. Catalase activity was constant while superoxide dismutase activity was inhibited. The results indicated that T. mactroides may serve as a sentinel species. However, further studies are recommended on the influence of biotic and abiotic variables on basal activities of enzymes, and their responses to other pollutants.

  16. Cellular responses and disease expression in oysters (Crassostrea virginica) exposed to suspended field contaminated sediments.

    PubMed

    Chu, Fu-Lin E; Volety, Aswani K; Hale, Robert C; Huang, Yongqin

    2002-02-01

    Exposure of oysters to water soluble fractions derived from field-contaminated sediments (FCS) containing predominantly lower molecular weight organic aromatic compounds, has been previously demonstrated to enhance pre-existing infections caused by the protozoan parasite, Perkinsus marinus (Dermo), and the prevalence of experimentally induced infections. To further explore the role of pollution on the onset and progression of disease, effects of suspended FCS from an estuarine creek in Virginia, USA, dominated by higher molecular weight polycyclic aromatic hydrocarbons (PAHs) on cellular responses and Dermo disease expression in oysters (Crassostrea virginica) were examined. Sediments were collected from a PAH polluted estuarine creek in Virginia, USA. To test effects on cellular response, oysters from Maine were exposed daily to 0, 1.0, 1.5, or 2.0 g suspended FCS (corresponding to 0, 70.2, 105, or 140 microg PAHs, respectively) for 5, 10, 20, and 40 days. Hemocyte activities and plasma lipid, protein and lactate dehydrogenase (LDH) levels were then measured. Exposure stimulated neutral red uptake, MTT reduction, and 3H-leucine incorporation in oyster hemocytes at various exposure times, but did not affect the plasma protein, lipid and LDH levels. To test effects on Dermo expression, oysters from a Dermo enzootic area, with an initial estimated infection prevalence of 39%, were exposed daily to 0, 1.0, 1.5, or 2.0 g suspended FCS (corresponding to 0, 75.0, 113, or 150 microg PAHs, respectively) for 30 days. Exposure enhanced disease expression in oysters. However, no significant change was noted in any measured cellular or humoral parameters.

  17. PCB accumulation in osprey exposed to local sources in lake sediment.

    PubMed

    de Solla, Shane R; Martin, Pamela A

    2009-01-01

    We examined the accumulation of PCBs in ospreys (Pandion haleaetus) that were exposed to local sediment sources. Eggs, chick plasma, and sediment samples were collected over a range of 14 km (0.2-14.2 km) from a PCB source in Sturgeon Lake, ON. Sum PCB concentrations declined in chick plasma (range 422.5-58.3 ng/g) as distance from the PCB source increased, but there was a poor relationship with sum PCBs in eggs. Both tissues indicated an Aroclor 1248/1254 source. Aroclor 1254 comprised an average of 66.9% of sum PCBs in chick plasma from Sturgeon Lake, but comprised only from 27.0 to 44.4% in plasma from other Great Lake colonies. Dietary differences among osprey colonies were not sufficient to explain the PCB patterns observed. There was weak evidence that the ability to metabolize PCBs may differ between juveniles and adults, based upon the PCB profile in eggs and chick plasma.

  18. Degradation of Phthalate Esters by Fusarium sp. DMT-5-3 and Trichosporon sp. DMI-5-1 Isolated from Mangrove Sediments.

    PubMed

    Luo, Zhu-Hua; Pang, Ka-Lai; Wu, Yi-Rui; Gu, Ji-Dong; Chow, Raymond K K; Vrijmoed, L L P

    2012-01-01

    Phthalate esters (PAEs) are important industrial compounds mainly used as plasticizers to increase flexibility and softness of plastic products. PAEs are of major concern because of their widespread use, ubiquity in the environment, and endocrine-disrupting toxicity. In this study, two fungal strains, Fusarium sp. DMT-5-3 and Trichosporon sp. DMI-5-1 which had the capability to degrade dimethyl phthalate esters (DMPEs), were isolated from mangrove sediments in the Futian Nature Reserve of Shenzhen, China, by enrichment culture technique. These fungi were identified on the basis of spore morphology and molecular typing using 18S rDNA sequence. Comparative investigations on the biodegradation of three isomers of DMPEs, namely dimethyl phthalate (DMP), dimethyl isophthalate (DMI), and dimethyl terephthalate (DMT), were carried out with these two fungi. It was found that both fungi could not completely mineralize DMPEs but transform them to the respective monomethyl phthalate or phthalate acid. Biochemical degradation pathways for different DMPE isomers by both fungi were different. Both fungi could transform DMT to monomethyl terephthalate (MMT) and further to terephthalic acid (TA) by stepwise hydrolysis of two ester bonds. However, they could only carry out one-step ester hydrolysis to transform DMI to monomethyl isophthalate (MMI). Further metabolism of MMI did not proceed. Only Trichosporon sp. was able to transform DMP to monomethyl phthalate (MMP) but not Fusarium sp. The optimal pH for DMI and DMT degradation by Fusarium sp. was 6.0 and 4.5, respectively, whereas for Trichosporon sp., the optimal pH for the degradation of all the three DMPE isomers was at 6.0. These results suggest that the fungal esterases responsible for hydrolysis of the two ester bonds of PAEs are highly substrate specific.

  19. Effects of allylthiourea, salinity, and pH on ammonia/ammonium-oxidizing prokaryotes in mangrove sediment incubated in laboratory microcosms.

    PubMed

    Wang, Yong-Feng; Gu, Ji-Dong

    2014-04-01

    Anaerobic ammonium-oxidizing (anammox) bacteria, aerobic ammonia-oxidizing archaea (AOA) and bacteria (AOB) are three groups of ammonia/ammonium-oxidizing prokaryotes (AOPs) involved in the biochemical nitrogen cycling. In this study, the effects of allylthiourea (ATU), pH, and salinity on these three groups from mangrove sediment were investigated through microcosm incubation in laboratory. ATU treatments (50, 100, and 500 mg L(-1)) obviously affected the community structure of anammox bacteria and AOB, but only slightly for AOA. ATU began to inhibit anammox bacteria growth slightly from day 10, but had an obvious inhibition on AOA growth from the starting of the study. At 100 mg L(-1) of ATU or higher, AOB growth was inhibited, but only lasted for 5 days. The pH treatments showed that acidic condition (pH 5) had a slight effect on the community structure of anammox bacteria and AOA, but an obvious effect on AOB. Acidic condition promoted the growth of all groups of AOPs in different extent, but alkaline condition (pH 9) had a weak effect on AOB community structure and a strong effect on both anammox bacteria and AOA. Alkaline condition obviously inhibited anammox bacteria growth, slightly promoted AOA, and slightly promoted AOB in the first 20 days, but inhibited afterward. Salinity treatment showed that higher salinity (20 and 40 ‰) resulted in higher anammox bacteria diversity, and both AOA and AOB might have species specificity to salinity. High salinity promoted the growth of both anammox bacteria and AOB, inhibited AOA between 5 and 10 days, but promoted afterward. The results help to understand the role of these microbial groups in biogeochemical nitrogen cycling and their responses to the changing environments.

  20. Mangrove macrobenthos: Assemblages, services, and linkages

    NASA Astrophysics Data System (ADS)

    Lee, S. Y.

    2008-02-01

    Macrobenthic assemblages are relatively poorly known compared to other components of the mangrove ecosystem. Tropical mangroves support macrobenthic biodiversity resources yet to be properly documented and interpreted. Some methodological challenges, such as the generally high spatial heterogeneity and complexity of the habitat, evidently reduce sampling efficiency and accuracy, while also leaving some microhabitats under-sampled. Macrobenthic assemblage structure seems to be influenced by local environmental conditions, such as hydroperiod, organic matter availability and sediment characteristics. Brachyurans, gastropods and oligochaetes dominate in the sediment, with the former two groups also common on hard surfaces provided by tree trunks, while insects and arachnids inhabit the canopy. Traditionally, studies of mangrove macrobenthos have focused on assemblage structure or the biology of individual species, but more complex inter-specific interactions and the inter-relationship between habitat and the biota are recently being addressed. Brachyuran crabs are the best-studied macrobenthos group, but many issues about their role in mangrove ecosystem dynamics are still controversial. Despite many species of mangrove macrobenthos being referred to as 'trophic dead ends', most serve as important links between recalcitrant mangrove organic matter and estuarine secondary production, through feeding excursion by mobile nekton during the high tide, and macrobenthos-mediated processing and exportation of organic matter. A significant difference in the standing crop biomass of forests between the Indo-west-Pacific (IWP)' and Atlantic-east-Pacific (AEP) mangroves may be related to the difference in species richness of mangrove as well as macrobenthos diversity in the two bioregions. Such differences in assemblage structure may also result in different ecosystem functioning, but the nature of the links is, however, yet to be explored. There is also a strong need for

  1. Microplastics in Singapore's coastal mangrove ecosystems.

    PubMed

    Nor, Nur Hazimah Mohamed; Obbard, Jeffrey Philip

    2014-02-15

    The prevalence of microplastics was studied in seven intertidal mangroves habitats of Singapore. Microplastics were extracted from mangrove sediments via a floatation method, and then counted and categorized according to particle shape and size. Representative microplastics from Berlayar Creek, Sungei Buloh, Pasir Ris and Lim Chu Kang were isolated for polymer identification using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. Microplastics were identified in all seven habitats, with the highest concentration found in sediments at Lim Chu Kang in the northwest of Singapore. The majority of microplastics were fibrous and smaller than 20 μm. A total of four polymer types were identified, including polyethylene, polypropylene, nylon and polyvinyl chloride. The relationship between abundance of microplastics and sediment grain size was also investigated, but no relationship was apparent. The presence of microplastics is likely due to the degradation of marine plastic debris accumulating in the mangroves.

  2. Histological biomarkers in liver and gills of juvenile Solea senegalensis exposed to contaminated estuarine sediments: a weighted indices approach.

    PubMed

    Costa, Pedro M; Diniz, Mário S; Caeiro, Sandra; Lobo, Jorge; Martins, Marta; Ferreira, Ana M; Caetano, Miguel; Vale, Carlos; DelValls, T Angel; Costa, M Helena

    2009-05-05

    Young juvenile Solea senegalensis were exposed to three sediments with distinct contamination profiles collected from a Portuguese estuary subjected to anthropogenic sources of contamination (the Sado estuary, western Portugal). Sediments were surveyed for metals (cadmium, chromium, copper, nickel, lead and zinc), a metalloid (arsenic) and organic contaminants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls and a pesticide, dichloro-diphenyl-trichloroethane plus its metabolites), as well as total organic matter, redox potential and particle fine fraction. The fish were exposed to freshly collected sediments in a 28-day laboratorial assay and collected for histological analyses at days 0 (T(0)), 14 (T(14)) and 28 (T(28)). Individual weighted histopathological indices were obtained, based on presence/absence data of eight and nine liver and gill pathologies, respectively, and on their biological significance. Although livers sustained more severe lesions, the sediments essentially contaminated by organic substances caused more damage to both organs than the sediments contaminated by both metallic and organic contaminants, suggesting a possible synergistic effect. Correlation analyses showed that some alterations are linked, forming distinctive histopathological patterns that are in accordance with the severity of lesions and sediment characteristics. The presence of large eosinophilic bodies in liver and degeneration of mucous cells in gills (a first-time described alteration) were some of the most noticeable alterations observed and were related to sediment organic contaminants. Body size has been found to be negatively correlated with histopathological damage in livers following longer term exposures. It is concluded that histopathological indices provide reliable and discriminatory data even when biomonitoring as complex media as natural sediments. It is also concluded that the effects of contamination may result not only from toxicant concentrations

  3. CRITICAL BODY RESIDUES FOR FRESHWATER AND SALTWATER AMPHIPODS EXPOSED TO SEDIMENT CONTAINING A MIXTURE OF HIGH KOW PAHS

    EPA Science Inventory

    Sediments were spiked with a mixture of 13 high log Kow (5.4-6.8) PAH compounds to determine critical body residues (CBR) in Hyalella azteca and Leptocheirus plumulosus. Hyalella were exposed for 28 d in a intermittent flow test and for 10 d in a static test to compare PAH uptake...

  4. CRITICAL BODY RESIDUES FOR FRESHWATER AND SALTWATER AMPHIPODS EXPOSED TO SEDIMENT CONTAINING A MIXTURE OF HIGH KOW PAHS

    EPA Science Inventory

    Sediments were spiked with a mixture of 13 high log Kow (5.4-6.8) PAH compounds to determine critical body residues (CBR) in Hyalella azteca and Leptocheirus plumulosus. Hyalella were exposed for 28 d in a intermittent flow test and for 10 d in a static test to compare PAH uptake...

  5. Paleoecology of mangroves along the Sibun River, Belize

    NASA Astrophysics Data System (ADS)

    Monacci, Natalie M.; Meier-Grünhagen, Ursula; Finney, Bruce P.; Behling, Hermann; Wooller, Matthew J.

    2011-09-01

    This study examines a sediment core (SR-63) from a mangrove ecosystem along the Sibun River in Belize, which is subject to both changes in sea-level and in the characteristics of the river's drainage basin. Radiocarbon dates from the core show a decreased sedimentation rate from ~ 6 ka to 1 cal ka BP and a marked change in lithology from primarily mangrove peat to fluvial-derived material at ~ 2.5 cal ka BP. Changes in the sedimentation rates observed in mangrove ecosystems offshore have previously been attributed to changes in relative sea-level and the rate of sea-level rise. Pollen analyses show a decreased abundance of Rhizophora (red mangrove) pollen and an increased abundance of Avicennia (black mangrove) pollen and non-mangrove pollen coeval with the decreased sedimentation rates. Elemental ratios ([N:C] a) and stable isotope analyses (δ 15N and δ 13C) show that changes in the composition of the organic material are also coeval with the change in lithology. The decrease in sedimentation rate at the site of core SR-63 and at offshore sites supports the idea that regional changes in hydrology occurred during the Holocene in Belize, influencing both mainland and offshore mangrove ecosystems.

  6. [Carbon storage and carbon sink of mangrove wetland: research progress].

    PubMed

    Zhang, Li; Guo, Zhi-hua; Li, Zhi-yong

    2013-04-01

    Mangrove forest is a special wetland forest growing in the inter-tidal zone of tropical and subtropical regions, playing important roles in windbreak, promoting silt sedimentation, resisting extreme events such as cyclones and tsunamis, and protecting coastline, etc. The total area of global mangrove forests is about 152000 km2, only accounting for 0. 4% of all forest area. There are about 230 km2 mangrove forests in China. The mangrove forests in the tropics have an average carbon storage as high as 1023 Mg hm-2, and the global mangrove forests can sequestrate about 0. 18-0. 228 Pg C a-1. In addition to plant species composition, a variety of factors such as air temperature, seawater temperature and salinity, soil physical and chemical properties, atmospheric CO2 concentration, and human activities have significant effects on the carbon storage and sink ability of mangrove forests. Many approaches based onfield measurements, including allometric equations, remote sensing, and model simulation, are applied to quantify the carbon storage and sink ability of mangrove forest wetland. To study the carbon storage and sink ability of mangrove wetland can promote the further understanding of the carbon cycle of mangrove wetland and related controlling mechanisms, being of significance for the protection and rational utilization of mangrove wetland.

  7. Forensic investigation of aliphatic hydrocarbons in the sediments from selected mangrove ecosystems in the west coast of Peninsular Malaysia.

    PubMed

    Vaezzadeh, Vahab; Zakaria, Mohamad Pauzi; Shau-Hwai, Aileen Tan; Ibrahim, Zelina Zaiton; Mustafa, Shuhaimi; Abootalebi-Jahromi, Fatemeh; Masood, Najat; Magam, Sami Mohsen; Alkhadher, Sadeq Abdullah Abdo

    2015-11-15

    Peninsular Malaysia has gone through fast development during recent decades resulting in the release of large amounts of petroleum and its products into the environment. Aliphatic hydrocarbons are one of the major components of petroleum. Surface sediment samples were collected from five rivers along the west coast of Peninsular Malaysia and analyzed for aliphatic hydrocarbons. The total concentrations of C10 to C36 n-alkanes ranged from 27,945 to 254,463ng·g(-1)dry weight (dw). Evaluation of various n-alkane indices such as carbon preference index (CPI; 0.35 to 3.10) and average chain length (ACL; 26.74 to 29.23) of C25 to C33 n-alkanes indicated a predominance of petrogenic source n-alkanes in the lower parts of the Rivers, while biogenic origin n-alkanes from vascular plants are more predominant in the upper parts, especially in less polluted areas. Petrogenic sources of n-alkanes are predominantly heavy and degraded oil versus fresh oil inputs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Changes in northern Gulf of Mexico sediment bacterial and archaeal communities exposed to hypoxia

    EPA Science Inventory

    Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by py...

  9. Changes in northern Gulf of Mexico sediment bacterial and archaeal communities exposed to hypoxia

    EPA Science Inventory

    Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by py...

  10. Bioaccumulation of metals by Hyalella azteca exposed to contaminated sediments from the upper Clark Fork River, Montana

    SciTech Connect

    Ingersoll, C.G.; Brumbaugh, W.G.; Dwyer, F.J.; Kemble, N.E. . Midwest Science Center)

    1994-12-01

    Macroinvertebrate contaminated with metals in the Clark Fork River of Montana have been demonstrated to be a potentially toxic component in the diet of trout. Because sediment was the suspected source of metals to these invertebrates, bioaccumulation of As, Cd, Cu, Pb, and Zn from sediment was evaluated by exposing the amphipod Hyalella azteca for 28 d in the laboratory to samples of sediment collected from depositional areas of the Clark Fork River. Benthic invertebrates collected from riffles adjacent to the depositional areas were also analyzed for metals. The pattern of metal accumulation between laboratory-exposed and field-collected animals was similar; however, the concentrations of metals in laboratory-exposed amphipods were often 50 to 75% less than were the concentrations of metals in the field-collected invertebrates. These findings indicate that sediment is a significant source of metals to invertebrates in the Clark Fork River. Additional studies should be conducted to determine threshold concentrations for effects of dietary metals on fish. Long-term monitoring of the river should include sampling benthic invertebrates for metal accumulation.

  11. Bioaccumulation of metals by Hyalella azteca exposed to contaminated sediments from the upper Clark Fork River, Montana

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Brumbaugh, William G.; Dwyer, F. James; Kemble, Nile E.

    1994-01-01

    Macroinvertebrates contaminated with metals in the Clark Fork River of Montana have been demonstrated to be a potentially toxic component in the diet of trout Because sediment was the suspected source of metals to these invertebrates, bioaccumulation of As, Cd, Cu, Pb, and Zn from sediment was evaluated by exposing the amphipod Hyalella azteca for 28 d in the laboratory to samples of sediment collected from depositional areas of the Clark Fork River Benthic invertebrates collected from riffles adjacent to the depositional areas were also analyzed for metals The pattern of metal accumulation between laboratory-exposed and field-collected animals was similar, however, the concentrations of metals in laboratory exposed amphipods were often 50 to 75% less than were the concentrations of metals in the field collected invertebrates These findings indicate that sediment is a significant source of metals to invertebrates in the Clark Fork River Additional studies should be conducted to determine threshold concentrations for effects of dietary metals on fish Long-term monitoring of the river should include sampling benthic invertebrates for metal accumulation.

  12. Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: A sink for atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Wan, Shiming; Clift, Peter D.; Zhao, Debo; Hovius, Niels; Munhoven, Guy; France-Lanord, Christian; Wang, Yinxi; Xiong, Zhifang; Huang, Jie; Yu, Zhaojie; Zhang, Jin; Ma, Wentao; Zhang, Guoliang; Li, Anchun; Li, Tiegang

    2017-03-01

    Atmospheric CO2 and global climate are closely coupled. Since 800 ka CO2 concentrations have been up to 50% higher during interglacial compared to glacial periods. Because of its dependence on temperature, humidity, and erosion rates, chemical weathering of exposed silicate minerals was suggested to have dampened these cyclic variations of atmospheric composition. Cooler and drier conditions and lower non-glacial erosion rates suppressed in situ chemical weathering rates during glacial periods. However, using systematic variations in major element geochemistry, Sr-Nd isotopes and clay mineral records from Ocean Drilling Program Sites 1143 and 1144 in the South China Sea spanning the last 1.1 Ma, we show that sediment deposited during glacial periods was more weathered than sediment delivered during interglacials. We attribute this to subaerial exposure and weathering of unconsolidated shelf sediments during glacial sealevel lowstands. Our estimates suggest that enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands can account for ∼9% of the carbon dioxide removed from the atmosphere during the glacial and thus represent a significant part of the observed glacial-interglacial variation of ∼80 ppmv. As a result, if similar magnitudes can be identified in other tropical shelf-slope systems, the effects of increased sediment exposure and subsequent silicate weathering during lowstands could have potentially enhanced the drawdown of atmospheric CO2 during cold stages of the Quaternary. This in turn would have caused an intensification of glacial cycles.

  13. Vulnerability to Climate Change of Mangroves: Assessment from Cameroon, Central Africa

    PubMed Central

    Ellison, Joanna C.; Zouh, Isabella

    2012-01-01

    Intertidal mangrove ecosystems are sensitive to climate change impacts, particularly to associated relative sea level rise. Human stressors and low tidal range add to vulnerability, both characteristics of the Doula Estuary, Cameroon. To investigate vulnerability, spatial techniques were combined with ground surveys to map distributions of mangrove zones, and compare with historical spatial records to quantify change over the last few decades. Low technology techniques were used to establish the tidal range and relative elevation of the mapped mangrove area. Stratigraphic coring and palaeobiological reconstruction were used to show the longer term biological history of mangroves and net sedimentation rate, and oral history surveys of local communities were used to provide evidence of recent change and identify possible causes. Results showed that the seaward edge of mangroves had over two thirds of the shoreline experienced dieback at up to 3 m per year over the last three decades, and an offshore mangrove island had suffered 89% loss. Results also showed low net sedimentation rates under seaward edge mangroves, and restricted intertidal elevation habitats of all mangroves, and Avicennia and Laguncularia in particular. To reduce vulnerability, adaptation planning can be improved by reducing the non-climate stressors on the mangrove area, particularly those resulting from human impacts. Other priorities for adaptation planning in mangrove areas that are located in such low tidal range regions are to plan inland migration areas and strategic protected areas for mangroves, and to undertake management activities that enhance accretion within the mangroves. PMID:24832511

  14. Effect of 3,4,3',4'-tetrachlorobiphenyl on the reworking behavior of Lumbriculus variegatus exposed to contaminated sediment.

    PubMed

    Landrum, Peter F; Leppänen, Matti; Robinson, Sander D; Gossiaux, Duane C; Burton, G Allen; Greenberg, Marc; Kukkonen, Jussi V K; Eadie, Brian J; Lansing, Margaret B

    2004-01-01

    The reworking response (bioturbation) of the oligochaete Lumbriculus variegatus was measured by following the burial rate and spread of a 137Cs marker layer translating worm activity into a biological burial rate (Wb) and a biological diffusion rate constant (Db) for surficial sediment mixing. Reworking was measured at 10 and 22 degrees C in two sediments: a reference site sediment dosed with 3,4,3',4'-tetrachlorobiphenyl (TCBP) and a field-collected sediment from a polychlorinated biphenyl (PCB)-contaminated site in Dicks Creek (DCC, Middletown, OH, USA). The body residue associated with response to TCBP also was determined. Reduction in the temperature from 22 to 10 degrees C reduced both Wb and Db by a factor of approximately two. The internal TCBP concentration to reduce the Wb by 50% was 96 nmol/g (95% CI 45-225 nmol/g) and 124 nmol/g (40-547 nmol/g) (28 and 36 microg/g) wet weight at 22 and 10 degrees C, respectively, and was independent of temperature. The Wb for the DCC sediment was lower than observed for the highest TCBP treatment. The internal body residue for total PCB for worms exposed to DCC sediment was 20-fold lower than TCBP in worms exposed to the lowest TCBP treatment on a molar basis. Comparing body residues of total PCB to TCBP assumes that the PCB congeners act additively on a molar basis. The DCC site contained a higher proportion of coarse material and a lower organic carbon concentration. The difference in sediment characteristics was assumed to be responsible for differences in the Wb.

  15. Recent benthic foraminifera assemblages from mangrove swamp and channels of Abu Dhabi (UAE)

    NASA Astrophysics Data System (ADS)

    Fiorini, Flavia; Lokier, Stephen W.; Odeh, Weaam A. S. Al; Paul, Andreas; Song, Jianfeng; Freeman, Mark; Michel, Françoise

    2017-04-01

    Zonation of Recent mangrove environments can be defined using benthic foraminifera, however, little is known about foraminifera from mangrove environments of the Persian/Arabian Gulf. The objective of this study is to produce a detailed micropaleontological and sedimentological analysis to identify foraminiferal associations from mangrove swamps and channels located on the eastern side of Abu Dhabi Island (UAE). Detailed sediment sampling collection in mangal environments of Eastern Abu Dhabi was carried out to assess the distribution of benthic foraminifera in different sedimentary facies in the mangal and in the surrounding natural environments of the upper and lower intertidal area (mud flats and channels). A 100 m transect across a natural channel in a mangal on the eastern side of Abu Dhabi Island was sampled in detail for sedimentological and foraminiferal analysis. Forty-seven samples were collected at 2 meter intervals along the transect in a number of different sedimentary facies including; fine sediment in areas exposed during low tide and close to mangrove trees (Avicennia marina), fine sediment rich in leaf material, coarse sediment in channels, and coarse sediments with a shell lag. At each sampling location environmental parameters were recorded, including water depth, salinity, temperature and pH. Samples collected for foraminiferal analysis were stained in rose Bengal in order to identify living specimens. Samples collected on the mud flat at the margin of the channel show a living foraminiferal assemblage characterised by abundant foraminifera belonging to the genera Ammonia, Elphidium, Cribroelphidium, Triloculina, Quinqueloculina, Sigmoilinita, Spiroloculina, Peneroplis and Spirolina. Samples collected in the lower (wet) intertidal area close to Avicennia marina roots, presented a low-diversity assemblage mostly comprising small-sized opportunistic foraminifera of the genera Ammonia and Cribroelphidium along with rare Triloculina and

  16. Can behavioural responses of Lumbriculus variegatus (Oligochaeta) assess sediment toxicity? A case study with sediments exposed to acid mine drainage.

    PubMed

    Sardo, A M; Soares, A M V M

    2010-02-01

    The São Domingos mine (Portugal) is, potentially, a good site for ecotoxicological studies, due to a pH and metal gradient of acid mine drainage. In this study, the toxicity of several mine sediments was evaluated using the aquatic oligochaete Lumbriculus variegatus as a test organism. Our hypothesis was that exposure to contaminated sediments would cause behavioural early warning responses in L. variegatus. Five sites, with pH ranging from 2.5 to 6.5, and with associated metals, were investigated. The results showed poor sediment quality in most of the collected sediments and Fe, S and As were the dominant elements in the samples. High mortalities were observed, ranging from 32.6 to 100%, indicating severe contamination. The collected sediments did not support good L. variegatus growth and significantly changed its behaviour. Early warning responses consisted of decreased locomotion and decreased peristaltic movements. A behaviour inhibition will affect the ecosystem balance by limiting the organisms' ability to avoid capture, which leads to a higher risk of predation.

  17. Landscape geomorphic characteristic impacts on greenhouse gas fluxes in exposed stream and riparian sediments.

    PubMed

    Vidon, Philippe; Serchan, Satish

    2016-07-13

    While excessive releases of greenhouse gases (GHG: N2O, CO2, CH4) to the atmosphere due to the burning of fossil fuel remains a concern, we also need to better quantify GHG emissions from natural systems. This study investigates GHG fluxes at the soil-atmosphere interface in a series of 7 stream reaches (riparian zones + exposed streambed sediment) across a range of geomorphic locations from headwaters reaches to lowland wetland reaches. When riparian fluxes (RZ) are compared to fluxes from in-stream locations (IS) under summer baseflow conditions, total CO2-equivalent (CO2eq) emissions are approximately 5 times higher at RZ locations than at IS locations, with most CO2eq driven by CH4 production at RZ locations where wet conditions dominate (headwater wetlands, lowland wetlands). On a gas-by-gas basis, no clear differences in N2O fluxes between RZ and IS locations were observed regardless of locations (headwater vs. lowland reaches), while CO2 fluxes were significantly larger at RZ locations than IS locations. Methane fluxes were significantly higher in wetland-influenced reaches than other reaches for both RZ and IS locations. However, GHG fluxes were not consistently correlated to DOC, DO, NO3(-), NH4(+), or water temperature, stressing the limitations of using water quality parameters to predict GHG emissions at the floodplain scale, at least during summer baseflow conditions. As strategies are developed to further constrain GHG emission for whole watersheds, we propose that approaches linking landscape geomorphic characteristics to GHG fluxes at the soil-atmosphere interface offer a promising avenue to successfully predict GHG emissions in floodplains at the watershed scale.

  18. Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination.

    PubMed

    Green, Stefan J; Prakash, Om; Gihring, Thomas M; Akob, Denise M; Jasrotia, Puja; Jardine, Philip M; Watson, David B; Brown, Steven D; Palumbo, Anthony V; Kostka, Joel E

    2010-05-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria), and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. rRNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter are a diverse population of denitrifiers that are circumneutral to moderately acidophilic, with a high relative abundance in areas of the acidic source zone at the OR-IFRC site. Based on genome analysis, Rhodanobacter species contain two nitrite reductase genes and have not been detected in functional-gene surveys of denitrifying bacteria at the OR-IFRC site. Nitrite and nitrous oxide reductase gene sequences were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation and genomic and metagenomic data is essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifiers. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.

  19. Denitrifying Bacteria Isolated from Terrestrial Subsurface Sediments Exposed to Mixed-Waste Contamination▿ †

    PubMed Central

    Green, Stefan J.; Prakash, Om; Gihring, Thomas M.; Akob, Denise M.; Jasrotia, Puja; Jardine, Philip M.; Watson, David B.; Brown, Steven D.; Palumbo, Anthony V.; Kostka, Joel E.

    2010-01-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria), and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. rRNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter are a diverse population of denitrifiers that are circumneutral to moderately acidophilic, with a high relative abundance in areas of the acidic source zone at the OR-IFRC site. Based on genome analysis, Rhodanobacter species contain two nitrite reductase genes and have not been detected in functional-gene surveys of denitrifying bacteria at the OR-IFRC site. Nitrite and nitrous oxide reductase gene sequences were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation and genomic and metagenomic data is essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifiers. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface. PMID:20305024

  20. Kluyveromyces aestuarii, a potential environmental quality indicator yeast for mangroves in the State of Rio de Janeiro, Brazil

    PubMed Central

    Araujo, F.V.; Hagler, A. N.

    2011-01-01

    Kluyveromyces aestuarii was found in sediments from 7 of 8 mangroves in Rio de Janeiro; and absent only at one site with heavy plastic bag pollution. Its presence suggests influence in other habitats from a mangrove and its absence in a mangrove suggests some non- fecal pollution or other habitat alteration. PMID:24031711

  1. The ecology of fiddler crab Uca forcipata in mangrove forest

    NASA Astrophysics Data System (ADS)

    Mokhtari, Mohammad; Ghaffar, Mazlan Abd; Usup, Gires; Cob, Zaidi Che

    2013-11-01

    Fiddler crab burrows increase oxygen dispersion in anoxic mangrove sediment and promote iron reduction and nitrification process over sulfate reduction in subsurface sediment. Therefore it is expected to accelerate decomposition rate under oxic and suboxic conditions. In this study the effect of environmental parameters on the local distribution of U. forcipata and subsequently the effect of crab burrows on sediment characteristics were investigated. Our result indicated that U. forcipata prefers to live in the open mudflats under the shade of mangrove trees. The most important factors determining their presence were sediment texture, porosity, organic content, water content, carbon content and temperature. Measurement of redox potential and iron pools clearly indicated a distinct oxidized layer around burrows although sediment porosity, organic and water content did not differ significantly between burrowed and non-burrowed mudflats and even among the burrow profiles. This result implies the oxidation created by burrowing activity of U .forcipata was not efficient to change physical properties of mangrove sediments.

  2. Screening toxicity evaluation of Wheeler Reservoir sediments using juvenile freshwater mussels (Anodonta imbecillis say) exposed to sediment interstitial water

    SciTech Connect

    Wade, D.C.

    1990-12-01

    Reservoir sediments (porewater) near several wastewater outfalls at Decatur, Alabama, were screened for acute (9-day) toxicity to 8-day old freshwater mussels. Sampling locations corresponded to four of five sites previously surveyed by the Alabama Wildlife Federation and Alabama mussel divers. A site located on the opposite (north) overbank where mussels are abundant was chosen as the study control. Reference sediments from an outdoor channel at TVA's Aquatic Research Laboratory (ARL) with flow-through Wheeler Reservoir water and from a downstream (Kentucky) reservoir were included in the study for comparative purposes. Toxicity was observed at two of the Decatur sites, and in the ARL channel. Sediments from the other two Decatur sites, the north overbank (control), and Kentucky Reservoir were not toxic to the test animals. Toxicity at station Alpha and from the ARL channel was correlated with un-ionized ammonia present in porewater during the test. Toxicity at station Delta was above the level explained by the regression model examined for ammonia. The site at Decatur having the greatest toxicity and ammonia concentration (Alpha) was located in the Dry Branch Embayment. Elevated ammonia in sediment collected from ARL was attributed to natural events. 13 refs., 4 figs., 6 tabs.

  3. Genotoxic damage in Solea senegalensis exposed to sediments from the Sado Estuary (Portugal): effects of metallic and organic contaminants.

    PubMed

    Costa, Pedro M; Lobo, Jorge; Caeiro, Sandra; Martins, Marta; Ferreira, Ana M; Caetano, Miguel; Vale, Carlos; Delvalls, T Angel; Costa, Maria H

    2008-06-30

    Juvenile Solea senegalensis (Senegalese sole) were exposed to freshly collected sediments from three sites of the Sado Estuary (West-Portuguese coast) in 28-day laboratory assays in order to assess the ecological risk from sediment contaminants, by measuring two genotoxicity biomarkers in peripheral blood: the percentage of Erythrocyte Nuclear Abnormalities (ENA) by use of an adaptation of the micronucleus test, and the percentage of DNA strand-breakage (DNA-SB) with the Comet assay. Sediments were surveyed for metallic (Cr, Ni, Cu, Zn, As, Cd and Pb) and organic (PAHs (polycyclic aromatic hydrocarbons), PCBs (polychlorinated biphenyls) and DDTs (dichloro-diphenyl-trichloroethane)) contaminants. Sediments from site A (farthest from hotspots of contamination) were found to be the least contaminated and weaker inducers of genotoxic damage, whereas sediments from sites B (urban influence) and C (affected by industrial effluents and agricultural runoffs) were responsible for a very significant increase in both ENA and DNA-SB, site B being most contaminated with metals and site C mainly with organic pollutants, especially PAHs and PCBs . Analysis of genotoxic effects showed a strong correlation between the concentrations of PAHs and PCBs and both biomarkers at sampling times T(14) and T(28), while the amounts of Cu, As, Cd and Pb were less strongly correlated, and at T(28) only, with ENA and DNA-SB. These results show that organic contaminants in sediment are stronger and faster acting genotoxic stressors. The results also suggest that metals may have an inhibitory effect on genotoxicity when interacting with organic contaminants, at least during early exposure. ENA and DNA-SB do not show a linear relationship, but a strong correlation exists between the overall increase in genotoxicity caused by exposure to sediment, confirming that they are different, and possibly non-linked effects that respond similarly to exposure. Although the Comet assay showed enhanced

  4. Paradigms of mangroves in treatment of anthropogenic wastewater pollution.

    PubMed

    Ouyang, Xiaoguang; Guo, Fen

    2016-02-15

    Mangroves have been increasingly recognized for treating wastewater from aquaculture, sewage and other sources with the overwhelming urbanization trend. This study clarified the three paradigms of mangroves in disposing wastewater contaminants: natural mangroves, constructed wetlands (including free water surface and subsurface flow) and mangrove-aquaculture coupling systems. Plant uptake is the common major mechanism for nutrient removal in all the paradigms as mangroves are generally nitrogen and phosphorus limited. Besides, sediments accrete and provide substrates for microbial activities, thereby removing organic matter and nutrients from wastewater in natural mangroves and constructed wetlands. Among the paradigms, the mangrove-aquaculture coupling system was determined to be the optimal alternative for aquaculture wastewater treatment by multi-criterion decision making. Sensitivity analysis shows variability of alternative ranking but underpins the coupling system as the most environment-friendly and cost-efficient option. Mangrove restoration is expected to be achievable if aquaculture ponds are planted with mangrove seedlings, creating the coupling system. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Threat of heavy metal contamination in eight mangrove plants from the Futian mangrove forest, China.

    PubMed

    He, Bei; Li, Ruili; Chai, Minwei; Qiu, Guoyu

    2014-06-01

    Mangrove plants play an important role in heavy metal maintenance in a mangrove ecosystem. To evaluate the characteristics of heavy metal contamination in the Futian mangrove forest, Shenzhen, China, eight heavy metals in mangrove sediments and plants were monitored, including essential elements such as Cu and Zn, and non-essential elements such as Cr, Ni, As, Cd, Pb and Hg. The results showed that the heavy metals exhibited the following scheme: Zn > As > Cu ≈ Cr > Pb > Ni > Cd ≈ Hg in sediment cores, among which Cd, As, Pb and Hg contents were nearly ten times higher than the background values. There was no significant difference in metal maintenance capability between native and exotic species. In mangrove plants' leaves and stems, concentrations of Cu, Zn and As were higher than other heavy metals. The low bioconcentration factors for most heavy metals, except for Cr, implied the limited ability of heavy metal accumulation by the plants. Mangrove plants seem to develop some degree of tolerance to Cr. The factor analysis implies that anthropogenic influences have altered metal mobility and bioavailability.

  6. Heavy metal and organic contaminants in mangrove ecosystems of China: a review.

    PubMed

    Zhang, Zai-Wang; Xu, Xiang-Rong; Sun, Yu-Xin; Yu, Shen; Chen, Yong-Shan; Peng, Jia-Xi

    2014-10-01

    China's rapid economic growth has been accompanied by increasing environmental pollution. Mangrove ecosystems are now facing greater pollution pressures due to elevated chemical discharges from various land-based sources. Data on the levels of heavy metals and organic pollutants in mangrove compartments (sediments, plants, zoobenthos, and fish) in China over the past 20 years have been summarized to evaluate the current pollution status of the mangrove ecosystem. Overall, the Pearl River and Jiulong River estuaries were severely polluted spots. Concentrations of Cu, Zn, Cd, and Pb in mangrove sediments of Guangdong, Fujian, and Hong Kong were higher than those from Guangxi and Hainan. The pollution status was closely linked to industrialization and urbanization. The highest concentrations of polycyclic aromatic hydrocarbons (PAHs) were found in mangrove sediments from Hong Kong, followed by Fujian and Guangdong. Mangrove plants tend to have low-enriched ability for heavy metals and organic pollutants. Much higher levels of Pb, Cd, and Hg were observed in mollusks.

  7. Fate and effects of anthropogenic chemicals in mangrove ecosystems: a review.

    PubMed

    Lewis, Michael; Pryor, Rachel; Wilking, Lynn

    2011-10-01

    The scientific literature for fate and effects of non-nutrient contaminant concentrations is skewed for reports describing sediment contamination and bioaccumulation for trace metals. Concentrations for at least 22 trace metals have been reported in mangrove sediments. Some concentrations exceed sediment quality guidelines suggesting adverse effects. Bioaccumulation results are available for at least 11 trace metals, 12 mangrove tissues, 33 mangrove species and 53 species of mangrove-habitat biota. Results are specific to species, tissues, life stage, and season and accumulated concentrations and bioconcentration factors are usually low. Toxicity tests have been conducted with 12 mangrove species and 8 species of mangrove-related fauna. As many as 39 effect parameters, most sublethal, have been monitored during the usual 3 to 6 month test durations. Generalizations and extrapolations for toxicity between species and chemicals are restricted by data scarcity and lack of experimental consistency. This hinders chemical risk assessments and validation of effects-based criteria. Published by Elsevier Ltd.

  8. Taking Root: Enduring Effect of Rhizosphere Bacterial Colonization in Mangroves

    PubMed Central

    Pinto, Fernando N.; Egas, Conceição; Almeida, Adelaide; Cunha, Angela; Mendonça-Hagler, Leda C. S.; Smalla, Kornelia

    2010-01-01

    Background Mangrove forests are of global ecological and economic importance, but are also one of the world's most threatened ecosystems. Here we present a case study examining the influence of the rhizosphere on the structural composition and diversity of mangrove bacterial communities and the implications for mangrove reforestation approaches using nursery-raised plants. Methodology/Principal Findings A barcoded pyrosequencing approach was used to assess bacterial diversity in the rhizosphere of plants in a nursery setting, nursery-raised transplants and native (non-transplanted) plants in the same mangrove habitat. In addition to this, we also assessed bacterial composition in the bulk sediment in order to ascertain if the roots of mangrove plants affect sediment bacterial composition. We found that mangrove roots appear to influence bacterial abundance and composition in the rhizosphere. Due to the sheer abundance of roots in mangrove habitat, such an effect can have an important impact on the maintenance of bacterial guilds involved in nutrient cycling and other key ecosystem functions. Surprisingly, we also noted a marked impact of initial nursery conditions on the rhizosphere bacterial composition of replanted mangrove trees. This result is intriguing because mangroves are periodically inundated with seawater and represent a highly dynamic environment compared to the more controlled nursery environment. Conclusions/Significance In as far as microbial diversity and composition influences plant growth and health, this study indicates that nursery conditions and early microbial colonization patterns of the replants are key factors that should be considered during reforestation projects. In addition to this, our results provide information on the role of the mangrove rhizosphere as a habitat for bacteria from estuarine sediments. PMID:21124923

  9. A Chemical Treatment to Reduce P Desorption From Manure Exposed Fluvial Sediments

    USDA-ARS?s Scientific Manuscript database

    The current remediation methods for manure spills that have reached surface waters give no attention to the P enriched ditch sediments that remain in the fluvial system and continue to impair the water column. Consequently, no method exists to treat P contaminated sediments to reduce their ability ...

  10. A comparison of the bioaccumulation potential of three freshwater organisms exposed to sediment-associated contaminants under laboratory conditions.

    PubMed

    Van Geest, Jordana L; Poirier, David G; Solomon, Keith R; Sibley, Paul K

    2011-04-01

    In the field of sediment quality assessment, increased support has been expressed for using multiple species that represent different taxa, trophic levels, and potential routes of exposure. However, few studies have compared the bioaccumulation potential of various test species over a range of sediment contaminants (hydrophobic organics and metals). As part of the development and standardization of a laboratory bioaccumulation method for the Ontario Ministry of the Environment, the oligochaete Lumbriculus variegatus, mayfly nymph Hexagenia spp., and juvenile fathead minnow Pimephales promelas were exposed to a variety of field-contaminated sediments (n = 10) to evaluate their relative effectiveness for accumulating different contaminants (e.g., dichlorodiphenyltrichloroethane [DDT] and metabolites, polychlorinated biphenyls [PCBs), polycyclic aromatic hydrocarbons [PAHs), polychlorinated dibenzo-p-dioxins and dibenzofurans [PCDD/Fs), and heavy metals). Bioaccumulation was usually highest in L. variegatus but also most variable within and (relative measures) between sediments. Bioaccumulation was similar between L. variegatus and Hexagenia spp. in most of the sediments tested. Significant differences in bioaccumulation between species were observed for DDT, dichlorodiphenyldichloroethane (DDD), PAHs, and PCDD/Fs. The present study indicates that species-specific differences in bioaccumulation may, but do not always, exist and can vary with contaminant and sediment type. The choice of test species or combination to use in a standard test method may depend on the objectives of the sediment quality assessment and data requirements of an ecological risk assessment. The results of the present study provide insight for selection of test species and validation of laboratory methods for assessing bioaccumulation with these species, as well as valuable information for interpreting results of bioaccumulation tests.

  11. Ecological risk assessment of a coastal zone in Southern Vietnam: Spatial distribution and content of heavy metals in water and surface sediments of the Thi Vai Estuary and Can Gio Mangrove Forest.

    PubMed

    Costa-Böddeker, Sandra; Hoelzmann, Philipp; Thuyên, Lê Xuân; Huy, Hoang Duc; Nguyen, Hoang Anh; Richter, Otto; Schwalb, Antje

    2017-01-30

    Enrichment of heavy metals was assessed in the Thi Vai Estuary and in the Can Gio Mangrove Forest (SE, Vietnam). Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn contents in water and in sediments were measured. Total organic carbon, nitrogen, phosphorus and C/N ratios were determined. Cu and Cr values were higher than threshold effect level of toxicity, while Ni exceeded probable effect level, indicating the risk of probable toxicity effects. Enrichment factors (EF), contamination factor (CF) and Geo-accumulation index (I-geo) were determined. CF reveals moderate to considerable pollution with Cr and Ni. EF suggests anthropogenic sources of Cr, Cu and Ni. I-geo indicates low contamination with Co, Cu and Zn and moderate contamination with Cr and Ni. Overall metal contents were lower than expected for this highly industrialized region, probably due to dilution, suggesting that erosion rates and hydrodynamics may also play a role in metal contents distribution.

  12. Laboratory toxicity test with Hyalella azteca exposed to whole-sediments from the upper Mississippi River

    SciTech Connect

    Kemble, N.E.; Brunson, E.L.; Canfield, T.J.; Dwyer, F.J.; Ingersoll, C.G.

    1995-12-31

    To assess the extent of bottom sediment contamination in the upper Mississippi river system after the flood of 1993, sediment samples were collected from 23 of the navigational pools in the river and from one station in the Saint Croix River. Whole sediment tests were conducted with Hyalella azteca for 28-d measuring effects on survival, growth, and sexual maturations. Survival was reduced from the control sediments in about 10% of the pools. Sub-lethal effects (i.e., reduction in growth or sexual maturation) were not reduced in any of the samples compared to the control sediment. No relationship was evident between toxicity and sediment physical characteristics (e.g., grain size, total organic carbon) or sediment chemical concentrations (metals or organics). The authors suspect the low survival in some of the samples may have resulted from the use of reconstituted water as the overlying water in these tests. Data from these exposures will be analyzed to provide information regarding the degree of degradation in the upper Mississippi River system due to contamination.

  13. Toxicokinetics of DNA adducts and biliary fluorescent aromatic compounds in fish exposed to PAC-contaminated sediments

    SciTech Connect

    French, B.; Reichert, W.L.; Hom, T.; Sanborn, H.R.; Stein, J.E.

    1995-12-31

    Exposure of fish to polycyclic aromatic compounds (PACs) can be assessed by measuring fluorescent aromatic compounds (FACs) in bile or xenobiotic-DNA adducts in liver. Acute exposures in fish to model PACs or PAC contaminated sediment extracts have shown dose-responsive increases in levels of DNA adducts and biliary FACS. FAC levels have been shown to decline rapidly after exposure, whereas a substantial proportion of DNA adducts persist. However, the time and dose responses of these biomarkers with chronic exposure to sediment-associated PACs have not been examined in fish. In this study, the authors examined the effects of varying the PAC concentrations and length of exposure on levels of DNA adducts and biliary FACs in English sole (Pleuronectes vetulus) exposed for up to 5 weeks to reference sediment amended with PAC-contaminated sediment from Eagle Harbor, WA. DNA adduct levels increased linearly with both PAC concentration and length of exposure, while biliary FAC concentrations were responsive to PAC levels but had attained steady-state concentrations after 2 weeks of exposure. Further, levels of DNA adducts and biliary FACs in feral fish captured from Eagle Harbor were within the ranges of levels found in the laboratory-exposed fish. Comparison of the data from field and laboratory-exposed fish strengthened the finding that hepatic DNA adducts accumulated with chronic exposure. The results showing accumulation of hepatic DNA adducts in English sole during continuous exposure to PACs is consistent with previous studies showing a relatively low rate of DNA repair in fish.

  14. A cross-system analysis of sedimentary organic carbon in the mangrove ecosystems of Xuan Thuy National Park, Vietnam

    NASA Astrophysics Data System (ADS)

    Tue, Nguyen Tai; Ngoc, Nguyen Thi; Quy, Tran Dang; Hamaoka, Hideki; Nhuan, Mai Trong; Omori, Koji

    2012-01-01

    A cross-system analysis of bulk sediment composition, total organic carbon (TOC), atomic C/N ratio, and carbon isotope composition (δ 13C) in 82 surface sediment samples from natural and planted mangrove forests, bank and bottom of tidal creeks, tidal flat, and the subtidal habitat was conducted to examine the roles of mangroves in sedimentation and organic carbon (OC) accumulation processes, and to characterize sources of sedimentary OC of the mangrove ecosystem of Xuan Thuy National Park, Vietnam. Sediment grain sizes varied widely from 5.4 to 170.2 μm (mean 71.5 μm), with the fine sediment grain size fraction (< 63 μm) ranging from 11 to 99.3% (mean 72.5%). Bulk sediment composition suggested that mangroves play an important role in trapping fine sediments from river outflows and tidal water by the mechanisms of tidal current attenuation by vegetation and the ability of fine roots to bind sediments. The TOC content ranged from 0.08 to 2.18% (mean 0.78%), and was higher within mangrove forests compared to those of banks and bottoms of tidal creeks, tidal flat, and subtidal sediments. The sedimentary δ 13C ranged from - 27.7 to - 20.4‰ (mean - 24.1‰), and mirrored the trend observed in TOC variation. The TOC and δ 13C relationship showed that the factors of microbial remineralization and OC sources controlled the TOC pool of mangrove sediments. The comparison of δ 13C and C/N ratio of sedimentary OC with those of mangrove and marine phytoplankton sources indicated that the sedimentary OC within mangrove forests and the subtidal habitat was mainly composed of mangrove and marine phytoplankton sources, respectively. The application of a simple mixing model showed that the mangrove contribution to sedimentary OC decreased as follows: natural mangrove forest > planted mangrove forest > tidal flat > creek bank > creek bottom > subtidal habitat.

  15. Sediment transfer in coastal catchments exposed to typhoons: lessons learnt from catchments contaminated with Fukushima radioactive fallout

    NASA Astrophysics Data System (ADS)

    Evrard, Olivier; Laceby, J. Patrick; Onda, Yuichi; Lefèvre, Irène

    2016-04-01

    Several coastal catchments located in Northeastern Japan received significant radioactive fallout following the Fukushima nuclear accident in March 2011, with initial 137Cs activities exceeding 100 kBq m-2. Although radiocesium poses a considerable health risk for local populations, it also provides a relatively straightforward tracer to investigate sediment transfers in catchments exposed to spring floods and heavy typhoons in late summer and early fall. This study focused on two catchments (the Niida and Mano Rivers) covering a surface area of 450 km² that drain the main radioactive plume. A database of radiocesium activities measured in potential source samples (n=260) was used to model radiocesium dilution in 342 sediment deposit samples collected at 38 locations during 9 different sampling campaigns conducted every 6 months from Nov. 2011 to Nov. 2015. The dilution of the initial radiocesium contamination in sediment was individually calculated for each of the 342 samples using a distribution model. Results show that the proportion of heavily contaminated sediment increased from 27% to 39% after the occurrence of typhoons in 2013 (with rainfall amount exceeding 100 mm in 48 hours) and from 29% to 45% after the 2015 spring floods, illustrating the occurrence of soil erosion and resuspension of contaminated material stored in the river channel. In contrast, the occurrence of a very strong typhoon in September 2015 (up to 450 mm in 48h) led to the dilution and the flush of the contamination to the Pacific Ocean, with the proportion of heavily contaminated material decreasing from 45 to 21%. This case study in catchments impacted by the Fukushima accident illustrates their high reactivity to both human activities and rainfall. These results will improve our understanding of sediment transfers in similar coastal mountainous environments frequently exposed to heavy rainfall.

  16. Dynamics and recovery of a sediment-exposed Chironomus riparius population: A modelling approach.

    PubMed

    Diepens, Noël J; Beltman, Wim H J; Koelmans, Albert A; Van den Brink, Paul J; Baveco, Johannes M

    2016-06-01

    Models can be used to assess long-term risks of sediment-bound contaminants at the population level. However, these models usually lack the coupling between chemical fate in the sediment, toxicokinetic-toxicodynamic processes in individuals and propagation of individual-level effects to the population. We developed a population model that includes all these processes, and used it to assess the importance of chemical uptake routes on a Chironomus riparius population after pulsed exposure to the pesticide chlorpyrifos. We show that particle ingestion is an important additional exposure pathway affecting C. riparius population dynamics and recovery. Models ignoring particle ingestion underestimate the impact and the required recovery times, which implies that they underestimate risks of sediment-bound chemicals. Additional scenario studies showed the importance of selecting the biologically relevant sediment layer and showed population effects in the long term.

  17. A comparison of metal levels and antioxidant enzymes in freshwater snails, Lymnaea natalensis, exposed to sediment and water collected from Wright Dam and Lower Mguza Dam, Bulawayo, Zimbabwe.

    PubMed

    Siwela, A H; Nyathi, C B; Naik, Y S

    2010-10-01

    We compared the bioaccumulation of lead (Pb), cadmium (Cd), zinc (Zn), copper (Cu), nickel (Ni) and iron (Fe) with antioxidant enzyme activity in tissues of the snails, Lymnaea natalensis, exposed to elements of two differently polluted dams. 45 snails were exposed to sediment and water collected from Wight Dam (reference) whilst another 45 snails were also exposed to sediment and water collected from Lower Mguza Dam (polluted dam). Except for Fe in sediment and Pb in water, metal concentrations were statistically higher in sediment and water collected from Lower Mguza Dam. Lead, Cd and Zn were two times higher in tissues of snails exposed to Lower Mguza Dam elements. On one hand, superoxide dismutase (SOD), diphosphotriphosphodiaphorase (DTD) and catalase (CAT) activities were significantly lower whilst malondialdehyde (MDA) levels were significantly higher in tissues of snails exposed to Lower Mguza Dam sediment and water. On the other hand, selenium-dependent glutathione peroxidase (Se-GPX) activity was significantly elevated in tissues of snails exposed to Lower Mguza Dam sediment and water. Snails exposed to Lower Mguza Dam elements seem to have responded to pollution by increasing CAT and Se-GPX specific activity in an effort to detoxify peroxides produced as a result of metal induced oxidative stress.

  18. Changes in northern Gulf of Mexico sediment bacterial and archaeal communities exposed to hypoxia.

    PubMed

    Devereux, R; Mosher, J J; Vishnivetskaya, T A; Brown, S D; Beddick, D L; Yates, D F; Palumbo, A V

    2015-09-01

    Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by pyrosequencing 16S rRNA V4-region gene fragments obtained by PCR amplification of community genomic DNA with bacterial- or archaeal-specific primers. Duplicate LCS sediment cores collected during hypoxia had higher concentrations of Fe(II), and dissolved inorganic carbon, phosphate, and ammonium than cores collected when overlying water oxygen concentrations were normal. Pyrosequencing yielded 158,686 bacterial and 225,591 archaeal sequences from 20 sediment samples, representing five 2-cm depth intervals in the duplicate cores. Bacterial communities grouped by sampling date and sediment depth in a neighbor-joining analysis using Chao-Jaccard shared species values. Redundancy analysis indicated that variance in bacterial communities was mainly associated with differences in sediment chemistry between oxic and hypoxic water column conditions. Gammaproteobacteria (26.5%) were most prominent among bacterial sequences, followed by Firmicutes (9.6%), and Alphaproteobacteria (5.6%). Crenarchaeotal, thaumarchaeotal, and euryarchaeotal lineages accounted for 57%, 27%, and 16% of archaeal sequences, respectively. In Thaumarchaeota Marine Group I, sequences were 96-99% identical to the Nitrosopumilus maritimus SCM1 sequence, were highest in surficial sediments, and accounted for 31% of archaeal sequences when waters were normoxic vs. 13% of archaeal sequences when waters were hypoxic. Redundancy analysis showed Nitrosopumilus-related sequence abundance was correlated with high solid-phase Fe(III) concentrations, whereas most of the remaining archaeal clusters were not. In contrast, crenarchaeotal sequences were from phylogenetically diverse lineages, differed little in relative abundance between

  19. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland.

    PubMed

    Jiang, Xiao-Tao; Peng, Xin; Deng, Guan-Hua; Sheng, Hua-Fang; Wang, Yu; Zhou, Hong-Wei; Tam, Nora Fung-Yee

    2013-07-01

    The microbial community plays an essential role in the high productivity in mangrove wetlands. A proper understanding of the spatial variations of microbial communities will provide clues about the underline mechanisms that structure microbial groups and the isolation of bacterial strains of interest. In the present study, the diversity and composition of the bacterial community in sediments collected from four locations, namely mudflat, edge, bulk, and rhizosphere, within the Mai Po Ramsar Wetland in Hong Kong, SAR, China were compared using the barcoded Illumina paired-end sequencing technique. Rarefaction results showed that the bulk sediment inside the mature mangrove forest had the highest bacterial α-diversity, while the mudflat sediment without vegetation had the lowest. The comparison of β-diversity using principal component analysis and principal coordinate analysis with UniFrac metrics both showed that the spatial effects on bacterial communities were significant. All sediment samples could be clustered into two major groups, inner (bulk and rhizosphere sediments collected inside the mangrove forest) and outer mangrove sediments (the sediments collected at the mudflat and the edge of the mangrove forest). With the linear discriminate analysis scores larger than 3, four phyla, namely Actinobacteria, Acidobacteria, Nitrospirae, and Verrucomicrobia, were enriched in the nutrient-rich inner mangrove sediments, while abundances of Proteobacteria and Deferribacterias were higher in outer mangrove sediments. The rhizosphere effect of mangrove plants was also significant, which had a lower α-diversity, a higher amount of Nitrospirae, and a lower abundance of Proteobacteria than the bulk sediment nearby.

  20. Biomarkers of effects of hypoxia and oil-shale contaminated sediments in laboratory-exposed gibel carp (Carassius auratus gibelio).

    PubMed

    Kreitsberg, Randel; Baršienė, Janina; Freiberg, Rene; Andreikėnaitė, Laura; Tammaru, Toomas; Rumvolt, Kateriina; Tuvikene, Arvo

    2013-12-01

    In North-East Estonia, considerable amounts of toxicants (e.g. polycyclic aromatic hydrocarbons (PAHs), phenols, heavy metals) leach into water bodies through discharges from the oil-shale industry. In addition, natural and anthropogenic hypoxic events in water bodies affect the health of aquatic organisms. Here we report a study on the combined effects of contaminated sediment and hypoxia on the physiology of gibel carp (Carssius auratus gibelio). We conducted a laboratory exposure study that involved exposure to polluted sediments from oil-shale industries (River Purtse) and sediments from a relatively clean environment (River Selja), together with sediments spiked with PAHs. The oxygen content (saturation vs. hypoxia (< 2 mg/L)) was changed to reflect hypoxia. A multi-biomarker approach was chosen to enable the combined effects to be assessed comprehensively and integratively. We used HPLC to measure the PAH concentration in sediment and fish muscle, fixed wavelength fluorescence (FF) analyses to indicate the presence of PAH metabolites in fish bile, and nuclear abnormalities in erythrocytes as markers of geno- and cyto-toxicity; and we monitored the change in body condition and measured EROD activity to indicate CYP1A induction. High levels of PAH conjugates in fish bile were found in the group exposed to the Purtse River sediment under hypoxia. The results suggested that induction of the CYP1A gene was modulated by hypoxia as well as by heavy metals. We found a correlation between several erythrocyte abnormalities (8-shaped nuclei and blebbed nuclei) and PAH metabolite content in fish. In conclusion, a measurable effect of pollution from the oil-shale industry on fish health parameters was clear under different oxygen levels.

  1. Stress in mangrove forests: early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management

    USGS Publications Warehouse

    Lewis, Roy R; Milbrandt, Eric C; Brown, Benjamin; Krauss, Ken W.; Rovai, Andre S; Beever, James W.; Flynn, Laura L

    2016-01-01

    Mangrove forest rehabilitation should begin much sooner than at the point of catastrophic loss. We describe the need for “mangrove forest heart attack prevention”, and how that might be accomplished in a general sense by embedding plot and remote sensing monitoring within coastal management plans. The major cause of mangrove stress at many sites globally is often linked to reduced tidal flows and exchanges. Blocked water flows can reduce flushing not only from the seaward side, but also result in higher salinity and reduced sediments when flows are blocked landward. Long-term degradation of function leads to acute mortality prompted by acute events, but created by a systematic propensity for long-term neglect of mangroves. Often, mangroves are lost within a few years; however, vulnerability is re-set decades earlier when seemingly innocuous hydrological modifications are made (e.g., road construction, blocked tidal channels), but which remain undetected without reasonable large-scale monitoring.

  2. Organic carbon inventories in natural and restored Ecuadorian mangrove forests

    PubMed Central

    Bruno, John F.; Benninger, Larry; Alperin, Marc; de Dios Morales, Juan

    2014-01-01

    Mangroves can capture and store organic carbon and their protection and therefore their restoration is a component of climate change mitigation. However, there are few empirical measurements of long-term carbon storage in mangroves or of how storage varies across environmental gradients. The context dependency of this process combined with geographically limited field sampling has made it difficult to generalize regional and global rates of mangrove carbon sequestration. This has in turn hampered the inclusion of sequestration by mangroves in carbon cycle models and in carbon offset markets. The purpose of this study was to estimate the relative carbon capture and storage potential in natural and restored mangrove forests. We measured depth profiles of soil organic carbon content in 72 cores collected from six sites (three natural, two restored, and one afforested) surrounding Muisne, Ecuador. Samples up to 1 m deep were analyzed for organic matter content using loss-on-ignition and values were converted to organic carbon content using an accepted ratio of 1.72 (g/g). Results suggest that average soil carbon storage is 0.055 ± 0.002 g cm−3 (11.3 ± 0.8% carbon content by dry mass, mean ± 1 SE) up to 1 m deep in natural sites, and 0.058 ± 0.002 g cm−3 (8.0 ± 0.3%) in restored sites. These estimates are concordant with published global averages. Evidence of equivalent carbon stocks in restored and afforested mangrove patches emphasizes the carbon sink potential for reestablished mangrove systems. We found no relationship between sediment carbon storage and aboveground biomass, forest structure, or within-patch location. Our results demonstrate the long-term carbon storage potential of natural mangroves, high effectiveness of mangrove restoration and afforestation, a lack of predictability in carbon storage strictly based on aboveground parameters, and the need to establish standardized protocol for quantifying mangrove sediment carbon stocks. PMID:24883249

  3. Organic carbon inventories in natural and restored Ecuadorian mangrove forests.

    PubMed

    DelVecchia, Amanda G; Bruno, John F; Benninger, Larry; Alperin, Marc; Banerjee, Ovik; de Dios Morales, Juan

    2014-01-01

    Mangroves can capture and store organic carbon and their protection and therefore their restoration is a component of climate change mitigation. However, there are few empirical measurements of long-term carbon storage in mangroves or of how storage varies across environmental gradients. The context dependency of this process combined with geographically limited field sampling has made it difficult to generalize regional and global rates of mangrove carbon sequestration. This has in turn hampered the inclusion of sequestration by mangroves in carbon cycle models and in carbon offset markets. The purpose of this study was to estimate the relative carbon capture and storage potential in natural and restored mangrove forests. We measured depth profiles of soil organic carbon content in 72 cores collected from six sites (three natural, two restored, and one afforested) surrounding Muisne, Ecuador. Samples up to 1 m deep were analyzed for organic matter content using loss-on-ignition and values were converted to organic carbon content using an accepted ratio of 1.72 (g/g). Results suggest that average soil carbon storage is 0.055 ± 0.002 g cm(-3) (11.3 ± 0.8% carbon content by dry mass, mean ± 1 SE) up to 1 m deep in natural sites, and 0.058 ± 0.002 g cm(-3) (8.0 ± 0.3%) in restored sites. These estimates are concordant with published global averages. Evidence of equivalent carbon stocks in restored and afforested mangrove patches emphasizes the carbon sink potential for reestablished mangrove systems. We found no relationship between sediment carbon storage and aboveground biomass, forest structure, or within-patch location. Our results demonstrate the long-term carbon storage potential of natural mangroves, high effectiveness of mangrove restoration and afforestation, a lack of predictability in carbon storage strictly based on aboveground parameters, and the need to establish standardized protocol for quantifying mangrove sediment carbon stocks.

  4. [The mangrove and others vegetation associations in de Gandoca lagoon, Limón, Costa Rica].

    PubMed

    Coll, M; Fonseca, A C; Cortés, J

    2001-12-01

    Six plant associations were identified at Gandoca Lagoon by photointerpretation and field verification: a) mangroves, b) palm trees swamp, and palm trees with Acrostichum aureum and A. danaefolium, c) mixed palm trees, d) very humid tropical rain forest, and e) tropical beach vegetation. The mangroves cover 12.5 ha surrounding the lagoon and extend 2 km up the Gandoca River. Rhizophora mangle (red mangrove) was the dominant species, with Avicennia germinans (black mangrove), Laguncularia racemosa (white mangrove) and Conocarpus erectus (buttonwood) also present. Moving inland the mangroves grade into a tropical rain forest. Gandoca, the largest and best preserved mangrove of Caribbean Costa Rica, tripled its area from 1976 to 2000. Possible causes include sedimentation and the Limón earthquake, which may have subside the lagoon area.

  5. Nutrient Enrichment Increases Mortality of Mangroves

    PubMed Central

    Lovelock, Catherine E.; Ball, Marilyn C.; Martin, Katherine C.; C. Feller, Ilka

    2009-01-01

    Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients. PMID:19440554

  6. Sublethal effects in Perinereis gualpensis (Polychaeta: Nereididae) exposed to mercury-pyrene sediment mixture observed in a multipolluted estuary.

    PubMed

    Díaz-Jaramillo, M; Miglioranza, K S B; Carriquiriborde, P; Marino, D; Pegoraro, C N; Valenzuela, G; Barra, R

    2017-08-01

    Sediment-living organisms can be subjected to a multi-pollution condition due to an increase in the diversity of contaminants. Sediment mixtures of Mercury (Hg) and some polycyclic aromatics hydrocarbons like Pyrene (Pyr) are common in heavily industrialized coastal zones. In the present study, greater than (>) and less than (<) probable effect concentration levels (PELs) of Hg and Pyr were assessed using spiked sediments in order to determine combined (Hg + Pyr) effects in uptake, metabolization and oxidative balance in the polychaete Perinereis gualpensis at short and medium-term exposure. Hg + Pyr significantly influenced the uptake/kinetics of Hg and Pyr metabolite 1-OH-pyrene in polychaete tissues during the exposure time compared with separate treatments of each analyte (p < 0.05). Both the Hg-only and Pyr-only exposures significantly influenced both enzymatic and non-enzymatic responses respect to control groups (p < 0.05). The Hg-only treatment showed the worst scenario related to the activation and subsequent inhibition of glutathione S- transferase (GST) and peroxidase (GPx) activities, high levels of Thiol-groups (SH-groups), low antioxidant capacity (ACAP) and enhanced lipid peroxidation (TBARS) in the last days of exposure (p < 0.05). In contrast, ragworms exposed to Hg + Pyr showed a significant increase in both enzymatic and non-enzymatic activity during the first days of exposure and the absence of lipid peroxidation during the whole experiment. Our results suggest different oxidative stress scenarios in P. gualpensis when exposed to >PEL Hg concentration with sediments. Results also reveal the importance of the exposure time, endpoints involved as well as of the contaminant monitoring during the whole experiments in assessing the interactive effects of the contaminant mixture.

  7. Transcriptomic analyses in a benthic fish exposed to contaminated estuarine sediments through laboratory and in situ bioassays.

    PubMed

    Costa, Pedro M; Miguel, Célia; Caeiro, Sandra; Lobo, Jorge; Martins, Marta; Ferreira, Ana M; Caetano, Miguel; Vale, Carlos; DelValls, T A; Costa, Maria H

    2011-11-01

    The transcription of contaminant response-related genes was investigated in juvenile Senegalese soles exposed to sediments from three distinct sites (a reference plus two contaminated) of a Portuguese estuary (the Sado, W Portugal) through simultaneous 28-day laboratory and in situ bioassays. Transcription of cytochrome P450 1A (CYP1A), metallothionein 1 (MT1), glutathione peroxidase (GPx), catalase (CAT), caspase 3 (CASP3) and 90 kDa heat-shock protein alpha (HSP90AA) was surveyed in the liver by real-time PCR. CASP3 transcription analysis was complemented by surveying apoptosis through the TUNEL reaction. After 14 days of exposure, relative transcription was either reduced or decreased in fish exposed to the contaminated sediments, revealing a disturbance stress phase during which animals failed to respond to insult. After 28 days of exposure all genes' transcription responded to contamination but laboratory and in situ assays depicted distinct patterns of regulation. Although sediments revealed a combination of organic and inorganic toxicants, transcription of the CYP1A gene was consistently correlated to organic contaminants. Metallothionein regulation was found correlated to metallic and organic xenobiotic contamination in the laboratory and in situ, respectively. The transcription of oxidative stress-related genes can be a good indicator of general stress but caution is mandatory when interpreting the results since regulation may be influenced by multiple factors. As for MT1, HSP90 up-regulation has potential to be a good indicator for total contamination, as well as the CASP3 gene, even though hepatocyte apoptosis depicted values inconsistent with sediment contamination, showing that programmed cell death did not directly depend on caspase transcription alone.

  8. How mangrove forests adjust to rising sea level

    USGS Publications Warehouse

    Krauss, Ken W.; McKee, Karen L.; Lovelock, Catherine E.; Cahoon, Donald R.; Saintilan, Neil; Reef, Ruth; Chen, Luzhen

    2014-01-01

    Mangroves are among the most well described and widely studied wetland communities in the world. The greatest threats to mangrove persistence are deforestation and other anthropogenic disturbances that can compromise habitat stability and resilience to sea-level rise. To persist, mangrove ecosystems must adjust to rising sea level by building vertically or become submerged. Mangroves may directly or indirectly influence soil accretion processes through the production and accumulation of organic matter, as well as the trapping and retention of mineral sediment. In this review, we provide a general overview of research on mangrove elevation dynamics, emphasizing the role of the vegetation in maintaining soil surface elevations (i.e. position of the soil surface in the vertical plane). We summarize the primary ways in which mangroves may influence sediment accretion and vertical land development, for example, through root contributions to soil volume and upward expansion of the soil surface. We also examine how hydrological, geomorphological and climatic processes may interact with plant processes to influence mangrove capacity to keep pace with rising sea level. We draw on a variety of studies to describe the important, and often under-appreciated, role that plants play in shaping the trajectory of an ecosystem undergoing change.

  9. How mangrove forests adjust to rising sea level.

    PubMed

    Krauss, Ken W; McKee, Karen L; Lovelock, Catherine E; Cahoon, Donald R; Saintilan, Neil; Reef, Ruth; Chen, Luzhen

    2014-04-01

    Mangroves are among the most well described and widely studied wetland communities in the world. The greatest threats to mangrove persistence are deforestation and other anthropogenic disturbances that can compromise habitat stability and resilience to sea-level rise. To persist, mangrove ecosystems must adjust to rising sea level by building vertically or become submerged. Mangroves may directly or indirectly influence soil accretion processes through the production and accumulation of organic matter, as well as the trapping and retention of mineral sediment. In this review, we provide a general overview of research on mangrove elevation dynamics, emphasizing the role of the vegetation in maintaining soil surface elevations (i.e. position of the soil surface in the vertical plane). We summarize the primary ways in which mangroves may influence sediment accretion and vertical land development, for example, through root contributions to soil volume and upward expansion of the soil surface. We also examine how hydrological, geomorphological and climatic processes may interact with plant processes to influence mangrove capacity to keep pace with rising sea level. We draw on a variety of studies to describe the important, and often under-appreciated, role that plants play in shaping the trajectory of an ecosystem undergoing change.

  10. Cytochrome P4501A induction and porphyrin accumulation in PLHC-1 fish cells exposed to sediment and oil shale extracts.

    PubMed

    Huuskonen, S E; Tuvikene, A; Trapido, M; Fent, K; Hahn, M E

    2000-01-01

    The present study describes the use of a fish hepatoma cell line (PLHC-1) in monitoring the biological effects of sediments collected from recipient waters of the oil shale industry. Sampling sites were located in River Purtse and River Kohtla in northeast Estonia. The effects of pure oil shale on the PLHC-1 cells were also studied. The cells were exposed to n-hexane-extracted samples in 48-well plates for 24 h, and 7-ethoxyresorufin O-deethylase (EROD) activity, total protein, and porphyrin content were measured in the exposed cells. Polycyclic aromatic hydrocarbon (PAH) contents in the samples were measured by high-performance liquid chromatography (HPLC). All the sediment and oil shale samples induced CYP1A activity and led to porphyrin accumulation in the cells. The most potent inducers were the sediments collected near the oil shale processing plants (site Lüganuse in River Purtse and Kohtla in River Kohtla), as well as those at the most downstream site in River Purtse (Purtse). These samples possessed high total PAH contents, ranging from 4,270 to nearly 150,000 microg/kg dry sediment. The presence of other lipophilic organic contaminants in the samples was not determined in this study. Both EROD activity and porphyrin content exhibited biphasic induction curves, and the ED(50)(1) values for EROD activity were lower than the ED(50)s for porphyrin content. 2,3,7, 8-Tetrachlorodibenzo-p-dioxin induction equivalents (TCDD-EQs) calculated from EROD induction potencies correlated well with total PAHs (r(2) = 0.827 and p = 0.003 for log-transformed data) and also with individual PAHs. TCDD-EQs for porphyrin content did not correlate significantly with total PAHs (log-log r(2) = 0.785, p = 0. 116). The biological potency and PAH contamination of the samples showed the same rank order, except at Lüganuse, where sediment extracts induced CYP1A and porphyrins more than could have been expected based on PAH contents. Bioassay-derived induction EQs (normalized to

  11. Morphology and Expansion of a Tidal Flat and Mangrove Forest, Firth of Thames, New Zealand

    NASA Astrophysics Data System (ADS)

    Bentley, S. J.; Swales, A.; Kahlmeyer, E.; Denommee, K.

    2008-12-01

    A morphological and sedimentological study was undertaken on a tidal flat/mangrove forest complex in the Firth of Thames (North Island, New Zealand), to elucidate patterns and rates of tidal flat progradation and associated mangrove habitat expansion along this wave-impacted mesotidal muddy coastline. Recent studies of mangrove habitat in the area document accelerated forest expansion over the past five decades. To better understand processes controlling progradation of unvegetated mudflats fronting mangrove forest, sediment cores and field observations were collected on a transect extending one km seaward of the mangrove fringe. Cores were X-radiographed and analyzed for grain size, water content, and the radioisotopes Pb-210, Be-7, and Cs-137 to evaluate sediment accumulation rates, and sediment mixing rates and depths. X-radiographs and Be-7 profiles indicate intense and rapid mixing (by waves) of the uppermost 3-7 cm of sediment on unvegetated flats. Pb-210 accumulation rates of 2-3 cm/y characterize the uppermost 40-50 cm of unvegetated flat sediments, much slower accumulation than the 5-10 cm/y accumulation rates observed in the seaward edges of mangrove forest. Our observations suggest that the wave-swept unvegetated mudflats accrete relatively slowly until an elevation threshold is reached that allows mangrove recruitment. Sediment accretion in the mangrove fringe remains low until vegetation is sufficiently dense to reduce wave exposure, whereupon more rapid sediment accumulation ensues, as the young trees mature. A simple sediment budget based on Pb-210 sedimentation rates and estimated local river sediment supply indicates that present sediment accumulation on the unvegetated mudflat exceeds present fluvial sediment discharge by a significant margin, suggesting that the system is not in steady state, but is still adjusting to massive sediment flux delivered following a period of forest clearance in the late 19th/early 20th century.

  12. Settlement effects on Favia fragum (Scleractinia, Faviidae) exposed to different sediment sources from Puerto Rico

    EPA Science Inventory

    Agricultural production and urban development in Puerto Rico have increased the rate of sedimentation to the marine coastal environment, which has the potential to adversely affect coral-reef ecosystems. Settlement and metamorphosis of coral larvae are integral to the maintenance...

  13. Settlement effects on Favia fragum (Scleractinia, Faviidae) exposed to different sediment sources from Puerto Rico

    EPA Science Inventory

    Agricultural production and urban development in Puerto Rico have increased the rate of sedimentation to the marine coastal environment, which has the potential to adversely affect coral-reef ecosystems. Settlement and metamorphosis of coral larvae are integral to the maintenance...

  14. Determination of mangrove change in Matang Mangrove Forest using multi temporal satellite imageries

    NASA Astrophysics Data System (ADS)

    Ibrahim, N. A.; Mustapha, M. A.; Lihan, T.; Ghaffar, M. A.

    2013-11-01

    Mangrove protects shorelines from damaging storm and hurricane winds, waves, and floods. Mangroves also help prevent erosion by stabilizing sediments with their tangled root systems. They maintain water quality and clarity, filtering pollutants and trapping sediments originating from land. However, mangrove has been reported to be threatened by land conversion for other activities. In this study, land use and land cover changes in Matang Mangrove Forest during the past 18 years (1993 to 2011) were determined using multi-temporal satellite imageries by Landsat TM and RapidEye. In this study, classification of land use and land cover approach was performed using the maximum likelihood classifier (MCL) method along with vegetation index differencing (NDVI) technique. Data obtained was evaluated through Kappa coefficient calculation for accuracy and results revealed that the classification accuracy was 81.25% with Kappa Statistics of 0.78. The results indicated changes in mangrove forest area to water body with 2,490.6 ha, aquaculture with 890.7 ha, horticulture with 1,646.1 ha, palm oil areas with 1,959.2 ha, dry land forest with 2,906.7 ha and urban settlement area with 224.1 ha. Combinations of these approaches were useful for change detection and for indication of the nature of these changes.

  15. Computational Visual Stress Level Analysis of Calcareous Algae Exposed to Sedimentation.

    PubMed

    Osterloff, Jonas; Nilssen, Ingunn; Eide, Ingvar; de Oliveira Figueiredo, Marcia Abreu; de Souza Tâmega, Frederico Tapajós; Nattkemper, Tim W

    2016-01-01

    This paper presents a machine learning based approach for analyses of photos collected from laboratory experiments conducted to assess the potential impact of water-based drill cuttings on deep-water rhodolith-forming calcareous algae. This pilot study uses imaging technology to quantify and monitor the stress levels of the calcareous algae Mesophyllum engelhartii (Foslie) Adey caused by various degrees of light exposure, flow intensity and amount of sediment. A machine learning based algorithm was applied to assess the temporal variation of the calcareous algae size (∼ mass) and color automatically. Measured size and color were correlated to the photosynthetic efficiency (maximum quantum yield of charge separation in photosystem II, [Formula: see text]) and degree of sediment coverage using multivariate regression. The multivariate regression showed correlations between time and calcareous algae sizes, as well as correlations between fluorescence and calcareous algae colors.

  16. Computational Visual Stress Level Analysis of Calcareous Algae Exposed to Sedimentation

    PubMed Central

    Nilssen, Ingunn; Eide, Ingvar; de Oliveira Figueiredo, Marcia Abreu; de Souza Tâmega, Frederico Tapajós; Nattkemper, Tim W.

    2016-01-01

    This paper presents a machine learning based approach for analyses of photos collected from laboratory experiments conducted to assess the potential impact of water-based drill cuttings on deep-water rhodolith-forming calcareous algae. This pilot study uses imaging technology to quantify and monitor the stress levels of the calcareous algae Mesophyllum engelhartii (Foslie) Adey caused by various degrees of light exposure, flow intensity and amount of sediment. A machine learning based algorithm was applied to assess the temporal variation of the calcareous algae size (∼ mass) and color automatically. Measured size and color were correlated to the photosynthetic efficiency (maximum quantum yield of charge separation in photosystem II, ΦPSIImax) and degree of sediment coverage using multivariate regression. The multivariate regression showed correlations between time and calcareous algae sizes, as well as correlations between fluorescence and calcareous algae colors. PMID:27285611

  17. Random Forest Classification of Sediments on Exposed Intertidal Flats Using ALOS-2 Quad-Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Wang, W.; Yang, X.; Liu, G.; Zhou, H.; Ma, W.; Yu, Y.; Li, Z.

    2016-06-01

    Coastal zones are one of the world's most densely populated areas and it is necessary to propose an accurate, cost effective, frequent, and synoptic method of monitoring these complex ecosystems. However, misclassification of sediments on exposed intertidal flats restricts the development of coastal zones surveillance. With the advent of SAR (Synthetic Aperture Radar) satellites, polarimetric SAR satellite imagery plays an increasingly important role in monitoring changes in coastal wetland. This research investigated the necessity of combining SAR polarimetric features with optical data, and their contribution in accurately sediment classification. Three experimental groups were set to make assessment of the most appropriate descriptors. (i) Several SAR polarimetric descriptors were extracted from scattering matrix using Cloude-Pottier, Freeman-Durden and Yamaguchi methods; (ii) Optical remote sensing (RS) data with R, G and B channels formed the second feature combinations; (iii) The chosen SAR and optical RS indicators were both added into classifier. Classification was carried out using Random Forest (RF) classifiers and a general result mapping of intertidal flats was generated. Experiments were implemented using ALOS-2 L-band satellite imagery and GF-1 optical multi-spectral data acquired in the same period. The weights of descriptors were evaluated by VI (RF Variable Importance). Results suggested that optical data source has few advantages on sediment classification, and even reduce the effect of SAR indicators. Polarimetric SAR feature sets show great potentials in intertidal flats classification and are promising in classifying mud flats, sand flats, bare farmland and tidal water.

  18. Surface elevation change and susceptibility of different mangrove zones to sea-level rise on Pacific high islands o Micronesia

    Treesearch

    K.W. Krauss; D.R. Cahoon; J.A. Allen; K.C. Ewel; J.C. Lynch; N. Cormier

    2010-01-01

    Mangroves on Pacific high islands offer a number of important ecosystem services to both natural ecological communities and human societies. High islands are subjected to constant erosion over geologic time, which establishes an important source of terrigeneous sediment for nearby marinecommunities. Many of these sediments are deposited in mangrove forests and offer...

  19. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland

    NASA Astrophysics Data System (ADS)

    Sanders, Christian J.; Eyre, Bradley D.; Santos, Isaac R.; Machado, Wilson; Luiz-Silva, Wanilson; Smoak, Joseph M.; Breithaupt, Joshua L.; Ketterer, Michael E.; Sanders, Luciana; Marotta, Humberto; Silva-Filho, Emmanoel

    2014-04-01

    The effect of nutrient enrichment on mangrove sediment accretion and carbon accumulation rates is poorly understood. Here we quantify sediment accretion through radionuclide tracers to determine organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) accumulation rates during the previous 60 years in both a nutrient-enriched and a pristine mangrove forest within the same geomorphological region of southeastern Brazil. The forest receiving high nutrient loads has accumulated OC, TN, and TP at rates that are fourfold, twofold, and eightfold respectively, higher than those from the undisturbed mangrove. Organic carbon and TN stable isotopes (δ13C and δ15N) reflect an increased presence of organic matter (OM) originating with either phytoplankton, benthic algae, or another allochthonous source within the more rapidly accumulated sediments of the impacted mangrove. This suggests that the accumulation rate of OM in eutrophic mangrove systems may be enhanced through the addition of autochthonous and allochthonous nonmangrove material.

  20. Physical processes dominate in shaping invertebrate assemblages in reef-associated sediments of an exposed Hawaiian coast

    USGS Publications Warehouse

    DeFelice, R.C.; Parrish, J.D.

    2001-01-01

    The invertebrate assemblages in sediments bordering exposed fringing reefs at Hanalei Bay, Kauai, Hawaii, were examined during July to September 1994. Densities of invertebrate animals larger than 0.5 mm in sediments of the bay ranged from counts of 10 260 m-2 in the fine carbonate sands of the central bay to 870 m-2 in the habitat dominated by terrigenous silt near the reef edge close to the Hanalei river mouth. Similar sediment types supported broadly similar infaunal communities. Within the primarily carbonate sediments, mean grain size and wave exposure appear to have an important influence on the community. Taxonomic richness, number of individuals, and diversity showed significant negative relationships with exposure to wave energy (as estimated by sand ripple wavelength). The number of individuals was also significantly correlated with mean grain size. Overall, polychaetes and small crustaceans were numerically dominant among the major taxonomic groups investigated. Macrophagous and microphagous polychaetes had significant, but opposite, associations with grain size. In addition, microphagous polychaetes were significantly negatively correlated with wave exposure. No habitat variable measured could explain the variation in percent composition of crustaceans or echinoderms in the sedimentary habitats. The percentage of gastropods in the community was significantly negatively correlated with grain size, grain-size standard deviation and exposure, and positively with percent organic carbon. Bivalves were significantly positively associated with depth and grain size. These strong relationships imply that, in Hanalei Bay, physical processes are especially important in influencing assemblage structure, and that community structure and composition vary continuously along environmental gradients.

  1. Assessment of Lead and Beryllium deposition and adsorption to exposed stream channel sediments

    NASA Astrophysics Data System (ADS)

    Pawlowski, E.; Karwan, D. L.

    2016-12-01

    The fallout radionuclides Beryllium-7 and Lead-210 have been shown to be effective sediment tracers that readily bind to particles. The adsorption capacity has primarily been assessed in marine and coastal environments with an important assumption being the radionuclides' uniform spatial distribution as fallout from the atmosphere. This neglects localized storm events that may mine stratospheric reserves creating variable distributions. To test this assumption atmospheric deposition is collected at the University of Minnesota St. Paul Campus weather station during individual storm events and subsequently analyzed for Beryllium-7 and Lead-210. This provides further insight into continental effects on radionuclide deposition. The study of Beryllium-7 and Lead-210 adsorption in marine and coastal environments has provided valuable insights into the processes that influence the element's binding to particles but research has been limited in freshwater river environments. These environments have greater variation in pH, iron oxide content, and dissolved organic carbon (DOC) levels which have been shown to influence the adsorption of Beryllium and Lead in marine settings. This research assesses the adsorption of Beryllium and Lead to river sediments collected from in-channel deposits by utilizing batch experiments that mimic the stream conditions from which the deposits were collected. Soils were collected from Difficult Run, VA, and the West Swan River, MN. Agitating the soils in a controlled solution of known background electrolyte and pH while varying the level of iron oxides and DOC in step provides a better understanding of the sorption of Lead and Beryllium under the conditions found within freshwater streams. Pairing the partitioning of Lead and Beryllium with their inputs to streams via depositional processes, from this study and others, allows for their assessment as possible sediment tracers and age-dating tools within the respective watersheds.

  2. Hydrocarbon Degradation Pathways used by Coastal Sediment Microbial Communities exposed to Crude Oil

    NASA Astrophysics Data System (ADS)

    Spaulding-Astudillo, F.; Sharrar, A.; Orcutt, B.

    2016-02-01

    The site-specific microbial community response to crude oil exposure in marine environments is not well described. Moreover, the abundance of genes implicated in long-chain alkane (LCA) and polycyclic aromatic hydrocarbon (PAH) degradation are not well understood. Coastal sediments from the Beaufort Sea, Gulf of Alaska, and Portland Harbor were treated with crude oil and incubated aerobically. Deep-sea sediments from the Gulf of Mexico were treated with the same crude oil and anaerobically incubated in situ for five months before recovery. Cycloclasticus, a known hydrocarbon-degrader, was abundant in all oiled, aerobic samples regardless of temperature, demonstrating a generalist oil-response strategy. Other hydrocarbon degrading bacteria showed differential response to either site or temperature. Primers for alkB, assA, bssA, and ncr, catabolic gene markers for aerobic LCA degradation, anaerobic LCA degradation, anaerobic LCA & PAH degradation, and anaerobic PAH degradation, respectively, were found in literature and tested on DNA extracts in a QPCR-based assay. Gene abundance was site and condition variable.

  3. Prevalence and genetic profiles of Escherichia coli from mangroves and mangrove associated foods off Goa, India.

    PubMed

    Poharkar, Krupali V; Kerkar, Savita; Doijad, Swapnil P; Barbuddhe, S B

    2014-08-15

    A total of 120 samples comprising of water (45), sediment (45) and mangrove originated food (30) collected from mangrove ecosystems of Goa were screened for Escherichia coli employing ISO-16654 method. Seventy-one (59.16%) samples were positive for E. coli. The E. coli isolates were further characterized by serotyping, virulence gene profiling and pulsed field gel electrophoresis (PFGE). Water and sediment samples were analyzed for physico-chemical parameters. The serotypes reported were O1, O10, O13, O17, O36, O41, O50, O68, O105, O116, O141, O148, O159, O162 and rough types while, 23 strains could not be typed. The stx1 and stx2 genes were detected in 33(46.47%) and 16(22.53%) isolates, respectively. The XbaI restriction digestion patterns of the stx positive strains were diverse. Interestingly, few strains isolated from diarrheal patients and from water, sediment and food from mangrove sources were genetically similar. The study showed that the mangrove ecosystem could be a potential reservoir for pathogenic E. coli.

  4. Matching pollution with adaptive changes in mangrove plants by multivariate statistics. A case study, Rhizophora mangle from four neotropical mangroves in Brazil.

    PubMed

    Souza, Iara da Costa; Morozesk, Mariana; Duarte, Ian Drumond; Bonomo, Marina Marques; Rocha, Lívia Dorsch; Furlan, Larissa Maria; Arrivabene, Hiulana Pereira; Monferrán, Magdalena Victoria; Matsumoto, Silvia Tamie; Milanez, Camilla Rozindo Dias; Wunderlin, Daniel Alberto; Fernandes, Marisa Narciso

    2014-08-01

    Roots of mangrove trees have an important role in depurating water and sediments by retaining metals that may accumulate in different plant tissues, affecting physiological processes and anatomy. The present study aimed to evaluate adaptive changes in root of Rhizophora mangle in response to different levels of chemical elements (metals/metalloids) in interstitial water and sediments from four neotropical mangroves in Brazil. What sets this study apart from other studies is that we not only investigate adaptive modifications in R. mangle but also changes in environments where this plant grows, evaluating correspondence between physical, chemical and biological issues by a combined set of multivariate statistical methods (pattern recognition). Thus, we looked to match changes in the environment with adaptations in plants. Multivariate statistics highlighted that the lignified periderm and the air gaps are directly related to the environmental contamination. Current results provide new evidences of root anatomical strategies to deal with contaminated environments. Multivariate statistics greatly contributes to extrapolate results from complex data matrixes obtained when analyzing environmental issues, pointing out parameters involved in environmental changes and also evidencing the adaptive response of the exposed biota. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Cadmium, metal-binding proteins, and growth in bluegill (Lepomis macrochirusexposed to contaminated sediments from the upper Mississippi River basin

    USGS Publications Warehouse

    Cope, W. Gregory; Wiener, James G.; Steingraeber, Mark T.; Atchison, Gary J.

    1994-01-01

    We exposed juvenile bluegill (Lepomis macrochirus) to ~1000 mg∙L−1 of continuously suspended river sediment in a 28-d test with six treatments (randomized block with one sediment-free control and five sediments ranging from 1.3 to 21.4 μg Cd∙g dry weight−1). Each treatment had three replicates, each with 25 fish. Growth was reduced by exposure to suspended sediment, probably due to physical effects of sediment on feeding and to toxicity in the treatment with the greatest concentrations of metals. Mean whole-body concentrations of cadmium (0.04–0.14 μg∙g wet weight−1) were correlated with cadmium concentration in filtered water (8–72 ng∙L−1), suspended sediment (0.61–16.8 μg∙L−1), and bulk sediment. The concentration of hepatic nonthionein cytosolic cadmium (cadmium not bound by metal-binding proteins, MBP) in fish exposed to the two most contaminated sediments exceeded that in controls. The mean concentration of hepatic MBP was correlated with cadmium concentration in filtered water, suspended sediment, bulk sediment, and whole fish. Whole-body cadmium concentration was the most sensitive indicator of cadmium exposure, with lowest observed effect concentrations of 1.9 μg Cd∙L−1 for suspended sediment and 13 ng Cd∙L−1 for filtered water. Sediment-associated cadmium was less available than waterborne cadmium for uptake by fish.

  6. Cage experiments in an East African mangrove forest: a synthesis

    NASA Astrophysics Data System (ADS)

    Schrijvers, J.; Vincx, M.

    1997-12-01

    The impact of epibenthos on endobenthos has frequently been investigated for temperate saltmarsh regions by using cage exclusion experiments. Although the insight into the function of the endobenthos of mangrove forests is crucial for their management, very few cage experiments have so far been carried out in such areas. The present paper summaries the results of such experiments in a typical East African mangrove forest at Gazi Bay about 60 km south of Mombasa, Kenya. Epibenthic animals were excluded for one year in two mangrove zones which differed in forest morphology and intertidal position ( Ceriops tagal and Avicennia marina). Environmental factors and meiobenthic and macrobenthic densities were followed in a randomised block design, and procedural and exclusion effects were statistically detected. In confronting the separate responses of all faunal groups in the two mangrove zones, this synthesis gives a better insight into the tropho-dynamical interactions than the earlier separate reports on the same experiment. The ecosystem of the mangrove zones and the competitive interactions within this system provided an ideal opportunity to discover the existence of two food systems. This confirmed a strong involvement of the majority of the endobenthos in an isolated decompositional pathway in the mangrove sediment. It became clear that this exploitative competition was more important than the epibenthic predation in structuring and regulating the global endobenthic community. This synthesis therefore both demonstrates the decisive role of the endobenthos as regenators of mangrove material, and suggests that endobenthos plays a minor role as prey for the demersal or pelagic carnivores.

  7. Habitat manipulation of Exposed Riverine Sediments (ERS) how does microhabitat, microclimate and food availability influence beetle distributions?

    NASA Astrophysics Data System (ADS)

    Henshall, S. E.; Sadler, J. P.; Hannah, D. M.

    2009-04-01

    Exposed riverine sediments (ERS) are frequently inundated areas of relatively un-vegetated, fluvially deposited sediment (sand, silt, gravel and pebble). These habitats provide an important interface allowing the interaction of aquatic and terrestrial habitats and species. ERS are highly valuable for many rare and specialist invertebrates particularly beetles. Within an area of ERS, beetle species richness tends to be highest along the water's edge. This higher species richness may be linked to: (1) the availability of food items in the form of emerging and stranded aquatic invertebrates and (2) favourable physical microhabitat conditions in terms of temperature and moisture. This paper explores the role of microclimate and food availability by creating areas of ‘water's edge' habitat in the centre of a gravel bar. Typically these areas are drier, reach higher temperatures and devoid of emerging aquatic invertebrate prey. Four 2m x 2m experimental plots were created: one wet plot, one wet- fed plot, one dry-fed plot and one dry plot (control). These plots were each replicated on three separate areas of ERS. Sixty colour marked ERS specialist ground beetles (Bembidion atrocaeruleum) were released into each plot to monitor beetle persistence and movement on and between plots. The plots were maintained wet using a capillary pump system, and fed with dried blood worms for 30 days. Sediment temperature (0.05 m depth) was measured at 15 minute intervals and spot measurements of surface temperature were taken daily. A hand search was carried out on 25% of each plot after 7, 14, 21 and 30 days. Significant temperature differences were observed between the wet and dry sediment and air temperature. The wet plots on average were 1.8oC cooler than the dry plots and had a reduced temperature range. Both wet and dry sediments remained significantly warmer than air temperature. The wet and wet-fed plots yielded significantly greater numbers of beetles and marked beetles than

  8. Behavior of Corophium volutator (Crustacea, Amphipoda) exposed to the water-accommodated fraction of oil in water and sediment.

    PubMed

    Kienle, Cornelia; Gerhardt, Almut

    2008-03-01

    We investigated the short-term effects of the water accommodated fraction (WAF) of weathered Forties crude oil on the behavior of Corophium volutator in the Multispecies Freshwater Biomonitor (MFB). When exposing C. volutator to 25 and 50% WAF in aqueous exposures, hyperactivity with an additional increase in ventilation was detected, whereas exposure to 100% WAF led to hypoactivity (narcosis). In a sediment exposure with 100% WAF, there was an increased tendency toward hyperactivity. In a pulse experiment, hyperactivity appeared at and after a 130-min exposure to 50% WAF in a majority of cases. Our experiments suggest that the behavior of C. volutator as measured in the MFB may be an appropriate parameter for coastal monitoring.

  9. Biocomplexity in Mangrove Ecosystems

    NASA Astrophysics Data System (ADS)

    Feller, I. C.; Lovelock, C. E.; Berger, U.; McKee, K. L.; Joye, S. B.; Ball, M. C.

    2010-01-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical coasts. Despite repeated demonstration of their economic and societal value, more than 50% of the world's mangroves have been destroyed, 35% in the past two decades to aquaculture and coastal development, altered hydrology, sea-level rise, and nutrient overenrichment. Variations in the structure and function of mangrove ecosystems have generally been described solely on the basis of a hierarchical classification of the physical characteristics of the intertidal environment, including climate, geomorphology, topography, and hydrology. Here, we use the concept of emergent properties at multiple levels within a hierarchical framework to review how the interplay between specialized adaptations and extreme trait plasticity that characterizes mangroves and intertidal environments gives rise to the biocomplexity that distinguishes mangrove ecosystems. The traits that allow mangroves to tolerate variable salinity, flooding, and nutrient availability influence ecosystem processes and ultimately the services they provide. We conclude that an integrated research strategy using emergent properties in empirical and theoretical studies provides a holistic approach for understanding and managing mangrove ecosystems.

  10. Biocomplexity in mangrove ecosystems.

    PubMed

    Feller, I C; Lovelock, C E; Berger, U; McKee, K L; Joye, S B; Ball, M C

    2010-01-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical coasts. Despite repeated demonstration of their economic and societal value, more than 50% of the world's mangroves have been destroyed, 35% in the past two decades to aquaculture and coastal development, altered hydrology, sea-level rise, and nutrient overenrichment. Variations in the structure and function of mangrove ecosystems have generally been described solely on the basis of a hierarchical classification of the physical characteristics of the intertidal environment, including climate, geomorphology, topography, and hydrology. Here, we use the concept of emergent properties at multiple levels within a hierarchical framework to review how the interplay between specialized adaptations and extreme trait plasticity that characterizes mangroves and intertidal environments gives rise to the biocomplexity that distinguishes mangrove ecosystems. The traits that allow mangroves to tolerate variable salinity, flooding, and nutrient availability influence ecosystem processes and ultimately the services they provide. We conclude that an integrated research strategy using emergent properties in empirical and theoretical studies provides a holistic approach for understanding and managing mangrove ecosystems.

  11. A description of chloride cell and kidney tubule alterations in the flatfish Solea senegalensis exposed to moderately contaminated sediments from the Sado estuary (Portugal)

    NASA Astrophysics Data System (ADS)

    Costa, Pedro M.; Caeiro, Sandra; Diniz, Mário S.; Lobo, Jorge; Martins, Marta; Ferreira, Ana M.; Caetano, Miguel; Vale, Carlos; DelValls, T. Ángel; Costa, M. Helena

    2010-11-01

    The effects of sediment-bound contaminants on kidney and gill chloride cells were surveyed in juvenile Solea senegalensis exposed to fresh sediments collected from three distinct sites of the Sado Estuary (Portugal) in a 28-day laboratorial assay. Sediments were analyzed for metallic contaminants, polycyclic aromatic hydrocarbons and organochlorines as well as for total organic matter, redox potential and fine fraction. The potential for causing adverse biological effects of each surveyed sediment was assessed by comparison of contaminant levels to available guidelines for coastal sediments, namely the Threshold Effects Level ( TEL) and the Probable Effects Level ( PEL). The Sediment Quality Guideline Quotient indices ( SQGQ) were calculated to compare the overall contamination levels of the three stations. A qualitative approach was employed to analyze the histo/cytopathological traits in gill chloride cells and body kidney of fish exposed to each tested sediment for 0, 14 and 28 days. The results showed that sediment contamination can be considered low to moderate and that the least contaminated sediment (from a reference site, with the lowest SQGQ) caused lesser changes in the surveyed organs. However, the most contaminated sediment (by both metallic and organic xenobiotics, with highest SQGQ) was neither responsible for the highest mortality nor for the most pronounced lesions. Exposure to the sediment presenting an intermediate SQGQ, essentially contaminated by organic compounds, caused the highest mortality (48%) and the most severe damage to kidneys, up to full renal necrosis. Chloride cell alterations were similar in fish exposed to the two most contaminated sediments and consisted of a pronounced cellular hypertrophy, likely involving fluid retention and loss of mitochondria. It can be concluded that sediment contamination considered to be low or moderate may be responsible for severe injury to cells and parenchyma involved in the maintenance of osmotic

  12. Hepatic Responses of Juvenile Fundulus heteroclitus from Pollution-adapted and Nonadapted Populations Exposed to Elizabeth River Sediment Extract.

    PubMed

    Riley, Amanda K; Chernick, Melissa; Brown, Daniel R; Hinton, David E; Di Giulio, Richard T

    2016-07-01

    Atlantic killifish (Fundulus heteroclitus) inhabiting the Atlantic Wood Industries region of the Elizabeth River, Virginia, have passed polycyclic aromatic hydrocarbon (PAH) resistance to their offspring as evidenced by early life stage testing of developmental toxicity after exposure to specific PAHs. Our study focused on environmentally relevant PAH mixtures in the form of Elizabeth River sediment extract (ERSE). Juvenile (5 month) F1 progeny of pollution-adapted Atlantic Wood (AW) parents and of reference site (King's Creek [KC]) parents were exposed as embryos to ERSE. Liver alterations, including nonneoplastic lesions and microvesicular vacuolation, were observed in both populations. ERSE-exposed KC fish developed significantly more alterations than unexposed KC fish. Interestingly, unexposed AW killifish developed significantly more alterations than unexposed KC individuals, suggesting that AW juveniles are not fully protected from liver disease; rapid growth of juvenile fish may also be an accelerating factor for tumorigenesis. Because recent reports show hepatic tumor formation in adult AW fish, the differing responses from the 2 populations provided a way to determine whether embryo toxicity protection extends to juveniles. Future investigations will analyze older life stages of killifish to determine differences in responses related to chronic disease.

  13. Impacts of shrimp farm effluent on water quality, benthic metabolism and N-dynamics in a mangrove forest (New Caledonia)

    NASA Astrophysics Data System (ADS)

    Molnar, Nathalie; Welsh, David T.; Marchand, Cyril; Deborde, Jonathan; Meziane, Tarik

    2013-01-01

    Water quality parameters, sediment oxygen demand (SOD), dissolved organic and inorganic nutrient fluxes, and N-cycle processes (nitrification; denitrification; dissimilatory nitrate reduction to ammonium (DNRA)) were determined in a New Caledonian mangrove receiving shrimp farm effluent and a natural mangrove. Effluent was enriched in nutrients and organic matter, and significantly stimulated SOD and nutrient regeneration rates in the receiving sediments. All N-cycling processes were stimulated between ˜2 and 12-fold in the sediments receiving effluents compared to the natural mangrove. However, due to the preferential enhancement of DNRA compared to denitrification, there was no significant increase in net nitrogen elimination compared to the significant increase in sediment nutrient regeneration rates. These results indicate that the mangroves are only a partial filter for the shrimp farm effluent, as confirmed by the elevated nutrient concentrations measured in an external, marine creek of the effluent receiving mangrove.

  14. Depositional record of trace metals and degree of contamination in core sediments from the Mandovi estuarine mangrove ecosystem, west coast of India.

    PubMed

    Veerasingam, S; Vethamony, P; Mani Murali, R; Fernandes, B

    2015-02-15

    The concentrations of seven trace metals (Fe, Mn, Cu, Cr, Co, Pb and Zn) in three sediment cores were analysed to assess the depositional trends of metals and their contamination level in the Mandovi estuary, west coast of India. All sediment cores showed enrichment of trace metals in the upper part of core sediments and decrease in concentration with depth, suggesting excess of anthropogenic loading (including mining activities) occurred during the recent past. Scanning electron microscope (SEM) images distinguished the shape, size and structure of particles derived from lithogenic and anthropogenic sources in core sediments. The geo-accumulation index (I(geo)) values indicate that Mandovi estuary is 'moderately polluted' with Pb, whereas 'unpolluted to moderately polluted' with Fe, Mn, Cu, Cr, Co and Zn. The comparative analysis of trace metals revealed that Fe and Mn were highly enriched in the Mandovi estuary compared to all other Indian estuaries.

  15. Specific expression of cytochrome P4501A1 gene in gill, intestine and liver of tilapia exposed to coastal sediments.

    PubMed

    Wong, C K; Yeung, H Y; Woo, P S; Wong, M H

    2001-09-01

    Toxicological effects of persistent organic pollutants (POPs) in aquatic ecosystems lead to the deterioration of water quality and adversely affect fish and human health. The highly lipophilic nature of these pollutants may enter fish through the diet or by water-borne exposure. In monitoring contamination in aquatic systems, induction of the cytochrome P450 1A1 (CYP1A1) gene of fish has been evaluated as a sensitive, "early warning" method. The objective of the present study was to characterize the induction of the gene in fish upon exposure to coastal sediments and to determine its specific expression in liver and extrahepatic organs (i.e. gill and intestine) in which the toxicological effects to the corresponding tissues could be addressed. Sediment samples were collected from different sites, including Victoria Harbour (VS), Ma Wan (MW), Tsim Bei Tsui (TBT) and Mai Po (MP). The samples were analyzed for polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). CYP1A1 mRNA expression was measured in juvenile tilapia exposed experimentally to coastal sediment for 3 and 7 days. A negative control group of fish maintained in seawater was used. Using the primer dropping polymerase chain reaction technique, gill, intestinal and hepatic CYP1A1 mRNAs were quantified. Chemical analysis shows that the samples from VS contaminated with the highest concentration of PCBs (45.24 p.p.b.) and PAHs (1663.7 p.p.b.), followed by MW (16.01 and 347.7 p.p.b.), TBT (14.48 and 235.2 p.p.b.) and MP (14.60 and 242.2 p.p.b.). Fish exposed to sediments were contaminated with various levels of PCBs (VS, 64.14-72.06 p.p.b.; MP, 27.06-31.62 p.p.b.; TBT, 27.29-33.92 p.p.b.; MW, 16.05-17.76 p.p.b.) and PAHs (VS, 124.7-304.9 p.p.b.; MP, 97.57-164.1 p.p.b.; TBT, 25.38-98 p.p.b.; MW, 24.07-68.13 p.p.b.). The control fish displayed moderate expression of CYP1A1 mRNA in liver (1.45 arbitrary units), gill (1.21 arbitrary units) and intestine (0.56 arbitrary units). Following

  16. Are fiddler crabs potentially useful ecosystem engineers in mangrove wastewater wetlands?

    PubMed

    Penha-Lopes, Gil; Bartolini, Fabrizio; Limbu, Samwel; Cannicci, Stefano; Kristensen, Erik; Paula, José

    2009-11-01

    The effect of different organic-rich sewage concentration (0%, 20% and 60% diluted in seawater) and absence or presence of mangrove trees on the survival, bioturbation activities and burrow morphology of fiddler crabs species was assessed. After 6 months, males of both species always showed higher survival ( approximately 80%) when compared to females ( approximately 20%). Crabs inhabiting pristine conditions achieved higher survival (67-87%) than those living in sewage-exposed mesocosms (40-71%). At 60% sewage loading, fiddler crabs processed less sediment (34-46%) during feeding and excavated slightly more sediment (45-80%) than at pristine conditions. While percent volume of the burrow chambers increased (13-66%) at contaminated mesocosms for both vegetation conditions, burrows were shallower (approximately 33%) in bare cells loaded with sewage. The results show that fiddler crabs presented moderate mortality levels in these artificial mangrove wetlands, but mainly in sewage impacted cells. However, they still function as ecosystem engineers through bioturbation activities and burrow construction.

  17. Contamination and distribution of heavy metals, polybrominated diphenyl ethers and alternative halogenated flame retardants in a pristine mangrove.

    PubMed

    Wu, Qihang; Leung, Jonathan Y S; Tam, Nora F Y; Peng, Yisheng; Guo, Pengran; Zhou, Song; Li, Qing; Geng, Xinhua; Miao, Shenyu

    2016-02-15

    Owing to the expanding metal and electronics industries, pollution in the Pearl River Estuary needs special concern. Given the hydrodynamic effect, the pristine mangrove in Qi'ao Island would be contaminated by tidal flushing. Thus, we examined (1) the contamination of pollutants in this mangrove, including heavy metals, polybrominated diphenyl ethers (PBDEs) and alternative halogenated flame retardants (AHFRs), and (2) how habitat characteristics and sediment properties affect their distribution. Results showed that the sediment in Qi'ao mangrove had higher concentrations of heavy metals, PBDEs and AHFRs than that in other pristine mangroves, and similar concentrations to those mangroves impacted by point sources. Heavy metal concentrations were lower in the vegetated areas than mudflat, while the opposite was found for PBDEs and AHFRs. The findings imply that tidal flushing was an important pollution source, while mangrove plants have the capacity to minimize the impact of heavy metals, but not PBDEs and AHFRs.

  18. Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage

    PubMed Central

    Garcillán, Pedro P.

    2016-01-01

    Given their relatively small area, mangroves and their organic sediments are of disproportionate importance to global carbon sequestration and carbon storage. Peat deposition and preservation allows some mangroves to accrete vertically and keep pace with sea-level rise by growing on their own root remains. In this study we show that mangroves in desert inlets in the coasts of the Baja California have been accumulating root peat for nearly 2,000 y and harbor a belowground carbon content of 900–34,00 Mg C/ha, with an average value of 1,130 (± 128) Mg C/ha, and a belowground carbon accumulation similar to that found under some of the tallest tropical mangroves in the Mexican Pacific coast. The depth–age curve for the mangrove sediments of Baja California indicates that sea level in the peninsula has been rising at a mean rate of 0.70 mm/y (± 0.07) during the last 17 centuries, a value similar to the rates of sea-level rise estimated for the Caribbean during a comparable period. By accreting on their own accumulated peat, these desert mangroves store large amounts of carbon in their sediments. We estimate that mangroves and halophyte scrubs in Mexico’s arid northwest, with less than 1% of the terrestrial area, store in their belowground sediments around 28% of the total belowground carbon pool of the whole region. PMID:27035950

  19. Bacterial Communities in the Rhizospheres of Three Mangrove Tree Species from Beilun Estuary, China.

    PubMed

    Wu, Peng; Xiong, Xiaofei; Xu, Zhanzhou; Lu, Chuqian; Cheng, Hao; Lyu, Xiangli; Zhang, Jinghuai; He, Wei; Deng, Wei; Lyu, Yihua; Lou, Quansheng; Hong, Yiguo; Fang, Hongda

    2016-01-01

    The bacterial communities played important roles in the high productivity mangrove ecosystem. In this study, we investigated the vertical distributions of rhizosphere bacteria from three mangrove species (Bruguiera gymnorrhiza, Kandelia candel and Aegiceras corniculatum) in Beilun Estuary, China using high throughput DNA pyrosequencing of the 16S rRNA gene. Phylogenetic analysis showed that bacterial communities from mangrove rhizosphere sediments were dominated by Proteobacteria (mostly Deltaproteobacteria and Gammaproteobacteria), followed by Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. However, the ANOVA analysis on Shannon and Chao1 indices indicated that bacterial communities among sediments of the three mangrove species varied more strongly than the sampling depths. In addition, the PCA result demonstrated that the bacterial communities could be separated into three groups according to the mangrove species. Moreover, the dominated orders Rhodospirillales, GCA004 and envOPS12 were significantly different among sediments of the three mangrove species. The results of this study provided valuable information about the distribution feature of rhizosphere bacteria from Chinese mangrove plants and shed insights into biogeochemical transformations driven by bacteria in rhizosphere sediments.

  20. Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage.

    PubMed

    Ezcurra, Paula; Ezcurra, Exequiel; Garcillán, Pedro P; Costa, Matthew T; Aburto-Oropeza, Octavio

    2016-04-19

    Given their relatively small area, mangroves and their organic sediments are of disproportionate importance to global carbon sequestration and carbon storage. Peat deposition and preservation allows some mangroves to accrete vertically and keep pace with sea-level rise by growing on their own root remains. In this study we show that mangroves in desert inlets in the coasts of the Baja California have been accumulating root peat for nearly 2,000 y and harbor a belowground carbon content of 900-34,00 Mg C/ha, with an average value of 1,130 (± 128) Mg C/ha, and a belowground carbon accumulation similar to that found under some of the tallest tropical mangroves in the Mexican Pacific coast. The depth-age curve for the mangrove sediments of Baja California indicates that sea level in the peninsula has been rising at a mean rate of 0.70 mm/y (± 0.07) during the last 17 centuries, a value similar to the rates of sea-level rise estimated for the Caribbean during a comparable period. By accreting on their own accumulated peat, these desert mangroves store large amounts of carbon in their sediments. We estimate that mangroves and halophyte scrubs in Mexico's arid northwest, with less than 1% of the terrestrial area, store in their belowground sediments around 28% of the total belowground carbon pool of the whole region.

  1. Bacterial Communities in the Rhizospheres of Three Mangrove Tree Species from Beilun Estuary, China

    PubMed Central

    Wu, Peng; Xiong, Xiaofei; Xu, Zhanzhou; Lu, Chuqian; Cheng, Hao; Lyu, Xiangli; Zhang, Jinghuai; He, Wei; Deng, Wei; Lyu, Yihua; Lou, Quansheng; Hong, Yiguo; Fang, Hongda

    2016-01-01

    The bacterial communities played important roles in the high productivity mangrove ecosystem. In this study, we investigated the vertical distributions of rhizosphere bacteria from three mangrove species (Bruguiera gymnorrhiza, Kandelia candel and Aegiceras corniculatum) in Beilun Estuary, China using high throughput DNA pyrosequencing of the 16S rRNA gene. Phylogenetic analysis showed that bacterial communities from mangrove rhizosphere sediments were dominated by Proteobacteria (mostly Deltaproteobacteria and Gammaproteobacteria), followed by Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. However, the ANOVA analysis on Shannon and Chao1 indices indicated that bacterial communities among sediments of the three mangrove species varied more strongly than the sampling depths. In addition, the PCA result demonstrated that the bacterial communities could be separated into three groups according to the mangrove species. Moreover, the dominated orders Rhodospirillales, GCA004 and envOPS12 were significantly different among sediments of the three mangrove species. The results of this study provided valuable information about the distribution feature of rhizosphere bacteria from Chinese mangrove plants and shed insights into biogeochemical transformations driven by bacteria in rhizosphere sediments. PMID:27695084

  2. Analysis of CYP4501A1, PAHs metabolites in bile, and genotoxic damage in Oncorhynchus mykiss exposed to Biobío River sediments, Central Chile.

    PubMed

    Inzunza, Bárbara; Orrego, Rodrigo; Peñalosa, Marcelina; Gavilán, Juan F; Barra, Ricardo

    2006-10-01

    The responses of cytochrome P4501A1 in the liver, the appearance of fluorescent metabolites in bile, and genotoxic damage in erythrocytes were studied in Oncorhynchus mykiss exposed under laboratory conditions to sediments taken from the Biobio River, central Chile. Samples were taken at four sampling sites in the Biobio River, following a pollution gradient from the discharge, where Stations 2 and 3 are impacted by a petrochemical industrial discharge effluent. Chemical analysis indicates polycyclic aromatic hydrocarbon (PAH) presence in a range of 2000 to 7000 ng g(-1) dry weight in sediments from Stations 2 and 3, respectively. Both the CYP1A1 activity and the bile metabolites of O. mykiss exposed to the PAH-contaminated sediments present statistically significant differences with respect to the other stations. Additionally, the comet assay revealed notable genotoxic damage in trout erythrocytes from Stations 2 and 3, an effect that was not observed at the other stations.

  3. Assessing the bioaccumulation of contaminants from sediments of the Upper Mississippi River using field-collected oligochaetes and laboratory- exposed Lumbriculus variegatus

    USGS Publications Warehouse

    Brunson, E.L.; Canfield, T.J.; Dwyer, F.J.; Ingersoll, C.G.; Kemble, N.E.

    1998-01-01

    Concern with the redistribution of contaminants associated with sediment in the upper Mississippi River (UMR) arose after the flood of 1993. This project is designed to evaluate the status of sediments in the UMR and is one article in a series designed to assess the extent of sediment contamination in navigational pools of the river. Companion articles evaluate sediment toxicity and benthic community composition in navigation pools of the river. The objectives of the present study were to: (1) to assess the bioaccumulation of sediment-associated contaminants in the UMR using laboratory exposures with the oligochaete Lumbriculus variegatus, and (2) to compare bioaccumulation in laboratory-exposed oligochaetes to field-collected oligochaetes. Sediment samples and native oligochaetes were collected from 23 navigational pools on the Upper Mississippi River and the Saint Croix River. Contaminant concentrations measured in the L. variegatus after 28-day exposures to sediment in the laboratory were compared to contaminant concentrations in field-collected oligochaetes from the 13 pools where these sediments were collected. Contaminant concentrations were relatively low in sediments and tissues from the pools evaluated. Only polycyclic aromatic hydrocarbons (PAHs) and total polychlorinated biphenyls (PCBs) were frequently measured above detection limits. The majority of the biota- sediment-accumulation factors (BSAFs) for PAHs were within a range of about 1.0 to 2.6, suggesting that the theoretical BSAF value of 1.7 could be used to predict these mean BSAFs with a reasonable degree of certainty. A positive correlation was observed between lipid-normalized concentrations of PAHs detected in laboratory-exposed and field-collected oligochaetes across all sampling locations. Rank correlations for concentrations of individual compounds between laboratory-exposed and field-collected oligochaetes were strongest for benzo(e)pyrene, perylene, benzo(b,k)fluoranthene, and pyrene

  4. Assessing the Bioaccumulation of Contaminants from Sediments of the Upper Mississippi River Using Field-Collected Oligochaetes and Laboratory-Exposed Lumbriculus variegatus

    PubMed

    Brunson; Canfield; Dwyer; Ingersoll; Kemble

    1998-08-01

    Concern with the redistribution of contaminants associated with sediment in the upper Mississippi River (UMR) arose after the flood of 1993. This project is designed to evaluate the status of sediments in the UMR and is one article in a series designed to assess the extent of sediment contamination in navigational pools of the river. Companion articles evaluate sediment toxicity and benthic community composition in navigation pools of the river. The objectives of the present study were to: (1) to assess the bioaccumulation of sediment-associated contaminants in the UMR using laboratory exposures with the oligochaete Lumbriculus variegatus, and (2) to compare bioaccumulation in laboratory-exposed oligochaetes to field-collected oligochaetes. Sediment samples and native oligochaetes were collected from 23 navigational pools on the Upper Mississippi River and the Saint Croix River. Contaminant concentrations measured in the L. variegatus after 28-day exposures to sediment in the laboratory were compared to contaminant concentrations in field-collected oligochaetes from the 13 pools where these sediments were collected. Contaminant concentrations were relatively low in sediments and tissues from the pools evaluated. Only polycyclic aromatic hydrocarbons (PAHs) and total polychlorinated biphenyls (PCBs) were frequently measured above detection limits. The majority of the biota-sediment-accumulation factors (BSAFs) for PAHs were within a range of about 1.0 to 2.6, suggesting that the theoretical BSAF value of 1.7 could be used to predict these mean BSAFs with a reasonable degree of certainty. A positive correlation was observed between lipid-normalized concentrations of PAHs detected in laboratory-exposed and field-collected oligochaetes across all sampling locations. Rank correlations for concentrations of individual compounds between laboratory-exposed and field-collected oligochaetes were strongest for benzo(e)pyrene, perylene, benzo(b,k)fluoranthene, and pyrene

  5. Mangroves - what are they worth

    SciTech Connect

    Christensen, B.

    1983-01-01

    This paper is based on a study for FAO and on the management and utilization of mangroves in Asia and the Pacific. Land use options are examined in relation to the different roles which mangroves play (provision of firewood, charcoal, timber and pulp; wildlife; fisheries and aquaculture; and agriculture). Special attention is paid to mangrove management in Malaysia. (Refs 26)

  6. Global Status of Mangrove Ecosystems.

    ERIC Educational Resources Information Center

    Saenger, P., Ed.; And Others

    1983-01-01

    Mangroves are the characteristic littoral plant formations of tropical/subtropical sheltered coastlines. Presented is a detailed report which discusses uses made of mangrove ecosystems and attempts to resolve conflicts arising from these uses. Areas considered include cause/consequence of mangrove destruction, legislative/administrative aspects,…

  7. Global Status of Mangrove Ecosystems.

    ERIC Educational Resources Information Center

    Saenger, P., Ed.; And Others

    1983-01-01

    Mangroves are the characteristic littoral plant formations of tropical/subtropical sheltered coastlines. Presented is a detailed report which discusses uses made of mangrove ecosystems and attempts to resolve conflicts arising from these uses. Areas considered include cause/consequence of mangrove destruction, legislative/administrative aspects,…

  8. Trophic transfer of Cd from larval chironomids (Chironomus riparius) exposed via sediment or waterborne routes, to zebrafish (Danio rerio): tissue-specific and subcellular comparisons.

    PubMed

    Béchard, K M; Gillis, P L; Wood, C M

    2008-12-11

    Zebrafish were fed chironomid larvae (8% wet weight daily ration) for 7 days, followed by 3 days of gut clearance in a static-renewal system. Regardless of whether the chironomids had been loaded with Cd via a waterborne exposure or sediment exposure, they had similar subcellular distributions of Cd, with the largest areas of storage being metal rich granules (MRG)>organelles (ORG)>enzymes (ENZ) except that sediment-exposed chironomids had significantly more Cd in the metallothionein-like protein (MTLP) fraction, and significantly less Cd in the cellular debris (CD) fraction. When zebrafish fed sediment-exposed chironomids (153+/-11 microg Cd/g dry weight) were compared directly to zebrafish fed waterborne exposed chironomids (288+/-12microg Cd/g dry weight), identical whole-body Cd levels were observed, despite the difference in the concentration in the food source. Thus trophic transfer efficiency (TTE) of Cd was significantly greater from sediment-exposed chironomids (2.0+/-0.5%) than from waterborne-exposed chironomids (0.7+/-0.2%). Subsequent tests with waterborne exposed chironomids loaded to comparable Cd concentrations, as well as with Cd-spiked manufactured pellets, demonstrated that TTEs were concentration-independent. In all treatments, zebrafish exhibited similar subcellular storage of Cd, with the greatest uptake occurring in the ORG fraction followed by the ENZ fraction. However, neither trophically available metal (TAM) nor metabolically available fractions (MAF) were good predictors for the TTEs found in this study. Tissue Cd concentrations were highest in the kidney and gut tissue, then liver, but lower in the gill, and carcass. Overall, the gut and carcass contributed >/=71% to total body burdens on a mass-weighted basis. This study presents evidence that Cd may be acquired by fish from natural diets at levels of environmental relevance for contaminated sites, and that the exposure route of the prey influences the TTE.

  9. Molecular Insights into Plant-Microbial Processes and Carbon Storage in Mangrove Ecosystems

    NASA Astrophysics Data System (ADS)

    Romero, I. C.; Ziegler, S. E.; Fogel, M.; Jacobson, M.; Fuhrman, J. A.; Capone, D. G.

    2009-12-01

    Mangrove forests, in tropical and subtropical coastal zones, are among the most productive ecosystems, representing a significant global carbon sink. We report new molecular insights into the functional relationship among microorganisms, mangrove trees and sediment geochemistry. The interactions among these elements were studied in peat-based mangrove sediments (Twin Cays, Belize) subjected to a long-term fertilization experiment with N and P, providing an analog for eutrophication. The composition and δ13C of bacterial PLFA showed that bacteria and mangrove trees had similar nutrient limitation patterns (N in the fringe mangrove zone, P in the interior zone), and that fertilization with N or P can affect bacterial metabolic processes and bacterial carbon uptake (from diverse mangrove sources including leaf litter, live and dead roots). PCR amplified nifH genes showed a high diversity (26% nifH novel clones) and a remarkable spatial and temporal variability in N-fixing microbial populations in the rhizosphere, varying primarily with the abundance of dead roots, PO4-3 and H2S concentrations in natural and fertilized environments. Our results indicate that eutrophication of mangrove ecosystems has the potential to alter microbial organic matter remineralization and carbon release with important implications for the coastal carbon budget. In addition, we will present preliminary data from a new study exploring the modern calibration of carbon and hydrogen isotopes of plant leaf waxes as a proxy recorder of past environmental change in mangrove ecosystems.

  10. Modelling the impacts of sea level rise on tidal basin ecomorphodynamics and mangrove habitat evolution

    NASA Astrophysics Data System (ADS)

    van Maanen, Barend; Coco, Giovanni; Bryan, Karin

    2016-04-01

    The evolution of tidal basins and estuaries in tropical and subtropical regions is often influenced by the presence of mangrove forests. These forests are amongst the most productive environments in the world and provide important ecosystem services. However, these intertidal habitats are also extremely vulnerable and are threatened by climate change impacts such as sea level rise. It is therefore of key importance to improve our understanding of how tidal systems occupied by mangrove vegetation respond to rising water levels. An ecomorphodynamic model was developed that simulates morphological change and mangrove forest evolution as a result of mutual feedbacks between physical and biological processes. The model accounts for the effects of mangrove trees on tidal flow patterns and sediment dynamics. Mangrove growth is in turn controlled by hydrodynamic conditions. Under stable water levels, model results indicate that mangrove trees enhance the initiation and branching of tidal channels, partly because the extra flow resistance in mangrove forests favours flow concentration, and thus sediment erosion in between vegetated areas. The landward expansion of the channels, on the other hand, is reduced. Model simulations including sea level rise suggest that mangroves can potentially enhance the ability of the soil surface to maintain an elevation within the upper portion of the intertidal zone. While the sea level is rising, mangroves are migrating landward and the channel network tends to expand landward too. The presence of mangrove trees, however, was found to hinder both the branching and headward erosion of the landward expanding channels. Simulations are performed according to different sea level rise scenarios and with different tidal range conditions to assess which tidal environments are most vulnerable. Changes in the properties of the tidal channel networks are being examined as well. Overall, model results highlight the role of mangroves in driving the

  11. A Comparison of the Macrofauna of Natural and Replanted Mangroves in Qatar

    NASA Astrophysics Data System (ADS)

    Al-Khayat, J. A.; Jones, D. A.

    1999-08-01

    The present investigation quantifies the biodiversity of the Brachyura and fish living within the natural mangrove Avicennia marina, salt marsh and replanted mangal, and compares relevant features of the abiotic and biotic environments of these habitats. Measurements of sediment organic matter, grain size, soil water pH and the moisture content indicate that the natural mangrove areas have lowest mean grain size, pH, and highest organic and moisture contents. Planted mangrove areas have a higher mean grain size and slightly higher pH, but lower organic and moisture contents. Differences occur between brachyurans in planted and natural mangrove areas, but the biodiversity was similar between salt marsh and natural mangrove areas. Nasima dotilliformis was the only crab which did not occur at all planted mangrove sites, while Serenella leachii was missing from natural mangrove. Juvenile fish species enter mangroves, using these as nursery grounds, and quantitative sampling indicates that mangrove areas, especially pneumatophores, form a special habitat for these small fish.

  12. Sedimentation

    Treesearch

    Cliff R. Hupp; Michael R. Schening

    2000-01-01

    Sedimentation is arguably the most important water-quality concern in the United States. Sediment trapping is cited frequently as a major function of riverine-forested wetlands, yet little is known about sedimcntation rates at the landscape scale in relation to site parameters, including woody vegetation type, elevation, velocity, and hydraulic connection to the river...

  13. Does 'you are what you eat' apply to mangrove grapsid crabs?

    PubMed

    Bui, Thi Hong Hanh; Lee, Shing Yip

    2014-01-01

    In tropical mangroves, brachyuran crabs have been observed to consume high percentages of leaf litter production. However, questions concerning their ability to assimilate this low-quality food remain, as stable isotope analysis of C and N does not seem to support assimilation. Individuals of the common eastern Australian mangrove grapsid Parasesarma erythodactyla feeding on a mangrove leaf litter or mangrove+microphytobenthos diet developed a significantly higher hepatosomatic index than those with access to only sediment. Lipid biomarker analysis and feeding experiments using (13)C and (15)N-enriched mangrove leaf litter confirmed rapid assimilation of mangrove C and N by P. erythodactyla. Eight-week feeding experiments utilizing three food types (mangrove leaf litter, microphytobenthos and prawn muscle) established different food-specific trophic discrimination values (Δδ(13)C and Δδ(15)N) that are significantly different from those commonly applied to mixing model calculations. The mean Δδ(13)C(crab-mangrove) of +5.45‰ was close to the mean and median literature values for grapsid-mangrove pairs in 29 past studies (+5.2 ± 1.8‰ and +5.6‰, respectively), suggesting that this large discrimination may generally be characteristic of detritivorous grapsid crabs. Solutions from the IsoConc mixing model using our determined trophic discrimination values suggest significantly higher and dominant contributions of mangrove C to the diet than those based on the global mean trophic discrimination values. Our results reaffirm the physiological capacity for and important mediating role of grapsid crabs in processing low-quality mangrove C in tropical estuaries, and caution against the use of global trophic discrimination values in stable isotope analysis of food-web data, especially those involving detritivores. While recent studies have questioned the trophic significance of mangrove detritus in coastal food chains, the contribution of this productive carbon

  14. Does ‘You Are What You Eat’ Apply to Mangrove Grapsid Crabs?

    PubMed Central

    Bui, Thi Hong Hanh; Lee, Shing Yip

    2014-01-01

    In tropical mangroves, brachyuran crabs have been observed to consume high percentages of leaf litter production. However, questions concerning their ability to assimilate this low-quality food remain, as stable isotope analysis of C and N does not seem to support assimilation. Individuals of the common eastern Australian mangrove grapsid Parasesarma erythodactyla feeding on a mangrove leaf litter or mangrove+microphytobenthos diet developed a significantly higher hepatosomatic index than those with access to only sediment. Lipid biomarker analysis and feeding experiments using 13C and 15N-enriched mangrove leaf litter confirmed rapid assimilation of mangrove C and N by P. erythodactyla. Eight-week feeding experiments utilizing three food types (mangrove leaf litter, microphytobenthos and prawn muscle) established different food-specific trophic discrimination values (Δδ13C and Δδ15N) that are significantly different from those commonly applied to mixing model calculations. The mean Δδ13C(crab-mangrove) of +5.45‰ was close to the mean and median literature values for grapsid-mangrove pairs in 29 past studies (+5.2±1.8‰ and +5.6‰, respectively), suggesting that this large discrimination may generally be characteristic of detritivorous grapsid crabs. Solutions from the IsoConc mixing model using our determined trophic discrimination values suggest significantly higher and dominant contributions of mangrove C to the diet than those based on the global mean trophic discrimination values. Our results reaffirm the physiological capacity for and important mediating role of grapsid crabs in processing low-quality mangrove C in tropical estuaries, and caution against the use of global trophic discrimination values in stable isotope analysis of food-web data, especially those involving detritivores. While recent studies have questioned the trophic significance of mangrove detritus in coastal food chains, the contribution of this productive carbon source needs to

  15. Flow routing in mangrove forests: A field study in Trang province, Thailand

    NASA Astrophysics Data System (ADS)

    Horstman, Erik M.; Dohmen-Janssen, C. Marjolein; Hulscher, Suzanne J. M. H.

    2013-12-01

    Flow routing in mangrove forests has great implications for the transport and distribution of sediments and nutrients and hence for mangroves' development and persistence. Whereas previous studies were limited to the creeks, supposedly feeding the surrounding mangroves, this study demonstrates the contribution of biogeophysical impacts on flow routing through estuarine mangroves. We present the results of a field campaign covering three pristine mangrove sites in two estuaries in Trang province, Thailand. The sites range from a mangrove forest elevated above mean sea level with steep cliffs and incised by tidal creeks, to smoothly inclining mangroves fronted by extensive mudflats and showing a clear vegetation zonation starting below mean sea level. It is shown how flow routing through estuarine mangroves is impacted by biogeophysical factors; elevation, exposure and vegetation. Within the higher elevated mangroves, creek flow prevails when water levels remain below a dense vegetation layer at the mangrove fringe bordering the estuary. Sheet flow prevails when this threshold is exceeded and direct water exchange takes place. The low-lying sites do not feature creeks and tidal flows are typically sheet flows, being susceptible to forcing by river discharges. With decreasing water depths and/or increasing vegetation densities, the effects of this forcing are reduced and flow velocities follow the vegetation induced cross-shore water level gradients. Flow velocities within the creeks are up to an order of magnitude greater than those within the vegetation, where velocities decrease progressively with increasing vegetation densities. Particular vegetation and elevation characteristics cause irregular velocity variations along the vertical, within the vegetation as well as in the creeks. Tentative tidal flux calculations demonstrate the significant contribution of creek flow to the total tidal prism in higher elevated mangroves. By explicitly quantifying and mapping

  16. Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: the role of rhizosphere processes.

    PubMed

    Chaudhuri, Punarbasu; Nath, Bibhash; Birch, Gavin

    2014-02-15

    Mangrove sediment has long been recognized as being important in restricting the mobility of contaminants in estuarine environments. To investigate the role of rhizosphere processes in the accumulation of trace metals in mangrove fine nutritive roots, the mangrove sediments and associated fine nutritive roots are collected from five major embayments of Sydney estuary (Australia) for geochemical studies. In this estuary Avicennia marina sediments are accumulating large quantities of trace metals due to presence of abundant fine sediment (<62.5 μm) and organic matter as well as anthropogenic input. Accumulation of trace metals in fine nutritive roots responds to total sediment chemistry mainly due to rhizosphere sediment geochemical processes resulting in a strong linear correlation between metal concentrations in fine nutritive roots vs. total and bio-available contents in sediments. Accumulation of trace metals in fine nutritive roots is almost always exceeds rhizosphere total sediment metal concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. An attempt to assess the relevance of flood events-biomarker response of rainbow trout exposed to resuspended natural sediments in an annular flume.

    PubMed

    Hudjetz, Sebastian; Herrmann, Henning; Cofalla, Catrina; Brinkmann, Markus; Kammann, Ulrike; Schäffer, Andreas; Schüttrumpf, Holger; Hollert, Henner

    2014-12-01

    There is a consensus within the scientific community that sediments act as a long-term sink for a variety of organic and inorganic pollutants, which, however, can re-enter the water column upon resuspension of deposited material under certain hydraulic conditions such as flood events. Within the implementation of the European Water Framework Directive, it is important to understand the potential short- and long-term impact of suspended particulate matter (SPM)-associated contaminants on aquatic organisms as well as the related uptake mechanisms for a sound risk assessment. To elucidate the effects of sediment-bound organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), rainbow trout (Oncorhynchus mykiss) were exposed to three resuspended natural sediments with different contamination levels. Physicochemical parameters including dissolved oxygen concentration, pH and temperature, total PAH concentration in sediments and SPM as well as different biomarkers of exposure in fish (7-ethoxyresorufin O-deethylase activity, biliary PAH metabolites, micronuclei, and lipid peroxidation) were measured following seven days of exposure within an annular flume, a device to assess erosion and deposition processes of cohesive sediment. Concentrations of PAHs in SPM remained constant and represented the different contamination levels in the un-suspended sediments. Significant differences in bile metabolite concentrations as well as in 7-ethoxyresorufin O-deethylase induction compared to control experiments (untreated animals and animals that were exposed in the annular flume without sediment) were observed for all exposure scenarios. The ratio between 1-hydroxypyrene in bile from fish exposed to the three different contamination levels was 1.0:3.6:10.7 and correlated well with (1) the ratio of pyrene concentrations in corresponding sediments which was 1.0:3.1:12.7 and (2) with the ratio of particle-bound pyrene in SPM which was 1.0:2.7:11.7. In contrast, hepatic lipid

  18. Nitrogen dynamics in subtropical fringe and basin mangrove forests inferred from stable isotopes.

    PubMed

    Reis, Carla Roberta Gonçalves; Nardoto, Gabriela Bielefeld; Rochelle, André Luis Casarin; Vieira, Simone Aparecida; Oliveira, Rafael Silva

    2017-03-01

    Mangroves exhibit low species richness compared to other tropical forests, but great structural and functional diversity. Aiming to contribute to a better understanding of the functioning of mangrove forests, we investigated nitrogen (N) dynamics in two physiographic types of mangroves (fringe and basin forests) in southeastern Brazil. Because fringe forests are under great influence of tidal flushing we hypothesized that these forests would exhibit higher N cycling rates in sediment and higher N losses to the atmosphere compared to basin forests. We quantified net N mineralization and nitrification rates in sediment and natural abundance of N stable isotopes (δ(15)N) in the sediment-plant-litter system. The fringe forest exhibited higher net N mineralization rates and δ(15)N in the sediment-plant-litter system, but net nitrification rates were similar to those of the basin forest. The results of the present study suggest that fringe forests exhibit higher N availability and N cycling in sediment compared to basin forests.

  19. Mangrove canopy density analysis using Sentinel-2A imagery satellite data

    NASA Astrophysics Data System (ADS)

    Wachid, M. N.; Hapsara, R. P.; Cahyo, R. D.; Wahyu, G. N.; Syarif, A. M.; Umarhadi, D. A.; Fitriani, A. N.; Ramadhanningrum, D. P.; Widyatmanti, W.

    2017-06-01

    Teluk Jor has alluvium surface sediment that came from volcanic materials. Sea wave that relatively calm and the closed beach shape support the existence of mangrove forest at Teluk Jor. Sentinel-2A imagery has a good spatial and spectral resolution for mangrove density study. The regression between samples and the NDVI values of Sentinel-2A used to analyze the mangrove canopy density. Mangrove canopy density was identified using field survey with transect method. The regression analysis shows field data and NDVI value has correlation R=0.7739 and coefficient of determination R2=0.5989. The result of the analysis shows area of low density 397,900 m2, moderate density 336,200 m2, the high density has 110,300 m2 and very high density has 500 m2. This research also found that mangrove genus in Teluk Jor consists of Rhizopora, Ceriops, Aegiceras and Sonneratia.

  20. Carbon Sequestration Potential in Mangrove Wetlands of Southern of India

    NASA Astrophysics Data System (ADS)

    Chokkalingam, L.; Ponnambalam, K.; Ponnaiah, J. M.; Roy, P.; Sankar, S.

    2012-12-01

    Mangrove forest and the soil on which it grows are major sinks of atmospheric carbon. We present the results of a study on the carbon sequestration in the ground biomass of Avicennia marina including the organic carbon deposition, degradation and preservation in wetland sediments of Muthupet mangrove forest (southeast coast of India) in order to evaluate the influence of forests in the global carbon cycle. The inventory for estimating the ground biomass of Avicennia marina was carried out using random sampling technique (10 m × 10 m plot) with allometric regression equation. The carbon content in different vegetal parts (leaves, stem and root) of mangrove species and associated marshy vegetations was estimated using the combustion method. We observe that the organic carbon was higher (ca. 54.8%) recorded in the stems of Aegiceras corniculatum and Salicornia brachiata and lower (ca. 30.3%) in the Sesuvium portulacastrum leaves. The ground biomass and carbon sequestration of Avicennia marina are 58.56±12.65 t/ ha and 27.52±5.95 mg C/ha, respectively. The depth integrated organic carbon model profiles indicate an average accumulation rate of 149.75gC/m2.yr and an average remineralization rate of 32.89gC/m2.yr. We estimate an oxidation of ca. 21.85% of organic carbon and preservation of ca. 78.15% of organic carbon in the wetland sediments. Keywords: Above ground biomass, organic carbon, sequestration, mangrove, wetland sediments, Muthupet.

  1. The vulnerability of Indo-Pacific mangrove forests to sea-level rise.

    PubMed

    Lovelock, Catherine E; Cahoon, Donald R; Friess, Daniel A; Guntenspergen, Glenn R; Krauss, Ken W; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; Triet, Tran

    2015-10-22

    Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world's mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.

  2. The vulnerability of Indo-Pacific mangrove forests to sea-level rise

    USGS Publications Warehouse

    Lovelock, Catherine E.; Cahoon, Donald R.; Friess, Daniel A.; Guntenspergen, Glenn R.; Krauss, Ken W.; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L.; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; Triet, Tran

    2015-01-01

    Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves1, 2. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth3. The Indo-Pacific region holds most of the world’s mangrove forests4, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers5. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise6, 7. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments8, 9, 10. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.

  3. The vulnerability of Indo-Pacific mangrove forests to sea-level rise

    NASA Astrophysics Data System (ADS)

    Lovelock, Catherine E.; Cahoon, Donald R.; Friess, Daniel A.; Guntenspergen, Glenn R.; Krauss, Ken W.; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L.; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; Triet, Tran

    2015-10-01

    Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world's mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.

  4. Carbon cycling and storage in mangrove forests.

    PubMed

    Alongi, Daniel M

    2014-01-01

    Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y(-1)) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y(-1)) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests.

  5. Carbon Cycling and Storage in Mangrove Forests

    NASA Astrophysics Data System (ADS)

    Alongi, Daniel M.

    2014-01-01

    Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y-1) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y-1) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests.

  6. Comparison of metals levels in two mangrove species (Rhizophora stylosa and Sonneratia hainanensis) from Hainan Island, South China

    NASA Astrophysics Data System (ADS)

    Qiu, Y. W.; Qiu, H. L.

    2017-01-01

    Trace metals in mangrove tissues (leaf, branch and root) of two species (Rhizophora stylosa and Sonneratia hainanensis) from Dongzhai Harbor and Sanya Bay of Hainan Island were studied. The total average concentrations of Cu, Pb, Zn, Cd, Cr, Hg and As in the two mamgrove species were 2.4±1.3, 1.1±0.7, 7.8±8.0, 0.03±0.05, 1.4±1.6, 0.03±0.01 and 0.2±0.2 µg g-1 dw, respectively. Metals concentrations among different tissues of mangroves showed different pattern. In general, Zn, Cd and Hg were slightly enriched in leaf, Cu, Pb and As was enriched in root, and Cr were enriched in branch. Metals levels in R. stylosa and S. hainanensis from both Dongzhai Harbor and Sanya Bay were compared, which suggested that different mangrove species have their unique mechanism to bioaccumulate metals and TOC in the mangrove sediment could be one of the important factors for regulating metals in mangrove tissues. The biota-sediment accumulation factors (BSAF) of metals in mangrove tissues were calculated. The distribution of metals concentrations in mangrove tissues against metals levels in sediment demonstrated that mangrove leaves could be employed as a bio-indicator for some metals (Cu, Zn, Cd and Hg) with temporal monitoring.

  7. Do Penaeid Shrimps have a Preference for Mangrove Habitats? Distribution Pattern Analysis on Inhaca Island, Mozambique

    NASA Astrophysics Data System (ADS)

    Rönnbäck, P.; Macia, A.; Almqvist, G.; Schultz, L.; Troell, M.

    2002-09-01

    Scientific information on how penaeid shrimps are distributed within mangrove ecosystems is scarce, which presents an obstacle for fisheries as well as mangrove management. This study investigated the prime nursery microhabitats for the two major commercial species in Mozambique-Penaeus indicus and Metapenaeus monoceros. Stake net enclosures were used to sample shrimps living among unvegetated shallows and mangroves at Inhaca Island, Mozambique, during three consecutive spring tide periods. Four microhabitats were sampled: (1) sand flat; (2) fringe Avicennia marina on sandy substrate; (3) fringe A. marina on muddy substrate; and (4) interior A. marina adjacent to the supratidal terrestrial margin. P. indicus had a significant preference for fringe mangroves over the adjacent sand flat (P<0·001 and P=0·05). Postlarval shrimps only occupied the sand flat, whereas the mangrove was utilized by postlarval, juvenile and sub-adult life stages. Within the fringe mangrove, there was no correlation between shrimp abundance and organic content of sediment (5·7-11·6 shrimps m-2). Shrimps utilized the most interior margin of the mangroves (0·35 shrimps m-2), although catch rates were significantly lower than in the mangrove fringe (P<0·001). M. monoceros was significantly (P<0·01), more abundant in the sand flat (0·44-2·1 shrimps m-2) than in the mangrove fringe (0·04-0·61 shrimps m-2), although this habitat preference was not evident for juvenile and sub-adult life stages. The results demonstrate the extensive use of mangrove habitats by penaeid shrimps. The confinement to mangroves for P. indicus, but not for M. monoceros, is discussed in the context of habitat characteristics and predation avoidance behaviour. Methodological considerations of the stake net technique are also outlined.

  8. A Lesson from Mangroves.

    ERIC Educational Resources Information Center

    Davis, Stephen

    1987-01-01

    Discusses the importance of interpretive programs in the Northern Territory of Australia. Describes the typical interpretive approach of local school science curricula, which serve 20,000 Aboriginal children. Addresses the curriculum framework, learning strategies, and process skill development, illustrating them through a lesson on mangroves. (TW)

  9. Mangrove bacterial richness

    PubMed Central

    Cleary, Daniel FR; Calado, Ricardo; Costa, Rodrigo

    2011-01-01

    Mangroves are complex and dynamic ecosystems varying in salinity, water level and nutrient availability; they also contain diverse and distinct microbial communities. Studies of microbes and their interactions with other ecosystem components (e.g., tree roots) are critical for our understanding of mangrove ecosystem functioning and remediation. Using a barcoding pyrosequencing approach, we previously noted the persistence of terrestrial bacterial populations on mangrove roots when nursery raised saplings were transplanted back to their natural environment. Here we go into further detail about the potential functional associations of bacterial guilds with distinct mangrove microhabitats including the rhizosphere. We also use a nonparametric richness estimator to show that estimated operational taxonomic unit (OTU) richness is more than twice that observed. In the transplant microhabitat, our estimate suggests that there are almost 7,000 OTU's for a sample size of 10,400 individual sequences with no sign of an asymptote, indicating that “true” richness for this microhabitat is substantially larger. Results on the number of bacterial OTU's should, however, be viewed with caution given that the barcoding pyrosequencing technique used can yield sequencing artifacts that may inflate richness estimates if not properly removed. PMID:21966560

  10. A Lesson from Mangroves.

    ERIC Educational Resources Information Center

    Davis, Stephen

    1987-01-01

    Discusses the importance of interpretive programs in the Northern Territory of Australia. Describes the typical interpretive approach of local school science curricula, which serve 20,000 Aboriginal children. Addresses the curriculum framework, learning strategies, and process skill development, illustrating them through a lesson on mangroves. (TW)

  11. Evaluating, predicting and mapping belowground carbon stores in Kenyan mangroves.

    PubMed

    Gress, Selena K; Huxham, Mark; Kairo, James G; Mugi, Lilian M; Briers, Robert A

    2017-01-01

    Despite covering only approximately 138 000 km(2) , mangroves are globally important carbon sinks with carbon density values three to four times that of terrestrial forests. A key challenge in evaluating the carbon benefits from mangrove forest conservation is the lack of rigorous spatially resolved estimates of mangrove sediment carbon stocks; most mangrove carbon is stored belowground. Previous work has focused on detailed estimations of carbon stores over relatively small areas, which has obvious limitations in terms of generality and scope of application. Most studies have focused only on quantifying the top 1 m of belowground carbon (BGC). Carbon stored at depths beyond 1 m, and the effects of mangrove species, location and environmental context on these stores, are poorly studied. This study investigated these variables at two sites (Gazi and Vanga in the south of Kenya) and used the data to produce a country-specific BGC predictive model for Kenya and map BGC store estimates throughout Kenya at spatial scales relevant for climate change research, forest management and REDD+ (reduced emissions from deforestation and degradation). The results revealed that mangrove species was the most reliable predictor of BGC; Rhizophora muronata had the highest mean BGC with 1485.5 t C ha(-1) . Applying the species-based predictive model to a base map of species distribution in Kenya for the year 2010 with a 2.5 m(2) resolution produced an estimate of 69.41 Mt C [±9.15 95% confidence interval (C.I.)] for BGC in Kenyan mangroves. When applied to a 1992 mangrove distribution map, the BGC estimate was 75.65 Mt C (±12.21 95% C.I.), an 8.3% loss in BGC stores between 1992 and 2010 in Kenya. The country-level mangrove map provides a valuable tool for assessing carbon stocks and visualizing the distribution of BGC. Estimates at the 2.5 m(2) resolution provide sufficient details for highlighting and prioritizing areas for mangrove conservation and restoration.

  12. Bioaccumulation of PAHs from creosote-contaminated sediment in a laboratory-exposed freshwater oligochaete, Lumbriculus variegatus.

    PubMed

    Hyötyläinen, Tarja; Oikari, Aimo

    2004-10-01

    The oligochaete, Lumbriculus variegatus, was used for a bioaccumulation assay in the creosote-contaminated sediment of Lake Jämsänvesi in a 28-day experiment. The PAH concentrations of the whole body tissue of worms, sediments and water samples were determinated by GC-MS. Chemical analyses showed that benzo(k)fluoranthene, anthracene and fluorene were the main PAH compounds present in the tissue of oligochaetes, just as in the sediment. The biota-sediment accumulation factors (BSAFs) of the individual PAHs varied from 1.2 to 5.7. It is concluded that oligochaetes have a marked ability to accumulate and retain PAHs from creosote-contaminated sediment.

  13. The distribution of tritium between water and suspended matter in a laboratory experiment exposing sediment to tritiated water.

    PubMed

    Jean-Baptiste, Philippe; Fourré, Elise

    2013-02-01

    Following recent suggestions regarding the strong affinity of tritiated water for organic matter in suspended particulates and sediments, two equilibration experiments between sediment organic matter (dry and fresh) and tritiated water were performed to look for potential tritium bio-concentration. The T/H ratios measured at the end of both experiments are lower in the sediment organic matter than in the water, indicating that only a fraction of the hydrogen pool (between 14% and 20%) within the sediment equilibrated with the tritiated water. These results are consistent with the widely used concept of exchangeable and non-exchangeable tritium pools in organic matter and show no sign of tritium bio-accumulation in the sediment relative to water.

  14. Blue Carbon distribution in mangrove forests of the Americas

    NASA Astrophysics Data System (ADS)

    Simard, M.; Rivera-Monroy, V.; Fatoyinbo, T. E.; Roy Chowdhury, R.

    2013-12-01

    Globally, coastal ecosystems are critical to maintaining human livelihood and biodiversity. These ecosystems including mangroves, salt marshes, and sea grasses provide essential ecosystem services, such as supporting fisheries by providing important spawning grounds, filtering pollutants and contaminants from coastal waters, and protecting coastal development and communities against storms, floods and erosion. Additionally, recent research indicates that these vegetated coastal ecosystems are highly efficient carbon sinks (i.e. 'Blue Carbon') and can potentially play a significant role in ameliorating the effect of increasing global climate change by capturing significant amounts of carbon into sediments and plant biomass. The term blue carbon indicates the carbon stored in coastal vegetated wetlands (i.e., mangroves, intertidal marshes, and seagrass meadows). As a result of rapid global changes in coastal regions, it is crucial that we improve our understanding of the current and future state of the remaining coastal ecosystems and associated ecosystem services and their vulnerability to global climate change. In this study, we present a continental scale study of mangrove distribution and assess patterns of forest structural development associated to latitude and geomorphological setting. We produced a baseline map of mangrove canopy height and biomass for all mangrove forests of the Americas using data from the Shuttle Radar Topography Mission (SRTM) and publicly available land cover maps (Figure 1). The resulting canopy height map was calibrated using ICEsat/Geoscience Laser Altimeter system (GLAS). Biomass was derived from field data and allometry. The maps were validated with field data and results in accuracies that vary spatially around 2 to 3m in height and 20% in biomass. Figure 1: Global distribution of mangrove forests (green) and SRTM elevation data. These data were used to produce large scale maps of mangrove canopy height and biomass.

  15. Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review.

    PubMed

    Bayen, Stéphane

    2012-11-01

    Although their ecological and socioeconomic importance has received recent attention, mangrove ecosystems are one of the most threatened tropical environments. Besides direct clearance, hydrological alterations, climatic changes or insect infestations, chemical pollution could be a significant contributor of mangrove degradation. The present paper reviews the current knowledge on the occurrence, bioavailability and toxic effects of trace contaminants in mangrove ecosystems. The literature confirmed that trace metals, Polycyclic Aromatic Hydrocarbons (PAHs), Persistent Organic Pollutants (POPs), Pharmaceuticals and Personal Care Products (PPCPs) and Endocrine Disrupters Compounds (EDCs) have been detected in various mangrove compartments (water, sediments and biota). In some cases, these chemicals have associated toxic effects on mangrove ecosystem species, with potential impact on populations and biodiversity in the field. However, nearly all studies about the bioavailability and toxic effects of contaminants in mangrove ecosystems focus on selected trace metals, PAHs or some "conventional" POPs, and virtually no data exist for other contaminant groups. The specificities of mangrove ecosystems (e.g. biology, physico-chemistry and hydrology) support the need for specific ecotoxicological tools. This review highlights the major data and methodological gaps which should be addressed to refine the risk assessment of trace pollutants in mangrove ecosystems.

  16. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium

    PubMed Central

    Fernandes, Sheryl Oliveira; Bonin, Patricia C.; Michotey, Valérie D.; Garcia, Nicole; LokaBharathi, P. A.

    2012-01-01

    Earlier observations in mangrove sediments of Goa, India have shown denitrification to be a major pathway for N loss1. However, percentage of total nitrate transformed through complete denitrification accounted for <0–72% of the pore water nitrate reduced. Here, we show that up to 99% of nitrate removal in mangrove sediments is routed through dissimilatory nitrate reduction to ammonium (DNRA). The DNRA process was 2x higher at the relatively pristine site Tuvem compared to the anthropogenically-influenced Divar mangrove ecosystem. In systems receiving low extraneous nutrient inputs, this mechanism effectively conserves and re-circulates N minimizing nutrient loss that would otherwise occur through denitrification. In a global context, the occurrence of DNRA in mangroves has important implications for maintaining N levels and sustaining ecosystem productivity. For the first time, this study also highlights the significance of DNRA in buffering the climate by modulating the production of the greenhouse gas nitrous oxide. PMID:22639727

  17. Mercury dilution by autochthonous organic matter in a fertilized mangrove wetland.

    PubMed

    Machado, Wilson; Sanders, Christian J; Santos, Isaac R; Sanders, Luciana M; Silva-Filho, Emmanoel V; Luiz-Silva, Wanilson

    2016-06-01

    A dated sediment core from a highly-fertilized mangrove wetland located in Cubatão (SE Brazil) presented a negative correlation between mercury (Hg) and organic carbon contents. This is an unusual result for a metal with well-known affinity to organic matter. A dilution of Hg concentrations by autochthonous organic matter explained this observation, as revealed by carbon stable isotopes signatures (δ(13)C). Mercury dilution by the predominant mangrove-derived organic matter counterbalanced the positive influences of algal-derived organic matter and clay contents on Hg levels, suggesting that deleterious effects of Hg may be attenuated. Considering the current paradigm on the positive effect of organic matter on Hg concentrations in coastal sediments and the expected increase in mangrove organic matter burial due to natural and anthropogenic stimulations of primary production, predictions on the influences of organic matter on Hg accumulation in mangrove wetlands deserve caution.

  18. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium.

    PubMed

    Fernandes, Sheryl Oliveira; Bonin, Patricia C; Michotey, Valérie D; Garcia, Nicole; LokaBharathi, P A

    2012-01-01

    Earlier observations in mangrove sediments of Goa, India have shown denitrification to be a major pathway for N loss. However, percentage of total nitrate transformed through complete denitrification accounted for <0-72% of the pore water nitrate reduced. Here, we show that up to 99% of nitrate removal in mangrove sediments is routed through dissimilatory nitrate reduction to ammonium (DNRA). The DNRA process was 2x higher at the relatively pristine site Tuvem compared to the anthropogenically-influenced Divar mangrove ecosystem. In systems receiving low extraneous nutrient inputs, this mechanism effectively conserves and re-circulates N minimizing nutrient loss that would otherwise occur through denitrification. In a global context, the occurrence of DNRA in mangroves has important implications for maintaining N levels and sustaining ecosystem productivity. For the first time, this study also highlights the significance of DNRA in buffering the climate by modulating the production of the greenhouse gas nitrous oxide.

  19. Investigating physiological, cellular and molecular effects in juvenile blue crab, Callinectus sapidus, exposed to field-collected sediments contaminated by oil from the Deepwater Horizon Incident.

    PubMed

    Pie, Hannah V; Schott, Eric J; Mitchelmore, Carys L

    2015-11-01

    Juvenile blue crabs, Callinectus sapidus, were exposed for 31 days to six different sediments collected within the Pass a Loutre State Wildlife Management Area approximately 6 months or 1.5 years post-capping of the Macondo-252 well-head following the Deepwater Horizon (DWH) Incident. Based on forensic analysis to fingerprint for DWH oil, these sediments differed in their levels of DWH oil contamination, and included one reference sediment collected from a location with no detectable DWH oil present. The concentration of 50 individual parent and alkylation group polycyclic aromatic hydrocarbons (PAHs), saturated hydrocarbons (37 total), and total extractable hydrocarbons were determined in each sediment, as were biologically relevant metals, grain size distribution, percent total organic carbon, and percent total solids. Total concentrations of 50 PAHs (TPAH50) of initial treatment sediments ranged from 187 μg kg(-1) (reference site) to 2,086,458 μg kg(-1) (the highest DWH oil contaminated site). Multiple biological endpoints were measured including mortality, growth, and ecdysis. Additionally, early biomarkers of biological stress were examined in the hemolymph and hepatopancreas of crabs, including DNA damage (Comet assay) and expression of genes encoding Cu-metallothionein (CuMT), glutathione-S-transferase (GST), and manganese superoxide dismutase (MnSOD). Over the 31 day exposure, there were no treatment related mortalities in juvenile blue crabs. The overall growth and molting of the crabs were not substantially different between the various sediment exposures over the exposure period. Additionally, none of the early biomarkers of biological stress were correlated with PAH concentrations. Overall, juvenile blue crabs did not appear to be negatively impacted during the 31 day exposure by DWH oil contaminated sediments collected at least 6 months post-capping of the Macondo-252 well-head. Copyright © 2015. Published by Elsevier B.V.

  20. Sea level and turbidity controls on mangrove soil surface elevation change

    NASA Astrophysics Data System (ADS)

    Lovelock, Catherine E.; Adame, Maria Fernanda; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-02-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  1. Sea level and turbidity controls on mangrove soil surface elevation change

    USGS Publications Warehouse

    Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  2. Tracking aquaculture-derived fluoroquinolones in a mangrove wetland, South China.

    PubMed

    Liu, Xiao; Liu, Yu; Xu, Jian-Rong; Ren, Ke-Jun; Meng, Xiang-Zhou

    2016-12-01

    Aquaculture in mangrove wetlands has been developed rapidly, causing various environmental problems (e.g., antibiotic residue). In the present study, the levels and distributions of a well-known class of antibiotics (fluoroquinolones; FQs), including norfloxacin (NOR), ciprofloxacin (CIP), and enrofloxacin (ENR), were examined in sediment and mangrove plant (Aegiceras corniculatum) from a mangrove wetland in the Zhanjiang Mangrove National Nature Reserve, South China. NOR and CIP were detected in all sediment samples, with concentrations ranging from 4.3 to 64.2 ng/g and from 7.62 to 68.5 ng/g on a basis of dry weight (dw), respectively, whereas ENR was found with relatively lower frequency (<78%) and lower concentrations (<19.3 ng/g). Sediments in mangrove rhizosphere area contained considerably higher concentrations of all FQs (except for ENR). FQs were largely varied in mangrove plant tissues; NOR and ENR were not detected in leaf and root samples, respectively. CIP featured an increasing tendency from the root to the upper parts of plants, whereas a decreasing trend was found for NOR. Three bioconcentration factors (BCFs) of FQs, including BCFs for roots (BCFr), branches (BCFb), and leaves (BCFl) were calculated, and most of them exceeded 1. Especially for NOR, its BCFr can reach up to 9.9, indicating that Aegiceras corniculatum has a strong ability to accumulate FQs from sediment and/or surrounding environment. For NOR and CIP, strong positive relationships were observed between BCFr and concentrations in root, but no significant correlations were observed between BCFr and root lipid of mangrove plant. More studies are needed to investigate the uptake mechanism of antibiotics in mangrove plants.

  3. Stress in mangrove forests: Early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management.

    PubMed

    Lewis, Roy R; Milbrandt, Eric C; Brown, Benjamin; Krauss, Ken W; Rovai, André S; Beever, James W; Flynn, Laura L

    2016-08-30

    Mangrove forest rehabilitation should begin much sooner than at the point of catastrophic loss. We describe the need for "mangrove forest heart attack prevention", and how that might be accomplished in a general sense by embedding plot and remote sensing monitoring within coastal management plans. The major cause of mangrove stress at many sites globally is often linked to reduced tidal flows and exchanges. Blocked water flows can reduce flushing not only from the seaward side, but also result in higher salinity and reduced sediments when flows are blocked landward. Long-term degradation of function leads to acute mortality prompted by acute events, but created by a systematic propensity for long-term neglect of mangroves. Often, mangroves are lost within a few years; however, vulnerability is re-set decades earlier when seemingly innocuous hydrological modifications are made (e.g., road construction, blocked tidal channels), but which remain undetected without reasonable large-scale monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Preliminary work of mangrove ecosystem carbon stock mapping in small island using remote sensing: above and below ground carbon stock mapping on medium resolution satellite image

    NASA Astrophysics Data System (ADS)

    Wicaksono, Pramaditya; Danoedoro, Projo; Hartono, Hartono; Nehren, Udo; Ribbe, Lars

    2011-11-01

    Mangrove forest is an important ecosystem located in coastal area that provides various important ecological and economical services. One of the services provided by mangrove forest is the ability to act as carbon sink by sequestering CO2 from atmosphere through photosynthesis and carbon burial on the sediment. The carbon buried on mangrove sediment may persist for millennia before return to the atmosphere, and thus act as an effective long-term carbon sink. Therefore, it is important to understand the distribution of carbon stored within mangrove forest in a spatial and temporal context. In this paper, an effort to map carbon stocks in mangrove forest is presented using remote sensing technology to overcome the handicap encountered by field survey. In mangrove carbon stock mapping, the use of medium spatial resolution Landsat 7 ETM+ is emphasized. Landsat 7 ETM+ images are relatively cheap, widely available and have large area coverage, and thus provide a cost and time effective way of mapping mangrove carbon stocks. Using field data, two image processing techniques namely Vegetation Index and Linear Spectral Unmixing (LSU) were evaluated to find the best method to explain the variation in mangrove carbon stocks using remote sensing data. In addition, we also tried to estimate mangrove carbon sequestration rate via multitemporal analysis. Finally, the technique which produces significantly better result was used to produce a map of mangrove forest carbon stocks, which is spatially extensive and temporally repetitive.

  5. Sedimentary records of mangrove evolution during the past one hundred years based on stable carbon isotope and pollen evidences in Maowei, SW China

    NASA Astrophysics Data System (ADS)

    Xia, Peng; Meng, Xianwei; Li, Zhen; Feng, Aiping

    2016-06-01

    Mangroves accumulate sedimentary sequences, where cores can provide historical records of mangrove evolution with past climate change and human activity. The study traced the history of mangrove evolution during the past one hundred years in a mangrove swamp of Maowei Sea, SW China. The sedimentation rates (0.38-0.95 cm yr-1) were calculated on the basis of ln (210Pbxs/Al) and mass depth in the core sediments. Chemical tracers, such as δ13Corg and C:N values, were utilized to trace the contribution of mangrove-derived organic matter using a ternary mixing model. Because of potential diagenetic alteration and / or overlap in the isotopic signatures of different components, simultaneous use of mangrove pollen diagrams can help to supplement some of these limitations. Combined with mangrove pollen, mangrove evolution was reconstructed and could be divided into three stages: flourishment (1886-1905 AD), slight degradation (1905-1949 AD) and rapid degradation period (1949-2007 AD), which was consistent with previous reports. The reclamation of mangrove swamps to shrimp ponds was the major reason for rapid degradation of mangrove ecosystems in recent years, rather than climate change in the region.

  6. Long-term effects of dredging operations program: Assessing bioaccumulation in aquatic organisms exposed to contaminated sediments. Final report

    SciTech Connect

    Clarke, J.U.; McFarland, V.A.

    1991-07-01

    This paper synthesizes previous work on bioaccumulation to provide a working document for the environmental impact on the aquatic environment due to bioaccumulation of sediment contaminants resulting from dredging operations and dredged material placement. Emphasis is placed on explanation of basic concepts concerning, and factors influencing, sediment contaminant bioaccumulation and bioavailability. The paper presents several numerical methods for assessing bioaccumulation, including a simple method for estimating theoretical bioaccumulation potential (TBP) from sediment chemistry for neutral organic chemicals. Methods are also given for projecting contaminant concentrations in organism tissues when steady state is achieved, based on laboratory or field exposures to contaminated sediments. These assessments are presented in the context of the US Environmental Protection Agency's tiered testing approach for dredged material evaluation. The various numerical methods for bioaccumulation assessment are illustrated and compared using step-by-step example calculations with hypothetical and actual data.

  7. Tolerance and genetic relatedness of three meiobenthic copepod populations exposed to sediment-associated contaminant mixtures: Role of environmental history

    SciTech Connect

    Kovatch, C.E.; Schizas, N.V.; Chandler, G.T.; Coull, B.C.; Quattro, J.M.

    2000-04-01

    Meiobenthic copepod populations (Microarthridion littoral) were collected from three South Carolina, USA, estuaries having different pollution stress histories (i.e., pristine sediments, high polycyclic aromatic hydrocarbon [PAH] sediments, high metals/moderate PAH sediments) and then assayed for survival and reproductive output in 14-d exposures to pristine and heavily PAH/metals-contaminated sediment mixture exhibited differential survival and reproductive outputs as a function of previous environmental histories and whether genetic relatedness among populations measured as DNA sequences of the mitochondrial gene, cytochrome apoenzyme b, were linked to copepod contaminant tolerance. Overall, adult survival and reproductive success in contaminated sediments were significantly reduced relative to controls for all three populations irrespective of environmental histories. Differential resistance to sediment-contaminant mixtures by the two copepod populations inhabiting the contaminated sites was not found, despite their previous exposures to mixed contaminants at {Sigma}PAH and {Sigma}Metal concentrations of 7,287 to 2,467 ng/g dry wt and 461 to 3,497 {micro}g/g, respectively. Significant genetic differentiation, however, was found between copepod populations from the control and the two contaminated sites. Generally, cross-population survival and reproductive outputs were not significantly different and could not be linked to genetic differentiation at the population level.

  8. Coatal salt marshes and mangrove swamps in China

    NASA Astrophysics Data System (ADS)

    Yang, Shi-Lun; Chen, Ji-Yu

    1995-12-01

    Based on plant specimen data, sediment samples, photos, and sketches from 45 coastal crosssections, and materials from two recent countrywide comprehensive investigations on Chinese coasts and islands, this paper deals with China’s vegetative tidal-flats: salt marshes and mangrove swamps. There are now 141700 acres of salt marshes and 51000 acres of mangrove swamps which together cover about 30% of the mud-coast area of the country and distribute between 18°N (Southern Hainan Island) and 41 °N (Liaodong Bay). Over the past 45 years, about 1750000 acres of salt marshes and 49400 acres of mangrove swamps have been reclaimed. The 2.0×109 tons of fine sediments input by rivers into the Chinese seas form extensive tidal flats, the soil basis of coastal helophytes. Different climates result in the diversity of vegetation. The 3˜8 m tidal range favors intertidal zone development. Of over 20 plant species in the salt marshes, native Suaeda salsa, Phragmites australis, Aeluropus littoralis, Zoysia maerostachys, Imperata cylindrica and introduced Spartina anglica are the most extensive in distribution. Of the 41 mangrove swamps species, Kandelia candel, Bruguiera gymnorrhiza, Excoecaria agallocha and Avicennia marina are much wider in latitudinal distribution than the others. Developing stages of marshes originally relevant to the evolution of tidal flats are given out. The roles of pioneer plants in decreasing flood water energy and increasing accretion rate in the Changjiang River delta are discussed.

  9. Preliminary study to compare body residues and sublethal energetic responses in benthic invertebrates exposed to sediment-bound 2,4,5-trichlorophenol

    SciTech Connect

    Penttinen, O.P.; Kukkonen, J.; Pellinen, J.

    1996-02-01

    Relationships between concentration of 2,4,5-trichlorophenol (TCP) in sediment, body residues of the chemical, and sublethal biological effects in three benthic invertebrates were studied. Uncontaminated lake sediment was spiked with four concentrations (23--85 {micro}g/g dry sediment) of TCP. Chironomid larvae (Chironomus riparius), oligochaete worms (Lumbriculus variegatus), and sphaeriid bivalves (Sphaerium corneum) were exposed to the sediment. The effect of chlorophenol on the rate of heat dissipation of animals was monitored by direct microcalorimetry. It appeared that both the behavior of the animals and their body residues explained the energetic response. Valve closure behavior of S. corneum reduced the accumulation of toxicant (< 0.3 {micro}mol/g) but was observed as a complex energetic response. Heat dissipation of L. variegatus was at the same level in control animals and those with high body residues of TCP (> 1.5 {micro}mol/g). Regardless of the amount of TCP accumulated to C. riparius (0.1--0.6 {micro}mol/g), the rate of heat dissipation was almost two times higher than that of the control animals, probably reflecting uncoupling of oxidative phosphorylation, which is the primary mode of toxic action of chlorophenols. However, when a threshold concentration was exceeded there was no concentration-response dependence until acute toxicity appears.

  10. Biochemical endpoints on juvenile Solea senegalensis exposed to estuarine sediments: the effect of contaminant mixtures on metallothionein and CYP1A induction.

    PubMed

    Costa, Pedro M; Caeiro, Sandra; Diniz, Mário S; Lobo, Jorge; Martins, Marta; Ferreira, Ana M; Caetano, Miguel; Vale, Carlos; DelValls, T Angel; Costa, Maria H

    2009-11-01

    Juvenile Solea senegalensis were exposed to fresh sediments from three stations of the Sado estuary (Portugal) in 28-day laboratory assays. Sediments revealed distinct levels of total organic matter, fine fraction, redox potential, trace elements (arsenic, cadmium, chromium, copper, nickel, lead and zinc) and organic contaminants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls and a pesticide: dichloro diphenyl trichloroethane). Organisms were surveyed for contaminant bioaccumulation and induction of two hepatic biochemical biomarkers: metallothionein (MT) and cytochrome P450 (CYP1A), as potential indicators of exposure to metallic and organic contaminants, respectively. Using an integrative approach it was established that, although bioaccumulation is in general accordance with sediment contamination, lethality and biomarker responses are not linearly dependent of the cumulative concentrations of sediment contaminants but rather of their bioavailability and synergistic effects in organisms. It is concluded that metals and organic contaminants modulate both MT and CYP1A induction and it is suggested that reactive oxygen species may be the link between responses and effects of toxicity.

  11. Rapid Losses of Surface Elevation following Tree Girdling and Cutting in Tropical Mangroves

    PubMed Central

    Lang'at, Joseph Kipkorir Sigi; Kairo, James G.; Mencuccini, Maurizio; Bouillon, Steven; Skov, Martin W.; Waldron, Susan; Huxham, Mark

    2014-01-01

    The importance of mangrove forests in carbon sequestration and coastal protection has been widely acknowledged. Large-scale damage of these forests, caused by hurricanes or clear felling, can enhance vulnerability to erosion, subsidence and rapid carbon losses. However, it is unclear how small-scale logging might impact on mangrove functions and services. We experimentally investigated the impact of small-scale tree removal on surface elevation and carbon dynamics in a mangrove forest at Gazi bay, Kenya. The trees in five plots of a Rhizophora mucronata (Lam.) forest were first girdled and then cut. Another set of five plots at the same site served as controls. Treatment induced significant, rapid subsidence (−32.1±8.4 mm yr−1 compared with surface elevation changes of +4.2±1.4 mm yr−1 in controls). Subsidence in treated plots was likely due to collapse and decomposition of dying roots and sediment compaction as evidenced from increased sediment bulk density. Sediment effluxes of CO2 and CH4 increased significantly, especially their heterotrophic component, suggesting enhanced organic matter decomposition. Estimates of total excess fluxes from treated compared with control plots were 25.3±7.4 tCO2 ha−1 yr−1 (using surface carbon efflux) and 35.6±76.9 tCO2 ha−1 yr−1 (using surface elevation losses and sediment properties). Whilst such losses might not be permanent (provided cut areas recover), observed rapid subsidence and enhanced decomposition of soil sediment organic matter caused by small-scale harvesting offers important lessons for mangrove management. In particular mangrove managers need to carefully consider the trade-offs between extracting mangrove wood and losing other mangrove services, particularly shoreline stabilization, coastal protection and carbon storage. PMID:25244646