Science.gov

Sample records for manipulable objects anatomy

  1. Naming manipulable objects: anatomy of a category specific effect in left temporal tumours.

    PubMed

    Campanella, Fabio; D'Agostini, Serena; Skrap, Miran; Shallice, Tim

    2010-05-01

    Whether semantic knowledge is categorically organized or is based in an undifferentiated distributed network within the temporal lobes or it is at least partially organized in property-based networks is still an open issue. With a naming task involving living and nonliving entities, the latter divided according to degree of manipulability, we studied a group of 30 tumour patients with either right, left anterior or left posterior temporal lobes' lesions and a herpes simplex encephalitis patient (MU). Both cross-subject and cross-stimulus analyses were conducted. Left hemisphere patients were overall worse than both right hemisphere patients and controls in the naming task. They moreover named nonliving items worse than living. This effect was larger in left posterior temporal than both right temporal and also left anterior temporal patients and significant both at a cross-subject and cross-stimulus levels of analysis. In addition the left posterior temporal group had more difficulties with highly manipulable objects than left anterior temporal patients, but the effect was significant only on a cross-subject analysis. VLSM lesion analysis revealed that the area most critically associated with the larger naming deficit for manipulable objects was the posterior superior portion of the left temporal lobe, particularly the posterior middle temporal gyrus. These results support a 'property-based networks' account of semantic knowledge rather than an 'undifferentiated network' account. For manipulable objects, this would be a posterior-temporal/inferior-parietal left hemisphere "action/manipulation-property-based" network related to the dorsal pathways which is thought to be important in action control, as suggested by neuroimaging results. PMID:20144630

  2. Manipulator for hollow objects

    DOEpatents

    Cawley, William E.; Frantz, Charles E.

    1977-01-01

    A device for gripping the interior of a tubular object to pull it out of a body in which it has become stuck includes an expandable rubber tube having a plurality of metal cables lodged in the exterior of the rubber tube so as to protrude slightly therefrom, means for inflating the tube and means for pulling the tube longitudinally of the tubular object.

  3. COGNITION, ACTION, AND OBJECT MANIPULATION

    PubMed Central

    Rosenbaum, David A.; Chapman, Kate M.; Weigelt, Matthias; Weiss, Daniel J.; van der Wel, Robrecht

    2012-01-01

    Although psychology is the science of mental life and behavior, it has paid little attention to the means by which mental life is translated into behavior. One domain where links between cognition and action have been explored is the manipulation of objects. This article reviews psychological research on this topic, with special emphasis on the tendency to grasp objects differently depending on what one plans to do with the objects. Such differential grasping has been demonstrated in a wide range of object manipulation tasks, including grasping an object in a way that reveals anticipation of the object's future orientation, height, and required placement precision. Differential grasping has also been demonstrated in a wide range of behaviors, including one-hand grasps, two-hand grasps, walking, and transferring objects from place to place as well as from person to person. The populations in whom the tendency has been shown are also diverse, including nonhuman primates as well as human adults, children, and babies. Meanwhile, the tendency is compromised in a variety of clinical populations and in children of a surprisingly advanced age. Verbal working memory is compromised as well if words are memorized while object manipulation tasks are performed; the recency portion of the serial position curve is reduced in this circumstance. In general, the research reviewed here points to rich connections between cognition and action as revealed through the study of object manipulation. Other implications concern affordances, Donders' Law, and naturalistic observation and the teaching of psychology. PMID:22448912

  4. Cognition, action, and object manipulation.

    PubMed

    Rosenbaum, David A; Chapman, Kate M; Weigelt, Matthias; Weiss, Daniel J; van der Wel, Robrecht

    2012-09-01

    Although psychology is the science of mental life and behavior, little attention has been paid to the means by which mental life is translated into behavior. One domain in which links between cognition and action have been explored is the manipulation of objects. This article reviews psychological research on this topic, with special emphasis on the tendency to grasp objects differently depending on what one plans to do with the objects. Such differential grasping has been demonstrated in a wide range of object manipulation tasks, including grasping an object in a way that reveals anticipation of the object's future orientation, height, and required placement precision. Differential grasping has also been demonstrated in a wide range of behaviors, including 1-hand grasps, 2-hand grasps, walking, and transferring objects from place to place as well as from person to person. The populations in which the tendency has been shown are also diverse, including nonhuman primates as well as human adults, children, and babies. The tendency is compromised in a variety of clinical populations and in children of a surprisingly advanced age. Verbal working memory is compromised as well if words are memorized while object manipulation tasks are performed; the recency portion of the serial position curve is reduced in this circumstance. In general, the research reviewed here points to rich connections between cognition and action as revealed through the study of object manipulation. Other implications concern affordances, Donders' law, naturalistic observation, and the teaching of psychology.

  5. Direct manipulation of virtual objects

    NASA Astrophysics Data System (ADS)

    Nguyen, Long K.

    Interacting with a Virtual Environment (VE) generally requires the user to correctly perceive the relative position and orientation of virtual objects. For applications requiring interaction in personal space, the user may also need to accurately judge the position of the virtual object relative to that of a real object, for example, a virtual button and the user's real hand. This is difficult since VEs generally only provide a subset of the cues experienced in the real world. Complicating matters further, VEs presented by currently available visual displays may be inaccurate or distorted due to technological limitations. Fundamental physiological and psychological aspects of vision as they pertain to the task of object manipulation were thoroughly reviewed. Other sensory modalities -- proprioception, haptics, and audition -- and their cross-interactions with each other and with vision are briefly discussed. Visual display technologies, the primary component of any VE, were canvassed and compared. Current applications and research were gathered and categorized by different VE types and object interaction techniques. While object interaction research abounds in the literature, pockets of research gaps remain. Direct, dexterous, manual interaction with virtual objects in Mixed Reality (MR), where the real, seen hand accurately and effectively interacts with virtual objects, has not yet been fully quantified. An experimental test bed was designed to provide the highest accuracy attainable for salient visual cues in personal space. Optical alignment and user calibration were carefully performed. The test bed accommodated the full continuum of VE types and sensory modalities for comprehensive comparison studies. Experimental designs included two sets, each measuring depth perception and object interaction. The first set addressed the extreme end points of the Reality-Virtuality (R-V) continuum -- Immersive Virtual Environment (IVE) and Reality Environment (RE). This

  6. Manipulability and object recognition: is manipulability a semantic feature?

    PubMed

    Campanella, Fabio; Shallice, Tim

    2011-02-01

    Several lines of evidence exist, coming from neuropsychology, neuroimaging and behavioural investigations on healthy subjects, suggesting that an interaction might exist between the systems devoted to object identification and those devoted to online object-directed actions and that the way an object is acted upon (manipulability) might indeed influence object recognition. In this series of experiments on speeded word-to-picture-matching tasks, it is shown how the presentation of pairs of objects sharing similar manipulation causes greater interference with respect to objects sharing only visual similarity (experiment 1). Moreover, (experiment 2) it is shown how the repeated presentation of pairs of objects sharing a similar type of manipulation leads to a 'negative' serial position effect, with the number of errors increasing across presentations, a behaviour that is typically found in patients with access deficits to semantic representations. By contrast, the repeated presentation of pairs of objects sharing only visual similarity leads to an opposite 'positive' serial position effect, with errors decreasing across presentations. It is argued that a negative serial position effect is linked to interference occurring within the semantic system, and therefore that the way an object is manipulated is indeed a semantic feature, critical in defining manipulable object properties at a semantic level. To our knowledge, this constitutes the first direct evidence of manipulability being a semantic dimension. The results are discussed in the light of current models of semantic memory organization.

  7. Autonomous Object Manipulation Using a Soft Planar Grasping Manipulator

    PubMed Central

    Katzschmann, Robert K.; Marchese, Andrew D.

    2015-01-01

    Abstract This article presents the development of an autonomous motion planning algorithm for a soft planar grasping manipulator capable of grasp-and-place operations by encapsulation with uncertainty in the position and shape of the object. The end effector of the soft manipulator is fabricated in one piece without weakening seams using lost-wax casting instead of the commonly used multilayer lamination process. The soft manipulation system can grasp randomly positioned objects within its reachable envelope and move them to a desired location without human intervention. The autonomous planning system leverages the compliance and continuum bending of the soft grasping manipulator to achieve repeatable grasps in the presence of uncertainty. A suite of experiments is presented that demonstrates the system's capabilities. PMID:27625916

  8. Manipulation of a fragile object

    PubMed Central

    Gorniak, Stacey L.; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2010-01-01

    We investigated strategies of adjustments in kinetic and kinematic patterns, and in multi-digit synergies during quick vertical transport of an instrumented handle that collapsed when the grasping force exceeded a certain magnitude (quantified with a fragility index). The collapse threshold of the object was set using a novel electromagnetic device. Moving a fragile object is viewed as a task with two constraints on the grip force defined by the slipping and crushing thresholds, respectively. When moving more fragile objects, subjects decreased object peak acceleration, increased movement time, showed a drop in the safety margin (extra force over the slipping threshold), and showed a tendency towards violating the minimum-jerk criterion. Linear regression analysis of grip force against load force has shown tight coupling between the two with a decline in the regression coefficient with increased fragility index. The safety margin was lower in bimanual tasks, compared to unimanual tasks, for both fragile and non-fragile objects. Two novel indices have been introduced and studied, the safety margin due to fragility and the drop-crush index. Both indices showed a decrease with increased object fragility. Changes in the drop-crush index showed that the subjects would rather crush the fragile objects as opposed to dropping them, possibly reflecting the particular experimental procedure. We did not find differences between the performance indices of the dominant and non-dominant hand thus failing to support the recently formulated dominance hypothesis. The synergies stabilizing grip force were quantified at two levels of an assumed two-level control hierarchy using co-variation indices between elemental variables across trials. There were strong synergies at the upper level of the hierarchy (the task is shared between the opposing groups of digits) that weakened with an increase in object fragility. At the lower level (action of an effector is shared among the four

  9. Using magnetic nanoparticles to manipulate biological objects

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Gao, Yu; Xu, Chenjie

    2013-09-01

    The use of magnetic nanoparticles (MNPs) for the manipulation of biological objects, including proteins, genes, cellular organelles, bacteria, cells, and organs, are reviewed. MNPs are popular candidates for controlling and probing biological objects with a magnetic force. In the past decade, progress in the synthesis and surface engineering of MNPs has further enhanced this popularity.

  10. Micro-objective manipulated with optical tweezers

    SciTech Connect

    Sasaki, M.; Kurosawa, T.; Hane, K.

    1997-02-01

    A microscope is described that uses a {mu}m-sized ball lens, which is here termed micro-objective, manipulated with optical tweezers to image the side view of the arbitrary region of a sample. Since this micro-objective is small in size, it can go into a concave region to produce a local image of the inside which the conventional microscope cannot observe. Preliminary results show good lens performance from the micro-objective when combined with optical tweezers. {copyright} {ital 1997 American Institute of Physics.}

  11. Eye-hand coordination in object manipulation.

    PubMed

    Johansson, R S; Westling, G; Bäckström, A; Flanagan, J R

    2001-09-01

    We analyzed the coordination between gaze behavior, fingertip movements, and movements of the manipulated object when subjects reached for and grasped a bar and moved it to press a target-switch. Subjects almost exclusively fixated certain landmarks critical for the control of the task. Landmarks at which contact events took place were obligatory gaze targets. These included the grasp site on the bar, the target, and the support surface where the bar was returned after target contact. Any obstacle in the direct movement path and the tip of the bar were optional landmarks. Subjects never fixated the hand or the moving bar. Gaze and hand/bar movements were linked concerning landmarks, with gaze leading. The instant that gaze exited a given landmark coincided with a kinematic event at that landmark in a manner suggesting that subjects monitored critical kinematic events for phasic verification of task progress and subgoal completion. For both the obstacle and target, subjects directed saccades and fixations to sites that were offset from the physical extension of the objects. Fixations related to an obstacle appeared to specify a location around which the extending tip of the bar should travel. We conclude that gaze supports hand movement planning by marking key positions to which the fingertips or grasped object are subsequently directed. The salience of gaze targets arises from the functional sensorimotor requirements of the task. We further suggest that gaze control contributes to the development and maintenance of sensorimotor correlation matrices that support predictive motor control in manipulation.

  12. Cholinergic manipulations bidirectionally regulate object memory destabilization.

    PubMed

    Stiver, Mikaela L; Jacklin, Derek L; Mitchnick, Krista A; Vicic, Nevena; Carlin, Justine; O'Hara, Matthew; Winters, Boyer D

    2015-04-01

    Consolidated memories can become destabilized and open to modification upon retrieval. Destabilization is most reliably prompted when novel information is present during memory reactivation. We hypothesized that the neurotransmitter acetylcholine (ACh) plays an important role in novelty-induced memory destabilization because of its established involvement in new learning. Accordingly, we investigated the effects of cholinergic manipulations in rats using an object recognition paradigm that requires reactivation novelty to destabilize object memories. The muscarinic receptor antagonist scopolamine, systemically or infused directly into the perirhinal cortex, blocked this novelty-induced memory destabilization. Conversely, systemic oxotremorine or carbachol, muscarinic receptor agonists, administered systemically or intraperirhinally, respectively, mimicked the destabilizing effect of novel information during reactivation. These bidirectional effects suggest a crucial influence of ACh on memory destabilization and the updating functions of reconsolidation. This is a hitherto unappreciated mnemonic role for ACh with implications for its potential involvement in cognitive flexibility and the dynamic process of long-term memory storage.

  13. Energy margins in dynamic object manipulation

    PubMed Central

    Shen, Tian; Sternad, Dagmar

    2012-01-01

    Many tasks require humans to manipulate dynamically complex objects and maintain appropriate safety margins, such as placing a cup of coffee on a coaster without spilling. This study examined how humans learn such safety margins and how they are shaped by task constraints and changing variability with improved skill. Eighteen subjects used a manipulandum to transport a shallow virtual cup containing a ball to a target without losing the ball. Half were to complete the cup transit in a comfortable target time of 2 s (a redundant task with infinitely many equivalent solutions), and the other half in minimum time (a nonredundant task with one explicit cost to optimize). The safety margin was defined as the ball energy relative to escape, i.e., as an energy margin. The first hypothesis, that subjects converge to a single strategy in the minimum-time task but choose different strategies in the less constrained target-time task, was not supported. Both groups developed individualized strategies with practice. The second hypothesis, that subjects decrease safety margins in the minimum-time task but increase them in the target-time task, was supported. The third hypothesis, that in both tasks subjects modulate energy margins according to their execution variability, was partially supported. In the target-time group, changes in energy margins correlated positively with changes in execution variability; in the minimum-time group, such a relation was observed only at the end of practice, not across practice. These results show that when learning a redundant object manipulation task, most subjects increase their safety margins and shape their movement strategies in accordance with their changing variability. PMID:22592302

  14. Vision, touch and object manipulation in Senegal parrots Poicephalus senegalus.

    PubMed

    Demery, Zoe P; Chappell, Jackie; Martin, Graham R

    2011-12-22

    Parrots are exceptional among birds for their high levels of exploratory behaviour and manipulatory abilities. It has been argued that foraging method is the prime determinant of a bird's visual field configuration. However, here we argue that the topography of visual fields in parrots is related to their playful dexterity, unique anatomy and particularly the tactile information that is gained through their bill tip organ during object manipulation. We measured the visual fields of Senegal parrots Poicephalus senegalus using the ophthalmoscopic reflex technique and also report some preliminary observations on the bill tip organ in this species. We found that the visual fields of Senegal parrots are unlike those described hitherto in any other bird species, with both a relatively broad frontal binocular field and a near comprehensive field of view around the head. The behavioural implications are discussed and we consider how extractive foraging and object exploration, mediated in part by tactile cues from the bill, has led to the absence of visual coverage of the region below the bill in favour of more comprehensive visual coverage above the head.

  15. Planning Robotic Manipulation Strategies for Sliding Objects

    NASA Astrophysics Data System (ADS)

    Peshkin, Michael A.

    Automated planning of grasping or manipulation requires an understanding of both the physics and the geometry of manipulation, and a representation of that knowledge which facilitates the search for successful strategies. We consider manipulation on a level conveyor belt or tabletop, on which a part may slide when touched by a robot. Manipulation plans for a given part must succeed in the face of two types of uncertainty: that of the details of surfaces in contact, and that of the initial configuration of the part. In general the points of contact between the part and the surface it slides on will be unknown, so the motion of the part in response to a push cannot be predicted exactly. Using a simple variational principle (which is derived), we find the set of possible motions of a part for a given push, for all collections of points of contact. The answer emerges as a locus of centers of rotation (CORs). Manipulation plans made using this locus will succeed despite unknown details of contact. Results of experimental tests of the COR loci are presented. Uncertainty in the initial configuration of a part is usually also present. To plan in the presence of uncertainty, configuration maps are defined, which map all configurations of a part before an elementary operation to all possible outcomes, thus encapsulating the physics and geometry of the operation. The configuration map for an operation sequence is a product of configuration maps of elementary operations. Using COR loci we compute configuration maps for elementary sliding operations. Appropriate search techniques are applied to find operation sequences which succeed in the presence of uncertainty in the initial configuration and unknown details of contact. Such operation sequences may be used as parts feeder designs or as manipulation or grasping strategies for robots. As an example we demonstrate the automated design of a class of passive parts feeders consisting of multiple sequential fences across a conveyor

  16. Object Manipulation Facilitates Kind-Based Object Individuation of Shape-Similar Objects

    ERIC Educational Resources Information Center

    Kingo, Osman S.; Krojgaard, Peter

    2011-01-01

    Five experiments investigated the importance of shape and object manipulation when 12-month-olds were given the task of individuating objects representing exemplars of kinds in an event-mapping design. In Experiments 1 and 2, results of the study from Xu, Carey, and Quint (2004, Experiment 4) were partially replicated, showing that infants were…

  17. Object Representation in Infants' Coordination of Manipulative Force

    ERIC Educational Resources Information Center

    Mash, Clay

    2007-01-01

    This study examined infants' use of object knowledge for scaling the manipulative force of object-directed actions. Infants 9, 12, and 15 months of age were outfitted with motion-analysis sensors on their arms and then presented with stimulus objects to examine individually over a series of familiarization trials. Two stimulus objects were used in…

  18. Superquadrics objects representation for robot manipulation

    NASA Astrophysics Data System (ADS)

    Silva, Eliana Costa e.; Costa, M. Fernanda; Erlhagen, Wolfram; Bicho, Estela

    2016-06-01

    Superquadric are mathematically quite simple and have the ability to obtain a variety of shapes using low order parameterization. Furthermore they present closed-form equations and therefore can be used in the formulation of robotic movement planning problems, in particular in obstacle-avoidance and grasping constraints. In this paper we explore the modeling of objects using superquadrics. The classical nonlinear optimization problem for fitting shapes is extended by adding nonlinear constraints. The numerical results obtained by two different optimization methods are presented and a comparison of the volume of the superquadrics to the volume of simple ellipsoids is made.

  19. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, B.A.; Maestre, M.F.; Fish, R.H.; Johnston, W.E.

    1997-09-23

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations and reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage. 11 figs.

  20. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, Bahram A.; Maestre, Marcos F.; Fish, Richard H.; Johnston, William E.

    1997-01-01

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations add reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage.

  1. Object impedance control for cooperative manipulation - Theory and experimental results

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Cannon, Robert H., Jr.

    1992-01-01

    This paper presents the dynamic control module of the Dynamic and Strategic Control of Cooperating Manipulators (DASCCOM) project at Stanford University's Aerospace Robotics Laboratory. First, the cooperative manipulation problem is analyzed from a systems perspective, and the desirable features of a control system for cooperative manipulation are discussed. Next, a control policy is developed that enforces a controlled impedance not of the individual arm endpoints, but of the manipulated object itself. A parallel implementation for a multiprocessor system is presented. The controller fully compensates for the system dynamics and directly controls the object internal forces. Most importantly, it presents a simple, powerful, intuitive interface to higher level strategic control modules. Experimental results from a dual two-link-arm robotic system are used to compare the object impedance controller with other strategies, both for free-motion slews and environmental contact.

  2. Object impedance control for cooperative manipulation - Theory and experimental results

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Cannon, Robert H., Jr.

    1989-01-01

    The dynamic control module being developed in the Dynamic and Strategic Control of Cooperative Manipulators (DASCCOM) project at the Stanford University Aerospace Robotics Laboratory is described. First, the cooperative manipulation problem is analyzed from a systems perspective, and the desirable features of a control system for cooperative manipulation are discussed. Next, a control policy is developed that enforces a controlled impedance not of the individual arm endpoints, but of the manipulated object itself. A parallel implementation for a multiprocessor system is presented. The controller fully compensates for the system dynamics and directly controls the object internal forces. Most importantly, it presents a simple, powerful, intuitive interface to the strategic controller. Experimental results for a dual two-link arm robotic system are presented to verify the controllers performance, for both free-motion slews and environmental contact.

  3. Phylogenetic Approach to Object Manipulation in Human and Ape Infants.

    ERIC Educational Resources Information Center

    Vauclair, Jacques

    1984-01-01

    Parker and Gibson's developmental model of evolution of language and intelligence in early hominids is described and discussed; data from a comparative study of object manipulation in two apes and a human infant are reported; and, human ontogenic developmental retardation in locomotion is discussed in terms of its implications for the differential…

  4. Holographic acoustic elements for manipulation of levitated objects

    NASA Astrophysics Data System (ADS)

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-10-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

  5. Holographic acoustic elements for manipulation of levitated objects.

    PubMed

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-10-27

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

  6. Holographic acoustic elements for manipulation of levitated objects.

    PubMed

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-01-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging. PMID:26505138

  7. Holographic acoustic elements for manipulation of levitated objects

    PubMed Central

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-01-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging. PMID:26505138

  8. Cognitive development in object manipulation by infant chimpanzees.

    PubMed

    Hayashi, Misato; Matsuzawa, Tetsuro

    2003-12-01

    This study focuses on the development of spontaneous object manipulation in three infant chimpanzees during their first 2 years of life. The three infants were raised by their biological mothers who lived among a group of chimpanzees. A human tester conducted a series of cognitive tests in a triadic situation where mothers collaborated with the researcher during the testing of the infants. Four tasks were presented, taken from normative studies of cognitive development of Japanese infants: inserting objects into corresponding holes in a box, seriating nesting cups, inserting variously shaped objects into corresponding holes in a template, and stacking up wooden blocks. The mothers had already acquired skills to perform these manipulation tasks. The infants were free to observe the mothers' manipulative behavior from immediately after birth. We focused on object-object combinations that were made spontaneously by the infant chimpanzees, without providing food reinforcement for any specific behavior that the infants performed. The three main findings can be summarized as follows. First, there was precocious appearance of object-object combination in infant chimpanzees: the age of onset (8-11 months) was comparable to that in humans (around 10 months old). Second, object-object combinations in chimpanzees remained at a low frequency between 11 and 16 months, then increased dramatically at the age of approximately 1.5 years. At the same time, the accuracy of these object-object combinations also increased. Third, chimpanzee infants showed inserting behavior frequently and from an early age but they did not exhibit stacking behavior during their first 2 years of life, in clear contrast to human data. PMID:12905079

  9. Manipulation and identification of objects by magnetic forces

    NASA Technical Reports Server (NTRS)

    Joffe, Benjamin

    1992-01-01

    An overview is presented of the results of research and engineering design activities over the past 20 years in the area of identification and manipulation of objects by magnetic forces. The relationship is discussed between the properties of objects and the parameters of magnetic fields, with the view toward being able to create forces for efficient manipulation and identification of different kinds of parts. Some of this information, particularly regarding nonferromagnetic materials, is relatively new and can be used to solve a variety of engineering problems by creating new types of automation systems. Topics covered include identification and orientation of bodies by magnetostatic and electrodynamic forces, electromagnetic recognition and orientation of nonsymmetric parts, and assembly and position control of parts by electromagnetic forces.

  10. Experimental object-level strategic control with cooperating manipulators

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Cannon, Robert H., Jr.

    1993-01-01

    This article presents the high-level control module and user interface of the Dynamic and Strategic Control of Cooperating Manipulators (DASCCOM) project at Stanford University's Aerospace Robotics Laboratory. In addition to cooperative dynamic control, DASCCOM incorporates real-time vision-ased feedback, a novel strategic programming technique, and an iconic 'object-only' graphical user interface. By focusing on the vertical integration problem, we are examining not only these subsystems, but also their interfaces and interactions. The control system implements a multilevel hierarchical structure interconnected via a real-time network. At the highest level, a mouse-driven graphical user interface allows an operator to direct the activities of the system conceptually. Strategic command is provided by an event-driven finite state machine. This methodology provides a powerful yet flexible technique for managing concurrent system interactions. The dynamic controller implements object impedance control - an extension of Neville Hogan's impedance control concept to cooperative multiple-arm manipulation of a single object. This article concentrates on user interfacing techniques and strategic programming capabilities. These modules allow the user to directly specify conceptual object relationships. Experimental results are presented, showing the system locating and identifying a moving object, 'catching' it, and performing a simple cooperative assembly. Each of these operations is executed autonomously, with only object-level task-specification direction from a remote operator.

  11. Conversation and Object Manipulation Influence Children's Learning in a Museum.

    PubMed

    Jant, Erin A; Haden, Catherine A; Uttal, David H; Babcock, Elizabeth

    2014-01-01

    The effects of parent-child conversation and object manipulation on children's learning, transfer of knowledge, and memory were examined in two museum exhibits and conversations recorded at home. Seventy-eight children (Mage  = 4.9) and their parents were randomly assigned to receive conversation cards featuring elaborative questions about exhibit objects, the physical objects themselves, both, or neither, before their exhibit visits. Dyads who received the cards engaged in more elaborative talk and joint nonverbal activities with objects in the first exhibit than those who did not. Dyads who received objects engaged in the most parent-child joint talk. Results also illustrate transfer of information across exhibits and from museum to home. Implications for understanding mechanisms of informal learning and transfer are discussed.

  12. Adaptation of lift forces in object manipulation through action observation.

    PubMed

    Reichelt, Andreas F; Ash, Alyssa M; Baugh, Lee A; Johansson, Roland S; Flanagan, J Randall

    2013-07-01

    The ability to predict accurately the weights of objects is essential for skilled and dexterous manipulation. A potentially important source of information about object weight is through the observation of other people lifting objects. Here, we tested the hypothesis that when watching an actor lift an object, people naturally learn the object's weight and use this information to scale forces when they subsequently lift the object themselves. Participants repeatedly lifted an object in turn with an actor. Object weight unpredictably changed between 2 and 7 N every 5th to 9th of the actor's lifts, and the weight lifted by the participant always matched that previously lifted by the actor. Even though the participants were uninformed about the structure of the experiment, they appropriately adapted their lifting force in the first trial after a weight change. Thus, participants updated their internal representation about the object's weight, for use in action, when watching a single lift performed by the actor. This ability presumably involves the comparison of predicted and actual sensory information related to actor's actions, a comparison process that is also fundamental in action.

  13. The Snodgrass and Vanderwart set revisited: norms for object manipulability and for pictorial ambiguity of objects, chimeric objects, and nonobjects.

    PubMed

    Magnié, M N; Besson, M; Poncet, M; Dolisi, C

    2003-06-01

    In this paper, we propose a standardized set of 480 black-and-white line drawings, half meaningful and half meaningless. Meaningful pictures represent a common object, and were selected from the Snodgrass and Vanderwart set (1980). Meaningless pictures include 120 chimeric objects (made up of two halves of real objects) and 120 nonobjects, that were constructed from the meaningful pictures while controlling for visual complexity. We report the results of two experiments designed to standardize the revisited Snodgrass and Vanderwart set along two important dimensions for picture processing: object manipulability (Experiment 1) and pictorial ambiguity (Experiment 2). The relevance of these dimensions is discussed. Experiment 1 permit us to sort objects into four manipulability categories (i.e., the ease and distinctiveness with which use of the object can be mimed) and to propose a manipulability index. This experiment provides additional evidence for a partial overlap in the dichotomy between man-made objects and living things, on the one hand, and manipulable and unmanipulable objects, on the other hand. In Experiment 2, a pictorial ambiguity index was computed for meaningful and meaningless pictures. The results of this experiment point the distinction between chimeric objects and nonobjects showing that chimeric objects are more complex to process than nonobjects and objects. This standardized set of pictures provides a database and an hopefully useful tool for research in cognitive neuroscience.

  14. Grip Forces During Object Manipulation: Experiment, Mathematical Model & Validation

    PubMed Central

    Slota, Gregory P.; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2011-01-01

    When people transport handheld objects, they change the grip force with the object movement. Circular movement patterns were tested within three planes at two different rates (1.0, 1.5 Hz), and two diameters (20, 40 cm). Subjects performed the task reasonably well, matching frequencies and dynamic ranges of accelerations within expectations. A mathematical model was designed to predict the applied normal forces from kinematic data. The model is based on two hypotheses: (a) the grip force changes during movements along complex trajectories can be represented as the sum of effects of two basic commands associated with the parallel and orthogonal manipulation, respectively; (b) different central commands are sent to the thumb and virtual finger (Vf- four fingers combined). The model predicted the actual normal forces with a total variance accounted for of better than 98%. The effects of the two components of acceleration—along the normal axis and the resultant acceleration within the shear plane—on the digit normal forces are additive. PMID:21735245

  15. Grip forces during object manipulation: experiment, mathematical model, and validation.

    PubMed

    Slota, Gregory P; Latash, Mark L; Zatsiorsky, Vladimir M

    2011-08-01

    When people transport handheld objects, they change the grip force with the object movement. Circular movement patterns were tested within three planes at two different rates (1.0, 1.5 Hz) and two diameters (20, 40 cm). Subjects performed the task reasonably well, matching frequencies and dynamic ranges of accelerations within expectations. A mathematical model was designed to predict the applied normal forces from kinematic data. The model is based on two hypotheses: (a) the grip force changes during movements along complex trajectories can be represented as the sum of effects of two basic commands associated with the parallel and orthogonal manipulation, respectively; (b) different central commands are sent to the thumb and virtual finger (Vf-four fingers combined). The model predicted the actual normal forces with a total variance accounted for of better than 98%. The effects of the two components of acceleration-along the normal axis and the resultant acceleration within the shear plane-on the digit normal forces are additive. PMID:21735245

  16. OOM - OBJECT ORIENTATION MANIPULATOR, VERSION 6.1

    NASA Technical Reports Server (NTRS)

    Goza, S. P.

    1994-01-01

    The Object Orientation Manipulator (OOM) is an application program for creating, rendering, and recording three-dimensional computer-generated still and animated images. This is done using geometrically defined 3D models, cameras, and light sources, referred to collectively as animation elements. OOM does not provide the tools necessary to construct 3D models; instead, it imports binary format model files generated by the Solid Surface Modeler (SSM). Model files stored in other formats must be converted to the SSM binary format before they can be used in OOM. SSM is available as MSC-21914 or as part of the SSM/OOM bundle, COS-10047. Among OOM's features are collision detection (with visual and audio feedback), the capability to define and manipulate hierarchical relationships between animation elements, stereographic display, and ray-traced rendering. OOM uses Euler angle transformations for calculating the results of translation and rotation operations. OOM provides an interactive environment for the manipulation and animation of models, cameras, and light sources. Models are the basic entity upon which OOM operates and are therefore considered the primary animation elements. Cameras and light sources are considered secondary animation elements. A camera, in OOM, is simply a location within the three-space environment from which the contents of the environment are observed. OOM supports the creation and full animation of cameras. Light sources can be defined, positioned and linked to models, but they cannot be animated independently. OOM can simultaneously accommodate as many animation elements as the host computer's memory permits. Once the required animation elements are present, the user may position them, orient them, and define any initial relationships between them. Once the initial relationships are defined, the user can display individual still views for rendering and output, or define motion for the animation elements by using the Interp Animation Editor

  17. The Development of Clinical Reasoning Skills: A Major Objective of the Anatomy Course

    ERIC Educational Resources Information Center

    Elizondo-Omana, Rodrigo E.; Lopez, Santos Guzman

    2008-01-01

    Traditional medical school curricula have made a clear demarcation between the basic biomedical sciences and the clinical years. It is our view that a comprehensive medical education necessarily involves an increased correlation between basic science knowledge and its clinical applications. A basic anatomy course should have two main objectives:…

  18. OOM - OBJECT ORIENTATION MANIPULATOR, VERSION 6.1

    NASA Technical Reports Server (NTRS)

    Goza, S. P.

    1994-01-01

    The Object Orientation Manipulator (OOM) is an application program for creating, rendering, and recording three-dimensional computer-generated still and animated images. This is done using geometrically defined 3D models, cameras, and light sources, referred to collectively as animation elements. OOM does not provide the tools necessary to construct 3D models; instead, it imports binary format model files generated by the Solid Surface Modeler (SSM). Model files stored in other formats must be converted to the SSM binary format before they can be used in OOM. SSM is available as MSC-21914 or as part of the SSM/OOM bundle, COS-10047. Among OOM's features are collision detection (with visual and audio feedback), the capability to define and manipulate hierarchical relationships between animation elements, stereographic display, and ray-traced rendering. OOM uses Euler angle transformations for calculating the results of translation and rotation operations. OOM provides an interactive environment for the manipulation and animation of models, cameras, and light sources. Models are the basic entity upon which OOM operates and are therefore considered the primary animation elements. Cameras and light sources are considered secondary animation elements. A camera, in OOM, is simply a location within the three-space environment from which the contents of the environment are observed. OOM supports the creation and full animation of cameras. Light sources can be defined, positioned and linked to models, but they cannot be animated independently. OOM can simultaneously accommodate as many animation elements as the host computer's memory permits. Once the required animation elements are present, the user may position them, orient them, and define any initial relationships between them. Once the initial relationships are defined, the user can display individual still views for rendering and output, or define motion for the animation elements by using the Interp Animation Editor

  19. Repetition Blindness Reveals Differences between the Representations of Manipulable and Nonmanipulable Objects

    ERIC Educational Resources Information Center

    Harris, Irina M.; Murray, Alexandra M.; Hayward, William G.; O'Callaghan, Claire; Andrews, Sally

    2012-01-01

    We used repetition blindness to investigate the nature of the representations underlying identification of manipulable objects. Observers named objects presented in rapid serial visual presentation streams containing either manipulable or nonmanipulable objects. In half the streams, 1 object was repeated. Overall accuracy was lower when streams…

  20. The effect of manipulability and religion on the multisensory integration of objects in peripersonal space.

    PubMed

    van Elk, Michiel

    2014-01-01

    In this study participants were required to respond to vibrotactile stimuli applied to the hand while ignoring visual distractors superimposed on pictures representing Christian, Hindu, or profane objects that were categorized as manipulable or non-manipulable. Overall, participants responded slower when the visual distractor appeared at an incongruent location with respect to the vibrotactile stimulus, which is known as the crossmodal congruency effect (i.e., CCE). The CCE was modulated by the type of object involved (i.e., Christian, Hindu, or Profane), the object manipulability (i.e., manipulable vs. non-manipulable) and the religious background of the participant (i.e., Christian, Hindu, or non-religious). The finding that both object manipulability, the religious significance of the object, and the religious background of the participant have a combined effect on multisensory integration suggests important interactions between low-level body-object integration and the symbolic extension of the self. PMID:24168203

  1. The effect of manipulability and religion on the multisensory integration of objects in peripersonal space.

    PubMed

    van Elk, Michiel

    2014-01-01

    In this study participants were required to respond to vibrotactile stimuli applied to the hand while ignoring visual distractors superimposed on pictures representing Christian, Hindu, or profane objects that were categorized as manipulable or non-manipulable. Overall, participants responded slower when the visual distractor appeared at an incongruent location with respect to the vibrotactile stimulus, which is known as the crossmodal congruency effect (i.e., CCE). The CCE was modulated by the type of object involved (i.e., Christian, Hindu, or Profane), the object manipulability (i.e., manipulable vs. non-manipulable) and the religious background of the participant (i.e., Christian, Hindu, or non-religious). The finding that both object manipulability, the religious significance of the object, and the religious background of the participant have a combined effect on multisensory integration suggests important interactions between low-level body-object integration and the symbolic extension of the self.

  2. Young Children's Reasoning and Recall in an Object Manipulation Task.

    ERIC Educational Resources Information Center

    Junn, Ellen; Sugarman, Susan

    A study investigated developments in reasoning and memory as reflected by the discovery strategies of children taking part in a manipulative categorization and recall task. A total of 40 children (8 each of 18, 24, 30, 36, and 42 months of age) participated. Stimulus materials consisting of blocks, toy plates, discs, and plastic trees were…

  3. Study of Hamadryas Baboons (Papio Hamadryas) Ability to Solve Object Manipulation Tasks.

    PubMed

    Anikaev, A E; Chalyan, V G; Meishvili, N V

    2015-05-01

    Cognitive ability to solve object manipulation tasks was evaluated by "string pulling" and "transparent tube" tests. The string pulling task was solved by 7 of 11 animals. The task of object extraction from the tube was too difficult, not a single animal solved it. The authors conclude that Hamadryas baboons demonstrated rather poor ability to solve object manipulation tasks.

  4. New graphene technologies of manipulation with molecular objects

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Savost'yanov, G. V.; Slepchenkov, M. M.; Shunaev, V. V.

    2016-06-01

    A new technique of manipulating with fullerene C60 over graphene on a SiO2 substrate is proposed. To stop the chaotic motion of molecules and limit its range, it is suggested to use a corrugated substrate. The study has shown that, at the corrugation wavelength of 3.4 nm and depth of 1.6 nm, the fullerene motion becomes directed with a deviation within 0.5 nm. The fullerene motion becomes even more definite, with a deviation from a straight line within tenths of an angstrom by the action of an external electric field, which allows one to manipulate the motion along the bottom of a groove. The method proposed can serve as a basis for the controlled assembly of molecules to supermolecular structures of given configurations, which can be applied in bio- and nanoelectronics.

  5. Computer Simulations and the Transition from Concrete Manipulation of Objects to Abstract Thinking.

    ERIC Educational Resources Information Center

    Berlin, Donna F.; White, Arthur L.

    This study explores a learning model which suggests that a concept is acquired first through manipulation of concrete objects followed by transformation of the concrete objects into semi-concrete representations, followed by internalization of the concept through abstract representations. Microcomputer simulations of manipulative activities were…

  6. Anatomy of an experimental two-link flexible manipulator under end-point control

    NASA Technical Reports Server (NTRS)

    Oakley, Celia M.; Cannon, Robert H., Jr.

    1990-01-01

    The design and experimental implementation of an end-point controller for two-link flexible manipulators are presented. The end-point controller is based on linear quadratic Gaussian (LQG) theory and is shown to exhibit significant improvements in trajectory tracking over a conventional controller design. To understand the behavior of the manipulator structure under end-point control, a strobe sequence illustrating the link deflections during a typical slew maneuver is included.

  7. ERPs Differentially Reflect Automatic and Deliberate Processing of the Functional Manipulability of Objects.

    PubMed

    Madan, Christopher R; Chen, Yvonne Y; Singhal, Anthony

    2016-01-01

    It is known that the functional properties of an object can interact with perceptual, cognitive, and motor processes. Previously we have found that a between-subjects manipulation of judgment instructions resulted in different manipulability-related memory biases in an incidental memory test. To better understand this effect we recorded electroencephalography (EEG) while participants made judgments about images of objects that were either high or low in functional manipulability (e.g., hammer vs. ladder). Using a between-subjects design, participants judged whether they had seen the object recently (Personal Experience), or could manipulate the object using their hand (Functionality). We focused on the P300 and slow-wave event-related potentials (ERPs) as reflections of attentional allocation. In both groups, we observed higher P300 and slow wave amplitudes for high-manipulability objects at electrodes Pz and C3. As P300 is thought to reflect bottom-up attentional processes, this may suggest that the processing of high-manipulability objects recruited more attentional resources. Additionally, the P300 effect was greater in the Functionality group. A more complex pattern was observed at electrode C3 during slow wave: processing the high-manipulability objects in the Functionality instruction evoked a more positive slow wave than in the other three conditions, likely related to motor simulation processes. These data provide neural evidence that effects of manipulability on stimulus processing are further mediated by automatic vs. deliberate motor-related processing. PMID:27536224

  8. ERPs Differentially Reflect Automatic and Deliberate Processing of the Functional Manipulability of Objects

    PubMed Central

    Madan, Christopher R.; Chen, Yvonne Y.; Singhal, Anthony

    2016-01-01

    It is known that the functional properties of an object can interact with perceptual, cognitive, and motor processes. Previously we have found that a between-subjects manipulation of judgment instructions resulted in different manipulability-related memory biases in an incidental memory test. To better understand this effect we recorded electroencephalography (EEG) while participants made judgments about images of objects that were either high or low in functional manipulability (e.g., hammer vs. ladder). Using a between-subjects design, participants judged whether they had seen the object recently (Personal Experience), or could manipulate the object using their hand (Functionality). We focused on the P300 and slow-wave event-related potentials (ERPs) as reflections of attentional allocation. In both groups, we observed higher P300 and slow wave amplitudes for high-manipulability objects at electrodes Pz and C3. As P300 is thought to reflect bottom-up attentional processes, this may suggest that the processing of high-manipulability objects recruited more attentional resources. Additionally, the P300 effect was greater in the Functionality group. A more complex pattern was observed at electrode C3 during slow wave: processing the high-manipulability objects in the Functionality instruction evoked a more positive slow wave than in the other three conditions, likely related to motor simulation processes. These data provide neural evidence that effects of manipulability on stimulus processing are further mediated by automatic vs. deliberate motor-related processing. PMID:27536224

  9. Captive Bottlenose Dolphins (Tursiops truncatus) Spontaneously Using Water Flow to Manipulate Objects

    PubMed Central

    Yamamoto, Chisato; Furuta, Keisuke; Taki, Michihiro; Morisaka, Tadamichi

    2014-01-01

    Several terrestrial animals and delphinids manipulate objects in a tactile manner, using parts of their bodies, such as their mouths or hands. In this paper, we report that bottlenose dolphins (Tursiops truncatus) manipulate objects not by direct bodily contact, but by spontaneous water flow. Three of four dolphins at Suma Aqualife Park performed object manipulation with food. The typical sequence of object manipulation consisted of a three step procedure. First, the dolphins released the object from the sides of their mouths while assuming a head-down posture near the floor. They then manipulated the object around their mouths and caught it. Finally, they ceased to engage in their head-down posture and started to swim. When the dolphins moved the object, they used the water current in the pool or moved their head. These results showed that dolphins manipulate objects using movements that do not directly involve contact between a body part and the object. In the event the dolphins dropped the object on the floor, they lifted it by making water flow in one of three methods: opening and closing their mouths repeatedly, moving their heads lengthwise, or making circular head motions. This result suggests that bottlenose dolphins spontaneously change their environment to manipulate objects. The reason why aquatic animals like dolphins do object manipulation by changing their environment but terrestrial animals do not may be that the viscosity of the aquatic environment is much higher than it is in terrestrial environments. This is the first report thus far of any non-human mammal engaging in object manipulation using several methods to change their environment. PMID:25250625

  10. Infants' prospective control during object manipulation in an uncertain environment.

    PubMed

    Gottwald, Janna M; Gredebäck, Gustaf

    2015-08-01

    This study investigates how infants use visual and sensorimotor information to prospectively control their actions. We gave 14-month-olds two objects of different weight and observed how high they were lifted, using a Qualisys Motion Capture System. In one condition, the two objects were visually distinct (different color condition) in another they were visually identical (same color condition). Lifting amplitudes of the first movement unit were analyzed in order to assess prospective control. Results demonstrate that infants lifted a light object higher than a heavy object, especially when vision could be used to assess weight (different color condition). When being confronted with two visually identical objects of different weight (same color condition), infants showed a different lifting pattern than what could be observed in the different color condition, expressed by a significant interaction effect between object weight and color condition on lifting amplitude. These results indicate that (a) visual information about object weight can be used to prospectively control lifting actions and that (b) infants are able to prospectively control their lifting actions even without visual information about object weight. We argue that infants, in the absence of reliable visual information about object weight, heighten their dependence on non-visual information (tactile, sensorimotor memory) in order to estimate weight and pre-adjust their lifting actions in a prospective manner. PMID:25963753

  11. Physiological reactivity during object manipulation among cigarette-exposed infants at 9 months of age.

    PubMed

    Schuetze, Pamela; Lessard, Jared; Colder, Craig R; Maiorana, Nicole; Shisler, Shannon; Eiden, Rina D; Huestis, Marilyn A; Henrie, James

    2015-01-01

    The purpose of this study was to examine the association between prenatal exposure to cigarettes and heart rate during an object manipulation task at 9 months of age. Second-by-second heart rate was recorded for 181 infants who were prenatally exposed to cigarettes and 77 nonexposed infants during the manipulation of four standardized toys. A series of longitudinal multilevel models were run to examine the association of prenatal smoking on the intercept and slope of heart rate during four 90-second object manipulation tasks. After controlling for maternal age, prenatal marijuana and alcohol use, duration of focused attention and activity level, results indicated that the heart rates of exposed infants significantly increased during the object manipulation task. These findings suggest casual rather than focused attention and a possible increase in physiological arousal during object manipulation. PMID:25681531

  12. Perspectives on object manipulation and action grammar for percussive actions in primates.

    PubMed

    Hayashi, Misato

    2015-11-19

    The skill of object manipulation is a common feature of primates including humans, although there are species-typical patterns of manipulation. Object manipulation can be used as a comparative scale of cognitive development, focusing on its complexity. Nut cracking in chimpanzees has the highest hierarchical complexity of tool use reported in non-human primates. An analysis of the patterns of object manipulation in naive chimpanzees after nut-cracking demonstrations revealed the cause of difficulties in learning nut-cracking behaviour. Various types of behaviours exhibited within a nut-cracking context can be examined in terms of the application of problem-solving strategies, focusing on their basis in causal understanding or insightful intentionality. Captive chimpanzees also exhibit complex forms of combinatory manipulation, which is the precursor of tool use. A new notation system of object manipulation was invented to assess grammatical rules in manipulative actions. The notation system of action grammar enabled direct comparisons to be made between primates including humans in a variety of object-manipulation tasks, including percussive-tool use.

  13. Perspectives on object manipulation and action grammar for percussive actions in primates.

    PubMed

    Hayashi, Misato

    2015-11-19

    The skill of object manipulation is a common feature of primates including humans, although there are species-typical patterns of manipulation. Object manipulation can be used as a comparative scale of cognitive development, focusing on its complexity. Nut cracking in chimpanzees has the highest hierarchical complexity of tool use reported in non-human primates. An analysis of the patterns of object manipulation in naive chimpanzees after nut-cracking demonstrations revealed the cause of difficulties in learning nut-cracking behaviour. Various types of behaviours exhibited within a nut-cracking context can be examined in terms of the application of problem-solving strategies, focusing on their basis in causal understanding or insightful intentionality. Captive chimpanzees also exhibit complex forms of combinatory manipulation, which is the precursor of tool use. A new notation system of object manipulation was invented to assess grammatical rules in manipulative actions. The notation system of action grammar enabled direct comparisons to be made between primates including humans in a variety of object-manipulation tasks, including percussive-tool use. PMID:26483528

  14. The Development of Object Function and Manipulation Knowledge: Evidence from a Semantic Priming Study

    PubMed Central

    Collette, Cynthia; Bonnotte, Isabelle; Jacquemont, Charlotte; Kalénine, Solène; Bartolo, Angela

    2016-01-01

    Object semantics include object function and manipulation knowledge. Function knowledge refers to the goal attainable by using an object (e.g., the function of a key is to open or close a door) while manipulation knowledge refers to gestures one has to execute to use an object appropriately (e.g., a key is held between the thumb and the index, inserted into the door lock and then turned). To date, several studies have assessed function and manipulation knowledge in brain lesion patients as well as in healthy adult populations. In patients with left brain damage, a double dissociation between these two types of knowledge has been reported; on the other hand, behavioral studies in healthy adults show that function knowledge is processed faster than manipulation knowledge. Empirical evidence has shown that object interaction in children differs from that in adults, suggesting that the access to function and manipulation knowledge in children might also differ. To investigate the development of object function and manipulation knowledge, 51 typically developing 8-9-10 year-old children and 17 healthy young adults were tested on a naming task associated with a semantic priming paradigm (190-ms SOA; prime duration: 90 ms) in which a series of line drawings of manipulable objects were used. Target objects could be preceded by three priming contexts: related (e.g., knife-scissors for function; key-screwdriver for manipulation), unrelated but visually similar (e.g., glasses-scissors; baseball bat-screwdriver), and purely unrelated (e.g., die-scissors; tissue-screwdriver). Results showed a different developmental pattern of function and manipulation priming effects. Function priming effects were not present in children and emerged only in adults, with faster naming responses for targets preceded by objects sharing the same function. In contrast, manipulation priming effects were already present in 8-year-olds with faster naming responses for targets preceded by objects

  15. The Development of Object Function and Manipulation Knowledge: Evidence from a Semantic Priming Study

    PubMed Central

    Collette, Cynthia; Bonnotte, Isabelle; Jacquemont, Charlotte; Kalénine, Solène; Bartolo, Angela

    2016-01-01

    Object semantics include object function and manipulation knowledge. Function knowledge refers to the goal attainable by using an object (e.g., the function of a key is to open or close a door) while manipulation knowledge refers to gestures one has to execute to use an object appropriately (e.g., a key is held between the thumb and the index, inserted into the door lock and then turned). To date, several studies have assessed function and manipulation knowledge in brain lesion patients as well as in healthy adult populations. In patients with left brain damage, a double dissociation between these two types of knowledge has been reported; on the other hand, behavioral studies in healthy adults show that function knowledge is processed faster than manipulation knowledge. Empirical evidence has shown that object interaction in children differs from that in adults, suggesting that the access to function and manipulation knowledge in children might also differ. To investigate the development of object function and manipulation knowledge, 51 typically developing 8-9-10 year-old children and 17 healthy young adults were tested on a naming task associated with a semantic priming paradigm (190-ms SOA; prime duration: 90 ms) in which a series of line drawings of manipulable objects were used. Target objects could be preceded by three priming contexts: related (e.g., knife-scissors for function; key-screwdriver for manipulation), unrelated but visually similar (e.g., glasses-scissors; baseball bat-screwdriver), and purely unrelated (e.g., die-scissors; tissue-screwdriver). Results showed a different developmental pattern of function and manipulation priming effects. Function priming effects were not present in children and emerged only in adults, with faster naming responses for targets preceded by objects sharing the same function. In contrast, manipulation priming effects were already present in 8-year-olds with faster naming responses for targets preceded by objects

  16. The Development of Object Function and Manipulation Knowledge: Evidence from a Semantic Priming Study.

    PubMed

    Collette, Cynthia; Bonnotte, Isabelle; Jacquemont, Charlotte; Kalénine, Solène; Bartolo, Angela

    2016-01-01

    Object semantics include object function and manipulation knowledge. Function knowledge refers to the goal attainable by using an object (e.g., the function of a key is to open or close a door) while manipulation knowledge refers to gestures one has to execute to use an object appropriately (e.g., a key is held between the thumb and the index, inserted into the door lock and then turned). To date, several studies have assessed function and manipulation knowledge in brain lesion patients as well as in healthy adult populations. In patients with left brain damage, a double dissociation between these two types of knowledge has been reported; on the other hand, behavioral studies in healthy adults show that function knowledge is processed faster than manipulation knowledge. Empirical evidence has shown that object interaction in children differs from that in adults, suggesting that the access to function and manipulation knowledge in children might also differ. To investigate the development of object function and manipulation knowledge, 51 typically developing 8-9-10 year-old children and 17 healthy young adults were tested on a naming task associated with a semantic priming paradigm (190-ms SOA; prime duration: 90 ms) in which a series of line drawings of manipulable objects were used. Target objects could be preceded by three priming contexts: related (e.g., knife-scissors for function; key-screwdriver for manipulation), unrelated but visually similar (e.g., glasses-scissors; baseball bat-screwdriver), and purely unrelated (e.g., die-scissors; tissue-screwdriver). Results showed a different developmental pattern of function and manipulation priming effects. Function priming effects were not present in children and emerged only in adults, with faster naming responses for targets preceded by objects sharing the same function. In contrast, manipulation priming effects were already present in 8-year-olds with faster naming responses for targets preceded by objects

  17. The Development of Object Function and Manipulation Knowledge: Evidence from a Semantic Priming Study.

    PubMed

    Collette, Cynthia; Bonnotte, Isabelle; Jacquemont, Charlotte; Kalénine, Solène; Bartolo, Angela

    2016-01-01

    Object semantics include object function and manipulation knowledge. Function knowledge refers to the goal attainable by using an object (e.g., the function of a key is to open or close a door) while manipulation knowledge refers to gestures one has to execute to use an object appropriately (e.g., a key is held between the thumb and the index, inserted into the door lock and then turned). To date, several studies have assessed function and manipulation knowledge in brain lesion patients as well as in healthy adult populations. In patients with left brain damage, a double dissociation between these two types of knowledge has been reported; on the other hand, behavioral studies in healthy adults show that function knowledge is processed faster than manipulation knowledge. Empirical evidence has shown that object interaction in children differs from that in adults, suggesting that the access to function and manipulation knowledge in children might also differ. To investigate the development of object function and manipulation knowledge, 51 typically developing 8-9-10 year-old children and 17 healthy young adults were tested on a naming task associated with a semantic priming paradigm (190-ms SOA; prime duration: 90 ms) in which a series of line drawings of manipulable objects were used. Target objects could be preceded by three priming contexts: related (e.g., knife-scissors for function; key-screwdriver for manipulation), unrelated but visually similar (e.g., glasses-scissors; baseball bat-screwdriver), and purely unrelated (e.g., die-scissors; tissue-screwdriver). Results showed a different developmental pattern of function and manipulation priming effects. Function priming effects were not present in children and emerged only in adults, with faster naming responses for targets preceded by objects sharing the same function. In contrast, manipulation priming effects were already present in 8-year-olds with faster naming responses for targets preceded by objects

  18. MANIPULATION OF A FRAGILE OBJECT BY ELDERLY INDIVIDUALS

    PubMed Central

    Gorniak, Stacey L.; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2011-01-01

    We investigated strategies of healthy elderly participants (74–84 years old) during prehension and transport of an object with varying degrees of fragility. Fragility was specified as the maximal normal force that the object could withstand without collapsing. Specifically, kinetic and kinematic variables as well as and force co-variation indices were quantified and compared to those shown by young healthy persons (19–28 years old). We tested three hypotheses related to age-related changes in two safety margins (slip safety margin and crush safety margin) and indices of force co-variation. Compared to young controls, elderly individuals exhibited a decrease in object acceleration and an increase in movement time, an increase in grip force production, a decrease in the correlation between grip and load forces, an overall decrease in indices of multi-digit synergies, and lower safety margin indices computed with respect to both dropping and crushing the object. Elderly participants preferred to be at a relatively lower risk of crushing the object even if this led to a higher risk of dropping it. Both groups showed an increase in the index of synergy stabilizing total normal force produced by the four fingers with increased fragility of the object. Age related changes are viewed as a direct result of physiological changes due to aging, not adaptation to object fragility. Such changes in overall characteristics of prehension likely reflect diminished synergic control by the central nervous system of finger forces with aging. The findings corroborate an earlier hypothesis on an age-related shift from synergic to element-based control. PMID:21667292

  19. Manipulation of a fragile object by elderly individuals.

    PubMed

    Gorniak, Stacey L; Zatsiorsky, Vladimir M; Latash, Mark L

    2011-08-01

    We investigated strategies of healthy elderly participants (74-84 years old) during prehension and transport of an object with varying degrees of fragility. Fragility was specified as the maximal normal force that the object could withstand without collapsing. Specifically, kinetic and kinematic variables as well as and force covariation indices were quantified and compared to those shown by young healthy persons (19-28 years old). We tested three hypotheses related to age-related changes in two safety margins (slip safety margin and crush safety margin) and indices of force covariation. Compared to young controls, elderly individuals exhibited a decrease in object acceleration and an increase in movement time, an increase in grip force production, a decrease in the correlation between grip and load forces, an overall decrease in indices of multi-digit synergies, and lower safety margin indices computed with respect to both dropping and crushing the object. Elderly participants preferred to be at a relatively lower risk of crushing the object even if this led to a higher risk of dropping it. Both groups showed an increase in the index of synergy stabilizing total normal force produced by the four fingers with increased fragility of the object. Age-related changes are viewed as a direct result of physiological changes due to aging, not adaptation to object fragility. Such changes in overall characteristics of prehension likely reflect diminished synergic control by the central nervous system of finger forces with aging. The findings corroborate an earlier hypothesis on an age-related shift from synergic to element-based control. PMID:21667292

  20. Contactless automated manipulation of mesoscale objects using opto-fluidic actuation and visual servoing.

    PubMed

    Vela, Emir; Hafez, Moustapha; Régnier, Stéphane

    2014-05-01

    This work describes an automated opto-fluidic system for parallel non-contact manipulation of microcomponents. The strong dynamics of laser-driven thermocapillary flows were used to drag microcomponents at high speeds. High-speed flows allowed to manipulate micro-objects in a parallel manner only using a single laser and a mirror scanner. An automated process was implemented using visual servoing with a high-speed camera in order to achieve accurately parallel manipulation. Automated manipulation of two glass beads of 30 up to 300 μm in diameter moving in parallel at speeds in the range of mm/s was demonstrated.

  1. Contactless automated manipulation of mesoscale objects using opto-fluidic actuation and visual servoing.

    PubMed

    Vela, Emir; Hafez, Moustapha; Régnier, Stéphane

    2014-05-01

    This work describes an automated opto-fluidic system for parallel non-contact manipulation of microcomponents. The strong dynamics of laser-driven thermocapillary flows were used to drag microcomponents at high speeds. High-speed flows allowed to manipulate micro-objects in a parallel manner only using a single laser and a mirror scanner. An automated process was implemented using visual servoing with a high-speed camera in order to achieve accurately parallel manipulation. Automated manipulation of two glass beads of 30 up to 300 μm in diameter moving in parallel at speeds in the range of mm/s was demonstrated. PMID:24880415

  2. Sinus Anatomy

    MedlinePlus

    ... ARS HOME ANATOMY Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ... ANATOMY > Sinus Anatomy Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ...

  3. Spatial selectivity to manipulate portable objects in wedge-capped capuchins (Cebus olivaceus).

    PubMed

    Dubois, Michel Jean; Gerard, Jean-François; Pontes, Fernando

    2005-04-01

    We studied the manipulative activity of five wedge-capped capuchins (Cebus olivaceus) confronted with different types of unfamiliar and portable objects: wooden blocks, plastic rings, spoons, and coconuts. Combinatorial manipulations involving two portable objects of the same type were quite frequent. The lately introduced objects, whatever their kind, appeared as the most attractive. Nevertheless, some objects remained very attractive throughout the overall experiment, especially the wooden blocks which elicited more combinatorial and striking behaviors than the other objects. Concerning space, we observed that the individuals choose specific locations to perform their manipulative acts. The spatial distributions of these acts were more concentrated, and less concordant between individuals, in the present study than in two others conducted with the same group but involving the manipulation of familiar objects. This suggests that individual differences were more marked when the subjects manipulated unfamiliar objects than when they manipulated familiar ones. This finding may have applications when the members of a group have to benefit from an enrichment of their environment. PMID:15549610

  4. 77 FR 48198 - Culturally Significant Objects Imported for Exhibition Determinations: “Faking It: Manipulated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE Culturally Significant Objects Imported for Exhibition Determinations: ``Faking It: Manipulated Photography... Photography Before Photoshop,'' imported from abroad for temporary exhibition within the United States, are...

  5. Manipulability and Living/non-Living Category Effects on Object Identification

    ERIC Educational Resources Information Center

    Filliter, J.H.; McMullen, P.A.; Westwood, D.

    2005-01-01

    Object naming studies have generally observed that both normal and brain damaged individuals are faster and more accurate at identifying non-living objects than living objects (Humphreys, Riddoch, & Quinlan, 1988; Warrington & Shallice, 1984). However, a potential confounding variable, manipulability, has been present in past studies that may…

  6. Predicting objective function weights from patient anatomy in prostate IMRT treatment planning

    SciTech Connect

    Lee, Taewoo Hammad, Muhannad; Chan, Timothy C. Y.; Craig, Tim; Sharpe, Michael B.

    2013-12-15

    Purpose: Intensity-modulated radiation therapy (IMRT) treatment planning typically combines multiple criteria into a single objective function by taking a weighted sum. The authors propose a statistical model that predicts objective function weights from patient anatomy for prostate IMRT treatment planning. This study provides a proof of concept for geometry-driven weight determination. Methods: A previously developed inverse optimization method (IOM) was used to generate optimal objective function weights for 24 patients using their historical treatment plans (i.e., dose distributions). These IOM weights were around 1% for each of the femoral heads, while bladder and rectum weights varied greatly between patients. A regression model was developed to predict a patient's rectum weight using the ratio of the overlap volume of the rectum and bladder with the planning target volume at a 1 cm expansion as the independent variable. The femoral head weights were fixed to 1% each and the bladder weight was calculated as one minus the rectum and femoral head weights. The model was validated using leave-one-out cross validation. Objective values and dose distributions generated through inverse planning using the predicted weights were compared to those generated using the original IOM weights, as well as an average of the IOM weights across all patients. Results: The IOM weight vectors were on average six times closer to the predicted weight vectors than to the average weight vector, usingl{sub 2} distance. Likewise, the bladder and rectum objective values achieved by the predicted weights were more similar to the objective values achieved by the IOM weights. The difference in objective value performance between the predicted and average weights was statistically significant according to a one-sided sign test. For all patients, the difference in rectum V54.3 Gy, rectum V70.0 Gy, bladder V54.3 Gy, and bladder V70.0 Gy values between the dose distributions generated by the

  7. Identification and Active Exploration of Deformable Object Boundary Constraints through Robotic Manipulation

    PubMed Central

    Boonvisut, Pasu; Cavusoglu, M. Cenk

    2014-01-01

    Robotic motion planning algorithms for manipulation of deformable objects, such as in medical robotics applications, rely on accurate estimations of object deformations that occur during manipulation. An estimation of the tissue response (for off-line planning or real-time on-line re-planning), in turn, requires knowledge of both object constitutive parameters and boundary constraints. In this paper, a novel algorithm for estimating boundary constraints of deformable objects from robotic manipulation data is presented. The proposed algorithm uses tissue deformation data collected with a vision system, and employs a multi-stage hill climbing procedure to estimate the boundary constraints of the object. An active exploration technique, which uses an information maximization approach, is also proposed to extend the identification algorithm. The effects of uncertainties on the proposed methods are analyzed in simulation. The results of experimental evaluation of the methods are also presented. PMID:25684836

  8. On the Dynamics of Action Representations Evoked by Names of Manipulable Objects

    ERIC Educational Resources Information Center

    Bub, Daniel N.; Masson, Michael E. J.

    2012-01-01

    Two classes of hand action representations are shown to be activated by listening to the name of a manipulable object (e.g., cellphone). The functional action associated with the proper use of an object is evoked soon after the onset of its name, as indicated by primed execution of that action. Priming is sustained throughout the duration of the…

  9. The Function of Words: Distinct Neural Correlates for Words Denoting Differently Manipulable Objects

    ERIC Educational Resources Information Center

    Rueschemeyer, Shirley-Ann; van Rooij, Daan; Lindemann, Oliver; Willems, Roel M.; Bekkering, Harold

    2010-01-01

    Recent research indicates that language processing relies on brain areas dedicated to perception and action. For example, processing words denoting manipulable objects has been shown to activate a fronto-parietal network involved in actual tool use. This is suggested to reflect the knowledge the subject has about how objects are moved and used.…

  10. Object Manipulation and Motion Perception: Evidence of an Influence of Action Planning on Visual Processing

    ERIC Educational Resources Information Center

    Lindemann, Oliver; Bekkering, Harold

    2009-01-01

    In 3 experiments, the authors investigated the bidirectional coupling of perception and action in the context of object manipulations and motion perception. Participants prepared to grasp an X-shaped object along one of its 2 diagonals and to rotate it in a clockwise or a counterclockwise direction. Action execution had to be delayed until the…

  11. Extracting Objects for Aerial Manipulation on UAVs Using Low Cost Stereo Sensors.

    PubMed

    Ramon Soria, Pablo; Bevec, Robert; Arrue, Begoña C; Ude, Aleš; Ollero, Aníbal

    2016-01-01

    Giving unmanned aerial vehicles (UAVs) the possibility to manipulate objects vastly extends the range of possible applications. This applies to rotary wing UAVs in particular, where their capability of hovering enables a suitable position for in-flight manipulation. Their manipulation skills must be suitable for primarily natural, partially known environments, where UAVs mostly operate. We have developed an on-board object extraction method that calculates information necessary for autonomous grasping of objects, without the need to provide the model of the object's shape. A local map of the work-zone is generated using depth information, where object candidates are extracted by detecting areas different to our floor model. Their image projections are then evaluated using support vector machine (SVM) classification to recognize specific objects or reject bad candidates. Our method builds a sparse cloud representation of each object and calculates the object's centroid and the dominant axis. This information is then passed to a grasping module. Our method works under the assumption that objects are static and not clustered, have visual features and the floor shape of the work-zone area is known. We used low cost cameras for creating depth information that cause noisy point clouds, but our method has proved robust enough to process this data and return accurate results. PMID:27187413

  12. Extracting Objects for Aerial Manipulation on UAVs Using Low Cost Stereo Sensors.

    PubMed

    Ramon Soria, Pablo; Bevec, Robert; Arrue, Begoña C; Ude, Aleš; Ollero, Aníbal

    2016-05-14

    Giving unmanned aerial vehicles (UAVs) the possibility to manipulate objects vastly extends the range of possible applications. This applies to rotary wing UAVs in particular, where their capability of hovering enables a suitable position for in-flight manipulation. Their manipulation skills must be suitable for primarily natural, partially known environments, where UAVs mostly operate. We have developed an on-board object extraction method that calculates information necessary for autonomous grasping of objects, without the need to provide the model of the object's shape. A local map of the work-zone is generated using depth information, where object candidates are extracted by detecting areas different to our floor model. Their image projections are then evaluated using support vector machine (SVM) classification to recognize specific objects or reject bad candidates. Our method builds a sparse cloud representation of each object and calculates the object's centroid and the dominant axis. This information is then passed to a grasping module. Our method works under the assumption that objects are static and not clustered, have visual features and the floor shape of the work-zone area is known. We used low cost cameras for creating depth information that cause noisy point clouds, but our method has proved robust enough to process this data and return accurate results.

  13. Conversation and Object Manipulation Influence Children's Learning in a Museum

    ERIC Educational Resources Information Center

    Jant, Erin A.; Haden, Catherine A.; Uttal, David H.; Babcock, Elizabeth

    2014-01-01

    The effects of parent-child conversation and object manipulation on children's learning, transfer of knowledge, and memory were examined in two museum exhibits and conversations recorded at home. Seventy-eight children (M[subscript age] = 4.9) and their parents were randomly assigned to receive conversation cards featuring elaborative…

  14. Relationship between Manual Preferences for Object Manipulation and Pointing Gestures in Infants and Toddlers

    ERIC Educational Resources Information Center

    Vauclair, Jacques; Imbault, Juliette

    2009-01-01

    The aim of this study was to measure the pattern of hand preferences for pointing gestures as a function of object-manipulation handedness in 123 infants and toddlers (10-40 months). The results showed that not only right-handers but also left-handers and ambidextrous participants tended to use their right hand for pointing. There was a…

  15. Finding the Correspondence of Audio-Visual Events by Object Manipulation

    NASA Astrophysics Data System (ADS)

    Nishibori, Kento; Takeuchi, Yoshinori; Matsumoto, Tetsuya; Kudo, Hiroaki; Ohnishi, Noboru

    A human being understands the objects in the environment by integrating information obtained by the senses of sight, hearing and touch. In this integration, active manipulation of objects plays an important role. We propose a method for finding the correspondence of audio-visual events by manipulating an object. The method uses the general grouping rules in Gestalt psychology, i.e. “simultaneity” and “similarity” among motion command, sound onsets and motion of the object in images. In experiments, we used a microphone, a camera, and a robot which has a hand manipulator. The robot grasps an object like a bell and shakes it or grasps an object like a stick and beat a drum in a periodic, or non-periodic motion. Then the object emits periodical/non-periodical events. To create more realistic scenario, we put other event source (a metronome) in the environment. As a result, we had a success rate of 73.8 percent in finding the correspondence between audio-visual events (afferent signal) which are relating to robot motion (efferent signal).

  16. Extracting Objects for Aerial Manipulation on UAVs Using Low Cost Stereo Sensors

    PubMed Central

    Ramon Soria, Pablo; Bevec, Robert; Arrue, Begoña C.; Ude, Aleš; Ollero, Aníbal

    2016-01-01

    Giving unmanned aerial vehicles (UAVs) the possibility to manipulate objects vastly extends the range of possible applications. This applies to rotary wing UAVs in particular, where their capability of hovering enables a suitable position for in-flight manipulation. Their manipulation skills must be suitable for primarily natural, partially known environments, where UAVs mostly operate. We have developed an on-board object extraction method that calculates information necessary for autonomous grasping of objects, without the need to provide the model of the object’s shape. A local map of the work-zone is generated using depth information, where object candidates are extracted by detecting areas different to our floor model. Their image projections are then evaluated using support vector machine (SVM) classification to recognize specific objects or reject bad candidates. Our method builds a sparse cloud representation of each object and calculates the object’s centroid and the dominant axis. This information is then passed to a grasping module. Our method works under the assumption that objects are static and not clustered, have visual features and the floor shape of the work-zone area is known. We used low cost cameras for creating depth information that cause noisy point clouds, but our method has proved robust enough to process this data and return accurate results. PMID:27187413

  17. Objective evaluation of fine motor manipulation-a new clinical tool.

    PubMed

    Andersen Hammond, Elizabeth R; Shay, Barbara L; Szturm, Tony

    2009-01-01

    A new performance-based tool has been developed to accurately and precisely evaluate finger/hand function during manipulation of any object, independent of geometric and surface properties. The objectives of this study were to show test-retest reliability and evaluate criterion validity. Twenty healthy, right-handed participants were recruited. Three objects ranging in weight and size, requiring two or three fingers, were instrumented with a motion sensor that tracked 3D linear/angular motion. A computerized visual-guided tracking task was used to quantify motor performance during object manipulation. Two testing periods, one week apart were performed to evaluate test-retest reliability. Criterion validity was assessed by comparing performance with this tool to performance on commonly used clinical dexterity tests. Global performance, temporal accuracy, and amplitude consistency during manipulation of the objects compared with the reference waveform were highly reliable on the two testing occasions. Low-moderate correlations between the clinical dexterity tests and the task protocol indicate that different aspects of hand function were measured. The task protocol directly measures the ability of the hand to coordinate movement in response to a visual tracking target. Providing effective and objective ways to evaluate manual dexterity and hand function is a critical part of evidence-based practice.

  18. Disentangling the contributions of grasp and action representations in the recognition of manipulable objects.

    PubMed

    McNair, Nicolas A; Harris, Irina M

    2012-07-01

    There is an increasing evidence that the action properties of manipulable objects can play a role in object recognition, as objects with similar action properties can facilitate each other's recognition [Helbig et al. Exp Brain Res 174:221-228, 2006]. However, it is unclear whether this modulation is driven by the actions involved in using the object or the grasps afforded by the objects, because these factors have been confounded in previous studies. Here, we attempted to disentangle the relative contributions of the action and grasp properties by using a priming paradigm in which action and grasp similarity between two objects were varied orthogonally. We found that target tools with similar grasp properties to the prime tool were named more accurately than those with dissimilar grasps. However, naming accuracy was not affected by the similarity of action properties between the prime and target tools. This suggests that knowledge about how an object is used is not automatically accessed when identifying a manipulable object. What are automatically accessed are the transformations necessary to interact directly with the object--i.e., the manner in which one grasps the object.

  19. Nasal Anatomy

    MedlinePlus

    ... Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure Statement CONDITIONS Adult ... Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure Statement Printer Friendly ...

  20. Opposable spines facilitate fine and gross object manipulation in fire ants

    NASA Astrophysics Data System (ADS)

    Cassill, Deby; Greco, Anthony; Silwal, Rajesh; Wang, Xuefeng

    2007-04-01

    Ants inhabit diverse terrestrial biomes from the Sahara Desert to the Arctic tundra. One factor contributing to the ants’ successful colonization of diverse geographical regions is their ability to manipulate objects when excavating nests, capturing, transporting and rendering prey or grooming, feeding and transporting helpless brood. This paper is the first to report the form and function of opposable spines on the foretarsi of queens and workers used during fine motor and gross motor object manipulation in the fire ant, Solenopsis invicta. In conjunction with their mandibles, queens and workers used their foretarsi to grasp and rotate eggs, push or pull thread-like objects out of their way or push excavated soil pellets behind them for disposal by other workers. Opposable spines were found on the foretarsi of workers from seven of eight other ant species suggesting that they might be a common feature in the Formicidae.

  1. Local x-ray structure analysis of optically manipulated biological micro-objects

    SciTech Connect

    Cojoc, Dan; Ferrari, Enrico; Santucci, Silvia C.; Amenitsch, Heinz; Sartori, Barbara; Rappolt, Michael; Marmiroli, Benedetta; Burghammer, Manfred; Riekel, Christian

    2010-12-13

    X-ray diffraction using micro- and nanofocused beams is well suited for nanostructure analysis at different sites of a biological micro-object. To conduct in vitro studies without mechanical contact, we developed object manipulation by optical tweezers in a microfluidic cell. Here we report x-ray microdiffraction analysis of a micro-object optically trapped in three dimensions. We revealed the nanostructure of a single starch granule at different points and investigated local radiation damage induced by repeated x-ray exposures at the same position, demonstrating high stability and full control of the granule orientation by multiple optical traps.

  2. fMRI-Adaptation Evidence of Overlapping Neural Representations for Objects Related in Function or Manipulation

    PubMed Central

    Yee, Eiling; Drucker, Daniel M.; Thompson-Schill, Sharon L.

    2010-01-01

    Sensorimotor-based theories of semantic memory contend that semantic information about an object is represented in the neural substrate invoked when we perceive or interact with it. We used fMRI adaptation to test this prediction, measuring brain activation as participants read pairs of words. Pairs shared function (flashlight–lantern), shape (marble–grape), both (pencil–pen), were unrelated (saucer–needle), or were identical (drill–drill). We observed adaptation for pairs with both function and shape similarity in left premotor cortex. Further, degree of function similarity was correlated with adaptation in three regions: two in the left temporal lobe (left medial temporal lobe, left middle temporal gyrus), which has been hypothesized to play a role in mutimodal integration, and one in left superior frontal gyrus. We also found that degree of manipulation (i.e., action) and function similarity were both correlated with adaptation in two regions: left premotor cortex and left intraparietal sulcus (involved in guiding actions). Additional considerations suggest that the adaptation in these two regions was driven by manipulation similarity alone; thus, these results imply that manipulation information about objects is encoded in brain regions involved in performing or guiding actions. Unexpectedly, these same two regions showed increased activation (rather than adaptation) for objects similar in shape. Overall, we found evidence (in the form of adaptation) that objects that share semantic features have overlapping representations. Further, the particular regions of overlap provide support for the existence of both sensorimotor and amodal/multimodal representations. PMID:20034582

  3. Sex Differences in Object Manipulation in Wild Immature Chimpanzees (Pan troglodytes schweinfurthii) and Bonobos (Pan paniscus): Preparation for Tool Use?

    PubMed Central

    Koops, Kathelijne; Furuichi, Takeshi; Hashimoto, Chie; van Schaik, Carel P.

    2015-01-01

    Sex differences in immatures predict behavioural differences in adulthood in many mammal species. Because most studies have focused on sex differences in social interactions, little is known about possible sex differences in ‘preparation’ for adult life with regards to tool use skills. We investigated sex and age differences in object manipulation in immature apes. Chimpanzees use a variety of tools across numerous contexts, whereas bonobos use few tools and none in foraging. In both species, a female bias in adult tool use has been reported. We studied object manipulation in immature chimpanzees at Kalinzu (Uganda) and bonobos at Wamba (Democratic Republic of Congo). We tested predictions of the ‘preparation for tool use’ hypothesis. We confirmed that chimpanzees showed higher rates and more diverse types of object manipulation than bonobos. Against expectation, male chimpanzees showed higher object manipulation rates than females, whereas in bonobos no sex difference was found. However, object manipulation by male chimpanzees was play-dominated, whereas manipulation types of female chimpanzees were more diverse (e.g., bite, break, carry). Manipulation by young immatures of both species was similarly dominated by play, but only in chimpanzees did it become more diverse with age. Moreover, in chimpanzees, object types became more tool-like (i.e., sticks) with age, further suggesting preparation for tool use in adulthood. The male bias in object manipulation in immature chimpanzees, along with the late onset of tool-like object manipulation, indicates that not all (early) object manipulation (i.e., object play) in immatures prepares for subsistence tool use. Instead, given the similarity with gender differences in human children, object play may also function in motor skill practice for male-specific behaviours (e.g., dominance displays). In conclusion, even though immature behaviours almost certainly reflect preparation for adult roles, more detailed future

  4. Sex Differences in Object Manipulation in Wild Immature Chimpanzees (Pan troglodytes schweinfurthii) and Bonobos (Pan paniscus): Preparation for Tool Use?

    PubMed

    Koops, Kathelijne; Furuichi, Takeshi; Hashimoto, Chie; van Schaik, Carel P

    2015-01-01

    Sex differences in immatures predict behavioural differences in adulthood in many mammal species. Because most studies have focused on sex differences in social interactions, little is known about possible sex differences in 'preparation' for adult life with regards to tool use skills. We investigated sex and age differences in object manipulation in immature apes. Chimpanzees use a variety of tools across numerous contexts, whereas bonobos use few tools and none in foraging. In both species, a female bias in adult tool use has been reported. We studied object manipulation in immature chimpanzees at Kalinzu (Uganda) and bonobos at Wamba (Democratic Republic of Congo). We tested predictions of the 'preparation for tool use' hypothesis. We confirmed that chimpanzees showed higher rates and more diverse types of object manipulation than bonobos. Against expectation, male chimpanzees showed higher object manipulation rates than females, whereas in bonobos no sex difference was found. However, object manipulation by male chimpanzees was play-dominated, whereas manipulation types of female chimpanzees were more diverse (e.g., bite, break, carry). Manipulation by young immatures of both species was similarly dominated by play, but only in chimpanzees did it become more diverse with age. Moreover, in chimpanzees, object types became more tool-like (i.e., sticks) with age, further suggesting preparation for tool use in adulthood. The male bias in object manipulation in immature chimpanzees, along with the late onset of tool-like object manipulation, indicates that not all (early) object manipulation (i.e., object play) in immatures prepares for subsistence tool use. Instead, given the similarity with gender differences in human children, object play may also function in motor skill practice for male-specific behaviours (e.g., dominance displays). In conclusion, even though immature behaviours almost certainly reflect preparation for adult roles, more detailed future work is

  5. Sex Differences in Object Manipulation in Wild Immature Chimpanzees (Pan troglodytes schweinfurthii) and Bonobos (Pan paniscus): Preparation for Tool Use?

    PubMed

    Koops, Kathelijne; Furuichi, Takeshi; Hashimoto, Chie; van Schaik, Carel P

    2015-01-01

    Sex differences in immatures predict behavioural differences in adulthood in many mammal species. Because most studies have focused on sex differences in social interactions, little is known about possible sex differences in 'preparation' for adult life with regards to tool use skills. We investigated sex and age differences in object manipulation in immature apes. Chimpanzees use a variety of tools across numerous contexts, whereas bonobos use few tools and none in foraging. In both species, a female bias in adult tool use has been reported. We studied object manipulation in immature chimpanzees at Kalinzu (Uganda) and bonobos at Wamba (Democratic Republic of Congo). We tested predictions of the 'preparation for tool use' hypothesis. We confirmed that chimpanzees showed higher rates and more diverse types of object manipulation than bonobos. Against expectation, male chimpanzees showed higher object manipulation rates than females, whereas in bonobos no sex difference was found. However, object manipulation by male chimpanzees was play-dominated, whereas manipulation types of female chimpanzees were more diverse (e.g., bite, break, carry). Manipulation by young immatures of both species was similarly dominated by play, but only in chimpanzees did it become more diverse with age. Moreover, in chimpanzees, object types became more tool-like (i.e., sticks) with age, further suggesting preparation for tool use in adulthood. The male bias in object manipulation in immature chimpanzees, along with the late onset of tool-like object manipulation, indicates that not all (early) object manipulation (i.e., object play) in immatures prepares for subsistence tool use. Instead, given the similarity with gender differences in human children, object play may also function in motor skill practice for male-specific behaviours (e.g., dominance displays). In conclusion, even though immature behaviours almost certainly reflect preparation for adult roles, more detailed future work is

  6. Object engagement and manipulation in extremely preterm and full term infants at 6 months of age.

    PubMed

    Zuccarini, Mariagrazia; Sansavini, Alessandra; Iverson, Jana M; Savini, Silvia; Guarini, Annalisa; Alessandroni, Rosina; Faldella, Giacomo; Aureli, Tiziana

    2016-08-01

    Delays in the motor domain have been frequently observed in preterm children, especially those born at an extremely low gestational age (ELGA;<28 weeks GA). However, early motor exploration has received relatively little attention despite its relevance for object knowledge and its impact on cognitive and language development. The present study aimed at comparing early object exploration in 20 ELGA and 20 full-term (FT) infants at 6 months of age during a 5-minute mother-infant play interaction. Object engagement (visual vs manual), visual object engagement (no act vs reach), manual object engagement (passive vs active), and active object manipulation (mouthing, transferring, banging, turn/rotating, shaking, fingering) were analyzed. Moreover, the Griffiths Mental Development Scales 0-2 years (1996) were administered to the infants. Relative to FT peers, ELGA infants spent more time in visual engagement, and less time in manual engagement, active manipulation, mouthing, and turning/rotating. Moreover, they had lower scores on general psychomotor development, eye & hand coordination, and performance abilities. Close relationships emerged between manual object engagement and psychomotor development. Clinical implications of these results in terms of early evaluation of action schemes in ELGA infants and the provision of intervention programs for supporting these abilities are discussed.

  7. Objective and Subjective Assessment of Reciprocal Peer Teaching in Medical Gross Anatomy Laboratory

    ERIC Educational Resources Information Center

    Bentley, Brian S.; Hill, Robert V.

    2009-01-01

    Reciprocal peer teaching (RPT), wherein students alternate roles as teacher and learner, has been applied in several educational arenas with varying success. Here, we describe the implementation of a reciprocal peer teaching protocol in a human gross anatomy laboratory curriculum. We compared the outcomes of the RPT class with those of previous…

  8. Action and object processing in aphasia: from nouns and verbs to the effect of manipulability.

    PubMed

    Arévalo, A; Perani, D; Cappa, S F; Butler, A; Bates, E; Dronkers, N

    2007-01-01

    The processing of words and pictures representing actions and objects was tested in 21 aphasic patients and 20 healthy controls across three word production tasks: picture-naming (PN), single word reading (WR) and word repetition (WRP). Analysis 1 targeted task and lexical category (noun-verb), revealing worse performance on PN and verb items for both patients and control participants. For Analysis 2 we used data collected in a concurrent gesture norming study to re-categorize the noun-verb items along hand imagery parameters (i.e., objects that can/cannot be manipulated and actions which do/do not involve fine hand movements). Here, patients displayed relative difficulty with the 'manipulable' items, while controls displayed the opposite pattern. Therefore, whereas the noun-verb distinction resulted simply in lower verb accuracy across groups, the 'manipulability' distinction revealed a 'double-dissociation' between patients and control participants. These results carry implications for theories of embodiment, lexico-semantic dissociations, and the organization of meaning in the brain. PMID:16949143

  9. Dropwise condensation on a hydrophobic probe-tip for manipulating micro-objects

    NASA Astrophysics Data System (ADS)

    Fan, Zenghua; Wang, Lefeng; Rong, Weibin; Sun, Lining

    2015-02-01

    A capillary-gripping method that enables micro-objects to be picked up flexibly and reliably is described. By controlling the dropwise condensation on a probe tip, the volume of the water droplet on the hydrophobic tip surface can be dynamically varied, which helps to establish appropriate capillary lifting forces during micromanipulation tasks. Droplet formation and the capillary lifting forces generated during the manipulation process were experimentally characterized. Micromanipulation experiments using a customized motion platform equipped with viewing microscopes were conducted to verify the performance potential of this method. A 100% success rate in 200 trials was achieved in picking up and manipulating polystyrene microspheres with radii of 20-50 μm.

  10. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation.

    PubMed

    Norman, J Farley; Phillips, Flip; Cheeseman, Jacob R; Thomason, Kelsey E; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B; Lamirande, Davora

    2016-01-01

    It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped "glaven") for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object's shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions-e.g., the participants' performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision. PMID:26863531

  11. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation

    PubMed Central

    Cheeseman, Jacob R.; Thomason, Kelsey E.; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B.; Lamirande, Davora

    2016-01-01

    It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped “glaven”) for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object’s shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions–e.g., the participants’ performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision. PMID:26863531

  12. Multi-objective optimization of enzyme manipulations in metabolic networks considering resilience effects

    PubMed Central

    2011-01-01

    Background Improving the synthesis rate of desired metabolites in metabolic systems is one of the main tasks in metabolic engineering. In the last decade, metabolic engineering approaches based on the mathematical optimization have been used extensively for the analysis and manipulation of metabolic networks. Experimental evidence shows that mutants reflect resilience phenomena against gene alterations. Although researchers have published many studies on the design of metabolic systems based on kinetic models and optimization strategies, almost no studies discuss the multi-objective optimization problem for enzyme manipulations in metabolic networks considering resilience phenomenon. Results This study proposes a generalized fuzzy multi-objective optimization approach to formulate the enzyme intervention problem for metabolic networks considering resilience phenomena and cell viability. This approach is a general framework that can be applied to any metabolic networks to investigate the influence of resilience phenomena on gene intervention strategies and maximum target synthesis rates. This study evaluates the performance of the proposed approach by applying it to two metabolic systems: S. cerevisiae and E. coli. Results show that the maximum synthesis rates of target products by genetic interventions are always over-estimated in metabolic networks that do not consider the resilience effects. Conclusions Considering the resilience phenomena in metabolic networks can improve the predictions of gene intervention and maximum synthesis rates in metabolic engineering. The proposed generalized fuzzy multi-objective optimization approach has the potential to be a good and practical framework in the design of metabolic networks. PMID:21929795

  13. In-hand dexterous manipulation of piecewise-smooth 3-D objects

    SciTech Connect

    Rus, D.

    1999-04-01

    The author presents an algorithm called finger tracking for in-hand manipulation of three-dimensional objects with independent robot fingers. She describes and analyzes the differential control for finger tracking and extends it to on-line continuous control for a set of cooperating robot fingers. She shows experimental data from a simulation. Finally, she discusses global control issues for finger tracking, and computes lower bounds for reorientation by finger tracking. The algorithm is computationally efficient, exact, and takes into consideration the full dynamics of the system.

  14. Object/wrist movements during manipulation in children with cerebral palsy.

    PubMed

    Wright, M G; Hunt, L P; Stanley, O H

    2005-01-01

    The kinematics of the wrist and a manipulated object were studied in a posting task in 30 control, eight hemiplegic and 10 diplegic children. Statistical analyses using 'mixed' models examined the effects of subject group, hand, object shape and repeated trials, together with all possible interaction terms. During transport to the posting hole, the number of significant peaks/troughs in the velocity/time profile of the wrist in the transport ('z') direction were increased in subjects with cerebral palsy, as were adjustment error and the distances moved by the object relative to the wrist, reflecting more unpredictable object movement. In the placing phase, relative object/wrist normalized 'z' distances and number of wrist 'z' velocity peaks increased with increasing object complexity, reflecting the need for more adjustment movements. The number of wrist 'z' velocity peaks/troughs and adjustment error were increased in cerebral palsy subjects, reflecting ineffective adjustment. Relative object/wrist distances and number of wrist 'z' velocity troughs were reduced in both phases with repeated trials. It is suggested that such variables may provide a quantitative measure of poor movement 'quality' in children with Cerebral Palsy and that these findings reflect reduced mechanical stability of the hand and arm during movement.

  15. Dynamics modelling and Hybrid Suppression Control of space robots performing cooperative object manipulation

    NASA Astrophysics Data System (ADS)

    Zarafshan, P.; Moosavian, S. Ali A.

    2013-10-01

    Dynamics modelling and control of multi-body space robotic systems composed of rigid and flexible elements is elaborated here. Control of such systems is highly complicated due to severe under-actuated condition caused by flexible elements, and an inherent uneven nonlinear dynamics. Therefore, developing a compact dynamics model with the requirement of limited computations is extremely useful for controller design, also to develop simulation studies in support of design improvement, and finally for practical implementations. In this paper, the Rigid-Flexible Interactive dynamics Modelling (RFIM) approach is introduced as a combination of Lagrange and Newton-Euler methods, in which the motion equations of rigid and flexible members are separately developed in an explicit closed form. These equations are then assembled and solved simultaneously at each time step by considering the mutual interaction and constraint forces. The proposed approach yields a compact model rather than common accumulation approach that leads to a massive set of equations in which the dynamics of flexible elements is united with the dynamics equations of rigid members. To reveal such merits of this new approach, a Hybrid Suppression Control (HSC) for a cooperative object manipulation task will be proposed, and applied to usual space systems. A Wheeled Mobile Robotic (WMR) system with flexible appendages as a typical space rover is considered which contains a rigid main body equipped with two manipulating arms and two flexible solar panels, and next a Space Free Flying Robotic system (SFFR) with flexible members is studied. Modelling verification of these complicated systems is vigorously performed using ANSYS and ADAMS programs, while the limited computations of RFIM approach provides an efficient tool for the proposed controller design. Furthermore, it will be shown that the vibrations of the flexible solar panels results in disturbing forces on the base which may produce undesirable errors

  16. Grasp posture planning during multi-segment object manipulation tasks - interaction between cognitive and biomechanical factors.

    PubMed

    Seegelke, Christian; Hughes, Charmayne M L; Knoblauch, Andreas; Schack, Thomas

    2013-11-01

    The present study examined adaptations in the planning of initial grasp postures during a multi-segment object manipulation task. Participants performed a grasping and placing task that consisted of one, two, or three movement segments. The position of the targets was manipulated such that the degree of object rotation between the home and temporally proximal positions, and between the temporally proximal and distal target positions, varied. Participants selected initial grasp postures based on the specific requirements of the temporally proximal and temporally distal action segments, and adjustments in initial grasp posture depended on the temporal order of target location. In addition, during the initial stages of the experimental session initial grasp postures were influenced to a larger extent by the demands of the temporally proximal segment. However, over time, participants overcame these cognitive limitations and adjusted their initial grasp postures more strongly to the requirements of the temporally distal segment. Taken together, these results indicate that grasp posture planning is influenced by cognitive and biomechanical factors, and that participants learn to anticipate the task demands of temporally distal task demands, which we hypothesize, reduce the burden on the central nervous system.

  17. Spatiotemporal dynamics of bimanual integration in human somatosensory cortex and their relevance to bimanual object manipulation.

    PubMed

    Jung, Patrick; Klein, Johannes C; Wibral, Michael; Hoechstetter, Karsten; Bliem, Barbara; Lu, Ming-Kuei; Wahl, Mathias; Ziemann, Ulf

    2012-04-18

    Little is known about the spatiotemporal dynamics of cortical responses that integrate slightly asynchronous somatosensory inputs from both hands. This study aimed to clarify the timing and magnitude of interhemispheric interactions during early integration of bimanual somatosensory information in different somatosensory regions and their relevance for bimanual object manipulation and exploration. Using multi-fiber probabilistic diffusion tractography and MEG source analysis of conditioning-test (C-T) median nerve somatosensory evoked fields in healthy human subjects, we sought to extract measures of structural and effective callosal connectivity between different somatosensory cortical regions and correlated them with bimanual tactile task performance. Neuromagnetic responses were found in major somatosensory regions, i.e., primary somatosensory cortex SI, secondary somatosensory cortex SII, posterior parietal cortex, and premotor cortex. Contralateral to the test stimulus, SII activity was maximally suppressed by 51% at C-T intervals of 40 and 60 ms. This interhemispheric inhibition of the contralateral SII source activity correlated directly and topographically specifically with the fractional anisotropy of callosal fibers interconnecting SII. Thus, the putative pathway that mediated inhibitory interhemispheric interactions in SII was a transcallosal route from ipsilateral to contralateral SII. Moreover, interhemispheric inhibition of SII source activity correlated directly with bimanual tactile task performance. These findings were exclusive to SII. Our data suggest that early interhemispheric somatosensory integration primarily occurs in SII, is mediated by callosal fibers that interconnect homologous SII areas, and has behavioral importance for bimanual object manipulation and exploration.

  18. Dusty: an assistive mobile manipulator that retrieves dropped objects for people with motor impairments

    PubMed Central

    King, Chih-Hung; Chen, Tiffany L; Fan, Zhengqin; Glass, Jonathan D; Kemp, Charles C

    2012-01-01

    People with physical disabilities have ranked object retrieval as a high priority task for assistive robots. We have developed Dusty, a teleoperated mobile manipulator that fetches objects from the floor and delivers them to users at a comfortable height. In this paper, we first demonstrate the robot's high success rate (98.4%) when autonomously grasping 25 objects considered important by people with amyotrophic lateral sclerosis (ALS). We tested the robot with each object in five different configurations on five types of flooring. We then present the results of an experiment in which 20 people with ALS operated Dusty. Participants teleoperated Dusty to move around an obstacle, pick up an object, and deliver the object to themselves. They successfully completed this task in 59 out of 60 trials (3 trials each) with a mean completion time of 61.4 seconds (SD=20.5 seconds), and reported high overall satisfaction using Dusty (7-point Likert scale; 6.8 SD=0.6). Participants rated Dusty to be significantly easier to use than their own hands, asking family members, and using mechanical reachers (p < 0.03, paired t-tests). 14 of the 20 participants reported that they would prefer using Dusty over their current methods. PMID:22013888

  19. Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.

    PubMed

    Farshchiansadegh, Ali; Melendez-Calderon, Alejandro; Ranganathan, Rajiv; Murphey, Todd D; Mussa-Ivaldi, Ferdinando A

    2016-04-01

    The laws of physics establish the energetic efficiency of our movements. In some cases, like locomotion, the mechanics of the body dominate in determining the energetically optimal course of action. In other tasks, such as manipulation, energetic costs depend critically upon the variable properties of objects in the environment. Can the brain identify and follow energy-optimal motions when these motions require moving along unfamiliar trajectories? What feedback information is required for such optimal behavior to occur? To answer these questions, we asked participants to move their dominant hand between different positions while holding a virtual mechanical system with complex dynamics (a planar double pendulum). In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our findings demonstrate that participants were capable of finding the energy-optimal paths, but only when provided with veridical visual and haptic information pertaining to the object, lacking which the trajectories were executed along rectilinear paths.

  20. Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.

    PubMed

    Farshchiansadegh, Ali; Melendez-Calderon, Alejandro; Ranganathan, Rajiv; Murphey, Todd D; Mussa-Ivaldi, Ferdinando A

    2016-04-01

    The laws of physics establish the energetic efficiency of our movements. In some cases, like locomotion, the mechanics of the body dominate in determining the energetically optimal course of action. In other tasks, such as manipulation, energetic costs depend critically upon the variable properties of objects in the environment. Can the brain identify and follow energy-optimal motions when these motions require moving along unfamiliar trajectories? What feedback information is required for such optimal behavior to occur? To answer these questions, we asked participants to move their dominant hand between different positions while holding a virtual mechanical system with complex dynamics (a planar double pendulum). In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our findings demonstrate that participants were capable of finding the energy-optimal paths, but only when provided with veridical visual and haptic information pertaining to the object, lacking which the trajectories were executed along rectilinear paths. PMID:27035587

  1. Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation

    PubMed Central

    Farshchiansadegh, Ali; Melendez-Calderon, Alejandro; Ranganathan, Rajiv; Murphey, Todd D.; Mussa-Ivaldi, Ferdinando A.

    2016-01-01

    The laws of physics establish the energetic efficiency of our movements. In some cases, like locomotion, the mechanics of the body dominate in determining the energetically optimal course of action. In other tasks, such as manipulation, energetic costs depend critically upon the variable properties of objects in the environment. Can the brain identify and follow energy-optimal motions when these motions require moving along unfamiliar trajectories? What feedback information is required for such optimal behavior to occur? To answer these questions, we asked participants to move their dominant hand between different positions while holding a virtual mechanical system with complex dynamics (a planar double pendulum). In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our findings demonstrate that participants were capable of finding the energy-optimal paths, but only when provided with veridical visual and haptic information pertaining to the object, lacking which the trajectories were executed along rectilinear paths. PMID:27035587

  2. Central control of grasp: manipulation of objects with complex and simple dynamics.

    PubMed

    Milner, Theodore E; Franklin, David W; Imamizu, Hiroshi; Kawato, Mistuo

    2007-06-01

    We performed whole-brain fMRI to explore the neural mechanisms that contribute to the ability to manipulate an object with complex dynamics. Subjects grasped a weighted flexible ruler and balanced it in an unstable equilibrium position as an archetype of grasping an object with complex dynamics. This was contrasted with squeezing a soft foam ball as an archetype of grasping an object with simple dynamics. We hypothesized that changes in activity in primary motor cortex (MI) would be similar under the two conditions, since muscle activation was matched, which was confirmed. We hypothesized further that the cerebellum would be selectively activated when manipulating the flexible ruler because the ability to make the adjustments necessary to balance the ruler would require an internal dynamics model, represented in the cerebellum. As predicted, the ipsilateral cerebellum was strongly activated when balancing the weighted ruler whereas only moderate activation was found when squeezing the foam ball. We also found evidence for selective activation of areas, previously implicated in tactile object recognition, when holding the flexible ruler. We speculate that these areas, which include secondary somatosensory cortex (SII), Brodmann area 40 and insula, integrate tactile and proprioceptive information in the context of controlling the orientation of the flexible ruler and provide appropriate feedback to MI. We speculate that the failure to find activation of these areas when squeezing the ball was due to the fact that tactile stimulation was entirely self-produced, resulting in the attenuation of cortical sensory activity (Blakemore, S.-J., Wolpert, D.M., Frith, C.D., 1998. Central cancellation of self-produced tickle sensation. Nat. Neurosci. 1, 635-640, Blakemore, S.-J., Frith, C.D., Wolpert, D.M., 2001. The cerebellum is involved in predicting the sensory consequences of action. NeuroReport 12, 1879-1884). PMID:17451973

  3. Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques.

    PubMed

    Tanaka, Yoshio; Kawada, Hiroyuki; Hirano, Ken; Ishikawa, Mitsuru; Kitajima, Hiroyuki

    2008-09-15

    Automated optical trapping of non-spherical objects offers great flexibility as a non-contact micromanipulation tool in various research fields. Computer vision control enables fruitful applications of automated manipulation in biology and material science. Here we demonstrate fully-automated, simultaneous, independent trapping and manipulation of multiple non-spherical objects using multiple-force optical clamps. Customized real-time feature recognition and trapping beam control algorithms are also presented.

  4. Following the path of light: recovering and manipulating the information about an object

    NASA Astrophysics Data System (ADS)

    Bondani, Maria; Favale, Fabrizio

    2014-07-01

    The light diffused by an illuminated object contains information about it but, as it propagates, the information changes its appearance and sometimes seems even lost. The more conventional way to retrieve this information is to make an image of the object by means of some optical device, like a lens or a mirror. Nevertheless this is not the only way to proceed: pin-hole photography, for instance, recovers some part of the information by simply selecting a single light ray from each point of the object, on the other hand, holography recovers the largest part of information about the object by registering an interference pattern. Moreover, propagating light can be manipulated in such a way that the final recovered information results dramatically different from the original one. The only way not to get confused in the description of all these phenomena in the didactic practice with High-School students is to follow the path of light asking how the information is present during the propagation of the light. We tested this approach experimentally by realizing 2D images with pin-hole cameras and photo-cameras and 3D images with a holographic setup and implementing spatial filtering in the focal plane of a lens: the result was a deeper understanding by students.

  5. Eye-Hand Coordination: Dexterous Object Manipulation in New Gravity Fields

    NASA Astrophysics Data System (ADS)

    Thonnard, J. L.; Smith, A.; Wing, A.; McIntyre, J.; Lefèvre, P.; White, O.; Augurelle, A. S.; Langlais, J. S.; Witney, A.; Blohm, G.; Penta, M.; Elmann-Larsen, B.; Bracewell, R. M.; Stramigioli, S.

    2005-06-01

    The stabilisation of an object manipulated with the hand depends on applying a sufficiently strong force with each finger such that sufficient friction is generated to resist the load force acting tangentially to the contact surfaces. Gravity normally provides a constant force acting on the object (depending on its weight) which is adequately taken into account by an appropriate level of grip force.Variations in inertial forces caused by the subject's own arm movements over a range of accelerations also produce synchronous changes in grip forces that rise and fall with the changes in the tangential load forces on the fingers.That is, grip force reflects an anticipatory adjustment to the fluctuations in inertial forces.The modulation of grip force in anticipation of load force implies that the nervous system has access to information concerning the object's weight, mass and the kinematics of the forthcoming movement, since changes in any of these require a different grip force.This suggests that the internal models used to predict load forces and generate appropriate grip forces are pretty good. It remains to be proved, however, whether the entire control process of grip-force compensation is based on feedforward, model-based control, or if some components of the required grip responses are generated through reflex actions. Microgravity presents a significant challenge to dexterous object manipulation for a number of reasons. Owing to all the potential deviations from the expected characteristics of the load forces, planning movement under microgravity conditions might involve a greater reliance on visual, tactile and/or memory cues to an object's mass. In addition, there might be over- gripping to reduce the consequence of an erroneous estimate of mass. Alternatively, the hand might initially be moved more slowly than normal to allow more time for feedback-based adjustments to grip force. In this regard, a series of experiments has been designed in order to study

  6. 250 ms to code for action affordance during observation of manipulable objects.

    PubMed

    Proverbio, Alice Mado; Adorni, Roberta; D'Aniello, Guido Edoardo

    2011-07-01

    It is well known that viewing graspable tools (but not other objects) activates motor-related brain regions, but the time course of affordance processing has remained relatively unexplored. In this study, EEG was continuously recorded from 128 scalp sites in 15 right-handed university students while they received stimuli in the form of 150 pictures of familiar non-tool objects and 150 pictures of manipulable tools, matched for size, luminance and perceptual familiarity. To select the 300 images for the study, a wider set of preliminary stimuli was screened for motoric content by 20 judges using a 3-point scale (0=absent; 2=strong); pictures that scored below 1.5 or above 0.6 were excluded from the tool and non-tool categories, respectively. Tools and non-tools were presented in random order, interspersed with 25 photos of live plants. Each slide was presented for 1000 ms, with an interval ranging from 1500 to 1900 ms. The task consisted of responding to the photos of plants while ignoring the other stimuli. Both an anterior negativity (210-270 ms) and a centroparietal P300 (550-600 ms) were larger in response to tools than objects, particularly in the left hemisphere. swLORETA inverse solution identified the occipito-temporal cortex (BA19 and BA37) as the most significant source of activity (in the 210-270-ms time window) for both types of visual objects and the left postcentral gyrus (BA3) and the left and right premotor cortex (BA6) as the most significant source of activity for tools only. These data hint at an automatic access to motoric object properties even under conditions in which attention is devoted to other stimulus categories.

  7. Mesoscale to microscale controlled manipulation of microscale objects using MEMS based microgripper and haptic interface

    NASA Astrophysics Data System (ADS)

    Vijayasai, Ashwin P.; Sivakumar, Ganapathy; Mulsow, Matthew; Lacouture, Shelby; Holness, Alex; Dallas, Tim E.

    2010-02-01

    In this work, we describe the development and testing of a three degree of freedom (DOF) meso/micro manipulation system for handling biological cells (SF-9) and micro objects. Three axis control is obtained using stepper motors coupled to three micromanipulators. One motor is coupled to a linear X-stage which holds the test specimen. The remaining two stepper motors are coupled to Y and Z axis micromanipulators. The stepper motor - micromanipulator arrangement has minimum step resolution of ~0.45μm with a total travel of 10mm and the stepper motor - X stage arrangement has a minimum resolution of ~0.3μm. The shaft end of the micromanipulator has a commercially available electrostatic MEMS microgripper from Femtotools™ which has a gripping range of 0 - 100μm. As the gripping action is performed, a commercially available 3 DOF haptic device (Novint Falcon) is programmed to give force feedback to the user. Both mesoscale and microscale control are important, as mesoscale control is required for the travel motion of the test object whereas microscale control is required for the gripping action. A LabView based system is used to control the position of the microgripper, to control the opening of the microgripper, and to provide force-feedback through the haptic.

  8. Optimal target grasping of a flexible space manipulator for a class of objectives

    NASA Astrophysics Data System (ADS)

    Toglia, Chiara; Sabatini, Marco; Gasbarri, Paolo; Palmerini, Giovanni B.

    2011-04-01

    Space graspers are complex systems, composed by robotic arms placed on an orbiting platform. In order to fulfil the manoeuvres' requirements, it is necessary to properly model all the forces acting on the space robot. A fully nonlinear model is used to describe the dynamics, based on a multibody approach. The model includes the orbital motion, the gravity gradient, the aerodynamic effects, as well as the flexibility of the links. The present paper aims to design, thanks to nonlinear optimization algorithms, a class of manoeuvres that, given the same target to be grasped, are characterized by different mission objectives. The grasping mission can be performed with the objective to minimize the power consumption. Collision avoidance constraints can be also added when the target is equipped with solar panels or other appendices. In some cases, large elastic displacements should be expected, possibly leading to an inaccurate positioning of the end-effector. Therefore, different design strategies can require that the manoeuvre is accomplished with minimum vibrations' amplitude at the end-effector. Performance of the different strategies is analyzed in terms of control effort, trajectory errors, and flexible response of the manipulator.

  9. Long-Latency Feedback Coordinates Upper-Limb and Hand Muscles during Object Manipulation Tasks123

    PubMed Central

    Thonnard, Jean-Louis; Scott, Stephen H.

    2016-01-01

    Suppose that someone bumps into your arm at a party while you are holding a glass of wine. Motion of the disturbed arm will engage rapid and goal-directed feedback responses in the upper-limb. Although such responses can rapidly counter the perturbation, it is also clearly desirable not to destabilize your grasp and/or spill the wine. Here we investigated how healthy humans maintain a stable grasp following perturbations by using a paradigm that requires spatial tuning of the motor response dependent on the location of a virtual target. Our results highlight a synchronized expression of target-directed feedback in shoulder and hand muscles occurring at ∼60 ms. Considering that conduction delays are longer for the more distal hand muscles, these results suggest that target-directed responses in hand muscles were initiated before those for the shoulder muscles. These results show that long-latency feedback can coordinate upper limb and hand muscles during object manipulation tasks. PMID:27022624

  10. Manipulating objects and telling words: a study on concrete and abstract words acquisition.

    PubMed

    Borghi, Anna M; Flumini, Andrea; Cimatti, Felice; Marocco, Davide; Scorolli, Claudia

    2011-01-01

    Four experiments (E1-E2-E3-E4) investigated whether different acquisition modalities lead to the emergence of differences typically found between concrete and abstract words, as argued by the words as tools (WAT) proposal. To mimic the acquisition of concrete and abstract concepts, participants either manipulated novel objects or observed groups of objects interacting in novel ways (Training 1). In TEST 1 participants decided whether two elements belonged to the same category. Later they read the category labels (Training 2); labels could be accompanied by an explanation of their meaning. Then participants observed previously seen exemplars and other elements, and were asked which of them could be named with a given label (TEST 2). Across the experiments, it was more difficult to form abstract than concrete categories (TEST 1); even when adding labels, abstract words remained more difficult than concrete words (TEST 2). TEST 3 differed across the experiments. In E1 participants performed a feature production task. Crucially, the associations produced with the novel words reflected the pattern evoked by existing concrete and abstract words, as the first evoked more perceptual properties. In E2-E3-E4, TEST 3 consisted of a color verification task with manual/verbal (keyboard-microphone) responses. Results showed the microphone use to have an advantage over keyboard use for abstract words, especially in the explanation condition. This supports WAT: due to their acquisition modality, concrete words evoke more manual information; abstract words elicit more verbal information. This advantage was not present when linguistic information contrasted with perceptual one. Implications for theories and computational models of language grounding are discussed.

  11. Study on optimum maneuverability in horizontal manipulation of objects with power-assist based on weight perception

    NASA Astrophysics Data System (ADS)

    Rahman, S. M. Mizanoor; Ikeura, Ryojun; Nobe, Masaya; Sawai, Hideki

    2009-12-01

    This paper presents the design of a 1-DOF (horizontal forward-backward translational motion) power assist system (PAS) for manipulating objects in horizontal direction based on human operator's perception of object weight. We adopt a hypothesis that pertains to human's weight perception. The hypothesis means that the human must consider the mass parameter for the inertial force different from the mass parameter for the gravitational force when programming (feedforward) the load force (tangential to grip surfaces) for manipulating an object with a PAS because the perception and the reality regarding the object weight are different in this case. We simulated the system using Matlab/Simulink. Five subjects manipulated objects of three different sizes with the PAS during the simulation. Subjects subjectively determined the optimum values for the mass parameters of the inertial and the gravitational force components. Optimum mass parameters resulted in optimum maneuverability. Finally, we proposed using the findings to develop humanfriendly PASs for manipulating heavy objects in industries such as manufacturing and assembly, mining, logistics and transport, construction, disaster management, military operations etc.

  12. Study on optimum maneuverability in horizontal manipulation of objects with power-assist based on weight perception

    NASA Astrophysics Data System (ADS)

    Rahman, S. M. Mizanoor; Ikeura, Ryojun; Nobe, Masaya; Sawai, Hideki

    2010-01-01

    This paper presents the design of a 1-DOF (horizontal forward-backward translational motion) power assist system (PAS) for manipulating objects in horizontal direction based on human operator's perception of object weight. We adopt a hypothesis that pertains to human's weight perception. The hypothesis means that the human must consider the mass parameter for the inertial force different from the mass parameter for the gravitational force when programming (feedforward) the load force (tangential to grip surfaces) for manipulating an object with a PAS because the perception and the reality regarding the object weight are different in this case. We simulated the system using Matlab/Simulink. Five subjects manipulated objects of three different sizes with the PAS during the simulation. Subjects subjectively determined the optimum values for the mass parameters of the inertial and the gravitational force components. Optimum mass parameters resulted in optimum maneuverability. Finally, we proposed using the findings to develop humanfriendly PASs for manipulating heavy objects in industries such as manufacturing and assembly, mining, logistics and transport, construction, disaster management, military operations etc.

  13. A new technique for dynamic load distribution when two manipulators mutually lift a rigid object. Part 1, The proposed technique

    SciTech Connect

    Unseren, M.A.

    1994-04-01

    A general framework for solving the dynamic load distribution when two manipulators hold a rigid object is proposed. The underspecified problem of solving for the contact forces and torques based on the object`s equations of motion is transformed into a well specified problem. This is accomplished by augmenting the object`s equations of motion with additional equations which relate a new vector variable quantifying the internal contact force and torque degrees of freedom (DOF) as a linear function of the contact forces and torques. The resulting augmented system yields a well specified solution for the contact forces and torques in which they are separated into their motion inducing and internal components. A particular solution is suggested which enables the designer to conveniently specify what portion of the payload`s mass each manipulator is to bear. It is also shown that the results of the previous work are just a special case of the general load distribution framework described here.

  14. Maintaining rotational equilibrium during object manipulation: linear behavior of a highly non-linear system

    PubMed Central

    Gao, Fan; Latash, Mark L.

    2010-01-01

    We address issues of simultaneous control of the grasping force and the total moment of forces applied to a handheld object during its manipulation. Six young healthy male subjects grasped an instrumented handle and performed its cyclic motion in the vertical direction. The handle allowed for setting different clockwise (negative) or counterclockwise torques. Three movement frequencies: 1, 1.5 and 2 Hz, and five different torques: −1/3, −1/6, 0, 1/6 and 1/3 Nm, were used. The rotational equilibrium was maintained by two means: (1) Concerted changes of the moments produced by the normal and tangential forces, specifically anti-phase changes of the moments during the tasks with zero external torque and in-phase changes during the non-zero-torque tasks, and (2) Redistribution of the normal forces among individual fingers such that the agonist fingers—the fingers that resist external torque—increased the force in phase with the acceleration, while the forces of the antagonist fingers—those that assist the external torque—especially, the fingers with the large moment arms, the index and little fingers, stayed unchanged. The observed effects agree with the principle of superposition—according to which some complex actions, for example, prehension, can be decomposed into elemental actions controlled independently—and the mechanical advantage hypothesis according to which in moment production the fingers are activated in proportion to their moment arms with respect to the axis of rotation. We would like to emphasize the linearity of the observed relations, which was not prescribed by the task mechanics and seems to be produced by specific neural control mechanisms. PMID:16328302

  15. The anatomy of category-specific object naming in neurodegenerative diseases.

    PubMed

    Brambati, S M; Myers, D; Wilson, A; Rankin, K P; Allison, S C; Rosen, H J; Miller, B L; Gorno-Tempini, M L

    2006-10-01

    Neuropsychological studies suggest that knowledge about living and nonliving objects is processed in separate brain regions. However, lesion and functional neuroimaging studies have implicated different areas. To address this issue, we used voxel-based morphometry to correlate accuracy in naming line drawings of living and nonliving objects with gray matter volumes in 152 patients with various neurodegenerative diseases. The results showed a significant positive correlation between gray matter volumes in bilateral temporal cortices and total naming accuracy regardless of category. Naming scores for living stimuli correlated with gray matter volume in the medial portion of the right anterior temporal pole, whereas naming accuracy for familiarity-matched nonliving items correlated with the volume of the left posterior middle temporal gyrus. A previous behavioral study showed that the living stimuli used here also had in common the characteristic that they were defined by shared sensory semantic features, whereas items in the nonliving group were defined by their action-related semantic features. We propose that the anatomical segregation of living and nonliving categories is the result of their defining semantic features and the distinct neural subsystems used to process them. PMID:17014369

  16. The anatomy of object recognition--visual form agnosia caused by medial occipitotemporal stroke.

    PubMed

    Karnath, Hans-Otto; Rüter, Johannes; Mandler, André; Himmelbach, Marc

    2009-05-01

    The influential model on visual information processing by Milner and Goodale (1995) has suggested a dissociation between action- and perception-related processing in a dorsal versus ventral stream projection. It was inspired substantially by the observation of a double dissociation of disturbed visual action versus perception in patients with optic ataxia on the one hand and patients with visual form agnosia (VFA) on the other. Unfortunately, almost all cases with VFA reported so far suffered from inhalational intoxication, the majority with carbon monoxide (CO). Since CO induces a diffuse and widespread pattern of neuronal and white matter damage throughout the whole brain, precise conclusions from these patients with VFA on the selective role of ventral stream structures for shape and orientation perception were difficult. Here, we report patient J.S., who demonstrated VFA after a well circumscribed brain lesion due to stroke etiology. Like the famous patient D.F. with VFA after CO intoxication studied by Milner, Goodale, and coworkers (Goodale et al., 1991, 1994; Milner et al., 1991; Servos et al., 1995; Mon-Williams et al., 2001a,b; Wann et al., 2001; Westwood et al., 2002; McIntosh et al., 2004; Schenk and Milner, 2006), J.S. showed an obvious dissociation between disturbed visual perception of shape and orientation information on the one side and preserved visuomotor abilities based on the same information on the other. In both hemispheres, damage primarily affected the fusiform and the lingual gyri as well as the adjacent posterior cingulate gyrus. We conclude that these medial structures of the ventral occipitotemporal cortex are integral for the normal flow of shape and of contour information into the ventral stream system allowing to recognize objects.

  17. A fast 3-D object recognition algorithm for the vision system of a special-purpose dexterous manipulator

    NASA Technical Reports Server (NTRS)

    Hung, Stephen H. Y.

    1989-01-01

    A fast 3-D object recognition algorithm that can be used as a quick-look subsystem to the vision system for the Special-Purpose Dexterous Manipulator (SPDM) is described. Global features that can be easily computed from range data are used to characterize the images of a viewer-centered model of an object. This algorithm will speed up the processing by eliminating the low level processing whenever possible. It may identify the object, reject a set of bad data in the early stage, or create a better environment for a more powerful algorithm to carry the work further.

  18. Learning Is Better with the Hands Free: The Role of Posture in the Memory of Manipulable Objects

    PubMed Central

    Dutriaux, Léo; Gyselinck, Valérie

    2016-01-01

    Grounded cognition proposes that memory shares processing resources with sensorimotor systems. The aim of the present study was to show that motor simulation participates in the conceptual representation of manipulable objects in long-term memory. In two experiments, lists of manipulable and nonmanipulable objects were presented. Participants were instructed to memorize the items while adopting different postures. In the control condition, they had to keep their hands at rest in front of them. In the interference condition, participants had to keep their hands crossed behind their back to make their hands less free for action. After each list, participants had to perform first a distractive task, and then an oral free recall. The results showed that the interfering posture produced a specific decrease in the recall of manipulable objects, but not of nonmanipulable ones. This decrease was similar when the items were presented as pictures (Experiment 1) or as words (Experiment 2), thus excluding a purely visual effect. These results provide strong evidence that the motor simulation plays a role in the memory trace of the object. PMID:27414407

  19. Hierarchical Robot Control System and Method for Controlling Select Degrees of Freedom of an Object Using Multiple Manipulators

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E. (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor)

    2013-01-01

    A robotic system includes a robot having manipulators for grasping an object using one of a plurality of grasp types during a primary task, and a controller. The controller controls the manipulators during the primary task using a multiple-task control hierarchy, and automatically parameterizes the internal forces of the system for each grasp type in response to an input signal. The primary task is defined at an object-level of control, e.g., using a closed-chain transformation, such that only select degrees of freedom are commanded for the object. A control system for the robotic system has a host machine and algorithm for controlling the manipulators using the above hierarchy. A method for controlling the system includes receiving and processing the input signal using the host machine, including defining the primary task at the object-level of control, e.g., using a closed-chain definition, and parameterizing the internal forces for each of grasp type.

  20. Learning Is Better with the Hands Free: The Role of Posture in the Memory of Manipulable Objects.

    PubMed

    Dutriaux, Léo; Gyselinck, Valérie

    2016-01-01

    Grounded cognition proposes that memory shares processing resources with sensorimotor systems. The aim of the present study was to show that motor simulation participates in the conceptual representation of manipulable objects in long-term memory. In two experiments, lists of manipulable and nonmanipulable objects were presented. Participants were instructed to memorize the items while adopting different postures. In the control condition, they had to keep their hands at rest in front of them. In the interference condition, participants had to keep their hands crossed behind their back to make their hands less free for action. After each list, participants had to perform first a distractive task, and then an oral free recall. The results showed that the interfering posture produced a specific decrease in the recall of manipulable objects, but not of nonmanipulable ones. This decrease was similar when the items were presented as pictures (Experiment 1) or as words (Experiment 2), thus excluding a purely visual effect. These results provide strong evidence that the motor simulation plays a role in the memory trace of the object. PMID:27414407

  1. Lesion Symptom Mapping of Manipulable Object Naming in Nonfluent Aphasia: Can a Brain be both Embodied and Disembodied?

    PubMed Central

    Reilly, Jamie; Harnish, Stacy; Garcia, Amanda; Hung, Jinyi; Rodriguez, Amy D.; Crosson, Bruce

    2014-01-01

    Embodied cognition offers an approach to word meaning firmly grounded in action and perception. A strong prediction of embodied cognition is that sensorimotor simulation is a necessary component of lexical-semantic representation. One semantic distinction where motor imagery is likely to play a key role involves the representation of manufactured artifacts. Many questions remain with respect to the scope of embodied cognition. One dominant unresolved issue is the extent to which motor enactment is necessary for representing and generating words with high motor salience. We investigated lesion correlates of manipulable relative to non-manipulable name generation (e.g., name a school supply; name a mountain range) in patients with nonfluent aphasia (N=14). Lesion volumes within motor (BA4) and premotor (BA6) cortices were not predictive of category discrepancies. Lesion symptom mapping linked impairment for manipulable objects to polymodal convergence zones and to projections of the left, primary visual cortex specialized for motion perception (MT/V5+). Lesions to motor and premotor cortex were not predictive of manipulability impairment. This lesion correlation is incompatible with an embodied perspective premised on necessity of motor cortex for the enactment and subsequent production of motor-related words. These findings instead support a graded or ‘soft’ approach to embodied cognition premised on an ancillary role of modality-specific cortical regions in enriching modality-neutral representations. We discuss a dynamic, hybrid approach to the neurobiology of semantic memory integrating both embodied and disembodied components. PMID:24839997

  2. Category-Specific Effects on the Identification of Non-Manipulable Objects

    ERIC Educational Resources Information Center

    McMullen, Patricia A.; Purdy, Kerri S.

    2006-01-01

    Theories of category-specific effects on visual object identification predict easier identification of non-living than living objects. The Sensory-Functional theory credits greater representational weighting of the visual properties of living objects independent of greater weighting of the functional properties of non-living objects. It predicts a…

  3. Larynx Anatomy

    MedlinePlus

    ... e.g. -historical Searches are case-insensitive Larynx Anatomy Add to My Pictures View /Download : Small: 648x576 ... View Download Large: 2700x2400 View Download Title: Larynx Anatomy Description: Anatomy of the larynx; drawing shows the ...

  4. Pharynx Anatomy

    MedlinePlus

    ... e.g. -historical Searches are case-insensitive Pharynx Anatomy Add to My Pictures View /Download : Small: 720x576 ... View Download Large: 3000x2400 View Download Title: Pharynx Anatomy Description: Anatomy of the pharynx; drawing shows the ...

  5. Vulva Anatomy

    MedlinePlus

    ... e.g. -historical Searches are case-insensitive Vulva Anatomy Add to My Pictures View /Download : Small: 720x634 ... View Download Large: 3000x2640 View Download Title: Vulva Anatomy Description: Anatomy of the vulva; drawing shows the ...

  6. Experiments in cooperative-arm object manipulation with a two-armed free-flying robot. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Koningstein, Ross

    1990-01-01

    Developing computed-torque controllers for complex manipulator systems using current techniques and tools is difficult because they address the issues pertinent to simulation, as opposed to control. A new formulation of computed-torque (CT) control that leads to an automated computer-torque robot controller program is presented. This automated tool is used for simulations and experimental demonstrations of endpoint and object control from a free-flying robot. A new computed-torque formulation states the multibody control problem in an elegant, homogeneous, and practical form. A recursive dynamics algorithm is presented that numerically evaluates kinematics and dynamics terms for multibody systems given a topological description. Manipulators may be free-flying, and may have closed-chain constraints. With the exception of object squeeze-force control, the algorithm does not deal with actuator redundancy. The algorithm is used to implement an automated 2D computed-torque dynamics and control package that allows joint, endpoint, orientation, momentum, and object squeeze-force control. This package obviates the need for hand-derivation of kinematics and dynamics, and is used for both simulation and experimental control. Endpoint control experiments are performed on a laboratory robot that has two arms to manipulate payloads, and uses an air bearing to achieve very-low drag characteristics. Simulations and experimental data for endpoint and object controllers are presented for the experimental robot - a complex dynamic system. There is a certain rather wide set of conditions under which CT endpoint controllers can neglect robot base accelerations (but not motions) and achieve comparable performance including base accelerations in the model. The regime over which this simplification holds is explored by simulation and experiment.

  7. The influence of reducing intermediate target constraints on grasp posture planning during a three-segment object manipulation task.

    PubMed

    Seegelke, Christian; Hughes, Charmayne M L; Knoblauch, Andreas; Schack, Thomas

    2015-02-01

    The present experiment examined the influence of final target position on grasp posture planning during a three-segment object manipulation task in which the required object orientation at the first target position was unconstrained. Participants grasped a cylindrical object from a home position, placed it at an intermediate position in a freely chosen orientation, and subsequently placed it at one of four final target positions. Considerable inter-individual differences in initial grasp selection were observed which also led to differences in final grasp postures. Whereas some participants strongly adjusted their initial grasp postures to the final target orientation, and thus showed a preference for end-state comfort, other participants showed virtually no adjustment in initial grasp postures, hence satisfying initial-state comfort. Interestingly, as intermediate grasp postures were similar regardless of initial grasp adjustment, intermediate-state comfort was prioritized by all participants. These results provide further evidence for the interaction of multiple action selection constraints in grasp posture planning during multi-segment object manipulation tasks. Whereas some constraints may take strict precedence in a given task, other constraints may be more flexible and weighted differently among participants. This differentiated weighting leads to task- and subject-specific constraint hierarchies and is reflected in inter-individual differences in grasp selection.

  8. System and method for representing and manipulating three-dimensional objects on massively parallel architectures

    DOEpatents

    Karasick, M.S.; Strip, D.R.

    1996-01-30

    A parallel computing system is described that comprises a plurality of uniquely labeled, parallel processors, each processor capable of modeling a three-dimensional object that includes a plurality of vertices, faces and edges. The system comprises a front-end processor for issuing a modeling command to the parallel processors, relating to a three-dimensional object. Each parallel processor, in response to the command and through the use of its own unique label, creates a directed-edge (d-edge) data structure that uniquely relates an edge of the three-dimensional object to one face of the object. Each d-edge data structure at least includes vertex descriptions of the edge and a description of the one face. As a result, each processor, in response to the modeling command, operates upon a small component of the model and generates results, in parallel with all other processors, without the need for processor-to-processor intercommunication. 8 figs.

  9. System and method for representing and manipulating three-dimensional objects on massively parallel architectures

    DOEpatents

    Karasick, Michael S.; Strip, David R.

    1996-01-01

    A parallel computing system is described that comprises a plurality of uniquely labeled, parallel processors, each processor capable of modelling a three-dimensional object that includes a plurality of vertices, faces and edges. The system comprises a front-end processor for issuing a modelling command to the parallel processors, relating to a three-dimensional object. Each parallel processor, in response to the command and through the use of its own unique label, creates a directed-edge (d-edge) data structure that uniquely relates an edge of the three-dimensional object to one face of the object. Each d-edge data structure at least includes vertex descriptions of the edge and a description of the one face. As a result, each processor, in response to the modelling command, operates upon a small component of the model and generates results, in parallel with all other processors, without the need for processor-to-processor intercommunication.

  10. Manipulation and assembly of small objects in liquid crystals by dynamical disorganizing effect of push-pull-azobenzene-dye.

    PubMed

    Kurihara, Seiji; Ohta, Kazuhiro; Oda, Takahiro; Izumi, Ryo; Kuwahara, Yutaka; Ogata, Tomonari; Kim, Sun-Nam

    2013-01-01

    The phase transition of a nematic liquid crystal containing a push-pull azobenzene dye could be induced efficiently during irradiation with visible light. The dynamical disorganizing effect of the push-pull azobenzene dye on the liquid crystalline order through its trans-cis-trans photoisomerizaion cycle under visible light was contributed to the efficient phase transition. Then, the effects of light irradiation on the motion of small objects dispersed in the liquid crystals containing the push-pull azobenzene were explored, and the manipulation and assembly of those objects were successfully achieved in the nematic phase but also in the smectic phase. The combination of the photo-controlled dynamical change in the liquid crystalline order and the intrinsic self-assembly property of a liquid crystal is promising for use in technologies that require not only the organization of small objects but also the photo-driving of nano- and micro-sized mechanical materials.

  11. Manipulation and assembly of small objects in liquid crystals by dynamical disorganizing effect of push-pull-azobenzene-dye

    NASA Astrophysics Data System (ADS)

    Kurihara, Seiji; Ohta, Kazuhiro; Oda, Takahiro; Izumi, Ryo; Kuwahara, Yutaka; Ogata, Tomonari; Kim, Sun-Nam

    2013-07-01

    The phase transition of a nematic liquid crystal containing a push-pull azobenzene dye could be induced efficiently during irradiation with visible light. The dynamical disorganizing effect of the push-pull azobenzene dye on the liquid crystalline order through its trans-cis-trans photoisomerizaion cycle under visible light was contributed to the efficient phase transition. Then, the effects of light irradiation on the motion of small objects dispersed in the liquid crystals containing the push-pull azobenzene were explored, and the manipulation and assembly of those objects were successfully achieved in the nematic phase but also in the smectic phase. The combination of the photo-controlled dynamical change in the liquid crystalline order and the intrinsic self-assembly property of a liquid crystal is promising for use in technologies that require not only the organization of small objects but also the photo-driving of nano- and micro-sized mechanical materials.

  12. Manipulation and assembly of small objects in liquid crystals by dynamical disorganizing effect of push-pull-azobenzene-dye

    PubMed Central

    Kurihara, Seiji; Ohta, Kazuhiro; Oda, Takahiro; Izumi, Ryo; Kuwahara, Yutaka; Ogata, Tomonari; Kim, Sun-Nam

    2013-01-01

    The phase transition of a nematic liquid crystal containing a push-pull azobenzene dye could be induced efficiently during irradiation with visible light. The dynamical disorganizing effect of the push-pull azobenzene dye on the liquid crystalline order through its trans-cis-trans photoisomerizaion cycle under visible light was contributed to the efficient phase transition. Then, the effects of light irradiation on the motion of small objects dispersed in the liquid crystals containing the push-pull azobenzene were explored, and the manipulation and assembly of those objects were successfully achieved in the nematic phase but also in the smectic phase. The combination of the photo-controlled dynamical change in the liquid crystalline order and the intrinsic self-assembly property of a liquid crystal is promising for use in technologies that require not only the organization of small objects but also the photo-driving of nano- and micro-sized mechanical materials. PMID:23835605

  13. The influence of a hand preference for acquiring objects on the development of a hand preference for unimanual manipulation from 6 to 14 months.

    PubMed

    Campbell, Julie M; Marcinowski, Emily C; Babik, Iryna; Michel, George F

    2015-05-01

    Development of hand preferences for unimanual manipulation of objects was explored in 90 infants (57 males) tested monthly from 6 to 14 months. From a larger sample of 380 infants, 30 infants with a consistent left hand preference for acquiring objects were matched for sex and development of locomotion skills with 30 infants with a consistent right hand preference for acquisition and 30 with no preference. Although frequency of unimanual manipulations increased during 6-14 month period, infants with a hand preference for acquisition did more object manipulations than those without a preference for acquisition. Multilevel modeling of unimanual manipulation trajectories for the three hand-preference groups revealed that hand preferences for unimanual manipulation become more distinctive with age, and the preference is predicted by the hand preference for object acquisition. Infants with a right and left hand preference for object acquisition develop a right and left (respectively) hand preference for unimanual manipulation. However, the majority of infants at each month do not exhibit hand preferences for unimanual manipulation that are unlikely to occur by chance, even by 14 months. The results are consistent with a cascading theory of handedness development in which early preferences (i.e., for acquisition) are transferred to later developing preferences (i.e., for unimanual manipulation).

  14. Vision Algorithms to Determine Shape and Distance for Manipulation of Unmodeled Objects

    NASA Technical Reports Server (NTRS)

    Montes, Leticia; Bowers, David; Lumia, Ron

    1998-01-01

    This paper discusses the development of a robotic system for general use in an unstructured environment. This is illustrated through pick and place of randomly positioned, un-modeled objects. There are many applications for this project, including rock collection for the Mars Surveyor Program. This system is demonstrated with a Puma560 robot, Barrett hand, Cognex vision system, and Cimetrix simulation and control, all running on a PC. The demonstration consists of two processes: vision system and robotics. The vision system determines the size and location of the unknown objects. The robotics part consists of moving the robot to the object, configuring the hand based on the information from the vision system, then performing the pick/place operation. This work enhances and is a part of the Low Cost Virtual Collaborative Environment which provides remote simulation and control of equipment.

  15. Action and Object Processing in Aphasia: From Nouns and Verbs to the Effect of Manipulability

    ERIC Educational Resources Information Center

    Arevalo, A.; Perani, D.; Cappa, S. F.; Butler, A.; Bates, E.; Dronkers, N.

    2007-01-01

    The processing of words and pictures representing actions and objects was tested in 21 aphasic patients and 20 healthy controls across three word production tasks: picture-naming (PN), single word reading (WR) and word repetition (WRP). Analysis (1) targeted task and lexical category (noun-verb), revealing worse performance on PN and verb items…

  16. Higher-order action planning for individual and joint object manipulations.

    PubMed

    Meyer, Marlene; van der Wel, Robrecht P R D; Hunnius, Sabine

    2013-04-01

    Many actions involve multiple action steps, which raises the question how far ahead people plan when they perform such actions. Here, we examined higher-order planning for action sequences and whether people planned similarly or differently when acting individually or together with an action partner. For individual performances, participants picked up an object with one hand and passed it to their other hand before placing it onto a target location. For joint performances, they picked up the object and handed it to their action partner, who placed it onto the target location. Each object could be grasped at only two possible grasping positions, implying that the first selected grasp on the object determined the postures for the rest of the action sequence. By varying the height of the target shelf, we tested whether people planned ahead and modulated their grasp choices to avoid uncomfortable end postures. Our results indicated that participants engaged in higher-order planning, but needed task experience before demonstrating such planning during both individual and joint performances. The rate of learning was similar in the two conditions, and participants transferred experience from individual to joint performance. Our results indicate similarity in mechanisms underlying individual and joint action sequence planning. PMID:23361302

  17. 250 ms to Code for Action Affordance during Observation of Manipulable Objects

    ERIC Educational Resources Information Center

    Proverbio, Alice Mado; Adorni, Roberta; D'Aniello, Guido Edoardo

    2011-01-01

    It is well known that viewing graspable tools (but not other objects) activates motor-related brain regions, but the time course of affordance processing has remained relatively unexplored. In this study, EEG was continuously recorded from 128 scalp sites in 15 right-handed university students while they received stimuli in the form of 150…

  18. LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects

    NASA Astrophysics Data System (ADS)

    Carrascosa, M.; García-Cabañes, A.; Jubera, M.; Ramiro, J. B.; Agulló-López, F.

    2015-12-01

    The application of evanescent photovoltaic (PV) fields, generated by visible illumination of Fe:LiNbO3 substrates, for parallel massive trapping and manipulation of micro- and nano-objects is critically reviewed. The technique has been often referred to as photovoltaic or photorefractive tweezers. The main advantage of the new method is that the involved electrophoretic and/or dielectrophoretic forces do not require any electrodes and large scale manipulation of nano-objects can be easily achieved using the patterning capabilities of light. The paper describes the experimental techniques for particle trapping and the main reported experimental results obtained with a variety of micro- and nano-particles (dielectric and conductive) and different illumination configurations (single beam, holographic geometry, and spatial light modulator projection). The report also pays attention to the physical basis of the method, namely, the coupling of the evanescent photorefractive fields to the dielectric response of the nano-particles. The role of a number of physical parameters such as the contrast and spatial periodicities of the illumination pattern or the particle deposition method is discussed. Moreover, the main properties of the obtained particle patterns in relation to potential applications are summarized, and first demonstrations reviewed. Finally, the PV method is discussed in comparison to other patterning strategies, such as those based on the pyroelectric response and the electric fields associated to domain poling of ferroelectric materials.

  19. LiNbO{sub 3}: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects

    SciTech Connect

    Carrascosa, M.; García-Cabañes, A.; Jubera, M.; Ramiro, J. B.; Agulló-López, F.

    2015-12-15

    The application of evanescent photovoltaic (PV) fields, generated by visible illumination of Fe:LiNbO{sub 3} substrates, for parallel massive trapping and manipulation of micro- and nano-objects is critically reviewed. The technique has been often referred to as photovoltaic or photorefractive tweezers. The main advantage of the new method is that the involved electrophoretic and/or dielectrophoretic forces do not require any electrodes and large scale manipulation of nano-objects can be easily achieved using the patterning capabilities of light. The paper describes the experimental techniques for particle trapping and the main reported experimental results obtained with a variety of micro- and nano-particles (dielectric and conductive) and different illumination configurations (single beam, holographic geometry, and spatial light modulator projection). The report also pays attention to the physical basis of the method, namely, the coupling of the evanescent photorefractive fields to the dielectric response of the nano-particles. The role of a number of physical parameters such as the contrast and spatial periodicities of the illumination pattern or the particle deposition method is discussed. Moreover, the main properties of the obtained particle patterns in relation to potential applications are summarized, and first demonstrations reviewed. Finally, the PV method is discussed in comparison to other patterning strategies, such as those based on the pyroelectric response and the electric fields associated to domain poling of ferroelectric materials.

  20. Building Tool Use From Object Manipulation: A Perception-Action Perspective

    PubMed Central

    Kahrs, Björn A.; Lockman, Jeffrey J.

    2015-01-01

    Tools are a universal feature of human culture. While most past research on tool use has focused on its cognitive underpinnings, in the present article we adopt a perception-action approach to understand how tool use emerges in early development. In this context, we review our work on infant object banging and how it may serve as a motor substrate for percussive tool use. Our results suggest that infants use banging to act on environmental surfaces selectively. Additionally, with increasing age, banging becomes more controlled and manifests many characteristics associated with skilled hammering. Taken together, the results suggest that there is much to be gained from considering the emergence of tool use as an ongoing process of perceptuomotor adaptation to handheld objects. PMID:25678761

  1. The end-state comfort effect in 3- to 8-year-old children in two object manipulation tasks.

    PubMed

    Knudsen, Birgit; Henning, Anne; Wunsch, Kathrin; Weigelt, Matthias; Aschersleben, Gisa

    2012-01-01

    The aim of the study was to compare 3- to 8-year-old children's propensity to anticipate a comfortable hand posture at the end of a grasping movement (end-state comfort effect) between two different object manipulation tasks, the bar-transport task, and the overturned-glass task. In the bar-transport task, participants were asked to insert a vertically positioned bar into a small opening of a box. In the overturned-glass task, participants were asked to put an overturned-glass right-side-up on a coaster. Half of the participants experienced action effects (lights) as a consequence of their movements (AE groups), while the other half of the participants did not (No-AE groups). While there was no difference between the AE and No-AE groups, end-state comfort performance differed across age as well as between tasks. Results revealed a significant increase in end-state comfort performance in the bar-transport task from 13% in the 3-year-olds to 94% in the 8-year-olds. Interestingly, the number of children grasping the bar according to end-state comfort doubled from 3 to 4 years and from 4 to 5 years of age. In the overturned-glass task an increase in end-state comfort performance from already 63% in the 3-year-olds to 100% in the 8-year-olds was significant as well. When comparing end-state comfort performance across tasks, results showed that 3- and 4-year-old children were better at manipulating the glass as compared to manipulating the bar, most probably, because children are more familiar with manipulating glasses. Together, these results suggest that preschool years are an important period for the development of motor planning in which the familiarity with the object involved in the task plays a significant role in children's ability to plan their movements according to end-state comfort.

  2. Controlling the perceived distance of an auditory object by manipulation of loudspeaker directivity.

    PubMed

    Laitinen, Mikko-Ville; Politis, Archontis; Huhtakallio, Ilkka; Pulkki, Ville

    2015-06-01

    This work presents a method to control the perceived distance of an auditory object by changing the directivity pattern of a loudspeaker and consequently the direct-to-reverberant ratio at the listening spot. Control of the directivity pattern is achieved by beamforming using a compact multi-driver loudspeaker unit. A small-sized cubic array consisting of six drivers is assembled, and per driver beamforming filters are derived from directional measurements of the array. The proposed method is evaluated using formal listening tests. The results show that the perceived distance can be controlled effectively by directivity pattern modification.

  3. Interactive priming enhanced by negative damping aids learning of an object manipulation task.

    PubMed

    Huang, Felix; Patton, James; Mussa-Ivaldi, Ferdinando

    2007-01-01

    We investigated how free interaction with an object influences the formation of motor planning. Subjects controlled a force-feedback planar manipulandum that presented simulated anisotropic inertial forces. As a performance evaluation, subjects made circular movements about a prescribed track. In order to investigate potential enhancement of motor planning, we introduced negative damping during an "interactive priming" phase prior to task performance. As a control, we presented a second subject group with normal interactive priming. Our results showed significantly greater reduction in maximum curvature error for the subject group that received enhanced priming (two-tailed T-test, p=1.86e-6) compared to the control group. Group-I demonstrated a 34.8% reduction in error while Group-II achieved 5.78% reduction. We also observed that the presentation of enhanced priming evidently caused a greater sensitivity to catch trials compared to the control. Group-I demonstrated a larger increase (92.0%) in maximum curvature error in catchtrials (with respect to baseline), compared to Group-II (50.8%) during early training (two-tailed T-test, p=1.9e-3). These results suggest that some forms of augmentation to task dynamics - leading to the exploration of a broader state space -can help the accelerate the learning of control strategies suitable for an unassisted environment. The finding is also consistent with the hypothesis that subjects can decompose the environment impedance into acceleration and velocity dependent elements.

  4. Eye Anatomy

    MedlinePlus

    ... News About Us Donate In This Section Eye Anatomy en Español email Send this article to a ... You at Risk For Glaucoma? Childhood Glaucoma Eye Anatomy Five Common Glaucoma Tests Glaucoma Facts and Stats ...

  5. Paraganglioma Anatomy

    MedlinePlus

    ... e.g. -historical Searches are case-insensitive Paraganglioma Anatomy Add to My Pictures View /Download : Small: 648x576 ... View Download Large: 2700x2400 View Download Title: Paraganglioma Anatomy Description: Paraganglioma of the head and neck; drawing ...

  6. Heart Anatomy

    MedlinePlus

    ... Incredible Machine Bonus poster (PDF) The Human Heart Anatomy Blood The Conduction System The Coronary Arteries The ... of the Leg Vasculature of the Torso Heart anatomy illustrations and animations for grades K-6. Heart ...

  7. Effect of Visual-Spatial Ability on Medical Students' Performance in a Gross Anatomy Course

    ERIC Educational Resources Information Center

    Lufler, Rebecca S.; Zumwalt, Ann C.; Romney, Carla A.; Hoagland, Todd M.

    2012-01-01

    The ability to mentally manipulate objects in three dimensions is essential to the practice of many clinical medical specialties. The relationship between this type of visual-spatial ability and performance in preclinical courses such as medical gross anatomy is poorly understood. This study determined if visual-spatial ability is associated with…

  8. Integer anatomy

    SciTech Connect

    Doolittle, R.

    1994-11-15

    The title integer anatomy is intended to convey the idea of a systematic method for displaying the prime decomposition of the integers. Just as the biological study of anatomy does not teach us all things about behavior of species neither would we expect to learn everything about the number theory from a study of its anatomy. But, some number-theoretic theorems are illustrated by inspection of integer anatomy, which tend to validate the underlying structure and the form as developed and displayed in this treatise. The first statement to be made in this development is: the way structure of the natural numbers is displayed depends upon the allowed operations.

  9. Motion times, hand forces, and trunk kinematics when using material handling manipulators in short-distance transfers of moderate mass objects.

    PubMed

    Nussbaum, M A; Chaffin, D B; Stump, B S; Baker, G; Foulke, J

    2000-06-01

    The risk of musculoskeletal injury associated with manual materials handling tasks has led in part to the use of material handling manipulators, yet there is limited empirical data to facilitate selection, design, and evaluation of these devices. A laboratory study of two types of mechanical manipulators (articulated arm and overhead hoist) was conducted of short-distance transfers of moderate loads, and the influence of various task parameters and transfer method on motion times, peak hand forces, and torso kinematics was obtained. Use of manipulators increased elemental motion times for symmetric sagittal plane transfers by 36-63%, and asymmetric transfers (in the frontal plane) by 62-115%, compared to similar transfers performed manually. Peak hand forces were significantly lower with both manipulators (40-50%), and approximately 10% higher for asymmetric versus symmetric transfers. Overall torso kinematics were grossly similar with and without a manipulator. These results suggest that for self-paced job tasks, moderate mass objects will be transferred slower over short distances and with lower levels of external (hand) forces when using mechanical aids. These simple effects, however, were influenced by object mass and transfer height. PMID:10855445

  10. Dépose dynamique d'un micro-objet saisi par adhésionManipulation of micro-objects using adhesion forces and dynamical effects

    NASA Astrophysics Data System (ADS)

    Haliyo, Sinan; Regnier, Stéphane; Guinot, Jean-Claude

    2003-08-01

    This paper describes a dynamical strategy for releasing micro objects picked-up by means of adhesion forces. While sticking effects are used in order to capture an object by adequately choosing a high surface energy constitutive material for the end-effector, these same effects handicap considerably the release. We propose to take advantage of the inertial effects of both the end-effector and the manipulated object to overbalance adhesion forces and to achieve the release. Simulations show that for this purpose, accelerations as high as 10 5 m/s 2 are needed. Successful manipulation of a 40 μm radius glass sphere is demonstrated. To cite this article: S. Haliyo et al., C. R. Mecanique 331 (2003).

  11. A review of a method for dynamic load distribution, dynamical modeling, and explicit internal force control when two manipulators mutually lift and transport a rigid body object

    SciTech Connect

    Unseren, M.A.

    1997-04-20

    The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  12. Perceptual decisions regarding object manipulation are selectively impaired in apraxia or when tDCS is applied over the left IPL.

    PubMed

    Evans, Carys; Edwards, Martin G; Taylor, Lawrence J; Ietswaart, Magdalena

    2016-06-01

    This study evaluated whether apraxia can be understood as due to impaired motor representations or motor imagery necessary for appropriate object-use, imitation, and pantomime. The causal role of the left inferior parietal lobe (IPL), which is heavily implicated in apraxia, is also evaluated. These processes are appraised in light of the proposed ventro-dorsal sub-stream of the classic two visual pathway model, where perceptual information from the ventral stream and the dorsal action stream are integrated and essential for object manipulation. Using a task assessing object-use perception, stroke patients with apraxia demonstrated a selective deficit during perceptual decisions reliant on the integration of visible and known object properties to select the appropriate grasp for object-use. This deficit increased with apraxia severity. A dissociation was evident in these patients showing intact non-motoric perceptual decisions regarding the functional semantic relationship between two objects in the absence of the actor (e.g. how a hammer hits a nail). Converging evidence was found using a modified version of the same task in a neuromodulation study that directly targeted the left IPL in healthy participants using transcranial direct current stimulation (tDCS). Application of inhibitory stimulation over the left IPL reduced performance during perceptual decisions regarding object manipulation whilst performance was unaffected during functional semantic decisions. Excitatory stimulation of the left IPL did not affect performance in either task. Combined, these results suggest that the left inferior parietal lobe is critical for motor imagery, and that apraxia may be caused by an inability to use internal motor representations of object manipulation. These results are discussed in terms of motoric and non-motoric perceptual processes and the proposal of an additional ventro-dorsal sub-stream within the dorsal and ventral visual pathways model. PMID:27109034

  13. Facial anatomy.

    PubMed

    Marur, Tania; Tuna, Yakup; Demirci, Selman

    2014-01-01

    Dermatologic problems of the face affect both function and aesthetics, which are based on complex anatomical features. Treating dermatologic problems while preserving the aesthetics and functions of the face requires knowledge of normal anatomy. When performing successfully invasive procedures of the face, it is essential to understand its underlying topographic anatomy. This chapter presents the anatomy of the facial musculature and neurovascular structures in a systematic way with some clinically important aspects. We describe the attachments of the mimetic and masticatory muscles and emphasize their functions and nerve supply. We highlight clinically relevant facial topographic anatomy by explaining the course and location of the sensory and motor nerves of the face and facial vasculature with their relations. Additionally, this chapter reviews the recent nomenclature of the branching pattern of the facial artery.

  14. Executions and scientific anatomy.

    PubMed

    Dolezal, Antonín; Jelen, Karel; Stajnrtova, Olga

    2015-12-01

    The very word "anatomy" tells us about this branch's connection with dissection. Studies of anatomy have taken place for approximately 2.300 years already. Anatomy's birthplace lies in Greece and Egypt. Knowledge in this specific field of science was necessary during surgical procedures in ophthalmology and obstetrics. Embalming took place without public disapproval just like autopsies and manipulation with relics. Thus, anatomical dissection became part of later forensic sciences. Anatomical studies on humans themselves, which needed to be compared with the knowledge gained through studying procedures performed on animals, elicited public disapprobation and prohibition. When faced with a shortage of cadavers, anatomists resorted to obtaining bodies of the executed and suicide victims - since torture, public display of the mutilated body, (including anatomical autopsy), were perceived as an intensification of the death penalty. Decapitation and hanging were the main execution methods meted out for death sentences. Anatomists preferred intact bodies for dissection; hence, convicts could thus avoid torture. This paper lists examples of how this process was resolved. It concerns the manners of killing, vivisection on people in the antiquity and middle-ages, experiments before the execution and after, vivifying from seeming death, experiments with galvanizing electricity on fresh cadavers, evaluating of sensibility after guillotine execution, and making perfect anatomical preparations and publications during Nazism from fresh bodies of the executed.

  15. Executions and scientific anatomy.

    PubMed

    Dolezal, Antonín; Jelen, Karel; Stajnrtova, Olga

    2015-12-01

    The very word "anatomy" tells us about this branch's connection with dissection. Studies of anatomy have taken place for approximately 2.300 years already. Anatomy's birthplace lies in Greece and Egypt. Knowledge in this specific field of science was necessary during surgical procedures in ophthalmology and obstetrics. Embalming took place without public disapproval just like autopsies and manipulation with relics. Thus, anatomical dissection became part of later forensic sciences. Anatomical studies on humans themselves, which needed to be compared with the knowledge gained through studying procedures performed on animals, elicited public disapprobation and prohibition. When faced with a shortage of cadavers, anatomists resorted to obtaining bodies of the executed and suicide victims - since torture, public display of the mutilated body, (including anatomical autopsy), were perceived as an intensification of the death penalty. Decapitation and hanging were the main execution methods meted out for death sentences. Anatomists preferred intact bodies for dissection; hence, convicts could thus avoid torture. This paper lists examples of how this process was resolved. It concerns the manners of killing, vivisection on people in the antiquity and middle-ages, experiments before the execution and after, vivifying from seeming death, experiments with galvanizing electricity on fresh cadavers, evaluating of sensibility after guillotine execution, and making perfect anatomical preparations and publications during Nazism from fresh bodies of the executed. PMID:26859596

  16. Selective use of visual information signaling objects' center of mass for anticipatory control of manipulative fingertip forces.

    PubMed

    Salimi, Iran; Frazier, Wendy; Reilmann, Ralf; Gordon, Andrew M

    2003-05-01

    The present study examines whether visual information indicating the center of mass (CM) of an object can be used for the appropriate scaling of fingertip forces at each digit during precision grip. In separate experiments subjects lifted an object with various types of visual cues concerning the CM location several times and then rotated and lifted it again to determine whether the visual cues signaling the new location of the CM could be used to appropriately scale the fingertip forces. Specifically, subjects had either no visual cues, visual instructional cues (i.e., an indicator) or visual geometric cues where the longer axis of the object indicated the CM. When no visual cues were provided, subjects were unable to appropriately scale the load forces at each digit following rotation despite their knowledge of the new weight distribution. When visual cues regarding the CM location were provided, the nature of the visual cues determined their effectiveness in retrieval of internal representations underlying the anticipatory scaling of fingertip forces. Specifically, when subjects were provided with visual instructional information, they were unable to appropriately scale the forces. More appropriate scaling of the load forces occurred when the visual cues were ecologically meaningful, i.e., when the shape of the object indicated the CM location. We suggest that visual instructional cues do not have access to the implicit processes underlying dynamic force control, whereas visual geometric cues can be used for the retrieval of the internal representation related to CM for appropriate partitioning of the forces in each digit.

  17. The Anatomy of Learning Anatomy

    ERIC Educational Resources Information Center

    Wilhelmsson, Niklas; Dahlgren, Lars Owe; Hult, Hakan; Scheja, Max; Lonka, Kirsti; Josephson, Anna

    2010-01-01

    The experience of clinical teachers as well as research results about senior medical students' understanding of basic science concepts has much been debated. To gain a better understanding about how this knowledge-transformation is managed by medical students, this work aims at investigating their ways of setting about learning anatomy.…

  18. Modeling of 3-D Object Manipulation by Multi-Joint Robot Fingers under Non-Holonomic Constraints and Stable Blind Grasping

    NASA Astrophysics Data System (ADS)

    Arimoto, Suguru; Yoshida, Morio; Bae, Ji-Hun

    This paper derives a mathematical model that expresses motion of a pair of multi-joint robot fingers with hemi-spherical rigid ends grasping and manipulating a 3-D rigid object with parallel flat surfaces. Rolling contacts arising between finger-ends and object surfaces are taken into consideration and modeled as Pfaffian constraints from which constraint forces emerge tangentially to the object surfaces. Another noteworthy difference of modeling of motion of a 3-D object from that of a 2-D object is that the instantaneous axis of rotation of the object is fixed in the 2-D case but that is time-varying in the 3-D case. A further difficulty that has prevented us to model 3-D physical interactions between a pair of fingers and a rigid object lies in the problem of treating spinning motion that may arise around the opposing axis from a contact point between one finger-end with one side of the object to another contact point. This paper shows that, once such spinning motion stops as the object mass center approaches just beneath the opposition axis, then this cease of spinning evokes a further nonholonomic constraint. Hence, the multi-body dynamics of the overall fingers-object system is subject to non-holonomic constraints concerning a 3-D orthogonal matrix expressing three mutually orthogonal unit vectors fixed at the object together with an extra non-holonomic constraint that the instantaneous axis of rotation of the object is always orthogonal to the opposing axis. It is shown that Lagrange's equation of motion of the overall system can be derived without violating the causality that governs the non-holonomic constraints. This immediately suggests possible construction of a numerical simulator of multi-body dynamics that can express motion of the fingers and object physically interactive to each other. By referring to the fact that human grasp an object in the form of precision prehension dynamically and stably by using opposable force between the thumb and another

  19. Effects of Carpal Tunnel Syndrome on adaptation of multi-digit forces to object mass distribution for whole-hand manipulation

    PubMed Central

    2012-01-01

    Background Carpal tunnel syndrome (CTS) is a compression neuropathy of the median nerve that results in sensorimotor deficits in the hand. Until recently, the effects of CTS on hand function have been studied using mostly two-digit grip tasks. The purpose of this study was to investigate the coordination of multi-digit forces as a function of object center of mass (CM) during whole-hand grasping. Methods Fourteen CTS patients and age- and gender-matched controls were instructed to grasp, lift, hold, and release a grip device with five digits for seven consecutive lifts while maintaining its vertical orientation. The object CM was changed by adding a mass at different locations at the base of the object. We measured forces and torques exerted by each digit and object kinematics and analyzed modulation of these variables to object CM at object lift onset and during object hold. Our task requires a modulation of digit forces at and after object lift onset to generate a compensatory moment to counteract the external moment caused by the added mass and to minimize object tilt. Results We found that CTS patients learned to generate a compensatory moment and minimized object roll to the same extent as controls. However, controls fully exploited the available degrees of freedom (DoF) in coordinating their multi-digit forces to generate a compensatory moment, i.e., digit normal forces, tangential forces, and the net center of pressure on the finger side of the device at object lift onset and during object hold. In contrast, patients modulated only one of these DoFs (the net center of pressure) to object CM by modulating individual normal forces at object lift onset. During object hold, however, CTS patients were able to modulate digit tangential force distribution to object CM. Conclusions Our findings suggest that, although CTS did not affect patients’ ability to perform our manipulation task, it interfered with the modulation of specific grasp control variables. This

  20. Classic versus millennial medical lab anatomy.

    PubMed

    Benninger, Brion; Matsler, Nik; Delamarter, Taylor

    2014-10-01

    This study investigated the integration, implementation, and use of cadaver dissection, hospital radiology modalities, surgical tools, and AV technology during a 12-week contemporary anatomy course suggesting a millennial laboratory. The teaching of anatomy has undergone the greatest fluctuation of any of the basic sciences during the past 100 years in order to make room for the meteoric rise in molecular sciences. Classically, anatomy consisted of a 2-year methodical, horizontal, anatomy course; anatomy has now morphed into a 12-week accelerated course in a vertical curriculum, at most institutions. Surface and radiological anatomy is the language for all clinicians regardless of specialty. The objective of this study was to investigate whether integration of full-body dissection anatomy and modern hospital technology, during the anatomy laboratory, could be accomplished in a 12-week anatomy course. Literature search was conducted on anatomy text, journals, and websites regarding contemporary hospital technology integrating multiple image mediums of 37 embalmed cadavers, surgical suite tools and technology, and audio/visual technology. Surgical and radiology professionals were contracted to teach during the anatomy laboratory. Literature search revealed no contemporary studies integrating full-body dissection with hospital technology and behavior. About 37 cadavers were successfully imaged with roentograms, CT, and MRI scans. Students were in favor of the dynamic laboratory consisting of multiple activity sessions occurring simultaneously. Objectively, examination scores proved to be a positive outcome and, subjectively, feedback from students was overwhelmingly positive. Despite the surging molecular based sciences consuming much of the curricula, full-body dissection anatomy is irreplaceable regarding both surface and architectural, radiological anatomy. Radiology should not be a small adjunct to understand full-body dissection, but rather, full-body dissection

  1. Progress in nonprehensile manipulation

    SciTech Connect

    Mason, M.T.

    1999-11-01

    This paper reviews my recent research in robotic manipulation and speculates on potentially fruitful directions for future work. My recent work is focused on nonprehensile manipulation: manipulating objects without grasping them. In particular, the paper surveys work on a single joint robot that orients parts on a conveyor belt; a robot that uses dynamics to snatch, roll, or throw objects; hitting things to position them; manipulating things whose shapes are not completely known; and integration of manipulation with locomotion. In the future, a broad view of robotics will allow us to focus on fundamental principles and at the same time address a variety of new applications.

  2. Complexity in object manipulation by Japanese macaques (Macaca fuscata): a cross-sectional analysis of manual coordination in stone handling patterns.

    PubMed

    Leca, Jean-Baptiste; Gunst, Noëlle; Huffman, Michael

    2011-02-01

    Defined as a spontaneous stone-directed noninstrumental manipulative behavior, and comprised of multiple one-handed and (a)symmetrical/(un)coordinated two-handed patterns, stone handling (SH) is a good candidate for the study of complexity in object manipulation. We present a cross-sectional developmental analysis of SH complexity in Japanese macaques (Macaca fuscata), through the combined investigation of bimanuality, coordination, and symmetry in hand use. Bimanual SH patterns were more frequent than unimanual patterns. Among bimanual patterns, coordinated actions were more frequent than uncoordinated ones. We recorded five asymmetrical coordinated SH patterns with manual role differentiation, a form of hand use reminiscent of complex actions involving the use of tools in monkeys and apes. Bimanuality in SH was affected by body posture. Aging individuals performed less bimanual and less coordinated SH patterns than younger individuals. Our result on senescent males performing less bimanual patterns than senescent females was consistent with sex differences found in the late deterioration of complex manual movements in other species. Although some SH patterns represent a high degree of behavioral complexity, our results suggest that SH behavior is not as complex as tool-use or tool-manufacture in other nonhuman primates and hominids.

  3. Thymus Gland Anatomy

    MedlinePlus

    ... historical Searches are case-insensitive Thymus Gland, Adult, Anatomy Add to My Pictures View /Download : Small: 720x576 ... Large: 3000x2400 View Download Title: Thymus Gland, Adult, Anatomy Description: Anatomy of the thymus gland; drawing shows ...

  4. Normal Female Reproductive Anatomy

    MedlinePlus

    ... hyphen, e.g. -historical Searches are case-insensitive Reproductive System, Female, Anatomy Add to My Pictures View /Download : Small: ... Reproductive System, Female, Anatomy Description: Anatomy of the female reproductive system; drawing shows the uterus, myometrium (muscular outer layer ...

  5. Normal Pancreas Anatomy

    MedlinePlus

    ... hyphen, e.g. -historical Searches are case-insensitive Pancreas Anatomy Add to My Pictures View /Download : Small: ... 1586x1534 View Download Large: 3172x3068 View Download Title: Pancreas Anatomy Description: Anatomy of the pancreas; drawing shows ...

  6. User Acceptance of a Haptic Interface for Learning Anatomy

    ERIC Educational Resources Information Center

    Yeom, Soonja; Choi-Lundberg, Derek; Fluck, Andrew; Sale, Arthur

    2013-01-01

    Visualizing the structure and relationships in three dimensions (3D) of organs is a challenge for students of anatomy. To provide an alternative way of learning anatomy engaging multiple senses, we are developing a force-feedback (haptic) interface for manipulation of 3D virtual organs, using design research methodology, with iterations of system…

  7. Regulatory Anatomy

    PubMed Central

    2015-01-01

    This article proposes the term “safety logics” to understand attempts within the European Union (EU) to harmonize member state legislation to ensure a safe and stable supply of human biological material for transplants and transfusions. With safety logics, I refer to assemblages of discourses, legal documents, technological devices, organizational structures, and work practices aimed at minimizing risk. I use this term to reorient the analytical attention with respect to safety regulation. Instead of evaluating whether safety is achieved, the point is to explore the types of “safety” produced through these logics as well as to consider the sometimes unintended consequences of such safety work. In fact, the EU rules have been giving rise to complaints from practitioners finding the directives problematic and inadequate. In this article, I explore the problems practitioners face and why they arise. In short, I expose the regulatory anatomy of the policy landscape. PMID:26139952

  8. Manipulator mounted transfer platform

    DOEpatents

    Dobbins, James C.; Hoover, Mark A.; May, Kay W.; Ross, Maurice J.

    1990-01-01

    A transfer platform for the conveyance of objects by a manipulator includes a bed frame and saddle clamp secured along an edge of the bed frame and adapted so as to secure the bed frame to a horizontal crosspiece of the manipulator. The platform may thus move with the manipulator in a reciprocal linear path defined by a guide rail. A bed insert may be provided for the support of conveyed objects and a lifting bail may be provided to permit the manipulator arm to install the bed frame upon the crosspiece under remote control.

  9. High resolution low dose transmission electron microscopy real-time imaging and manipulation of nano-scale objects in the electron beam

    DOEpatents

    Brown, Jr., R. Malcolm; Barnes, Zack; Sawatari, Chie; Kondo, Tetsuo

    2008-02-26

    The present invention includes a method, apparatus and system for nanofabrication in which one or more target molecules are identified for manipulation with an electron beam and the one or more target molecules are manipulated with the electron beam to produce new useful materials.

  10. When left is not right: handedness effects on learning object-manipulation words using pictures with left- or right-handed first-person perspectives.

    PubMed

    de Nooijer, Jacqueline A; van Gog, Tamara; Paas, Fred; Zwaan, Rolf A

    2013-12-01

    According to the body-specificity hypothesis, hearing action words creates body-specific mental simulations of the actions. Handedness should, therefore, affect mental simulations. Given that pictures of actions also evoke mental simulations and often accompany words to be learned, would pictures that mismatch the mental simulation of words negatively affect learning? We investigated effects of pictures with a left-handed, right-handed, or bimanual perspective on left- and right-handers' learning of object-manipulation words in an artificial language. Right-handers recalled fewer definitions of words learned with a corresponding left-handed-perspective picture than with a right-handed-perspective picture. For left-handers, there was no effect of perspective. These findings suggest that mismatches between pictures and mental simulations evoked by hearing action words can negatively affect right-handers' learning. Left-handers, who encounter the right-handed perspective frequently, could presumably overcome the lack of motor experience with visual experience and, therefore, not be influenced by picture perspective.

  11. Anatomy of the Eye

    MedlinePlus

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Anatomy of the Eye En Español Read in Chinese External (Extraocular) Anatomy Extraocular Muscles: There are six muscles that are ...

  12. [The development of anatomy].

    PubMed

    Colović, R; Colović, N

    2001-01-01

    Doctors, particularly surgeons, realise the enormous importance of good knowledge of human anatomy today. It was not so in the past when doctors showed little or no interest for human anatomy for centuries. Dissections of the human body, necessary to study human anatomy, were either forbidden or limited to the corpses of criminals on whom capital punishment was carried out. The authors give a chronology of the development of human anatomy until 19. century when dissections of the human body became almost universally regulated with positive legislation. After the "golden age of surgery" began in 1870. surgeons gave an enormous contribution to anatomy.

  13. Radiological sinonasal anatomy

    PubMed Central

    Alrumaih, Redha A.; Ashoor, Mona M.; Obidan, Ahmed A.; Al-Khater, Khulood M.; Al-Jubran, Saeed A.

    2016-01-01

    Objectives: To assess the prevalence of common radiological variants of sinonasal anatomy among Saudi population and compare it with the reported prevalence of these variants in other ethnic and population groups. Methods: This is a retrospective cross-sectional study of 121 computerized tomography scans of the nose and paranasal sinuses of patients presented with sinonasal symptoms to the Department of Otorhinolarngology, King Fahad Hospital of the University, Khobar, Saudi Arabia, between January 2014 and May 2014. Results: Scans of 121 patients fulfilled inclusion criteria were reviewed. Concha bullosa was found in 55.4%, Haller cell in 39.7%, and Onodi cell in 28.9%. Dehiscence of the internal carotid artery was found in 1.65%. Type-1 and type-2 optic nerve were the prevalent types. Type-II Keros classification of the depth of olfactory fossa was the most common among the sample (52.9%). Frontal cells were found in 79.3%; type I was the most common. Conclusions: There is a difference in the prevalence of some radiological variants of the sinonasal anatomy between Saudi population and other study groups. Surgeon must pay special attention in the preoperative assessment of patients with sinonasal pathology to avoid undesirable complications. PMID:27146614

  14. A review of a method for dynamic load distribution, dynamic modeling, and explicit internal force control when two serial link manipulators mutually lift and transport a rigid body object

    SciTech Connect

    Unseren, M.A.

    1997-09-01

    The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  15. Cell manipulation in microfluidics.

    PubMed

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2013-06-01

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available.

  16. Anatomy of the lymphatics.

    PubMed

    Skandalakis, John E; Skandalakis, Lee J; Skandalakis, Panagiotis N

    2007-01-01

    The lymphatic system is perhaps the most complicated system of Homo sapiens. An introduction to the anatomy, embryology, and anomalies of the lymphatics is presented. The overall anatomy and drainage of the lymphatic vessels in outlined. The topographic anatomy, relations, and variations of the principle vessels of the lymphatic system (the right lymphatic duct, the thoracic duct, and the cisterna chyli) are presented in detail.

  17. ELECTRONIC MASTER SLAVE MANIPULATOR

    DOEpatents

    Goertz, R.C.; Thompson, Wm.M.; Olsen, R.A.

    1958-08-01

    A remote control manipulator is described in which the master and slave arms are electrically connected to produce the desired motions. A response signal is provided in the master unit in order that the operator may sense a feel of the object and may not thereby exert such pressures that would ordinarily damage delicate objects. This apparatus will permit the manipulation of objects at a great distance, that may be viewed over a closed TV circuit, thereby permitting a remote operator to carry out operations in an extremely dangerous area with complete safety.

  18. Robot Manipulators

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Space Shuttle's Remote Manipulator System (Canadarm) is a 50 foot robot arm used to deploy, retrieve or repair satellites in orbit. Initial spinoff version is designed to remove, inspect and replace large components of Ontario Hydro's CANDU nuclear reactors, which supply 50 percent of Ontario Hydro's total power reduction. CANDU robot is the first of SPAR's Remote Manipulator Systems intended for remote materials handling operations in nuclear servicing, chemical processing, smelting and manufacturing. Inco Limited used remote manipulator for remote control mining equipment to enhance safety and productivity of Inco's hardrock mining operations. System not only improves safety in a hazardous operation that costs more than a score of lives annually, it also increases productivity fourfold. Remote Manipulator System Division is also manufacturing a line of industrial robots and developing additional system for nuclear servicing, mining, defense and space operations.

  19. Anatomy Comic Strips

    ERIC Educational Resources Information Center

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective…

  20. Osteopathic manipulative medicine for carpal tunnel syndrome.

    PubMed

    Siu, Gilbert; Jaffe, J Douglas; Rafique, Maryum; Weinik, Michael M

    2012-03-01

    Carpal tunnel syndrome (CTS) is 1 of the most common peripheral nerve entrapment disorders. Osteopathic manipulative medicine can be invaluable in diagnosing and managing CTS. Combined with a patient's history and a standard physical examination, an osteopathic structural examination can facilitate localizing the nerve entrapment, diagnosing CTS, and monitoring the disease process. Osteopathic manipulative treatment is noninvasive and can be used to supplement traditional CTS treatment methods. The authors also review the relevant anatomy involving CTS and the clinical efficacy of osteopathic manipulative medicine in the management of this disorder.

  1. Anatomy comic strips.

    PubMed

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective imagination. The comics were drawn on paper and then recreated with digital graphics software. More than 500 comic strips have been drawn and labeled in Korean language, and some of them have been translated into English. All comic strips can be viewed on the Department of Anatomy homepage at the Ajou University School of Medicine, Suwon, Republic of Korea. The comic strips were written and drawn by experienced anatomists, and responses from viewers have generally been favorable. These anatomy comic strips, designed to help students learn the complexities of anatomy in a straightforward and humorous way, are expected to be improved further by the authors and other interested anatomists.

  2. Underwater manipulator

    SciTech Connect

    Schrum, Phillip B.; Cohen, George H.

    1993-01-01

    Self-contained, waterproof, water-submersible, remote-controlled apparatus is provided for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer .+-.45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer .+-.10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  3. Underwater manipulator

    SciTech Connect

    Schrum, P.B.; Cohen, G.H.

    1992-12-31

    This invention is comprised of a self-contained, waterproof, water-submersible, remote-controlled apparatus provided for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer {plus_minus} 45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer {plus_minus} 10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  4. Underwater manipulator

    SciTech Connect

    Schrum, P.B.; Cohen, G.H.

    1993-04-20

    Self-contained, waterproof, water-submersible, remote-controlled apparatus is described for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer [plus minus]45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer [plus minus]10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  5. Skull Base Anatomy.

    PubMed

    Patel, Chirag R; Fernandez-Miranda, Juan C; Wang, Wei-Hsin; Wang, Eric W

    2016-02-01

    The anatomy of the skull base is complex with multiple neurovascular structures in a small space. Understanding all of the intricate relationships begins with understanding the anatomy of the sphenoid bone. The cavernous sinus contains the carotid artery and some of its branches; cranial nerves III, IV, VI, and V1; and transmits venous blood from multiple sources. The anterior skull base extends to the frontal sinus and is important to understand for sinus surgery and sinonasal malignancies. The clivus protects the brainstem and posterior cranial fossa. A thorough appreciation of the anatomy of these various areas allows for endoscopic endonasal approaches to the skull base.

  6. Comparison of a Gross Anatomy Laboratory to Online Anatomy Software for Teaching Anatomy

    ERIC Educational Resources Information Center

    Mathiowetz, Virgil; Yu, Chih-Huang; Quake-Rapp, Cindee

    2016-01-01

    This study was designed to assess the grades, self-perceived learning, and satisfaction between occupational therapy students who used a gross anatomy laboratory versus online anatomy software (AnatomyTV) as tools to learn anatomy at a large public university and a satellite campus in the mid-western United States. The goal was to determine if…

  7. Anatomy and art.

    PubMed

    Laios, Konstantinos; Tsoukalas, Gregory; Karamanou, Marianna; Androutsos, George

    2013-01-01

    Leonardo da Vinci, Jean Falcon, Andreas Vesalius, Henry Gray, Henry Vandyke Carter and Frank Netter created some of the best atlases of anatomy. Their works constitute not only scientific medical projects but also masterpieces of art. PMID:24640589

  8. Anatomy of the Brain

    MedlinePlus

    ... our existence. It controls our personality, thoughts, memory, intelligence, speech and understanding, emotions, senses, and basic body functions, as well as how we function in our environment. The diagrams below show brain anatomy, or the various parts of the brain, ...

  9. Ontology-enriched Visualization of Human Anatomy

    SciTech Connect

    Pouchard, LC

    2005-12-20

    The project focuses on the problem of presenting a human anatomical 3D model associated with other types of human systemic information ranging from physiological to anatomical information while navigating the 3D model. We propose a solution that integrates a visual 3D interface and navigation features with the display of structured information contained in an ontology of anatomy where the structures of the human body are formally and semantically linked. The displayed and annotated anatomy serves as a visual entry point into a patient's anatomy, medical indicators and other information. The ontology of medical information provides labeling to the highlighted anatomical parts in the 3D display. Because of the logical organization and links between anatomical objects found in the ontology and associated 3D model, the analysis of a structure by a physician is greatly enhanced. Navigation within the 3D visualization and between this visualization and objects representing anatomical concepts within the model is also featured.

  10. Evidence-Based Anatomy

    PubMed Central

    Yammine, Kaissar

    2014-01-01

    Anatomy is a descriptive basic medical science that is no longer considered a research-led discipline. Many publications in clinical anatomy are prevalence studies treating clinically relevant anatomical variations and reporting their frequencies and/or associations with variables such as age, sex, side, laterality, and ancestry. This article discusses the need to make sense of the available literature. A new concept, evidence-based anatomy (EBA), is proposed to find, appraise, and synthetize the results reported in such publications. It consists in applying evidence-based principles to the field of epidemiological anatomy research through evidence synthesis using systematic reviews and meta-analyses to generate weighted pooled results. Pooled frequencies and associations based on large pooled sample size are likely to be more accurate and to reflect true population statistics and associations more closely. A checklist of a typical systematic review in anatomy is suggested and the implications of EBA for practice and future research, along with its scope, are discussed. The EBA approach would have positive implications for the future preservation of anatomy as a keystone basic science, for sound knowledge of anatomical variants, and for the safety of medical practice. Clin. Anat. 27:847–852, 2014. PMID:24797314

  11. Spatial Abilities in an Elective Course of Applied Anatomy after a Problem-Based Learning Curriculum

    ERIC Educational Resources Information Center

    Langlois, Jean; Wells, George A.; Lecourtois, Marc; Bergeron, Germain; Yetisir, Elizabeth; Martin, Marcel

    2009-01-01

    A concern on the level of anatomy knowledge reached after a problem-based learning curriculum has been documented in the literature. Spatial anatomy, arguably the highest level in anatomy knowledge, has been related to spatial abilities. Our first objective was to test the hypothesis that residents are interested in a course of applied anatomy…

  12. Model based manipulator control

    NASA Technical Reports Server (NTRS)

    Petrosky, Lyman J.; Oppenheim, Irving J.

    1989-01-01

    The feasibility of using model based control (MBC) for robotic manipulators was investigated. A double inverted pendulum system was constructed as the experimental system for a general study of dynamically stable manipulation. The original interest in dynamically stable systems was driven by the objective of high vertical reach (balancing), and the planning of inertially favorable trajectories for force and payload demands. The model-based control approach is described and the results of experimental tests are summarized. Results directly demonstrate that MBC can provide stable control at all speeds of operation and support operations requiring dynamic stability such as balancing. The application of MBC to systems with flexible links is also discussed.

  13. [The manipulators].

    PubMed

    Tschui, M

    1997-01-01

    During their long careers of counseling couples, Giovanna Stoll and Maurice Hurni have encountered couples in which psychological violence is exercised. Their book, ¿The Hate of Love, the Oddness of the Place,¿ explores strategies used in couples by one or both partners to subjugate the other and to be victorious in an ongoing struggle between the two. Two case examples are presented. Confronted with such deliberate meanness, health professionals long ago adopted a neutral stance on such behavior in an attempt to maintain professional distance from their clients. However, Stoll and Hurni abandoned their neutrality in the face of certain particularly brutal behaviors. The author describes Stoll and Hurni¿s professional experiences and the children of manipulative parents. The employer who pits his employees against each other is also discussed. Such manipulators are unable to have true friends, just as they are unable to live within loving, communicative relationships. They behave in calculated fashion, having only relationships which they deem to be useful and opportune. Respect, the capacity to give and receive, and empathy are alien notions to those who manipulate others. 40% of 1500 women aged 20-60 years old interviewed in a study of violence within the family report having been subjected to psychological violence during their married lives. 14% of these women report being either often or always sad. Women risk being denigrated, humiliated, harassed, controlled, and deprived.

  14. [Computer technologies in teaching pathological anatomy].

    PubMed

    Ponomarev, A B; Fedorov, D N

    2015-01-01

    The paper gives experience with personal computers used at the Academician A.L. Strukov Department of Pathological Anatomy for more than 20 years. It shows the objective necessity of introducing computer technologies at all stages of acquiring skills in anatomical pathology, including lectures, students' free work, test check, etc.

  15. A Syllabus for Biol 242--Human Anatomy.

    ERIC Educational Resources Information Center

    Jacob, Willis H.

    This document is the fall and spring semester course syllabus of Biology 242--Human Anatomy at Southern University (Louisiana). Sections include: (1) Descriptive Information; (2) Specification of Course Goals and Objectives; (3) Readings; (4) Description of Instructional Procedures; (5) Course Requirements; (6) Course Schedule; (7) Evaluation of…

  16. [Laurentius on anatomy].

    PubMed

    Sawai, Tadashi; Sakai, Tatsuo

    2005-03-01

    Andreas Laurentius wrote Opera anatomica (1593) and Historia anatomica (1600). These books were composed of two types of chapters; 'historia' and 'quaestio'. His description is not original, but take from other anatomists. 'Historia' describes the structure, action and usefulness of the body parts clarified after dissection. 'Quaestio' treats those questions which could not be solved only by dissection. Laurentius cited many previous contradicting interpretations to these questions and choose a best interpretation for the individual questions. In most cases, Laurentius preferred Galen's view. Historia anatomica retained almost all the 'historia' and 'quaestio' from Opera anatomica, and added some new 'historia' and 'quaestio', especially in regard to the components of the body, such as ligaments, membranes, vessels, nerves and glands. Other new 'historia' and 'quaestio' in Historia anatomica concerned several topics on anatomy in general to comprehensively analyze the history of anatomy, methods of anatomy, and usefulness of anatomy. Historia anatomica reviewed what was anatomy by describing in 'historia' what was known and in 'quaestio' what was unresolved. Till now Laurentius's anatomical works have attracted little attention because his description contained few original findings and depended on previous books. However, the important fact that Historia anatomica was very popular in the 17th century tells us that people needed non-original and handbook style of this textbook. Historia anatomica is important for further research on the propagation of anatomical knowledge from professional anatomists to non-professionals in the 17th century.

  17. The Drosophila anatomy ontology

    PubMed Central

    2013-01-01

    Background Anatomy ontologies are query-able classifications of anatomical structures. They provide a widely-used means for standardising the annotation of phenotypes and expression in both human-readable and programmatically accessible forms. They are also frequently used to group annotations in biologically meaningful ways. Accurate annotation requires clear textual definitions for terms, ideally accompanied by images. Accurate grouping and fruitful programmatic usage requires high-quality formal definitions that can be used to automate classification and check for errors. The Drosophila anatomy ontology (DAO) consists of over 8000 classes with broad coverage of Drosophila anatomy. It has been used extensively for annotation by a range of resources, but until recently it was poorly formalised and had few textual definitions. Results We have transformed the DAO into an ontology rich in formal and textual definitions in which the majority of classifications are automated and extensive error checking ensures quality. Here we present an overview of the content of the DAO, the patterns used in its formalisation, and the various uses it has been put to. Conclusions As a result of the work described here, the DAO provides a high-quality, queryable reference for the wild-type anatomy of Drosophila melanogaster and a set of terms to annotate data related to that anatomy. Extensive, well referenced textual definitions make it both a reliable and useful reference and ensure accurate use in annotation. Wide use of formal axioms allows a large proportion of classification to be automated and the use of consistency checking to eliminate errors. This increased formalisation has resulted in significant improvements to the completeness and accuracy of classification. The broad use of both formal and informal definitions make further development of the ontology sustainable and scalable. The patterns of formalisation used in the DAO are likely to be useful to developers of other

  18. Comparison of a gross anatomy laboratory to online anatomy software for teaching anatomy.

    PubMed

    Mathiowetz, Virgil; Yu, Chih-Huang; Quake-Rapp, Cindee

    2016-01-01

    This study was designed to assess the grades, self-perceived learning, and satisfaction between occupational therapy students who used a gross anatomy laboratory versus online anatomy software (AnatomyTV) as tools to learn anatomy at a large public university and a satellite campus in the mid-western United States. The goal was to determine if equivalent learning outcomes could be achieved regardless of learning tool used. In addition, it was important to determine why students chose the gross anatomy laboratory over online AnatomyTV. A two group, post-test only design was used with data gathered at the end of the course. Primary outcomes were students' grades, self-perceived learning, and satisfaction. In addition, a survey was used to collect descriptive data. One cadaver prosection was available for every four students in the gross anatomy laboratory. AnatomyTV was available online through the university library. At the conclusion of the course, the gross anatomy laboratory group had significantly higher grade percentage, self-perceived learning, and satisfaction than the AnatomyTV group. However, the practical significance of the difference is debatable. The significantly greater time spent in gross anatomy laboratory during the laboratory portion of the course may have affected the study outcomes. In addition, some students may find the difference in (B+) versus (A-) grade as not practically significant. Further research needs to be conducted to identify what specific anatomy teaching resources are most effective beyond prosection for students without access to a gross anatomy laboratory.

  19. Learning Anatomy Enhances Spatial Ability

    ERIC Educational Resources Information Center

    Vorstenbosch, Marc A. T. M.; Klaassen, Tim P. F. M.; Donders, A. R. T.; Kooloos, Jan G. M.; Bolhuis, Sanneke M.; Laan, Roland F. J. M.

    2013-01-01

    Spatial ability is an important factor in learning anatomy. Students with high scores on a mental rotation test (MRT) systematically score higher on anatomy examinations. This study aims to investigate if learning anatomy also oppositely improves the MRT-score. Five hundred first year students of medicine ("n" = 242, intervention) and…

  20. Anatomy of the Honeybee

    ERIC Educational Resources Information Center

    Postiglione, Ralph

    1977-01-01

    In this insect morphology exercise, students study the external anatomy of the worker honeybee. The structures listed and illustrated are discussed in relation to their functions. A goal of the exercise is to establish the bee as a well-adapted, social insect. (MA)

  1. The Anatomy Puzzle Book.

    ERIC Educational Resources Information Center

    Jacob, Willis H.; Carter, Robert, III

    This document features review questions, crossword puzzles, and word search puzzles on human anatomy. Topics include: (1) Anatomical Terminology; (2) The Skeletal System and Joints; (3) The Muscular System; (4) The Nervous System; (5) The Eye and Ear; (6) The Circulatory System and Blood; (7) The Respiratory System; (8) The Urinary System; (9) The…

  2. Anatomy for Biomedical Engineers

    ERIC Educational Resources Information Center

    Carmichael, Stephen W.; Robb, Richard A.

    2008-01-01

    There is a perceived need for anatomy instruction for graduate students enrolled in a biomedical engineering program. This appeared especially important for students interested in and using medical images. These students typically did not have a strong background in biology. The authors arranged for students to dissect regions of the body that…

  3. Illustrated Speech Anatomy.

    ERIC Educational Resources Information Center

    Shearer, William M.

    Written for students in the fields of speech correction and audiology, the text deals with the following: structures involved in respiration; the skeleton and the processes of inhalation and exhalation; phonation and pitch, the larynx, and esophageal speech; muscles involved in articulation; muscles involved in resonance; and the anatomy of the…

  4. Functional female pelvic anatomy.

    PubMed

    Klutke, C G; Siegel, C L

    1995-08-01

    This article reviews important aspects of female pelvic anatomy with particular emphasis on the structures important for pelvic organ support and urinary control. The pelvis and supporting structures, the pelvic floor, and the relationships of the pelvic organs are described and illustrated by MR imaging.

  5. Cholinergic Manipulations Bidirectionally Regulate Object Memory Destabilization

    ERIC Educational Resources Information Center

    Stiver, Mikaela L.; Jacklin, Derek L.; Mitchnick, Krista A.; Vicic, Nevena; Carlin, Justine; O'Hara, Matthew; Winters, Boyer D.

    2015-01-01

    Consolidated memories can become destabilized and open to modification upon retrieval. Destabilization is most reliably prompted when novel information is present during memory reactivation. We hypothesized that the neurotransmitter acetylcholine (ACh) plays an important role in novelty-induced memory destabilization because of its established…

  6. Direct Manipulation in Virtual Reality

    NASA Technical Reports Server (NTRS)

    Bryson, Steve

    2003-01-01

    Virtual Reality interfaces offer several advantages for scientific visualization such as the ability to perceive three-dimensional data structures in a natural way. The focus of this chapter is direct manipulation, the ability for a user in virtual reality to control objects in the virtual environment in a direct and natural way, much as objects are manipulated in the real world. Direct manipulation provides many advantages for the exploration of complex, multi-dimensional data sets, by allowing the investigator the ability to intuitively explore the data environment. Because direct manipulation is essentially a control interface, it is better suited for the exploration and analysis of a data set than for the publishing or communication of features found in that data set. Thus direct manipulation is most relevant to the analysis of complex data that fills a volume of three-dimensional space, such as a fluid flow data set. Direct manipulation allows the intuitive exploration of that data, which facilitates the discovery of data features that would be difficult to find using more conventional visualization methods. Using a direct manipulation interface in virtual reality, an investigator can, for example, move a data probe about in space, watching the results and getting a sense of how the data varies within its spatial volume.

  7. Human ocular anatomy.

    PubMed

    Kels, Barry D; Grzybowski, Andrzej; Grant-Kels, Jane M

    2015-01-01

    We review the normal anatomy of the human globe, eyelids, and lacrimal system. This contribution explores both the form and function of numerous anatomic features of the human ocular system, which are vital to a comprehensive understanding of the pathophysiology of many oculocutaneous diseases. The review concludes with a reference glossary of selective ophthalmologic terms that are relevant to a thorough understanding of many oculocutaneous disease processes.

  8. [Anatomy of the skull].

    PubMed

    Pásztor, Emil

    2010-01-01

    The anatomy of the human body based on a special teleological system is one of the greatest miracles of the world. The skull's primary function is the defence of the brain, so every alteration or disease of the brain results in some alteration of the skull. This analogy is to be identified even in the human embryo. Proportions of the 22 bones constituting the skull and of sizes of sutures are not only the result of the phylogeny, but those of the ontogeny as well. E.g. the age of the skeletons in archaeological findings could be identified according to these facts. Present paper outlines the ontogeny and development of the tissues of the skull, of the structure of the bone-tissue, of the changes of the size of the skull and of its parts during the different periods of human life, reflecting to the aesthetics of the skull as well. "Only the human scull can give me an impression of beauty. In spite of all genetical colseness, a skull of a chimpanzee cannot impress me aesthetically"--author confesses. In the second part of the treatise those authors are listed, who contributed to the perfection of our knowledge regarding the skull. First of all the great founder of modern anatomy, Andreas Vesalius, then Pierre Paul Broca, Jacob Benignus Winslow are mentioned here. The most important Hungarian contributors were as follow: Sámuel Rácz, Pál Bugát or--the former assistant of Broca--Aurél Török. A widely used tool for measurement of the size of the skull, the craniometer was invented by the latter. The members of the family Lenhossék have had also important results in this field of research, while descriptive anatomy of the skull was completed by microsopical anatomy thanks the activity of Géza Mihálkovits. PMID:21661257

  9. Hepatic surgical anatomy.

    PubMed

    Skandalakis, John E; Skandalakis, Lee J; Skandalakis, Panajiotis N; Mirilas, Petros

    2004-04-01

    The liver, the largest organ in the body, has been misunderstood at nearly all levels of organization, and there is a tendency to ignore details that do not fit the preconception. A complete presentation of the surgical anatomy of the liver includes the study of hepatic surfaces, margins, and fissures; the various classifications of lobes and segments; and the vasculature and lymphatics. A brief overview of the intrahepatic biliary tract is also presented.

  10. [Anatomy of the skull].

    PubMed

    Pásztor, Emil

    2010-01-01

    The anatomy of the human body based on a special teleological system is one of the greatest miracles of the world. The skull's primary function is the defence of the brain, so every alteration or disease of the brain results in some alteration of the skull. This analogy is to be identified even in the human embryo. Proportions of the 22 bones constituting the skull and of sizes of sutures are not only the result of the phylogeny, but those of the ontogeny as well. E.g. the age of the skeletons in archaeological findings could be identified according to these facts. Present paper outlines the ontogeny and development of the tissues of the skull, of the structure of the bone-tissue, of the changes of the size of the skull and of its parts during the different periods of human life, reflecting to the aesthetics of the skull as well. "Only the human scull can give me an impression of beauty. In spite of all genetical colseness, a skull of a chimpanzee cannot impress me aesthetically"--author confesses. In the second part of the treatise those authors are listed, who contributed to the perfection of our knowledge regarding the skull. First of all the great founder of modern anatomy, Andreas Vesalius, then Pierre Paul Broca, Jacob Benignus Winslow are mentioned here. The most important Hungarian contributors were as follow: Sámuel Rácz, Pál Bugát or--the former assistant of Broca--Aurél Török. A widely used tool for measurement of the size of the skull, the craniometer was invented by the latter. The members of the family Lenhossék have had also important results in this field of research, while descriptive anatomy of the skull was completed by microsopical anatomy thanks the activity of Géza Mihálkovits.

  11. The history and the art of anatomy: a source of inspiration even nowadays.

    PubMed

    Mavrodi, Alexandra; Paraskevas, George; Kitsoulis, Panagiotis

    2013-01-01

    Ever since man started to study systematically medicine for the first time he recognized the value of the knowledge of Anatomy in order to safely cut and treat the human body. However, over the centuries it has been proved that Anatomy is more than just a scientific field of medicine. The fact that Anatomy requires the use of human cadavers as an object to study brought to the surface many moral issues, which adumbrated its turbulent past. Additionally, Anatomy and its inextricable element, illustration, has many times been a source of inspiration for both the anatomists and the artists. This paper aims on the one hand to provide a condensed overview of the history of Anatomy and on the other hand to investigate the way Anatomy penetrates Art and, conversely, Art penetrates Anatomy.

  12. Algorithm For Control Of Underactuated Manipulators

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Rodriguez, Guillermo

    1994-01-01

    Algorithm for improved control of underactuated multiple-link robotic manipulators developed via spatial-algebra-operator approach. Aspects of this approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). Underactuated manipulator has fewer actuators than it has degrees of freedom. Complexity of underactuated systems managed by unified analysis. It has implications for fault-tolerant control, and many practical manipulators underactuated. Examples include manipulators with flexible joints and/or flexible links; space/underwater robots; manipulators that operate with some actuators that turned off because of failure or because of need to conserve energy; manipulators that grasp objects loosely, and manipulators that grasp objects with internal degrees of freedom (e.g., plungers, rollers).

  13. Undergraduate perspectives on the teaching and learning of anatomy.

    PubMed

    Mitchell, Rob; Batty, Lachlan

    2009-03-01

    The volume of time dedicated to anatomy teaching has steadily decreased in the context of increasingly dense undergraduate curricula. We examine the complex topic of anatomical education from the undergraduate perspective, with a focus on student perceptions, their origins and their potential solutions. A limited dataset suggests students perceive their tuition in anatomy may be suboptimal. Multiple factors (including the intensity of pre-clinical studies, academic criticism of modern courses, surgical culture and misinformation) may account for the unrest. It is difficult to objectively measure the impact of modified anatomy curriculum on clinical performance and patient safety. While there is a case (on the basis of student perception at least) for reinvigorating elements of undergraduate anatomy education, the modern medical educational framework is here to stay, and students and clinicians must learn to adapt. Anatomy must be linked with contemporary approaches to medical education and it should be integrated, continuous and guided. It is critical that clinicians engage in the teaching of anatomy in the clinical environment and they must be adequately resourced to do so. Graduates must emerge with a core understanding of anatomy, but not an encyclopaedic knowledge of the human form. Undergraduate programme should simply strive to equip their graduates with a foundation for lifelong learning and a platform for safe practice as interns.

  14. Anatomy relevant to conservative mastectomy

    PubMed Central

    O’Connell, Rachel L.

    2015-01-01

    Knowledge of the anatomy of the nipple and breast skin is fundamental to any surgeon practicing conservative mastectomies. In this paper, the relevant clinical anatomy will be described, mainly focusing on the anatomy of the “oncoplastic plane”, the ducts and the vasculature. We will also cover more briefly the nerve supply and the arrangement of smooth muscle of the nipple. Finally the lymphatic drainage of the nipple and areola will be described. An appreciation of the relevant anatomy, together with meticulous surgical technique may minimise local recurrence and ischaemic complications. PMID:26645002

  15. Anatomy relevant to conservative mastectomy.

    PubMed

    O'Connell, Rachel L; Rusby, Jennifer E

    2015-12-01

    Knowledge of the anatomy of the nipple and breast skin is fundamental to any surgeon practicing conservative mastectomies. In this paper, the relevant clinical anatomy will be described, mainly focusing on the anatomy of the "oncoplastic plane", the ducts and the vasculature. We will also cover more briefly the nerve supply and the arrangement of smooth muscle of the nipple. Finally the lymphatic drainage of the nipple and areola will be described. An appreciation of the relevant anatomy, together with meticulous surgical technique may minimise local recurrence and ischaemic complications. PMID:26645002

  16. Who Is Repeating Anatomy? Trends in an Undergraduate Anatomy Course

    ERIC Educational Resources Information Center

    Schutte, Audra F.

    2016-01-01

    Anatomy courses frequently serve as prerequisites or requirements for health sciences programs. Due to the challenging nature of anatomy, each semester there are students remediating the course (enrolled in the course for a second time), attempting to earn a grade competitive for admissions into a program of study. In this retrospective study,…

  17. Who is repeating anatomy? Trends in an undergraduate anatomy course.

    PubMed

    Schutte, Audra F

    2016-01-01

    Anatomy courses frequently serve as prerequisites or requirements for health sciences programs. Due to the challenging nature of anatomy, each semester there are students remediating the course (enrolled in the course for a second time), attempting to earn a grade competitive for admissions into a program of study. In this retrospective study, remediation rates and trends in an undergraduate anatomy course with over 400 students enrolled each semester at a large Midwestern university were identified. Demographic data was collected from spring 2004 to spring 2010, including students' age, ethnicity, major of study, class standing, college admission tests (ACT and SAT®) scores, anatomy laboratory and lecture examination scores, and final anatomy grades for each semester. Eleven percent of the students repeated the course at least once. Gender, ethnicity, major of study and SAT scores were all shown to be associated with whether or not a student would need to repeat the course. On average, students who repeated anatomy demonstrated significant improvements in lecture and laboratory scores when comparing first and second enrollments in anatomy, and therefore also saw improved final course grades in their second enrollment. These findings will aid future instructors to identify and assist at-risk students to succeed in anatomy. Instructors from other institutions may also find the results to be useful for identifying students at risk for struggling.

  18. The anatomy of anatomy: a review for its modernization.

    PubMed

    Sugand, Kapil; Abrahams, Peter; Khurana, Ashish

    2010-01-01

    Anatomy has historically been a cornerstone in medical education regardless of nation or specialty. Until recently, dissection and didactic lectures were its sole pedagogy. Teaching methodology has been revolutionized with more reliance on models, imaging, simulation, and the Internet to further consolidate and enhance the learning experience. Moreover, modern medical curricula are giving less importance to anatomy education and to the acknowledged value of dissection. Universities have even abandoned dissection completely in favor of user-friendly multimedia, alternative teaching approaches, and newly defined priorities in clinical practice. Anatomy curriculum is undergoing international reformation but the current framework lacks uniformity among institutions. Optimal learning content can be categorized into the following modalities: (1) dissection/prosection, (2) interactive multimedia, (3) procedural anatomy, (4) surface and clinical anatomy, and (5) imaging. The importance of multimodal teaching, with examples suggested in this article, has been widely recognized and assessed. Nevertheless, there are still ongoing limitations in anatomy teaching. Substantial problems consist of diminished allotted dissection time and the number of qualified anatomy instructors, which will eventually deteriorate the quality of education. Alternative resources and strategies are discussed in an attempt to tackle these genuine concerns. The challenges are to reinstate more effective teaching and learning tools while maintaining the beneficial values of orthodox dissection. The UK has a reputable medical education but its quality could be improved by observing international frameworks. The heavy penalty of not concentrating on sufficient anatomy education will inevitably lead to incompetent anatomists and healthcare professionals, leaving patients to face dire repercussions.

  19. [Anatomy and anthropology].

    PubMed

    Nikitiuk, B A

    1980-09-01

    Methodological aspects of anatomy and anthropology are discussed as systems of sciences in their formation. The base of these systems is the laws of materialist dialectics on the unity of the structure and function and on relation of the social to the biological as hierarchically highest form of the matter movement towards the lowest form. In this classification of the systems of anthropological and anatomical sciences a heliocentric principle is used. Tasks of the bordering sciences--anatomical anthropology are considered. Its task is to study forms and factors on anatomical changeability of the organism.

  20. Health Instruction Packages: Cardiac Anatomy.

    ERIC Educational Resources Information Center

    Phillips, Gwen; And Others

    Text, illustrations, and exercises are utilized in these five learning modules to instruct nurses, students, and other health care professionals in cardiac anatomy and functions and in fundamental electrocardiographic techniques. The first module, "Cardiac Anatomy and Physiology: A Review" by Gwen Phillips, teaches the learner to draw and label…

  1. How Much Anatomy Is Enough?

    ERIC Educational Resources Information Center

    Bergman, Esther M.; Prince, Katinka J. A. H.; Drukker, Jan; van der Vleuten, Cees P. M.; Scherpbier, Albert J. J. A.

    2008-01-01

    Innovations in undergraduate medical education, such as integration of disciplines and problem based learning, have given rise to concerns about students' knowledge of anatomy. This article originated from several studies investigating the knowledge of anatomy of students at the eight Dutch medical schools. The studies showed that undergraduate…

  2. Living Anatomy. Second Edition.

    ERIC Educational Resources Information Center

    Donnelly, Joseph E.

    This book is a text intended for undergraduates who are preparing to be physical education teachers, coaches, or athletic directors. It presents a method of instruction that uses a partner system by which students locate anatomical structures in the illustrations and on their partners, and then learn the structures' functions by manipulating their…

  3. Mobile camera-space manipulation

    NASA Technical Reports Server (NTRS)

    Seelinger, Michael J. (Inventor); Yoder, John-David S. (Inventor); Skaar, Steven B. (Inventor)

    2001-01-01

    The invention is a method of using computer vision to control systems consisting of a combination of holonomic and nonholonomic degrees of freedom such as a wheeled rover equipped with a robotic arm, a forklift, and earth-moving equipment such as a backhoe or a front-loader. Using vision sensors mounted on the mobile system and the manipulator, the system establishes a relationship between the internal joint configuration of the holonomic degrees of freedom of the manipulator and the appearance of features on the manipulator in the reference frames of the vision sensors. Then, the system, perhaps with the assistance of an operator, identifies the locations of the target object in the reference frames of the vision sensors. Using this target information, along with the relationship described above, the system determines a suitable trajectory for the nonholonomic degrees of freedom of the base to follow towards the target object. The system also determines a suitable pose or series of poses for the holonomic degrees of freedom of the manipulator. With additional visual samples, the system automatically updates the trajectory and final pose of the manipulator so as to allow for greater precision in the overall final position of the system.

  4. The integrated anatomy practical paper: A robust assessment method for anatomy education today.

    PubMed

    Smith, Claire F; McManus, Bruce

    2015-01-01

    Assessing anatomy in a way that tests higher cognitive domains and clinical application is not always straightforward. The old "spotter" examination has been criticized for only testing low level "identify" knowledge, whereas other assessment modalities such as multiple choice questions do not reflect the three dimensional and application nature of clinical anatomy. Medical curricula are frequently integrated and subject specific examinations do not reflect the case based, spiral, integrative nature of the curricula. The integrated anatomy practical paper (IAPP) is a hybrid of the old "spotter" and an objective structured clinical examination but it demonstrates how higher levels of taxonomy can be assessed, together with clinical features and integrates well with other disciplines. Importantly, the IAPP has shown to be reliable and practical to administer. Data gathered from the Bachelor of Medicine five-year program over two academic years for four IAPP examinations, each being 40 minutes with (K = 60 items) based on 440 students revealed consistently strong reliability coefficients (Cronbach alpha) of up to 0.923. Applying Blooms taxonomy to questions has shown a marked shift resulting in an increase in the complexity level being tested; between 2009 and 2013 a reduction of 26% in the number of low level "remember knowledge" domain questions was noted with up to an increase of 15% in "understanding" domain and 12% increase in the "applying" knowledge domain. Our findings highlight that it is possible to test, based in a laboratory, anatomy knowledge and application that is integrated and fit for practice.

  5. Anatomy of a Bird

    NASA Astrophysics Data System (ADS)

    2007-12-01

    Using ESO's Very Large Telescope, an international team of astronomers [1] has discovered a stunning rare case of a triple merger of galaxies. This system, which astronomers have dubbed 'The Bird' - albeit it also bears resemblance with a cosmic Tinker Bell - is composed of two massive spiral galaxies and a third irregular galaxy. ESO PR Photo 55a/07 ESO PR Photo 55a/07 The Tinker Bell Triplet The galaxy ESO 593-IG 008, or IRAS 19115-2124, was previously merely known as an interacting pair of galaxies at a distance of 650 million light-years. But surprises were revealed by observations made with the NACO instrument attached to ESO's VLT, which peered through the all-pervasive dust clouds, using adaptive optics to resolve the finest details [2]. Underneath the chaotic appearance of the optical Hubble images - retrieved from the Hubble Space Telescope archive - the NACO images show two unmistakable galaxies, one a barred spiral while the other is more irregular. The surprise lay in the clear identification of a third, clearly separate component, an irregular, yet fairly massive galaxy that seems to be forming stars at a frantic rate. "Examples of mergers of three galaxies of roughly similar sizes are rare," says Petri Väisänen, lead author of the paper reporting the results. "Only the near-infrared VLT observations made it possible to identify the triple merger nature of the system in this case." Because of the resemblance of the system to a bird, the object was dubbed as such, with the 'head' being the third component, and the 'heart' and 'body' making the two major galaxy nuclei in-between of tidal tails, the 'wings'. The latter extend more than 100,000 light-years, or the size of our own Milky Way. ESO PR Photo 55b/07 ESO PR Photo 55b/07 Anatomy of a Bird Subsequent optical spectroscopy with the new Southern African Large Telescope, and archive mid-infrared data from the NASA Spitzer space observatory, confirmed the separate nature of the 'head', but also added

  6. The Anatomy of Galaxies

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Mauro; Rampazzo, Roberto; Zaggia, Simone; Longair, Malcolm S.; Ferrarese, Laura; Marziani, Paola; Sulentic, Jack W.; van der Kruit, Pieter C.; Laurikainen, Eija; Elmegreen, Debra M.; Combes, Françoise; Bertin, Giuseppe; Fabbiano, Giuseppina; Giovanelli, Riccardo; Calzetti, Daniela; Moss, David L.; Matteucci, Francesca; Djorgovski, Stanislav George; Fraix-Burnet, Didier; Graham, Alister W. McK.; Tully, Brent R.

    Just after WWII Astronomy started to live its "Golden Age", not differently to many other sciences and human activities, especially in the west side countries. The improved resolution of telescopes and the appearance of new efficient light detectors (e.g. CCDs in the middle eighty) greatly impacted the extragalactic researches. The first morphological analysis of galaxies were rapidly substituted by "anatomic" studies of their structural components, star and gas content, and in general by detailed investigations of their properties. As for the human anatomy, where the final goal was that of understanding the functionality of the organs that are essential for the life of the body, galaxies were dissected to discover their basic structural components and ultimately the mystery of their existence.

  7. [Surgery without anatomy?].

    PubMed

    Stelzner, F

    2016-08-01

    Anatomy is the basis of all operative medicine. While this branch of scientific medicine is frequently not explicitly mentioned in surgical publications, it is nonetheless quintessential to medical education. In the era of video sequences and digitized images, surgical methods are frequently communicated in the form of cinematic documentation of surgical procedures; however, this occurs without the help of explanatory drawings or subtexts that would illustrate the underlying anatomical nomenclature, comment on fine functionally important details or even without making any mention of the surgeon. In scientific manuscripts color illustrations frequently appear in such overwhelming quantities that they resemble long arrays of trophies but fail to give detailed explanations that would aid the therapeutic translation of the novel datasets. In a similar fashion, many anatomy textbooks prefer to place emphasis on illustrations and photographs while supplying only a paucity of explanations that would foster the understanding of functional contexts and thus confuse students and practitioners alike. There is great temptation to repeat existing data and facts over and over again, while it is proportionally rare to make reference to truly original scientific discoveries. A number of examples are given in this article to illustrate how discoveries that were made even a long time ago can still contribute to scientific progress in current times. This includes the NO signaling molecules, which were first described in 1775 but were only discovered to have a pivotal role as neurotransmitters in the function of human paradoxical sphincter muscles in 2012 and 2015. Readers of scientific manuscripts often long for explanations by the numerous silent coauthors of a publication who could contribute to the main topic by adding in-depth illustrations (e. g. malignograms, evolution and involution of lymph node structures). PMID:27251482

  8. [The French lessons of anatomy].

    PubMed

    Bouchet, Alain

    2003-01-01

    The "Lessons of Anatomy" can be considered as a step of Medicine to Art. For several centuries the exhibition of a corpse's dissection was printed on the title-page of published works. Since the seventeenth century, the "Lessons of Anatomy" became a picture on the title-page in order to highlight the well-known names of the european anatomists. The study is limited to the French Lessons of Anatomy found in books or pictures after the invention of printing. PMID:14626253

  9. The anatomy of teaching and the teaching of anatomy.

    PubMed

    Peck, David; Skandalakis, John E

    2004-04-01

    Professional education is one of the greatest problems currently confronting the healing professions. The incorporation of basic science departments into colleges of medicine has affected curriculum design, research, admissions criteria, and licensure. Those who are not practicing members of a particular health care profession wield undue influence in medical schools. Ideally, gross anatomy teachers should be health care professionals who use anatomy in their practices. Reorganization of medical education will heal the rift between research and clinical medicine.

  10. Effect of the Use of Instructional Anatomy Videos on Student Performance

    ERIC Educational Resources Information Center

    Saxena, Varun; Natarajan, Pradeep; O'Sullivan, Patricia S.; Jain, Sharad

    2008-01-01

    Medical schools have reduced the time allotted to anatomy instruction. Consequently, schools engage students in more independent settings using information and communication technologies (ICT). There has been limited research in the use of video aids, a type of ICT, to enhance anatomy examination performance. The objective of this study is to…

  11. Integrating dental anatomy and biomaterials: an innovative use of composite resin.

    PubMed

    Allen, Kenneth L; McAndrew, Maureen

    2004-01-01

    As part of the new integrated curriculum at the New York University College of Dentistry, a pilot program uses composite resins to teach dental anatomy. The Department of Biomaterials and Biomimetics, in conjunction with the Department of Cariology and Operative Dentistry, has created a teaching module to replicate the morphology of a central incisor through the manipulation and placement of a composite resin.

  12. Auditory pathways: anatomy and physiology.

    PubMed

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described.

  13. REMOTE CONTROL MANIPULATOR

    DOEpatents

    Coffman, R.T.

    1962-11-27

    The patent covers a remote-control manipulator in which a tool is carried on a tube at an end thereof angularly related to the main portion of the tube and joined thereto by a curved section. The main portion of the tube is mounted for rotation and axial shifting in a wall separating safe and dangerous areas. The tool is actuated to grasp and release an object in the dangerous area by means of a compound shaft extending through the tube, the shaft having a flexible section extending through the curved section of the tube. The tool is moved about in the dangerous area by rotation and axial movement of the main portion of the tube. Additional movement of the tool is obtained through axial shifting of the shaft with respect to the tube through which it extends. (AEC)

  14. [Dental anatomy of dogs].

    PubMed

    Sarkisian, E G

    2014-12-01

    The aim of the research was to investigate dog teeth anatomy as animal model for study of etiopathogenesis of caries disease and physiological tooth wear in human. After examining the dog's dental system, following conclusions were drawn: the dog has 42 permanent teeth, which are distributed over the dental arches not equally, and so the upper dentition consists of 20, and the lower of 22 teeth. The largest are considered upper fourth premolar and lower first molars, which are called discordant teeth. Between discordant teeth and fangs a dog has an open bite, which is limited to the top and bottom conical crown premolar teeth. Thus, in the closed position of the jaws, behind this occlusion is limited by discordant teeth, just in contact are smaller in size two molars. Only large dog's molars in a valid comparison can be likened to human molars, which allows us to use them in an analog comparison between them with further study of the morphological features ensure durability short-crown teeth and their predisposition to caries.

  15. Anatomy of trisomy 18.

    PubMed

    Roberts, Wallisa; Zurada, Anna; Zurada-ZieliŃSka, Agnieszka; Gielecki, Jerzy; Loukas, Marios

    2016-07-01

    Trisomy 18 is the second most common aneuploidy after trisomy 21. Due to its multi-systemic defects, it has a poor prognosis with a 50% chance of survival beyond one week and a <10% chance of survival beyond one year of life. However, this prognosis has been challenged by the introduction of aggressive interventional therapies for patients born with trisomy 18. As a result, a review of the anatomy associated with this defect is imperative. While any of the systems can be affected by trisomy 18, the following areas are the most likely to be affected: craniofacial, musculoskeletal system, cardiac system, abdominal, and nervous system. More specifically, the following features are considered characteristic of trisomy 18: low-set ears, rocker bottom feet, clenched fists, and ventricular septal defect. Of particular interest is the associated cardiac defect, as surgical repairs of these defects have shown an improved survivability. In this article, the anatomical defects associated with each system are reviewed. Clin. Anat. 29:628-632, 2016. © 2016 Wiley Periodicals, Inc. PMID:27087248

  16. Anatomy of an incident

    DOE PAGESBeta

    Cournoyer, Michael E.; Trujillo, Stanley; Lawton, Cindy M.; Land, Whitney M.; Schreiber, Stephen B.

    2016-03-23

    A traditional view of incidents is that they are caused by shortcomings in human competence, attention, or attitude. It may be under the label of “loss of situational awareness,” procedure “violation,” or “poor” management. A different view is that human error is not the cause of failure, but a symptom of failure – trouble deeper inside the system. In this perspective, human error is not the conclusion, but rather the starting point of investigations. During an investigation, three types of information are gathered: physical, documentary, and human (recall/experience). Through the causal analysis process, apparent cause or apparent causes are identifiedmore » as the most probable cause or causes of an incident or condition that management has the control to fix and for which effective recommendations for corrective actions can be generated. A causal analysis identifies relevant human performance factors. In the following presentation, the anatomy of a radiological incident is discussed, and one case study is presented. We analyzed the contributing factors that caused a radiological incident. When underlying conditions, decisions, actions, and inactions that contribute to the incident are identified. This includes weaknesses that may warrant improvements that tolerate error. Measures that reduce consequences or likelihood of recurrence are discussed.« less

  17. Anatomy and Physiology. Module No. IV. Health Occupations Education II.

    ERIC Educational Resources Information Center

    Day, Nancy; And Others

    This package of 31 modules on anatomy and physiology is one of six such packages containing a total of 46 modules that comprise Health Occupations Education II, the second course of a two-year course of study. Each module may contain some or all of the following components: introduction, directions, objectives, a list of learning activities,…

  18. Applied Anatomy and Physiology. Student's Manual [and] Instructor's Guide.

    ERIC Educational Resources Information Center

    Williams, Catherine

    The student manual in this two-part instructional kit contains basic concepts and specific information needed for understanding anatomy and physiology, with emphasis on those areas of particular interest to health occupations students. The student manual is organized in 10 lessons, each containing objectives, new terms and definitions, technical…

  19. Anatomy External [Sahuarita High School Career Curriculum Project].

    ERIC Educational Resources Information Center

    Esser, Robert

    This course entitled "Anatomy External" is concerned with the dissection of the fetal pig, and is one of a series of instructional guides prepared by the teachers for the Sahuarita High School (Arizona) Career Curriculum Project. It consists of five units of study, and 13 behavioral objectives relating to these units are stated. The topics covered…

  20. The assessment of virtual reality for human anatomy instruction

    NASA Technical Reports Server (NTRS)

    Benn, Karen P.

    1994-01-01

    This research project seeks to meet the objective of science training by developing, assessing, and validating virtual reality as a human anatomy training medium. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment the traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three dimensional, unlike the one dimensional depiction found in textbooks and the two dimensional depiction found on the computer. Virtual reality is a breakthrough technology that allows one to step through the computer screen into a three dimensional world. This technology offers many opportunities to enhance science education. Therefore, a virtual testing environment of the abdominopelvic region of a human cadaver was created to study the placement of body parts within the nine anatomical divisions of the abdominopelvic region and the four abdominal quadrants.

  1. A Prototype Manipulation System for Mars Rover Science Operations

    NASA Technical Reports Server (NTRS)

    Volpe, R.; Ohm, T.; Petras, R.; Welch, R.; Ivlev, R.

    1997-01-01

    This paper provides an overview of a new manipulation system developed for sampling and instrument placement from small autonomous mobile robots for Mars exploration. Selected out of the design space, two manipulators have been constructed and integrated into the Rocky 7 Mars rover prototype. This paper describes objectives and constraints for these manipulators, and presents the finished system and some results from its operation.

  2. Microfluidics for manipulating cells.

    PubMed

    Mu, Xuan; Zheng, Wenfu; Sun, Jiashu; Zhang, Wei; Jiang, Xingyu

    2013-01-14

    Microfluidics, a toolbox comprising methods for precise manipulation of fluids at small length scales (micrometers to millimeters), has become useful for manipulating cells. Its uses range from dynamic management of cellular interactions to high-throughput screening of cells, and to precise analysis of chemical contents in single cells. Microfluidics demonstrates a completely new perspective and an excellent practical way to manipulate cells for solving various needs in biology and medicine. This review introduces and comments on recent achievements and challenges of using microfluidics to manipulate and analyze cells. It is believed that microfluidics will assume an even greater role in the mechanistic understanding of cell biology and, eventually, in clinical applications.

  3. Anal anatomy and normal histology.

    PubMed

    Pandey, Priti

    2012-12-01

    The focus of this article is the anatomy and histology of the anal canal, and its clinical relevance to anal cancers. The article also highlights the recent histological and anatomical changes to the traditional terminology of the anal canal. The terminology has been adopted by the American Joint Committee on Cancer, separating the anal region into the anal canal, the perianal region and the skin. This paper describes the gross anatomy of the anal canal, along with its associated blood supply, venous and lymphatic drainage, and nerve supply. The new terminology referred to in this article may assist clinicians and health care providers to identify lesions more precisely through naked eye observation and without the need for instrumentation. Knowledge of the regional anatomy of the anus will also assist in management decisions.

  4. A Molecular Analysis of Training Multiple versus Single Manipulations to Establish a Generalized Manipulative Imitation Repertoire

    ERIC Educational Resources Information Center

    Hartley, Breanne K.

    2009-01-01

    This study evaluates the necessity of training multiple versus single manipulative-imitations per object in order to establish generalized manipulative-imitation. Training took place in Croyden Avenue School's Early Childhood Developmental Delay preschool classroom in Kalamazoo, MI. Two groups of 3 children each were trained to imitate in order to…

  5. Anatomy integration blueprint: A fourth-year musculoskeletal anatomy elective model.

    PubMed

    Lazarus, Michelle D; Kauffman, Gordon L; Kothari, Milind J; Mosher, Timothy J; Silvis, Matthew L; Wawrzyniak, John R; Anderson, Daniel T; Black, Kevin P

    2014-01-01

    Current undergraduate medical school curricular trends focus on both vertical integration of clinical knowledge into the traditionally basic science-dedicated curricula and increasing basic science education in the clinical years. This latter type of integration is more difficult and less reported on than the former. Here, we present an outline of a course wherein the primary learning and teaching objective is to integrate basic science anatomy knowledge with clinical education. The course was developed through collaboration by a multi-specialist course development team (composed of both basic scientists and physicians) and was founded in current adult learning theories. The course was designed to be widely applicable to multiple future specialties, using current published reports regarding the topics and clinical care areas relying heavily on anatomical knowledge regardless of specialist focus. To this end, the course focuses on the role of anatomy in the diagnosis and treatment of frequently encountered musculoskeletal conditions. Our iterative implementation and action research approach to this course development has yielded a curricular template for anatomy integration into clinical years. Key components for successful implementation of these types of courses, including content topic sequence, the faculty development team, learning approaches, and hidden curricula, were developed. We also report preliminary feedback from course stakeholders and lessons learned through the process. The purpose of this report is to enhance the current literature regarding basic science integration in the clinical years of medical school.

  6. [Imaging anatomy of cranial nerves].

    PubMed

    Hermier, M; Leal, P R L; Salaris, S F; Froment, J-C; Sindou, M

    2009-04-01

    Knowledge of the anatomy of the cranial nerves is mandatory for optimal radiological exploration and interpretation of the images in normal and pathological conditions. CT is the method of choice for the study of the skull base and its foramina. MRI explores the cranial nerves and their vascular relationships precisely. Because of their small size, it is essential to obtain images with high spatial resolution. The MRI sequences optimize contrast between nerves and surrounding structures (cerebrospinal fluid, fat, bone structures and vessels). This chapter discusses the radiological anatomy of the cranial nerves.

  7. The Anatomy of Anatomy: A Review for Its Modernization

    ERIC Educational Resources Information Center

    Sugand, Kapil; Abrahams, Peter; Khurana, Ashish

    2010-01-01

    Anatomy has historically been a cornerstone in medical education regardless of nation or specialty. Until recently, dissection and didactic lectures were its sole pedagogy. Teaching methodology has been revolutionized with more reliance on models, imaging, simulation, and the Internet to further consolidate and enhance the learning experience.…

  8. Anatomy Adventure: A Board Game for Enhancing Understanding of Anatomy

    ERIC Educational Resources Information Center

    Anyanwu, Emeka G.

    2014-01-01

    Certain negative factors such as fear, loss of concentration and interest in the course, lack of confidence, and undue stress have been associated with the study of anatomy. These are factors most often provoked by the unusually large curriculum, nature of the course, and the psychosocial impact of dissection. As a palliative measure, Anatomy…

  9. Clinical anatomy research in a research-driven anatomy department.

    PubMed

    Jones, D Gareth; Dias, G J; Mercer, S; Zhang, M; Nicholson, H D

    2002-05-01

    Clinical anatomy is too often viewed as a discipline that reiterates the wisdom of the past, characterized more by description of what is known than by active investigation and critical analysis of hypotheses and ideas. Various misconceptions follow from an acceptance of this premise: the teaching of clinical anatomists is textbook based, there is no clinical anatomy research worthy of the name, and any research that does exist fails to utilize modern technology and does not stand comparison with serious biomedical research as found in cell and molecular biology. The aim of this paper is to challenge each of these contentions by reference to ongoing clinical research studies within this department. It is argued that all teaching (including that of clinical anatomy) should be research-informed and that the discipline of clinical anatomy should have at its base a vigorous research ethos driven by clinically related problems. In interacting with physicians, the role of the clinical anatomist should be to promulgate a questioning scientific spirit, with its willingness to test and challenge accepted anatomic dicta. PMID:11948960

  10. Revisiting Mathematics Manipulative Materials

    ERIC Educational Resources Information Center

    Swan, Paul; Marshall, Linda

    2010-01-01

    It is over 12 years since "APMC" published Bob Perry and Peter Howard's research on the use of mathematics manipulative materials in primary mathematics classrooms. Since then the availability of virtual manipulatives and associated access to computers and interactive whiteboards have caused educators to rethink the use of mathematics manipulative…

  11. Osteopathic Manipulative Treatment

    PubMed Central

    Campbell, Shannon M.; Walkowski, Stevan

    2012-01-01

    Dermatological diseases, such as dysesthesia syndromes, stasis dermatoses, and hyperhidrosis are difficult to treat due to their complex etiologies. Current theories suggest these diseases are caused by physiological imbalances, such as nerve impingement, localized tissue congestion, and impaired autonomic regulation. Osteopathic manipulative therapy targets these physiological dysfunctions and may serve as a beneficial therapeutic option. Osteopathic manipulative therapy techniques include high velocity low amplitude, muscle energy, counterstrain, myofascial release, craniosacral, and lymphatic drainage. An osteopathic manipulative therapy technique is chosen based on its physiological target for a particular disease. Osteopathic manipulative therapy may be useful alone or in combination with standard therapeutic options. However, due to the lack of standardized trials supporting the efficacy of osteopathic manipulative therapy treatment for dermatological disease, randomized, well-controlled studies are necessary to confirm its therapeutic value. PMID:23125887

  12. Manipulator comparative testing program

    SciTech Connect

    Draper, J.V.; Handel, S.J.; Sundstrom, E.; Herndon, J.N.; Fujita, Y.; Maeda, M.

    1986-01-01

    The Manipulator Comparative Testing Program examined differences among manipulator systems from the United States and Japan. The manipulator systems included the Meidensha BILARM 83A, the Model M-2 of Central Research Laboratories Division of Sargent Industries (CRL), and the GCA Corporation PaR Systems Model 6000. The site of testing was the Remote Operations Maintenance Demonstration (ROMD) facility, operated by the Fuel Recycle Division in the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory (ORNL). In all stages of testing, operators using the CRL Model M-2 manipulator had consistently lower times to completion and error rates than they did using other machines. Performance was second best with the Meidensha BILARM 83A in master-slave mode. Performance with the BILARM in switchbox mode and the PaR 6000 manipulator was approximately equivalent in terms of criteria recorded in testing. These data show no impact of force reflection on task performance.

  13. Simultaneous anatomical sketching as learning by doing method of teaching human anatomy

    PubMed Central

    Noorafshan, Ali; Hoseini, Leila; Amini, Mitra; Dehghani, Mohammad-Reza; Kojuri, Javad; Bazrafkan, Leila

    2014-01-01

    Objective: Learning by lecture is a passive experience. Many innovative techniques have been presented to stimulate students to assume a more active attitude toward learning. In this study, simultaneous sketch drawing, as an interactive learning technique was applied to teach anatomy to the medical students. Materials and Methods: We reconstructed a fun interactive model of teaching anatomy as simultaneous anatomic sketching. To test the model's instruction effectiveness, we conducted a quasi- experimental study and then the students were asked to write their learning experiences in their portfolio, also their view was evaluated by a questionnaire. Results: The results of portfolio evaluation revealed that students believed that this method leads to deep learning and understanding anatomical subjects better. Evaluation of the students’ views on this teaching approach was showed that, more than 80% of the students were agreed or completely agreed with this statement that leaning anatomy concepts are easier and the class is less boring with this method. More than 60% of the students were agreed or completely agreed to sketch anatomical figures with professor simultaneously. They also found the sketching make anatomy more attractive and it reduced the time for learning anatomy. These number of students were agree or completely agree that the method help them learning anatomical concept in anatomy laboratory. More than 80% of the students found the simultaneous sketching is a good method for learning anatomy overall. Conclusion: Sketch drawing, as an interactive learning technique, is an attractive for students to learn anatomy. PMID:25013843

  14. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    SciTech Connect

    Joseph W. Geisinger, Ph.D.

    2001-07-31

    ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.

  15. On the Anatomy of Understanding

    ERIC Educational Resources Information Center

    Wilhelmsson, Niklas; Dahlgren, Lars Owe; Hult, Hakan; Josephson, Anna

    2011-01-01

    In search for the nature of understanding of basic science in a clinical context, eight medical students were interviewed, with a focus on their view of the discipline of anatomy, in their fourth year of study. Interviews were semi-structured and took place just after the students had finished their surgery rotations. Phenomenographic analysis was…

  16. Curriculum Guidelines for Microscopic Anatomy.

    ERIC Educational Resources Information Center

    Journal of Dental Education, 1993

    1993-01-01

    The American Association of Dental Schools' guidelines for curricula in microscopic anatomy offer an overview of the histology curriculum, note primary educational goals, outline specific content for general and oral histology, suggest prerequisites, and make recommendations for sequencing. Appropriate faculty and facilities are also suggested.…

  17. Anatomy of the thymus gland.

    PubMed

    Safieddine, Najib; Keshavjee, Shaf

    2011-05-01

    In the case of the thymus gland, the most common indications for resection are myasthenia gravis or thymoma. The consistency and appearance of the thymus gland make it difficult at times to discern from mediastinal fatty tissues. Having a clear understanding of the anatomy and the relationship of the gland to adjacent structures is important.

  18. Object Oriented Learning Objects

    ERIC Educational Resources Information Center

    Morris, Ed

    2005-01-01

    We apply the object oriented software engineering (OOSE) design methodology for software objects (SOs) to learning objects (LOs). OOSE extends and refines design principles for authoring dynamic reusable LOs. Our learning object class (LOC) is a template from which individualised LOs can be dynamically created for, or by, students. The properties…

  19. Learning Spinal Manipulation

    PubMed Central

    Harvey, Marie-Pierre; Wynd, Shari; Richardson, Lance; Dugas, Claude; Descarreaux, Martin

    2011-01-01

    Purpose: The goal of the present study was to quantify the high-velocity, low-amplitude spinal manipulation biomechanical parameters in two cohorts of students from different teaching institutions. The first cohort of students was taught chiropractic techniques in a patient–doctor positioning practice setting, while the second cohort of students was taught in a “complete practice” manipulation setting, thus performing spinal manipulation skills on fellow student colleagues. It was hypothesized that the students exposed to complete practice would perform the standardized spinal manipulation with better biomechanical parameters. Methods: Participants (n = 88) were students enrolled in two distinct chiropractic programs. Thoracic spine manipulation skills were assessed using an instrumented manikin, which allowed the measurement of applied force. Dependent variables included peak force, time to peak force, rate of force production, peak force variability, and global coordination. Results: The results revealed that students exposed to complete practice demonstrated lower time to peak force values, higher peak force, and a steeper rate of force production compared with students in the patient–doctor positioning scenario. A significant group by gender interaction was also noted for the time to peak force and rate of force production variables. Conclusion: The results of the present study confirm the importance of chiropractic technique curriculum and perhaps gender in spinal manipulation skill learning. It also stresses the importance of integrating spinal manipulation skills practice early in training to maximize the number and the quality of significant learner–instructor interactions. PMID:22069337

  20. The future of gross anatomy teaching.

    PubMed

    Malamed, S; Seiden, D

    1995-01-01

    A survey of U.S. departments of anatomy, physiology, and biochemistry shows that 39% of the respondent anatomy departments reported declines in the numbers of graduate students taking the human gross anatomy course. Similarly, 42% of the departments reported decreases in the numbers of graduate students teaching human gross anatomy. These decreases were greater in anatomy than in physiology and in biochemistry. The percentages of departments reporting increases in students taking or teaching their courses was 6% for human gross anatomy and 0% to 19% for physiology and biochemistry courses. To reverse this trend the establishment of specific programs for the training of gross anatomy teachers is advocated. These new teachers will be available as the need for them is increasingly recognized in the future.

  1. What is an Objective Structured Practical Examination in Anatomy?

    ERIC Educational Resources Information Center

    Yaqinuddin, Ahmed; Zafar, Muhammad; Ikram, Muhammad Faisal; Ganguly, Paul

    2013-01-01

    Assessing teaching-learning outcomes in anatomical knowledge is a complex task that requires the evaluation of multiple domains: theoretical, practical, and clinical knowledge. In general, theoretical knowledge is tested by a written examination system constituted by multiple choice questions (MCQs) and/or short answer questions (SAQ). The…

  2. Anatomy of Teaching Anatomy: Do Prosected Cross Sections Improve Students Understanding of Spatial and Radiological Anatomy?

    PubMed Central

    Vithoosan, S.; Kokulan, S.; Dissanayake, M. M.; Dissanayake, Vajira; Jayasekara, Rohan

    2016-01-01

    Introduction. Cadaveric dissections and prosections have traditionally been part of undergraduate medical teaching. Materials and Methods. Hundred and fifty-nine first-year students in the Faculty of Medicine, University of Colombo, were invited to participate in the above study. Students were randomly allocated to two age and gender matched groups. Both groups were exposed to identical series of lectures regarding anatomy of the abdomen and conventional cadaveric prosections of the abdomen. The test group (n = 77, 48.4%) was also exposed to cadaveric cross-sectional slices of the abdomen to which the control group (n = 82, 51.6%) was blinded. At the end of the teaching session both groups were assessed by using their performance in a timed multiple choice question paper as well as ability to identify structures in abdominal CT films. Results. Scores for spatial and radiological anatomy were significantly higher among the test group when compared with the control group (P < 0.05, CI 95%). Majority of the students in both control and test groups agreed that cadaveric cross section may be useful for them to understand spatial and radiological anatomy. Conclusion. Introduction of cadaveric cross-sectional prosections may help students to understand spatial and radiological anatomy better. PMID:27579181

  3. Use of Saliva for Assessment of Stress and Its Effect on the Immune System Prior to Gross Anatomy Practical Examinations

    ERIC Educational Resources Information Center

    Lester, S. Reid; Brown, Jason R.; Aycock, Jeffrey E.; Grubbs, S. Lee; Johnson, Roger B.

    2010-01-01

    The objective of this study was to determine the longitudinal effects of a series of stressful gross anatomy tests on the immune system. Thirty-six freshman occupational therapy students completed a written stress evaluation survey, and saliva samples were obtained at baseline and prior to each of three timed-practical gross anatomy tests.…

  4. On the simulation of space based manipulators with contact

    NASA Technical Reports Server (NTRS)

    Walker, Michael W.; Dionise, Joseph

    1989-01-01

    An efficient method of simulating the motion of space based manipulators is presented. Since the manipulators will come into contact with different objects in their environment while carrying out different tasks, an important part of the simulation is the modeling of those contacts. An inverse dynamics controller is used to control a two armed manipulator whose task is to grasp an object floating in space. Simulation results are presented and an evaluation is made of the performance of the controller.

  5. Update: Biochemistry of Genetic Manipulation.

    ERIC Educational Resources Information Center

    Barker, G. R.

    1983-01-01

    Various topics on the biochemistry of genetic manipulation are discussed. These include genetic transformation and DNA; genetic expression; DNA replication, repair, and mutation; technology of genetic manipulation; and applications of genetic manipulation. Other techniques employed are also considered. (JN)

  6. Osteopathic Manipulative Treatment

    MedlinePlus

    ... what patients really need is a healing touch. Osteopathic physicians haven't forgotten. Osteopathic manipulative treatment, or OMT, ... and prevent illness or injury. Using OMT, your osteopathic physician will move your muscles and joints using techniques ...

  7. Manipulation by physiotherapists.

    PubMed

    Cyriax, J

    1970-03-01

    Divergent opinions exist on whether or not physiotherapists should manipulate. The controversy can be simply resolved by pointing out that the past policy of withholding such tuition from physiotherapists has in no way diminished the public demand for manipulation; it has merely forced potential patients to the bonesetter. Even those doctors who resent the idea of physiotherapists manipulating must surely prefer its performance by trained personnel working under doctors' guidance to indiscriminate recourse to all sorts of largely untrained laymen without doctors' prior approval. Come what may, the patients are going to be manipulated; at least let this then be sought from trained physiotherapists who give treatment ethically to patients sent to them by doctors.

  8. Dielectrophoresis for Bioparticle Manipulation

    PubMed Central

    Qian, Cheng; Huang, Haibo; Chen, Liguo; Li, Xiangpeng; Ge, Zunbiao; Chen, Tao; Yang, Zhan; Sun, Lining

    2014-01-01

    As an ideal method to manipulate biological particles, the dielectrophoresis (DEP) technique has been widely used in clinical diagnosis, disease treatment, drug development, immunoassays, cell sorting, etc. This review summarizes the research in the field of bioparticle manipulation based on DEP techniques. Firstly, the basic principle of DEP and its classical theories are introduced in brief; Secondly, a detailed introduction on the DEP technique used for bioparticle manipulation is presented, in which the applications are classified into five fields: capturing bioparticles to specific regions, focusing bioparticles in the sample, characterizing biomolecular interaction and detecting microorganism, pairing cells for electrofusion and separating different kinds of bioparticles; Thirdly, the effect of DEP on bioparticle viability is analyzed; Finally, the DEP techniques are summarized and future trends in bioparticle manipulation are suggested. PMID:25310652

  9. An Interactive 3D Virtual Anatomy Puzzle for Learning and Simulation - Initial Demonstration and Evaluation.

    PubMed

    Messier, Erik; Wilcox, Jascha; Dawson-Elli, Alexander; Diaz, Gabriel; Linte, Cristian A

    2016-01-01

    To inspire young students (grades 6-12) to become medical practitioners and biomedical engineers, it is necessary to expose them to key concepts of the field in a way that is both exciting and informative. Recent advances in medical image acquisition, manipulation, processing, visualization, and display have revolutionized the approach in which the human body and internal anatomy can be seen and studied. It is now possible to collect 3D, 4D, and 5D medical images of patient specific data, and display that data to the end user using consumer level 3D stereoscopic display technology. Despite such advancements, traditional 2D modes of content presentation such as textbooks and slides are still the standard didactic equipment used to teach young students anatomy. More sophisticated methods of display can help to elucidate the complex 3D relationships between structures that are so often missed when viewing only 2D media, and can instill in students an appreciation for the interconnection between medicine and technology. Here we describe the design, implementation, and preliminary evaluation of a 3D virtual anatomy puzzle dedicated to helping users learn the anatomy of various organs and systems by manipulating 3D virtual data. The puzzle currently comprises several components of the human anatomy and can be easily extended to include additional organs and systems. The 3D virtual anatomy puzzle game was implemented and piloted using three display paradigms - a traditional 2D monitor, a 3D TV with active shutter glass, and the DK2 version Oculus Rift, as well as two different user interaction devices - a space mouse and traditional keyboard controls. PMID:27046584

  10. Plastination in Anatomy Learning: An Experience at Cambridge University.

    PubMed

    Latorre, Rafael; Bainbridge, David; Tavernor, Angie; López Albors, Octavio

    2016-01-01

    Due to lack of objective data, the benefits of using plastination in combination with wet dissection in teaching gross anatomy are unknown. The aim of this study was to obtain objective evidence from students regarding the effectiveness of combining plastinated specimens (PS) with an established gross anatomy education program at Cambridge University that uses wet cadaver dissection and small-group tutorials. For a complete academic year, a total of 135 PS were used alongside wet cadaver dissections. The PS were also available for small-group tutorials. An anonymous closed questionnaire, using a 5-point numerical-estimation Likert scale, was used to gather information relating to the effectiveness of the PS. The level of student satisfaction with the combined use of wet dissections and PS was high, although higher (p<.05) for second-year students (98.4%) than for first-year students (95.5%). Students felt the specimens allowed them to see details that were often more difficult to identify in their dissections, for instance nerves. Voluntary use of PS was higher (p<.01) for second-year students (96.9%), who had previously experienced anatomy teaching with cadaver dissection alone, than for first-year students (77.7%). Overall, 97.7% of all students thought that the PS helped them understand and learn anatomy. All students surveyed (100%) recommended the use of PS in the future. Students considered the use of PS in the dissection room combined with wet cadaver dissection to be beneficial when learning anatomy, particularly when combined with their use during small-group tutorials.

  11. Learning to Manipulate and Categorize in Human and Artificial Agents

    ERIC Educational Resources Information Center

    Morlino, Giuseppe; Gianelli, Claudia; Borghi, Anna M.; Nolfi, Stefano

    2015-01-01

    This study investigates the acquisition of integrated object manipulation and categorization abilities through a series of experiments in which human adults and artificial agents were asked to learn to manipulate two-dimensional objects that varied in shape, color, weight, and color intensity. The analysis of the obtained results and the…

  12. Assessment outcomes: computerized instruction in a human gross anatomy course.

    PubMed

    Bukowski, Elaine L

    2002-01-01

    New and traditional educational media were used to study alternative methods of instruction in a human gross anatomy course. Three consecutive entry-level physical therapy (PT) classes (55 students total) participated in this study. No other anatomy course was available to these students during this time. During the first year, all entering PT students (n = 18) completed a traditional cadaver anatomy course. This traditional group attended weekly lectures and dissection laboratories for 15 weeks. During the second year, the next entering class of PT students (n = 17) completed a self-study, computerized noncadaver anatomy course. This self-study group attended an introductory session to receive course objectives and instruction in using the computer package chosen for the study. After the introductory session, this group worked independently for the remainder of their 15-week course. During the third year, the entering class of PT students (n = 20) attended weekly lectures and completed a self-study, computerized non-cadaver laboratory course. This lecture and self-study group attended an introductory session to review course objectives and receive instruction in using the computer package. For the remainder of their 15-week course, this group attended a weekly lecture and worked independently on the computer for the laboratory portion of their course. All groups kept time logs, recording class and study time for each day of the course. The time logs were collected on the last day of each course. Each group's performance in anatomy-based system courses was followed through the remainder of the PT curricula, including clinical rotations, and through the completion of the state board licensure examination. Data were analyzed using a multivariate analysis of variance and a Kruskal-Wallis analysis of variance. There was no significant difference in anatomy course class means, class study times, performance throughout the remainder of the PT curricula, and performance

  13. [Surgical anatomy of the nose].

    PubMed

    Nguyen, P S; Bardot, J; Duron, J B; Jallut, Y; Aiach, G

    2014-12-01

    Thorough knowledge of the anatomy of the nose is an essential prerequisite for preoperative analysis and the understanding of surgical techniques. Like a tent supported by its frame, the nose is an osteo-chondral structure covered by a peri-chondroperiosteal envelope, muscle and cutaneous covering tissues. For didactic reasons, we have chosen to treat this chapter in the form of comments from eight key configurations that the surgeon should acquire before performing rhinoplasty.

  14. [Functional dental anatomy and amalgam].

    PubMed

    Tavernier, B; Colon, P

    1989-01-01

    Very often, the functional dental anatomy are reflected during the rehabilitation of posterior quadrants. However, the placement, the shaping in correct relation of the different dental components are indispensable conditions to respect, in order to achieve an adequate integration of the restoration within the neuro-muscular system. A clinical protocol is proposed in order to reconcile the anatomical and biological prerequisite and the setting time of modern alloys.

  15. Magnetic and pH dual responsive core-shell hybrid nanogels: a single nano-object for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery

    SciTech Connect

    Wu, Weitai; Shen, Jing; Gai, Zheng; Hong, Kunlun; Banerjeea, Probal; Zhou, Shuiqin

    2011-01-01

    Remotely optical sensing and drug delivery using an environmentally-guided magnetically-driven hybrid nanogel particle could allow for medical diagnostics and treatment. Such multifunctional hybrid nanogels (<200 nm) were prepared through the first synthesis of magnetic Ni NPs, followed by a moderate growth of fluorescent metallic Ag on the surface of Ni NPs, and then a coverage of a pH-responsive copolymer gel shell of poly(ethylene glycol-co-methacrylic acid) [p(EG-MAA)] onto the Ni-Ag bimetallic NP cores (18 {+-} 5 nm). The introduction of the pH-responsive p(EG-MAA) gel shell onto the magnetic and fluorescent Ni-Ag NPs makes the polymer-bound Ni-Ag NPs responsive to pH over the physiologically important range 5.0-7.4. The hybrid nanogels can adapt to surrounding pH and regulate the sensitivity in response to external magnetic field (such as a small magnet of 0.1 T), resulting in the accumulation of the hybrid nanogels within the duration from hours to a few seconds as the pH value decreases from 7.4 to 5.0. The pH-dependent magnetic response characteristic of the hybrid nanogels were further integrated with the pH change to fluorescent signal transduction and pH-regulated anticancer drug (a model drug 5-fluorouracil) delivery functions. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells. The multiple responsive hybrid nanogel that can be manipulated in tandem endogenous and exogenous activation should enhance our ability to address the complexity of biological systems.

  16. Anatomy of the infant head

    SciTech Connect

    Bosma, J.F.

    1986-01-01

    This text is mainly an atlas of illustration representing the dissection of the head and upper neck of the infant. It was prepared by the author over a 20-year period. The commentary compares the anatomy of the near-term infant with that of a younger fetus, child, and adult. As the author indicates, the dearth of anatomic information about postnatal anatomic changes represents a considerable handicap to those imaging infants. In part 1 of the book, anatomy is related to physiologic performance involving the pharynx, larynx, and mouth. Sequential topics involve the regional anatomy of the head (excluding the brain), the skeleton of the cranium, the nose, orbit, mouth, larynx, pharynx, and ear. To facilitate use of this text as a reference, the illustrations and text on individual organs are considered separately (i.e., the nose, the orbit, the eye, the mouth, the larynx, the pharynx, and the ear). Each part concerned with a separate organ includes materials from the regional illustrations contained in part 2 and from the skeleton, which is treated in part 3. Also included in a summary of the embryologic and fetal development of the organ.

  17. Digital dissection system for medical school anatomy training

    NASA Astrophysics Data System (ADS)

    Augustine, Kurt E.; Pawlina, Wojciech; Carmichael, Stephen W.; Korinek, Mark J.; Schroeder, Kathryn K.; Segovis, Colin M.; Robb, Richard A.

    2003-05-01

    images are captured automatically, and then processed to generate a Quicktime VR sequence, which permits users to view an object from multiple angles by rotating it on the screen. This provides 3-D visualizations of anatomy for students without the need for special '3-D glasses' that would be impractical to use in a laboratory setting. In addition, a digital video camera may be mounted on the rig for capturing video recordings of selected dissection procedures being carried out by expert anatomists for playback by the students. Anatomists from the Department of Anatomy at Mayo have captured several sets of dissection sequences and processed them into Quicktime VR sequences. The students are able to look at these specimens from multiple angles using this VR technology. In addition, the student may zoom in to obtain high-resolution close-up views of the specimen. They may interactively view the specimen at varying stages of dissection, providing a way to quickly and intuitively navigate through the layers of tissue. Electronic media has begun to impact all areas of education, but a 3-D interactive visualization of specimen dissections in the laboratory environment is a unique and powerful means of teaching anatomy. When fully implemented, anatomy education will be enhanced significantly by comparison to traditional methods.

  18. Micro manipulator motion control to counteract macro manipulator structural vibrations

    SciTech Connect

    Lew, J.Y.; Trudnowski, D.J.; Evans, M.S.; Bennett, D.W.

    1995-02-01

    Inertial force damping control by micro manipulator modulation is proposed to suppress the vibrations of a micro/macro manipulator system. The proposed controller, developed using classical control theory, is added to the existing control system. The proposed controller uses real-time measurements of macro manipulator flexibility to adjust the motion of the micro manipulator to counteract structural vibrations. Experimental studies using an existing micro/macro flexible link manipulator testbed demonstrate the effectiveness of the proposed approach to suppression of vibrations in the macro/micro manipulator system using micro-manipulator-based inertial active damping control.

  19. Using Virtual Manipulatives with and without Symbolic Representation to Teach First Grade Multi-Digit Addition

    ERIC Educational Resources Information Center

    Haistings, Jeanine L.

    2009-01-01

    Technology and mathematics. manipulatives have been brought together in a new format. This joining has resulted in virtual manipulatives that are available on the Internet for students. Virtual manipulatives have been defined as computer based renditions of common mathematics manipulatives and tools. Just as a physical object can be flipped,…

  20. Gross anatomy course content and teaching methodology in allied health: clinicians' experiences and recommendations.

    PubMed

    Latman, N S; Lanier, R

    2001-01-01

    The purpose of this study was to sample the experiences and recommendations of clinicians in allied health fields about gross anatomy courses. The objective was to determine if practicing clinicians recommended a course in gross anatomy, and, if so, their recommendations for course content and teaching methodology. Questionnaires were mailed to a random selection of occupational therapists (OTs), physician assistants (PAs), and physical therapists (PTs) licensed in the state of Texas. In addition to demographics, the survey asked 14 questions regarding the experiences and recommendations in seven areas of interest about gross anatomy courses. The responding sample appeared to be representative of the target population. A course in human gross anatomy during professional school was recommended by 96% of OTs, and 100% of PAs and PTs. The single most recommended teaching method was student dissection of human cadavers. Although significant differences were found regarding primary course orientation, a majority favored some form of combined systems and regional oriented courses. A majority of clinicians in each field recommended a gross anatomy course at the beginning of professional training. Specific recommendations were given for content of systems and regional oriented gross anatomy courses. We recommend that the gross anatomy course content and teaching methodologies in allied health areas be responsive to the specific needs of each clinical specialty.

  1. Manipulator comparative testing program

    SciTech Connect

    Draper, J.V.; Handel, S.J.; Sundstrom, E.; Herndon, J.N.; Fujita, Y.; Maida, M.

    1986-01-01

    The Manipulator Comparative Testing Program compared performance of selected manipulator systems under typical remote handling conditions. The site of testing was the Remote Operations and Maintenance Demonstration Facility operated by the Consolidated Fuel Reprocessing Program of the Oak Ridge National Laboratory. Three experiment examined differences among manipulator systems from the US and Japan. The manipulator systems included the Meidensha BILARM 83A, Central Research Laboratories' (CRL's) Model M-2, and GCA PaR systems Model 6000. Six manipulator and control mode combinations were evaluated: (a) the BILARM in master-slave mode without force reflection; (b) the BILARM in master-slave mode with force reflection; (c) the Model M-2 in master-slave mode without force reflection; (d) the Model M-2 in master-slave mode with force reflection; (e) the BILARM with switchbox controls; and (f) the PaR 6000 with switchbox controls. The experiments also examined differences between master-slave systems with and without force reflections, and differences between master-slave systems and switchbox-controlled systems.

  2. Automatic anatomy recognition on CT images with pathology

    NASA Astrophysics Data System (ADS)

    Huang, Lidong; Udupa, Jayaram K.; Tong, Yubing; Odhner, Dewey; Torigian, Drew A.

    2016-03-01

    Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of three main steps - model building, object recognition, and object delineation. In this paper, within the broader AAR framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.

  3. [New findings of clinical anatomy in pelvis].

    PubMed

    Muraoka, Kuniyasu; Takenaka, Atsushi

    2016-01-01

    Surgical anatomy involves clarifying the mutual relationships of each structure in the operative field. Knowledge of new surgical anatomy has arisen via new methods or approaches. Associated with the development and spread of laparoscopic surgery in recent years, adaptation to changes in surgical techniques using knowledge of classical pelvic anatomy has been difficult. Better knowledge of the delicate structures surrounding the prostate is essential in order to provide both cancer control and functional preservation with regard to radical prostatectomy. In this report, we review the progress in knowledge of pelvic anatomy, particularly regarding the endopelvic fascia, prostatic fascia and Denonvilliers' fascia.

  4. Simulation of robot manipulators

    SciTech Connect

    Kress, R.L.; Babcock, S.M.; Bills, K.C.; Kwon, D.S.; Schoenwald, D.A.

    1995-03-01

    This paper describes Oak Ridge National Laboratory`s development of an environment for the simulation of robotic manipulators. Simulation includes the modeling of kinematics, dynamics, sensors, actuators, control systems, operators, and environments. Models will be used for manipulator design, proposal evaluation, control system design and analysis, graphical preview of proposed motions, safety system development, and training. Of particular interest is the development of models for robotic manipulators having at least one flexible link. As a first application, models have been developed for the Pacific Northwest Laboratories` Flexible Beam Testbed which is a one-Degree-Of-Freedom, flexible arm with a hydraulic base actuator. Initial results show good agreement between model and experiment.

  5. The Anatomy of Onomatopoeia

    PubMed Central

    Assaneo, María Florencia; Nichols, Juan Ignacio; Trevisan, Marcos Alberto

    2011-01-01

    Virtually every human faculty engage with imitation. One of the most natural and unexplored objects for the study of the mimetic elements in language is the onomatopoeia, as it implies an imitative-driven transformation of a sound of nature into a word. Notably, simple sounds are transformed into complex strings of vowels and consonants, making difficult to identify what is acoustically preserved in this operation. In this work we propose a definition for vocal imitation by which sounds are transformed into the speech elements that minimize their spectral difference within the constraints of the vocal system. In order to test this definition, we use a computational model that allows recovering anatomical features of the vocal system from experimental sound data. We explore the vocal configurations that best reproduce non-speech sounds, like striking blows on a door or the sharp sounds generated by pressing on light switches or computer mouse buttons. From the anatomical point of view, the configurations obtained are readily associated with co-articulated consonants, and we show perceptual evidence that these consonants are positively associated with the original sounds. Moreover, the pairs vowel-consonant that compose these co-articulations correspond to the most stable syllables found in the knock and click onomatopoeias across languages, suggesting a mechanism by which vocal imitation naturally embeds single sounds into more complex speech structures. Other mimetic forces received extensive attention by the scientific community, such as cross-modal associations between speech and visual categories. The present approach helps building a global view of the mimetic forces acting on language and opens a new venue for a quantitative study of word formation in terms of vocal imitation. PMID:22194825

  6. The anatomy of onomatopoeia.

    PubMed

    Assaneo, María Florencia; Nichols, Juan Ignacio; Trevisan, Marcos Alberto

    2011-01-01

    Virtually every human faculty engage with imitation. One of the most natural and unexplored objects for the study of the mimetic elements in language is the onomatopoeia, as it implies an imitative-driven transformation of a sound of nature into a word. Notably, simple sounds are transformed into complex strings of vowels and consonants, making difficult to identify what is acoustically preserved in this operation. In this work we propose a definition for vocal imitation by which sounds are transformed into the speech elements that minimize their spectral difference within the constraints of the vocal system. In order to test this definition, we use a computational model that allows recovering anatomical features of the vocal system from experimental sound data. We explore the vocal configurations that best reproduce non-speech sounds, like striking blows on a door or the sharp sounds generated by pressing on light switches or computer mouse buttons. From the anatomical point of view, the configurations obtained are readily associated with co-articulated consonants, and we show perceptual evidence that these consonants are positively associated with the original sounds. Moreover, the pairs vowel-consonant that compose these co-articulations correspond to the most stable syllables found in the knock and click onomatopoeias across languages, suggesting a mechanism by which vocal imitation naturally embeds single sounds into more complex speech structures. Other mimetic forces received extensive attention by the scientific community, such as cross-modal associations between speech and visual categories. The present approach helps building a global view of the mimetic forces acting on language and opens a new venue for a quantitative study of word formation in terms of vocal imitation. PMID:22194825

  7. Anatomy "steeplechase" online: necessity sometimes is the catalyst for innovation.

    PubMed

    Inuwa, Ibrahim Muhammad; Al Rawahy, Maimouna; Taranikanti, Varna; Habbal, Omar

    2011-01-01

    In most medical schools, summative practical examination in Anatomy usually takes the format of a "steeplechase" ("spotters" or "bell ringers") conducted in the gross anatomy laboratory using cadaveric material and prosected specimens. Recently, we have started to administer similar examinations online using the quiz facility in WebCT™ and Moodle™. This article chronicles how we conceived and developed this method within the peculiar nature of our medical school setting. Over a five year period, practical summative examinations were organized as "steeplechase" online. The online examinations were administered using WebCT™ and later Moodle™ learning management software. Assessment "objects" were created from the materials available for anatomy teaching. These were digital images of cadaveric materials, radiological, and prosected specimens. In addition, short video clips of 30 seconds duration demonstrating muscle action were produced. These objects were optimized for online viewing and then uploaded onto the learning management software. A bank of questions (multiple choice or short answer type) was then created and linked to the assessment objects. These were used in place of the steeplechase in the computer laboratory. This method serves a crucial purpose in places like ours where continuous availability of human cadavers is impossible. Although time consuming initially, once questions are setup online, future retrieval, and administration becomes convenient especially where there are large batches of students. In addition, the online environment offers distinct advantages with regards to image quality, psychometric analysis of the examination and reduction of staff preparation time compared to traditional "steeplechase." PMID:21438159

  8. Remediation Trends in an Undergraduate Anatomy Course and Assessment of an Anatomy Supplemental Study Skills Course

    ERIC Educational Resources Information Center

    Schutte, Audra Faye

    2013-01-01

    Anatomy A215: Basic Human Anatomy (Anat A215) is an undergraduate human anatomy course at Indiana University Bloomington (IUB) that serves as a requirement for many degree programs at IUB. The difficulty of the course, coupled with pressure to achieve grades for admittance into specific programs, has resulted in high remediation rates. In an…

  9. Dynamic nonprehensile manipulation: Controllability, planning, and experiments

    SciTech Connect

    Lynch, K.M.; Mason, M.T.

    1999-01-01

    The authors are interested in using low-degree-of-freedom robots to perform complex tasks by nonprehensile manipulation (manipulation without a form- or force-closure grasp). By not grasping, the robot can use gravitational, centrifugal, and Coriolis forces as virtual motors to control more degrees of freedom of the part. The part`s extra motion freedoms are exhibited as rolling, slipping, and free flight. This paper describes controllability, motion planning, and implementation of planar dynamic nonprehensile manipulation. The authors show that almost any planar object is controllable by point contact, and the controlling robot requires only two degrees of freedom (a point translating in the plane). They then focus on a one-joint manipulator (with a two-dimensional state space), and show that even this simplest of robots, by using slipping and rolling, can control a planar object to a full-dimensional subset of its six-0dimensional state space. The authors have developed a one-joint robot to perform a variety of dynamic tasks, including snatching an object from a table, rolling an object on the surface of the arm, and throwing and catching. Nonlinear optimization is used to plan robot trajectories that achieve the desired object motion via coupling forces through the nonprehensile contact.

  10. Effect of the use of instructional anatomy videos on student performance.

    PubMed

    Saxena, Varun; Natarajan, Pradeep; O'Sullivan, Patricia S; Jain, Sharad

    2008-01-01

    Medical schools have reduced the time allotted to anatomy instruction. Consequently, schools engage students in more independent settings using information and communication technologies (ICT). There has been limited research in the use of video aids, a type of ICT, to enhance anatomy examination performance. The objective of this study is to describe the design, usage, and effect on examination performance of eight locally developed instructional anatomy videos. First-year UCSF medical students (n = 141) had access to the videos. They reported their video usage, reason for usage, and satisfaction. The prior year students (n = 141) served as a historical control group. Anatomy and radiology examination performance was compared between groups while controlling for prior performance. The students with and without access to the videos did not differ in examination performance. Sixty-one (43%) students in the experimental group responded to the survey. Of these, 79% reported using at least one video, viewing an average of 4.75 of the eight videos. They watched 3.27 (SD = 1.57, range 1-5) of the five anatomy videos and 1.48 (SD = 1.35; range 0-3) of the three radiology videos. In a regression analysis controlling for age and MCAT scores, using the anatomy videos at least once improved anatomy examination performance by 3.4% (P-value = 0.007). There was no relationship between radiology video usage and radiology exam score. Video resource availability did not enhance student performance in anatomy and radiology. However, when analyzing performance for those whom we knew level of video use, there was a statistically different and higher anatomy achievement. PMID:19177403

  11. Sensing Temperatures Via Prostheses And Manipulators

    NASA Technical Reports Server (NTRS)

    Zerkus, Mike

    1991-01-01

    Proposed temperature-sensing system applies heat to (or removes heat from) human user's skin according to temperature of remote object. Used in artificial limbs and in telerobotic manipulators. In prosthetic arm and hand, sensors on tips of artificial fingers send signals to electronic control network that drives small, lightweight thermoelectric heat pump worn on back of user's shoulder. Heat pump heats or cools skin according to signals from sensors. Heat pump and control network worn like article of clothing. In manual control of remote robot, sensors placed in fingers of remote manipulator. Sensors drive, via similar electronic control network, thermoelectric heat pumps in fingers of glove worn by operator, who then has benefit of information about temperatures on manipulated object.

  12. Controlling multiple manipulators using RIPS

    NASA Technical Reports Server (NTRS)

    Wang, Yulun; Jordan, Steve; Mangaser, Amante; Butner, Steve

    1989-01-01

    A prototype of the RIPS architecture (Robotic Instruction Processing System) was developed. A two arm robot control experiment is underway to characterize the architecture as well as research multi-arm control. This experiment uses two manipulators to cooperatively position an object. The location of the object is specified by the host computer's mouse. Consequently, real time kinematics and dynamics are necessary. The RIPS architecture is specialized so that it can satisfy these real time constraints. The two arm experimental set-up is discussed. A major part of this work is the continued development of a good programming environment for RIPS. The C++ language is employed and favorable results exist in the targeting of this language to the RIPS hardware.

  13. Trust versus Manipulation

    ERIC Educational Resources Information Center

    Lewis, Anne C.

    2005-01-01

    This article discusses the issue of trust in the education system. What is different about the issue of trust in the education system is the assault upon it, sometimes overt but most often subtle. There is a difference between strong criticism and willful manipulation. The nation's schools are responding to the former--perhaps too slowly for…

  14. Manipulating Combinatorial Structures.

    ERIC Educational Resources Information Center

    Labelle, Gilbert

    This set of transparencies shows how the manipulation of combinatorial structures in the context of modern combinatorics can easily lead to interesting teaching and learning activities at every level of education from elementary school to university. The transparencies describe: (1) the importance and relations of combinatorics to science and…

  15. Kinematically redundant robot manipulators

    NASA Technical Reports Server (NTRS)

    Baillieul, J.; Hollerbach, J.; Brockett, R.; Martin, D.; Percy, R.; Thomas, R.

    1987-01-01

    Research on control, design and programming of kinematically redundant robot manipulators (KRRM) is discussed. These are devices in which there are more joint space degrees of freedom than are required to achieve every position and orientation of the end-effector necessary for a given task in a given workspace. The technological developments described here deal with: kinematic programming techniques for automatically generating joint-space trajectories to execute prescribed tasks; control of redundant manipulators to optimize dynamic criteria (e.g., applications of forces and moments at the end-effector that optimally distribute the loading of actuators); and design of KRRMs to optimize functionality in congested work environments or to achieve other goals unattainable with non-redundant manipulators. Kinematic programming techniques are discussed, which show that some pseudo-inverse techniques that have been proposed for redundant manipulator control fail to achieve the goals of avoiding kinematic singularities and also generating closed joint-space paths corresponding to close paths of the end effector in the workspace. The extended Jacobian is proposed as an alternative to pseudo-inverse techniques.

  16. Computer Algebra versus Manipulation

    ERIC Educational Resources Information Center

    Zand, Hossein; Crowe, David

    2004-01-01

    In the UK there is increasing concern about the lack of skill in algebraic manipulation that is evident in students entering mathematics courses at university level. In this note we discuss how the computer can be used to ameliorate some of the problems. We take as an example the calculations needed in three dimensional vector analysis in polar…

  17. Functional anatomy of the nose.

    PubMed

    Koppe, Thomas; Giotakis, Evangelos I; Heppt, Werner

    2011-04-01

    The human nose is a very complex entity with a great amount of variation among and within different human populations. Even though the morphology of the nasal pyramid and its soft tissue coverage is principally known, a standardized nomenclature does not yet exist. The past two decades have witnessed a considerable increase of new studies on the functional morphology of the external nasal anatomy. Detailed anatomic and clinical knowledge about the external nose is a prerequisite for successful rhinosurgery, thus this report deals with the basic structures necessary for functional and aesthetic rhinoplasty. PMID:21404156

  18. Gross anatomy of network security

    NASA Technical Reports Server (NTRS)

    Siu, Thomas J.

    2002-01-01

    Information security involves many branches of effort, including information assurance, host level security, physical security, and network security. Computer network security methods and implementations are given a top-down description to permit a medically focused audience to anchor this information to their daily practice. The depth of detail of network functionality and security measures, like that of the study of human anatomy, can be highly involved. Presented at the level of major gross anatomical systems, this paper will focus on network backbone implementation and perimeter defenses, then diagnostic tools, and finally the user practices (the human element). Physical security measures, though significant, have been defined as beyond the scope of this presentation.

  19. Body-wide anatomy recognition in PET/CT images

    NASA Astrophysics Data System (ADS)

    Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Zhao, Liming; Torigian, Drew A.

    2015-03-01

    With the rapid growth of positron emission tomography/computed tomography (PET/CT)-based medical applications, body-wide anatomy recognition on whole-body PET/CT images becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem and seldom studied due to unclear anatomy reference frame and low spatial resolution of PET images as well as low contrast and spatial resolution of the associated low-dose CT images. We previously developed an automatic anatomy recognition (AAR) system [15] whose applicability was demonstrated on diagnostic computed tomography (CT) and magnetic resonance (MR) images in different body regions on 35 objects. The aim of the present work is to investigate strategies for adapting the previous AAR system to low-dose CT and PET images toward automated body-wide disease quantification. Our adaptation of the previous AAR methodology to PET/CT images in this paper focuses on 16 objects in three body regions - thorax, abdomen, and pelvis - and consists of the following steps: collecting whole-body PET/CT images from existing patient image databases, delineating all objects in these images, modifying the previous hierarchical models built from diagnostic CT images to account for differences in appearance in low-dose CT and PET images, automatically locating objects in these images following object hierarchy, and evaluating performance. Our preliminary evaluations indicate that the performance of the AAR approach on low-dose CT images achieves object localization accuracy within about 2 voxels, which is comparable to the accuracies achieved on diagnostic contrast-enhanced CT images. Object recognition on low-dose CT images from PET/CT examinations without requiring diagnostic contrast-enhanced CT seems feasible.

  20. Door breaching robotic manipulator

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Erik; Parrington, Lawrence; von Muehlen, Stephan

    2008-04-01

    As unmanned systems become more commonplace in military, police, and other security forces, they are tasked to perform missions that the original hardware was not designed for. Current military robots are built for rough outdoor conditions and have strong inflexible manipulators designed to handle a wide range of operations. However, these manipulators are not well suited for some essential indoor tasks, including opening doors. This is a complicated kinematic task that places prohibitively difficult control challenges on the robot and the operator. Honeybee and iRobot have designed a modular door-breaching manipulator that mechanically simplifies the demands upon operator and robot. The manipulator connects to the existing robotic arm of the iRobot PackBot EOD. The gripper is optimized for grasping a variety of door knobs, levers, and car-door handles. It works in conjunction with a compliant wrist and magnetic lock-out mechanism that allows the wrist to remain rigid until the gripper has a firm grasp of the handle and then bend with its rotation and the swing of the door. Once the door is unlatched, the operator simply drives the robot through the doorway while the wrist compensates for the complex, multiple degree-of-freedom motion of the door. Once in the doorway the operator releases the handle, the wrist pops back into place, and the robot is ready for the next door. The new manipulator dramatically improves a robot's ability to non-destructively breach doors and perform an inspection of a room's content, a capability that was previously out of reach of unmanned systems.

  1. Dynamic whole-body robotic manipulation

    NASA Astrophysics Data System (ADS)

    Abe, Yeuhi; Stephens, Benjamin; Murphy, Michael P.; Rizzi, Alfred A.

    2013-05-01

    The creation of dynamic manipulation behaviors for high degree of freedom, mobile robots will allow them to accomplish increasingly difficult tasks in the field. We are investigating how the coordinated use of the body, legs, and integrated manipulator, on a mobile robot, can improve the strength, velocity, and workspace when handling heavy objects. We envision that such a capability would aid in a search and rescue scenario when clearing obstacles from a path or searching a rubble pile quickly. Manipulating heavy objects is especially challenging because the dynamic forces are high and a legged system must coordinate all its degrees of freedom to accomplish tasks while maintaining balance. To accomplish these types of manipulation tasks, we use trajectory optimization techniques to generate feasible open-loop behaviors for our 28 dof quadruped robot (BigDog) by planning trajectories in a 13 dimensional space. We apply the Covariance Matrix Adaptation (CMA) algorithm to solve for trajectories that optimize task performance while also obeying important constraints such as torque and velocity limits, kinematic limits, and center of pressure location. These open-loop behaviors are then used to generate desired feed-forward body forces and foot step locations, which enable tracking on the robot. Some hardware results for cinderblock throwing are demonstrated on the BigDog quadruped platform augmented with a human-arm-like manipulator. The results are analogous to how a human athlete maximizes distance in the discus event by performing a precise sequence of choreographed steps.

  2. Design Projects in Human Anatomy & Physiology

    ERIC Educational Resources Information Center

    Polizzotto, Kristin; Ortiz, Mary T.

    2008-01-01

    Very often, some type of writing assignment is required in college entry-level Human Anatomy and Physiology courses. This assignment can be anything from an essay to a research paper on the literature, focusing on a faculty-approved topic of interest to the student. As educators who teach Human Anatomy and Physiology at an urban community college,…

  3. Frank Netter's Legacy: Interprofessional Anatomy Instruction

    ERIC Educational Resources Information Center

    Niekrash, Christine E.; Copes, Lynn E.; Gonzalez, Richard A.

    2015-01-01

    Several medical schools have recently described new innovations in interprofessional interactions in gross anatomy courses. The Frank H. Netter MD School of Medicine at Quinnipiac University in Hamden, CT has developed and implemented two contrasting interprofessional experiences in first-year medical student gross anatomy dissection laboratories:…

  4. Anatomy Education Faces Challenges in Pakistan

    ERIC Educational Resources Information Center

    Memon, Ismail K.

    2009-01-01

    Anatomy education in Pakistan is facing many of the same challenges as in other parts of the world. Roughly, a decade ago, all medical and dental colleges in Pakistan emphasized anatomy as a core basic discipline within a traditional medical science curriculum. Now institutions are adopting problem based learning (PBL) teaching philosophies, and…

  5. Shark Attack! Sinking Your Teeth into Anatomy.

    ERIC Educational Resources Information Center

    House, Herbert

    2002-01-01

    Presents a real life shark attack story and studies arm reattachment surgery to teach human anatomy. Discusses how knowledge of anatomy can be put to use in the real world and how the arm functions. Includes teaching notes and suggestions for classroom management. (YDS)

  6. The 2008 Anatomy Ceremony: Essays

    PubMed Central

    Elansary, Mei; Goldberg, Ben; Qian, Ting; Rizzolo, Lawrence J.

    2009-01-01

    When asked to relate my experience of anatomy to the first-year medical and physician associate students at Yale before the start of their own first dissection, I found no better words to share than those of my classmates. Why speak with only one tongue, I said, when you can draw on 99 others? Anatomical dissection elicits what our course director, Lawrence Rizzolo, has called a “diversity of experience,” which, in turn, engenders a diversity of expressions. For Yale medical and physician associate students, this diversity is captured each year in a ceremony dedicated to those who donated their bodies for dissection. The service is an opportunity to offer thanks, but because only students and faculty are in attendance, it is also a place to share and address the complicated tensions that arise while examining, invading, and ultimately disassembling another’s body. It is our pleasure to present selected pieces from the ceremony to the Yale Journal of Biology and Medicine readership. — Peter Gayed, Co-editor-in-chief, Yale Journal of Biology and Medicine and Chair of the 2008 Anatomy Ceremony Planning Committee PMID:19325944

  7. Precision manipulation with a dextrous robot hand

    NASA Astrophysics Data System (ADS)

    Michelman, Paul

    1994-01-01

    In this thesis, we discuss a framework for describing and synthesizing precision manipulation tasks with a robot hand. Precision manipulations are those in which the motions of grasped objects are caused by finger motions alone (as distinct from arm or wrist motion). Experiments demonstrating the capabilities of the Utah-MIT hand are presented. This work begins by examining current research on biological motor control to raise a number of questions. For example, is the control centralized and organized by a central processor? Or is the control distributed throughout the nervous system? Motor control research on manipulation has focused on developing classifications of hand motions, concentrating solely on finger motions, while neglecting grasp stability and interaction forces that occur in manipulation. In addition, these taxonomies have not been explicitly functional. This thesis defines and analyzes a basic set of manipulation strategies that includes both position and force trajectories. The fundamental purposes of the manipulations are: (1) rectilinear and rotational motion of grasped objects of different geometries; and (2) the application of forces and moments against the environment by the grasped objects. First, task partitioning is described to allocate the fingers their roles in the task. Second, for each strategy, the mechanics and workspace of the tasks are analyzed geometrically to determine the gross finger trajectories required to achieve the tasks. Techniques illustrating the combination of simple manipulations into complex, multiple degree-of-freedom tasks are presented. There is a discussion of several tasks that use multiple elementary strategies. The tasks described are removing the top of a childproof medicine bottle, putting the top back on, rotating and regrasping a block and a cylinder within the grasp. Finally, experimental results are presented. The experimental setup at Columbia University's Center for Research in Intelligent Systems and

  8. Comparison of gross anatomy test scores using traditional specimens vs. QuickTime Virtual Reality animated specimens

    NASA Astrophysics Data System (ADS)

    Maza, Paul Sadiri

    In recent years, technological advances such as computers have been employed in teaching gross anatomy at all levels of education, even in professional schools such as medical and veterinary medical colleges. Benefits of computer based instructional tools for gross anatomy include the convenience of not having to physically view or dissect a cadaver. Anatomy educators debate over the advantages versus the disadvantages of computer based resources for gross anatomy instruction. Many studies, case reports, and editorials argue for the increased use of computer based anatomy educational tools, while others discuss the necessity of dissection for various reasons important in learning anatomy, such as a three-dimensional physical view of the specimen, physical handling of tissues, interactions with fellow students during dissection, and differences between specific specimens. While many articles deal with gross anatomy education using computers, there seems to be a lack of studies investigating the use of computer based resources as an assessment tool for gross anatomy, specifically using the Apple application QuickTime Virtual Reality (QTVR). This study investigated the use of QTVR movie modules to assess if using computer based QTVR movie module assessments were equal in quality to actual physical specimen examinations. A gross anatomy course in the College of Veterinary Medicine at Cornell University was used as a source of anatomy students and gross anatomy examinations. Two groups were compared, one group taking gross anatomy examinations in a traditional manner, by viewing actual physical specimens and answering questions based on those specimens. The other group took the same examinations using the same specimens, but the specimens were viewed as simulated three-dimensional objects in a QTVR movie module. Sample group means for the assessments were compared. A survey was also administered asking students' perceptions of quality and user-friendliness of the QTVR

  9. Self mobile space manipulator project

    NASA Technical Reports Server (NTRS)

    Brown, H. Ben; Friedman, Mark; Xu, Yangsheng; Kanade, Takeo

    1992-01-01

    A relatively simple, modular, low mass, low cost robot is being developed for space EVA that is large enough to be independently mobile on a space station or platform exterior, yet versatile enough to accomplish many vital tasks. The robot comprises two long flexible links connected by a rotary joint, with 2-DOF 'wrist' joints and grippers at each end. It walks by gripping pre-positioned attachment points, such as trusswork nodes, and alternately shifting its base of support from one foot (gripper) to the other. The robot can perform useful tasks such as visual inspection, material transport, and light assembly by manipulating objects with one gripper, while stabilizing itself with the other. At SOAR '90, we reported development of 1/3 scale robot hardware, modular trusswork to serve as a locomotion substrate, and a gravity compensation system to allow laboratory tests of locomotion strategies on the horizontal face of the trusswork. In this paper, we report on project progress including the development of: (1) adaptive control for automatic adjustment to loads; (2) enhanced manipulation capabilities; (3) machine vision, including the use of neural nets, to guide autonomous locomotion; (4) locomotion between orthogonal trusswork faces; and (5) improved facilities for gravity compensation and telerobotic control.

  10. REMOTELY OPERATED MANIPULATOR

    DOEpatents

    Hutto, E.L.

    1961-08-15

    A manipulator is described for performing, within an entirely enclosed cell containling radioactive materials, various mechanical operations. A rod with flexible fingers is encompassed by a tubular sleeve shorter than the rod. Relative movement between the rod and sleeve causes the fingers to open and close. This relative movement is effected by relative movement of permanent magnets in magnetic coupling relation to magnetic followers affixed to the ends of the rod and sleeve. The rod and its sleeve may be moved as a unit axially or may be rotated by means of the magnetic couplings. The manipulator is enclosed within a tubular member which is flexibly sealed to an opening in the cell. (AEC)

  11. TV requirements for manipulation in space

    NASA Technical Reports Server (NTRS)

    Freedman, L. A.; Crooks, W. H.; Coan, P. P.

    1977-01-01

    Four tasks (docking, coupling, manipulation, and transportation), stressing work volume and element relationships, are outlined to test a video system for remote manipulation in space. A 4 degree of freedom motion frame was used to evaluate operating parameters, which grouped the visual dimensions into major areas of influence, e.g., depth precision, object differentiation, reference, dynamics, and resolution. Four video systems were included in the simulation testing: a black and white and a color monoscopic system, a stereoscopic system, and a black and white two-view system. The two-view system was found best suited for the operations described.

  12. Development of Community College Instructional Modules for Biology and Comparative Vertebrate Anatomy.

    ERIC Educational Resources Information Center

    Vasiliauskas, Jura B.

    A project was undertaken to: (1) formulate objectives for a biology unit dealing with frog dissection and vertebrate anatomy, (2) on the basis of these objectives, develop self-instructional modules utilizing audio-visual and printed instructional materials, and (3) formulate instruments for the evaluation of the modules. The rationale for the…

  13. Manipulation of quantum evolution

    NASA Technical Reports Server (NTRS)

    Cabera, David Jose Fernandez; Mielnik, Bogdan

    1994-01-01

    The free evolution of a non-relativistic charged particle is manipulated using time-dependent magnetic fields. It is shown that the application of a programmed sequence of magnetic pulses can invert the free evolution process, forcing an arbitrary wave packet to 'go back in time' to recover its past shape. The possibility of more general operations upon the Schrodinger wave packet is discussed.

  14. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, R.M.

    A method and apparatus is disclosed for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  15. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, Russell M.

    1980-01-01

    A method and apparatus for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  16. MANIPULATOR FOR SLAVE ROBOT

    DOEpatents

    Goertz, R.C.; Grimson, J.H.; Kohut, F.A.

    1961-04-01

    A remote-control manipulator comprising two stationary master units, two slave units on a movable vehicle, and electrical connections between the master and slave units is reported. The slave units are side by side with a minimum over-all width, which is made feasible by an arrangement of transducers producing most movements of each slave unit to one side of the support of said slave unit.

  17. 19. Photocopy of photograph. VIEW OF WORKER MANIPULATING SMALL GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph. VIEW OF WORKER MANIPULATING SMALL GLASS OBJECTS IN THE HOT BAY WITH MANIPULATOR ARMS AT WORK STATION E-2. Photographer unknown, ca. 1969, original photograph and negative on file at the Remote Sensing Laboratory, Department of Energy, Nevada Operations Office. - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV

  18. Dynamic Coordination Of A Two-Arm Robotic Manipulator

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan; Kim, Sungbok

    1994-01-01

    Report presents study of dynamical and kinematical considerations guiding selection of configuration of self-reconfigurable, two-arm robotic manipulator. Two multiple-link arms cooperate in manipulating single object, reconfiguring their mutual, cooperative structure according to changing task requirements.

  19. Endocavity Ultrasound Probe Manipulators

    PubMed Central

    Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop

    2014-01-01

    We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure. PMID:24795525

  20. Welding nozzle position manipulator

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L. (Inventor); Gutow, David A. (Inventor)

    1994-01-01

    The present invention is directed to a welding nozzle position manipulator. The manipulator consists of an angle support to which the remaining components of the device are attached either directly or indirectly. A pair of pivotal connections attach a weld nozzle holding link to the angle support and provide a two axis freedom of movement of the holding link with respect to the support angle. The manipulator is actuated by a pair of adjusting screws angularly mounted to the angle support. These screws contact a pair of tapered friction surfaces formed on the upper portion of the welding nozzle holding link. A spring positioned between the upper portions of the support angle and the holding link provides a constant bias engagement between the friction surfaces of the holding link and the adjustment screws, so as to firmly hold the link in position and to eliminate any free play in the adjustment mechanism. The angular relationships between the adjustment screws, the angle support and the tapered friction surfaces of the weld nozzle holding link provide a geometric arrangement which permits precision adjustment of the holding link with respect to the angle support and also provides a solid holding link mount which is resistant to movement from outside forces.

  1. Exercises in anatomy: cardiac isomerism.

    PubMed

    Anderson, Robert H; Sarwark, Anne E; Spicer, Diane E; Backer, Carl L

    2014-01-01

    It is well recognized that the patients with the most complex cardiac malformations are those with so-called visceral heterotaxy. At present, it remains a fact that most investigators segregate these patients on the basis of their splenic anatomy, describing syndromes of so-called asplenia and polysplenia. It has also been known for quite some time, nonetheless, that the morphology of the tracheobronchial tree is usually isomeric in the setting of heterotaxy. And it has been shown that the isomerism found in terms of bronchial arrangement correlates in a better fashion with the cardiac anatomy than does the presence of multiple spleens, or the absence of any splenic tissue. In this exercise in anatomy, we use hearts from the Idriss archive of Lurie Children's Hospital in Chicago to demonstrate the isomeric features found in the hearts obtained from patients known to have had heterotaxy. We first demonstrate the normal arrangements, showing how it is the extent of the pectinate muscles in the atrial appendages relative to the atrioventricular junctions that distinguishes between morphologically right and left atrial chambers. We also show the asymmetry of the normal bronchial tree, and the relationships of the first bronchial branches to the pulmonary arteries supplying the lower lobes of the lungs. We then demonstrate that diagnosis of multiple spleens requires the finding of splenic tissue on either side of the dorsal mesogastrium. Turning to hearts obtained from patients with heterotaxy, we illustrate isomeric right and left atrial appendages. We emphasize that it is only the appendages that are universally isomeric, but point out that other features support the notion of cardiac isomerism. We then show that description also requires a full account of veno-atrial connections, since these can seemingly be mirror-imaged when the arrangement within the heart is one of isomerism of the atrial appendages. We show how failure to recognize the presence of such isomeric

  2. Art, antiquarianism and early anatomy.

    PubMed

    Guest, Clare E L

    2014-12-01

    Discussions of the early relationship between art and anatomy are shaped by Vasari's account of Florentine artists who dissected bodies in order to understand the causes of movement, and the end of movement in action. This account eclipses the role of the study of antiquities in Renaissance anatomical illustration. Beyond techniques of presentation, such as sectioning and analytic illustration, or a preoccupation with the mutilated fragment, antiquarianism offered a reflection on the variant and the role of temperament which could be adapted for anatomical purposes. With its play on ambiguities of life and death, idealisation and damage, antiquarianism also provided a way of negotiating the difficulties of content inherent in anatomical illustration. As such, it goes beyond exclusively historical interest to provoke reflection on the modes, possibilities and humane responsibilities of medical illustration. PMID:24696510

  3. Art, antiquarianism and early anatomy.

    PubMed

    Guest, Clare E L

    2014-12-01

    Discussions of the early relationship between art and anatomy are shaped by Vasari's account of Florentine artists who dissected bodies in order to understand the causes of movement, and the end of movement in action. This account eclipses the role of the study of antiquities in Renaissance anatomical illustration. Beyond techniques of presentation, such as sectioning and analytic illustration, or a preoccupation with the mutilated fragment, antiquarianism offered a reflection on the variant and the role of temperament which could be adapted for anatomical purposes. With its play on ambiguities of life and death, idealisation and damage, antiquarianism also provided a way of negotiating the difficulties of content inherent in anatomical illustration. As such, it goes beyond exclusively historical interest to provoke reflection on the modes, possibilities and humane responsibilities of medical illustration.

  4. An atlas of radiological anatomy

    SciTech Connect

    Weir, J.; Abrahams, P.

    1986-01-01

    This book contains a wealth of radiologic images of normal human anatomy; plain radiographs, contrast-enhanced radiographs, and computed tomography (CT) scans. There are 18 pages of magnetic resonance (MR) images, most on the brain and spinal cord, so that there are only two pages on MR imaging of the heart and two pages on abdominal and pelvic MR imaging. Twelve pages of ultrasound (US) images are included. This book has the radiologic image paired with an explanatory drawing; the image is on the left with a paragraph or two of text, and the drawing is on the right with legends. This book includes images of the brain and spinal cord obtained with arteriography, venography, myelography, encephalography, CT, and MR imaging.

  5. High precision anatomy for MEG.

    PubMed

    Troebinger, Luzia; López, José David; Lutti, Antoine; Bradbury, David; Bestmann, Sven; Barnes, Gareth

    2014-02-01

    Precise MEG estimates of neuronal current flow are undermined by uncertain knowledge of the head location with respect to the MEG sensors. This is either due to head movements within the scanning session or systematic errors in co-registration to anatomy. Here we show how such errors can be minimized using subject-specific head-casts produced using 3D printing technology. The casts fit the scalp of the subject internally and the inside of the MEG dewar externally, reducing within session and between session head movements. Systematic errors in matching to MRI coordinate system are also reduced through the use of MRI-visible fiducial markers placed on the same cast. Bootstrap estimates of absolute co-registration error were of the order of 1mm. Estimates of relative co-registration error were <1.5mm between sessions. We corroborated these scalp based estimates by looking at the MEG data recorded over a 6month period. We found that the between session sensor variability of the subject's evoked response was of the order of the within session noise, showing no appreciable noise due to between-session movement. Simulations suggest that the between-session sensor level amplitude SNR improved by a factor of 5 over conventional strategies. We show that at this level of coregistration accuracy there is strong evidence for anatomical models based on the individual rather than canonical anatomy; but that this advantage disappears for errors of greater than 5mm. This work paves the way for source reconstruction methods which can exploit very high SNR signals and accurate anatomical models; and also significantly increases the sensitivity of longitudinal studies with MEG. PMID:23911673

  6. High precision anatomy for MEG☆

    PubMed Central

    Troebinger, Luzia; López, José David; Lutti, Antoine; Bradbury, David; Bestmann, Sven; Barnes, Gareth

    2014-01-01

    Precise MEG estimates of neuronal current flow are undermined by uncertain knowledge of the head location with respect to the MEG sensors. This is either due to head movements within the scanning session or systematic errors in co-registration to anatomy. Here we show how such errors can be minimized using subject-specific head-casts produced using 3D printing technology. The casts fit the scalp of the subject internally and the inside of the MEG dewar externally, reducing within session and between session head movements. Systematic errors in matching to MRI coordinate system are also reduced through the use of MRI-visible fiducial markers placed on the same cast. Bootstrap estimates of absolute co-registration error were of the order of 1 mm. Estimates of relative co-registration error were < 1.5 mm between sessions. We corroborated these scalp based estimates by looking at the MEG data recorded over a 6 month period. We found that the between session sensor variability of the subject's evoked response was of the order of the within session noise, showing no appreciable noise due to between-session movement. Simulations suggest that the between-session sensor level amplitude SNR improved by a factor of 5 over conventional strategies. We show that at this level of coregistration accuracy there is strong evidence for anatomical models based on the individual rather than canonical anatomy; but that this advantage disappears for errors of greater than 5 mm. This work paves the way for source reconstruction methods which can exploit very high SNR signals and accurate anatomical models; and also significantly increases the sensitivity of longitudinal studies with MEG. PMID:23911673

  7. The history and illustration of anatomy in the Middle Ages.

    PubMed

    Gurunluoglu, Raffi; Gurunluoglu, Aslin; Williams, Susan A; Cavdar, Safiye

    2013-11-01

    This article reviews the influence of key figures on the pictorial representation of anatomy and the evolution of anatomical illustration during the Middle Ages until the time of the Renaissance, based on medical history books, journals and ancient medical books. During the early period in the Middle Ages, most illustrations were traditional drawings of emblematic nature, oftentimes unrealistic, not only because the precise knowledge of anatomy was lacking but also because the objective was to elucidate certain principles for teaching purposes. Five figure-series that came down to us through ancient manuscripts and textbooks represent the best examples of such traditional illustrations. With the advent of human dissection in the 13th and 14th centuries, a significant transformation in the depiction of anatomy began to project the practice of human dissection, as we see in the works of Mondino de Luzzi, Henri de Mondeville and Guido de Vigevano. After the invention of book printing in the second half of the 15th century, the reproduction of books was commonly practised and the woodcut made multiplication of pictures easier. Peter of Abano, Hieronymous Brunschwig, Johannes de Ketham, Johannes Peyligk, Gregory Reisch, Magnus Hundt, Laurentius Phryesen and many more included several anatomical illustrations in their treatises that demonstrated the development of anatomical illustration during the later Middle Ages.

  8. The history and illustration of anatomy in the Middle Ages.

    PubMed

    Gurunluoglu, Raffi; Gurunluoglu, Aslin; Williams, Susan A; Cavdar, Safiye

    2013-11-01

    This article reviews the influence of key figures on the pictorial representation of anatomy and the evolution of anatomical illustration during the Middle Ages until the time of the Renaissance, based on medical history books, journals and ancient medical books. During the early period in the Middle Ages, most illustrations were traditional drawings of emblematic nature, oftentimes unrealistic, not only because the precise knowledge of anatomy was lacking but also because the objective was to elucidate certain principles for teaching purposes. Five figure-series that came down to us through ancient manuscripts and textbooks represent the best examples of such traditional illustrations. With the advent of human dissection in the 13th and 14th centuries, a significant transformation in the depiction of anatomy began to project the practice of human dissection, as we see in the works of Mondino de Luzzi, Henri de Mondeville and Guido de Vigevano. After the invention of book printing in the second half of the 15th century, the reproduction of books was commonly practised and the woodcut made multiplication of pictures easier. Peter of Abano, Hieronymous Brunschwig, Johannes de Ketham, Johannes Peyligk, Gregory Reisch, Magnus Hundt, Laurentius Phryesen and many more included several anatomical illustrations in their treatises that demonstrated the development of anatomical illustration during the later Middle Ages. PMID:24585828

  9. [Functional anatomy of the central nervous system].

    PubMed

    Krainik, A; Feydy, A; Colombani, J M; Hélias, A; Menu, Y

    2003-03-01

    The central nervous system (CNS) has a particular regional functional anatomy. The morphological support of cognitive functions can now be depicted using functional imaging. Lesions of the central nervous system may be responsible of specific symptoms based on their location. Current neuroimaging techniques are able to show and locate precisely macroscopic lesions. Therefore, the knowledge of functional anatomy of the central nervous system is useful to link clinical disorders to symptomatic lesions. Using radio-clinical cases, we present the functional neuro-anatomy related to common cognitive impairments.

  10. Clinical aspects of rodent dental anatomy.

    PubMed

    Crossley, D A

    1995-12-01

    The order Rodentia is vast, encompassing a large number of species with significant anatomical variations developed during natural adaptation to differing habitats. Many veterinarians have little knowledge of the anatomy of species other than the commoner domestic large herbivores and small carnivores. Clinicians require a basic knowledge of the relevant anatomy of species they are likely to be asked to treat. This article provides sufficient working knowledge of the oral and dental anatomy of those rodents commonly kept as pets to enable veterinarians to interpret clinical and radiographic findings when investigating suspected dental disease.

  11. Design and implementation of an online systemic human anatomy course with laboratory.

    PubMed

    Attardi, Stefanie M; Rogers, Kem A

    2015-01-01

    Systemic Human Anatomy is a full credit, upper year undergraduate course with a (prosection) laboratory component at Western University Canada. To meet enrollment demands beyond the physical space of the laboratory facility, a fully online section was developed to run concurrently with the traditional face to face (F2F) course. Lectures given to F2F students are simultaneously broadcasted to online students using collaborative software (Blackboard Collaborate). The same collaborative software is used by a teaching assistant to deliver laboratory demonstrations in which three-dimensional (3D) virtual anatomical models are manipulated. Ten commercial software programs were reviewed to determine their suitability for demonstrating the virtual models, resulting in the selection of Netter's 3D Interactive Anatomy. Supplementary online materials for the central nervous system were developed by creating 360° images of plastinated prosected brain specimens and a website through which they could be accessed. This is the first description of a fully online undergraduate anatomy course with a live, interactive laboratory component. Preliminary data comparing the online and F2F student grades suggest that previous student academic performance, and not course delivery format, predicts performance in anatomy. Future qualitative studies will reveal student perceptions about their learning experiences in both of the course delivery formats.

  12. "Let's Get Physical": Advantages of a Physical Model over 3D Computer Models and Textbooks in Learning Imaging Anatomy

    ERIC Educational Resources Information Center

    Preece, Daniel; Williams, Sarah B.; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their…

  13. Object-oriented numerical computing C++

    NASA Technical Reports Server (NTRS)

    Vanrosendale, John

    1994-01-01

    An object oriented language is one allowing users to create a set of related types and then intermix and manipulate values of these related types. This paper discusses object oriented numerical computing using C++.

  14. Single Molecule Manipulation

    NASA Astrophysics Data System (ADS)

    Kiang, Ching-Hwa

    2011-10-01

    Single-molecule manipulation studies open a door for a close-up investigation of complex biological interactions at the molecular level. In these studies, single biomolecules are pulled while their force response is being monitored. The process is often nonequilibrium, and interpretation of the results has been challenging. We used the atomic force microscope to pull proteins and DNA, and determined the equilibrium properties of the molecules using the recently derived nonequilibrium work theorem. I will present applications of the technique in areas ranging from fundamental biological problems such as DNA mechanics, to complex medical processes such as the mechanical activation of von Willebrand Factor, a key protein in blood coagulation.

  15. Spatial Manipulation with Microfluidics

    PubMed Central

    Lin, Benjamin; Levchenko, Andre

    2015-01-01

    Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well-controlled environments at cellular length scales. This review will highlight their utility for studying gradient sensing along with relevant applications to biology. PMID:25905100

  16. Multiple anatomy optimization of accumulated dose

    SciTech Connect

    Watkins, W. Tyler Siebers, Jeffrey V.; Moore, Joseph A.; Gordon, James; Hugo, Geoffrey D.

    2014-11-01

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.

  17. Multiple anatomy optimization of accumulated dose

    PubMed Central

    Watkins, W. Tyler; Moore, Joseph A.; Gordon, James; Hugo, Geoffrey D.; Siebers, Jeffrey V.

    2014-01-01

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated. PMID:25370619

  18. What Do Children Learn When They Manipulate Objects?

    ERIC Educational Resources Information Center

    Kamii, Constance; O'Brien, Thomas C.

    An interview taped in 1978 with Constance Kamii, a child development researcher who studied Piagetian theory at the University of Geneva, is presented in this document. When asked what teachers of young children should keep in mind, Dr. Kamii talked about teaching to the child's level and cautioned against dealing with symbolic materials, advising…

  19. The representation of manipulable solid objects in a relational database

    NASA Technical Reports Server (NTRS)

    Bahler, D.

    1984-01-01

    This project is concerned with the interface between database management and solid geometric modeling. The desirability of integrating computer-aided design, manufacture, testing, and management into a coherent system is by now well recognized. One proposed configuration for such a system uses a relational database management system as the central focus; the various other functions are linked through their use of a common data repesentation in the data manager, rather than communicating pairwise to integrate a geometric modeling capability with a generic relational data managemet system in such a way that well-formed questions can be posed and answered about the performance of the system as a whole. One necessary feature of any such system is simplification for purposes of anaysis; this and system performance considerations meant that a paramount goal therefore was that of unity and simplicity of the data structures used.

  20. Study on Collaborative Object Manipulation in Virtual Environment

    NASA Astrophysics Data System (ADS)

    Mayangsari, Maria Niken; Yong-Moo, Kwon

    This paper presents comparative study on network collaboration performance in different immersion. Especially, the relationship between user collaboration performance and degree of immersion provided by the system is addressed and compared based on several experiments. The user tests on our system include several cases: 1) Comparison between non-haptics and haptics collaborative interaction over LAN, 2) Comparison between non-haptics and haptics collaborative interaction over Internet, and 3) Analysis of collaborative interaction between non-immersive and immersive display environments.

  1. Anatomy online: presentation of a detailed WWW atlas of human gross anatomy--reference for medical education.

    PubMed

    Jastrow, Holger; Vollrath, Lutz

    2002-11-01

    We present an online anatomy atlas based on the Visible Human Project (VHP) of the US National Library of Medicine. The objective is to provide original unlabeled as well as labeled sections of the human body of high quality and resolution on the Internet, for use in basic and continuing medical education. For a representative overview of the body, 370 axial sections were selected from the male and female data base of the VHP with special regard to regions of clinical interest. Each section is accompanied by its corresponding computer tomography (CT) image and, if available, magnetic resonance images (MRI) for quick and easy comparison of morphologic and radiologic structures. The sections can be studied unlabeled or labeled according to the current Terminologia Anatomica. A linked vocabulary with more than 850 terms explains the labeling. Animations of the sections as well as of CT and MR images allow for further visualization of the topographic relationships of anatomical structures. The responses to the project indicate that students and physicians regard the Internet Atlas of Human Gross Anatomy as a most useful aid for learning and reviewing anatomical details. The atlas is accessible on: http://www.uni-mainz.de/FB/Medizin/Anatomie/workshop/vishuman/Eready.html.

  2. Performance measurement of mobile manipulators

    NASA Astrophysics Data System (ADS)

    Bostelman, Roger; Hong, Tsai; Marvel, Jeremy

    2015-05-01

    This paper describes a concept for measuring the reproducible performance of mobile manipulators to be used for assembly or other similar tasks. An automatic guided vehicle with an onboard robot arm was programmed to repeatedly move to and stop at a novel, reconfigurable mobile manipulator artifact (RMMA), sense the RMMA, and detect targets on the RMMA. The manipulator moved a laser retroreflective sensor to detect small reflectors that can be reconfigured to measure various manipulator positions and orientations (poses). This paper describes calibration of a multi-camera, motion capture system using a 6 degree-of-freedom metrology bar and then using the camera system as a ground truth measurement device for validation of the reproducible mobile manipulator's experiments and test method. Static performance measurement of a mobile manipulator using the RMMA has proved useful for relatively high tolerance pose estimation and other metrics that support standard test method development for indexed and dynamic mobile manipulator applications.

  3. Muscular Anatomy of the Human Ventricular Folds

    PubMed Central

    Moon, Jerald; Alipour, Fariborz

    2013-01-01

    Objective The purpose of this study was to better understand the muscular anatomy of the ventricular folds (VF) to help improve biomechanical modeling of phonation and to better understand the role of these muscles during phonatory and non-phonatory tasks. Method Four human larynges were decalcified and sectioned coronally from the posterior to anterior using a CryoJane tape transfer system, and stained using Massons trichrome. The total and relative area of muscles observed in each section were calculated and used for characterizing muscle distribution within the ventricular folds. Results The ventricular folds of the larynges contained anteriorly coursing thyroarytenoid and ventricularis muscle fibers lying in the lower half of the VF posteriorly, with some ventricularis muscle evident in the upper and lateral portion of the fold more anteriorly. Very little muscle tissue was observed in the medial half of the fold, and the anterior half of the VF was largely devoid of any muscle tissue. All four VF’s contained muscle bundles coursing superiorly and medially through the upper half of the fold toward the lateral margin of the epiglottis. Conclusions While variability in expression was evident, the well-defined thyroarytenoid muscle was readily apparent lateral to the arytenoid cartilage in all specimens. PMID:24224399

  4. Obturator hernia. Embryology, anatomy, and surgical applications.

    PubMed

    Skandalakis, L J; Androulakis, J; Colborn, G L; Skandalakis, J E

    2000-02-01

    Obturator hernia is a rare clinical entity. In most cases, it produces small bowel obstruction with high morbidity and mortality. The embryology, anatomy, clinical picture, diagnosis, and surgery are presented in detail.

  5. Curricular Guidelines for Teaching Dental Anatomy.

    ERIC Educational Resources Information Center

    Okeson, Jeffrey; Buckman, James

    1981-01-01

    Guidelines developed by the Section on Dental Anatomy and Occlusion of the American Association of Dental Schools for use by individual educational institutions as curriculum development aids are provided. (MLW)

  6. CPR Instruction in a Human Anatomy Class.

    ERIC Educational Resources Information Center

    Lutton, Lewis M.

    1978-01-01

    Describes how cardiopulmonary resuscitation (CPR) instruction can be included in a college anatomy and physiology course. Equipment and instructors are provided locally by the Red Cross or American Heart Association. (MA)

  7. Anatomy Ontology Matching Using Markov Logic Networks

    PubMed Central

    Li, Chunhua; Zhao, Pengpeng; Wu, Jian; Cui, Zhiming

    2016-01-01

    The anatomy of model species is described in ontologies, which are used to standardize the annotations of experimental data, such as gene expression patterns. To compare such data between species, we need to establish relationships between ontologies describing different species. Ontology matching is a kind of solutions to find semantic correspondences between entities of different ontologies. Markov logic networks which unify probabilistic graphical model and first-order logic provide an excellent framework for ontology matching. We combine several different matching strategies through first-order logic formulas according to the structure of anatomy ontologies. Experiments on the adult mouse anatomy and the human anatomy have demonstrated the effectiveness of proposed approach in terms of the quality of result alignment. PMID:27382498

  8. Current issues with standards in the measurement and documentation of human skeletal anatomy.

    PubMed

    Magee, Justin; McClelland, Brian; Winder, John

    2012-09-01

    Digital modeling of human anatomy has become increasingly important and relies on well-documented quantitative anatomy literature. This type of documentation is common for the spine and pelvis; however, significant issues exist due to the lack of standardization in measurement and technique. Existing literature on quantitative anatomy for the spine and pelvis of white adults (aged 18-65 years, separated into decadal categories) was reviewed from the disciplines of anatomy, manipulative therapy, anthropometrics, occupational ergonomics, biomechanics and forensic science. The data were unified into a single normative model of the sub-axial spine. Two-dimensional orthographic drawings were produced from the 590 individual measurements identified, which informed the development of a 3D digital model. A similar review of full range of motion data was conducted as a meta-analysis and the results were applied to the existing model, providing an inter-connected, articulated digital spine. During these data analysis processes several inconsistencies were observed accompanied by an evidential lack of standardization with measurement and recording of data. These have been categorized as: anatomical terminology; scaling of measurements; measurement methodology, dimension and anatomical reference positions; global coordinate systems. There is inconsistency in anatomical terminology where independent researchers use the same terms to describe different aspects of anatomy or different terms for the same anatomy. Published standards exist for measurement methods of the human body regarding spatial interaction, anthropometric databases, automotive applications, clothing industries and for computer manikins, but none exists for skeletal anatomy. Presentation of measurements often lacks formal structure in clinical publications, seldom providing geometric reference points, therefore making digital reconstruction difficult. Published quantitative data does not follow existing

  9. From laser ultrasonics to optical manipulation.

    PubMed

    Požar, Tomaž; Babnik, Aleš; Možina, Janez

    2015-03-23

    During the interaction of a laser pulse with the surface of a solid object, the object always gains momentum. The delivered force impulse is manifested as propulsion. Initially, the motion of the object is composed of elastic waves that carry and redistribute the acquired momentum as they propagate and reflect within the solid. Even though only ablation- and light-pressure-induced mechanical waves are involved in propulsion, they are always accompanied by the ubiquitous thermoelastic waves. This paper describes 1D elastodynamics of pulsed optical manipulation and presents two diametrical experimental observations of elastic waves generated in the confined ablation and in the radiation pressure regime.

  10. Design features of on-line anatomy information resources: a comparison with the Digital Anatomist.

    PubMed

    Kim, S; Brinkley, J F; Rosse, C

    1999-01-01

    In order to update the design of the next generation of the Digital Anatomist, we have surveyed teaching assistants who have used the Digital Anatomist for learning and teaching anatomy as medical students, and have also examined available anatomy web sites with sufficient content to support learning. The majority of web sites function in an atlas mode and provide for the identification of structures. These atlases incorporate a variety of features for interactivity with 2D images, some of which are not available in the Digital Anatomist. The surveys suggest that the greatest need is for on-line access to comprehensive and detailed anatomical information and for the development of knowledge-based methods that allow the direct manipulation of segmented 3D graphical models by the user. The requirement for such interactivity is a comprehensive symbolic model of the physical organization of the body that can support inference.

  11. Design features of on-line anatomy information resources: a comparison with the Digital Anatomist.

    PubMed Central

    Kim, S.; Brinkley, J. F.; Rosse, C.

    1999-01-01

    In order to update the design of the next generation of the Digital Anatomist, we have surveyed teaching assistants who have used the Digital Anatomist for learning and teaching anatomy as medical students, and have also examined available anatomy web sites with sufficient content to support learning. The majority of web sites function in an atlas mode and provide for the identification of structures. These atlases incorporate a variety of features for interactivity with 2D images, some of which are not available in the Digital Anatomist. The surveys suggest that the greatest need is for on-line access to comprehensive and detailed anatomical information and for the development of knowledge-based methods that allow the direct manipulation of segmented 3D graphical models by the user. The requirement for such interactivity is a comprehensive symbolic model of the physical organization of the body that can support inference. Images Fig 1 PMID:10566421

  12. The development, assessment and validation of virtual reality for human anatomy instruction

    NASA Technical Reports Server (NTRS)

    Marshall, Karen Benn

    1996-01-01

    This research project seeks to meet the objective of science training by developing, assessing, validating and utilizing VR as a human anatomy training medium. Current anatomy instruction is primarily in the form of lectures and usage of textbooks. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three-dimensional, unlike the one-dimensional depiction found in textbooks and the two-dimensional depiction found on the computer. Virtual reality allows one to step through the computer screen into a 3-D artificial world. The primary objective of this project is to produce a virtual reality application of the abdominopelvic region of a human cadaver that can be taken back to the classroom. The hypothesis is that an immersive learning environment affords quicker anatomic recognition and orientation and a greater level of retention in human anatomy instruction. The goal is to augment not replace traditional modes of instruction.

  13. Hydraulic manipulator research at ORNL

    SciTech Connect

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  14. Lactation: historical patterns and potential for manipulation.

    PubMed

    Blackburn, D G

    1993-10-01

    The advent of biotechnology has made data on undomesticated mammals relevant to dairy science. Such data indicate the potential of lactation for modification, reveal genetic material available for use through bioengineering, help distinguish adaptive features from historical artifacts, and clarify limits on lactational diversity that date from early evolution. Evolutionary analysis indicates that a complex degree of lactation preceded divergence of the extant mammalian lineages during the Mesozoic Era. Although aspects of monotreme lactation appear to be ancestral for extant mammals, the marsupials and eutherians exhibit divergent specializations. Evidence is consistent with the idea that protolacteal glands evolved by combining features of skin gland populations into a new functional complex. Secretions of these ancestral glands may have had antimicrobial properties that protected the eggs or hatchlings and organic components that supplemented offspring nutrition. Following development of highly nutritious milks, evolution produced diversity in milk composition and function, milk output, length of lactation, mammary gland anatomy, and contributions of lactation to offspring nutrition. Certain marsupials are specialized in terms of functional independence and temporal plasticity of mammary tissues. Mammalian diversity indicates that artificial selection and physiological manipulation of domestic artiodactyls has only modestly exploited the potential of mammary glands as a nutritional source for humans. PMID:8227641

  15. Lactation: historical patterns and potential for manipulation.

    PubMed

    Blackburn, D G

    1993-10-01

    The advent of biotechnology has made data on undomesticated mammals relevant to dairy science. Such data indicate the potential of lactation for modification, reveal genetic material available for use through bioengineering, help distinguish adaptive features from historical artifacts, and clarify limits on lactational diversity that date from early evolution. Evolutionary analysis indicates that a complex degree of lactation preceded divergence of the extant mammalian lineages during the Mesozoic Era. Although aspects of monotreme lactation appear to be ancestral for extant mammals, the marsupials and eutherians exhibit divergent specializations. Evidence is consistent with the idea that protolacteal glands evolved by combining features of skin gland populations into a new functional complex. Secretions of these ancestral glands may have had antimicrobial properties that protected the eggs or hatchlings and organic components that supplemented offspring nutrition. Following development of highly nutritious milks, evolution produced diversity in milk composition and function, milk output, length of lactation, mammary gland anatomy, and contributions of lactation to offspring nutrition. Certain marsupials are specialized in terms of functional independence and temporal plasticity of mammary tissues. Mammalian diversity indicates that artificial selection and physiological manipulation of domestic artiodactyls has only modestly exploited the potential of mammary glands as a nutritional source for humans.

  16. Functional anatomy of the spine.

    PubMed

    Bogduk, Nikolai

    2016-01-01

    Among other important features of the functional anatomy of the spine, described in this chapter, is the remarkable difference between the design and function of the cervical spine and that of the lumbar spine. In the cervical spine, the atlas serves to transmit the load of the head to the typical cervical vertebrae. The axis adapts the suboccipital region to the typical cervical spine. In cervical intervertebrtal discs the anulus fibrosus is not circumferential but is crescentic, and serves as an interosseous ligament in the saddle joint between vertebral bodies. Cervical vertebrae rotate and translate in the sagittal plane, and rotate in the manner of an inverted cone, across an oblique coronal plane. The cervical zygapophysial joints are the most common source of chronic neck pain. By contrast, lumbar discs are well designed to sustain compression loads, but rely on posterior elements to limit axial rotation. Internal disc disruption is the most common basis for chronic low-back pain. Spinal muscles are arranged systematically in prevertebral and postvertebral groups. The intrinsic elements of the spine are innervated by the dorsal rami of the spinal nerves, and by the sinuvertebral nerves. Little modern research has been conducted into the structure of the thoracic spine, or the causes of thoracic spinal pain.

  17. Molecular Anatomy of Palate Development.

    PubMed

    Potter, Andrew S; Potter, S Steven

    2015-01-01

    The NIH FACEBASE consortium was established in part to create a central resource for craniofacial researchers. One purpose is to provide a molecular anatomy of craniofacial development. To this end we have used a combination of laser capture microdissection and RNA-Seq to define the gene expression programs driving development of the murine palate. We focused on the E14.5 palate, soon after medial fusion of the two palatal shelves. The palate was divided into multiple compartments, including both medial and lateral, as well as oral and nasal, for both the anterior and posterior domains. A total of 25 RNA-Seq datasets were generated. The results provide a comprehensive view of the region specific expression of all transcription factors, growth factors and receptors. Paracrine interactions can be inferred from flanking compartment growth factor/receptor expression patterns. The results are validated primarily through very high concordance with extensive previously published gene expression data for the developing palate. In addition selected immunostain validations were carried out. In conclusion, this report provides an RNA-Seq based atlas of gene expression patterns driving palate development at microanatomic resolution. This FACEBASE resource is designed to promote discovery by the craniofacial research community.

  18. Brain anatomy in Diplura (Hexapoda)

    PubMed Central

    2012-01-01

    Background In the past decade neuroanatomy has proved to be a valuable source of character systems that provide insights into arthropod relationships. Since the most detailed description of dipluran brain anatomy dates back to Hanström (1940) we re-investigated the brains of Campodea augens and Catajapyx aquilonaris with modern neuroanatomical techniques. The analyses are based on antibody staining and 3D reconstruction of the major neuropils and tracts from semi-thin section series. Results Remarkable features of the investigated dipluran brains are a large central body, which is organized in nine columns and three layers, and well developed mushroom bodies with calyces receiving input from spheroidal olfactory glomeruli in the deutocerebrum. Antibody staining against a catalytic subunit of protein kinase A (DC0) was used to further characterize the mushroom bodies. The japygid Catajapyx aquilonaris possesses mushroom bodies which are connected across the midline, a unique condition within hexapods. Conclusions Mushroom body and central body structure shows a high correspondence between japygids and campodeids. Some unique features indicate that neuroanatomy further supports the monophyly of Diplura. In a broader phylogenetic context, however, the polarization of brain characters becomes ambiguous. The mushroom bodies and the central body of Diplura in several aspects resemble those of Dicondylia, suggesting homology. In contrast, Archaeognatha completely lack mushroom bodies and exhibit a central body organization reminiscent of certain malacostracan crustaceans. Several hypotheses of brain evolution at the base of the hexapod tree are discussed. PMID:23050723

  19. [Anatomy cadaver ceremonies in Taiwan].

    PubMed

    Kao, T; Ha, H

    1999-07-01

    The practice of holding annual ceremonies in honor of cadaver donors in Taiwan's medical schools has a history of nearly a hundred years. It originated in Japan, where such ceremonies have been widely held in medical schools since the practice was founded by Toyo Yamawaki, who was the first medical scholar in Japan to engage in dissection of the human body and was the author of the first anatomy book to appear in Japan, the Zoshi. The practice of holding donor ceremonies was introduced into Taiwan after the Jaiwu Sino - Japanese war, when the island became a Japanese colony. The tradition was upheld in the Viceroy's Medical School, the Viceroy's College of Medicine, and Taihoku (Taipei) Imperial University College of Medicine, and continued since the restoration of Chinese power to the present. The practice of holding cadaver donor ceremonies in institutions of medical education is intended to express respect for the donor as well as to encourage the practice of cadaver donation to the benefit of medical education.

  20. Molecular Anatomy of Palate Development

    PubMed Central

    Potter, Andrew S.; Potter, S. Steven

    2015-01-01

    The NIH FACEBASE consortium was established in part to create a central resource for craniofacial researchers. One purpose is to provide a molecular anatomy of craniofacial development. To this end we have used a combination of laser capture microdissection and RNA-Seq to define the gene expression programs driving development of the murine palate. We focused on the E14.5 palate, soon after medial fusion of the two palatal shelves. The palate was divided into multiple compartments, including both medial and lateral, as well as oral and nasal, for both the anterior and posterior domains. A total of 25 RNA-Seq datasets were generated. The results provide a comprehensive view of the region specific expression of all transcription factors, growth factors and receptors. Paracrine interactions can be inferred from flanking compartment growth factor/receptor expression patterns. The results are validated primarily through very high concordance with extensive previously published gene expression data for the developing palate. In addition selected immunostain validations were carried out. In conclusion, this report provides an RNA-Seq based atlas of gene expression patterns driving palate development at microanatomic resolution. This FACEBASE resource is designed to promote discovery by the craniofacial research community. PMID:26168040

  1. Ion manipulation device

    DOEpatents

    Anderson, Gordon A; Smith, Richard D; Ibrahim, Yehia M; Baker, Erin M

    2014-09-16

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area.

  2. Genetic manipulation of Agrobacterium.

    PubMed

    Morton, Elise R; Fuqua, Clay

    2012-05-01

    Agrobacterium species are plant-associated relatives of the rhizobia. Several species cause plant diseases such as crown gall and hairy root, although there are also avirulent species. A. tumefaciens is the most intensively studied species and causes crown gall, a neoplastic disease that occurs on a variety of plants. Virulence is specified by large plasmids, and in the case of A. tumefaciens, this is called the Ti (tumor-inducing) plasmid. During pathogenesis virulent agrobacteria copy a segment of the Ti plasmid and transfer it to the plant, where it subsequently integrates into the plant genome, and expresses genes that result in the disease symptoms. A. tumefaciens has been used extensively as a plant genetic engineering tool and is also a model microorganism that has been well studied for host-microbe associations, horizontal gene transfer, cell-cell communication, and biofilm formation. This unit describes standard protocols for genetic manipulation of A. tumefaciens. PMID:22549163

  3. Vacuum tool manipulator

    DOEpatents

    Zollinger, W.T.

    1993-11-23

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm. 6 figures.

  4. Vacuum tool manipulator

    DOEpatents

    Zollinger, William T.

    1993-01-01

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm.

  5. Advanced servo manipulator

    DOEpatents

    Holt, William E.; Kuban, Daniel P.; Martin, H. Lee

    1988-01-01

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member.

  6. Advanced servo manipulator

    DOEpatents

    Holt, W.E.; Kuban, D.P.; Martin, H.L.

    1988-10-25

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member. 41 figs.

  7. A History of Manipulative Therapy

    PubMed Central

    Pettman, Erland

    2007-01-01

    Manipulative therapy has known a parallel development throughout many parts of the world. The earliest historical reference to the practice of manipulative therapy in Europe dates back to 400 BCE. Over the centuries, manipulative interventions have fallen in and out of favor with the medical profession. Manipulative therapy also was initially the mainstay of the two leading alternative health care systems, osteopathy and chiropractic, both founded in the latter part of the 19th century in response to shortcomings in allopathic medicine. With medical and osteopathic physicians initially instrumental in introducing manipulative therapy to the profession of physical therapy, physical therapists have since then provided strong contributions to the field, thereby solidifying the profession's claim to have manipulative therapy within in its legally regulated scope of practice. PMID:19066664

  8. Adaptive control of robotic manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    The author presents a novel approach to adaptive control of manipulators to achieve trajectory tracking by the joint angles. The central concept in this approach is the utilization of the manipulator inverse as a feedforward controller. The desired trajectory is applied as an input to the feedforward controller which behaves as the inverse of the manipulator at any operating point; the controller output is used as the driving torque for the manipulator. The controller gains are then updated by an adaptation algorithm derived from MRAC (model reference adaptive control) theory to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal are also used to enhance closed-loop stability and to achieve faster adaptation. The proposed control scheme is computationally fast and does not require a priori knowledge of the complex dynamic model or the parameter values of the manipulator or the payload.

  9. Host specificity of parasite manipulation

    PubMed Central

    2012-01-01

    Recently we presented how Camponotus ants in Thailand infected with the fungus Ophiocordyceps unilateralis are behaviorally manipulated into dying where the conditions are optimal for fungal development. Death incurred in a very narrow zone of space and here we compare this highly specific manipulation with a related system in Brazil. We show that the behavioral manipulation is less fine-tuned and discuss the potential explanations for this by examining differences in ant host and environmental characteristics. PMID:22808322

  10. Manipulation hardware for microgravity research

    SciTech Connect

    Herndon, J.N.; Glassell, R.L.; Butler, P.L.; Williams, D.M. ); Rohn, D.A. . Lewis Research Center); Miller, J.H. )

    1990-01-01

    The establishment of permanent low earth orbit occupation on the Space Station Freedom will present new opportunities for the introduction of productive flexible automation systems into the microgravity environment of space. The need for robust and reliable robotic systems to support experimental activities normally intended by astronauts will assume great importance. Many experimental modules on the space station are expected to require robotic systems for ongoing experimental operations. When implementing these systems, care must be taken not to introduce deleterious effects on the experiments or on the space station itself. It is important to minimize the acceleration effects on the experimental items being handled while also minimizing manipulator base reaction effects on adjacent experiments and on the space station structure. NASA Lewis Research Center has been performing research on these manipulator applications, focusing on improving the basic manipulator hardware, as well as developing improved manipulator control algorithms. By utilizing the modular manipulator concepts developed during the Laboratory Telerobotic Manipulator program, Oak Ridge National Laboratory has developed an experimental testbed system called the Microgravity Manipulator, incorporating two pitch-yaw modular positioners to provide a 4 dof experimental manipulator arm. A key feature in the design for microgravity manipulation research was the use of traction drives for torque transmission in the modular pitch-yaw differentials.

  11. Torque-Limiting Manipulation Device

    NASA Technical Reports Server (NTRS)

    Moetteli, John B. (Inventor)

    1999-01-01

    A device for manipulating a workpiece in space includes a fixture, a stanchion assembly, a manipulation mechanism, an actuation mechanism, and a reaction mechanism. The fixture has an end onto which the workpiece affixes. The stanchion assembly has an upper and a lower end. The manipulation mechanism connects the fixture and the upper end of the stanchion assembly. The lower end of the stanchion assembly mounts, via probe and a socket, to a structure. The actuation mechanism operably connects to the manipulation mechanism, and moves the fixture in space. The reaction mechanism provides a point through which force inputs into the actuation mechanism may react.

  12. Automatic camera tracking for remote manipulators

    SciTech Connect

    Stoughton, R.S.; Martin, H.L.; Bentz, R.R.

    1984-07-01

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (bang-bang) closed-loop control with a +-2-deg deadband. The deadband area is desirable to avoid operator seasickness caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator Systems SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system. 3 references, 6 figures, 2 tables.

  13. Automatic camera tracking for remote manipulators

    SciTech Connect

    Stoughton, R.S.; Martin, H.L.; Bentz, R.R.

    1984-04-01

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (bang-bang) closed-loop control with a +-2/sup 0/ deadband. The deadband area is desirable to avoid operator seasickness caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator Systems SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system. 3 references, 6 figures, 2 tables.

  14. High degree-of-freedom dynamic manipulation

    NASA Astrophysics Data System (ADS)

    Murphy, Michael P.; Stephens, Benjamin; Abe, Yeuhi; Rizzi, Alfred A.

    2012-06-01

    The creation of high degree of freedom dynamic mobile manipulation techniques and behaviors will allow robots to accomplish difficult tasks in the field. We are investigating the use of the body and legs of legged robots to improve the strength, velocity, and workspace of an integrated manipulator to accomplish dynamic manipulation. This is an especially challenging task, as all of the degrees of freedom are active at all times, the dynamic forces generated are high, and the legged system must maintain robust balance throughout the duration of the tasks. To accomplish this goal, we are utilizing trajectory optimization techniques to generate feasible open-loop behaviors for our 28 dof quadruped robot (BigDog) by planning the trajectories in a 13 dimensional space. Covariance Matrix Adaptation techniques are utilized to optimize for several criteria such as payload capability and task completion speed while also obeying constraints such as torque and velocity limits, kinematic limits, and center of pressure location. These open-loop behaviors are then used to generate feed-forward terms, which are subsequently used online to improve tracking and maintain low controller gains. Some initial results on one of our existing balancing quadruped robots with an additional human-arm-like manipulator are demonstrated on robot hardware, including dynamic lifting and throwing of heavy objects 16.5kg cinder blocks, using motions that resemble a human athlete more than typical robotic motions. Increased payload capacity is accomplished through coordinated body motion.

  15. Pedagogical Tools to Address Clinical Anatomy and Athletic Training Student Learning Styles

    ERIC Educational Resources Information Center

    Mazerolle, Stephanie; Yeargin, Susan

    2010-01-01

    Context: A thorough knowledge of anatomy is needed in four of the six domains of athletic training: prevention, injury/condition recognition, immediate care, and treatment/rehabilitation. Students with a solid foundation can achieve competency in these specific domains. Objective: To provide educators with pedagogical tools to promote a deeper…

  16. Manipulating and Visualizing Proteins

    SciTech Connect

    Simon, Horst D.

    2003-12-05

    ProteinShop Gives Researchers a Hands-On Tool for Manipulating, Visualizing Protein Structures. The Human Genome Project and other biological research efforts are creating an avalanche of new data about the chemical makeup and genetic codes of living organisms. But in order to make sense of this raw data, researchers need software tools which let them explore and model data in a more intuitive fashion. With this in mind, researchers at Lawrence Berkeley National Laboratory and the University of California, Davis, have developed ProteinShop, a visualization and modeling program which allows researchers to manipulate protein structures with pinpoint control, guided in large part by their own biological and experimental instincts. Biologists have spent the last half century trying to unravel the ''protein folding problem,'' which refers to the way chains of amino acids physically fold themselves into three-dimensional proteins. This final shape, which resembles a crumpled ribbon or piece of origami, is what determines how the protein functions and translates genetic information. Understanding and modeling this geometrically complex formation is no easy matter. ProteinShop takes a given sequence of amino acids and uses visualization guides to help generate predictions about the secondary structures, identifying alpha helices and flat beta strands, and the coil regions that bind them. Once secondary structures are in place, researchers can twist and turn these pre-configurations until they come up with a number of possible tertiary structure conformations. In turn, these are fed into a computationally intensive optimization procedure that tries to find the final, three-dimensional protein structure. Most importantly, ProteinShop allows users to add human knowledge and intuition to the protein structure prediction process, thus bypassing bad configurations that would otherwise be fruitless for optimization. This saves compute cycles and accelerates the entire process, so

  17. Functional anatomy of bronchial veins.

    PubMed

    Charan, Nirmal B; Thompson, William H; Carvalho, Paula

    2007-01-01

    The amount of bronchial arterial blood that drains into the systemic venous system is not known. Therefore, in this study we further delineated the functional anatomy of the bronchial venous system in six adult, anesthetized, and mechanically ventilated sheep. Through a left thoracotomy, the left azygos vein was dissected and the insertion of the bronchial vein into the azygos vein was identified. A pouch was created by ligating the azygos vein on either side of the insertion of the bronchial vein. A catheter was inserted into this pouch for the measurement of bronchial venous occlusion pressure and bronchial venous blood flow. An ultrasonic flow probe was placed around the common bronchial branch of the bronchoesophageal artery to monitor the bronchial arterial blood flow. Catheters were also placed into the carotid artery and the pulmonary artery. The mean bronchial blood flow was 20.6+/-4.2mlmin(-1) (mean+/-SEM) and, of this, only about 13% of the blood flow drained into the azygos vein. The mean systemic artery pressure was 72.4+/-4.1mmHg whereas the mean bronchial venous occlusion pressure was 38.1+/-2.1mmHg. The mean values for blood gas analysis were as follows: bronchial venous blood pH=7.54+/-0.02, PCO(2)=35+/-2.6, PO(2)=95+/-5.7mmHg; systemic venous blood-pH=7.43+/-0.02, PCO(2)=48+/-3.2, PO(2)=42+/-2.0mmHg; systemic arterial blood-pH=7.51+/-0.03, PCO(2)=39+/-2.1, PO(2)=169+/-9.8mmHg. We conclude that the major portion of the bronchial arterial blood flow normally drains into the pulmonary circulation and only about 13% drains into the bronchial venous system. In addition, the oxygen content of the bronchial venous blood is similar to that in the systemic arterial blood.

  18. Revisiting the Anatomy of the Living Heart.

    PubMed

    Mori, Shumpei; Spicer, Diane E; Anderson, Robert H

    2016-01-01

    An understanding of the complexity of cardiac anatomy is required by all who seek, in the setting of cardiac disease, to interpret the images confronting them. Although the mysteries of cardiac structure have been extensively addressed, significant gaps continue to exist between the descriptions provided by morphologists and by those working in the clinical setting. In part, this reflects the limitations in providing 3D visualization of such a complicated organ. Current 3D imaging technology now permits visualization of the cardiac components using datasets obtained in the living individual. These advances, furthermore, demonstrate the anatomy in the setting of the heart as imaged within the thorax. It has been failure to describe the heart as it lies within the thorax that remains a major deficiency of many morphologists relying on the dissecting room to provide the gold standard. Describing the heart in attitudinally appropriate fashion, a basic rule of clinical anatomy, creates the necessary bridges between anatomists and clinicians. The rapid progression of cardiac interventional techniques, furthermore, emphasizes the need to revisit cardiac anatomy using a multidisciplinary approach. In this review, therefore, we illustrate the advantages of an attitudinally correct approach to cardiac anatomy. We then focus on the morphology of the arterial roots, revealing the accuracy that can now be achieved by clinicians using datasets obtained during life.

  19. Exploring relationships between personality and anatomy performance.

    PubMed

    Finn, Gabrielle M; Walker, Simon J; Carter, Madeline; Cox, David R; Hewitson, Ruth; Smith, Claire F

    2015-01-01

    There is increasing recognition in medicine of the importance of noncognitive factors, including personality, for performance, and for good medical practice. The personality domain of conscientiousness is a well-established predictor of performance in workplace and academic settings. This study investigates the relationships between the "Big Five" personality domains, the facets of conscientiousness and performance in a practical anatomy examination. First- and second-year undergraduate medical students (n = 85) completed a paper-based questionnaire, which included a 50-item measure of the Big Five personality domains (neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness) and a 60-item measure of the six conscientiousness facets (orderliness, dutifulness, achievement-striving, self-discipline, self-efficacy, and cautiousness) from the International Personality Item Pool (IPIP). In addition, routinely-collected academic performance scores from the end of semester anatomy practical examinations (spotters) were obtained. Anatomy examination performance correlated moderately with conscientiousness (r = 0.24, P = 0.03). Of the six facets of conscientiousness, a positive relationship was observed between anatomy examination performance and achievement striving (r = 0.22, P = 0.05). In conclusion, this study found that performance in an anatomy examination was related to higher levels of conscientiousness and, more specifically, to higher levels of achievement striving. The results have implications for selection and assessment in medicine.

  20. Evaluation of small-group teaching in human gross anatomy in a Caribbean medical school.

    PubMed

    Chan, Lap Ki; Ganguly, Pallab K

    2008-01-01

    Although there are a number of medical schools in the Caribbean islands, very few reports have come out so far in the literature regarding the efficacy of small-group teaching in them. The introduction of small-group teaching in the gross anatomy laboratory one and a half years ago at St. Matthew's University (SMU) on Grand Cayman appears to have had a significant positive impact on the academic achievement of students in anatomy. This study surveyed the responses of the students to the small-group learning method in gross anatomy at SMU using a structured questionnaire. The results show that our students prefer this small-group learning method over a completely self-directed method in the gross anatomy lab because the study materials were carefully chosen and the study objectives were demonstrated by the resource person. However, teacher-centered teaching was deliberately avoided by fostering problem-solving skills in the anatomy lab sessions. Another aim of the small-group teaching at SMU was to develop the interpersonal and communication skills of the students, which are important in their later education and career. PMID:19177374

  1. Orthopedic resident anatomy review course: a collaboration between anatomists and orthopedic surgeons.

    PubMed

    DeFriez, Curtis B; Morton, David A; Horwitz, Daniel S; Eckel, Christine M; Foreman, K Bo; Albertine, Kurt H

    2011-01-01

    A challenge for new residents and senior residents preparing for board examinations is refreshing their knowledge of basic science disciplines, such as human gross anatomy. The Department of Orthopaedics at the University of Utah School of Medicine has for many years held an annual Orthopedic Resident Anatomy Review Course during the summer months for all of its residents. The primary purpose of the course is to renew competencies in basic science disciplines so that incoming residents more quickly reach a level of functional proficiency and to afford senior residents a platform to teach their junior colleagues. Before 2005, this course was conducted with minimal participation from anyone outside of the Department of Orthopaedics. Many of the residents voiced concerns that the educational benefits were not proportionate to the time invested. To improve the teaching of orthopedic-related anatomy, an educational collaboration between the Departments of Neurobiology and Anatomy and Orthopaedics was established in 2004 and continues to the present time. The major objectives of refining the course pedagogy, developing a Course Manual and Dissection Guide, and evaluating the results by administering a course survey questionnaire are described in this article. Implementation of all facets of the revised course has resulted in better participation by orthopedic faculty and more favorable reviews by the participating residents. Based on current levels of interest and positive comments from course participants, the Anatomy and Orthopedic faculty course directors plan to continue to develop course materials and pedagogy. PMID:21786430

  2. How optional should regional anatomy be in a medical course? An opinion piece.

    PubMed

    Moxham, Bernard J; Pais, Diogo

    2016-09-01

    The use of optional (elective) courses within the medical curriculum is increasingly being seen as a way of allowing students to pursue their studies according to their personal interests. For anatomy, particularly where the subject is being taught in an integrative curriculum and by means of a systemic approach, the development of elective regional anatomy courses is being employed to reintroduce regional anatomy and/or dissection by students. However, there is presently little evidence that objectively evaluates optional/elective courses. In this paper we critique the concept and practice of using elective courses and assess whether their deployment is ultimately in the interests of medical education, the medical profession, society in general and the layperson (potential patient) in particular. Clin. Anat. 29:702-710, 2016. © 2016 Wiley Periodicals, Inc.

  3. Image Manipulation: Then and Now.

    ERIC Educational Resources Information Center

    Sutton, Ronald E.

    The images of photography have been manipulated almost from the moment of their discovery. The blending together in the studio and darkroom of images not found in actual scenes from life has been a regular feature of modern photography in both art and advertising. Techniques of photograph manipulation include retouching; blocking out figures or…

  4. Modeling Manipulation in Medical Education

    ERIC Educational Resources Information Center

    Dailey, Jason I.

    2010-01-01

    As residents and medical students progress through their medical training, they are presented with multiple instances in which they feel they must manipulate the healthcare system and deceive others in order to efficiently treat their patients. This, however, creates a culture of manipulation resulting in untoward effects on trainees' ethical and…

  5. Stereoscopically Observing Manipulative Actions.

    PubMed

    Ferri, S; Pauwels, K; Rizzolatti, G; Orban, G A

    2016-08-01

    The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors "stimulus type" (action, static control, and dynamic control), "stereopsis" (present, absent) and "viewpoint" (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior. PMID:27252350

  6. Stereoscopically Observing Manipulative Actions

    PubMed Central

    Ferri, S.; Pauwels, K.; Rizzolatti, G.; Orban, G. A.

    2016-01-01

    The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors “stimulus type” (action, static control, and dynamic control), “stereopsis” (present, absent) and “viewpoint” (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior. PMID:27252350

  7. Adventures in Manipulation

    ERIC Educational Resources Information Center

    Christensen, Bonniejean

    1971-01-01

    Objects to an alleged misrepresentation and inaccurate presentation of a J. R. R. Tolkien quotation in "Adventures in Reading" (Harcourt, Brace & World, 1969), a ninth grade literature anthology. (RD)

  8. Microcrystal manipulation with laser tweezers

    PubMed Central

    Wagner, Armin; Duman, Ramona; Stevens, Bob; Ward, Andy

    2013-01-01

    X-ray crystallography is the method of choice to deduce atomic resolution structural information from macromolecules. In recent years, significant investments in structural genomics initiatives have been undertaken to automate all steps in X-ray crystallography from protein expression to structure solution. Robotic systems are widely used to prepare crystallization screens and change samples on synchrotron beamlines for macromolecular crystallography. The only remaining manual handling step is the transfer of the crystal from the mother liquor onto the crystal holder. Manual mounting is relatively straightforward for crystals with dimensions of >25 µm; however, this step is nontrivial for smaller crystals. The mounting of microcrystals is becoming increasingly important as advances in microfocus synchrotron beamlines now allow data collection from crystals with dimensions of only a few micrometres. To make optimal usage of these beamlines, new approaches have to be taken to facilitate and automate this last manual handling step. Optical tweezers, which are routinely used for the manipulation of micrometre-sized objects, have successfully been applied to sort and mount macromolecular crystals on newly designed crystal holders. Diffraction data from CPV type 1 polyhedrin microcrystals mounted with laser tweezers are presented. PMID:23793156

  9. Contemporary art and the ethics of anatomy.

    PubMed

    Barilan, Y Michael

    2007-01-01

    The ethics of anatomy bears on the ways in which we present and behold human bodies and human remains, as well as on the duties we have with regard to the persons whose bodies or body parts are presented. Anatomy is also a mode of thought and of social organization. Following Merleau-Ponty's assertion that the human body belongs both to the particular and to the metaphysical, I contend that art's ways of rendering of the particular in human anatomy often bring into relief metaphysical and ethical insights relevant to clinical medicine. This paper discusses the art of Gideon Gechtman, Mary Ellen Mark, Shari Zolla, and Christine Borland. It considers the relationship of these artists to earlier artistic traditions and the implications of their work for contemporary medicine and the biopsychosocial paradigm. Andrew Wyeth, the Visible Male Project, the Isenheim Altarpiece by GrA(1/4)newald, and an anonymous Dutch Baroque portrait are also discussed. PMID:17259679

  10. Anatomy and histology of the sacroiliac joints.

    PubMed

    Egund, Niels; Jurik, Anne Grethe

    2014-07-01

    The anatomy of joints provides an important basis for understanding the nature and imaging of pathologic lesions and their imaging appearance. This applies especially to the sacroiliac (SI) joints, which play a major role in the diagnosis of spondyloarthritis. They are composed of two different joint portions, a cartilage-covered portion ventrally and a ligamentous portion dorsally, and thus rather complex anatomically. Knowledge of anatomy and the corresponding normal imaging findings are important in the imaging diagnosis of sacroiliitis, especially by MR imaging. A certain distinction between the two joint portions by MR imaging is only obtainable by axial slice orientation. Together with a perpendicular coronal slice orientation, it provides adequate anatomical information and thereby a possibility for detecting the anatomical site of disease-specific characteristics and normal variants simulating disease. This overview describes current knowledge about the normal macroscopic and microscopic anatomy of the SI joints.

  11. Greek anatomist herophilus: the father of anatomy.

    PubMed

    Bay, Noel Si-Yang; Bay, Boon-Huat

    2010-12-01

    One of the most stirring controversies in the history of Anatomy is that Herophilus, an ancient Greek anatomist and his younger contemporary, Erasistratus, were accused of performing vivisections of living humans. However, this does not detract from the fact that Herophilus has made phenomenal anatomical observations of the human body which have contributed significantly towards the understanding of the brain, eye, liver, reproductive organs and nervous system. It is notable that he was the first person to perform systematic dissection of the human body and is widely acknowledged as the Father of Anatomy. He has been hailed as one of the greatest anatomists that ever lived, rivaled only by Andreas Vesalius who is regarded as the founder of modern human anatomy. PMID:21267401

  12. Greek anatomist herophilus: the father of anatomy

    PubMed Central

    Bay, Noel Si-Yang

    2010-01-01

    One of the most stirring controversies in the history of Anatomy is that Herophilus, an ancient Greek anatomist and his younger contemporary, Erasistratus, were accused of performing vivisections of living humans. However, this does not detract from the fact that Herophilus has made phenomenal anatomical observations of the human body which have contributed significantly towards the understanding of the brain, eye, liver, reproductive organs and nervous system. It is notable that he was the first person to perform systematic dissection of the human body and is widely acknowledged as the Father of Anatomy. He has been hailed as one of the greatest anatomists that ever lived, rivaled only by Andreas Vesalius who is regarded as the founder of modern human anatomy. PMID:21267401

  13. Manipulability, force, and compliance analysis for planar continuum manipulators

    NASA Technical Reports Server (NTRS)

    Gravagne, Ian A.; Walker, Ian D.

    2002-01-01

    Continuum manipulators, inspired by the natural capabilities of elephant trunks and octopus tentacles, may find niche applications in areas like human-robot interaction, multiarm manipulation, and unknown environment exploration. However, their true capabilities will remain largely inaccessible without proper analytical tools to evaluate their unique properties. Ellipsoids have long served as one of the foremost analytical tools available to the robotics researcher, and the purpose of this paper is to first formulate, and then to examine, three types of ellipsoids for continuum robots: manipulability, force, and compliance.

  14. Hybrid opto-electric manipulation in microfluidics - opportunities and challenges

    SciTech Connect

    Kumar, Aloke; Williams, Stuart J.; Chuang, Han-sheng; Green, Nicolas; Wereley, Steven G.

    2011-01-01

    Hybrid opto-electric manipulation in microfluidics/nanofluidics refers to a set of technologies that employ both optical and electrical forces to achieve particle or fluid manipulation at the micro and nano scale. These technologies, which have emerged primarily over the last decade, have provided a revolutionary and fresh perspective at fundamental electrokinetic processes, as well as have engendered a novel applications and devices. Hybrid opto-electric techniques have been utilized to manipulate objects ranging in diversity from millimeter-sized droplets to nano-particles. This review article discusses the underlying principles, applications and future perspectives of various techniques that have emerged over the last decade under a unified umbrella.

  15. Anatomy of a Busted Comet

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Poster Version (Figure 1)

    NASA's Spitzer Space Telescope captured the picture on the left of comet Holmes in March 2008, five months after the comet suddenly erupted and brightened a millionfold overnight. The contrast of the picture has been enhanced on the right to show the anatomy of the comet.

    Every six years, comet 17P/Holmes speeds away from Jupiter and heads inward toward the sun, traveling the same route typically without incident. However, twice in the last 116 years, in November 1892 and October 2007, comet Holmes mysteriously exploded as it approached the asteroid belt. Astronomers still do not know the cause of these eruptions.

    Spitzer's infrared picture at left hand side of figure 1, reveals fine dust particles that make up the outer shell, or coma, of the comet. The nucleus of the comet is within the bright whitish spot in the center, while the yellow area shows solid particles that were blown from the comet in the explosion. The comet is headed away from the sun, which lies beyond the right-hand side of figure 1.

    The contrast-enhanced picture on the right shows the comet's outer shell, and strange filaments, or streamers, of dust. The streamers and shell are a yet another mystery surrounding comet Holmes. Scientists had initially suspected that the streamers were small dust particles ejected from fragments of the nucleus, or from hyerpactive jets on the nucleus, during the October 2007 explosion. If so, both the streamers and the shell should have shifted their orientation as the comet followed its orbit around the sun. Radiation pressure from the sun should have swept the material back and away from it. But pictures of comet Holmes taken by Spitzer over time show the streamers and shell in the same configuration, and not pointing away from the sun. The observations have left astronomers stumped.

    The horizontal line seen in the contrast-enhanced picture is a trail of debris

  16. Manipulating light using nanostructures

    NASA Astrophysics Data System (ADS)

    Ghimire, Anil

    This dissertation describes progress made towards the control of emission direction and polarization from a single emitter using a sharp gold-coated atomic force microscope tip. When a metallic tip is scanned in the emitter near-field, the probe acts as a secondary emitter such that the superposition of electromagnetic fields from these two emitters modifies the emission polarization and pattern in the far-field. The physical mechanism underlying this ability to manipulate the emission polarization and direction is studied in detail using a unique data acquisition technique and finite-difference time domain (FDTD) simulations. This technique enables us to reveal how the polarization of emitted photons from a quantum dot (QD) is modified as a gold-coated tip is scanned laterally and vertically in its proximity, and the FDTD simulations are used to calculate the angular emission pattern. The simulated emission pattern at the back-focal plane enables us to identify how the direction of emitted photons is altered as the gold tip is scanned in the proximity of a dipole emitter. This dissertation also highlights a novel back-focal imaging technique correlated with the vertically oscillating probe. By pulsing the continuous-wave laser at various phases of tip oscillation and using the near-field interaction of the tip-sample, the exact tip-sample distance can be identified. Tip-induced modification of the angular emission pattern from an individual quantum dot is experimentally demonstrated. This work also includes the study of the emission properties of GaN nanowires. A hyper-spectral imaging technique combined with spectral center of mass (SCOM) analysis helps us to identify the spectral inhomogeneity within a nanowire. The spectral information within a diffraction-limited spot of a nanowire provides the insight regarding the distribution of mid-gap defect states within a nanowire.

  17. Anatomy and imaging of the normal meninges.

    PubMed

    Patel, Neel; Kirmi, Olga

    2009-12-01

    The meninges are an important connective tissue envelope investing the brain. Their function is to provide a protective coating to the brain and also participate in the formation of blood-brain barrier. Understanding their anatomy is fundamental to understanding the location and spread of pathologies in relation to the layers. It also provides an insight into the characteristics of such pathologies when imaging them. This review aims to describe the anatomy of the meninges, and to demonstrate the imaging findings of specific features.

  18. Functional Anatomy of the Outflow Facilities.

    PubMed

    Pizzirani, Stefano; Gong, Haiyan

    2015-11-01

    In order to understand the pathophysiology, select optimal therapeutic options for patients and provide clients with honest expectations for cases of canine glaucoma, clinicians should be familiar with a rational understanding of the functional anatomy of the ocular structures involved in this group of diseases. The topographical extension and the structural and humoral complexity of the regions involved with the production and the outflow of aqueous humor undergo numerous changes with aging and disease. Therefore, the anatomy relative to the fluid dynamics of aqueous has become a pivotal yet flexible concept to interpret the different phenotypes of glaucoma.

  19. Surgical anatomy of the tracheobronchial tree

    PubMed Central

    Drevet, Gabrielle; Conti, Massimo

    2016-01-01

    Airway surgery is often indicated in the management of benign or malignant pathological processes of the tracheobronchial tree. The surgeon undertaking this type of work has, however, the responsibility of understanding the particular anatomy applicable to these structures and procedures as well as be able to correlate imaging, intraoperative findings and anatomy. These are important considerations if one wants to reduce operative morbidity and improve potential for better long-term results. This paper reviews the most important anatomic features of the tracheobronchial tree putting emphasis on those features that are important to surgeons performing surgical procedures on those organs. PMID:26981262

  20. [Lateral chest X-rays. Radiographic anatomy].

    PubMed

    García Villafañe, C; Pedrosa, C S

    2014-01-01

    Lateral chest views constitute an essential part of chest X-ray examinations, so it is fundamental to know the anatomy on these images and to be able to detect the variations manifested on these images in different diseases. The aim of this article is to review the normal anatomy and main normal variants seen on lateral chest views. For teaching purposes, we divide the thorax into different spaces and analyze each in an orderly way, especially emphasizing the anatomic details that are most helpful for locating lesions that have already been detected in the posteroanterior view or for detecting lesions that can be missed in the posteroanterior view.

  1. Anatomy of an entry vehicle experiment

    NASA Technical Reports Server (NTRS)

    Eide, D. G.; Wurster, K. E.; Helms, V. T.; Ashby, G. C.

    1981-01-01

    The anatomy and evolution of a simple small-scale unmanned entry vehicle is described that is delivered to orbit by the shuttle and entered into the atmosphere from orbit to acquire flight data to improve our knowledge of boundary-layer behavior and evaluate advanced thermal protection systems. The anatomy of the experiment includes the justification for the experiments, instrumentation, configuration, material, and operational needs, and the translation of these needs into a configuration, weight statement, aerodynamics, program cost, and trajectory. Candidates for new instrumentation development are also identified for nonintrusive measurements of the boundary-layer properties.

  2. Guidelines for Standard Photography in Gross and Clinical Anatomy

    ERIC Educational Resources Information Center

    Barut, Cagatay; Ertilav, Hakan

    2011-01-01

    Photography has a widespread usage in medicine and anatomy. In this review, authors focused on the usage of photography in gross and clinical anatomy. Photography in gross and clinical anatomy is not only essential for accurate documentation of morphological findings but also important in sharing knowledge and experience. Photographs of cadavers…

  3. Perceptions of Anatomy Education--A Student's View

    ERIC Educational Resources Information Center

    Joslin, Sarah

    2008-01-01

    Changes in anatomy education over the last two decades have, in large part, led to less emphasis on gross anatomy in the medical curriculum. This has led many to question whether streamlined anatomy courses truly provide adequate preparation for medical practice. Rather than wondering about the effects of these changes, we should be actively…

  4. Teaching Anatomy and Physiology Using Computer-Based, Stereoscopic Images

    ERIC Educational Resources Information Center

    Perry, Jamie; Kuehn, David; Langlois, Rick

    2007-01-01

    Learning real three-dimensional (3D) anatomy for the first time can be challenging. Two-dimensional drawings and plastic models tend to over-simplify the complexity of anatomy. The approach described uses stereoscopy to create 3D images of the process of cadaver dissection and to demonstrate the underlying anatomy related to the speech mechanisms.…

  5. Learning of Cross-Sectional Anatomy Using Clay Models

    ERIC Educational Resources Information Center

    Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon

    2009-01-01

    We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…

  6. Teaching dental anatomy with light-activated resins.

    PubMed

    Chalkley, Y; Denehy, G E; Schulein, T M

    1984-04-01

    A method has been described in which light-activated resins are incorporated into the dental anatomy laboratory. This procedure is a valuable addition to the anatomy course because students (1) work with a restorative material appropriate for anterior teeth, (2) learn the unique properties of the light-activated resins, and (3) apply the principles of dental anatomy to a clinically relevant task.

  7. Properties of Publications on Anatomy in Medical Education Literature

    ERIC Educational Resources Information Center

    Vorstenbosch, Marc; Bolhuis, Sanneke; van Kuppeveld, Sascha; Kooloos, Jan; Laan, Roland

    2011-01-01

    Publications on anatomy in medical education appear to be largely anecdotal. To explore this, we investigated the literature on anatomy in medical education, aiming first to evaluate the contribution of the literature on anatomy in medical education to "best evidence medical education" (BEME) and second to evaluate the development of this…

  8. A decade of telerobotics in rehabilitation: Demonstrated utility blocked by the high cost of manipulation and the complexity of the user interface

    NASA Technical Reports Server (NTRS)

    Leifer, Larry; Michalowski, Stefan; Vanderloos, Machiel

    1991-01-01

    The Stanford/VA Interactive Robotics Laboratory set out in 1978 to test the hypothesis that industrial robotics technology could be applied to serve the manipulation needs of severely impaired individuals. Five generations of hardware, three generations of system software, and over 125 experimental subjects later, we believe that genuine utility is achievable. The experience includes development of over 65 task applications using voiced command, joystick control, natural language command and 3D object designation technology. A brief foray into virtual environments, using flight simulator technology, was instructive. If reality and virtuality come for comparable prices, you cannot beat reality. A detailed review of assistive robot anatomy and the performance specifications needed to achieve cost/beneficial utility will be used to support discussion of the future of rehabilitation telerobotics. Poised on the threshold of commercial viability, but constrained by the high cost of technically adequate manipulators, this worthy application domain flounders temporarily. In the long run, it will be the user interface that governs utility.

  9. Two-Year Community: Human Anatomy Software Use in Traditional and Online Anatomy Laboratory Classes: Student-Perceived Learning Benefits

    ERIC Educational Resources Information Center

    Kuyatt, Brian L.; Baker, Jason D.

    2014-01-01

    This study evaluates the effectiveness of human anatomy software in face-to-face and online anatomy laboratory classes. Cognitive, affective, and psychomotor perceived learning was measured for students using Pearson Education's Practice Anatomy Laboratory 2.0 software. This study determined that student-perceived learning was significantly…

  10. Teaching Cell Anatomy with a Fabric Model

    ERIC Educational Resources Information Center

    Kluka, Michelle

    2005-01-01

    Middle schoolers are often first introduced to detailed cellular anatomy through one-dimensional drawings in basic life science books, fill-in-the blank handouts accompanied by notes from the teacher, or desktop hard-plastic commercial models that resemble giant lollipops. One of the most important, yet difficult, life science concepts for…

  11. Children's Fantasy Literature: Toward an Anatomy.

    ERIC Educational Resources Information Center

    Gooderham, David

    1995-01-01

    States that finding a critical language in which to speak about children's fantasy texts is not as straightforward as might first appear. Discusses ideas held by T. Todorov and J.R.R. Tolkien. Argues that fantasy is a metaphorical mode, and details an anatomy of children's fantasy. Concludes that children's fantasy can be described as a body of…

  12. Anatomy of a Minicourse. Audiovisual Kit.

    ERIC Educational Resources Information Center

    Meyer, Rex

    This kit explains the use of minicourses at Macquarie University in New South Wales, Australia, which were designed for the inservice training of teachers. The kit contains the script of the audio commentary, a cassette tape, color slides, and a booklet entitled "Anatomy of the Minicourse." The tape briefly describes the minicourses in general and…

  13. Clinical anatomy of the periocular region.

    PubMed

    Shams, Pari N; Ortiz-Pérez, Santiago; Joshi, Naresh

    2013-08-01

    The aims of this article are twofold: (1) to provide the facial plastic surgeon with a comprehensive and up-to-date overview of periocular anatomy including the brow, midface, and temporal region and (2) to highlight important anatomical relationships that must be appreciated in order to achieve the best possible functional and aesthetic surgical outcomes.

  14. Teaching Modern Technique through Experiential Anatomy

    ERIC Educational Resources Information Center

    Salk, Jennifer

    2005-01-01

    ````````Incorporation of an experiential anatomy component into the modern technique class educates students about the body in a way that permanently and positively impacts how they move. It is our responsibility as dance educators, whether at the elementary, secondary, or college level, to teach students how to care for their bodies and make…

  15. Essential anatomy for contemporary upper lid blepharoplasty.

    PubMed

    Siegel, R J

    1993-04-01

    A clear understanding of upper eyelid anatomy is an absolute prerequisite for performing advanced invagination-type blepharoplasty. This article describes the author's simple, systematic approach to intraoperative identification of the levator aponeurosis as well as the other key layers of fascia in the upper lid.

  16. Professional Storytelling in Clinical Dental Anatomy Teaching

    ERIC Educational Resources Information Center

    Kieser, Jules; Livingstone, Vicki; Meldrum, Alison

    2008-01-01

    The aim of the present work was to see if storytelling in a clinical dental anatomy course would increase student satisfaction. We enhanced teaching by spontaneous storytelling in problem-based learning, in half of the third-year dentistry class. At the end of the course, we administered an anonymous questionnaire to the students in the class,…

  17. Anatomy and Physiology. Revised Teacher Edition.

    ERIC Educational Resources Information Center

    Hartman, Danene; And Others

    This curriculum guide contains 14 units of instruction for a course in anatomy and physiology for surgical technology students. The units cover the following topics: (1) organization of the body; (2) cells, tissues, and membranes; (3) integumentary system; (4) skeletal system; (5) muscular system; (6) nervous system; (7) special sense organs; (8)…

  18. Computerized Grading of Anatomy Laboratory Practical Examinations

    ERIC Educational Resources Information Center

    Krippendorf, Beth B.; Bolender, David L.; Kolesari, Gary L.

    2008-01-01

    At the Medical College of Wisconsin, a procedure was developed to allow computerized grading and grade reporting of laboratory practical examinations in the Clinical Human Anatomy course. At the start of the course, first year medical students were given four Lists of Structures. On these lists, numbered items were arranged alphabetically; the…

  19. Fostering Improved Anatomy and Physiology Instructor Pedagogy

    ERIC Educational Resources Information Center

    Mattheis, Allison; Jensen, Murray

    2014-01-01

    Despite widespread calls for reform in undergraduate science, technology, engineering, and mathematics education, effecting lasting change in instructor practice is challenging to achieve. This article describes the results of a 2-yr research study that involved efforts to develop the pedagogical expertise of a group of anatomy and physiology…

  20. Broca's Area: Nomenclature, Anatomy, Typology and Asymmetry

    ERIC Educational Resources Information Center

    Keller, Simon S.; Crow, Timothy; Foundas, Anne; Amunts, Katrin; Roberts, Neil

    2009-01-01

    In this review, we (i) describe the nomenclature of Broca's area and show how the circumscribed definition of Broca's area is disassociated from Broca's aphasia, (ii) describe in detail how the gross anatomy of Broca's area varies between people, and how the definitions vary between studies, (iii) attempt to reconcile the findings of structural…

  1. Anatomy, Medical Education, and Human Ancestral Variation

    ERIC Educational Resources Information Center

    Strkalj, Goran; Spocter, Muhammad A.; Wilkinson, A. Tracey

    2011-01-01

    It is argued in this article that the human body both in health and disease cannot be fully understood without adequately accounting for the different levels of human variation. The article focuses on variation due to ancestry, arguing that the inclusion of information pertaining to ancestry in human anatomy teaching materials and courses should…

  2. Innovative Strategies for Teaching Anatomy and Physiology.

    ERIC Educational Resources Information Center

    Ritt, Laura; Stewart, Barbara

    1996-01-01

    Describes the development of new teaching strategies in an anatomy and physiology laboratory at Burlington County College (New Jersey) based on laser disc technology, computers with multimedia capabilities, and appropriate software. Lab activities are described and results of a survey of former students are reported, including a comparison of lab…

  3. Testing to Enhance Retention in Human Anatomy

    ERIC Educational Resources Information Center

    Logan, Jessica M.; Thompson, Andrew J.; Marshak, David W.

    2011-01-01

    Recent work in cognitive psychology has shown that repeatedly testing one's knowledge is a powerful learning aid and provides substantial benefits for retention of the material. To apply this in a human anatomy course for medical students, 39 fill-in-the-blank quizzes of about 50 questions each, one for each region of the body, and four about the…

  4. Building Fractal Models with Manipulatives.

    ERIC Educational Resources Information Center

    Coes, Loring

    1993-01-01

    Uses manipulative materials to build and examine geometric models that simulate the self-similarity properties of fractals. Examples are discussed in two dimensions, three dimensions, and the fractal dimension. Discusses how models can be misleading. (Contains 10 references.) (MDH)

  5. Chaos motion in robot manipulators

    NASA Technical Reports Server (NTRS)

    Lokshin, A.; Zak, M.

    1987-01-01

    It is shown that a simple two-link planar manipulator exhibits a phenomenon of global instability in a subspace of its configuration space. A numerical example, as well as results of a graphic simulation, is given.

  6. Love Objects.

    ERIC Educational Resources Information Center

    Cusack, Lynne

    1998-01-01

    Discusses the role of "security" or "transition" objects, such as a blanket or stuffed toy, in children's development of self-comfort and autonomy. Notes the influence of parents in the child-object relationship, and discusses children's responses to losing a security object, and the developmental point at which a child will give up such an…

  7. Object crowding.

    PubMed

    Wallace, Julian M; Tjan, Bosco S

    2011-05-25

    Crowding occurs when stimuli in the peripheral fields become harder to identify when flanked by other items. This phenomenon has been demonstrated extensively with simple patterns (e.g., Gabors and letters). Here, we characterize crowding for everyday objects. We presented three-item arrays of objects and letters, arranged radially and tangentially in the lower visual field. Observers identified the central target, and we measured contrast energy thresholds as a function of target-to-flanker spacing. Object crowding was similar to letter crowding in spatial extent but was much weaker. The average elevation in threshold contrast energy was in the order of 1 log unit for objects as compared to 2 log units for letters and silhouette objects. Furthermore, we examined whether the exterior and interior features of an object are differentially affected by crowding. We used a circular aperture to present or exclude the object interior. Critical spacings for these aperture and "donut" objects were similar to those of intact objects. Taken together, these findings suggest that crowding between letters and objects are essentially due to the same mechanism, which affects equally the interior and exterior features of an object. However, for objects defined with varying shades of gray, it is much easier to overcome crowding by increasing contrast.

  8. Citizenship Objectives.

    ERIC Educational Resources Information Center

    Committee on Assessing the Progress of Education, Ann Arbor, MI.

    The general procedures used to develop educational objectives for the National Assessment of Educational Progress are outlined, as are the procedures used to develop citizenship objectives. Ten general objectives are stated: "show concern for the welfare and dignity of others"; "support rights and freedoms of all individuals"; "help maintain law…

  9. Testing knowledge of human gross anatomy in medical school: an applied contextual-learning theory method.

    PubMed

    Clough, R W; Lehr, R P

    1996-01-01

    The traditional gross anatomy laboratory experience, with modifications in evaluations that we outline later, meets the criteria of contextual-learning theory, expands the repertoire of core objectives we identify for our students, and may increase the likelihood of cognitive permanence of anatomical data. Our subjects included approximately 54 first-year medical students from each of three sequential class years (1996, 1997, 1998). As an alternative to more typical written and practical exams, examinations in a major portion of our gross anatomy program consist of two approximately 30 minute oral expositions by each student to his or her peers and a faculty member. Students demonstrate specific detail on cadaver, x-ray, cross sections, or a model. Clinical applications, spatial relationships, nomenclature, and functions are strongly emphasized. The results of this teaching approach to the utilization of anatomical knowledge in clinical situations requires further assessment: however, new attributes have been afforded our students with implementation of the present program: First, students learn anatomical detail equally well as the students of the more traditional system (based on board exam results). Second, students who completed the program indicate that this approach provides a useful simulation of what is expected later in their training. Third, students gradually gain confidence in verbal presentation, they demonstrate cognitive synthesis of separate conceptual issues, they retain information, and they are quite visibly more enthusiastic about anatomy and its importance in medicine. Our program demonstrates that the learning of applicable human anatomy is facilitated in a contextual-learning environment. Moreover, by learning anatomy in this way, other equally beneficial attributes are afforded the medical student, including, but not limited to, increases in communication skills, confidence in verbal presentation, synthesis of anatomical concepts

  10. "Digit anatomy": a new technique for learning anatomy using motor memory.

    PubMed

    Oh, Chang-Seok; Won, Hyung-Sun; Kim, Kyong-Jee; Jang, Dong-Su

    2011-01-01

    Gestural motions of the hands and fingers are powerful tools for expressing meanings and concepts, and the nervous system has the capacity to retain multiple long-term motor memories, especially including movements of the hands. We developed many sets of successive movements of both hands, referred to as "digit anatomy," and made students practice the movements which express (1) the aortic arch, subclavian, and thoracoacromial arteries and their branches, (2) the celiac trunk, superior mesenteric artery and their branches, and formation of the portal vein, (3) the heart and the coronary arteries, and (4) the brachial, lumbar, and sacral plexuses. A feedback survey showed that digit anatomy was helpful for the students not only in memorizing anatomical structures but also in understanding their functions. Out of 40 students, 34 of them who learned anatomy with the help of digit anatomy were "very satisfied" or "generally satisfied" with this new teaching method. Digit anatomy that was used to express the aortic arch, subclavian, and thoracoacromial arteries and their branches was more helpful than those representing other structures. Although the movements of digit anatomy are expected to be remembered longer than the exact meaning of each movement, invoking the motor memory of the movement may help to make relearning of the same information easier and faster in the future. PMID:21538938

  11. The anatomy of the human genome: a neo-Vesalian basis for medicine in the 21st century.

    PubMed

    McKusick, V A

    2001-11-14

    Since 1956, the anatomy of the human genome has been described on the basis of chromosome studies, gene mapping, and DNA sequencing. The gross anatomy of Andreas Vesalius, published in 1543, played a leading role in the development of modern medicine. The objective of this article is to show that knowledge of genomic anatomy is having a comparably strong and pervasive influence on all of medicine. The research revealing human genome anatomy is reviewed. The insight provided by genome anatomy has brought about shifts of focus, both in research and in the clinic, eg, from genomics to proteomic and from the individually rare, single-gene disorders to common disorders. Genomic anatomy permits medicine to become more predictive and preventive. At the same time, diagnosis and treatment are rendered more sensitive, specific, effective, and safe. Hazards in misuse and misunderstanding of the information exist. Education of both the public and health professionals is vital if the full benefits of neo-Vesalian medicine are to be realized. PMID:11710895

  12. [Tempora mutantur... et nos? The future of the Hungarian anatomy teaching in reflection of the German trends].

    PubMed

    Weiczner, Roland

    2015-10-01

    The traditional four-semester anatomy is a subject to change: next to the external pressure, there is an intrinsic need to shift the emphasis. The mapping of the strengths, weaknesses and threats of the Hungarian anatomy teaching helps to formulate the directions of possible development. Current trends in the German medical education should be carefully followed. Nowadays, nearly 25% of the medical students in Germany are studying according to the new, integrated "Modellstudiengang", i.e. all the conventional subjects are reorganised into organ system thematic blocks. The unified German written final exam system provides an objective assessment parameter: to rank the 36 German medical schools according to the results of the anatomy exams. The homepage-published data, the number of semesters or teaching hours, or the thematic concept of the subject alone cannot explain the rankings of the medical schools according to the anatomy exam results. The greatest challenges of the Hungarian anatomy teaching today are: the development of an outcome-oriented, unified, practical system of requirements, the redefinition of the subject, the more effective interaction with the clinical colleagues, solving the problems of faculty recruitment and establishing the vertical integration of anatomy.

  13. [Tempora mutantur... et nos? The future of the Hungarian anatomy teaching in reflection of the German trends].

    PubMed

    Weiczner, Roland

    2015-10-01

    The traditional four-semester anatomy is a subject to change: next to the external pressure, there is an intrinsic need to shift the emphasis. The mapping of the strengths, weaknesses and threats of the Hungarian anatomy teaching helps to formulate the directions of possible development. Current trends in the German medical education should be carefully followed. Nowadays, nearly 25% of the medical students in Germany are studying according to the new, integrated "Modellstudiengang", i.e. all the conventional subjects are reorganised into organ system thematic blocks. The unified German written final exam system provides an objective assessment parameter: to rank the 36 German medical schools according to the results of the anatomy exams. The homepage-published data, the number of semesters or teaching hours, or the thematic concept of the subject alone cannot explain the rankings of the medical schools according to the anatomy exam results. The greatest challenges of the Hungarian anatomy teaching today are: the development of an outcome-oriented, unified, practical system of requirements, the redefinition of the subject, the more effective interaction with the clinical colleagues, solving the problems of faculty recruitment and establishing the vertical integration of anatomy. PMID:26551009

  14. Synthetic morphology: prospects for engineered, self-constructing anatomies

    PubMed Central

    Davies, Jamie A

    2008-01-01

    This paper outlines prospects for applying the emerging techniques of synthetic biology to the field of anatomy, with the aim of programming cells to organize themselves into specific, novel arrangements, structures and tissues. There are two main reasons why developing this hybrid discipline – synthetic morphology – would be useful. The first is that having a way to engineer self-constructing assemblies of cells would provide a powerful means of tissue engineering for clinical use in surgery and regenerative medicine. The second is that construction of simple novel systems according to theories of morphogenesis gained from study of real embryos will provide a means of testing those theories rigorously, something that is very difficult to do by manipulation of complex embryos. This paper sets out the engineering requirements for synthetic morphology, which include the development of a library of sensor modules, regulatory modules and effector modules that can be connected functionally within cells. A substantial number of sensor and regulatory modules already exist and this paper argues that some potential effector modules have already been identified. The necessary library may therefore be within reach. The paper ends by suggesting a set of challenges, ranging from simple to complex, the achievement of which would provide valuable proofs of concept. PMID:18510501

  15. Review of orthopaedic manipulator arms.

    PubMed

    Hurst, K S; Phillips, R; Viant, W J; Mohsen, A M; Sherman, K P; Bielby, M

    1998-01-01

    Trajectory planning and implementation forms a substantial part of current and future orthopaedic practice. This type of surgery is governed by a basic orthopaedic principle [1] which involves the placement of a surgical tool at a specific site within a region, via a trajectory which is planned from X-ray based 2D images and governed by 3D anatomical constraints. The accuracy and safety of procedures utilising the basic orthopaedic principle depends on the surgeon's judgement, experience, ability to integrate images, utilisation of intra-operative X-ray, knowledge of anatomical-biomechanical constraints and eye hand dexterity. The surgeon must remain as the responsible medical expert in charge of the overall system. At the same time the surgeon covets the accuracy offered by Computer Assisted Surgery including a manipulator. A summary of current inadequacies of manipulators indicates that the main drivers for future work are that accuracy is critical in close contact with the environment, safety concerns dictate manipulator geometry and technological limitations are many. In any effort to develop an optimal manipulator to guide surgical instruments and tools it is an obvious first step to review and categorise current manipulators. The aim of this paper is to review all aspects of manipulator design against the five main criteria of ergonomics; safety; accuracy; sterility and measurable benefits such as reduced operative time, reduced surgical trauma and improved clinical results.

  16. The LINDSAY Virtual Human Project: an immersive approach to anatomy and physiology.

    PubMed

    Tworek, Janet K; Jamniczky, Heather A; Jacob, Christian; Hallgrímsson, Benedikt; Wright, Bruce

    2013-01-01

    The increasing number of digital anatomy teaching software packages challenges anatomy educators on how to best integrate these tools for teaching and learning. Realistically, there exists a complex interplay of design, implementation, politics, and learning needs in the development and integration of software for education, each of which may be further amplified by the somewhat siloed roles of programmers, faculty, and students. LINDSAY Presenter is newly designed software that permits faculty and students to model and manipulate three-dimensional anatomy presentations and images, while including embedded quizzes, links, and text-based content. A validated tool measuring impact across pedagogy, resources, interactivity, freedom, granularity, and factors outside the immediate learning event was used in conjunction with observation, field notes, and focus groups to critically examine the impact of attitudes and perceptions of all stakeholders in the early implementation of LINDSAY Presenter before and after a three-week trial period with the software. Results demonstrate that external, personal media usage, along with students' awareness of the need to apply anatomy to clinical professional situations drove expectations of LINDSAY Presenter. A focus on the software over learning, which can be expected during initial orientation, surprisingly remained after three weeks of use. The time-intensive investment required to create learning content is a detractor from user-generated content and may reflect the consumption nature of other forms of digital learning. Early excitement over new technologies needs to be tempered with clear understanding of what learning is afforded, and how these constructively support future application and integration into professional practice.

  17. Tilt/Tip/Piston Manipulator with Base-Mounted Actuators

    NASA Technical Reports Server (NTRS)

    Tahmasebi, Farhad

    2006-01-01

    A proposed three-degree-of-freedom (tilt/tip/piston) manipulator, suitable for aligning an optical or mechanical component, would offer several advantages over prior such manipulators: Unlike in some other manipulators, no actuator would support the weight of another actuator: All of the actuators would be mounted on a base. Hence, there would be less manipulated weight. The basic geometry of the manipulator would afford mechanical advantage: that is, actuator motions would be larger than the motions they produce in the manipulated object. Mechanical advantage inherently increases the accuracy and resolution of manipulation. Unlike in some other manipulators, it would not be necessary to route power and/or data lines through manipulator joints. The proposed manipulator (see figure) would include three prismatic actuators (T1N1, T2N2, and T3N3) mounted on the base and operating in the same plane. Examples of suitable prismatic actuators include lead-screw mechanisms, linear hydraulic motors, piezoelectric linear drives, inchworm-movement linear stepping motors, and linear flexure drives. The actuators would control the lengths of links R1T1, R2T2, and R3T3. Three spherical joints (P1, P2, and P3) would be located at the corners of an equilateral triangle of side length q on the platform holding the object to be manipulated. Three inextensible limbs (R1P1, R2P2, and R3P3) having length r would connect the spherical joints on the platform to revolute joints (R1, R2, and R3) at the ends of the actuator-controlled links R1T1, R2T2, and R3T3. By varying the lengths of these links, one could control the tilt, tip, and piston coordinates of the platform. Closed-form equations for direct or forward kinematics of the manipulator (given the lengths of the variable links, find the tilt, tip, and piston coordinates) have been derived. The equations of inverse kinematics (find the variable link lengths needed to obtain the desired tilt, tip, and piston coordinates) have also

  18. Pattern recognition and control in manipulation

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Tomovic, R.

    1976-01-01

    A new approach to the use of sensors in manipulator or robot control is discussed. The concept addresses the problem of contact or near-contact type of recognition of three-dimensional forms of objects by proprioceptive and/or exteroceptive sensors integrated with the terminal device. This recognition of object shapes both enhances and simplifies the automation of object handling. Several examples have been worked out for the 'Belgrade hand' and for a parallel jaw terminal device, both equipped with proprioceptive (position) and exteroceptive (proximity) sensors. The control applications are discussed in the framework of a multilevel man-machine system control. The control applications create interesting new issues which, in turn, invite novel theoretical considerations. An important issue is the problem of stability in control when the control is referenced to patterns.

  19. The concept of mobility in single- and double handed manipulation.

    PubMed

    Halvorsen, Kjartan; Tinmark, Fredrik; Arndt, Anton

    2014-11-01

    The concept of mobility describes an important property of the human body when performing manipulation tasks. It describes, in a sense, how easy it is to accelerate a link or a point on the manipulator. Most often it is calculated for the end-link or end-point of the manipulator, since these are important for the control objective of the manipulator. Mobility is the inverse of the inertia experienced by a force acting on the end-point, or a combined force and torque acting on the end-link. The concept has been used in studies of reaching tasks with one arm, but thus far not for bi-manual manipulation. We present here the concept for both single-handed and double-handed manipulation, in a general manner which includes any type of grip of the hands on the object. The use of the concept is illustrated with data on the left and right arm in a golf swing. PMID:25287112

  20. Optimizing Motion Planning for Hyper Dynamic Manipulator

    NASA Astrophysics Data System (ADS)

    Aboura, Souhila; Omari, Abdelhafid; Meguenni, Kadda Zemalache

    2012-01-01

    This paper investigates the optimal motion planning for an hyper dynamic manipulator. As case study, we consider a golf swing robot which is consisting with two actuated joint and a mechanical stoppers. Genetic Algorithm (GA) technique is proposed to solve the optimal golf swing motion which is generated by Fourier series approximation. The objective function for GA approach is to minimizing the intermediate and final state, minimizing the robot's energy consummation and maximizing the robot's speed. Obtained simulation results show the effectiveness of the proposed scheme.

  1. Shuttle-Attached Manipulator System requirements.

    NASA Technical Reports Server (NTRS)

    Bodey, C. E.; Cepollina, F. J.

    1973-01-01

    Shuttle mission requirements and cost objectives have led to the selection of a Shuttle-Attached Manipulator System (SAMS) as a general purpose mechanism for docking, payload handling, and the general launch and retrieval of free-flying satellites. SAMS design requirements are discussed, giving attention to end effectors, kinematics, timelines, dynamics, load ratings, TV cameras and lights. Requirements for low-cost payload satellites are considered, taking into account satellites with modular subsystems which are designed for replacement and for resupply in orbit by SAMS.

  2. Anthropomorphic master/slave manipulator system

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.; King, R. F.; Vallotton, W. C. (Inventor)

    1977-01-01

    An anthropomorphic master/slave manipulator system including master arm apparatus with a plurality of master tubular articulated portions is outlined. Objectives of this investion were to provide a system that accurately and smoothly simulates human limb movement at a remote location. The system has a high frequency response, a high structural stiffness and a design that protects the components of the slave mechanism. Simulation of human movements is possible in outer space, underwater, and in a hazardous environment such as in a high radiation area. The equivalent ability, dexterity, and strength of a human arm are simulated.

  3. Geodesic Shooting for Computational Anatomy

    PubMed Central

    MILLER, MICHAEL I.; TROUVÉ, ALAIN; YOUNES, LAURENT

    2010-01-01

    Studying large deformations with a Riemannian approach has been an efficient point of view to generate metrics between deformable objects, and to provide accurate, non ambiguous and smooth matchings between images. In this paper, we study the geodesics of such large deformation diffeomorphisms, and more precisely, introduce a fundamental property that they satisfy, namely the conservation of momentum. This property allows us to generate and store complex deformations with the help of one initial “momentum” which serves as the initial state of a differential equation in the group of diffeomorphisms. Moreover, it is shown that this momentum can be also used for describing a deformation of given visual structures, like points, contours or images, and that, it has the same dimension as the described object, as a consequence of the normal momentum constraint we introduce. PMID:20613972

  4. The history of anatomy in Persia.

    PubMed

    Shoja, Mohammadali M; Tubbs, R Shane

    2007-04-01

    The study of human anatomy can be found throughout the rich history of Persia. For thousands of years, morphological descriptions derived from this part of the world have contributed to and have helped form our current anatomical knowledge base. In this article we review the major influential Persian periods and the individuals who have contributed to the development of anatomy. We have divided the history of Persia into five eras: (1) the period of the Elamites, Medes, early Persians and Babylonians (10th millennium to 6th century BC); (2) following the establishment of the Persian Empire (6th century BC) to the 7th century AD; (3) after the Islamic conquest of Persia to the ascendency of Baghdad (7th to 13th century AD); (4) from the Mongol invasion of Persia to the foundations of modern anatomy (13th to 18th century AD); and (5) modern Persia/Iran (18th century AD to present). Evidence indicates that human dissection was commonplace in the first era, which led to a disciplined practice of surgery in the centuries leading to the foundation of the Persian Empire. By the emergence of Zoroastrianism in the Persian Empire, the microcosm theory was widely used to understand internal anatomy in relation to the external universe. The world's first cosmopolitan university and hospital were built in Gondishapur, south-western Persia, in the third century AD. Greek and Syriac knowledge influenced the second era. With the gradual ruin of Gondishapur and the foundation of Baghdad following the Islamic conquest of Persia (637-651 AD), a great movement took place, which led to the flourishing of the so-called Middle Age or Islamic Golden Age. Of the influential anatomists of this period, Mesue (777-857 AD), Tabbari (838-870 AD), Rhazes (865-925 AD), Joveini (?-983 AD), Ali ibn Abbas (930-994 AD), Avicenna (980-1037 AD) and Jorjani (1042-1137 AD) all hailed from Persia. There is evidence in the Persian literature as to the direct involvement of these scholars in human

  5. The history of anatomy in Persia.

    PubMed

    Shoja, Mohammadali M; Tubbs, R Shane

    2007-04-01

    The study of human anatomy can be found throughout the rich history of Persia. For thousands of years, morphological descriptions derived from this part of the world have contributed to and have helped form our current anatomical knowledge base. In this article we review the major influential Persian periods and the individuals who have contributed to the development of anatomy. We have divided the history of Persia into five eras: (1) the period of the Elamites, Medes, early Persians and Babylonians (10th millennium to 6th century BC); (2) following the establishment of the Persian Empire (6th century BC) to the 7th century AD; (3) after the Islamic conquest of Persia to the ascendency of Baghdad (7th to 13th century AD); (4) from the Mongol invasion of Persia to the foundations of modern anatomy (13th to 18th century AD); and (5) modern Persia/Iran (18th century AD to present). Evidence indicates that human dissection was commonplace in the first era, which led to a disciplined practice of surgery in the centuries leading to the foundation of the Persian Empire. By the emergence of Zoroastrianism in the Persian Empire, the microcosm theory was widely used to understand internal anatomy in relation to the external universe. The world's first cosmopolitan university and hospital were built in Gondishapur, south-western Persia, in the third century AD. Greek and Syriac knowledge influenced the second era. With the gradual ruin of Gondishapur and the foundation of Baghdad following the Islamic conquest of Persia (637-651 AD), a great movement took place, which led to the flourishing of the so-called Middle Age or Islamic Golden Age. Of the influential anatomists of this period, Mesue (777-857 AD), Tabbari (838-870 AD), Rhazes (865-925 AD), Joveini (?-983 AD), Ali ibn Abbas (930-994 AD), Avicenna (980-1037 AD) and Jorjani (1042-1137 AD) all hailed from Persia. There is evidence in the Persian literature as to the direct involvement of these scholars in human

  6. The history of anatomy in Persia

    PubMed Central

    Shoja, Mohammadali M; Tubbs, R Shane

    2007-01-01

    The study of human anatomy can be found throughout the rich history of Persia. For thousands of years, morphological descriptions derived from this part of the world have contributed to and have helped form our current anatomical knowledge base. In this article we review the major influential Persian periods and the individuals who have contributed to the development of anatomy. We have divided the history of Persia into five eras: (1) the period of the Elamites, Medes, early Persians and Babylonians (10th millennium to 6th century BC); (2) following the establishment of the Persian Empire (6th century BC) to the 7th century AD; (3) after the Islamic conquest of Persia to the ascendency of Baghdad (7th to 13th century AD); (4) from the Mongol invasion of Persia to the foundations of modern anatomy (13th to 18th century AD); and (5) modern Persia/Iran (18th century AD to present). Evidence indicates that human dissection was commonplace in the first era, which led to a disciplined practice of surgery in the centuries leading to the foundation of the Persian Empire. By the emergence of Zoroastrianism in the Persian Empire, the microcosm theory was widely used to understand internal anatomy in relation to the external universe. The world's first cosmopolitan university and hospital were built in Gondishapur, south-western Persia, in the third century AD. Greek and Syriac knowledge influenced the second era. With the gradual ruin of Gondishapur and the foundation of Baghdad following the Islamic conquest of Persia (637–651 AD), a great movement took place, which led to the flourishing of the so-called Middle Age or Islamic Golden Age. Of the influential anatomists of this period, Mesue (777–857 AD), Tabbari (838–870 AD), Rhazes (865–925 AD), Joveini (?−983 AD), Ali ibn Abbas (930–994 AD), Avicenna (980–1037 AD) and Jorjani (1042–1137 AD) all hailed from Persia. There is evidence in the Persian literature as to the direct involvement of these scholars in

  7. The importance of spatial ability and mental models in learning anatomy

    NASA Astrophysics Data System (ADS)

    Chatterjee, Allison K.

    , problem solving strategies, and study methods. Students with different levels of spatial ability visualize and think about anatomy in qualitatively different ways, which is reflected by the features of their mental models. Low spatial ability students thought about and used two-dimensional images from the textbook. They possessed basic two-dimensional models of anatomical structures; they placed emphasis on diagrams and drawings in their studies; and they re-read anatomical problems many times before answering. High spatial ability students thought fully in three-dimensional and imagined rotation and movement of the structures; they made use of many types of images and text as they studied and solved problems. They possessed elaborate three-dimensional models of anatomical structures which they were able to manipulate to solve problems; and they integrated diagrams, drawings, and written text in their studies. Middle spatial ability students were a mix between both low and high spatial ability students. They imagined two-dimensional images popping out of the flat paper to become more three-dimensional, but still relied on drawings and diagrams. Additionally, high spatial ability students used a higher proportion of anatomical terminology than low spatial ability or middle spatial ability students. This provides additional support to the premise that high spatial students' mental models are a complex mixture of imagistic representations and propositional representations that incorporate correct anatomical terminology. Low spatial ability students focused on the function of structures and ways to group information primarily for the purpose of recall. This supports the theory that low spatial students' mental models will be characterized by more on imagistic representations that are general in nature. (Abstract shortened by UMI.)

  8. High precision redundant robotic manipulator

    DOEpatents

    Young, K.K.D.

    1998-09-22

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs.

  9. High precision redundant robotic manipulator

    DOEpatents

    Young, Kar-Keung David

    1998-01-01

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.

  10. Learning Area and Perimeter with Virtual Manipulatives

    ERIC Educational Resources Information Center

    Bouck, Emily; Flanagan, Sara; Bouck, Mary

    2015-01-01

    Manipulatives are considered a best practice for educating students with disabilities, but little research exists which examines virtual manipulatives as tool for supporting students in mathematics. This project investigated the use of a virtual manipulative through the National Library of Virtual Manipulatives--polynominoes (i.e., tiles)--as a…

  11. Manipulation strategies for massive space payloads

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.

    1991-01-01

    Motion planning and control for the joints of flexible manipulators are discussed. Specific topics covered include control of a flexible braced manipulator, control of a small working robot on a large flexible manipulator to suppress vibrations, control strategies for ensuring cooperation among disparate manipulators, and motion planning for robots in free-fall.

  12. Transfer of learned manipulation following changes in degrees of freedom.

    PubMed

    Fu, Qiushi; Hasan, Ziaul; Santello, Marco

    2011-09-21

    The present study was designed to determine whether manipulation learned with a set of digits can be transferred to grips involving a different number of digits, and possible mechanisms underlying such transfer. The goal of the task was to exert a torque and vertical forces on a visually symmetrical object at object lift onset to balance the external torque caused by asymmetrical mass distribution. Subjects learned this manipulation through consecutive practice using one grip type (two or three digits), after which they performed the same task but with another grip type (e.g., after adding or removing one digit, respectively). Subjects were able to switch grip type without compromising the behavioral outcome (i.e., the direction, timing, and magnitude of the torque exerted on the object was unchanged), despite the use of significantly different digit force-position coordination patterns in the two grip types. Our results support the transfer of learning for anticipatory control of manipulation and indicate that the CNS forms an internal model of the manipulation task independent of the effectors that are used to learn it. We propose that sensory information about the new digit placement--resulting from adding or removing a digit immediately after the switch in grip type--plays an important role in the accurate modulation of new digit force distributions. We discuss our results in relation to studies of manipulation reporting lack of learning transfer and propose a theoretical framework that accounts for failure or success of motor learning generalization.

  13. Manipulating Complex Light with Metamaterials

    PubMed Central

    Zeng, Jinwei; Wang, Xi; Sun, Jingbo; Pandey, Apra; Cartwright, Alexander N.; Litchinitser, Natalia M.

    2013-01-01

    Recent developments in the field of metamaterials have revealed unparalleled opportunities for “engineering” space for light propagation; opening a new paradigm in spin- and quantum-related phenomena in optical physics. Here we show that unique optical properties of metamaterials (MMs) open unlimited prospects to “engineer” light itself. We propose and demonstrate for the first time a novel way of complex light manipulation in few-mode optical fibers using optical MMs. Most importantly, these studies highlight how unique properties of MMs, namely the ability to manipulate both electric and magnetic field components of electromagnetic (EM) waves, open new degrees of freedom in engineering complex polarization states of light at will, while preserving its orbital angular momentum (OAM) state. These results lay the first steps in manipulating complex light in optical fibers, likely providing new opportunities for high capacity communication systems, quantum information, and on-chip signal processing. PMID:24084836

  14. Employee involvement: motivation or manipulation?

    PubMed

    McConnell, C R

    1998-03-01

    Employee involvement is subject to a great deal of verbal tribute; there is hardly a manager at work today who will not praise the value of employee input. However, many employee involvement efforts leave employees feeling more manipulated than motivated. This occurs because supervisors and managers, while expecting employees to change the way they work, are themselves either unwilling to change or remain unconscious of the need to change. The result is that, although employee input is regularly solicited in a number of forms, it is often discounted, ignored, or altered to fit the manager's preconceptions. Often the employee is left feeling manipulated. Since the opportunity for involvement can be a strong motivator, it becomes the manager's task to learn how to provide involvement opportunity in manipulative fashion. This can be accomplished by providing involvement opportunity accompanied by clear outcome expectations and allowing employees the freedom to pursue those outcomes in their own way.

  15. Particle manipulation using vibrating cilia

    NASA Astrophysics Data System (ADS)

    Tallapragada, Phanindra; Kelly, Scott

    2012-11-01

    The ability to manipulate small particles suspended in fluids has many practical applications, ranging from the mechanical testing of macromolecules like DNA to the controlled abrasion of brittle surfaces for precision polishing. A natural method is non-contact manipulation of particles through boundary excitations. Particle-manipulation via a vibrating cilia to establish controlled fluid flows with desired patterns of transport is one such bioinspired method. We show experimental results on the clustering and transport of finite-sized particles in the streaming flow set up by the oscillating cilia. We further show computations to explain the effects of hyperbolic structures in the four dimensional phase space of the dynamics of finite-sized particles.

  16. Mapping and manipulating facial expression.

    PubMed

    Theobald, Barry-John; Matthews, Iain; Mangini, Michael; Spies, Jeffrey R; Brick, Timothy R; Cohn, Jeffrey F; Boker, Steven M

    2009-01-01

    Nonverbal visual cues accompany speech to supplement the meaning of spoken words, signify emotional state, indicate position in discourse, and provide back-channel feedback. This visual information includes head movements, facial expressions and body gestures. In this article we describe techniques for manipulating both verbal and nonverbal facial gestures in video sequences of people engaged in conversation. We are developing a system for use in psychological experiments, where the effects of manipulating individual components of nonverbal visual behavior during live face-to-face conversation can be studied. In particular, the techniques we describe operate in real-time at video frame-rate and the manipulation can be applied so both participants in a conversation are kept blind to the experimental conditions. PMID:19624037

  17. Microsurgical anatomy of the trochlear nerve.

    PubMed

    Joo, Wonil; Rhoton, Albert L

    2015-10-01

    The trochlear nerve is the cranial nerve with the longest intracranial course, but also the thinnest. It is the only nerve that arises from the dorsal surface of the brainstem and decussates in the superior medullary velum. After leaving the dorsal surface of the brainstem, it courses anterolaterally around the lateral surface of the brainstem and then passes anteriorly just beneath the free edge of the tentorium. It passes forward to enter the cavernous sinus, traverses the superior orbital fissure and terminates in the superior oblique muscle in the orbit. Because of its small diameter and its long course, the trochlear nerve can easily be injured during surgical procedures. Therefore, precise knowledge of its surgical anatomy and its neurovascular relationships is essential for approaching and removing complex lesions of the orbit and the middle and posterior fossae safely. This review describes the microsurgical anatomy of the trochlear nerve and is illustrated with pictures involving the nerve and its surrounding connective and neurovascular structures.

  18. Endoscopic anatomy of the pediatric middle ear.

    PubMed

    Isaacson, Glenn

    2014-01-01

    Traditionally, otologists have aimed to produce a clean, dry, safe ear with the best possible hearing result. More recently, "less invasively" has been added to this list of goals. The development of small-diameter, high-quality rigid endoscopes and high-definition video systems has made totally endoscopic, transcanal surgery a reality in adult otology and a possibility in pediatric otology. This article reviews the anatomy of the pediatric middle ear and its surrounding airspaces and structures based on the work of dozens of researchers over the past 50 years. It will focus on the developmental changes in ear anatomy from birth through the first decade, when structure and function change most rapidly. Understanding the limits and possibilities afforded by new endoscopic technologies, the pediatric otologist can strive for results matching or exceeding those achieved by more invasive surgical approaches.

  19. Innovative ventilation system for animal anatomy laboratory

    SciTech Connect

    Lacey, D.R.; Smith, D.C.

    1997-04-01

    A unique ventilation system was designed and built to reduce formaldehyde fumes in the large animal anatomy lab at the Vet Medical Center at Cornell University. The laboratory includes four rooms totaling 5,500 ft{sup 2}. The main room has 2,300 ft{sup 2} and houses the laboratory where up to 60 students dissect as many as 12 horses at a time. Other rooms are a cold storage locker, an animal preparation room and a smaller lab for specialized instruction. The large animal anatomy laboratory has a history of air quality complaints despite a fairly high ventilation rate of over 10 air changes/hour. The horses are embalmed, creating a voluminous source of formaldehyde and phenol vapors. Budget constraints and increasingly stringent exposure limits for formaldehyde presented a great challenge to design a ventilation system that yields acceptable air quality. The design solution included two innovative elements: air-to-air heat recovery, and focused ventilation.

  20. Alterations in physiology and anatomy during pregnancy.

    PubMed

    Tan, Eng Kien; Tan, Eng Loy

    2013-12-01

    Pregnant women undergo profound anatomical and physiological changes so that they can cope with the increased physical and metabolic demands of their pregnancies. The cardiovascular, respiratory, haematological, renal, gastrointestinal and endocrine systems all undergo important physiological alterations and adaptations needed to allow development of the fetus and to allow the mother and fetus to survive the demands of childbirth. Such alterations in anatomy and physiology may cause difficulties in interpreting signs, symptoms, and biochemical investigations, making the clinical assessment of a pregnant woman inevitably confusing but challenging. Understanding these changes is important for every practicing obstetrician, as the pathological deviations from the normal physiological alterations may not be clear-cut until an adverse outcome has resulted. Only with a sound knowledge of the physiology and anatomy changes can the care of an obstetric parturient be safely optimized for a better maternal and fetal outcome.

  1. Fostering improved anatomy and physiology instructor pedagogy.

    PubMed

    Mattheis, Allison; Jensen, Murray

    2014-12-01

    Despite widespread calls for reform in undergraduate science, technology, engineering, and mathematics education, effecting lasting change in instructor practice is challenging to achieve. This article describes the results of a 2-yr research study that involved efforts to develop the pedagogical expertise of a group of anatomy and physiology instructors at the college level. Data were collected through a series of individual interviews that included the use of the Teacher Beliefs Inventory questionnaire (23) along with observations onsite in participants' college classrooms and at process-oriented guided inquiry learning (POGIL) curriculum writing workshops. Findings indicated attitudinal shifts on the part of participants from teacher-centered to more student-centered pedagogy and supported the benefits of long-term professional development for instructors. Here, we documented the successful progress of these professors as they participated in a curriculum development process that emphasized student-centered teaching with the goal of promoting broader change efforts in introductory anatomy and physiology. PMID:25434015

  2. Fostering improved anatomy and physiology instructor pedagogy.

    PubMed

    Mattheis, Allison; Jensen, Murray

    2014-12-01

    Despite widespread calls for reform in undergraduate science, technology, engineering, and mathematics education, effecting lasting change in instructor practice is challenging to achieve. This article describes the results of a 2-yr research study that involved efforts to develop the pedagogical expertise of a group of anatomy and physiology instructors at the college level. Data were collected through a series of individual interviews that included the use of the Teacher Beliefs Inventory questionnaire (23) along with observations onsite in participants' college classrooms and at process-oriented guided inquiry learning (POGIL) curriculum writing workshops. Findings indicated attitudinal shifts on the part of participants from teacher-centered to more student-centered pedagogy and supported the benefits of long-term professional development for instructors. Here, we documented the successful progress of these professors as they participated in a curriculum development process that emphasized student-centered teaching with the goal of promoting broader change efforts in introductory anatomy and physiology.

  3. Computed tomographic anatomy of the temporal bone

    SciTech Connect

    Virapongse, C.; Rothman, S.L.G.; Kier, E.L.; Sarwar, M.

    1982-10-01

    With the recent development of high-resolution computed tomography (CT), there is a growing need to explore the full potential of this new method in demonstrating the detailed anatomy of the temporal bone. For this purpose, dry skulls with intact ossicles were scanned in axial and coronal projections. The detailed CT anatomy of the temporal bone was documented, complemented by images from live patients. Because of its superior contrast resolution, CT was able to demonstrate numerous structures, such as the tympanic membrane, ossicles, and supporting structures, hitherto never or poorly visualized by any other method. In addition, the ease by which axial sections of the temporal bone could be obtained is of great benefit in displaying several structures previously difficult to evaluate.

  4. Honoring our donors: a survey of memorial ceremonies in United States anatomy programs.

    PubMed

    Jones, Trahern W; Lachman, Nirusha; Pawlina, Wojciech

    2014-01-01

    Many anatomy programs that incorporate dissection of donated human bodies hold memorial ceremonies of gratitude towards body donors. The content of these ceremonies may include learners' reflections on mortality, respect, altruism, and personal growth told through various humanities modalities. The task of planning is usually student- and faculty-led with participation from other health care students. Objective information on current memorial ceremonies for body donors in anatomy programs in the United States appears to be lacking. The number of programs in the United States that currently plan these memorial ceremonies and information on trends in programs undertaking such ceremonies remain unknown. Gross anatomy program directors throughout the United States were contacted and asked to respond to a voluntary questionnaire on memorial ceremonies held at their institution. The results (response rate 68.2%) indicated that a majority of human anatomy programs (95.5%) hold memorial ceremonies. These ceremonies are, for the most part, student-driven and nondenominational or secular in nature. Participants heavily rely upon speech, music, poetry, and written essays, with a small inclusion of other humanities modalities, such as dance or visual art, to explore a variety of themes during these ceremonies. PMID:24753299

  5. Honoring our donors: a survey of memorial ceremonies in United States anatomy programs.

    PubMed

    Jones, Trahern W; Lachman, Nirusha; Pawlina, Wojciech

    2014-01-01

    Many anatomy programs that incorporate dissection of donated human bodies hold memorial ceremonies of gratitude towards body donors. The content of these ceremonies may include learners' reflections on mortality, respect, altruism, and personal growth told through various humanities modalities. The task of planning is usually student- and faculty-led with participation from other health care students. Objective information on current memorial ceremonies for body donors in anatomy programs in the United States appears to be lacking. The number of programs in the United States that currently plan these memorial ceremonies and information on trends in programs undertaking such ceremonies remain unknown. Gross anatomy program directors throughout the United States were contacted and asked to respond to a voluntary questionnaire on memorial ceremonies held at their institution. The results (response rate 68.2%) indicated that a majority of human anatomy programs (95.5%) hold memorial ceremonies. These ceremonies are, for the most part, student-driven and nondenominational or secular in nature. Participants heavily rely upon speech, music, poetry, and written essays, with a small inclusion of other humanities modalities, such as dance or visual art, to explore a variety of themes during these ceremonies.

  6. The Journal of Anatomy: origin and evolution.

    PubMed

    Morriss-Kay, Gillian

    2016-07-01

    The Journal of Anatomy was launched 150 years ago as the Journal of Anatomy and Physiology, in an age when anatomy and physiology were not regarded as separate disciplines. European science in general was advancing rapidly at the time (it was 7 years after publication of Darwin's Origin of Species), and the recent demise of the Natural History Review meant that there was no English language publication covering these subjects. The founding editors were George Murray Humphry of Cambridge and William Turner of Edinburgh, together with Alfred Newton of Cambridge and Edward Perceval Wright of Dublin (the last two served only for a year). The pivotal event leading to the Journal's foundation was the 1866 meeting of the British Association, at which Humphry delivered the 'Address in Physiology' (printed in the first issue). Turner, who was also present at the 1866 British Association meeting, remained as a member of the editorial team for 50 years and was a major contributor of Journal articles. The title was changed to Journal of Anatomy in October 1916, when it was taken under the wing, in terms of both management and ownership, by the Anatomical Society. This article reviews the early years of the Journal's publication in more detail than later years because of the historical interest of this less familiar material. The subject matter, which has remained surprisingly consistent over the years, is illustrated by examples from some notable contributions. The evolution of illustration techniques is surveyed from 1866 to the present day; the final section provides brief summaries of all of the chief editors. PMID:27278888

  7. Dental anatomy portrayed with microscopic volume investigations.

    PubMed

    Baumann, M A; Schwebel, T; Kriete, A

    1993-01-01

    The clinical treatment of the root canal of teeth--called endodontics--assumes a precise idea of the spatial arrangement of the anatomy of teeth and their inner structure. By using computer-assisted data acquisition from filmed sequences of histologic serial sections and a special kind of magnetic resonance microscope--the Stray Field Imaging (STRAFI)--volume investigations were carried out using special functions of a newly developed 3D software. Possible applications and future perspectives are discussed.

  8. The Journal of Anatomy: origin and evolution.

    PubMed

    Morriss-Kay, Gillian

    2016-07-01

    The Journal of Anatomy was launched 150 years ago as the Journal of Anatomy and Physiology, in an age when anatomy and physiology were not regarded as separate disciplines. European science in general was advancing rapidly at the time (it was 7 years after publication of Darwin's Origin of Species), and the recent demise of the Natural History Review meant that there was no English language publication covering these subjects. The founding editors were George Murray Humphry of Cambridge and William Turner of Edinburgh, together with Alfred Newton of Cambridge and Edward Perceval Wright of Dublin (the last two served only for a year). The pivotal event leading to the Journal's foundation was the 1866 meeting of the British Association, at which Humphry delivered the 'Address in Physiology' (printed in the first issue). Turner, who was also present at the 1866 British Association meeting, remained as a member of the editorial team for 50 years and was a major contributor of Journal articles. The title was changed to Journal of Anatomy in October 1916, when it was taken under the wing, in terms of both management and ownership, by the Anatomical Society. This article reviews the early years of the Journal's publication in more detail than later years because of the historical interest of this less familiar material. The subject matter, which has remained surprisingly consistent over the years, is illustrated by examples from some notable contributions. The evolution of illustration techniques is surveyed from 1866 to the present day; the final section provides brief summaries of all of the chief editors.

  9. Understanding pharmaceutical research manipulation in the context of accounting manipulation.

    PubMed

    Brown, Abigail

    2013-01-01

    The problem of the manipulation of data that arises when there is both opportunity and incentive to mislead is better accepted and studied - though by no means solved - in financial accounting than in medicine. This article analyzes pharmaceutical company manipulation of medical research as part of a broader problem of corporate manipulation of data in the creation of accounting profits. The article explores how our understanding of accounting fraud and misinformation helps us understand the risk of similar information manipulation in the medical sciences. This understanding provides a framework for considering how best to improve the quality of medical research and analysis in light of the current system of medical information production. I offer three possible responses: (1) use of the Dodd-Frank whistleblower provisions to encourage reporting of medical research fraud; (2) a two-step academic journal review process for clinical trials; and (3) publicly subsidized trial-failure insurance. These would improve the release of negative information about drugs, thereby increasing the reliability of positive information. PMID:24088151

  10. Understanding pharmaceutical research manipulation in the context of accounting manipulation.

    PubMed

    Brown, Abigail

    2013-01-01

    The problem of the manipulation of data that arises when there is both opportunity and incentive to mislead is better accepted and studied - though by no means solved - in financial accounting than in medicine. This article analyzes pharmaceutical company manipulation of medical research as part of a broader problem of corporate manipulation of data in the creation of accounting profits. The article explores how our understanding of accounting fraud and misinformation helps us understand the risk of similar information manipulation in the medical sciences. This understanding provides a framework for considering how best to improve the quality of medical research and analysis in light of the current system of medical information production. I offer three possible responses: (1) use of the Dodd-Frank whistleblower provisions to encourage reporting of medical research fraud; (2) a two-step academic journal review process for clinical trials; and (3) publicly subsidized trial-failure insurance. These would improve the release of negative information about drugs, thereby increasing the reliability of positive information.

  11. Elbow Radiographic Anatomy: Measurement Techniques and Normative Data

    PubMed Central

    Goldfarb, Charles A.; Patterson, J. Megan M.; Sutter, Melanie; Krauss, Melissa; Steffen, Jennifer A.; Galatz, Leesa

    2011-01-01

    Background An increase in elbow pathology in adolescents has paralleled an increase in sports participation. Evaluation and classification of these injuries is challenging because of limited information regarding normal anatomy. The purpose of this study was to evaluate normal radiographic anatomy in adolescents to establish parameters for diagnosing abnormal development. Established and new measurements were evaluated for reliability and variance based on age and sex. Methods Three orthopaedic surgeons independently and in a standardized fashion evaluated the normal anteroposterior and lateral elbow radiographs of 178 adolescent and young adult subjects. Fourteen measurements were performed including radial neck- shaft angle, articular surface angle, articular surface morphologic assessment (subjective and objective evaluation of the patterns of ridges and sulci), among others. We performed a statistical analysis by age and sex for each measure and assessed for inter and intra-observer reliability. Results The distal humerus articular surface was relatively flat in adolescence and became more contoured with age as objectively demonstrated by increasing depth of the trochlear and trochleocapitellar sulci, and decreasing trochlear notch angle. Overall measurements were similar between males and females, with an increased carrying angle in females. There were several statistically significant differences based on age and sex but these were small and unlikely to be clinically significant. Inter and intra-observer reliability were variable; some commonly utilized tools had poor reliability. Conclusions Most commonly utilized radiographic measures were consistent between sexes, across the adolescent age group, and between adolescents and young adults. Several commonly used assessment tools show poor reliability. Level of evidence Basic Science Study, Anatomic Study, Imaging PMID:22329911

  12. Genetic Manipulation of Neisseria gonorrhoeae.

    PubMed

    Dillard, Joseph P

    2011-11-01

    The sexually transmitted pathogen, Neisseria gonorrhoeae, undergoes natural transformation at high frequency. This property has led to the rapid dissemination of antibiotic resistance markers and to the panmictic structure of the gonococcal population. However, high-frequency transformation also makes N. gonorrhoeae one of the easiest bacterial species to manipulate genetically in the laboratory. Techniques have been developed that result in transformation frequencies >50%, allowing the identification of mutants by screening and without selection. Constructs have been created to take advantage of this high-frequency transformation, facilitating genetic mutation, complementation, and heterologous gene expression. Techniques are described for genetic manipulation of N. gonorrhoeae, as well as for growth of this fastidious organism.

  13. Genetic manipulation of Neisseria gonorrhoeae.

    PubMed

    Dillard, Joseph P

    2006-01-01

    The sexually-transmitted pathogen, Neisseria gonorrhoeae, undergoes natural transformation at high frequency. This property has led to the rapid dissemination of antibiotic resistance markers and to the panmictic structure of the gonococcal population. However, high frequency transformation also makes N. gonorrhoeae one of the easiest bacterial species to manipulate genetically in the laboratory. Techniques have been developed that result in transformation frequencies >50%, allowing the identification of mutants by screening and without selection. Constructs have been created to take advantage of this high frequency transformation, facilitating genetic mutation, complementation, and heterologous gene expression. Techniques are described for genetic manipulation of N. gonorrhoeae, as well as for growth of this fastidious organism.

  14. Precision Manipulation with Cooperative Robots

    NASA Technical Reports Server (NTRS)

    Stroupe, Ashley; Huntsberger, Terry; Okon, Avi; Aghzarian, Hrand

    2005-01-01

    This work addresses several challenges of cooperative transportThis work addresses several challenges of cooperative transport and precision manipulation. Precision manipulation requires a rigid grasp, which places a hard constraint on the relative rover formation that must be accommodated, even though the rovers cannot directly observe their relative poses. Additionally, rovers must jointly select appropriate actions based on all available sensor information. Lastly, rovers cannot act on independent sensor information, but must fuse information to move jointly; the methods for fusing information must be determined.

  15. New techniques on embryo manipulation.

    PubMed

    Escribá, M J; Valbuena, D; Remohí, J; Pellicer, A; Simón, C

    2002-01-01

    For many years, experience has been accumulated on embryo and gamete manipulation in livestock animals. The present work is a review of these techniques and their possible application in human embryology in specific cases. It is possible to manipulate gametes at different levels, producing paternal or maternal haploid embryos (hemicloning), using different techniques including nuclear transfer. At the embryonic stage, considering practical, ethical and legal issues, techniques will be reviewed that include cloning and embryo splitting at the cleavage stage, morula, or blastocyst stage.

  16. Learning control of robotic manipulators

    NASA Astrophysics Data System (ADS)

    Tai, Heng-Ming; Chen, Yu-Che

    1992-09-01

    In this paper, we propose a learning control scheme for direct trajectory control of robotic manipulators. The main features are that we use a priori structure knowledge of robot dynamics in the design and the neural networks are not used to learn inverse dynamic models. The neural network controller is utilized to compensate the deviation due to the approximate models of robotic manipulators. In addition, true teaching signals of the neural network compensators are employed in the learning phase. Simulations are conducted to show the feasibility of the proposed method.

  17. On-chip particle trapping and manipulation

    NASA Astrophysics Data System (ADS)

    Leake, Kaelyn Danielle

    The ability to control and manipulate the world around us is human nature. Humans and our ancestors have used tools for millions of years. Only in recent years have we been able to control objects at such small levels. In order to understand the world around us it is frequently necessary to interact with the biological world. Optical trapping and manipulation offer a non-invasive way to move, sort and interact with particles and cells to see how they react to the world around them. Optical tweezers are ideal in their abilities but they require large, non-portable, and expensive setups limiting how and where we can use them. A cheap portable platform is required in order to have optical manipulation reach its full potential. On-chip technology offers a great solution to this challenge. We focused on the Liquid-Core Anti-Resonant Reflecting Optical Waveguide (liquid-core ARROW) for our work. The ARROW is an ideal platform, which has anti-resonant layers which allow light to be guided in liquids, allowing for particles to easily be manipulated. It is manufactured using standard silicon manufacturing techniques making it easy to produce. The planner design makes it easy to integrate with other technologies. Initially I worked to improve the ARROW chip by reducing the intersection losses and by reducing the fluorescence and background on the ARROW chip. The ARROW chip has already been used to trap and push particles along its channel but here I introduce several new methods of particle trapping and manipulation on the ARROW chip. Traditional two beam traps use two counter propagating beams. A trapping scheme that uses two orthogonal beams which counter to first instinct allow for trapping at their intersection is introduced. This scheme is thoroughly predicted and analyzed using realistic conditions. Simulations of this method were done using a program which looks at both the fluidics and optical sources to model complex situations. These simulations were also used to

  18. Andreas Vesalius--the reformer of anatomy.

    PubMed

    Holomanova, A; Ivanova, A; Brucknerova, I; Benuska, J

    2001-01-01

    This paper deals with two main topics. The first part provides data on the life of Andreas Vesalius, a scholar and anatomist of the 16th century, and describes the environment in which he lived and worked. It highlights his personality of a great doctor and teacher and points out the importance of his scientific methods and techniques as opposed to speculative methods that were prevalent in the scientific research in those days. The second part of the paper is devoted to the characteristics and description of his famous and, given the times he lived in, grand work called "De Humani Corporis Fabrica", which opened a new epoch in the history of anatomy. Andreas Vesalius is considered to be the founder of the science of anatomy which is based on observation and experience gained by using scalpel on dead bodies of humans. This is how he proved the then valid statements wrong. This complex view of life and work of Andreas Vesalius is aimed at highlighting the milestone which he represents in this traditional science of anatomy that has been conscientiously developed since the Classical times. (Fig. 4, Ref. 6.) PMID:11723674

  19. Anatomy-aware measurement of segmentation accuracy

    NASA Astrophysics Data System (ADS)

    Tizhoosh, H. R.; Othman, A. A.

    2016-03-01

    Quantifying the accuracy of segmentation and manual delineation of organs, tissue types and tumors in medical images is a necessary measurement that suffers from multiple problems. One major shortcoming of all accuracy measures is that they neglect the anatomical significance or relevance of different zones within a given segment. Hence, existing accuracy metrics measure the overlap of a given segment with a ground-truth without any anatomical discrimination inside the segment. For instance, if we understand the rectal wall or urethral sphincter as anatomical zones, then current accuracy measures ignore their significance when they are applied to assess the quality of the prostate gland segments. In this paper, we propose an anatomy-aware measurement scheme for segmentation accuracy of medical images. The idea is to create a "master gold" based on a consensus shape containing not just the outline of the segment but also the outlines of the internal zones if existent or relevant. To apply this new approach to accuracy measurement, we introduce the anatomy-aware extensions of both Dice coefficient and Jaccard index and investigate their effect using 500 synthetic prostate ultrasound images with 20 different segments for each image. We show that through anatomy-sensitive calculation of segmentation accuracy, namely by considering relevant anatomical zones, not only the measurement of individual users can change but also the ranking of users' segmentation skills may require reordering.

  20. Testing to enhance retention in human anatomy.

    PubMed

    Logan, Jessica M; Thompson, Andrew J; Marshak, David W

    2011-01-01

    Recent work in cognitive psychology has shown that repeatedly testing one's knowledge is a powerful learning aid and provides substantial benefits for retention of the material. To apply this in a human anatomy course for medical students, 39 fill-in-the-blank quizzes of about 50 questions each, one for each region of the body, and four about the nervous system, were developed. The quizzes were optional, and no credit was awarded. They were posted online using Blackboard, which provided feedback, and they were very popular. To determine whether the quizzes had any effect on retention, they were given in a controlled setting to 21 future medical and dental students. The weekly quizzes included questions on regional anatomy and an expanded set of questions on the nervous system. Each question about the nervous system was given three times, in a slightly different form each time. The second quiz was given approximately half an hour after the first one, and the third was given one week after the second to assess retention. The quizzes were unpopular, but students showed robust improvement on the questions about the nervous system. The scores increased by almost 9% on the second quiz, with no intervention except viewing the correct answers. The scores were 29% higher on the third quiz than on the first, and there was also a positive correlation between the grades on the quizzes and the final examination. Thus, repeated testing is an effective strategy for learning and retaining information about human anatomy. PMID:21805688

  1. Andreas Vesalius--the reformer of anatomy.

    PubMed

    Holomanova, A; Ivanova, A; Brucknerova, I; Benuska, J

    2001-01-01

    This paper deals with two main topics. The first part provides data on the life of Andreas Vesalius, a scholar and anatomist of the 16th century, and describes the environment in which he lived and worked. It highlights his personality of a great doctor and teacher and points out the importance of his scientific methods and techniques as opposed to speculative methods that were prevalent in the scientific research in those days. The second part of the paper is devoted to the characteristics and description of his famous and, given the times he lived in, grand work called "De Humani Corporis Fabrica", which opened a new epoch in the history of anatomy. Andreas Vesalius is considered to be the founder of the science of anatomy which is based on observation and experience gained by using scalpel on dead bodies of humans. This is how he proved the then valid statements wrong. This complex view of life and work of Andreas Vesalius is aimed at highlighting the milestone which he represents in this traditional science of anatomy that has been conscientiously developed since the Classical times. (Fig. 4, Ref. 6.)

  2. Trusted Objects

    SciTech Connect

    CAMPBELL,PHILIP L.; PIERSON,LYNDON G.; WITZKE,EDWARD L.

    1999-10-27

    In the world of computers a trusted object is a collection of possibly-sensitive data and programs that can be allowed to reside and execute on a computer, even on an adversary's machine. Beyond the scope of one computer we believe that network-based agents in high-consequence and highly reliable applications will depend on this approach, and that the basis for such objects is what we call ''faithful execution.''

  3. Kant on anatomy and the status of the life sciences.

    PubMed

    Olson, Michael J

    2016-08-01

    This paper contributes to recent interest in Kant's engagement with the life sciences by focusing on one corner of those sciences that has received comparatively little attention: physical and comparative anatomy. By attending to remarks spread across Kant's writings, we gain some insight into Kant's understanding of the disciplinary limitations but also the methodological sophistication of the study of anatomy and physiology. Insofar as Kant highlights anatomy as a paradigmatic science guided by the principle of teleology in the Critique of the Power of Judgment, a more careful study of Kant's discussions of anatomy promises to illuminate some of the obscurities of that text and of his understanding of the life sciences more generally. In the end, it is argued, Kant's ambivalence with regard to anatomy gives way to a pessimistic conclusion about the possibility that anatomy, natural history, and, by extension, the life sciences more generally might one day become true natural sciences. PMID:27474188

  4. Kant on anatomy and the status of the life sciences.

    PubMed

    Olson, Michael J

    2016-08-01

    This paper contributes to recent interest in Kant's engagement with the life sciences by focusing on one corner of those sciences that has received comparatively little attention: physical and comparative anatomy. By attending to remarks spread across Kant's writings, we gain some insight into Kant's understanding of the disciplinary limitations but also the methodological sophistication of the study of anatomy and physiology. Insofar as Kant highlights anatomy as a paradigmatic science guided by the principle of teleology in the Critique of the Power of Judgment, a more careful study of Kant's discussions of anatomy promises to illuminate some of the obscurities of that text and of his understanding of the life sciences more generally. In the end, it is argued, Kant's ambivalence with regard to anatomy gives way to a pessimistic conclusion about the possibility that anatomy, natural history, and, by extension, the life sciences more generally might one day become true natural sciences.

  5. Manipulating Genetic Material in Bacteria

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lisa Crawford, a graduate research assistant from the University of Toledo, works with Laurel Karr of Marshall Space Flight Center (MSFC) in the molecular biology laboratory. They are donducting genetic manipulation of bacteria and yeast for the production of large amount of desired protein. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  6. ISL - A String Manipulating Language.

    ERIC Educational Resources Information Center

    Kelley, K.C.; And Others.

    The Information Search Language (ISL), described in this report, is a problem-oriented language designed to facilitate the manipulation of real character strings with the Control Data 1604 computer. The report gives instructions for the language; these may be classified as Pseudo-ops, Word-Oriented instructions, Character-string instructions,…

  7. Mapping and Manipulating Facial Expression

    ERIC Educational Resources Information Center

    Theobald, Barry-John; Matthews, Iain; Mangini, Michael; Spies, Jeffrey R.; Brick, Timothy R.; Cohn, Jeffrey F.; Boker, Steven M.

    2009-01-01

    Nonverbal visual cues accompany speech to supplement the meaning of spoken words, signify emotional state, indicate position in discourse, and provide back-channel feedback. This visual information includes head movements, facial expressions and body gestures. In this article we describe techniques for manipulating both verbal and nonverbal facial…

  8. Teaching Integration Applications Using Manipulatives

    ERIC Educational Resources Information Center

    Bhatia, Kavita; Premadasa, Kirthi; Martin, Paul

    2014-01-01

    Calculus students' difficulties in understanding integration have been extensively studied. Research shows that the difficulty lies with students understanding of the definition of the definite integral as a limit of a Riemann sum and with the idea of accumulation inherent in integration. We have created a set of manipulatives and activities…

  9. DATACUBE: A datacube manipulation package

    NASA Astrophysics Data System (ADS)

    Allan, Alasdair; Currie, Malcolm J.

    2014-05-01

    DATACUBE is a command-line package for manipulating and visualizing data cubes. It was designed for integral field spectroscopy but has been extended to be a generic data cube tool, used in particular for sub-millimeter data cubes from the James Clerk Maxwell Telescope. It is part of the Starlink software collection (ascl:1110.012).

  10. Master/slave manipulator system

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.; King, R. F.; Vallotton, W. C.

    1973-01-01

    System capabilities are equivalent to mobility, dexterity, and strength of human arm. Arrangement of torque motor, harmonic drive, and potentiometer combination allows all power and control leads to pass through center of slave with position-transducer arrangement of master, and "stovepipe joint" is incorporated for manipulator applications.

  11. Adaptive Control Of Remote Manipulator

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1989-01-01

    Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.

  12. FLUOROSCOPIC EVALUATION OF ORO-PHARYNGEAL DYSPHAGIA: ANATOMY, TECHNIQUE, AND COMMON ETIOLOGIES

    PubMed Central

    Edmund, Dr; Au, Frederick Wing-Fai; Steele, Catriona M.

    2015-01-01

    Target Audience Radiologists and other professionals involved in imaging of oropharyngeal swallowing Objectives To review anatomy of the upper GI tract To review techniques and contrast agents used in the fluoroscopic examination of the oropharynx and hypopharynx To provide a pictorial review of some important causes of oropharyngeal dysphagia, and to link these to key findings in the clinical history to assist in establishing a clinical diagnosis To provide self-assessment questions to reinforce key learning points PMID:25539237

  13. Near-peer driven dissection selective: A primer to the medical school anatomy course.

    PubMed

    Cantwell, Sean; Bonadurer, George F; Pawlina, Wojciech; Lachman, Nirusha

    2015-11-01

    In the anatomy laboratory, skill remains a critical component to unlocking the true value of learning from cadaveric dissection. However, there is little if any room for provision of instruction in proper dissection technique. We describe how near-peer instructors designed a supplemental learning activity to enhance the dissection experience for first-year medical students. This study aimed to evaluate the efficacy of this curriculum in improving participants' understanding of dissection technique and its impact on perceived challenges associated with the anatomy course. Curriculum was designed under faculty guidance and included didactic sessions, low-fidelity models, dissection, student presentations, and clinical correlations. Participants' (n = 13) knowledge of basic dissection techniques and concepts were assessed before the selective, and both participants' and nonparticipants' (n = 39) knowledge was assessed at the end of week one and week seven of the anatomy course. Scores were compared using repeated measures ANOVA followed by post hoc t-tests. Thirteen deidentified reflective essays were reviewed by four independent reviewers for themes that aligned with learning objectives. Participants in the selective course scored higher on assessment of dissection techniques and concepts one week after the selective compared to both nonparticipants and their own baseline scores before the selective. Analysis of student reflections resulted in four themes: confidence with dissection skill, sharing resources and transfer of knowledge, learning environment, and psychological impact of perceived challenges of the anatomy course. Near-peer driven supplemental exercises are effective in facilitating dissection skills. This dissection primer increases student confidence and alleviates apprehension associated with anatomy courses.

  14. Profile of on-line anatomy information resources: design and instructional implications.

    PubMed

    Kim, S; Brinkley, J F; Rosse, C

    2003-01-01

    This study is based on a review of 40 on-line anatomy web resources compiled from sites selected from our own searches as well as sites reviewed and published by an external group (Voiglio et al., 1999, Surg. Radiol. Anat. 21:65-68; Frasca et al., 2000, Surg. Radiol. Anat. 22:107-110). The purpose of our survey was to propose criteria by which anatomy educators could judge the characteristics of the currently available web-based resources for incorporation into the courses they teach. Each site was reviewed and scored based on a survey matrix that included four main categories: 1). site background information, 2). content components, 3). interactivity features, and 4). user interface design components. The average score of the reviewed sites was 3.3 of the total possible score of 10, indicating the limited use of computer-based design features by the majority of sites. We found, however, a number of programs in each of the survey categories that could serve as prototypes for designing future on-line anatomy resources. From the survey we conclude that various design features are less important than the comprehensiveness, depth, and logical organization of content. We suggest that the content should be sufficient for supporting explicitly defined educational objectives, which should target specific end-user populations. The majority of anatomy programs currently accessible on-line fall short of these requirements. There is a need for a coordinated and synergistic effort to generate a comprehensive anatomical information resource that is of sufficient quality and depth to support higher levels of learning beyond the memorization of structure names. Such a resource is a prerequisite for meaningful on-line anatomy education. PMID:12486740

  15. Teleoperation of a robot manipulator from 3D human hand-arm motion

    NASA Astrophysics Data System (ADS)

    Kofman, Jonathan; Verma, Siddharth; Wu, Xianghai; Luu, Timothy

    2003-10-01

    The control of a robot manipulator by a human operator is often necessary in unstructured dynamic environments with unfamiliar objects. Remote teleoperation is required when human presence at the robot site is undesirable or difficult, such as in handling hazardous materials and operating in dangerous or inaccessible environments. Previous approaches have employed mechanical or other contacting interfaces which require unnatural motions for object manipulation tasks or hinder dexterous human motion. This paper presents a non-contacting method of teleoperating a robot manipulator by having the human operator perform the 3D human hand-arm motion that would naturally be used to compete an object manipulation task and tracking the motion with a stereo-camera system at a local site. The 3D human hand-arm motion is reconstructed at the remote robot site and is used to control the position and orientation of the robot manipulator end-effector in real-time. Images captured of the robot interacting with objects at the remote site provide visual feedback to the human operator. Tests in teleoperation of the robot manipulator have demonstrated the ability of the human to carry out object manipulator tasks remotely and the teleoperated robot manipulator system to copy human-arm motions in real-time.

  16. A Comparison of Web Page and Slide/Tape for Instruction in Periapical and Panoramic Radiographic Anatomy.

    ERIC Educational Resources Information Center

    Ludlow, John B.; Platin, Enrique

    2000-01-01

    Compared self-guided slide/tape (ST) and Web page (WP) instruction in normal radiographic anatomy of periapical and panoramic images using objective test performance and subjective preferences of 74 freshman dental students. Test performance was not different between image types or presentation technologies, but students preferred WP for…

  17. Learned manipulation at unconstrained contacts does not transfer across hands.

    PubMed

    Fu, Qiushi; Choi, Jason Y; Gordon, Andrew M; Jesunathadas, Mark; Santello, Marco

    2014-01-01

    Recent studies about sensorimotor control of the human hand have focused on how dexterous manipulation is learned and generalized. Here we address this question by testing the extent to which learned manipulation can be transferred when the contralateral hand is used and/or object orientation is reversed. We asked subjects to use a precision grip to lift a grip device with an asymmetrical mass distribution while minimizing object roll during lifting by generating a compensatory torque. Subjects were allowed to grasp anywhere on the object's vertical surfaces, and were therefore able to modulate both digit positions and forces. After every block of eight trials performed in one manipulation context (i.e., using the right hand and at a given object orientation), subjects had to lift the same object in the second context for one trial (transfer trial). Context changes were made by asking subjects to switch the hand used to lift the object and/or rotate the object 180° about a vertical axis. Therefore, three transfer conditions, hand switch (HS), object rotation (OR), and both hand switch and object rotation (HS+OR), were tested and compared with hand matched control groups who did not experience context changes. We found that subjects in all transfer conditions adapted digit positions across multiple transfer trials similar to the learning of control groups, regardless of different changes of contexts. Moreover, subjects in both HS and HS+OR group also adapted digit forces similar to the control group, suggesting independent learning of the left hand. In contrast, the OR group showed significant negative transfer of the compensatory torque due to an inability to adapt digit forces. Our results indicate that internal representations of dexterous manipulation tasks may be primarily built through the hand used for learning and cannot be transferred across hands.

  18. Atlas of fetal sectional anatomy with ultrasound and magnetic resonance imaging

    SciTech Connect

    Isaacson, G.; Mintz, M.C.; Crelin, E.S.

    1986-01-01

    Here is an atlas of sectional anatomy for the fetus featuring correlated anatomy and imaging, transverse coronal and sagittal views, a guide to development of the brain, cardiac anatomy in standard plans of study and, over 280 illustrations.

  19. Cat dissection and human cadaver prosection versus sculpting human structures from clay: A comparison of alternate approaches to human anatomy laboratory education

    NASA Astrophysics Data System (ADS)

    Waters, John R.

    Dissection and vivisection are traditional approaches to biology laboratory education. In the case of human anatomy teaching laboratories, there is a long tradition of using human and animal cadaver specimens in the classroom. In a review of the literature comparing traditional dissection and vivisection lessons to alternative lessons designed to reduce the time spent dissecting or the numbers of animals used, we conclude that it is difficult to come to any conclusion regarding the efficacy of different approaches. An analysis of the literature is confounded because many studies have very low statistical power or other methodological weaknesses, and investigators rely on a wide variety of testing instruments to measure an equally varied number of course objectives. Additional well designed studies are necessary before educators can reach any informed conclusions about the efficacy of traditional versus alternative approaches to laboratory education. In our experiments, we compared a traditional cat dissection based undergraduate human anatomy lesson to an alternative where students sculpted human muscles onto plastic human skeletons. Students in the alternative treatment performed significantly better than their peers in the traditional treatment when answering both lower and higher order human anatomy questions. In a subsequent experiment with a similar design, we concluded that the superior performance of the students in the alternative treatment on anatomy exams was likely due to the similarity between the human anatomy representation studied in lab, and the human anatomy questions asked on the exams. When the anatomy questions were presented in the context of a cat specimen, students in the traditional cat dissection treatment outperformed their peers in the alternative treatment. In a final experiment where student performance on a human anatomy exam was compared between a traditional prosected human cadaver treatment and the alternative clay sculpting

  20. The anatomy of language: contributions from functional neuroimaging

    PubMed Central

    PRICE, CATHY J.

    2000-01-01

    This article illustrates how functional neuroimaging can be used to test the validity of neurological and cognitive models of language. Three models of language are described: the 19th Century neurological model which describes both the anatomy and cognitive components of auditory and visual word processing, and 2 20th Century cognitive models that are not constrained by anatomy but emphasise 2 different routes to reading that are not present in the neurological model. A series of functional imaging studies are then presented which show that, as predicted by the 19th Century neurologists, auditory and visual word repetition engage the left posterior superior temporal and posterior inferior frontal cortices. More specifically, the roles Wernicke and Broca assigned to these regions lie respectively in the posterior superior temporal sulcus and the anterior insula. In addition, a region in the left posterior inferior temporal cortex is activated for word retrieval, thereby providing a second route to reading, as predicted by the 20th Century cognitive models. This region and its function may have been missed by the 19th Century neurologists because selective damage is rare. The angular gyrus, previously linked to the visual word form system, is shown to be part of a distributed semantic system that can be accessed by objects and faces as well as speech. Other components of the semantic system include several regions in the inferior and middle temporal lobes. From these functional imaging results, a new anatomically constrained model of word processing is proposed which reconciles the anatomical ambitions of the 19th Century neurologists and the cognitive finesse of the 20th Century cognitive models. The review focuses on single word processing and does not attempt to discuss how words are combined to generate sentences or how several languages are learned and interchanged. Progress in unravelling these and other related issues will depend on the integration of