NASA Astrophysics Data System (ADS)
Gerard-Marchant, P. G.
2008-12-01
Numpy is a free, open source C/Python interface designed for the fast and convenient manipulation of multidimensional numerical arrays. The base object, ndarray, can also be easily be extended to define new objects meeting specific needs. Thanks to its simplicity, efficiency and modularity, numpy and its companion library Scipy have become increasingly popular in the scientific community over the last few years, with application ranging from astronomy and engineering to finances and statistics. Its capacity to handle missing values is particularly appealing when analyzing environmental time series, where irregular data sampling might be an issue. After reviewing the main characteristics of numpy objects and the mechanism of subclassing, we will present the scikits.timeseries package, developed to manipulate single- and multi-variable arrays indexed in time. We will illustrate some typical applications of this package by introducing climpy, a set of extensions designed to help analyzing the impacts of climate variability on environmental data such as precipitations or streamflows.
Biological responses to environmental heterogeneity under future ocean conditions.
Boyd, Philip W; Cornwall, Christopher E; Davison, Andrew; Doney, Scott C; Fourquez, Marion; Hurd, Catriona L; Lima, Ivan D; McMinn, Andrew
2016-08-01
Organisms are projected to face unprecedented rates of change in future ocean conditions due to anthropogenic climate-change. At present, marine life encounters a wide range of environmental heterogeneity from natural fluctuations to mean climate change. Manipulation studies suggest that biota from more variable marine environments have more phenotypic plasticity to tolerate environmental heterogeneity. Here, we consider current strategies employed by a range of representative organisms across various habitats - from short-lived phytoplankton to long-lived corals - in response to environmental heterogeneity. We then discuss how, if and when organismal responses (acclimate/migrate/adapt) may be altered by shifts in the magnitude of the mean climate-change signal relative to that for natural fluctuations projected for coming decades. The findings from both novel climate-change modelling simulations and prior biological manipulation studies, in which natural fluctuations are superimposed on those of mean change, provide valuable insights into organismal responses to environmental heterogeneity. Manipulations reveal that different experimental outcomes are evident between climate-change treatments which include natural fluctuations vs. those which do not. Modelling simulations project that the magnitude of climate variability, along with mean climate change, will increase in coming decades, and hence environmental heterogeneity will increase, illustrating the need for more realistic biological manipulation experiments that include natural fluctuations. However, simulations also strongly suggest that the timescales over which the mean climate-change signature will become dominant, relative to natural fluctuations, will vary for individual properties, being most rapid for CO2 (~10 years from present day) to 4 decades for nutrients. We conclude that the strategies used by biota to respond to shifts in environmental heterogeneity may be complex, as they will have to physiologically straddle wide-ranging timescales in the alteration of ocean conditions, including the need to adapt to rapidly rising CO2 and also acclimate to environmental heterogeneity in more slowly changing properties such as warming. © 2016 John Wiley & Sons Ltd.
The National Center for Computational Toxicology (NCCT) at the US Environmental Protection Agency has measured, assembled and delivered an enormous quantity and diversity of data for the environmental sciences. This includes high-throughput in vitro screening data, legacy in vivo...
A Computer Simulation of the Trophic Dynamics of an Aquatic System.
ERIC Educational Resources Information Center
Bowker, D. W.; Randerson, P. F.
1989-01-01
Described is a computer program, AQUASIM, which simulates interaction between environmental factors, phytoplankton, zooplankton, and fish in an aquatic ecosystem. The conceptual flow, equations, variables, rate processes, and parameter manipulations are discussed. (CW)
Biorhythms in the activity of children during free play1
Wade, M. G.; Ellis, M. J.; Bohrer, R. E.
1973-01-01
The interaction between the arousal to action of environmental stimuli and recovery from that activity was presumed to generate biorhythms in the activity level of children. The level of environmental stimuli was manipulated by varying the play-group size and the apparatus, and higher environmental complexity was expected to produce more pronounced rhythms. The heart rates of 16 subjects playing in monad, dyad, and tetrad group sizes, in two playroom configurations, were monitored and spectral analysis used to locate significant biorhythms. There was a tendency toward 40-min (slow frequency) and 15-min (fast frequency) biorhythms. The group size manipulation produced the strongest biorhythmic behavior in the dyadic groups. Apparatus differences were not significant but the configuration containing a minimum quantity of play apparatus produced more variable activity than the configuration containing a large amount of play apparatus. PMID:4714575
Biorhythms in the activity of children during free play.
Wade, M G; Ellis, M J; Bohrer, R E
1973-07-01
The interaction between the arousal to action of environmental stimuli and recovery from that activity was presumed to generate biorhythms in the activity level of children. The level of environmental stimuli was manipulated by varying the play-group size and the apparatus, and higher environmental complexity was expected to produce more pronounced rhythms. The heart rates of 16 subjects playing in monad, dyad, and tetrad group sizes, in two playroom configurations, were monitored and spectral analysis used to locate significant biorhythms. There was a tendency toward 40-min (slow frequency) and 15-min (fast frequency) biorhythms. The group size manipulation produced the strongest biorhythmic behavior in the dyadic groups. Apparatus differences were not significant but the configuration containing a minimum quantity of play apparatus produced more variable activity than the configuration containing a large amount of play apparatus.
Batt, Ryan D.; Carpenter, Stephen R.; Cole, Jonathan J.; Pace, Michael L.; Johnson, Robert A.
2013-01-01
Environmental sensor networks are developing rapidly to assess changes in ecosystems and their services. Some ecosystem changes involve thresholds, and theory suggests that statistical indicators of changing resilience can be detected near thresholds. We examined the capacity of environmental sensors to assess resilience during an experimentally induced transition in a whole-lake manipulation. A trophic cascade was induced in a planktivore-dominated lake by slowly adding piscivorous bass, whereas a nearby bass-dominated lake remained unmanipulated and served as a reference ecosystem during the 4-y experiment. In both the manipulated and reference lakes, automated sensors were used to measure variables related to ecosystem metabolism (dissolved oxygen, pH, and chlorophyll-a concentration) and to estimate gross primary production, respiration, and net ecosystem production. Thresholds were detected in some automated measurements more than a year before the completion of the transition to piscivore dominance. Directly measured variables (dissolved oxygen, pH, and chlorophyll-a concentration) related to ecosystem metabolism were better indicators of the approaching threshold than were the estimates of rates (gross primary production, respiration, and net ecosystem production); this difference was likely a result of the larger uncertainties in the derived rate estimates. Thus, relatively simple characteristics of ecosystems that were observed directly by the sensors were superior indicators of changing resilience. Models linked to thresholds in variables that are directly observed by sensor networks may provide unique opportunities for evaluating resilience in complex ecosystems. PMID:24101479
Batt, Ryan D; Carpenter, Stephen R; Cole, Jonathan J; Pace, Michael L; Johnson, Robert A
2013-10-22
Environmental sensor networks are developing rapidly to assess changes in ecosystems and their services. Some ecosystem changes involve thresholds, and theory suggests that statistical indicators of changing resilience can be detected near thresholds. We examined the capacity of environmental sensors to assess resilience during an experimentally induced transition in a whole-lake manipulation. A trophic cascade was induced in a planktivore-dominated lake by slowly adding piscivorous bass, whereas a nearby bass-dominated lake remained unmanipulated and served as a reference ecosystem during the 4-y experiment. In both the manipulated and reference lakes, automated sensors were used to measure variables related to ecosystem metabolism (dissolved oxygen, pH, and chlorophyll-a concentration) and to estimate gross primary production, respiration, and net ecosystem production. Thresholds were detected in some automated measurements more than a year before the completion of the transition to piscivore dominance. Directly measured variables (dissolved oxygen, pH, and chlorophyll-a concentration) related to ecosystem metabolism were better indicators of the approaching threshold than were the estimates of rates (gross primary production, respiration, and net ecosystem production); this difference was likely a result of the larger uncertainties in the derived rate estimates. Thus, relatively simple characteristics of ecosystems that were observed directly by the sensors were superior indicators of changing resilience. Models linked to thresholds in variables that are directly observed by sensor networks may provide unique opportunities for evaluating resilience in complex ecosystems.
Dembkowski, Daniel J.; Miranda, Leandro E.
2014-01-01
We examined the interaction between environmental variables measured at three different scales (i.e., landscape, lake, and in-lake) and fish assemblage descriptors across a range of over 50 floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas. Our goal was to identify important local- and landscape-level determinants of fish assemblage structure. Relationships between fish assemblage structure and variables measured at broader scales (i.e., landscape-level and lake-level) were hypothesized to be stronger than relationships with variables measured at finer scales (i.e., in-lake variables). Results suggest that fish assemblage structure in floodplain lakes was influenced by variables operating on three different scales. However, and contrary to expectations, canonical correlations between in-lake environmental characteristics and fish assemblage structure were generally stronger than correlations between landscape-level and lake-level variables and fish assemblage structure, suggesting a hierarchy of influence. From a resource management perspective, our study suggests that landscape-level and lake-level variables may be manipulated for conservation or restoration purposes, and in-lake variables and fish assemblage structure may be used to monitor the success of such efforts.
Can Dynamic Visualizations with Variable Control Enhance the Acquisition of Intuitive Knowledge?
NASA Astrophysics Data System (ADS)
Wichmann, Astrid; Timpe, Sebastian
2015-10-01
An important feature of inquiry learning is to take part in science practices including exploring variables and testing hypotheses. Computer-based dynamic visualizations have the potential to open up various exploration possibilities depending on the level of learner control. It is assumed that variable control, e.g., by changing parameters of a variable, leads to deeper processing (Chang and Linn 2013; de Jong and Njoo 1992; Nerdel 2003; Trey and Khan 2008). Variable control may be helpful, in particular, for acquiring intuitive knowledge (Swaak and de Jong 2001). However, it bares the risk of mental exhaustion and thus may have detrimental effects on knowledge acquisition (Sweller 1998). Students ( N = 118) from four chemistry classes followed inquiry cycles using the software Molecular Workbench (Xie and Tinker 2006). Variable control was varied across the conditions (1) No-Manipulation group and (2) Manipulation group. By adding a third condition, (3) Manipulation-Plus group, we tested whether adding an active hypothesis phase prepares students before changing parameters of a variable. As expected, students in the Manipulation group and Manipulation-Plus group performed better concerning intuitive knowledge ( d = 1.14) than students in the No-Manipulation group. On a descriptive level, results indicated higher cognitive effort in the Manipulation group and the Manipulation-Plus group than in the No-Manipulation group. Unexpectedly, students in the Manipulation-Plus group did not benefit from the active hypothesis phase (intuitive knowledge: d = .36). Findings show that students benefit from variable control. Furthermore, findings point toward the direction that variable control evokes desirable difficulties (Bjork and Linn 2006).
Sae-Lim, Panya; Komen, Hans; Kause, Antti; Mulder, Han A
2014-02-26
Identifying the relevant environmental variables that cause GxE interaction is often difficult when they cannot be experimentally manipulated. Two statistical approaches can be applied to address this question. When data on candidate environmental variables are available, GxE interaction can be quantified as a function of specific environmental variables using a reaction norm model. Alternatively, a factor analytic model can be used to identify the latent common factor that explains GxE interaction. This factor can be correlated with known environmental variables to identify those that are relevant. Previously, we reported a significant GxE interaction for body weight at harvest in rainbow trout reared on three continents. Here we explore their possible causes. Reaction norm and factor analytic models were used to identify which environmental variables (age at harvest, water temperature, oxygen, and photoperiod) may have caused the observed GxE interaction. Data on body weight at harvest was recorded on 8976 offspring reared in various locations: (1) a breeding environment in the USA (nucleus), (2) a recirculating aquaculture system in the Freshwater Institute in West Virginia, USA, (3) a high-altitude farm in Peru, and (4) a low-water temperature farm in Germany. Akaike and Bayesian information criteria were used to compare models. The combination of days to harvest multiplied with daily temperature (Day*Degree) and photoperiod were identified by the reaction norm model as the environmental variables responsible for the GxE interaction. The latent common factor that was identified by the factor analytic model showed the highest correlation with Day*Degree. Day*Degree and photoperiod were the environmental variables that differed most between Peru and other environments. Akaike and Bayesian information criteria indicated that the factor analytical model was more parsimonious than the reaction norm model. Day*Degree and photoperiod were identified as environmental variables responsible for the strong GxE interaction for body weight at harvest in rainbow trout across four environments. Both the reaction norm and the factor analytic models can help identify the environmental variables responsible for GxE interaction. A factor analytic model is preferred over a reaction norm model when limited information on differences in environmental variables between farms is available.
2014-01-01
Background Identifying the relevant environmental variables that cause GxE interaction is often difficult when they cannot be experimentally manipulated. Two statistical approaches can be applied to address this question. When data on candidate environmental variables are available, GxE interaction can be quantified as a function of specific environmental variables using a reaction norm model. Alternatively, a factor analytic model can be used to identify the latent common factor that explains GxE interaction. This factor can be correlated with known environmental variables to identify those that are relevant. Previously, we reported a significant GxE interaction for body weight at harvest in rainbow trout reared on three continents. Here we explore their possible causes. Methods Reaction norm and factor analytic models were used to identify which environmental variables (age at harvest, water temperature, oxygen, and photoperiod) may have caused the observed GxE interaction. Data on body weight at harvest was recorded on 8976 offspring reared in various locations: (1) a breeding environment in the USA (nucleus), (2) a recirculating aquaculture system in the Freshwater Institute in West Virginia, USA, (3) a high-altitude farm in Peru, and (4) a low-water temperature farm in Germany. Akaike and Bayesian information criteria were used to compare models. Results The combination of days to harvest multiplied with daily temperature (Day*Degree) and photoperiod were identified by the reaction norm model as the environmental variables responsible for the GxE interaction. The latent common factor that was identified by the factor analytic model showed the highest correlation with Day*Degree. Day*Degree and photoperiod were the environmental variables that differed most between Peru and other environments. Akaike and Bayesian information criteria indicated that the factor analytical model was more parsimonious than the reaction norm model. Conclusions Day*Degree and photoperiod were identified as environmental variables responsible for the strong GxE interaction for body weight at harvest in rainbow trout across four environments. Both the reaction norm and the factor analytic models can help identify the environmental variables responsible for GxE interaction. A factor analytic model is preferred over a reaction norm model when limited information on differences in environmental variables between farms is available. PMID:24571451
Gao, Lexuan; Geng, Yupeng; Li, Bo; Chen, Jiakuan; Yang, Ji
2010-11-01
Alternanthera philoxeroides (alligator weed) is an invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation in its introduced range. The mechanisms underpinning the wide range of phenotypic variation and rapid adaptation to novel and changing environments remain uncharacterized. In this study, we examined the epigenetic variation and its correlation with phenotypic variation in plants exposed to natural and manipulated environmental variability. Genome-wide methylation profiling using methylation-sensitive amplified fragment length polymorphism (MSAP) revealed considerable DNA methylation polymorphisms within and between natural populations. Plants of different source populations not only underwent significant morphological changes in common garden environments, but also underwent a genome-wide epigenetic reprogramming in response to different treatments. Methylation alterations associated with response to different water availability were detected in 78.2% (169/216) of common garden induced polymorphic sites, demonstrating the environmental sensitivity and flexibility of the epigenetic regulatory system. These data provide evidence of the correlation between epigenetic reprogramming and the reversible phenotypic response of alligator weed to particular environmental factors. © 2010 Blackwell Publishing Ltd.
New method for qualitative simulations of water resources systems. 2. Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antunes, M.P.; Seixas, M.J.; Camara, A.S.
1987-11-01
SLIN (Simulacao Linguistica) is a new method for qualitative dynamic simulation. As was presented previously, SLIN relies upon a categorical representation of variables which are manipulated by logical rules. Two applications to water resources systems are included to illustrate SLIN's potential usefulness: the environmental impact evaluation of a hydropower plant and the assessment of oil dispersion in the sea after a tanker wreck.
Non-manipulation quantitative designs.
Rumrill, Phillip D
2004-01-01
The article describes non-manipulation quantitative designs of two types, correlational and causal comparative studies. Both of these designs are characterized by the absence of random assignment of research participants to conditions or groups and non-manipulation of the independent variable. Without random selection or manipulation of the independent variable, no attempt is made to draw causal inferences regarding relationships between independent and dependent variables. Nonetheless, non-manipulation studies play an important role in rehabilitation research, as described in this article. Examples from the contemporary rehabilitation literature are included. Copyright 2004 IOS Press
Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.
Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B
2015-04-17
Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability. Copyright © 2015, American Association for the Advancement of Science.
A new method for qualitative simulation of water resources systems: 2. Applications
NASA Astrophysics Data System (ADS)
Antunes, M. P.; Seixas, M. J.; Camara, A. S.; Pinheiro, M.
1987-11-01
SLIN (Simulação Linguistica) is a new method for qualitative dynamic simulation. As was presented previously (Camara et al., this issue), SLIN relies upon a categorical representation of variables which are manipulated by logical rules. Two applications to water resources systems are included to illustrate SLIN's potential usefulness: the environmental impact evaluation of a hydropower plant and the assessment of oil dispersion in the sea after a tanker wreck.
Verhoeven, Hannah; Ghekiere, Ariane; Van Cauwenberg, Jelle; Van Dyck, Delfien; De Bourdeaudhuij, Ilse; Clarys, Peter; Deforche, Benedicte
2017-08-17
Ecological models emphasize that cycling for transport is determined by an interplay between individual, physical and social environmental factors. The current study investigated (a) which physical and social environmental factors determine adolescents' preferences towards cycling for transport and (b) which individual, physical and social environmental factors are associated with their intention to actually cycle for transport. An online questionnaire consisting of questions on individual and social environmental variables, and 15 choice-based conjoint tasks with manipulated photographs was completed by 882 adolescents (55.3% male; 13.9 ± 1.6 years). Within the choice tasks, participants were asked to indicate which of two situations they would prefer to cycle to a friend's house. The manipulated photographs were all modified versions of one semi-urban street which differed in the following physical micro-environmental attributes (separation of cycle path, evenness of cycle path, speed limit, speed bump, traffic density, amount of vegetation and maintenance). In addition, each photograph was accompanied by two sentences which described varying cycling distances and co-participation in cycling (i.e. cycling alone or with a friend). After each choice task participants were also asked if they would actually cycle in that situation in real life (i.e. intention). Hierarchical Bayes analyses were performed to calculate relative importances and part-worth utilities of environmental attributes. Logistic regression analyses were performed to investigate which individual, physical and social environmental factors were associated with adolescents' intention to actually cycle for transport. Adolescents' preference to cycle for transport was predominantly determined by separation of cycle path, followed by shorter cycling distance and co-participation in cycling. Higher preferences were observed for a separation between the cycle path and motorized traffic by means of a hedge versus a curb, versus a marked line. Similar findings were observed for intention to cycle. Furthermore, evenness of the cycle path and general maintenance of the street were also of considerable importance among adolescents, but to a lesser extent. Results of this experimental study justify investment by local governments in well-separated cycling infrastructure, which seemed to be more important than cycling distance and the social environment.
Design approaches to experimental mediation☆
Pirlott, Angela G.; MacKinnon, David P.
2016-01-01
Identifying causal mechanisms has become a cornerstone of experimental social psychology, and editors in top social psychology journals champion the use of mediation methods, particularly innovative ones when possible (e.g. Halberstadt, 2010, Smith, 2012). Commonly, studies in experimental social psychology randomly assign participants to levels of the independent variable and measure the mediating and dependent variables, and the mediator is assumed to causally affect the dependent variable. However, participants are not randomly assigned to levels of the mediating variable(s), i.e., the relationship between the mediating and dependent variables is correlational. Although researchers likely know that correlational studies pose a risk of confounding, this problem seems forgotten when thinking about experimental designs randomly assigning participants to levels of the independent variable and measuring the mediator (i.e., “measurement-of-mediation” designs). Experimentally manipulating the mediator provides an approach to solving these problems, yet these methods contain their own set of challenges (e.g., Bullock, Green, & Ha, 2010). We describe types of experimental manipulations targeting the mediator (manipulations demonstrating a causal effect of the mediator on the dependent variable and manipulations targeting the strength of the causal effect of the mediator) and types of experimental designs (double randomization, concurrent double randomization, and parallel), provide published examples of the designs, and discuss the strengths and challenges of each design. Therefore, the goals of this paper include providing a practical guide to manipulation-of-mediator designs in light of their challenges and encouraging researchers to use more rigorous approaches to mediation because manipulation-of-mediator designs strengthen the ability to infer causality of the mediating variable on the dependent variable. PMID:27570259
Design approaches to experimental mediation.
Pirlott, Angela G; MacKinnon, David P
2016-09-01
Identifying causal mechanisms has become a cornerstone of experimental social psychology, and editors in top social psychology journals champion the use of mediation methods, particularly innovative ones when possible (e.g. Halberstadt, 2010, Smith, 2012). Commonly, studies in experimental social psychology randomly assign participants to levels of the independent variable and measure the mediating and dependent variables, and the mediator is assumed to causally affect the dependent variable. However, participants are not randomly assigned to levels of the mediating variable(s), i.e., the relationship between the mediating and dependent variables is correlational. Although researchers likely know that correlational studies pose a risk of confounding, this problem seems forgotten when thinking about experimental designs randomly assigning participants to levels of the independent variable and measuring the mediator (i.e., "measurement-of-mediation" designs). Experimentally manipulating the mediator provides an approach to solving these problems, yet these methods contain their own set of challenges (e.g., Bullock, Green, & Ha, 2010). We describe types of experimental manipulations targeting the mediator (manipulations demonstrating a causal effect of the mediator on the dependent variable and manipulations targeting the strength of the causal effect of the mediator) and types of experimental designs (double randomization, concurrent double randomization, and parallel), provide published examples of the designs, and discuss the strengths and challenges of each design. Therefore, the goals of this paper include providing a practical guide to manipulation-of-mediator designs in light of their challenges and encouraging researchers to use more rigorous approaches to mediation because manipulation-of-mediator designs strengthen the ability to infer causality of the mediating variable on the dependent variable.
Controlled soil warming powered by alternative energy for remote field sites.
Johnstone, Jill F; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela
2013-01-01
Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2) plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.
Muirhead, R W; Monaghan, R M
2012-04-01
Animal agriculture has been identified as an important source of diffuse faecal microbial pollution of water. Our current understanding of the losses of faecal microbes from grazed pasture systems is however poor. To help synthesise our current knowledge, a simple two reservoir model was constructed to represent the faecal and environmental sources of Escherichia coli found in a grazed pastoral system. The size of the faecal reservoir was modelled on a daily basis with inputs from grazing animals, and losses due to die-off of E. coli and decomposition of the faecal material. Estimates were made of transport coefficients of E. coli losses from the two reservoirs. The concentration of E. coli measured in overland flow and artificial drainage from grazed plots, used for calibration of the model, showed a significant (P<0.0001) decrease with days since last grazing - up to 120 days. Modelled E. coli runoff concentrations calibrated well with the regression line from the measured data up to 120 days. Variability of E. coli concentrations in the source faecal material could account for the variability in the measured runoff concentrations. Measured E. coli concentrations in artificial drainage water from 120 to 1300 days since last grazing appeared to be greater than the model predicted. The longer term data clearly illustrated the need for an environmental reservoir of E. coli in models of grazed pasture systems. Research is needed to understand the behaviour and impact of this environmental reservoir. Scenario analysis using the model indicated that rather than manipulating the faecal material itself post defecation, mitigation options should focus on manipulating grazing management. Copyright © 2011 Elsevier Ltd. All rights reserved.
Environmental Influences on Mate Preferences as Assessed by a Scenario Manipulation Experiment
Marzoli, Daniele; Moretto, Francesco; Monti, Aura; Tocci, Ornella; Roberts, S. Craig; Tommasi, Luca
2013-01-01
Many evolutionary psychology studies have addressed the topic of mate preferences, focusing particularly on gender and cultural differences. However, the extent to which situational and environmental variables might affect mate preferences has been comparatively neglected. We tested 288 participants in order to investigate the perceived relative importance of six traits of an ideal partner (wealth, dominance, intelligence, height, kindness, attractiveness) under four different hypothetical scenarios (status quo/nowadays, violence/post-nuclear, poverty/resource exhaustion, prosperity/global well-being). An equal number of participants (36 women, 36 men) was allotted to each scenario; each was asked to allocate 120 points across the six traits according to their perceived value. Overall, intelligence was the trait to which participants assigned most importance, followed by kindness and attractiveness, and then by wealth, dominance and height. Men appraised attractiveness as more valuable than women. Scenario strongly influenced the relative importance attributed to traits, the main finding being that wealth and dominance were more valued in the poverty and post-nuclear scenarios, respectively, compared to the other scenarios. Scenario manipulation generally had similar effects in both sexes, but women appeared particularly prone to trade off other traits for dominance in the violence scenario, and men particularly prone to trade off other traits for wealth in the poverty scenario. Our results are in line with other correlational studies of situational variables and mate preferences, and represent strong evidence of a causal relationship of environmental factors on specific mate preferences, corroborating the notion of an evolved plasticity to current ecological conditions. A control experiment seems to suggest that our scenarios can be considered as realistic descriptions of the intended ecological conditions. PMID:24069291
Sparks, Paul; Jessop, Donna C; Chapman, James; Holmes, Katherine
2010-09-01
Social concerns with the imperative of environmentally sustainable life-styles sit rather awkwardly with ideas about the widespread denial of global environmental problems. Given the very obvious threat and denial dimensions to these issues, we conducted two studies assessing the impact of self-affirmation manipulations on people's beliefs and motives regarding pro-environmental actions. In Study 1, participants (N=125) completed a self-affirmation task and read information on the threat of climate change. Results showed that the self-affirmation manipulation resulted in lower levels of denial and greater perceptions of personal involvement in relation to climate change. In Study 2, participants (N=90) completed a self-affirmation task and read some information on recycling. Findings showed a beneficial effect of a self-affirmation manipulation on intentions to increase recycling behaviour (among lower recyclers). The results are discussed in relation to the potential benefits of self-affirmation manipulations for promoting pro-environmental actions.
NASA Astrophysics Data System (ADS)
Stockdale, James; Ineson, Philip
2016-04-01
Modelled predictions of the response of terrestrial systems to climate change are highly variable, yet the response of net ecosystem exchange (NEE) is a vital ecosystem behaviour to understand due to its inherent feedback to the carbon cycle. The establishment and subsequent monitoring of replicated experimental manipulations are a direct method to reveal these responses, yet are difficult to achieve as they typically resource-heavy and labour intensive. We actively manipulated the temperature at three agricultural grasslands in southern England and deployed novel 'SkyLine' systems, recently developed at the University of York, to continuously monitor GHG fluxes. Each 'SkyLine' is a low-cost and fully autonomous technology yet produces fluxes at a near-continuous temporal frequency and across a wide spatial area. The results produced by 'SkyLine' enable the detail response of each system to increased temperature over diurnal and seasonal timescales. Unexpected differences in NEE are shown between superficially similar ecosystems which, upon investigation, suggest that interactions between a variety of environmental variables are key and that knowledge of pre-existing environmental conditions help to predict a systems response to future climate. For example, the prevailing hydrological conditions at each site appear to affect its response to changing temperature. The high-frequency data shown here, combined with the fully-replicated experimental design reveal complex interactions which must be understood to improve predictions of ecosystem response to a changing climate.
Freedman, Barry I.; Divers, Jasmin; Palmer, Nicholette D.
2013-01-01
Variable rates of disease observed between members of different continental population groups may be mediated by inherited factors, environmental exposures, or their combination. This manuscript provides evidence in support of differential allele frequency distributions that underlie the higher rates of non-diabetic kidney disease in the focal segmental glomerulosclerosis spectrum of disease and lower rates of coronary artery calcified atherosclerotic plaque and osteoporosis in populations of African ancestry. With recognition that these and other common complex diseases are affected by biologic factors comes the realization that targeted manipulation of environmental exposures and pharmacologic treatments will have different effects based on genotype. The current era of precision medicine will couple one’s genetic make-up with specific therapies to reduce rates of disease based on presence of disease-specific alleles. PMID:23896482
NASA Technical Reports Server (NTRS)
Cetinkunt, Sabri; Book, Wayne J.
1990-01-01
The performance limitations of manipulators under joint variable-feedback control are studied as a function of the mechanical flexibility inherent in the manipulator structure. A finite-dimensional time-domain dynamic model of a two-link two-joint planar manipulator is used in the study. Emphasis is placed on determining the limitations of control algorithms that use only joint variable-feedback information in calculations of control decisions, since most motion control systems in practice are of this kind. Both fine and gross motion cases are studied. Results for fine motion agree well with previously reported results in the literature and are also helpful in explaining the performance limitations in fast gross motions.
Trajectory Tracking of a Planer Parallel Manipulator by Using Computed Force Control Method
NASA Astrophysics Data System (ADS)
Bayram, Atilla
2017-03-01
Despite small workspace, parallel manipulators have some advantages over their serial counterparts in terms of higher speed, acceleration, rigidity, accuracy, manufacturing cost and payload. Accordingly, this type of manipulators can be used in many applications such as in high-speed machine tools, tuning machine for feeding, sensitive cutting, assembly and packaging. This paper presents a special type of planar parallel manipulator with three degrees of freedom. It is constructed as a variable geometry truss generally known planar Stewart platform. The reachable and orientation workspaces are obtained for this manipulator. The inverse kinematic analysis is solved for the trajectory tracking according to the redundancy and joint limit avoidance. Then, the dynamics model of the manipulator is established by using Virtual Work method. The simulations are performed to follow the given planar trajectories by using the dynamic equations of the variable geometry truss manipulator and computed force control method. In computed force control method, the feedback gain matrices for PD control are tuned with fixed matrices by trail end error and variable ones by means of optimization with genetic algorithm.
Ardura, J; Andrés, J; Aldana, J; Revilla, M A; Cornélissen, G; Halberg, F
1997-09-01
Lighting, noise and temperature were monitored in two perinatal nurseries. Rhythms of several frequencies were found, including prominent 24-hour rhythms with acrophases around 13:00 (light intensity) and 16:00 (noise). For light and noise, the ratio formed by dividing the amplitude of a 1-week (circaseptan) or half-week (circasemiseptan) fitted cosine curve by the amplitude of a 24-hour fitted cosine curve is smaller than unity, since 24-hour rhythms are prominent for these variables. The amplitude ratios are larger than unity for temperature in the newborns' unit but not in the infants' unit. Earlier, the origin of the about-7-day rhythms of neonatal physiologic variables was demonstrated to have, in addition to a major endogenous, also a minor exogenous component. Hence, the possibility of optimizing maturation by manipulating environmental changes can be considered, using, as gauges of development, previously mapped chronomes (time structures of biologic multifrequency rhythms, trends and noise).
Apparatus and method for controlling autotroph cultivation
Fuxman, Adrian M; Tixier, Sebastien; Stewart, Gregory E; Haran, Frank M; Backstrom, Johan U; Gerbrandt, Kelsey
2013-07-02
A method includes receiving at least one measurement of a dissolved carbon dioxide concentration of a mixture of fluid containing an autotrophic organism. The method also includes determining an adjustment to one or more manipulated variables using the at least one measurement. The method further includes generating one or more signals to modify the one or more manipulated variables based on the determined adjustment. The one or more manipulated variables could include a carbon dioxide flow rate, an air flow rate, a water temperature, and an agitation level for the mixture. At least one model relates the dissolved carbon dioxide concentration to one or more manipulated variables, and the adjustment could be determined by using the at least one model to drive the dissolved carbon dioxide concentration to at least one target that optimize a goal function. The goal function could be to optimize biomass growth rate, nutrient removal and/or lipid production.
Response to environmental change in rainbow trout selected for divergent stress coping styles.
Ruiz-Gomez, Maria de Lourdes; Huntingford, Felicity A; Øverli, Øyvind; Thörnqvist, Per-Ove; Höglund, Erik
2011-03-01
An extensive literature has documented differences in the way individual animals cope with environmental challenges and stressors. Two broad patterns of individual variability in behavioural and physiological stress responses are described as the proactive and reactive stress coping styles. In addition to variability in the stress response, contrasting coping styles may encompass a general difference in behavioural flexibility as opposed to routine formation in response to more subtle environmental changes and non-threatening novelties. In the present study two different manipulations, relocating food from a previously learned location, and introducing a novel object yielded contrasting responses in rainbow trout selected for high (HR) and low (LR) post stress plasma cortisol levels. No difference was seen in the rate of learning the original food location; however, proactive LR fish were markedly slower than reactive HR fish in altering their food seeking behaviour in response to relocated food. In contrast, LR fish largely ignored a novel object which disrupted feeding in HR fish. Hence, it appears that the two lines appraise environmental cues differently. This observation suggests that differences in responsiveness to environmental change are an integral component of heritable stress coping styles, which in this particular case, had opposite effects on foraging efficiency in different situations. Context dependent fitness effects may thus explain the persistence of stable divergence of this evolutionary widespread trait complex. 2010 Elsevier Inc. All rights reserved.
Amano, Tatsuro; Ishitobi, Masaki; Ogura, Yukio; Inoue, Yoshimitsu; Koga, Shunsaku; Nishiyasu, Takeshi; Kondo, Narihiko
2016-10-01
Changing stride frequency may influence oxygen uptake and heart rate during running as a function of running economy and central command. This study investigated the influence of stride frequency manipulation on thermoregulatory responses during endurance running. Seven healthy endurance runners ran on a treadmill at a velocity of 15km/h for 60min in a controlled environmental chamber (ambient temperature 27°C and relative humidity 50%), and stride frequency was manipulated. Stride frequency was intermittently manipulated by increasing and decreasing frequency by 10% from the pre-determined preferred frequency. These periods of increase or decrease were separated by free frequency running in the order of free stride frequency, stride frequency manipulation (increase or decrease), free stride frequency, and stride frequency manipulation (increase or decrease) for 15min each. The increased and decreased stride frequencies were 110% and 91% of the free running frequency, respectively (196±6, 162±5, and 178±5steps/min, respectively, P<0.01). Compared to the control, stride frequency manipulation did not affect rectal temperature, heart rate, or the rate of perceived exhaustion during running. Whole-body sweat loss increased significantly when stride frequency was manipulated (1.48±0.11 and 1.57±0.11kg for control and manipulated stride frequencies, respectively, P<0.05), but stride frequency had a small effect on sweat loss overall (Cohen's d=0.31). A higher mean skin temperature was also observed under mixed frequency conditions compared to that in the control (P<0.05). While the precise mechanisms underlying these changes remain unknown (e.g. running economy or central command), our results suggest that manipulation of stride frequency does not have a large effect on sweat loss or other physiological variables, but does increase mean skin temperature during endurance running. Copyright © 2016. Published by Elsevier Ltd.
Van Cauwenberg, Jelle; De Bourdeaudhuij, Ilse; Clarys, Peter; Nasar, Jack; Salmon, Jo; Goubert, Liesbet; Deforche, Benedicte
2016-01-16
Knowledge about the relationships between micro-scale environmental factors and older adults' walking for transport is limited and inconsistent. This is probably due to methodological limitations, such as absence of an accurate neighborhood definition, lack of environmental heterogeneity, environmental co-variation, and recall bias. Furthermore, most previous studies are observational in nature. We aimed to address these limitations by investigating the effects of manipulating photographs on micro-scale environmental factors on the appeal of a street for older adults' transportation walking. Secondly, we used latent class analysis to examine whether subgroups could be identified that have different environmental preferences for transportation walking. Thirdly, we investigated whether these subgroups differed in socio-demographic, functional and psychosocial characteristics, current level of walking and environmental perceptions of their own street. Data were collected among 1131 Flemish older adults through an online (n = 940) or an interview version of the questionnaire (n = 191). This questionnaire included a choice-based conjoint exercise with manipulated photographs of a street. These manipulated photographs originated from one panoramic photograph of an existing street that was manipulated on nine environmental attributes. Participants chose which of two presented streets they would prefer to walk for transport. In the total sample, sidewalk evenness had by far the greatest appeal for transportation walking. The other environmental attributes were less important. Four subgroups that differed in their environmental preferences for transportation walking were identified. In the two largest subgroups (representing 86% of the sample) sidewalk evenness was the most important environmental attribute. In the two smaller subgroups (each comprising 7% of the sample), traffic volume and speed limit were the most important environmental attributes for one, and the presence of vegetation and a bench were the most important environmental attributes for the other. This latter subgroup included a higher percentage of service flat residents than the other subgroups. Our results suggest that the provision of even sidewalks should be considered a priority when developing environmental interventions aiming to stimulate older adults' transportation walking. Natural experiments are needed to confirm whether our findings can be translated to real environments and actual transportation walking behavior.
The importance of position and path repeatability on force at the knee during six-DOF joint motion.
Darcy, Shon P; Gil, Jorge E; Woo, Savio L-Y; Debski, Richard E
2009-06-01
Mechanical devices, such as robotic manipulators have been designed to measure joint and ligament function because of their ability to position a diarthrodial joint in six degrees-of-freedom with fidelity. However, the precision and performance of these testing devices vary. Therefore, the objective of this study was to determine the effect of systematic errors in position and path repeatability of two high-payload robotic manipulators (Manipulators 1 and 2) on the resultant forces at the knee. Using a porcine knee, the position and path repeatability of these manipulators were determined during passive flexion-extension with a coordinate measuring machine. The position repeatability of Manipulator 1 was 0.3 mm in position and 0.2 degrees in orientation while Manipulator 2 had a better position repeatability of 0.1 mm in position and 0.1 degrees in orientation throughout the range of positions examined. The corresponding variability in the resultant force at the knee for these assigned positions was 32+/-33 N for Manipulator 1 and 4+/-1 N for Manipulator 2. Furthermore, the repeatability of the trajectory of each manipulator while moving between assigned positions (path repeatability) was 0.8 mm for Manipulator 1 while the path repeatability for Manipulator 2 was improved (0.1 mm). These path discrepancies produced variability in the resultant force at the knee of 44+/-24 and 21+/-8 N, respectively, for Manipulators 1 and 2 primarily due to contact between the articular surfaces of the tibia and femur. Therefore, improved position and path repeatability yields lower variability in the resultant forces at the knee. Although position repeatability has been the most common criteria for evaluating biomechanical testing devices, the current study has clearly demonstrated that path repeatability can have an even larger effect on the variability in resultant force at the knee. Consequently, the repeatability of the path followed by the joint throughout its prescribed trajectory is as important as the repeatability of the joint at reaching positions making up its trajectory, particularly when joint contact occurs.
Dawson, Heather A.; Bravener, Gale; Beaulaurier, Joshua; Johnson, Nicholas S.; Twohey, Michael; McLaughlin, Robert L.; Brenden, Travis O.
2017-01-01
We identified aspects of the trapping process that afforded opportunities for improving trap efficiency of invasive sea lamprey (Petromyzon marinus) in a Great Lake's tributary. Capturing a sea lamprey requires it to encounter the trap, enter, and be retained until removed. Probabilities of these events depend on the interplay between sea lamprey behavior, environmental conditions, and trap design. We first tested how strongly seasonal patterns in daily trap catches (a measure of trapping success) were related to nightly rates of trap encounter, entry, and retention (outcomes of sea lamprey behavior). We then tested the degree to which variation in rates of trap encounter, entry, and retention were related to environmental features that control agents can manipulate (attractant pheromone addition, discharge) and features agents cannot manipulate (water temperature, season), but could be used as indicators for when to increase trapping effort. Daily trap catch was most strongly associated with rate of encounter. Relative and absolute measures of predictive strength for environmental factors that managers could potentially manipulate were low, suggesting that opportunities to improve trapping success by manipulating factors that affect rates of encounter, entry, and retention are limited. According to results at this trap, more sea lamprey would be captured by increasing trapping effort early in the season when sea lamprey encounter rates with traps are high. The approach used in this study could be applied to trapping of other invasive or valued species.
Development of a novel virtual reality gait intervention.
Boone, Anna E; Foreman, Matthew H; Engsberg, Jack R
2017-02-01
Improving gait speed and kinematics can be a time consuming and tiresome process. We hypothesize that incorporating virtual reality videogame play into variable improvement goals will improve levels of enjoyment and motivation and lead to improved gait performance. To develop a feasible, engaging, VR gait intervention for improving gait variables. Completing this investigation involved four steps: 1) identify gait variables that could be manipulated to improve gait speed and kinematics using the Microsoft Kinect and free software, 2) identify free internet videogames that could successfully manipulate the chosen gait variables, 3) experimentally evaluate the ability of the videogames and software to manipulate the gait variables, and 4) evaluate the enjoyment and motivation from a small sample of persons without disability. The Kinect sensor was able to detect stride length, cadence, and joint angles. FAAST software was able to identify predetermined gait variable thresholds and use the thresholds to play free online videogames. Videogames that involved continuous pressing of a keyboard key were found to be most appropriate for manipulating the gait variables. Five participants without disability evaluated the effectiveness for modifying the gait variables and enjoyment and motivation during play. Participants were able to modify gait variables to permit successful videogame play. Motivation and enjoyment were high. A clinically feasible and engaging virtual intervention for improving gait speed and kinematics has been developed and initially tested. It may provide an engaging avenue for achieving thousands of repetitions necessary for neural plastic changes and improved gait. Copyright © 2016 Elsevier B.V. All rights reserved.
Early adolescent Body Mass Index and the constructed environment.
Jones, Randall M; Vaterlaus, J Mitchell
2014-07-01
Previous research has shown that macro-level environmental features such as access to walking trails and recreational facilities are correlated with adolescent weight. Additionally, a handful of studies have documented relationships between micro-level environmental features, such as the presence (or absence) of a television in the bedroom, and adolescent weight. In this exploratory study we focus exclusively on features of the micro-level environment by examining objects that are found within adolescent personal bedrooms in relation to the adolescent occupant's Body Mass Index score (BMI). Participants were 234 early adolescents (eighth graders and ninth graders) who lived with both biological parents and who had their own private bedroom. Discriminant analyses were used to identify the bedrooms belonging to adolescents with below and above average BMI using objects contained within the micro-level environment as discriminating variables. Bedrooms belonging to adolescents with above average BMI were more likely to contain objects associated with sedentary behavior (e.g., magazines, electronic games, dolls), whereas the bedrooms belonging to the average and below average BMI adolescents were more likely to contain objects that reflect past physical activity (e.g., trophies, souvenirs, pictures of places that they had visited). If causal connections between micro-environmental variables and adolescent BMI can be established in future longitudinal research, environmental manipulations may affect adolescent BMI. Copyright © 2014 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brown, R. F.; Collins, S. L.
2017-12-01
Climate is becoming increasingly more variable due to global environmental change, which is evidenced by fewer, but more extreme precipitation events, changes in precipitation seasonality, and longer, higher severity droughts. These changes, combined with a rising incidence of wildfire, have the potential to strongly impact net primary production (NPP) and key biogeochemical cycles, particularly in dryland ecosystems where NPP is sequentially limited by water and nutrient availability. Here we utilize a ten-year dataset from an ongoing long-term field experiment established in 2007 in which we experimentally altered monsoon rainfall variability to examine how our manipulations, along with naturally occurring events, affect NPP and associated biogeochemical cycles in a semi-arid grassland in central New Mexico, USA. Using long-term regional averages, we identified extremely wet monsoon years (242.8 mm, 2013), and extremely dry monsoon years (86.0 mm, 2011; 80.0 mm, 2015) and water years (117.0 mm, 2011). We examined how changes in precipitation variability and extreme events affected ecosystem processes and function particularly in the context of ecosystem recovery following a 2009 wildfire. Response variables included above- and below-ground plant biomass (ANPP & BNPP) and abundance, soil nitrogen availability, and soil CO2 efflux. Mean ANPP ranged from 3.6 g m-2 in 2011 to 254.5 g m-2 in 2013, while BNPP ranged from 23.5 g m-2 in 2015 to 194.2 g m-2 in 2013, demonstrating NPP in our semi-arid grassland is directly linked to extremes in both seasonal and annual precipitation. We also show increased nitrogen deposition positively affects NPP in unburned grassland, but has no significant impact on NPP post-fire except during extremely wet monsoon years. While soil respiration rates reflect lower ANPP post-fire, patterns in CO2 efflux have not been shown to change significantly in that efflux is greatest following large precipitation events preceded by longer drying periods. Current land surface models poorly represent dryland ecosystems, which frequently undergo extreme weather events. Our long-term experiment provides key insights into ecosystem processes and function, thereby providing capacity for model improvement particularly in the context of future environmental change.
Microbial legacies alter decomposition in response to simulated global change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martiny, Jennifer B. H.; Martiny, Adam C.; Weihe, Claudia
Terrestrial ecosystem models assume that microbial communities respond instantaneously, or are immediately resilient, to environmental change. Here we tested this assumption by quantifying the resilience of a leaf litter community to changes in precipitation or nitrogen availability. By manipulating composition within a global change experiment, we decoupled the legacies of abiotic parameters versus that of the microbial community itself. After one rainy season, more variation in fungal composition could be explained by the original microbial inoculum than the litterbag environment (18% versus 5.5% of total variation). This compositional legacy persisted for 3 years, when 6% of the variability in fungalmore » composition was still explained by the microbial origin. In contrast, bacterial composition was generally more resilient than fungal composition. Microbial functioning (measured as decomposition rate) was not immediately resilient to the global change manipulations; decomposition depended on both the contemporary environment and rainfall the year prior. Finally, using metagenomic sequencing, we showed that changes in precipitation, but not nitrogen availability, altered the potential for bacterial carbohydrate degradation, suggesting why the functional consequences of the two experiments may have differed. Predictions of how terrestrial ecosystem processes respond to environmental change may thus be improved by considering the legacies of microbial communities.« less
Microbial legacies alter decomposition in response to simulated global change
Martiny, Jennifer B. H.; Martiny, Adam C.; Weihe, Claudia; ...
2016-10-14
Terrestrial ecosystem models assume that microbial communities respond instantaneously, or are immediately resilient, to environmental change. Here we tested this assumption by quantifying the resilience of a leaf litter community to changes in precipitation or nitrogen availability. By manipulating composition within a global change experiment, we decoupled the legacies of abiotic parameters versus that of the microbial community itself. After one rainy season, more variation in fungal composition could be explained by the original microbial inoculum than the litterbag environment (18% versus 5.5% of total variation). This compositional legacy persisted for 3 years, when 6% of the variability in fungalmore » composition was still explained by the microbial origin. In contrast, bacterial composition was generally more resilient than fungal composition. Microbial functioning (measured as decomposition rate) was not immediately resilient to the global change manipulations; decomposition depended on both the contemporary environment and rainfall the year prior. Finally, using metagenomic sequencing, we showed that changes in precipitation, but not nitrogen availability, altered the potential for bacterial carbohydrate degradation, suggesting why the functional consequences of the two experiments may have differed. Predictions of how terrestrial ecosystem processes respond to environmental change may thus be improved by considering the legacies of microbial communities.« less
Epstein, Jeffery N.; Langberg, Joshua M.; Rosen, Paul J.; Graham, Amanda; Narad, Megan E.; Antonini, Tanya N.; Brinkman, William B.; Froehlich, Tanya; Simon, John O.; Altaye, Mekibib
2012-01-01
Objective The purpose of the research study was to examine the manifestation of variability in reaction times (RT) in children with Attention Deficit Hyperactivity Disorder (ADHD) and to examine whether RT variability presented differently across a variety of neuropsychological tasks, was present across the two most common ADHD subtypes, and whether it was affected by reward and event rate (ER) manipulations. Method Children with ADHD-Combined Type (n=51), ADHD-Predominantly Inattentive Type (n=53) and 47 controls completed five neuropsychological tasks (Choice Discrimination Task, Child Attentional Network Task, Go/No-Go task, Stop Signal Task, and N-back task), each allowing trial-by-trial assessment of reaction times. Multiple indicators of RT variability including RT standard deviation, coefficient of variation and ex-Gaussian tau were used. Results Children with ADHD demonstrated greater RT variability than controls across all five tasks as measured by the ex-Gaussian indicator tau. There were minimal differences in RT variability across the ADHD subtypes. Children with ADHD also had poorer task accuracy than controls across all tasks except the Choice Discrimination task. Although ER and reward manipulations did affect children’s RT variability and task accuracy, these manipulations largely did not differentially affect children with ADHD compared to controls. RT variability and task accuracy were highly correlated across tasks. Removing variance attributable to RT variability from task accuracy did not appreciably affect between-group differences in task accuracy. Conclusions High RT variability is a ubiquitous and robust phenomenon in children with ADHD. PMID:21463041
Manipulation of heart rate variability can modify response to anger-inducing stimuli.
Francis, Heather M; Penglis, Kathryn M; McDonald, Skye
2016-10-01
Research suggests that heart rate variability (HRV) is a physiological indicator of the flexibility of the autonomic nervous system and can provide an objective measure of an individual's ability to appropriately match emotional responses to environmental demands. The present study investigated whether angry response to emotional stimuli was related to HRV, and whether manipulation of HRV using biofeedback could change the anger response in a healthy adult population. Fifty-eight participants received HRV biofeedback (n = 29) or an active control condition (n = 29). HRV measures included standard deviation of normal-to-normal intervals (SDNN), low-frequency (LF) and high-frequency (HF) power, and was recorded across three sessions: baseline, training, and anger induction. The anger induction procedure resulted in increased subjective experience of anger, as well as physiological changes. The biofeedback group had higher HRV than active controls both during the training session (SDNN and LF HRV) and during anger induction (LF HRV). HRV during anger induction was significantly associated with self-reported emotional response for participants receiving biofeedback but not for active controls. Results provide support for HRV as an index of emotion regulation, specifically anger. Further research is needed to determine whether long-term HRV biofeedback can have a lasting effect on managing anger.
Cruz, Bruna B.; Miranda, Leandro E.; Cetra, Mauricio
2013-01-01
We hypothesised and tested a hierarchical organisation model where riparian landcover would influence bank composition and light availability, which in turn would influence instream environments and control fish assemblages. The study was conducted during the dry season in 11 headwater tributaries of the Sorocaba River in the upper Paraná River Basin, south-eastern Brazil. We focused on seven environmental factors each represented by one or multiple environmental variables and seven fish functional traits each represented by two or more classes. Multivariate direct gradient analyses suggested that riparian zone landcover can be considered a higher level causal factor in a network of relations that control instream characteristics and fish assemblages. Our results provide a framework for a hierarchical conceptual model that identifies singular and collective influences of variables from different scales on each other and ultimately on different aspects related to stream fish functional composition. This conceptual model is focused on the relationships between riparian landcover and instream variables as causal factors on the organisation of stream fish assemblages. Our results can also be viewed as a model for headwater stream management in that landcover can be manipulated to influence factors such as bank composition, substrates and water quality, whereas fish assemblage composition can be used as indicators to monitor the success of such efforts.
Predictors of Achievement When Virtual Manipulatives Are Used for Mathematics Instruction
ERIC Educational Resources Information Center
Moyer-Packenham, Patricia S.; Baker, Joseph; Westenskow, Arla; Anderson-Pence, Katie L.; Shumway, Jessica F.; Jordan, Kerry E.
2014-01-01
The purpose of this study was to determine variables that predict performance when virtual manipulatives are used for mathematics instruction. This study used a quasi-experimental design. This design was used to determine variables that predict student performance on tests of fraction knowledge for third- and fourth-grade students in two treatment…
The effect of virtual reality on gait variability.
Katsavelis, Dimitrios; Mukherjee, Mukul; Decker, Leslie; Stergiou, Nicholas
2010-07-01
Optic Flow (OF) plays an important role in human locomotion and manipulation of OF characteristics can cause changes in locomotion patterns. The purpose of the study was to investigate the effect of the velocity of optic flow on the amount and structure of gait variability. Each subject underwent four conditions of treadmill walking at their self-selected pace. In three conditions the subjects walked in an endless virtual corridor, while a fourth control condition was also included. The three virtual conditions differed in the speed of the optic flow displayed as follows--same speed (OFn), faster (OFf), and slower (OFs) than that of the treadmill. Gait kinematics were tracked with an optical motion capture system. Gait variability measures of the hip, knee and ankle range of motion and stride interval were analyzed. Amount of variability was evaluated with linear measures of variability--coefficient of variation, while structure of variability i.e., its organization over time, were measured with nonlinear measures--approximate entropy and detrended fluctuation analysis. The linear measures of variability, CV, did not show significant differences between Non-VR and VR conditions while nonlinear measures of variability identified significant differences at the hip, ankle, and in stride interval. In response to manipulation of the optic flow, significant differences were observed between the three virtual conditions in the following order: OFn greater than OFf greater than OFs. Measures of structure of variability are more sensitive to changes in gait due to manipulation of visual cues, whereas measures of the amount of variability may be concealed by adaptive mechanisms. Visual cues increase the complexity of gait variability and may increase the degrees of freedom available to the subject. Further exploration of the effects of optic flow manipulation on locomotion may provide us with an effective tool for rehabilitation of subjects with sensorimotor issues.
Dissolving variables in connectionist combinatory logic
NASA Technical Reports Server (NTRS)
Barnden, John; Srinivas, Kankanahalli
1990-01-01
A connectionist system which can represent and execute combinator expressions to elegantly solve the variable binding problem in connectionist networks is presented. This system is a graph reduction machine utilizing graph representations and traversal mechanisms similar to ones described in the BoltzCONS system of Touretzky (1986). It is shown that, as combinators eliminate variables by introducing special functions, these functions can be connectionistically implemented without reintroducing variable binding. This approach 'dissolves' an important part of the variable binding problem, in that a connectionist system still has to manipulate complex data structures, but those structures and their manipulations are rendered more uniform.
Directions in healthcare research: pointers from retailing and services marketing.
Van Rompay, Thomas L J; Tanja-Dijkstra, Karin
2010-01-01
Although the importance of the environment in relation to healing processes has been well established, empirical evidence for environmental effects on patient well-being and behavior is sparse. In addition, few attempts have been made to integrate insights from related fields of research such as retailing and services marketing with findings from healthcare studies. In this paper, relevant findings and insights from these domains are discussed. What insights and findings from retailing and services marketing are (potentially) of interest to the healthcare context, and how should one interpret and follow up on these results in healthcare environments? Research in retailing and services marketing indicates that physical environmental factors (i.e., music and scent) and social environmental factors (i.e., crowded conditions) may affect consumer satisfaction and well-being. In addition, environmental effects have been shown to vary with contextual factors (e.g., the type of environment) and consumer needs (e.g., the extent to which consumers value social contact or stimulation in a specific setting). Although the evidence base for environmental factors in health environments is steadily growing, few attempts have been made to integrate findings from both domains. The findings presented indicate that environmental variables such as music and scent can contribute to patient well-being and overall satisfaction. In addition, findings suggest that these variables may be used to counteract the negative effects resulting from crowded conditions in different healthcare units. Taking into account recent developments in the healthcare industry, the importance of creating memorable and pleasant patient experiences is likely to grow in the years to come. Hence, the finding that subtle and relatively inexpensive manipulations may affect patient well-being in profound ways should inspire follow-up research aimed at unraveling the specifics of environmental influences in health environments.
NASA Technical Reports Server (NTRS)
Furukawa, S.
1975-01-01
Current applications of simulation models for clinical research described included tilt model simulation of orthostatic intolerance with hemorrhage, and modeling long term circulatory circulation. Current capabilities include: (1) simulation of analogous pathological states and effects of abnormal environmental stressors by the manipulation of system variables and changing inputs in various sequences; (2) simulation of time courses of responses of controlled variables by the altered inputs and their relationships; (3) simulation of physiological responses of treatment such as isotonic saline transfusion; (4) simulation of the effectiveness of a treatment as well as the effects of complication superimposed on an existing pathological state; and (5) comparison of the effectiveness of various treatments/countermeasures for a given pathological state. The feasibility of applying simulation models to diagnostic and therapeutic research problems is assessed.
A new approach to global control of redundant manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
A new and simple approach to configuration control of redundant manipulators is presented. In this approach, the redundancy is utilized to control the manipulator configuration directly in task space, where the task will be performed. A number of kinematic functions are defined to reflect the desirable configuration that will be achieved for a given end-effector position. The user-defined kinematic functions and the end-effector Cartesian coordinates are combined to form a set of task-related configuration variables as generalized coordinates for the manipulator. An adaptive scheme is then utilized to globally control the configuration variables so as to achieve tracking of some desired reference trajectories. This accomplishes the basic task of desired end-effector motion, while utilizing the redundancy to achieve any additional task through the desired time variation of the kinematic functions. The control law is simple and computationally very fast, and does not require the complex manipulator dynamic model.
System and Method of Locating Lightning Strikes
NASA Technical Reports Server (NTRS)
Medelius, Pedro J. (Inventor); Starr, Stanley O. (Inventor)
2002-01-01
A system and method of determining locations of lightning strikes has been described. The system includes multiple receivers located around an area of interest, such as a space center or airport. Each receiver monitors both sound and electric fields. The detection of an electric field pulse and a sound wave are used to calculate an area around each receiver in which the lighting is detected. A processor is coupled to the receivers to accurately determine the location of the lighting strike. The processor can manipulate the receiver data to compensate for environmental variables such as wind, temperature, and humidity. Further, each receiver processor can discriminate between distant and local lightning strikes.
Environmental manipulation for edible insect procurement: a historical perspective.
Van Itterbeeck, Joost; van Huis, Arnold
2012-01-21
Throughout history humans have manipulated their natural environment for an increased predictability and availability of plant and animal resources. Research on prehistoric diets increasingly includes small game, but edible insects receive minimal attention. Using the anthropological and archaeological literature we show and hypothesize about the existence of such environmental manipulations related to the procurement of edible insects. As examples we use eggs of aquatic Hemiptera in Mexico which are semi-cultivated by water management and by providing egg laying sites; palm weevil larvae in the Amazon Basin, tropical Africa, and New Guinea of which the collection is facilitated by manipulating host tree distribution and abundance and which are semi-cultivated by deliberately cutting palm trees at a chosen time at a chosen location; and arboreal, foliage consuming caterpillars in sub-Saharan Africa for which the collection is facilitated by manipulating host tree distribution and abundance, shifting cultivation, fire regimes, host tree preservation, and manually introducing caterpillars to a designated area. These manipulations improve insect exploitation by increasing their predictability and availability, and most likely have an ancient origin.
Environmental manipulation for edible insect procurement: a historical perspective
2012-01-01
Throughout history humans have manipulated their natural environment for an increased predictability and availability of plant and animal resources. Research on prehistoric diets increasingly includes small game, but edible insects receive minimal attention. Using the anthropological and archaeological literature we show and hypothesize about the existence of such environmental manipulations related to the procurement of edible insects. As examples we use eggs of aquatic Hemiptera in Mexico which are semi-cultivated by water management and by providing egg laying sites; palm weevil larvae in the Amazon Basin, tropical Africa, and New Guinea of which the collection is facilitated by manipulating host tree distribution and abundance and which are semi-cultivated by deliberately cutting palm trees at a chosen time at a chosen location; and arboreal, foliage consuming caterpillars in sub-Saharan Africa for which the collection is facilitated by manipulating host tree distribution and abundance, shifting cultivation, fire regimes, host tree preservation, and manually introducing caterpillars to a designated area. These manipulations improve insect exploitation by increasing their predictability and availability, and most likely have an ancient origin. PMID:22264307
Kinematics and design of a class of parallel manipulators
NASA Astrophysics Data System (ADS)
Hertz, Roger Barry
1998-12-01
This dissertation is concerned with the kinematic analysis and design of a class of three degree-of-freedom, spatial parallel manipulators. The class of manipulators is characterized by two platforms, between which are three legs, each possessing a succession of revolute, spherical, and revolute joints. The class is termed the "revolute-spherical-revolute" class of parallel manipulators. Two members of this class are examined. The first mechanism is a double-octahedral variable-geometry truss, and the second is termed a double tripod. The history the mechanisms is explored---the variable-geometry truss dates back to 1984, while predecessors of the double tripod mechanism date back to 1869. This work centers on the displacement analysis of these three-degree-of-freedom mechanisms. Two types of problem are solved: the forward displacement analysis (forward kinematics) and the inverse displacement analysis (inverse kinematics). The kinematic model of the class of mechanism is general in nature. A classification scheme for the revolute-spherical-revolute class of mechanism is introduced, which uses dominant geometric features to group designs into 8 different sub-classes. The forward kinematics problem is discussed: given a set of independently controllable input variables, solve for the relative position and orientation between the two platforms. For the variable-geometry truss, the controllable input variables are assumed to be the linear (prismatic) joints. For the double tripod, the controllable input variables are the three revolute joints adjacent to the base (proximal) platform. Multiple solutions are presented to the forward kinematics problem, indicating that there are many different positions (assemblies) that the manipulator can assume with equivalent inputs. For the double tripod these solutions can be expressed as a 16th degree polynomial in one unknown, while for the variable-geometry truss there exist two 16th degree polynomials, giving rise to 256 solutions. For special cases of the double tripod, the forward kinematics problem is shown to have a closed-form solution. Numerical examples are presented for the solution to the forward kinematics. A double tripod is presented that admits 16 unique and real forward kinematics solutions. Another example for a variable geometry truss is given that possesses 64 real solutions: 8 for each 16th order polynomial. The inverse kinematics problem is also discussed: given the relative position of the hand (end-effector), which is rigidly attached to one platform, solve for the independently controlled joint variables. Iterative solutions are proposed for both the variable-geometry truss and the double tripod. For special cases of both mechanisms, closed-form solutions are given. The practical problems of designing, building, and controlling a double-tripod manipulator are addressed. The resulting manipulator is a first-of-its kind prototype of a tapered (asymmetric) double-tripod manipulator. Real-time forward and inverse kinematics algorithms on an industrial robot controller is presented. The resulting performance of the prototype is impressive, since it was to achieve a maximum tool-tip speed of 4064 mm/s, maximum acceleration of 5 g, and a cycle time of 1.2 seconds for a typical pick-and-place pattern.
Systems and methods for controlling energy use during a demand limiting period
Wenzel, Michael J.; Drees, Kirk H.
2016-04-26
Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.
Forecasting extinction risk with nonstationary matrix models.
Gotelli, Nicholas J; Ellison, Aaron M
2006-02-01
Matrix population growth models are standard tools for forecasting population change and for managing rare species, but they are less useful for predicting extinction risk in the face of changing environmental conditions. Deterministic models provide point estimates of lambda, the finite rate of increase, as well as measures of matrix sensitivity and elasticity. Stationary matrix models can be used to estimate extinction risk in a variable environment, but they assume that the matrix elements are randomly sampled from a stationary (i.e., non-changing) distribution. Here we outline a method for using nonstationary matrix models to construct realistic forecasts of population fluctuation in changing environments. Our method requires three pieces of data: (1) field estimates of transition matrix elements, (2) experimental data on the demographic responses of populations to altered environmental conditions, and (3) forecasting data on environmental drivers. These three pieces of data are combined to generate a series of sequential transition matrices that emulate a pattern of long-term change in environmental drivers. Realistic estimates of population persistence and extinction risk can be derived from stochastic permutations of such a model. We illustrate the steps of this analysis with data from two populations of Sarracenia purpurea growing in northern New England. Sarracenia purpurea is a perennial carnivorous plant that is potentially at risk of local extinction because of increased nitrogen deposition. Long-term monitoring records or models of environmental change can be used to generate time series of driver variables under different scenarios of changing environments. Both manipulative and natural experiments can be used to construct a linking function that describes how matrix parameters change as a function of the environmental driver. This synthetic modeling approach provides quantitative estimates of extinction probability that have an explicit mechanistic basis.
König, Stephan; Wubet, Tesfaye; Dormann, Carsten F.; Hempel, Stefan; Renker, Carsten; Buscot, François
2010-01-01
Large-scale (temporal and/or spatial) molecular investigations of the diversity and distribution of arbuscular mycorrhizal fungi (AMF) require considerable sampling efforts and high-throughput analysis. To facilitate such efforts, we have developed a TaqMan real-time PCR assay to detect and identify AMF in environmental samples. First, we screened the diversity in clone libraries, generated by nested PCR, of the nuclear ribosomal DNA internal transcribed spacer (ITS) of AMF in environmental samples. We then generated probes and forward primers based on the detected sequences, enabling AMF sequence type-specific detection in TaqMan multiplex real-time PCR assays. In comparisons to conventional clone library screening and Sanger sequencing, the TaqMan assay approach provided similar accuracy but higher sensitivity with cost and time savings. The TaqMan assays were applied to analyze the AMF community composition within plots of a large-scale plant biodiversity manipulation experiment, the Jena Experiment, primarily designed to investigate the interactive effects of plant biodiversity on element cycling and trophic interactions. The results show that environmental variables hierarchically shape AMF communities and that the sequence type spectrum is strongly affected by previous land use and disturbance, which appears to favor disturbance-tolerant members of the genus Glomus. The AMF species richness of disturbance-associated communities can be largely explained by richness of plant species and plant functional groups, while plant productivity and soil parameters appear to have only weak effects on the AMF community. PMID:20418424
Runquist, Ryan D Briscoe; Moeller, David A
2013-09-01
Studies of pollen limitation and the reproductive assurance value of selfing are important for examining the process of floral and mating system evolution in flowering plants. Recent meta-analyses have shown that common methods for measuring pollen limitation may often lead to biased estimates. Specifically, experiments involving single- or few-flower manipulations per plant tend to overestimate pollen limitation compared to those involving manipulations on most or all flowers per plant. Little previous work has explicitly tested for reallocation within individual systems using alternative methods and response variables. • We performed single-flower and whole-plant pollen supplementation and emasculation of flowers of Clarkia xantiana subsp. parviflora to estimate pollen limitation (PL) and reproductive assurance (RA). We compared levels of PL and RA using the following response variables: fruit set, seeds/flower, and seeds/plant. We also assessed the germination and viability of seeds to evaluate potential variation in pollen quality among treatments. • Autonomous selfing in Clarkia xantiana subsp. parviflora eliminates pollen limitation and provides reproductive assurance. Estimates from single-flower manipulations were not biased, closely resembling those from whole-plant manipulations. All three response variables followed the same pattern, but treatments were only significantly different for seeds/flower. Pollen quality, as indicated by seed viability, did not differ among treatments. • Partial plant manipulations provided reliable estimates of pollen limitation and reproductive assurance. These estimates were also unaffected by accounting for pollen quality. Although whole plant manipulations are desirable, this experiment demonstrates that in some systems partial plant manipulations can be used in studies where whole-plant manipulations are not feasible.
The boundary vector cell model of place cell firing and spatial memory
Barry, Caswell; Lever, Colin; Hayman, Robin; Hartley, Tom; Burton, Stephen; O'Keefe, John; Jeffery, Kate; Burgess, Neil
2009-01-01
We review evidence for the boundary vector cell model of the environmental determinants of the firing of hippocampal place cells. Preliminary experimental results are presented concerning the effects of addition or removal of environmental boundaries on place cell firing and evidence that boundary vector cells may exist in the subiculum. We review and update computational simulations predicting the location of human search within a virtual environment of variable geometry, assuming that boundary vector cells provide one of the input representations of location used in mammalian spatial memory. Finally, we extend the model to include experience-dependent modification of connection strengths through a BCM-like learning rule, and compare the effects to experimental data on the firing of place cells under geometrical manipulations to their environment. The relationship between neurophysiological results in rats and spatial behaviour in humans is discussed. PMID:16703944
Experimental Evidence for Reduced Rodent Diversity Causing Increased Hantavirus Prevalence
Suzán, Gerardo; Marcé, Erika; Giermakowski, J. Tomasz; Mills, James N.; Ceballos, Gerardo; Ostfeld, Richard S.; Armién, Blas; Pascale, Juan M.; Yates, Terry L.
2009-01-01
Emerging and re-emerging infectious diseases have become a major global environmental problem with important public health, economic, and political consequences. The etiologic agents of most emerging infectious diseases are zoonotic, and anthropogenic environmental changes that affect wildlife communities are increasingly implicated in disease emergence and spread. Although increased disease incidence has been correlated with biodiversity loss for several zoonoses, experimental tests in these systems are lacking. We manipulated small-mammal biodiversity by removing non-reservoir species in replicated field plots in Panama, where zoonotic hantaviruses are endemic. Both infection prevalence of hantaviruses in wild reservoir (rodent) populations and reservoir population density increased where small-mammal species diversity was reduced. Regardless of other variables that affect the prevalence of directly transmitted infections in natural communities, high biodiversity is important in reducing transmission of zoonotic pathogens among wildlife hosts. Our results have wide applications in both conservation biology and infectious disease management. PMID:19421313
Manipulating cyanobacteria: Spirulina for potential CELSS diet
NASA Technical Reports Server (NTRS)
Tadros, Mahasin G.; Smith, Woodrow; Mbuthia, Peter; Joseph, Beverly
1989-01-01
Spirulina sp. as a bioregenerative photosynthetic and an edible alga for spacecraft crew in a CELSS, was characterized for the biomass yield in batch cultures, under various environmental conditions. The partitioning of the assimalitory products (proteins, carbohydrates, lipids) were manipulated by varying the environmental growth conditions. Experiments with Spirulina have shown that under stress conditions (i.e., high light 160 uE/sq m/s, temperature 38 C, nitrogen or phosphate limitation; 0.1 M sodium chloride) carbohydrates increased at the expense of proteins. In other experiments, where the growth media were sufficient in nutrients and incubated under optimum growth conditions, the total of the algal could be manipulated by growth conditions. These results support the feasibility of considering Spirulina as a subsystem in CELSS because of the ease with which its nutrient content can be manipulated.
Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity.
Richier, Sophie; Achterberg, Eric P; Humphreys, Matthew P; Poulton, Alex J; Suggett, David J; Tyrrell, Toby; Moore, C Mark
2018-05-25
Accumulation of anthropogenic CO 2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO 2 accumulation are emerging, however the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primary consequence of increased oceanic CO 2 uptake is a decrease in the carbonate system buffer capacity, which characterises the system's chemical resilience to changes in CO 2 , generating the potential for enhanced variability in pCO 2 and the concentration of carbonate [CO 3 2- ], bicarbonate [HCO 3 - ] and protons [H + ] in the future ocean. We conducted a meta-analysis of 17 shipboard manipulation experiments performed across three distinct geographical regions that encompassed a wide range of environmental conditions from European temperate seas to Arctic and Southern oceans. These data demonstrated a correlation between the magnitude of natural phytoplankton community biological responses to short-term CO 2 changes and variability in the local buffer capacity across ocean basin scales. Specifically, short-term suppression of small phytoplankton (<10 μm) net growth rates were consistently observed under enhanced pCO 2 within experiments performed in regions with higher ambient buffer capacity. The results further highlight the relevance of phytoplankton cell size for the impacts of enhanced pCO 2 in both the modern and future ocean. Specifically, cell-size related acclimation and adaptation to regional environmental variability, as characterised by buffer capacity, likely influences interactions between primary producers and carbonate chemistry over a range of spatio-temporal scales. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Znachor, Petr; Nedoma, Jiří; Hejzlar, Josef; Seďa, Jaromír; Kopáček, Jiří; Boukal, David; Mrkvička, Tomáš
2018-05-15
Man-made reservoirs are common across the world and provide a wide range of ecological services. Environmental conditions in riverine reservoirs are affected by the changing climate, catchment-wide processes and manipulations with the water level, and water abstraction from the reservoir. Long-term trends of environmental conditions in reservoirs thus reflect a wider range of drivers in comparison to lakes, which makes the understanding of reservoir dynamics more challenging. We analysed a 32-year time series of 36 environmental variables characterising weather, land use in the catchment, reservoir hydrochemistry, hydrology and light availability in the small, canyon-shaped Římov Reservoir in the Czech Republic to detect underlying trends, trend reversals and regime shifts. To do so, we fitted linear and piecewise linear regression and a regime shift model to the time series of mean annual values of each variable and to principal components produced by Principal Component Analysis. Models were weighted and ranked using Akaike information criterion and the model selection approach. Most environmental variables exhibited temporal changes that included time-varying trends and trend reversals. For instance, dissolved organic carbon showed a linear increasing trend while nitrate concentration or conductivity exemplified trend reversal. All trend reversals and cessations of temporal trends in reservoir hydrochemistry (except total phosphorus concentrations) occurred in the late 1980s and during 1990s as a consequence of dramatic socioeconomic changes. After a series of heavy rains in the late 1990s, an administrative decision to increase the flood-retention volume of the reservoir resulted in a significant regime shift in reservoir hydraulic conditions in 1999. Our analyses also highlight the utility of the model selection framework, based on relatively simple extensions of linear regression, to describe temporal trends in reservoir characteristics. This approach can provide a solid basis for a better understanding of processes in freshwater reservoirs. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of Bioreactor Retention Time on Aerobic Microbial Decomposition of CELSS Crop Residues
NASA Technical Reports Server (NTRS)
Strayer, R. F.; Finger, B. W.; Alazraki, M. P.
1997-01-01
The focus of resource recovery research at the KSC-CELSS Breadboard Project has been the evaluation of microbiologically mediated biodegradation of crop residues by manipulation of bioreactor process and environmental variables. We will present results from over 3 years of studies that used laboratory- and breadboard-scale (8 and 120 L working volumes, respectively) aerobic, fed-batch, continuous stirred tank reactors (CSTR) for recovery of carbon and minerals from breadboard grown wheat and white potato residues. The paper will focus on the effects of a key process variable, bioreactor retention time, on response variables indicative of bioreactor performance. The goal is to determine the shortest retention time that is feasible for processing CELSS crop residues, thereby reducing bioreactor volume and weight requirements. Pushing the lower limits of bioreactor retention times will provide useful data for engineers who need to compare biological and physicochemical components. Bioreactor retention times were manipulated to range between 0.25 and 48 days. Results indicate that increases in retention time lead to a 4-fold increase in crop residue biodegradation, as measured by both dry weight losses and CO2 production. A similar overall trend was also observed for crop residue fiber (cellulose and hemicellulose), with a noticeable jump in cellulose degradation between the 5.3 day and 10.7 day retention times. Water-soluble organic compounds (measured as soluble TOC) were appreciably reduced by more than 4-fold at all retention times tested. Results from a study of even shorter retention times (down to 0.25 days), in progress, will also be presented.
Modeling of Continuum Manipulators Using Pythagorean Hodograph Curves.
Singh, Inderjeet; Amara, Yacine; Melingui, Achille; Mani Pathak, Pushparaj; Merzouki, Rochdi
2018-05-10
Research on continuum manipulators is increasingly developing in the context of bionic robotics because of their many advantages over conventional rigid manipulators. Due to their soft structure, they have inherent flexibility, which makes it a huge challenge to control them with high performances. Before elaborating a control strategy of such robots, it is essential to reconstruct first the behavior of the robot through development of an approximate behavioral model. This can be kinematic or dynamic depending on the conditions of operation of the robot itself. Kinematically, two types of modeling methods exist to describe the robot behavior; quantitative methods describe a model-based method, and qualitative methods describe a learning-based method. In kinematic modeling of continuum manipulator, the assumption of constant curvature is often considered to simplify the model formulation. In this work, a quantitative modeling method is proposed, based on the Pythagorean hodograph (PH) curves. The aim is to obtain a three-dimensional reconstruction of the shape of the continuum manipulator with variable curvature, allowing the calculation of its inverse kinematic model (IKM). It is noticed that the performances of the PH-based kinematic modeling of continuum manipulators are considerable regarding position accuracy, shape reconstruction, and time/cost of the model calculation, than other kinematic modeling methods, for two cases: free load manipulation and variable load manipulation. This modeling method is applied to the compact bionic handling assistant (CBHA) manipulator for validation. The results are compared with other IKMs developed in case of CBHA manipulator.
Systems and methods for controlling energy use in a building management system using energy budgets
Wenzel, Michael J; Drees, Kirk H
2014-09-23
Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.
General implementation of arbitrary nonlinear quadrature phase gates
NASA Astrophysics Data System (ADS)
Marek, Petr; Filip, Radim; Ogawa, Hisashi; Sakaguchi, Atsushi; Takeda, Shuntaro; Yoshikawa, Jun-ichi; Furusawa, Akira
2018-02-01
We propose general methodology of deterministic single-mode quantum interaction nonlinearly modifying single quadrature variable of a continuous-variable system. The methodology is based on linear coupling of the system to ancillary systems subsequently measured by quadrature detectors. The nonlinear interaction is obtained by using the data from the quadrature detection for dynamical manipulation of the coupling parameters. This measurement-induced methodology enables direct realization of arbitrary nonlinear quadrature interactions without the need to construct them from the lowest-order gates. Such nonlinear interactions are crucial for more practical and efficient manipulation of continuous quadrature variables as well as qubits encoded in continuous-variable systems.
Dynamic modeling and adaptive vibration suppression of a high-speed macro-micro manipulator
NASA Astrophysics Data System (ADS)
Yang, Yi-ling; Wei, Yan-ding; Lou, Jun-qiang; Fu, Lei; Fang, Sheng; Chen, Te-huan
2018-05-01
This paper presents a dynamic modeling and microscopic vibration suppression for a flexible macro-micro manipulator dedicated to high-speed operation. The manipulator system mainly consists of a macro motion stage and a flexible micromanipulator bonded with one macro-fiber-composite actuator. Based on Hamilton's principle and the Bouc-Wen hysteresis equation, the nonlinear dynamic model is obtained. Then, a hybrid control scheme is proposed to simultaneously suppress the elastic vibration during and after the motor motion. In particular, the hybrid control strategy is composed of a trajectory planning approach and an adaptive variable structure control. Moreover, two optimization indices regarding the comprehensive torques and synthesized vibrations are designed, and the optimal trajectories are acquired using a genetic algorithm. Furthermore, a nonlinear fuzzy regulator is used to adjust the switching gain in the variable structure control. Thus, a fuzzy variable structure control with nonlinear adaptive control law is achieved. A series of experiments are performed to verify the effectiveness and feasibility of the established system model and hybrid control strategy. The excited vibration during the motor motion and the residual vibration after the motor motion are decreased. Meanwhile, the settling time is shortened. Both the manipulation stability and operation efficiency of the manipulator are improved by the proposed hybrid strategy.
Caruso, Christina M; Martin, Ryan A; Sletvold, Nina; Morrissey, Michael B; Wade, Michael J; Augustine, Kate E; Carlson, Stephanie M; MacColl, Andrew D C; Siepielski, Adam M; Kingsolver, Joel G
2017-09-01
Although many selection estimates have been published, the environmental factors that cause selection to vary in space and time have rarely been identified. One way to identify these factors is by experimentally manipulating the environment and measuring selection in each treatment. We compiled and analyzed selection estimates from experimental studies. First, we tested whether the effect of manipulating the environment on selection gradients depends on taxon, trait type, or fitness component. We found that the effect of manipulating the environment was larger when selection was measured on life-history traits or via survival. Second, we tested two predictions about the environmental factors that cause variation in selection. We found support for the prediction that variation in selection is more likely to be caused by environmental factors that have a large effect on mean fitness but not for the prediction that variation is more likely to be caused by biotic factors. Third, we compared selection gradients from experimental and observational studies. We found that selection varied more among treatments in experimental studies than among spatial and temporal replicates in observational studies, suggesting that experimental studies can detect relationships between environmental factors and selection that would not be apparent in observational studies.
Ervin, R A; DuPaul, G J; Kern, L; Friman, P C
1998-01-01
The present investigation evaluated the utility of classroom-based functional and adjunctive assessments of problem behaviors for 2 adolescents who met diagnostic criteria for attention deficit hyperactivity disorder (ADHD) and comorbid oppositional defiant disorder (ODD). For children with ADHD-ODD, environmental classroom variables, when systematically manipulated by teachers, were related to the occurrence and nonoccurrence of problem behaviors. Classroom interventions derived from information that was obtained during functional and adjunctive assessments and from subsequent analyses resulted in substantial reductions in problem behaviors. Teacher and student consumer satisfaction ratings indicated that the interventions were effective and feasible in the classroom setting. PMID:9532751
Yuen, Suet Wai; Bonebrake, Timothy C
2017-01-01
Artificial night light has the potential to significantly alter visually-dependent species interactions. However, examples of disruptions of species interactions through changes in light remain rare and how artificial night light may alter predator-prey relationships are particularly understudied. In this study, we examined whether artificial night light could impact prey attraction and interception in Nephila pilipes orb weaver spiders, conspicuous predators who make use of yellow color patterns to mimic floral resources and attract prey to their webs. We measured moth prey attraction and interception responses to treatments where we experimentally manipulated the color/contrast of spider individuals in the field (removed yellow markings) and also set up light manipulations. We found that lit webs had lower rates of moth interception than unlit webs. Spider color, however, had no clear impact on moth interception or attraction rates in lit nor unlit webs. The results show that night light can reduce prey interception for spiders. Additionally, this study highlights how environmental and morphological variation can complicate simple predictions of ecological light pollution's disruption of species interactions.
Fun Science: The Use of Variable Manipulation to Avoid Content Instruction
NASA Astrophysics Data System (ADS)
Peters-Burton, Erin E.; Hiller, Suzanne E.
2013-02-01
This study examined the beliefs and rationale pre-service elementary teachers used to choose activities for upper-elementary students in a 1-week intensive science camp. Six undergraduate elementary pre-service teachers were observed as they took a semester-long science methods class that culminated in a 1-week science camp. This qualitative, phenomenological study found that counselors chose activities with the possibility of fun being a priority rather than teaching content, even after they were confronted with campers who demanded more content. Additionally, all six of the counselors agreed that activities involving variable manipulation were the most successful, even though content knowledge was not required to complete the activities. The counselors felt the variable manipulation activities were successful because students were constructing products and therefore getting to the end of the activity. Implications include building an awareness of the complexity of self-efficacy of science teaching and outcome expectancy to improve teacher education programs.
An Android Research and Development Program.
1983-03-01
reprogrammable multifunctional manipulator designed to move material, parts, tools, or special devices, through variable programmed motions for the performance...thesis: 1. An ’industrial robot’ is a [mechanized,] reprogrammable multifunctional manipulator designed to move material, parts, tools, or...insertion is also well defined in space. These manipulators are currently in use in the automobile industry, and two were were demonstrated by Kohol
Tracking a changing environment: optimal sampling, adaptive memory and overnight effects.
Dunlap, Aimee S; Stephens, David W
2012-02-01
Foraging in a variable environment presents a classic problem of decision making with incomplete information. Animals must track the changing environment, remember the best options and make choices accordingly. While several experimental studies have explored the idea that sampling behavior reflects the amount of environmental change, we take the next logical step in asking how change influences memory. We explore the hypothesis that memory length should be tied to the ecological relevance and the value of the information learned, and that environmental change is a key determinant of the value of memory. We use a dynamic programming model to confirm our predictions and then test memory length in a factorial experiment. In our experimental situation we manipulate rates of change in a simple foraging task for blue jays over a 36 h period. After jays experienced an experimentally determined change regime, we tested them at a range of retention intervals, from 1 to 72 h. Manipulated rates of change influenced learning and sampling rates: subjects sampled more and learned more quickly in the high change condition. Tests of retention revealed significant interactions between retention interval and the experienced rate of change. We observed a striking and surprising difference between the high and low change treatments at the 24h retention interval. In agreement with earlier work we find that a circadian retention interval is special, but we find that the extent of this 'specialness' depends on the subject's prior experience of environmental change. Specifically, experienced rates of change seem to influence how subjects balance recent information against past experience in a way that interacts with the passage of time. Copyright © 2011 Elsevier B.V. All rights reserved.
Kinematic modeling of a double octahedral Variable Geometry Truss (VGT) as an extensible gimbal
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1994-01-01
This paper presents the complete forward and inverse kinematics solutions for control of the three degree-of-freedom (DOF) double octahedral variable geometry truss (VGT) module as an extensible gimbal. A VGT is a truss structure partially comprised of linearly actuated members. A VGT can be used as joints in a large, lightweight, high load-bearing manipulator for earth- and space-based remote operations, plus industrial applications. The results have been used to control the NASA VGT hardware as an extensible gimbal, demonstrating the capability of this device to be a joint in a VGT-based manipulator. This work is an integral part of a VGT-based manipulator design, simulation, and control tool.
Autonomous manipulation on a robot: Summary of manipulator software functions
NASA Technical Reports Server (NTRS)
Lewis, R. A.
1974-01-01
A six degree-of-freedom computer-controlled manipulator is examined, and the relationships between the arm's joint variables and 3-space are derived. Arm trajectories using sequences of third-degree polynomials to describe the time history of each joint variable are presented and two approaches to the avoidance of obstacles are given. The equations of motion for the arm are derived and then decomposed into time-dependent factors and time-independent coefficients. Several new and simplifying relationships among the coefficients are proven. Two sample trajectories are analyzed in detail for purposes of determining the most important contributions to total force in order that relatively simple approximations to the equations of motion can be used.
Yuan, Z Y; Jiao, F; Shi, X R; Sardans, Jordi; Maestre, Fernando T; Delgado-Baquerizo, Manuel; Reich, Peter B; Peñuelas, Josep
2017-06-01
Manipulative experiments and observations along environmental gradients, the two most common approaches to evaluate the impacts of climate change on nutrient cycling, are generally assumed to produce similar results, but this assumption has rarely been tested. We did so by conducting a meta-analysis and found that soil nutrients responded differentially to drivers of climate change depending on the approach considered. Soil carbon, nitrogen, and phosphorus concentrations generally decreased with water addition in manipulative experiments but increased with annual precipitation along environmental gradients. Different patterns were also observed between warming experiments and temperature gradients. Our findings provide evidence of inconsistent results and suggest that manipulative experiments may be better predictors of the causal impacts of short-term (months to years) climate change on soil nutrients but environmental gradients may provide better information for long-term correlations (centuries to millennia) between these nutrients and climatic features. Ecosystem models should consequently incorporate both experimental and observational data to properly assess the impacts of climate change on nutrient cycling.
Franceschi, Nathalie; Bauer, Alexandre; Bollache, Loïc; Rigaud, Thierry
2008-08-01
Numerous parasites with complex life cycles are able to manipulate the behaviour of their intermediate host in a way that increases their trophic transmission to the definitive host. Pomphorhynchus laevis, an acanthocephalan parasite, is known to reverse the phototactic behaviour of its amphipod intermediate host, Gammarus pulex, leading to an increased predation by fish hosts. However, levels of behavioural manipulation exhibited by naturally-infected gammarids are extremely variable, with some individuals being strongly manipulated whilst others are almost not affected by infection. To investigate parasite age and parasite intensity as potential sources of this variation, we carried out controlled experimental infections on gammarids using parasites from two different populations. We first determined that parasite intensity increased with exposure dose, but found no relationship between infection and host mortality. Repeated measures confirmed that the parasite alters host behaviour only when it reaches the cystacanth stage which is infective for the definitive host. They also revealed, we believe for the first time, that the older the cystacanth, the more it manipulates its host. The age of the parasite is therefore a major source of variation in parasite manipulation. The number of parasites within a host was also a source of variation. Manipulation was higher in hosts infected by two parasites than in singly infected ones, but above this intensity, manipulation did not increase. Since the development time of the parasite was also different according to parasite intensity (it was longer in doubly infected hosts than in singly infected ones, but did not increase more in multi-infected hosts), individual parasite fitness could depend on the compromise between development time and manipulation efficiency. Finally, the two parasite populations tested induced slightly different degrees of behavioural manipulation.
Stucki, Cyril; Sautter, Anna-Maria; Favet, Jocelyne; Bonnabry, Pascal
2009-11-15
The direct influence of environmental cleanliness and risk manipulations on prepared syringes was evaluated. Media-fill testing was used to estimate potential microbial contamination. Syringes were prepared in three different environments using four different uncontrolled high-risk manipulations. The three environments included an International Organization for Standardization (ISO) class 5 horizontal laminar-airflow hood in an ISO class 6 cleanroom (in accordance with United States Pharmacopeia [USP] chapter 797), an ISO class 7 drug preparation area of an operating room, and an uncontrolled decentralized pharmacy in a ward. For each combination of environment and manipulation, 100 syringes were filled by a single operator. The four high-risk manipulations used included simple filling of syringes with trypticase soy broth, three-second contact by the ungloved fingers of the operator with the hub of the syringe, three-second contact between an object and the hub of the syringe, and exposure of the filled syringes to ambient air for 10 minutes. Of the 1500 syringes prepared in three different environments, none produced within the cleanroom contained microorganisms, 6% were contaminated in the operating room, and 16% were contaminated in the ward (p < 0.0001). Certain high-risk manipulations were associated with a significant increase in the contamination of the surrogate syringes, including exposure to nonsterile ambient air and nonsterile objects or fingers (p < 0.0001). High contamination rates were measured when the hub of syringes touched nonsterile environmental surfaces and fingers, whereas the drawn-air manipulation was associated with a lower risk of contamination. Working within a properly operating unidirectional airflow primary engineering control in an ISO class 5 cleanroom in accordance with USP chapter 797 requirements was demonstrated to be the best way to avoid bacterial or fungal contamination of injectable drugs directly resulting in patient infections.
Urban plant physiology: adaptation-mitigation strategies under permanent stress.
Calfapietra, Carlo; Peñuelas, Josep; Niinemets, Ülo
2015-02-01
Urban environments that are stressful for plant function and growth will become increasingly widespread in future. In this opinion article, we define the concept of 'urban plant physiology', which focuses on plant responses and long term adaptations to urban conditions and on the capacity of urban vegetation to mitigate environmental hazards in urbanized settings such as air and soil pollution. Use of appropriate control treatments would allow for studies in urban environments to be comparable to expensive manipulative experiments. In this opinion article, we propose to couple two approaches, based either on environmental gradients or manipulated gradients, to develop the concept of urban plant physiology for assessing how single or multiple environmental factors affect the key environmental services provided by urban forests. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mertens, Lieze; Van Dyck, Delfien; Ghekiere, Ariane; De Bourdeaudhuij, Ilse; Deforche, Benedicte; Van de Weghe, Nico; Van Cauwenberg, Jelle
2016-09-01
Micro-environmental factors (specific features within a streetscape), instead of macro-environmental factors (urban planning features), are more feasible to modify in existing neighborhoods and thus more practical to target for environmental interventions. Because it is often not possible to change the whole micro-environment at once, the current study aims to determine which micro-environmental factors should get the priority to target in physical environmental interventions increasing bicycle transport. Additionally, interaction effects among micro-environmental factors on the street's appeal for bicycle transport will be determined. In total, 1950 middle-aged adults completed a web-based questionnaire consisting of a set of 12 randomly assigned choice tasks with manipulated photographs. Seven micro-environmental factors (type of cycle path, speed limit, speed bump, vegetation, evenness of the cycle path surface, general upkeep and traffic density) were manipulated in each photograph. Conjoint analysis was used to analyze the data. Providing streets with a cycle path separated from motorized traffic seems to be the best strategy to increase the street's appeal for adults' bicycle transport. If this adjustment is not practically feasible, micro-environmental factors related to safety (i.e. speed limit, traffic density) may be more effective in promoting bicycle transport than micro-environmental factors related to comfort (i.e. evenness of the cycle path surface) or aesthetic (i.e. vegetation, general upkeep). On the other hand, when a more separated cycle path is already provided, micro-environmental factors related to comfort or aesthetic appeared to become more prominent. Findings obtained from this research could provide advice to physical environmental interventions about which environmental factors should get priority to modify in different environmental situations. The study was approved by the Ethics Committee of the Ghent University Hospital. B670201318588. Registered at 04/10/2013. http://www.ugent.be/ge/nl/faculteit/raden/ec.
Liversage, Kiran; Nurkse, Kristiina; Kotta, Jonne; Järv, Leili
2017-12-01
Spatiotemporal environmental variation affects fish feeding behaviour and capacity for piscivorous control of prey populations, which is important for management when prey include invasive species causing ecosystem impacts. We assessed gut-contents of an important piscivore (European perch Perca fluviatilis) over two years, and analysed variables affecting initiation and amounts of feeding, focusing on an important invasive prey species, round goby (Neogobius melanostomus). We show that predation is primarily controlled by variation of physical and habitat characteristics surrounding perch. Fish prey began being incorporated in diets of perch that were >150 mm, with temperature conditions controlling initiation of their feeding. Total amounts of fish in perch diets, and amounts of round goby individually, were strongly affected by macrophyte cover; seldom were fish present in perch stomachs when macrophyte cover was >40%. Environmental densities of round goby were related to multivariate diet composition in ways that suggest predation of some native species may be relaxed in areas of dense round goby populations. There was evidence that perch predation is unlikely to limit populations of the invader, as there was only a weak relationship between round goby densities and amounts in gut contents. The results have ecosystem management implications, because some variables found to be important could be manipulated to control round goby or other similar invaders e.g. fisheries management of native piscivore stock-density and body-size, or modification of benthic environment structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
2014-01-01
Background Cervical Spinal Manipulation (CSM) is considered a high-level skill of the central nervous system because it requires bimanual coordinated rhythmical movements therefore necessitating training to achieve proficiency. The objective of the present study was to investigate the effect of real-time feedback on the performance of CSM. Methods Six postgraduate physiotherapy students attending a training workshop on Cervical Spine Manipulation Technique (CSMT) using inertial sensor derived real-time feedback participated in this study. The key variables were pre-manipulative position, angular displacement of the thrust and angular velocity of the thrust. Differences between variables before and after training were investigated using t-tests. Results There were no significant differences after training for the pre-manipulative position (rotation p = 0.549; side bending p = 0.312) or for thrust displacement (rotation p = 0.247; side bending p = 0.314). Thrust angular velocity demonstrated a significant difference following training for rotation (pre-training mean (sd) 48.9°/s (35.1); post-training mean (sd) 96.9°/s (53.9); p = 0.027) but not for side bending (p = 0.521). Conclusion Real-time feedback using an inertial sensor may be valuable in the development of specific manipulative skill. Future studies investigating manipulation could consider a randomized controlled trial using inertial sensor real time feedback compared to traditional training. PMID:24942483
Mitigating Harmful Cyanobacterial Blooms in a Human- and Climatically-Impacted World
Paerl, Hans W.
2014-01-01
Bloom-forming harmful cyanobacteria (CyanoHABs) are harmful from environmental, ecological and human health perspectives by outcompeting beneficial phytoplankton, creating low oxygen conditions (hypoxia, anoxia), and by producing cyanotoxins. Cyanobacterial genera exhibit optimal growth rates and bloom potentials at relatively high water temperatures; hence, global warming plays a key role in their expansion and persistence. CyanoHABs are regulated by synergistic effects of nutrient (nitrogen:N and phosphorus:P) supplies, light, temperature, vertical stratification, water residence times, and biotic interactions. In most instances, nutrient control strategies should focus on reducing both N and P inputs. Strategies based on physical, chemical (nutrient) and biological manipulations can be effective in reducing CyanoHABs; however, these strategies are largely confined to relatively small systems, and some are prone to ecological and environmental drawbacks, including enhancing release of cyanotoxins, disruption of planktonic and benthic communities and fisheries habitat. All strategies should consider and be adaptive to climatic variability and change in order to be effective for long-term control of CyanoHABs. Rising temperatures and greater hydrologic variability will increase growth rates and alter critical nutrient thresholds for CyanoHAB development; thus, nutrient reductions for bloom control may need to be more aggressively pursued in response to climatic changes globally. PMID:25517134
Compensation of ocean acidification effects in Arctic phytoplankton assemblages
NASA Astrophysics Data System (ADS)
Hoppe, Clara Jule Marie; Wolf, Klara K. E.; Schuback, Nina; Tortell, Philippe D.; Rost, Björn
2018-06-01
The Arctic and subarctic shelf seas, which sustain large fisheries and contribute to global biogeochemical cycling, are particularly sensitive to ongoing ocean acidification (that is, decreasing seawater pH due to anthropogenic CO2 emissions). Yet, little information is available on the effects of ocean acidification on natural phytoplankton assemblages, which are the main primary producers in high-latitude waters. Here we show that coastal Arctic and subarctic primary production is largely insensitive to ocean acidification over a large range of light and temperature levels in different experimental designs. Out of ten CO2-manipulation treatments, significant ocean acidification effects on primary productivity were observed only once (at temperatures below 2 °C), and shifts in the species composition occurred only three times (without correlation to specific experimental conditions). These results imply a high capacity to compensate for environmental variability, which can be understood in light of the environmental history, tolerance ranges and intraspecific diversity of the dominant phytoplankton species.
The link between flowering time and stress tolerance.
Kazan, Kemal; Lyons, Rebecca
2016-01-01
Evolutionary success in plants is largely dependent on the successful transition from vegetative to reproductive growth. In the lifetime of a plant, flowering is not only an essential part of the reproductive process but also a critical developmental stage that can be vulnerable to environmental stresses. Exposure to stress during this period can cause substantial yield losses in seed-producing plants. However, it is becoming increasingly evident that altering flowering time is an evolutionary strategy adopted by plants to maximize the chances of reproduction under diverse stress conditions, ranging from pathogen infection to heat, salinity, and drought. Here, recent studies that have revealed new insights into how biotic and abiotic stress signals can be integrated into floral pathways are reviewed. A better understanding of how complex environmental variables affect plant phenology is important for future genetic manipulation of crops to increase productivity under the changing climate. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Designer cell signal processing circuits for biotechnology
Bradley, Robert W.; Wang, Baojun
2015-01-01
Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environmental sensing to chemical bioproduction. To date most examples of synthetic biological signal processing have been built based on digital information flow, though analogue computing is being developed to cope with more complex operations and larger sets of variables. Great progress has been made in expanding the categories of characterised biological components that can be used for cellular signal manipulation, thereby allowing synthetic biologists to more rationally programme increasingly complex behaviours into living cells. Here we present a current overview of the components and strategies that exist for designer cell signal processing and decision making, discuss how these have been implemented in prototype systems for therapeutic, environmental, and industrial biotechnological applications, and examine emerging challenges in this promising field. PMID:25579192
A behavior-analytic critique of Bandura's self-efficacy theory
Biglan, Anthony
1987-01-01
A behavior-analytic critique of self-efficacy theory is presented. Self-efficacy theory asserts that efficacy expectations determine approach behavior and physiological arousal of phobics as well as numerous other clinically important behaviors. Evidence which is purported to support this assertion is reviewed. The evidence consists of correlations between self-efficacy ratings and other behaviors. Such response-response relationships do not unequivocally establish that one response causes another. A behavior-analytic alternative to self-efficacy theory explains these relationships in terms of environmental events. Correlations between self-efficacy rating behavior and other behavior may be due to the contingencies of reinforcement that establish a correspondence between such verbal predictions and the behavior to which they refer. Such a behavior-analytic account does not deny any of the empirical relationships presented in support of self-efficacy theory, but it points to environmental variables that could account for those relationships and that could be manipulated in the interest of developing more effective treatment procedures. PMID:22477956
Effects of thermal energy harvesting on the human - clothing - environment microsystem
NASA Astrophysics Data System (ADS)
Myers, A. C.; Jur, J. S.
2017-10-01
The objective of this work is to perform an in depth investigation of garment-based thermal energy harvesting. The effect of human and environmental factors on the working efficiency of a thermal energy harvesting devices, or a thermoelectric generator (TEG), placed on the body is explored.. Variables that strongly effect the response of the TEG are as follows: skin temperature, human motion or speed, body location, environmental conditions, and the textile properties surrounding the TEG. In this study, the use of textiles for managing thermal comfort of wearable technology and energy harvesting are defined. By varying the stitch length and/or knit structure, one can manipulate the thermal conductivity of the garment in a specific location. Another method of improving TEG efficiency is through the use of a heat spreader, which increases the effective collection area of heat on the TEG hot side. Here we show the effect of a TEG on the thermal properties of a garment with regard to two knit stitches, jersey and 1 × 1 rib.
Sugiyama, Taisei; Liew, Sook-Lei
2017-01-01
Modifying sensory aspects of the learning environment can influence motor behavior. Although the effects of sensory manipulations on motor behavior have been widely studied, there still remains a great deal of variability across the field in terms of how sensory information has been manipulated or applied. Here, the authors briefly review and integrate the literature from each sensory modality to gain a better understanding of how sensory manipulations can best be used to enhance motor behavior. Then, they discuss 2 emerging themes from this literature that are important for translating sensory manipulation research into effective interventions. Finally, the authors provide future research directions that may lead to enhanced efficacy of sensory manipulations for motor learning and rehabilitation.
Loba, P; Stewart, S H; Klein, R M; Blackburn, J R
2001-01-01
The present study was conducted to identify game parameters that would reduce the risk of abuse of video lottery terminals (VLTs) by pathological gamblers, while exerting minimal effects on the behavior of non-pathological gamblers. Three manipulations of standard VLT game features were explored. Participants were exposed to: a counter which displayed a running total of money spent; a VLT spinning reels game where participants could no longer "stop" the reels by touching the screen; and sensory feature manipulations. In control conditions, participants were exposed to standard settings for either a spinning reels or a video poker game. Dependent variables were self-ratings of reactions to each set of parameters. A set of 2(3) x 2 x 2 (game manipulation [experimental condition(s) vs. control condition] x game [spinning reels vs. video poker] x gambler status [pathological vs. non-pathological]) repeated measures ANOVAs were conducted on all dependent variables. The findings suggest that the sensory manipulations (i.e., fast speed/sound or slow speed/no sound manipulations) produced the most robust reaction differences. Before advocating harm reduction policies such as lowering sensory features of VLT games to reduce potential harm to pathological gamblers, it is important to replicate findings in a more naturalistic setting, such as a real bar.
Manipulation strategies for massive space payloads
NASA Technical Reports Server (NTRS)
Book, Wayne J.
1991-01-01
The industrial and environmental applications for robots with a relatively large workspace has increased significantly in the last few years. To accommodate the demands, the manipulator is usually designed with long, lightweight links that are inherently flexible. Ongoing research at Georgia Tech into the behavior and design of these flexible links is discussed.
Immediate effects of spinal manipulation on thermal pain sensitivity: an experimental study
George, Steven Z; Bishop, Mark D; Bialosky, Joel E; Zeppieri, Giorgio; Robinson, Michael E
2006-01-01
Background The underlying causes of spinal manipulation hypoalgesia are largely unknown. The beneficial clinical effects were originally theorized to be due to biomechanical changes, but recent research has suggested spinal manipulation may have a direct neurophysiological effect on pain perception through dorsal horn inhibition. This study added to this literature by investigating whether spinal manipulation hypoalgesia was: a) local to anatomical areas innervated by the lumbar spine; b) correlated with psychological variables; c) greater than hypoalgesia from physical activity; and d) different for A-delta and C-fiber mediated pain perception. Methods Asymptomatic subjects (n = 60) completed baseline psychological questionnaires and underwent thermal quantitative sensory testing for A-delta and C-fiber mediated pain perception. Subjects were then randomized to ride a stationary bicycle, perform lumbar extension exercise, or receive spinal manipulation. Quantitative sensory testing was repeated 5 minutes after the intervention period. Data were analyzed with repeated measures ANOVA and post-hoc testing was performed with Bonferroni correction, as appropriate. Results Subjects in the three intervention groups did not differ on baseline characteristics. Hypoalgesia from spinal manipulation was observed in lumbar innervated areas, but not control (cervical innervated) areas. Hypoalgesic response was not strongly correlated with psychological variables. Spinal manipulation hypoalgesia for A-delta fiber mediated pain perception did not differ from stationary bicycle and lumbar extension (p > 0.05). Spinal manipulation hypoalgesia for C-fiber mediated pain perception was greater than stationary bicycle riding (p = 0.040), but not for lumbar extension (p = 0.105). Conclusion Local dorsal horn mediated inhibition of C-fiber input is a potential hypoalgesic mechanism of spinal manipulation for asymptomatic subjects, but further study is required to replicate this finding in subjects with low back pain. PMID:16911795
Kinematic Determination of an Unmodeled Serial Manipulator by Means of an IMU
NASA Astrophysics Data System (ADS)
Ciarleglio, Constance A.
Kinematic determination for an unmodeled manipulator is usually done through a-priori knowledge of the manipulator physical characteristics or external sensor information. The mathematics of the kinematic estimation, often based on Denavit- Hartenberg convention, are complex and have high computation requirements, in addition to being unique to the manipulator for which the method is developed. Analytical methods that can compute kinematics on-the fly have the potential to be highly beneficial in dynamic environments where different configurations and variable manipulator types are often required. This thesis derives a new screw theory based method of kinematic determination, using a single inertial measurement unit (IMU), for use with any serial, revolute manipulator. The method allows the expansion of reconfigurable manipulator design and simplifies the kinematic process for existing manipulators. A simulation is presented where the theory of the method is verified and characterized with error. The method is then implemented on an existing manipulator as a verification of functionality.
Tilt/Tip/Piston Manipulator with Base-Mounted Actuators
NASA Technical Reports Server (NTRS)
Tahmasebi, Farhad
2006-01-01
A proposed three-degree-of-freedom (tilt/tip/piston) manipulator, suitable for aligning an optical or mechanical component, would offer several advantages over prior such manipulators: Unlike in some other manipulators, no actuator would support the weight of another actuator: All of the actuators would be mounted on a base. Hence, there would be less manipulated weight. The basic geometry of the manipulator would afford mechanical advantage: that is, actuator motions would be larger than the motions they produce in the manipulated object. Mechanical advantage inherently increases the accuracy and resolution of manipulation. Unlike in some other manipulators, it would not be necessary to route power and/or data lines through manipulator joints. The proposed manipulator (see figure) would include three prismatic actuators (T1N1, T2N2, and T3N3) mounted on the base and operating in the same plane. Examples of suitable prismatic actuators include lead-screw mechanisms, linear hydraulic motors, piezoelectric linear drives, inchworm-movement linear stepping motors, and linear flexure drives. The actuators would control the lengths of links R1T1, R2T2, and R3T3. Three spherical joints (P1, P2, and P3) would be located at the corners of an equilateral triangle of side length q on the platform holding the object to be manipulated. Three inextensible limbs (R1P1, R2P2, and R3P3) having length r would connect the spherical joints on the platform to revolute joints (R1, R2, and R3) at the ends of the actuator-controlled links R1T1, R2T2, and R3T3. By varying the lengths of these links, one could control the tilt, tip, and piston coordinates of the platform. Closed-form equations for direct or forward kinematics of the manipulator (given the lengths of the variable links, find the tilt, tip, and piston coordinates) have been derived. The equations of inverse kinematics (find the variable link lengths needed to obtain the desired tilt, tip, and piston coordinates) have also been derived.
Roos, Leslie E.; Knight, Erik L.; Beauchamp, Kathryn G.; Berkman, Elliot T.; Faraday, Kelsie; Hyslop, Katie; Fisher, Philip A.
2017-01-01
Identifying environmental influences on inhibitory control (IC) may help promote positive behavioral and social adjustment. Although chronic stress is known to predict lower IC, the immediate effects of acute stress are unknown. The parasympathetic nervous system (PNS) may be a mechanism of the stress-IC link, given its psychophysiological regulatory role and connections to prefrontal brain regions critical to IC. We used a focused assessment of IC (the stop-signal task) to test whether an acute social stressor (the Trier Social Stress Test) affected participants’ pre- to post-IC performance (n = 58), compared to a control manipulation (n = 31). High frequency heart-rate variability was used as an index of PNS activity in response to the manipulation. Results indicated that stress impaired IC performance, blocking the practice effects observed in control participants. We also investigated the associations between PNS activity and IC; higher resting PNS activity predicted better pre-manipulation IC, and greater PNS stressor reactivity protected against the negative effects of stress on IC. Together, these results are the first to document the immediate effects of acute stress on IC and a phenotypic marker (PNS reactivity to stressors) of susceptibility to stress-induced IC impairment. This study suggests a new way to identify situations in which individuals are likely to exhibit IC vulnerability and related consequences such as impulsivity and risk taking behavior. Targeting PNS regulation may represent a novel target for IC-focused interventions. PMID:28268165
A discrete decentralized variable structure robotic controller
NASA Technical Reports Server (NTRS)
Tumeh, Zuheir S.
1989-01-01
A decentralized trajectory controller for robotic manipulators is designed and tested using a multiprocessor architecture and a PUMA 560 robot arm. The controller is made up of a nominal model-based component and a correction component based on a variable structure suction control approach. The second control component is designed using bounds on the difference between the used and actual values of the model parameters. Since the continuous manipulator system is digitally controlled along a trajectory, a discretized equivalent model of the manipulator is used to derive the controller. The motivation for decentralized control is that the derived algorithms can be executed in parallel using a distributed, relatively inexpensive, architecture where each joint is assigned a microprocessor. Nonlinear interaction and coupling between joints is treated as a disturbance torque that is estimated and compensated for.
Hydraulic manipulator research at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kress, R.L.; Jansen, J.F.; Love, L.J.
1997-03-01
Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge Nationalmore » Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.« less
Yuan, ZY; Jiao, F; Shi, XR; Sardans, Jordi; Maestre, Fernando T; Delgado-Baquerizo, Manuel; Reich, Peter B; Peñuelas, Josep
2017-01-01
Manipulative experiments and observations along environmental gradients, the two most common approaches to evaluate the impacts of climate change on nutrient cycling, are generally assumed to produce similar results, but this assumption has rarely been tested. We did so by conducting a meta-analysis and found that soil nutrients responded differentially to drivers of climate change depending on the approach considered. Soil carbon, nitrogen, and phosphorus concentrations generally decreased with water addition in manipulative experiments but increased with annual precipitation along environmental gradients. Different patterns were also observed between warming experiments and temperature gradients. Our findings provide evidence of inconsistent results and suggest that manipulative experiments may be better predictors of the causal impacts of short-term (months to years) climate change on soil nutrients but environmental gradients may provide better information for long-term correlations (centuries to millennia) between these nutrients and climatic features. Ecosystem models should consequently incorporate both experimental and observational data to properly assess the impacts of climate change on nutrient cycling. DOI: http://dx.doi.org/10.7554/eLife.23255.001 PMID:28570219
Functional Analysis in Virtual Environments
ERIC Educational Resources Information Center
Vasquez, Eleazar, III; Marino, Matthew T.; Donehower, Claire; Koch, Aaron
2017-01-01
Functional analysis (FA) is an assessment procedure involving the systematic manipulation of an individual's environment to determine why a target behavior is occurring. An analog FA provides practitioners the opportunity to manipulate variables in a controlled environment and formulate a hypothesis for the function of a behavior. In previous…
When money is not enough: awareness, success, and variability in motor learning.
Manley, Harry; Dayan, Peter; Diedrichsen, Jörn
2014-01-01
When performing a skill such as throwing a dart, many different combinations of joint motions suffice to hit the target. The motor system adapts rapidly to reduce bias in the desired outcome (i.e., the first-order moment of the error); however, the essence of skill is to produce movements with less variability (i.e., to reduce the second-order moment). It is easy to see how feedback about success or failure could sculpt performance to achieve this aim. However, it is unclear whether the dimensions responsible for success or failure need to be known explicitly by the subjects, or whether learning can proceed without explicit awareness of the movement parameters that need to change. Here, we designed a redundant, two-dimensional reaching task in which we could selectively manipulate task success and the variability of action outcomes, whilst also manipulating awareness of the dimension along which performance could be improved. Variability was manipulated either by amplifying natural errors, leaving the correlation between the executed movement and the visual feedback intact, or by adding extrinsic noise, decorrelating movement and feedback. We found that explicit, binary, feedback about success or failure was only sufficient for learning when participants were aware of the dimension along which motor behavior had to change. Without such awareness, learning was only present when extrinsic noise was added to the feedback, but not when task success or variability was manipulated in isolation; learning was also much slower. Our results highlight the importance of conscious awareness of the relevant dimension during motor learning, and suggest that higher-order moments of outcome signals are likely to play a significant role in skill learning in complex tasks.
King, Andrew J; Preheim, Sarah P; Bailey, Kathryn L; Robeson, Michael S; Roy Chowdhury, Taniya; Crable, Bryan R; Hurt, Richard A; Mehlhorn, Tonia; Lowe, Kenneth A; Phelps, Tommy J; Palumbo, Anthony V; Brandt, Craig C; Brown, Steven D; Podar, Mircea; Zhang, Ping; Lancaster, W Andrew; Poole, Farris; Watson, David B; W Fields, Matthew; Chandonia, John-Marc; Alm, Eric J; Zhou, Jizhong; Adams, Michael W W; Hazen, Terry C; Arkin, Adam P; Elias, Dwayne A
2017-03-07
Temporal variability complicates testing the influences of environmental variability on microbial community structure and thus function. An in-field bioreactor system was developed to assess oxic versus anoxic manipulations on in situ groundwater communities. Each sample was sequenced (16S SSU rRNA genes, average 10,000 reads), and biogeochemical parameters are monitored by quantifying 53 metals, 12 organic acids, 14 anions, and 3 sugars. Changes in dissolved oxygen (DO), pH, and other variables were similar across bioreactors. Sequencing revealed a complex community that fluctuated in-step with the groundwater community and responded to DO. This also directly influenced the pH, and so the biotic impacts of DO and pH shifts are correlated. A null model demonstrated that bioreactor communities were driven in part not only by experimental conditions but also by stochastic variability and did not accurately capture alterations in diversity during perturbations. We identified two groups of abundant OTUs important to this system; one was abundant in high DO and pH and contained heterotrophs and oxidizers of iron, nitrite, and ammonium, whereas the other was abundant in low DO with the capability to reduce nitrate. In-field bioreactors are a powerful tool for capturing natural microbial community responses to alterations in geochemical factors beyond the bulk phase.
King, Andrew J.; Preheim, Sarah P.; Bailey, Kathryn L.; ...
2017-01-23
Temporal variability complicates testing the influences of environmental variability on microbial community structure and thus function. An in-field bioreactor system was developed to assess oxic versus anoxic manipulations on in-situ groundwater communities. Each sample was sequenced (16S SSU rRNA genes, average 10,000 reads) and biogeochemical parameters monitored by quantifying 53 metals, 12 organic acids, 14 anions and 3 sugars. Changes in dissolved oxygen (DO), pH, and other variables were similar across bioreactors. Sequencing revealed a complex community that fluctuated in-step with the groundwater community, and responded to DO. This also directly influenced the pH and so the biotic impacts ofmore » DO and pH shifts are correlated. A null model demonstrated that bioreactor communities were driven in part by experimental conditions but also by stochastic variability and did not accurately capture alterations in diversity during perturbations. We identified two groups of abundant OTUs important to this system; one was abundant in high DO and pH and contained heterotrophs and oxidizers of iron, nitrite, and ammonium, whereas the other was abundant in low DO with the capability to reduce nitrate. In-field bioreactors are a powerful tool for capturing natural microbial community responses to alterations in geochemical factors beyond the bulk phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Andrew J.; Preheim, Sarah P.; Bailey, Kathryn L.
Temporal variability complicates testing the influences of environmental variability on microbial community structure and thus function. An in-field bioreactor system was developed to assess oxic versus anoxic manipulations on in-situ groundwater communities. Each sample was sequenced (16S SSU rRNA genes, average 10,000 reads) and biogeochemical parameters monitored by quantifying 53 metals, 12 organic acids, 14 anions and 3 sugars. Changes in dissolved oxygen (DO), pH, and other variables were similar across bioreactors. Sequencing revealed a complex community that fluctuated in-step with the groundwater community, and responded to DO. This also directly influenced the pH and so the biotic impacts ofmore » DO and pH shifts are correlated. A null model demonstrated that bioreactor communities were driven in part by experimental conditions but also by stochastic variability and did not accurately capture alterations in diversity during perturbations. We identified two groups of abundant OTUs important to this system; one was abundant in high DO and pH and contained heterotrophs and oxidizers of iron, nitrite, and ammonium, whereas the other was abundant in low DO with the capability to reduce nitrate. In-field bioreactors are a powerful tool for capturing natural microbial community responses to alterations in geochemical factors beyond the bulk phase.« less
Variable intertidal temperature explains why disease endangers black abalone
Ben-Horin, Tal; Lenihan, Hunter S.; Lafferty, Kevin D.
2013-01-01
Epidemiological theory suggests that pathogens will not cause host extinctions because agents of disease should fade out when the host population is driven below a threshold density. Nevertheless, infectious diseases have threatened species with extinction on local scales by maintaining high incidence and the ability to spread efficiently even as host populations decline. Intertidal black abalone (Haliotis cracherodii), but not other abalone species, went extinct locally throughout much of southern California following the emergence of a Rickettsiales-like pathogen in the mid-1980s. The rickettsial disease, a condition known as withering syndrome (WS), and associated mortality occur at elevated water temperatures. We measured abalone body temperatures in the field and experimentally manipulated intertidal environmental conditions in the laboratory, testing the influence of mean temperature and daily temperature variability on key epizootiological processes of WS. Daily temperature variability increased the susceptibility of black abalone to infection, but disease expression occurred only at warm water temperatures and was independent of temperature variability. These results imply that high thermal variation of the marine intertidal zone allows the pathogen to readily infect black abalone, but infected individuals remain asymptomatic until water temperatures periodically exceed thresholds modulating WS. Mass mortalities can therefore occur before pathogen transmission is limited by density-dependent factors.
Silvicultural management and the manipulation of rare alleles
Paul G. Schaberg; Gary J. Hawley; Donald H. DeHayes; Samuel E. Nijensohn
2004-01-01
Because rare alleles provide a means for adaptation to environmental change they are often considered important to long-term forest health. Through the selective removal of trees (and genes), silvicultural management may alter the genetic structure of forests, with rare alleles perhaps being uniquely vulnerable to manipulation due to their low frequencies or...
NASA Astrophysics Data System (ADS)
Jordan, M. S.; Alexander, J. D.; Grant, G. E.; Bartholomew, J. L.
2011-12-01
Management strategies for parasites with complex life cycles may target not the parasite itself, but one of the alternate hosts. One approach is to decrease habitat for the alternate host, and in river systems flow manipulations may be employed. Two-dimensional hydraulic models can be powerful tools for predicting the relationship between flow alterations and changes in physical habit, however they require a rigorous definition of physical habitat for the organism of interest. We present habitat characterization data for the case of the alternate host of a salmonid parasite and introduce how it will be used in conjunction with a 2-dimensional hydraulic model. Ceratomyxa shasta is a myxozoan parasite of salmonids that requires a freshwater polychaete Manayunkia speciosa to complete its life cycle. Manayunkia speciosa is a small (3mm) benthic filter-feeding worm that attaches itself perpendicularly to substrate through construction of a flexible tube. In the Klamath River, CA/OR, C. shasta causes significant juvenile salmon mortality, imposing social and economic losses on commercial, sport and tribal fisheries. An interest in manipulating habitat for the polychaete host to decrease the abundance of C. shasta has therefore developed. Unfortunately, there are limited data on the habitat requirements of M. speciosa or the influence of streamflow regime and hydraulics on population dynamics and infection prevalence. This work aims to address these data needs by identifying physical habitat variables that influence the distribution of M. speciosa and determining the relationship between those variables, M. speciosa population density, and C. shasta infection prevalence. Biological samples were collected from nine sites representing three river features (runs, pools, and eddies) within the Klamath River during the summer and fall of 2010 and 2011. Environmental data including depth, velocity, and substrate, were collected at each polychaete sampling location. We tested for differences in environmental variables and polychaete densities among months and river features. Preliminary data suggest differences in density among months and river features as well as relationships among density and water velocity and substrate type. Polychaetes are currently being assayed for C. shasta infection, which will ultimately be included in our analyses. The data will subsequently be used in conjunction with a 2-dimensional hydraulic model to evaluate habitat stability and the influence of varied streamflow senarios.
Environmental quality and evolutionary potential: lessons from wild populations
Charmantier, Anne; Garant, Dany
2005-01-01
An essential requirement to determine a population's potential for evolutionary change is to quantify the amount of genetic variability expressed for traits under selection. Early investigations in laboratory conditions showed that the magnitude of the genetic and environmental components of phenotypic variation can change with environmental conditions. However, there is no consensus as to how the expression of genetic variation is sensitive to different environmental conditions. Recently, the study of quantitative genetics in the wild has been revitalized by new pedigree analyses based on restricted maximum likelihood, resulting in a number of studies investigating these questions in wild populations. Experimental manipulation of environmental quality in the wild, as well as the use of naturally occurring favourable or stressful environments, has broadened the treatment of different taxa and traits. Here, we conduct a meta-analysis on recent studies comparing heritability in favourable versus unfavourable conditions in non-domestic and non-laboratory animals. The results provide evidence for increased heritability in more favourable conditions, significantly so for morphometric traits but not for traits more closely related to fitness. We discuss how these results are explained by underlying changes in variance components, and how they represent a major step in our understanding of evolutionary processes in wild populations. We also show how these trends contrast with the prevailing view resulting mainly from laboratory experiments on Drosophila. Finally, we underline the importance of taking into account the environmental variation in models predicting quantitative trait evolution. PMID:16011915
Fast and Loud Background Music Disrupts Reading Comprehension
ERIC Educational Resources Information Center
Thompson, William Forde; Schellenberg, E. Glenn; Letnic, Adriana Katharine
2012-01-01
We examined the effect of background music on reading comprehension. Because the emotional consequences of music listening are affected by changes in tempo and intensity, we manipulated these variables to create four repeated-measures conditions: slow/low, slow/high, fast/low, fast/high. Tempo and intensity manipulations were selected to be…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nedrich, Sara M.; Chappaz, Anthony; Hudson, Michelle L.
Effects of hydrologic variability on reservoir biogeochemistry are relatively unknown, particularly for less studied metals like vanadium (V). Further, few studies have investigated the fate and effects of sediment-associated V to aquatic organisms in hydrologically variable systems. Our primary objective was to assess effects of hydrologic manipulation on speciation and toxicity of V (range: 635 to 1620 mg kg- 1) and other metals to Hyalella azteca and Daphnia magna. Sediments were collected from a reservoir located in a former mining area and microcosm experiments were conducted to emulate 7-day drying and inundation periods. Despite high sediment concentrations, V bioavailability remainedmore » low with no significant effects to organism survival, growth, or reproduction. The lack of V toxicity was attributed to reduced speciation (III, IV), non-labile complexation, and sorption to Al/Fe/Mn-oxyhydroxides. Zinc (Zn) increased in surface and porewater with inundation, for some sediments exceeding the U.S. EPA threshold for chronic toxicity. While no effects of Zn to organism survival or growth were observed, Zn body concentrations were negatively correlated with H. azteca growth. Results from this study indicate that V bioavailability and environmental risk is dependent on V-speciation, and V is less influenced by hydrologic variability than more labile metals such as Zn.« less
Influence of Internal and External Noise on Spontaneous Visuomotor Synchronization.
Varlet, Manuel; Schmidt, R C; Richardson, Michael J
2016-01-01
Historically, movement noise or variability is considered to be an undesirable property of biological motor systems. In particular, noise is typically assumed to degrade the emergence and stability of rhythmic motor synchronization. Recently, however, it has been suggested that small levels of noise might actually improve the functioning of motor systems and facilitate their adaptation to environmental events. Here, the authors investigated whether noise can facilitate spontaneous rhythmic visuomotor synchronization. They examined the influence of internal noise in the rhythmic limb movements of participants and external noise in the movement of an oscillating visual stimulus on the occurrence of spontaneous synchronization. By indexing the natural frequency variability of participants and manipulating the frequency variability of the visual stimulus, the authors demonstrated that both internal and external noise degrade synchronization when the participants' and stimulus movement frequencies are similar, but can actually facilitate synchronization when the frequencies are different. Furthermore, the two kinds of noise interact with each other. Internal noise facilitates synchronization only when external noise is minimal and vice versa. Too much internal and external noise together degrades synchronization. These findings open new perspectives for better understanding the role of noise in human rhythmic coordination.
An Observation on the Role of Context Variability in Free Recall
ERIC Educational Resources Information Center
Hicks, Jason L.; Marsh, Richard L.; Cook, Gabriel I.
2005-01-01
The authors conducted 3 experiments investigating the effect of context variability and word frequency on free recall. Context variability refers to the number of preexperimental contexts in which a given word is experienced. Both between-subjects and within-subjects manipulations of context variability demonstrated a distinct advantage for low…
Fuzzy logic control of telerobot manipulators
NASA Technical Reports Server (NTRS)
Franke, Ernest A.; Nedungadi, Ashok
1992-01-01
Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.
Evaluating Use of Environmental Flows to Aerate Streams by Modelling the Counterfactual Case.
Stewardson, Michael J; Skinner, Dominic
2018-03-01
This paper evaluates an experimental environmental flow manipulation by modeling the counterfactual case that no environmental flow was applied. This is an alternate approach to evaluating the effect of an environmental flow intervention when a before-after or control-impact comparison is not possible. In this case, the flow manipulation is a minimum flow designed to prevent hypoxia in a weir on the low-gradient Broken Creek in south-eastern Australia. At low flows, low reaeration rates and high respiration rates associated with elevated organic matter loading in the weir pool can lead to a decline in dissolved oxygen concentrations with adverse consequences both for water chemistry and aquatic biota. Using a one dimensional oxygen balance model fitted to field measurements, this paper demonstrates that increased flow leads to increases in reaeration rates, presumably because of enhanced turbulence and hence mixing in the surface layers. By comparing the observed dissolved oxygen levels with the modeled counterfactual case, we show that the environmental flow was effective in preventing hypoxia.
Evaluating Use of Environmental Flows to Aerate Streams by Modelling the Counterfactual Case
NASA Astrophysics Data System (ADS)
Stewardson, Michael J.; Skinner, Dominic
2018-03-01
This paper evaluates an experimental environmental flow manipulation by modeling the counterfactual case that no environmental flow was applied. This is an alternate approach to evaluating the effect of an environmental flow intervention when a before-after or control-impact comparison is not possible. In this case, the flow manipulation is a minimum flow designed to prevent hypoxia in a weir on the low-gradient Broken Creek in south-eastern Australia. At low flows, low reaeration rates and high respiration rates associated with elevated organic matter loading in the weir pool can lead to a decline in dissolved oxygen concentrations with adverse consequences both for water chemistry and aquatic biota. Using a one dimensional oxygen balance model fitted to field measurements, this paper demonstrates that increased flow leads to increases in reaeration rates, presumably because of enhanced turbulence and hence mixing in the surface layers. By comparing the observed dissolved oxygen levels with the modeled counterfactual case, we show that the environmental flow was effective in preventing hypoxia.
NASA Astrophysics Data System (ADS)
Larson, Hannah K.; Goffredi, Shana K.; Parra, Erica L.; Vargas, Orlando; Pinto-Tomas, Adrián A.; McGlynn, Terrence P.
2014-05-01
We document a facultative Bartonella-like Rhizobiales bacterium in the giant tropical ant, Paraponera clavata. In a lowland tropical rainforest in Costa Rica, 59 colonies were assayed for the prevalence of the Bartonella-like bacterium (BLB), 14 of which were positive. We addressed three questions: First, how does the prevalence of BLB within colonies vary with environmental conditions? Second, how does diet affect the prevalence of BLB in P. clavata? Third, how does the distribution of BLB among colonies reflect ambient differences in food resources and foraging habits? A variety of environmental variables that may be predictive of the presence of BLB were measured, and diet manipulations were conducted to test whether the prevalence of BLB responded to supplemental carbohydrate or prey. The ambient frequency of BLB is much higher in young secondary forests, but is nearly absent from older secondary forests. The prevalence of BLB inside field colonies increased over the duration of a 2-week carbohydrate supplementation; however, water and prey supplementation did not alter the prevalence of BLB. The diets of the colonies located in young secondary forest, compared to other habitats, have a diet richer in carbohydrates and lower in prey. The abundance of carbohydrate, or the relative lack of N, in a colony's diet influences the occurrence of the BLB microbe in P. clavata. As experimental diet manipulations can affect the facultative presence of an N-cycling microbe, a consistent diet shift in diet may facilitate the emergence of tighter symbioses.
Subjective Social Status and Cardiovascular Reactivity: An Experimental Examination
Pieritz, Karoline; Süssenbach, Philipp; Rief, Winfried; Euteneuer, Frank
2016-01-01
The present experiment examined the causal influence of subjective social status (SSS) on variables related to cardiovascular health [i.e., blood pressure, heart rate variability (HRV)]. Participants were randomly assigned to one of two conditions involving a social comparison that either induced a temporary shift toward high SSS or toward low SSS. Cardiovascular variables were measured before (baseline), throughout, and after the manipulation (recovery). Participants in the low SSS condition had a significantly lower HRV during experimental manipulation than at baseline (p = 0.001). They also showed a significantly stronger HRV reactivity compared to participants in the high SSS condition (p = 0.027). Our results suggest that already temporary shifts of one's SSS have measureable effects on cardiovascular variables. They support the notion that social status plays a causal role in the development of cardiovascular disease. PMID:27486426
Judged seriousness of environmental losses: reliability and cause of loss
Thomas C. Brown; Dawn Nannini; Robert B. Gorter; Paul A. Bell; George L. Peterson
2002-01-01
Public judgments of the seriousness of environmental losses were found to be internally consistent for most respondents, and largely unaffected by attempts to manipulate responses by altering the mix of losses being judged. Both findings enhance confidence in the feasibility of developing reliable rankings of the seriousness of environmental losses to aid resource...
An involuntary stereotypical grasp tendency pervades voluntary dynamic multifinger manipulation
Rácz, Kornelius; Brown, Daniel
2012-01-01
We used a novel apparatus with three hinged finger pads to characterize collaborative multifinger interactions during dynamic manipulation requiring individuated control of fingertip motions and forces. Subjects placed the thumb, index, and middle fingertips on each hinged finger pad and held it—unsupported—with constant total grasp force while voluntarily oscillating the thumb's pad. This task combines the need to 1) hold the object against gravity while 2) dynamically reconfiguring the grasp. Fingertip force variability in this combined motion and force task exhibited strong synchrony among normal (i.e., grasp) forces. Mechanical analysis and simulation show that such synchronous variability is unnecessary and cannot be explained solely by signal-dependent noise. Surprisingly, such variability also pervaded control tasks requiring different individuated fingertip motions and forces, but not tasks without finger individuation such as static grasp. These results critically extend notions of finger force variability by exposing and quantifying a pervasive challenge to dynamic multifinger manipulation: the need for the neural controller to carefully and continuously overlay individuated finger actions over mechanically unnecessary synchronous interactions. This is compatible with—and may explain—the phenomenology of strong coupling of hand muscles when this delicate balance is not yet developed, as in early childhood, or when disrupted, as in brain injury. We conclude that the control of healthy multifinger dynamic manipulation has barely enough neuromechanical degrees of freedom to meet the multiple demands of ecological tasks and critically depends on the continuous inhibition of synchronous grasp tendencies, which we speculate may be of vestigial evolutionary origin. PMID:22956798
Flombaum, Pedro; Yahdjian, Laura; Sala, Osvaldo E
2017-02-01
Humans are altering global environment at an unprecedented rate through changes in biodiversity, climate, nitrogen cycle, and land use. To address their effects on ecosystem functioning, experiments most frequently explore one driver at a time and control as many confounding factors as possible. Yet, which driver exerts the largest influence on ecosystem functioning and whether their relative importance changes among systems remain unclear. We analyzed experiments in the Patagonian steppe that evaluated the aboveground net primary production (ANPP) response to manipulated gradients of species richness, precipitation, temperature, nitrogen fertilization (N), and grazing intensity. We compared the effect on ANPP relative to ambient conditions considering intensity and direction of manipulations for each driver. The ranking of responses to drivers with comparable manipulation intensity was as follows: biodiversity>grazing>precipitation>N. For a similar intensity of manipulation, the effect of biodiversity loss was 4.0, 3.6, and 1.5, times larger than N deposition, decreased precipitation, and increased grazing intensity. We interpreted our results considering two hypotheses. First, the response of ANPP to changes in precipitation and biodiversity is saturating, so we expected larger effects when the driver was reduced, relative to ambient conditions, than when it was increased. Experimental manipulations that reduced ambient levels had larger effects than those that increased them. Second, the sensitivity of ANPP to each driver is inversely related to the natural variability of the driver. In Patagonia, the ranking of natural variability of drivers is as follows: precipitation>grazing>temperature>biodiversity>N. So, in general, the ecosystem was most sensitive to drivers that varied the least. Comparable results from Cedar Creek (MN) support both hypotheses and suggest that sensitivity to drivers varies among ecosystem types. Given the importance of understanding ecosystem sensitivity to predict global-change impacts, it is necessary to design new experiments located in regions with contrasting natural variability and that include the full range of drivers. © 2016 John Wiley & Sons Ltd.
A Gas-Spring-Loaded X-Y-Z Stage System for X-ray Microdiffraction Sample Manipulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu Deming; Cai Zhonghou; Lai, Barry
2007-01-19
We have designed and constructed a gas-spring-loaded x-y-z stage system for x-ray microdiffraction sample manipulation at the Advanced Photon Source XOR 2-ID-D station. The stage system includes three DC-motor-driven linear stages and a gas-spring-based heavy preloading structure, which provides antigravity forces to ensure that the stage system keeps high-positioning performance under variable goniometer orientation. Microdiffraction experiments with this new stage system showed significant sample manipulation performance improvement.
A Gas-Spring-Loaded X-Y-Z Stage System for X-ray Microdiffraction Sample Manipulation
NASA Astrophysics Data System (ADS)
Shu, Deming; Cai, Zhonghou; Lai, Barry
2007-01-01
We have designed and constructed a gas-spring-loaded x-y-z stage system for x-ray microdiffraction sample manipulation at the Advanced Photon Source XOR 2-ID-D station. The stage system includes three DC-motor-driven linear stages and a gas-spring-based heavy preloading structure, which provides antigravity forces to ensure that the stage system keeps high-positioning performance under variable goniometer orientation. Microdiffraction experiments with this new stage system showed significant sample manipulation performance improvement.
Higginson, Andrew D; Fawcett, Tim W; Trimmer, Pete C; McNamara, John M; Houston, Alasdair I
2012-11-01
Animals live in complex environments in which predation risk and food availability change over time. To deal with this variability and maximize their survival, animals should take into account how long current conditions may persist and the possible future conditions they may encounter. This should affect their foraging activity, and with it their vulnerability to predation across periods of good and bad conditions. Here we develop a comprehensive theory of optimal risk allocation that allows for environmental persistence and for fluctuations in food availability as well as predation risk. We show that it is the duration of good and bad periods, independent of each other, rather than the overall proportion of time exposed to each that is the most important factor affecting behavior. Risk allocation is most pronounced when conditions change frequently, and optimal foraging activity can either increase or decrease with increasing exposure to bad conditions. When food availability fluctuates rapidly, animals should forage more when food is abundant, whereas when food availability fluctuates slowly, they should forage more when food is scarce. We also show that survival can increase as variability in predation risk increases. Our work reveals that environmental persistence should profoundly influence behavior. Empirical studies of risk allocation should therefore carefully control the duration of both good and bad periods and consider manipulating food availability as well as predation risk.
The Effects of Two Types of Appeal on Survey Response Rates.
ERIC Educational Resources Information Center
Green, Kathy E.; And Others
The effects of two cover letter manipulations and their interactions with demographic variables on response to the initial mailing of a survey were investigated. The two manipulations, type of appeal and type of respondent group identification, were intended to affect respondents' perceptions of their social responsibility and position. In all,…
Episodic Memory: Manipulation and Replay of Episodic Memories by Rats.
Wright, Anthony A
2018-06-04
Rats exposed to variable-length, unique-odor lists were tested in distinctive contexts for odors second or forth from list-end. Accurate ability to recall odors backwards from the end of lists points to their ability to manipulate and replay odor-list episodic memories. Copyright © 2018 Elsevier Ltd. All rights reserved.
Multiple-stressor impacts on Spartina alterniflora and Distichlis spicata
Salt marshes are subject to an array of environmental changes that have the potential to alter community structure and function. Manipulative experiments often study environmental changes in isolation, although changes may interactively affect plant and ecosystem response. We rep...
Dunning, James R; Butts, Raymond; Mourad, Firas; Young, Ian; Fernandez-de-Las Peñas, Cesar; Hagins, Marshall; Stanislawski, Thomas; Donley, Jonathan; Buck, Dustin; Hooks, Todd R; Cleland, Joshua A
2016-02-06
Although commonly utilized interventions, no studies have directly compared the effectiveness of cervical and thoracic manipulation to mobilization and exercise in individuals with cervicogenic headache (CH). The purpose of this study was to compare the effects of manipulation to mobilization and exercise in individuals with CH. One hundred and ten participants (n = 110) with CH were randomized to receive both cervical and thoracic manipulation (n = 58) or mobilization and exercise (n = 52). The primary outcome was headache intensity as measured by the Numeric Pain Rating Scale (NPRS). Secondary outcomes included headache frequency, headache duration, disability as measured by the Neck Disability Index (NDI), medication intake, and the Global Rating of Change (GRC). The treatment period was 4 weeks with follow-up assessment at 1 week, 4 weeks, and 3 months after initial treatment session. The primary aim was examined with a 2-way mixed-model analysis of variance (ANOVA), with treatment group (manipulation versus mobilization and exercise) as the between subjects variable and time (baseline, 1 week, 4 weeks and 3 months) as the within subjects variable. The 2X4 ANOVA demonstrated that individuals with CH who received both cervical and thoracic manipulation experienced significantly greater reductions in headache intensity (p < 0.001) and disability (p < 0.001) than those who received mobilization and exercise at a 3-month follow-up. Individuals in the upper cervical and upper thoracic manipulation group also experienced less frequent headaches and shorter duration of headaches at each follow-up period (p < 0.001 for all). Additionally, patient perceived improvement was significantly greater at 1 and 4-week follow-up periods in favor of the manipulation group (p < 0.001). Six to eight sessions of upper cervical and upper thoracic manipulation were shown to be more effective than mobilization and exercise in patients with CH, and the effects were maintained at 3 months. NCT01580280 April 16, 2012.
Exploitation of manipulators: 'hitch-hiking' as a parasite transmission strategy.
Thomas; Renaud; Poulin
1998-07-01
For many parasites with complex life cycles, manipulation of host behaviour is an adaptation to increase the probability of successful transmission. Since manipulation is likely to be costly, other parasites may exploit hosts already manipulated so as to ensure their transmission without investing in manipulation. Such a cheating strategy, called 'hitch-hiking', could be adaptive in a range of situations. We first propose and discuss criteria that should be met by any parasite to be considered a hitch-hiker. Then, to understand the evolution of the hitch-hiking strategy, we use simple mathematical models to analyse the influence of several variables on the potential benefits for a nonmanipulative parasite of actively seeking a ride to the definitive host with a manipulative parasite. The models suggest that the prevalence or abundance of manipulative parasites will be a key determinant of whether hitch-hiking can be an advantageous option for other parasites. Copyright 1998 The Association for the Study of Animal Behaviour.
USDA-ARS?s Scientific Manuscript database
Plant roots mediate the impacts of environmental change on ecosystems, yet knowledge of root responses to environmental change is limited because few experiments manipulate multiple environmental factors and root dynamics are rarely measured thoroughly. Using five years of observations from an exper...
Object impedance control for cooperative manipulation - Theory and experimental results
NASA Technical Reports Server (NTRS)
Schneider, Stanley A.; Cannon, Robert H., Jr.
1992-01-01
This paper presents the dynamic control module of the Dynamic and Strategic Control of Cooperating Manipulators (DASCCOM) project at Stanford University's Aerospace Robotics Laboratory. First, the cooperative manipulation problem is analyzed from a systems perspective, and the desirable features of a control system for cooperative manipulation are discussed. Next, a control policy is developed that enforces a controlled impedance not of the individual arm endpoints, but of the manipulated object itself. A parallel implementation for a multiprocessor system is presented. The controller fully compensates for the system dynamics and directly controls the object internal forces. Most importantly, it presents a simple, powerful, intuitive interface to higher level strategic control modules. Experimental results from a dual two-link-arm robotic system are used to compare the object impedance controller with other strategies, both for free-motion slews and environmental contact.
The role of state anxiety in children's memories for pain.
Noel, Melanie; Chambers, Christine T; McGrath, Patrick J; Klein, Raymond M; Stewart, Sherry H
2012-06-01
To investigate the impact of experimentally manipulated state anxiety and the influence of anxiety-related variables on children's memories for pain. A total of 110 children (60 boys) between the ages of 8 and 12 years were randomly assigned to complete a state anxiety induction task or a control task. Following experimental manipulation, children completed a laboratory pain task, pain ratings, and questionnaire measures of anxiety-related variables. 2 weeks later, children provided pain ratings based on their memories of the pain task. The experimental manipulation effectively induced state anxiety; however, pain memories did not differ between groups. Irrespective of group assignment, children with higher state anxiety had more negative pain memories. State anxiety uniquely predicted children's pain memories over and above other well established factors. Anxiety sensitivity and trait anxiety were significant predictors of recalled pain-related fear. These data highlight the importance of anxiety in the development of children's memories for pain.
Wrist Camera Orientation for Effective Telerobotic Orbital Replaceable Unit (ORU) Changeout
NASA Technical Reports Server (NTRS)
Jones, Sharon Monica; Aldridge, Hal A.; Vazquez, Sixto L.
1997-01-01
The Hydraulic Manipulator Testbed (HMTB) is the kinematic replica of the Flight Telerobotic Servicer (FTS). One use of the HMTB is to evaluate advanced control techniques for accomplishing robotic maintenance tasks on board the Space Station. Most maintenance tasks involve the direct manipulation of the robot by a human operator when high-quality visual feedback is important for precise control. An experiment was conducted in the Systems Integration Branch at the Langley Research Center to compare several configurations of the manipulator wrist camera for providing visual feedback during an Orbital Replaceable Unit changeout task. Several variables were considered such as wrist camera angle, camera focal length, target location, lighting. Each study participant performed the maintenance task by using eight combinations of the variables based on a Latin square design. The results of this experiment and conclusions based on data collected are presented.
Song, Chao; Zheng, Shi-Biao; Zhang, Pengfei; Xu, Kai; Zhang, Libo; Guo, Qiujiang; Liu, Wuxin; Xu, Da; Deng, Hui; Huang, Keqiang; Zheng, Dongning; Zhu, Xiaobo; Wang, H
2017-10-20
Geometric phase, associated with holonomy transformation in quantum state space, is an important quantum-mechanical effect. Besides fundamental interest, this effect has practical applications, among which geometric quantum computation is a paradigm, where quantum logic operations are realized through geometric phase manipulation that has some intrinsic noise-resilient advantages and may enable simplified implementation of multi-qubit gates compared to the dynamical approach. Here we report observation of a continuous-variable geometric phase and demonstrate a quantum gate protocol based on this phase in a superconducting circuit, where five qubits are controllably coupled to a resonator. Our geometric approach allows for one-step implementation of n-qubit controlled-phase gates, which represents a remarkable advantage compared to gate decomposition methods, where the number of required steps dramatically increases with n. Following this approach, we realize these gates with n up to 4, verifying the high efficiency of this geometric manipulation for quantum computation.
Pajares, Silvia; Bonilla-Rosso, German; Travisano, Michael; Eguiarte, Luis E; Souza, Valeria
2012-08-01
Microbial communities are responsible for important ecosystem processes, and their activities are regulated by environmental factors such as temperature and solar ultraviolet radiation. Here we investigate changes in aquatic microbial community structure, diversity, and evenness in response to changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with both microbial mat communities and plankton from natural pools within the Cuatro Cienegas Basin (Mexico). Clone libraries (16S rRNA) were obtained from water samples at the beginning and at the end of the experiment (40 days). Phylogenetic analysis indicated substantial changes in aquatic community composition and structure in response to temperature and UV radiation. Extreme treatments with elevation in temperature or UV radiation reduced diversity in relation to the Control treatments, causing a reduction in richness and increase in dominance, with a proliferation of a few resistant operational taxonomic units. Each phylum was affected differentially by the new conditions, which translates in a differential modification of ecosystem functioning. This suggests that the impact of environmental stress, at least at short term, will reshape the aquatic bacterial communities of this unique ecosystem. This work also demonstrates the possibility of designing manageable synthetic microbial community ecosystems where controlled environmental variables can be manipulated. Therefore, microbial model systems offer a complementary approach to field and laboratory studies of global research problems associated with the environment.
Martínez-Segura, Raquel; De-la-Llave-Rincón, Ana I; Ortega-Santiago, Ricardo; Cleland, Joshua A; Fernández-de-Las-Peñas, César
2012-09-01
Randomized clinical trial. To compare the effects of cervical versus thoracic thrust manipulation in patients with bilateral chronic mechanical neck pain on pressure pain sensitivity, neck pain, and cervical range of motion (CROM). Evidence suggests that spinal interventions can stimulate descending inhibitory pain pathways. To our knowledge, no study has investigated the neurophysiological effects of thoracic thrust manipulation in individuals with bilateral chronic mechanical neck pain, including widespread changes on pressure sensitivity. Ninety patients (51% female) were randomly assigned to 1 of 3 groups: cervical thrust manipulation on the right, cervical thrust manipulation on the left, or thoracic thrust manipulation. Pressure pain thresholds (PPTs) over the C5-6 zygapophyseal joint, lateral epicondyle, and tibialis anterior muscle, neck pain (11-point numeric pain rating scale), and cervical spine range of motion (CROM) were collected at baseline and 10 minutes after the intervention by an assessor blinded to the treatment allocation of the patients. Mixed-model analyses of covariance were used to examine the effects of the treatment on each outcome variable, with group as the between-subjects variable, time and side as the within-subject variables, and gender as the covariate. The primary analysis was the group-by-time interaction. No significant interactions were found with the mixed-model analyses of covariance for PPT level (C5-6, P>.210; lateral epicondyle, P>.186; tibialis anterior muscle, P>.268), neck pain intensity (P = .923), or CROM (flexion, P = .700; extension, P = .387; lateral flexion, P>.672; rotation, P>.192) as dependent variables. All groups exhibited similar changes in PPT, neck pain, and CROM (all, P<.001). Gender did not influence the main effects or the interaction effects in the analyses of the outcomes (P>.10). The results of the current randomized clinical trial suggest that cervical and thoracic thrust manipulation induce similar changes in PPT, neck pain intensity, and CROM in individuals with bilateral chronic mechanical neck pain. However, changes in PPT and CROM were small and did not surpass their respective minimal detectable change values. Further, because we did not include a control group, we cannot rule out a placebo effect of the thrust interventions on the outcomes. Therapy, level 1b.J Orthop Sports Phys Ther 2012;42(9):806-814, Epub 18 June 2012. doi:10.2519/jospt.2012.4151.
Toxicity tests are a common method for determining whether sediment contaminants represent an environmental risk. Toxicity tests indicate if contaminants in sediments are bioavailable and capable of causing adverse biological effects to whole aquatic organisms. Several environmen...
Maintenance costs of serotiny in a variably serotinous pine: The role of water supply.
Martín-Sanz, Ruth C; Callejas-Díaz, Marta; Tonnabel, Jeanne; Climent, José M
2017-01-01
Serotiny is an important adaptation for plants in fire-prone environments. However, different mechanisms also induce the opening of serotinous cones in the absence of fire in variably serotinous species. Xeriscence -cone opening driven by dry and hot conditions- is considered to be mediated only by the external environment, but endogenous factors could also play a significant role. Using the variably serotinous Pinus halepensis as our model species, we determined the effects of cone age and scales density in cone opening, and using in-situ and ex-situ manipulative experiments we investigated the role of water availability in the opening of serotinous cones. We hypothesized that loss of connection between the cones and the branch through the peduncles or the absence of water supply could induce a faster cone opening. Results showed that older cones lost more water and opened at lower temperatures, with no influence of scales density. Both field and chamber manipulative experiments (using paired cones of the same whorl) confirmed that water intake through the peduncles affected significantly the pace of cone opening, such that lack of water supply speeded up cone dehiscence. However, this was true for weakly serotinous provenances-more common in this species-, while highly serotinous provenances were indifferent to this effect in the field test. All our results support that cone serotiny in P. halepensis involves the allocation of water to the cones, which is highly consistent with the previously observed environmental effects. Importantly, the existence of maintenance costs of serotinous cones has strong implications on the effects of climate change in the resilience of natural populations, via modifications of the canopy seed banks and recruitment after stand-replacing fires. Moreover, evolutionary models for serotiny in P. halepensis must take into account the significant contribution of maintenance costs to the complex interaction between genotype and the environment.
Algebraic Manipulation as Motion within a Landscape
ERIC Educational Resources Information Center
Wittmann, Michael C.; Flood, Virginia J.; Black, Katrina E.
2013-01-01
We show that students rearranging the terms of a mathematical equation in order to separate variables prior to integration use gestures and speech to manipulate the mathematical terms on the page. They treat the terms of the equation as physical objects in a landscape, capable of being moved around. We analyze our results within the tradition of…
A Method to Test the Effect of Environmental Cues on Mating Behavior in Drosophila melanogaster.
Gorter, Jenke A; Billeter, Jean-Christophe
2017-07-17
An individual's sexual drive is influenced by genotype, experience and environmental conditions. How these factors interact to modulate sexual behaviors remains poorly understood. In Drosophila melanogaster, environmental cues, such as food availability, affect mating activity offering a tractable system to investigate the mechanisms modulating sexual behavior. In D. melanogaster, environmental cues are often sensed via the chemosensory gustatory and olfactory systems. Here, we present a method to test the effect of environmental chemical cues on mating behavior. The assay consists of a small mating arena containing food medium and a mating couple. The mating frequency for each couple is continuously monitored for 24 h. Here we present the applicability of this assay to test environmental compounds from an external source through a pressurized air system as well as manipulation of the environmental components directly in the mating arena. The use of a pressurized air system is especially useful to test the effect of very volatile compounds, while manipulating components directly in the mating arena can be of value to ascertain a compound's presence. This assay can be adapted to answer questions about the influence of genetic and environmental cues on mating behavior and fecundity as well as other male and female reproductive behaviors.
Single step optimization of manipulator maneuvers with variable structure control
NASA Technical Reports Server (NTRS)
Chen, N.; Dwyer, T. A. W., III
1987-01-01
One step ahead optimization has been recently proposed for spacecraft attitude maneuvers as well as for robot manipulator maneuvers. Such a technique yields a discrete time control algorithm implementable as a sequence of state-dependent, quadratic programming problems for acceleration optimization. Its sensitivity to model accuracy, for the required inversion of the system dynamics, is shown in this paper to be alleviated by a fast variable structure control correction, acting between the sampling intervals of the slow one step ahead discrete time acceleration command generation algorithm. The slow and fast looping concept chosen follows that recently proposed for optimal aiming strategies with variable structure control. Accelerations required by the VSC correction are reserved during the slow one step ahead command generation so that the ability to overshoot the sliding surface is guaranteed.
The Effects of Word Frequency and Context Variability in Cued Recall
ERIC Educational Resources Information Center
Criss, Amy H.; Aue, William R.; Smith, Larissa
2011-01-01
Normative word frequency and context variability affect memory in a range of episodic memory tasks and place constraints on theoretical development. In four experiments, we independently manipulated the word frequency and context variability of the targets (to-be-generated items) and cues in a cued recall paradigm. We found that high frequency…
Al-Haidary, Ahmed A; Abdoun, Khalid A; Samara, Emad M; Okab, Aly B; Sani, Mamane; Refinetti, Roberto
2016-08-01
Camels are well adapted to hot arid environments and can contribute significantly to the economy of developing countries in arid regions of the world. Full understanding of the physiology of camels requires understanding of the internal temporal order of the body, as reflected in daily or circadian rhythms. In the current study, we investigated the daily rhythmicity of 20 physiological variables in camels exposed to natural oscillations of ambient temperature in a desert environment and compared the daily temporal courses of the variables. We also studied the rhythm of core body temperature under experimental conditions with constant ambient temperature in the presence and absence of a light-dark cycle. The obtained results indicated that different physiological variables exhibit different degrees of daily rhythmicity and reach their daily peaks at different times of the day, starting with plasma cholesterol, which peaks 24min after midnight, and ending with plasma calcium, which peaks 3h before midnight. Furthermore, the rhythm of core body temperature persisted in the absence of environmental rhythmicity, thus confirming its endogenous nature. The observed delay in the acrophase of core body temperature rhythm under constant conditions suggests that the circadian period is longer than 24h. Further studies with more refined experimental manipulation of different variables are needed to fully elucidate the causal network of circadian rhythms in dromedary camels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wilcox, Kevin R.; Shi, Zheng; Gherardi, Laureano A.; ...
2017-04-02
Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitationmore » changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. Here, we used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. Finally, this highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change experiments. Additionally, policy and land management decisions related to global change scenarios should consider how ANPP and BNPP responses may differ, and that ecosystem responses to extreme events might not be predicted from relationships found under moderate environmental changes.« less
Wilcox, Kevin R; Shi, Zheng; Gherardi, Laureano A; Lemoine, Nathan P; Koerner, Sally E; Hoover, David L; Bork, Edward; Byrne, Kerry M; Cahill, James; Collins, Scott L; Evans, Sarah; Gilgen, Anna K; Holub, Petr; Jiang, Lifen; Knapp, Alan K; LeCain, Daniel; Liang, Junyi; Garcia-Palacios, Pablo; Peñuelas, Josep; Pockman, William T; Smith, Melinda D; Sun, Shanghua; White, Shannon R; Yahdjian, Laura; Zhu, Kai; Luo, Yiqi
2017-10-01
Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change experiments. Additionally, policy and land management decisions related to global change scenarios should consider how ANPP and BNPP responses may differ, and that ecosystem responses to extreme events might not be predicted from relationships found under moderate environmental changes. © 2017 John Wiley & Sons Ltd.
Clayton, Katie A; Gall, Cory A; Mason, Katheen L; Scoles, Glen A; Brayton, Kelly A
2015-12-10
In North America, ticks are the most economically impactful vectors of human and animal pathogens. The Rocky Mountain wood tick, Dermacentor andersoni (Acari: Ixodidae), transmits Rickettsia rickettsii and Anaplasma marginale to humans and cattle, respectively. In recent years, studies have shown that symbiotic organisms are involved in a number of biochemical and physiological functions. Characterizing the bacterial microbiome of D. andersoni is a pivotal step towards understanding symbiont-host interactions. In this study, we have shown by high-throughput sequence analysis that the composition of endosymbionts in the midgut and salivary glands in adult ticks is dynamic over three generations. Four Proteobacteria genera, Rickettsia, Francisella, Arsenophonus, and Acinetobacter, were identified as predominant symbionts in these two tissues. Exposure to therapeutic doses of the broad-spectrum antibiotic, oxytetracycline, affected both proportions of predominant genera and significantly reduced reproductive fitness. Additionally, Acinetobacter, a free-living ubiquitous microbe, invaded the bacterial microbiome at different proportions based on antibiotic treatment status suggesting that microbiome composition may have a role in susceptibility to environmental contaminants. This study characterized the bacterial microbiome in D. andersoni and determined the generational variability within this tick. Furthermore, this study confirmed that microbiome manipulation is associated with tick fitness and may be a potential method for biocontrol.
Individual variation affects departure rate from the natal pond in an ephemeral pond-breeding anuran
Chelgren, N.D.; Rosenberg, D.K.; Heppell, S.S.; Gitelman, A.I.
2008-01-01
Frogs exhibit extreme plasticity and individual variation in growth and behavior during metamorphosis, driven by interactions of intrinsic state factors and extrinsic environmental factors. In northern red-legged frogs (Rana aurora Baird and Girard, 1852), we studied the timing of departure from the natal pond as it relates to date and size of individuals at metamorphosis in the context of environmental uncertainty. To affect body size at metamorphosis, we manipulated food availability during the larval stage for a sample (317) of 1045 uniquely marked individuals and released them at their natal ponds as newly metamorphosed frogs. We recaptured 34% of marked frogs in pitfall traps as they departed and related the timing of their initial terrestrial movements to individual properties using a time-to-event model. Median age at first capture was 4 and 9 days postmetamorphosis at two sites. The rate of departure was positively related to body size and to date of metamorphosis. Departure rate was strongly negatively related to time elapsed since rainfall, and this effect was diminished for smaller and later metamorphosing frogs. Individual variation in metamorphic traits thus affects individuals' responses to environmental variability, supporting a behavioral link with variation in survival associated with these same metamorphic traits. ?? 2008 NRC.
NASA Technical Reports Server (NTRS)
Tadros, M. G.
1990-01-01
Spirulina sp. is a bioregenerative photosynthetic and edible alga for space craft crews in a Closed Ecological Life Support System (CLESS). It was characterized for growth rate and biomass yield in batch cultures, under various environmental conditions. The cell characteristics were identified for one strain of Spirulina: S. maxima. Fast growth rate and high yield were obtained. The partitioning of the assimulatory products (proteins, carbohydrates, lipids) were manipulated by varying the environmental conditions. Experiments with Spirulina demonstrated that under stress conditions carbohydrate increased at the expense of protein. In other experiments, where the growth media were sufficient in nutrients and incubated under optimum growth conditions, the total proteins were increased up to almost 70 percent of the organic weight. In other words, the nutritional quality of the alga could be manipulated by growth conditions. These results support the feasibility of considering Spirulina as a subsystem in CELSS because of the ease with which its nutrient content can be manipulated.
Method and apparatus for configuration control of redundant robots
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1991-01-01
A method and apparatus to control a robot or manipulator configuration over the entire motion based on augmentation of the manipulator forward kinematics is disclosed. A set of kinematic functions is defined in Cartesian or joint space to reflect the desirable configuration that will be achieved in addition to the specified end-effector motion. The user-defined kinematic functions and the end-effector Cartesian coordinates are combined to form a set of task-related configuration variables as generalized coordinates for the manipulator. A task-based adaptive scheme is then utilized to directly control the configuration variables so as to achieve tracking of some desired reference trajectories throughout the robot motion. This accomplishes the basic task of desired end-effector motion, while utilizing the redundancy to achieve any additional task through the desired time variation of the kinematic functions. The present invention can also be used for optimization of any kinematic objective function, or for satisfaction of a set of kinematic inequality constraints, as in an obstacle avoidance problem. In contrast to pseudoinverse-based methods, the configuration control scheme ensures cyclic motion of the manipulator, which is an essential requirement for repetitive operations. The control law is simple and computationally very fast, and does not require either the complex manipulator dynamic model or the complicated inverse kinematic transformation. The configuration control scheme can alternatively be implemented in joint space.
NASA Astrophysics Data System (ADS)
Reed, S.; Ferrenberg, S.; Tucker, C.; Rutherford, W. A.; Wertin, T. M.; McHugh, T. A.; Morrissey, E.; Kuske, C.; Belnap, J.
2017-12-01
Drylands represent our planet's largest terrestrial biome, making up over 35% of Earth's land surface. In the context of this vast areal extent, it is no surprise that recent research suggests dryland inter-annual variability and responses to change have the potential to drive biogeochemical cycles and climate at the global-scale. Further, the data we do have suggest drylands can respond rapidly and non-linearly to change. Nevertheless, our understanding of the cross-system consistency of and mechanisms behind dryland responses to a changed environment remains relatively poor. This poor understanding hinders not only our larger understanding of terrestrial ecosystem function, but also our capacity to forecast future global biogeochemical cycles and climate. Here we present data from a series of Colorado Plateau manipulation experiments - including climate, land use, and nitrogen deposition manipulations - to explore how vascular plants, microbial communities, and biological soil crusts (a community of mosses, lichens, and/or cyanobacteria living in the interspace among vascular plants in arid and semiarid ecosystems worldwide) respond to a host of environmental changes. These responses include not only assessments of community composition, but of their function as well. We will explore photosynthesis, net soil CO2 exchange, soil carbon stocks and chemistry, albedo, and nutrient cycling. The experiments were begun with independent questions and cover a range of environmental change drivers and scientific approaches, but together offer a relatively holistic picture of how some drylands can change their structure and function in response to change. In particular, the data show very high ecosystem vulnerability to particular drivers, but surprising resilience to others, suggesting a multi-faceted response of these diverse systems.
Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation.
Yang, Y; Liu, A Q; Chin, L K; Zhang, X M; Tsai, D P; Lin, C L; Lu, C; Wang, G P; Zheludev, N I
2012-01-31
Transformation optics represents a new paradigm for designing light-manipulating devices, such as cloaks and field concentrators, through the engineering of electromagnetic space using materials with spatially variable parameters. Here we analyse liquid flowing in an optofluidic waveguide as a new type of controllable transformation optics medium. We show that a laminar liquid flow in an optofluidic channel exhibits spatially variable dielectric properties that support novel wave-focussing and interference phenomena, which are distinctively different from the discrete diffraction observed in solid waveguide arrays. Our work provides new insight into the unique optical properties of optofluidic waveguides and their potential applications.
Fitting population models from field data
Emlen, J.M.; Freeman, D.C.; Kirchhoff, M.D.; Alados, C.L.; Escos, J.; Duda, J.J.
2003-01-01
The application of population and community ecology to solving real-world problems requires population and community dynamics models that reflect the myriad patterns of interaction among organisms and between the biotic and physical environments. Appropriate models are not hard to construct, but the experimental manipulations needed to evaluate their defining coefficients are often both time consuming and costly, and sometimes environmentally destructive, as well. In this paper we present an empirical approach for finding the coefficients of broadly inclusive models without the need for environmental manipulation, demonstrate the approach with both an animal and a plant example, and suggest possible applications. Software has been developed, and is available from the senior author, with a manual describing both field and analytic procedures.
ERIC Educational Resources Information Center
Kynigos, Chronis; Psycharis, Georgos
2003-01-01
We explore how 13 year-olds construct meanings around the notion of curvature in their classroom while working with software that combines symbolic notation to construct geometrical figures with dynamic manipulation of variable. The ideas of curve as intrinsic dynamic construction, and curve as object with properties related to its positioning on…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for themore » closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for themore » closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.« less
Blodgett, David L.; Booth, Nathaniel L.; Kunicki, Thomas C.; Walker, Jordan I.; Viger, Roland J.
2011-01-01
Interest in sharing interdisciplinary environmental modeling results and related data is increasing among scientists. The U.S. Geological Survey Geo Data Portal project enables data sharing by assembling open-standard Web services into an integrated data retrieval and analysis Web application design methodology that streamlines time-consuming and resource-intensive data management tasks. Data-serving Web services allow Web-based processing services to access Internet-available data sources. The Web processing services developed for the project create commonly needed derivatives of data in numerous formats. Coordinate reference system manipulation and spatial statistics calculation components implemented for the Web processing services were confirmed using ArcGIS 9.3.1, a geographic information science software package. Outcomes of the Geo Data Portal project support the rapid development of user interfaces for accessing and manipulating environmental data.
NASA Astrophysics Data System (ADS)
Knapp, Alan; Smith, Melinda; Collins, Scott; Blair, John; Briggs, John
2010-05-01
Understanding and predicting the dynamics of ecological systems has always been central to Ecology. Today, ecologists recognize that in addition to natural and human-caused disturbances, a fundamentally different type of ecosystem change is being driven by the combined and cumulative effects of anthropogenic activities affecting earth's climate and biogeochemical cycles. This type of change is historically unprecedented in magnitude, and as a consequence, such alterations are leading to trajectories of change in ecological responses that differ radically from those observed in the past. Through both short- and long-term experiments, we have been trying to better understand the mechanisms and consequences of ecological change in grassland ecosystems likely to result from changes in precipitation regimes. We have manipulated a key resource for most grasslands (water) and modulators of water availability (temperature) in field experiments that vary from 1-17 years in duration, and used even longer-term monitoring data from the Konza Prairie LTER program to assess how grassland communities and ecosystems will respond to changes in water availability. Trajectories of change in aboveground net primary production (ANPP) in sites subjected to 17 years of soil water augmentation were strongly non-linear with a marked increase in the stimulation of ANPP after year 8 (from 25% to 65%). Lags in alterations in grassland community composition are posited to be responsible for the form of this trajectory of change. In contrast, responses in ANPP to chronic increases in soil moisture variability appear to have decreased over a 10-yr period of manipulation, although the net effects of more variable precipitation inputs were to reduce ANPP, alter the genetic structure of the dominant grass species, increase soil nitrogen availability and reduce soil respiration. The loss of sensitivity to increased resource variability was not reflected in adjacent plots where precipitation was manipulated for only a single year. And when similar short-term experimental manipulations of precipitation variability were conducted in more arid grasslands, responses in ANPP were opposite those in mesic grassland. This suggests that grassland responses to alterations in precipitation inputs may vary dramatically depending on the long-term hydrologic regime.
Locomotor activity and non-photic influences on circadian clocks.
Mrosovsky, N
1996-08-01
Some of the main themes in this review are as follows. 1. The notion that non-photic zeitgebers are weak needs re-examining. Phase-shifts to some non-photic manipulations can be as large as those to light pulses. 2. As well as being able to phase-shift and entrain free-running rhythms, non-photic events have a number of other effects: these include after-effects of entrainment, period changes, and promotion of splitting. 3. The critical variable for non-photic shifting is unknown. Locomotor activity is more likely to be an index of some other necessary state rather than being causal itself. This index may be better when tendencies to move are channelled into easily measured behaviours like wheel-running. 4. Given ignorance about the critical variable, quantification of activity may be the best presently available measure of zeitgeber intensity. Therefore, the behaviour during non-photic manipulations must be examined as carefully as the shifts themselves. When no phase-shifting follows manipulations such as IGL lesions or serotonin depletion, if the animals are inactive, then little can be inferred. 5. Lack of information on the critical variable(s) for non-photic shifting makes it problematic to compare data from studies using different non-photic manipulations. However, the presence of locomotor activity (or its correlate) does appear to be necessary for triazolam to produce shifts. 6. Novelty-induced wheel-running in hamsters depends on the NPY projection from the IGL to SCN. It remains to be determined how important NPY is in other species or in clock-resetting by other manipulations, but methods are now available to study this. 7. Interactions between photic and non-photic zeitgebers remain virtually unexplored, but it is evident that photic and non-photic stimuli can attenuate the phase-shifting effects of each other. Interactions are not purely additive or predictable from PRCs. 8. The circadian system does more than synchronize free-running rhythms to the solar day. Its non-photic functions and their interactions with photic inputs probably account for some of the anatomical complexity of circadian circuitry.
Early Life Manipulations Alter Learning and Memory in Rats
Kosten, Therese A; Kim, Jeansok J; Lee, Hongjoo J.
2012-01-01
Much research shows early life manipulations have enduring behavioral, neural, and hormonal effects. However, findings of learning and memory performance vary widely across studies. We reviewed studies in which pre-weaning rat pups were exposed to stressors and tested on learning and memory tasks in adulthood. Tasks were classified as aversive conditioning, inhibitory learning, or spatial/relational memory. Variables of duration, type, and timing of neonatal manipulation and sex and strain of animals were examined to determine if any predict enhanced or impaired performance. Brief separations enhanced and prolonged separations impaired performance on spatial/relational tasks. Performance was impaired in aversive conditioning and enhanced in inhibitory learning tasks regardless of manipulation duration. Opposing effects on performance for spatial/relational memory also depended upon timing of manipulation. Enhanced performance was likely if the manipulation occurred during postnatal week 3 but performance was impaired if it was confined to the first two postnatal weeks. Thus, the relationship between early life experiences and adulthood learning and memory performance is multifaceted and decidedly task-dependent. PMID:22819985
Changing attitudes towards obesity - results from a survey experiment.
Luck-Sikorski, C; Riedel-Heller, S G; Phelan, J C
2017-05-02
This experimental study in a population-based sample aimed to compare attitudes towards obesity following three different causal explanations for obesity (individual behavior, environmental factors, genetic factors). The data were derived from an online representative sample. A random subsample of n = 407 participants was included. Two independent variables were investigated: cause of obesity as described in the vignette and cause of obesity as perceived by the participant regardless of vignette. Quality features of the vignettes (accuracy and bias of the vignette) were introduced as moderators to regression models. Three stigma-related outcomes (negative attitudes, blame and social distance) served as dependent variables. Inaccuracy and bias was ascribed to the social environmental and genetic vignettes more often than to the individual cause vignette. Overall, participants preferred individual causes (72.6%). While personal beliefs did not differ between the genetic and environmental cause conditions (Chi 2 = 4.36, p = 0.113), both were different from the distribution seen in the individual cause vignette. Negative attitudes as well as blame were associated with the belief that individuals are responsible for obesity (b = 0.374, p = 0.003; 0.597, p < 0.001), but were not associated with vignette-manipulated causal explanation. The vignette presenting individual responsibility was associated with lower levels of social distance (b = -0.183, p = 0.043). After including perceived inaccuracy and bias as moderators, the individual responsibility vignette was associated with higher levels of blame (emphasis: b = 0.980, p = 0.010; bias: b = 0.778, p = 0.001) and the effect on social distance vanished. This study shows that media and public health campaigns may solidify beliefs that obesity is due to individual causes and consequently increase stigma when presenting individual behavior as a cause of obesity. Public health messages that emphasize the role of social environmental or genetic causes may be ineffective because of entrenched beliefs.
USDA-ARS?s Scientific Manuscript database
According to the U.S. National Environmental Policy Act of 1969 (NEPA), federal action to manipulate habitat for species conservation requires an environmental impact statement (EIS), which should integrate natural and social sciences in planning and decision-making. Nonetheless, most impact assessm...
Forestry Herbicide Environmental Risks--An EIS Perspective
D.G. Neary
1989-01-01
The U.S. Forest Service is in the process of completing Environmental Impact Statements (EIS's) on vegetation management for three physiographic regions of the South. This includes all forestry activities involving manipulation of plants in national forests and grasslands of the Coastal Plain-Piedmont, Appalachian Mountains, and the Ozark/Ouachita Mountains. These...
Control of an automated mobile manipulator using artificial immune system
NASA Astrophysics Data System (ADS)
Deepak, B. B. V. L.; Parhi, Dayal R.
2016-03-01
This paper addresses the coordination and control of a wheeled mobile manipulator (WMM) using artificial immune system. The aim of the developed methodology is to navigate the system autonomously and transport jobs and tools in manufacturing environments. This study integrates the kinematic structures of a four-axis manipulator and a differential wheeled mobile platform. The motion of the developed WMM is controlled by the complete system of parametric equation in terms of joint velocities and makes the robot to follow desired trajectories by the manipulator and platform within its workspace. The developed robot system performs its action intelligently according to the sensed environmental criteria within its search space. To verify the effectiveness of the proposed immune-based motion planner for WMM, simulations as well as experimental results are presented in various unknown environments.
Saavedra-Hernández, Manuel; Castro-Sánchez, Adelaida M; Arroyo-Morales, Manuel; Cleland, Joshua A; Lara-Palomo, Inmaculada C; Fernández-de-Las-Peñas, César
2012-08-01
Randomized clinical trial. To compare the effectiveness of cervical spine thrust manipulation to that of Kinesio Taping applied to the neck in individuals with mechanical neck pain, using self-reported pain and disability and cervical range of motion as measures. The effectiveness of cervical manipulation has received considerable attention in the literature. However, because some patients cannot tolerate cervical thrust manipulation, alternative therapeutic options should be investigated. Eighty patients (36 women) were randomly assigned to 1 of 2 groups: the manipulation group, which received 2 cervical thrust manipulations, and the tape group, which received Kinesio Taping applied to the neck. Neck pain (11-point numeric pain rating scale), disability (Neck Disability Index), and cervical-range-of-motion data were collected at baseline and 1 week after the intervention by an assessor blinded to the treatment allocation of the patients. Mixed-model analyses of variance were used to examine the effects of the treatment on each outcome variable, with group as the between-subjects variable and time as the within-subjects variable. The primary analysis was the group-by-time interaction. No significant group-by-time interactions were found for pain (F = 1.892, P = .447) or disability (F = 0.115, P = .736). The group-by-time interaction was statistically significant for right (F = 7.317, P = .008) and left (F = 9.525, P = .003) cervical rotation range of motion, with the patients who received the cervical thrust manipulation having experienced greater improvement in cervical rotation than those treated with Kinesio Tape (P<.01). No significant group-by-time interactions were found for cervical spine range of motion for flexion (F = 0.944, P = .334), extension (F = 0.122, P = .728), and right (F = 0.220, P = .650) and left (F = 0.389, P = .535) lateral flexion. Patients with mechanical neck pain who received cervical thrust manipulation or Kinesio Taping exhibited similar reductions in neck pain intensity and disability and similar changes in active cervical range of motion, except for rotation. Changes in neck pain surpassed the minimal clinically important difference, whereas changes in disability did not. Changes in cervical range of motion were small and not clinically meaningful. Because we did not include a control or placebo group in this study, we cannot rule out a placebo effect or natural changes over time as potential reasons for the improvements measured in both groups. Therapy, level 1b.
Koen, Joshua D.; Aly, Mariam; Wang, Wei-Chun; Yonelinas, Andrew P.
2013-01-01
A prominent finding in recognition memory is that studied items are associated with more variability in memory strength than new items. Here, we test three competing theories for why this occurs - the encoding variability, attention failure, and recollection accounts. Distinguishing amongst these theories is critical because each provides a fundamentally different account of the processes underlying recognition memory. The encoding variability and attention failure accounts propose that old item variance will be unaffected by retrieval manipulations because the processes producing this effect are ascribed to encoding. The recollection account predicts that both encoding and retrieval manipulations that preferentially affect recollection will affect memory variability. These contrasting predictions were tested by examining the effect of response speeding (Experiment 1), dividing attention at retrieval (Experiment 2), context reinstatement (Experiment 3), and increased test delay (Experiment 4) on recognition performance. The results of all four experiments confirmed the predictions of the recollection account, and were inconsistent with the encoding variability account. The evidence supporting the attention failure account was mixed, with two of the four experiments confirming the account and two disconfirming the account. These results indicate that encoding variability and attention failure are insufficient accounts of memory variance, and provide support for the recollection account. Several alternative theoretical accounts of the results are also considered. PMID:23834057
ERIC Educational Resources Information Center
Belke, Terry W.
2011-01-01
The current study examined the variables that influence postreinforcement pause (PRP) duration in rats when wheel running serves as the reinforcing consequence. The relationship between revolutions and PRP duration when revolutions were manipulated within a session and the effect of changing the response requirement from fixed to variable on PRP…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, Kevin R.; Shi, Zheng; Gherardi, Laureano A.
Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitationmore » changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. Here, we used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. Finally, this highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change experiments. Additionally, policy and land management decisions related to global change scenarios should consider how ANPP and BNPP responses may differ, and that ecosystem responses to extreme events might not be predicted from relationships found under moderate environmental changes.« less
Ditcharles, Sébastien; Yiou, Eric; Delafontaine, Arnaud; Hamaoui, Alain
2017-01-01
Speed performance during gait initiation is known to be dependent on the capacity of the central nervous system to generate efficient anticipatory postural adjustments (APA). According to the posturo-kinetic capacity (PKC) concept, any factor enhancing postural chain mobility and especially spine mobility, may facilitate the development of APA and thus speed performance. “Spinal Manipulative Therapy High-Velocity, Low-Amplitude” (SMT-HVLA) is a healing technique applied to the spine which is routinely used by healthcare practitioners to improve spine mobility. As such, it may have a positive effect on the PKC and therefore facilitate gait initiation. The present study aimed to investigate the short-term effect of thoracic SMT-HVLA on spine mobility, APA and speed performance during gait initiation. Healthy young adults (n = 22) performed a series of gait initiation trials on a force plate before (“pre-manipulation” condition) and after (“post-manipulation” condition) a sham manipulation or an HVLA manipulation applied to the ninth thoracic vertebrae (T9). Participants were randomly assigned to the sham (n = 11) or the HVLA group (n = 11).The spine range of motion (ROM) was assessed in each participant immediately after the sham or HVLA manipulations using inclinometers. The results showed that the maximal thoracic flexion increased in the HVLA group after the manipulation, which was not the case in the sham group. In the HVLA group, results further showed that each of the following gait initiation variables reached a significantly lower mean value in the post-manipulation condition as compared to the pre-manipulation condition: APA duration, peak of anticipatory backward center of pressure displacement, center of gravity velocity at foot-off, mechanical efficiency of APA, peak of center of gravity velocity and step length. In contrast, for the sham group, results showed that none of the gait initiation variables significantly differed between the pre- and post-manipulation conditions. It is concluded that HVLA manipulation applied to T9 has an immediate beneficial effect on spine mobility but a detrimental effect on APA development and speed performance during gait initiation. We suggest that a neural effect induced by SMT-HVLA, possibly mediated by a transient alteration in the early sensory-motor integration, might have masked the potential mechanical benefits associated with increased spine mobility. PMID:28713254
Bicalho, Eduardo; Setti, João Antônio Palma; Macagnan, Jones; Cano, José Luis Rivas; Manffra, Elisangela Ferretti
2010-10-01
High-velocity spinal manipulation is commonly adopted for treating chronic low-back pain (CLBP) and has been associated with changes in muscle activity, but the evidence is controversial. The aim of this study was to analyse the immediate effects of high-velocity spine manipulation on paraspinal activity during flexion-extension trunk movements. Forty nonspecific CLBP patients were randomised into two groups, manipulation (n = 20) and control (n = 20). While the manipulation group received high-velocity spine manipulation at the L4-L5 level, the control group remained lying in the same position. EMG-related variables, perceived pain intensity (100 mm VAS) and finger-floor distance were collected before and after spinal manipulation at the L4-L5 level. EMG surface signals from the right and left paraspinal muscles (L5-S1 level) were acquired during trunk flexion-extension cycles. EMG activity during the static relaxation phase was significantly reduced following intervention for the manipulation group but not for the control group. The extension-phase EMG activity was also reduced after manipulation, but the flexion-phase EMG levels remained unchanged. Accordingly, the percent changes in FRR and ERR were significantly larger for the manipulation group compared to the control. The results suggest that a high-velocity spinal manipulation is able to acutely reduce abnormal EMG activity during the full-flexion static phase and activation during the extension phase. Copyright 2010 Elsevier Ltd. All rights reserved.
Performance limitations of bilateral force reflection imposed by operator dynamic characteristics
NASA Technical Reports Server (NTRS)
Chapel, Jim D.
1989-01-01
A linearized, single-axis model is presented for bilateral force reflection which facilitates investigation into the effects of manipulator, operator, and task dynamics, as well as time delay and gain scaling. Structural similarities are noted between this model and impedance control. Stability results based upon this model impose requirements upon operator dynamic characteristics as functions of system time delay and environmental stiffness. An experimental characterization reveals the limited capabilities of the human operator to meet these requirements. A procedure is presented for determining the force reflection gain scaling required to provide stability and acceptable operator workload. This procedure is applied to a system with dynamics typical of a space manipulator, and the required gain scaling is presented as a function of environmental stiffness.
Catecholaminergic Regulation of Learning Rate in a Dynamic Environment.
Jepma, Marieke; Murphy, Peter R; Nassar, Matthew R; Rangel-Gomez, Mauricio; Meeter, Martijn; Nieuwenhuis, Sander
2016-10-01
Adaptive behavior in a changing world requires flexibly adapting one's rate of learning to the rate of environmental change. Recent studies have examined the computational mechanisms by which various environmental factors determine the impact of new outcomes on existing beliefs (i.e., the 'learning rate'). However, the brain mechanisms, and in particular the neuromodulators, involved in this process are still largely unknown. The brain-wide neurophysiological effects of the catecholamines norepinephrine and dopamine on stimulus-evoked cortical responses suggest that the catecholamine systems are well positioned to regulate learning about environmental change, but more direct evidence for a role of this system is scant. Here, we report evidence from a study employing pharmacology, scalp electrophysiology and computational modeling (N = 32) that suggests an important role for catecholamines in learning rate regulation. We found that the P3 component of the EEG-an electrophysiological index of outcome-evoked phasic catecholamine release in the cortex-predicted learning rate, and formally mediated the effect of prediction-error magnitude on learning rate. P3 amplitude also mediated the effects of two computational variables-capturing the unexpectedness of an outcome and the uncertainty of a preexisting belief-on learning rate. Furthermore, a pharmacological manipulation of catecholamine activity affected learning rate following unanticipated task changes, in a way that depended on participants' baseline learning rate. Our findings provide converging evidence for a causal role of the human catecholamine systems in learning-rate regulation as a function of environmental change.
Lieberman, Harris R; Kramer, F Matthew; Montain, Scott J; Niro, Philip
2007-05-01
Limited opportunities to study human cognitive performance in non-laboratory, ambulatory situations exist. However, advances in technology make it possible to extend behavioral assessments to the field. One of the first devices to measure human behavior in the field was the wrist-worn actigraph. This device acquires minute-by-minute information on an individual's physical activity and can distinguish sleep from waking, the most basic aspect of behavior. Our laboratory developed a series of wrist-worn devices, not much larger than a watch, which assess reaction time, vigilance and memory. The devices concurrently assess motor activity with greater temporal resolution than standard actigraphs. They also continuously monitor multiple environmental variables including temperature, humidity, sound, and light. These monitors have been employed during training and simulated military operations to collect behavioral and environmental information that would typically be unavailable under such circumstances. Development of the vigilance monitor, and how each successive version extended capabilities of the device are described. Data from several studies are presented, including studies conducted in harsh field environments during a simulated infantry assault, an officer training course. The monitors simultaneously documented environmental conditions, patterns of sleep and activity and effects of nutritional manipulations on cognitive performance. They provide a new method to relate cognitive performance to real world environmental conditions and assess effects of various interventions on human behavior in the field. They can also monitor cognitive performance in real time, and if it is degraded, attempt to intervene to maintain
Simple Model of the Circulation.
ERIC Educational Resources Information Center
Greenway, Clive A.
1980-01-01
Describes a program in BASIC-11 that explores the relationships between various variables in the circulatory system and permits manipulation of several semiindependent variables to model the effects of hemorrhage, drug infusions, etc. A flow chart and accompanying sample printout are provided; the program is listed in the appendix. (CS)
Problem Variables that Promote Incubation Effects
ERIC Educational Resources Information Center
Penney, Catherine G.; Godsell, Annette; Scott, Annette; Balsom, Rod
2004-01-01
Three studies sought to determine whether incubation effects could be reliably generated in a problem-solving task. Experimental variables manipulated were the duration of the interval between two problem-solving opportunities and the activity performed by the problem solvers during the interval. A multisolution anagram task was used which…
Internal Validity: A Must in Research Designs
ERIC Educational Resources Information Center
Cahit, Kaya
2015-01-01
In experimental research, internal validity refers to what extent researchers can conclude that changes in dependent variable (i.e. outcome) are caused by manipulations in independent variable. The causal inference permits researchers to meaningfully interpret research results. This article discusses (a) internal validity threats in social and…
EXPERIMENTAL DESIGN AND INSTRUMENTATION FOR A FIELD EXPERIMENT
This report concerns the design of a field experiment for a military setting in which the effects of carbon monoxide on neurobehavioral variables are to be studied. ield experiment is distinguished from a survey by the fact that independent variables are manipulated, just as in t...
An electronic flow control system for a variable-rate tree sprayer
USDA-ARS?s Scientific Manuscript database
Precise modulation of nozzle flow rates is a critical measure to achieve variable-rate spray applications. An electronic flow rate control system accommodating with microprocessors and pulse width modulation (PWM) controlled solenoid valves was designed to manipulate the output of spray nozzles inde...
ERIC Educational Resources Information Center
Vostal, Brooks R.; Lee, David L.; Miller, Faith
2013-01-01
Behaviors characteristic of attention deficit/hyperactivity disorder (ADHD) often interfere with students' and their classmates' learning, and interventions targeting these behaviors may be particularly important in schools. This article reviews studies in which researchers manipulated environmental stimulation during task presentation…
Non-classic multiscale modeling of manipulation based on AFM, in aqueous and humid ambient
NASA Astrophysics Data System (ADS)
Korayem, M. H.; Homayooni, A.; Hefzabad, R. N.
2018-05-01
To achieve a precise manipulation, it is important that an accurate model consisting the size effect and environmental conditions be employed. In this paper, the non-classical multiscale modeling is developed to investigate the manipulation in a vacuum, aqueous and humid ambient. The manipulation structure is considered into two parts as a macro-field (MF) and a nano-field (NF). The governing equations of the AFM components (consist of the cantilever and tip) in the MF are derived based on the modified couple stress theory. The material length scale parameter is used to study the size effect. The fluid flow in the MF is assumed as the Couette and Creeping flows. Moreover, the NF is modeled using the molecular dynamics. The Electro-Based (ELBA) model is considered to model the ambient condition in the NF. The nanoparticle in the different conditions is taken into account to study the manipulation. The results of the manipulation indicate that the predicted deflection of the non-classical model is less than the classical one. Comparison of the nanoparticle travelled distance on substrate shows that the manipulation in the submerged condition is close to the ideal manipulation. The results of humid condition illustrate that by increasing the relative humidity (RH) the manipulation force decreases. Furthermore, Root Mean Square (RMS) as a criterion of damage demonstrates that the submerged nanoparticle has the minimum damage, however, the minimum manipulation force occurs in superlative humid ambient.
Infaunal macrobenthic community dynamics in a manipulated hyperhaline ecosystem: a long-term study
2013-01-01
Background Understanding the responses of ecological communities to human-induced perturbations is crucial for establishing conservation goals. Ecological communities are dynamic entities undergoing fluctuations due to their intrinsic characteristics as well as anthropogenic pressures varying over time. In this respect, long-term studies, based on large spatial and temporal datasets, may provide useful information in understanding patterns and processes influencing the communities’ structure. Theoretical evidence suggests that a role of biodiversity is acting as a compensatory buffer against environmental variability by decreasing the temporal variance in ecosystem functioning and by raising the level of community response to perturbations through the selection of better performing species. Therefore, the spatial and temporal changes in the specialization of the community components may be used as an effective tool to monitor the effects of natural and anthropogenic alterations of the environment in dynamic systems. We examined the temporal dynamics of macroinvertebrate community structure in the hyperhaline habitat of Tarquinia Saltworks (central Italy). We aimed at: (i) investigating the relationships between the level of community specialization and the alterations of the environment across fourteen years; (ii) comparing the ability of aggregate community parameters such as the average abundance vs. species specialization in describing patterns of community composition. Results We arranged the data in three sub-sets according to three periods, each characterized by different environmental conditions. The mean abundance of sampled macroinvertebrates showed a significant change (p < 0.01) only in the community inhabiting the saltwork basin closely connected to the sea, characterized by the highest environmental variation (i.e. the coefficient of variation, CV, of the aggregate environmental variability over the study period, CVrange = 0.010 - 0.2). Here we found marine species like Modiolus adriaticus (Lamarck, 1819), Neanthes irrorata (Malmgren, 1867), and Amphiglena mediterranea (Leydig, 1851), which inhabited the saltworks during the halt period but disappeared during the subsequent eutrophication phase. Conversely, species specialization showed a significant decrease for each sampled community in the presence of habitat degradation and a recovery after ecological restoration. The widest fluctuations of specialization were recorded for the community inhabiting the saltwork basin with the highest long-term environmental variability. Conclusions Recent advances have shown how the increased temporal and spatial variability of species’ abundance within the communities may be a signal of habitat disturbance, even in the absence of an apparent decline. Such approach could also be used as a sensitive monitoring tool, able to detect whether or not communities are subjected to increasing biotic homogenization. Also, the increased functional similarity triggered by habitat degradation may impact on species at higher trophic levels, such as the waterbirds wintering in the area or using it as a stopover during migration. PMID:24192133
The motivating operation and negatively reinforced problem behavior: a systematic review.
Langthorne, Paul; McGill, Peter; Oliver, Chris
2014-01-01
The concept of motivational operations exerts an increasing influence on the understanding and assessment of problem behavior in people with intellectual and developmental disability. In this systematic review of 59 methodologically robust studies of the influence of motivational operations in negative reinforcement paradigms in this population, we identify themes related to situational and biological variables that have implications for assessment, intervention, and further research. There is now good evidence that motivational operations of differing origins influence negatively reinforced problem behavior, and that these might be subject to manipulation to facilitate favorable outcomes. There is also good evidence that some biological variables warrant consideration in assessment procedures as they predispose the person's behavior to be influenced by specific motivational operations. The implications for assessment and intervention are made explicit with reference to variables that are open to manipulation or that require further research and conceptualization within causal models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nafisi, Kourosh; Ranau, Werner; Hemminger, John C.
2001-01-01
We present a new ultrahigh vacuum (UHV) chamber for surface analysis and microscopy at controlled, variable temperatures. The new instrument allows surface analysis with Auger electron spectroscopy, low energy electron diffraction, quadrupole mass spectrometer, argon ion sputtering gun, and a variable temperature scanning tunneling microscope (VT-STM). In this system, we introduce a novel procedure for transferring a sample off a conventional UHV manipulator and onto a scanning tunneling microscope in the conventional ''beetle'' geometry, without disconnecting the heating or thermocouple wires. The microscope, a modified version of the Besocke beetle microscope, is mounted on a 2.75 in. outer diameter UHVmore » flange and is directly attached to the base of the chamber. The sample is attached to a tripod sample holder that is held by the main manipulator. Under UHV conditions the tripod sample holder can be removed from the main manipulator and placed onto the STM. The VT-STM has the capability of acquiring images between the temperature range of 180--500 K. The performance of the chamber is demonstrated here by producing an ordered array of island vacancy defects on a Pt(111) surface and obtaining STM images of these defects.« less
Mediating role of activity level in the depressive realism effect.
Blanco, Fernando; Matute, Helena; A Vadillo, Miguel
2012-01-01
Several classic studies have concluded that the accuracy of identifying uncontrollable situations depends heavily on depressive mood. Nondepressed participants tend to exhibit an optimistic illusion of control, whereas depressed participants tend to better detect a lack of control. Recently, we suggested that the different activity levels (measured as the probability of responding during a contingency learning task) exhibited by depressed and nondepressed individuals is partly responsible for this effect. The two studies presented in this paper provide further support for this mediational hypothesis, in which mood is the distal cause of the illusion of control operating through activity level, the proximal cause. In Study 1, the probability of responding, P(R), was found to be a mediator variable between the depressive symptoms and the judgments of control. In Study 2, we intervened directly on the mediator variable: The P(R) for both depressed and nondepressed participants was manipulated through instructions. Our results confirm that P(R) manipulation produced differences in the participants' perceptions of uncontrollability. Importantly, the intervention on the mediator variable cancelled the effect of the distal cause; the participants' judgments of control were no longer mood dependent when the P(R) was manipulated. This result supports the hypothesis that the so-called depressive realism effect is actually mediated by the probability of responding.
Estimation of personal exposure to asbestos of brake repair workers.
Cely-García, María Fernanda; Curriero, Frank C; Sánchez-Silva, Mauricio; Breysse, Patrick N; Giraldo, Margarita; Méndez, Lorena; Torres-Duque, Carlos; Durán, Mauricio; González-García, Mauricio; Parada, Patricia; Ramos-Bonilla, Juan Pablo
2017-07-01
Exposure assessments are key tools to conduct epidemiological studies. Since 2010, 28 riveters from 18 brake repair shops with different characteristics and workloads were sampled for asbestos exposure in Bogotá, Colombia. Short-term personal samples collected during manipulation activities of brake products, and personal samples collected during non-manipulation activities were used to calculate 103 8-h TWA PCM-equivalent personal asbestos concentrations. The aims of this study are to identify exposure determinant variables associated with the 8-h TWA personal asbestos concentrations among brake mechanics, and propose different models to estimate potential asbestos exposure of brake mechanics in an 8-h work-shift. Longitudinal-based multivariate linear regression models were used to determine the association between personal asbestos concentrations in a work-shift with different variables related to work tasks and workload of the mechanics, and some characteristics of the shops. Monte Carlo simulations were used to estimate the 8-h TWA PCM-Eq personal asbestos concentration in work-shifts that had manipulations of brake products or cleaning activities of the manipulation area, using the results of the sampling campaigns. The simulations proposed could be applied for both current and retrospective studies to determine personal asbestos exposures of brake mechanics, without the need of sampling campaigns or historical data of air asbestos concentrations.
Open- and closed-formula laboratory animal diets and their importance to research.
Barnard, Dennis E; Lewis, Sherry M; Teter, Beverly B; Thigpen, Julius E
2009-11-01
Almost 40 y ago the scientific community was taking actions to control environmental factors that contribute to variation in the responses of laboratory animals to scientific manipulation. Laboratory animal diet was recognized as an important variable. During the 1970s, the American Institute of Nutrition, National Academy of Science, Institute of Laboratory Animal Resources, and Laboratory Animals Centre Diets Advisory Committee supported the use of 'standard reference diets' in biomedical research as a means to improve the ability to replicate research. As a result the AIN76 purified diet was formulated. During this same time, the laboratory animal nutritionist at the NIH was formulating open-formula, natural-ingredient diets to meet the need for standardized laboratory animal diets. Since the development of open-formula diets, fixed-formula and constant-nutrient-concentration closed-formula laboratory animal natural ingredient diets have been introduced to help reduce the potential variation diet can cause in research.
Ukubuiwe, Azubuike Christian; Olayemi, Israel Kayode; Omalu, Innocent Chukwuemeka James; Arimoro, Francis Ofurum; Baba, Bulus Musa; Ukubuiwe, Chinenye Catherine
2018-01-01
This study investigated the effects of varying photoperiodic conditions on critical life stages’ parameters of Culex quinquefasciatus. To this end, first larval stage was reared under different constant photoperiodic regimens: 0, 6 (short), 12 (equal), 13 (prevailing condition), and 18 and 24 (long) hours of light (hL). Duration of development, survivorship, emergence successes, adult longevity, caloric indices (CIs), and utilisation of teneral reserves for metamorphosis at each regimen were monitored. Analyses revealed significant negative effects of increasing photoperiod on all entomological variables measured. Short photo-phases elicited faster development times, increased life stages’ survivorship and number at emergence, adult longevity, and CI for all life stages while increasing teneral components for adult life traits. The information generated in this study is important in understanding the role played by photoperiod in disease transmission and for development of integrated vector control strategies based on environmental manipulation. PMID:29636636
Candidate Species Selection: Cultural and Photosynthetic Aspects
NASA Technical Reports Server (NTRS)
Mitchell, C. A.
1982-01-01
Cultural information is provided for a data base that will be used to select candidate crop species for a controlled ecological life support system (CELSS). Lists of food crops which will satisfy most nutritional requirements of humans and also fit within the scope of cultural restrictions that logically would apply to a closed, regenerating system were generated. Cultural and environmental conditions that will allow the most rapid production of edible biomass from candidate species in the shortest possible time are identified. Cultivars which are most productive in terms of edible biomass production by (CE) conditions, and which respond to the ever-closed approach to optimization realized by each shortened production cycle are selected. The experimental approach with lettuce was to grow the crop hydroponically in a growth chamber and to manipulate such variables as light level and duration, day/night temperature, and nutrient form and level in the solution culture.
Open- and Closed-Formula Laboratory Animal Diets and Their Importance to Research
Barnard, Dennis E; Lewis, Sherry M; Teter, Beverly B; Thigpen, Julius E
2009-01-01
Almost 40 y ago the scientific community was taking actions to control environmental factors that contribute to variation in the responses of laboratory animals to scientific manipulation. Laboratory animal diet was recognized as an important variable. During the 1970s, the American Institute of Nutrition, National Academy of Science, Institute of Laboratory Animal Resources, and Laboratory Animals Centre Diets Advisory Committee supported the use of ‘standard reference diets’ in biomedical research as a means to improve the ability to replicate research. As a result the AIN76 purified diet was formulated. During this same time, the laboratory animal nutritionist at the NIH was formulating open-formula, natural-ingredient diets to meet the need for standardized laboratory animal diets. Since the development of open-formula diets, fixed-formula and constant-nutrient–concentration closed-formula laboratory animal natural ingredient diets have been introduced to help reduce the potential variation diet can cause in research. PMID:19930817
Chen, Bailing; Wan, Chun; Mehmood, Muhammad Aamer; Chang, Jo-Shu; Bai, Fengwu; Zhao, Xinqing
2017-11-01
Microalgae have promising potential to produce lipids and a variety of high-value chemicals. Suitable stress conditions such as nitrogen starvation and high salinity could stimulate synthesis and accumulation of lipids and high-value products by microalgae, therefore, various stress-modification strategies were developed to manipulate and optimize cultivation processes to enhance bioproduction efficiency. On the other hand, advancements in omics-based technologies have boosted the research to globally understand microalgal gene regulation under stress conditions, which enable further improvement of production efficiency via genetic engineering. Moreover, integration of multi-omics data, synthetic biology design, and genetic engineering manipulations exhibits a tremendous potential in the betterment of microalgal biorefinery. This review discusses the process manipulation strategies and omics studies on understanding the regulation of metabolite biosynthesis under various stressful conditions, and proposes genetic engineering of microalgae to improve bioproduction via manipulating stress tolerance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spray outputs from a variable-rate sprayer manipulated with PWM solenoid valves
USDA-ARS?s Scientific Manuscript database
Pressure fluctuations during variable-rate spray applications can affect nozzle flow rate fluctuations, resulting in spray outputs that do not coincide with the prescribed canopy structure volume. Variations in total flow rate discharged from 40 nozzles, each coupled with a pulse-width-modulated (PW...
Frisch, Johanna U.; Häusser, Jan A.; van Dick, Rolf; Mojzisch, Andreas
2015-01-01
In many situations humans are influenced by the behavior of other people and their relationships with them. For example, in stressful situations supportive behavior of other people as well as positive social relationships can act as powerful resources to cope with stress. In order to study the interplay between these variables, this protocol describes two effective experimental manipulations of social relationships and supportive behavior in the laboratory. In the present article, these two manipulations are implemented in the Trier Social Stress Test (TSST)—a standard stress induction paradigm in which participants are subjected to a simulated job interview. More precisely, we propose (a) a manipulation of the relationship between different protagonists in the TSST by making a shared social identity salient and (b) a manipulation of the behavior of the TSST-selection committee, which acts either supportively or unsupportively. These two experimental manipulations are designed in a modular fashion and can be applied independently of each other but can also be combined. Moreover, these two manipulations can also be integrated into other stress protocols and into other standardized social interactions such as trust games, negotiation tasks, or other group tasks. PMID:26649856
Yahav, S; Brake, J
2014-01-01
Bird embryogenesis takes place in a relatively protected environment that can be manipulated especially well in domestic fowl (chickens) where incubation has long been a commercial process. The embryonic developmental process has been shown to begin in the oviduct such that the embryo has attained either the blastodermal and/or gastrulation stage of development at oviposition. Bird embryos can be affected by "maternal effects," and by environmental conditions during the pre-incubation and incubation periods. "Maternal effects" has been described as an evolutionary mechanism that has provided the mother, by hormonal deposition into the yolk, with the potential to proactively influence the development of her progeny by exposing them to her particular hormonal pattern in such a manner as to influence their ability to cope with the expected wide range of environmental conditions that may occur post-hatching. Another important aspect of "maternal effects" is the effect of the maternal nutrient intake on progeny traits. From a commercial broiler chicken production perspective, it has been established that greater cumulative nutrient intake by the hen during her pullet rearing phase prior to photostimulation resulted in faster growing broiler progeny. Generally, maternal effects on progeny, which have both a genetic and an environmental component represented by yolk hormones deposition and embryo nutrient utilization, have an important effect on the development of a wide range of progeny traits. Furthermore, commercial embryo development during pre-incubation storage and incubation, as well as during incubation per se has been shown to largely depend upon temperature, while other environmental factors that include egg position during storage, and the amount of H2O and CO2 lost by the egg and the subsequent effect on albumen pH and height during storage have become important environmental factors to be considered for successful embryogenesis under commercial conditions. Manipulating environmental temperature during the period of egg storage, during the intermediate pre-incubation period, and incubation period per se has been found to significantly affect embryo development, hatching progress, chick quality at hatching, and chick development post-hatching. These temperature manipulations have also been shown to affect the acquisition of thermotolerance to subsequent post-hatching thermal challenge. This chapter will focus on: a. "maternal effects" on embryo and post-hatching development; b. environmental effects during the post-ovipositional period of egg storage, the intermediate pre-incubation period, and incubation period per se on chick embryogenesis and subsequent post-hatching growth and development; and c. effects of temperature manipulations during the pre-incubation and incubation periods on acquisition of thermotolerance and development of secondary sexual characteristics in broiler chickens.
ERIC Educational Resources Information Center
Lorch, Robert F., Jr.; Lorch, Elizabeth P.; Calderhead, William J.; Dunlap, Emily E.; Hodell, Emily C.; Freer, Benjamin Dunham
2010-01-01
Students (n = 797) from 36 4th-grade classrooms were taught the control of variables strategy for designing experiments. In the instruct condition, classes were taught in an interactive lecture format. In the manipulate condition, students worked in groups to design and run experiments to determine the effects of four variables. In the both…
Temporal Doppler Effect and Future Orientation: Adaptive Function and Moderating Conditions.
Gan, Yiqun; Miao, Miao; Zheng, Lei; Liu, Haihua
2017-06-01
The objectives of this study were to examine whether the temporal Doppler effect exists in different time intervals and whether certain individual and environmental factors act as moderators of the effect. Using hierarchical linear modeling, we examined the existence of the temporal Doppler effect and the moderating effect of future orientation among 139 university students (Study 1), and then the moderating conditions of the temporal Doppler effect using two independent samples of 143 and 147 university students (Studies 2 and 3). Results indicated that the temporal Doppler effect existed in all of our studies, and that future orientation moderated the temporal Doppler effect. Further, time interval perception mediated the relationship between future orientation and the motivation to cope at long time intervals. Finally, positive affect was found to enhance the temporal Doppler effect, whereas control deprivation did not influence the effect. The temporal Doppler effect is moderated by the personality trait of future orientation and by the situational variable of experimentally manipulated positive affect. We have identified personality and environmental processes that could enhance the temporal Doppler effect, which could be valuable in cases where attention to a future task is necessary. © 2016 Wiley Periodicals, Inc.
Koen, Joshua D; Aly, Mariam; Wang, Wei-Chun; Yonelinas, Andrew P
2013-11-01
A prominent finding in recognition memory is that studied items are associated with more variability in memory strength than new items. Here, we test 3 competing theories for why this occurs-the encoding variability, attention failure, and recollection accounts. Distinguishing among these theories is critical because each provides a fundamentally different account of the processes underlying recognition memory. The encoding variability and attention failure accounts propose that old item variance will be unaffected by retrieval manipulations because the processes producing this effect are ascribed to encoding. The recollection account predicts that both encoding and retrieval manipulations that preferentially affect recollection will affect memory variability. These contrasting predictions were tested by examining the effect of response speeding (Experiment 1), dividing attention at retrieval (Experiment 2), context reinstatement (Experiment 3), and increased test delay (Experiment 4) on recognition performance. The results of all 4 experiments confirm the predictions of the recollection account and are inconsistent with the encoding variability account. The evidence supporting the attention failure account is mixed, with 2 of the 4 experiments confirming the account and 2 disconfirming the account. These results indicate that encoding variability and attention failure are insufficient accounts of memory variance and provide support for the recollection account. Several alternative theoretical accounts of the results are also considered. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Loop, Laurie; Mouton, Bénédicte; Stievenart, Marie; Roskam, Isabelle
2017-05-01
This research compared the efficacy of two parenting interventions that vary according to the number and the nature of variables in reducing preschoolers' externalizing behavior (EB). The goal was to identify which parenting intervention format (one-variable versus two-variable) caused higher behavioral adjustment in children. The first was a one-variable intervention manipulating parental self-efficacy beliefs. The second was a two-variable intervention manipulating both parents' self-efficacy beliefs and emotion coaching practices. The two interventions shared exactly the same design, consisting of eight parent group sessions. Effect on children's EB and observed behaviors were evaluated through a multi-method assessment at three points (pre-test, post-test and follow-up). The results highlighted that compared to the waitlist condition, the two intervention formats tended to cause a significant reduction in children's EB reported by their parent. However, the one-variable intervention was found to lead to a greater decrease in children's EB at follow-up. The opposite was reported for children's observed behavior, which was improved to a greater extent in the two-variable intervention at post-test and follow-up. The results illustrated that interventions' format cannot be considered as purely interchangeable since their impact on children's behavior modification is different. The results are discussed for their research and clinical implications. Copyright © 2017 Elsevier Ltd. All rights reserved.
The nature and use of prediction skills in a biological computer simulation
NASA Astrophysics Data System (ADS)
Lavoie, Derrick R.; Good, Ron
The primary goal of this study was to examine the science process skill of prediction using qualitative research methodology. The think-aloud interview, modeled after Ericsson and Simon (1984), let to the identification of 63 program exploration and prediction behaviors.The performance of seven formal and seven concrete operational high-school biology students were videotaped during a three-phase learning sequence on water pollution. Subjects explored the effects of five independent variables on two dependent variables over time using a computer-simulation program. Predictions were made concerning the effect of the independent variables upon dependent variables through time. Subjects were identified according to initial knowledge of the subject matter and success at solving three selected prediction problems.Successful predictors generally had high initial knowledge of the subject matter and were formal operational. Unsuccessful predictors generally had low initial knowledge and were concrete operational. High initial knowledge seemed to be more important to predictive success than stage of Piagetian cognitive development.Successful prediction behaviors involved systematic manipulation of the independent variables, note taking, identification and use of appropriate independent-dependent variable relationships, high interest and motivation, and in general, higher-level thinking skills. Behaviors characteristic of unsuccessful predictors were nonsystematic manipulation of independent variables, lack of motivation and persistence, misconceptions, and the identification and use of inappropriate independent-dependent variable relationships.
Scharsack, Jörn P; Franke, Frederik; Erin, Noémi I; Kuske, Andra; Büscher, Janine; Stolz, Hendrik; Samonte, Irene E; Kurtz, Joachim; Kalbe, Martin
2016-08-01
Recent research provides accumulating evidence that the evolutionary dynamics of host-parasite adaptations strongly depend on environmental variation. In this context, the three-spined stickleback (Gasterosteus aculeatus) has become an important research model since it is distributed all over the northern hemisphere and lives in very different habitat types, ranging from marine to freshwater, were it is exposed to a huge diversity of parasites. While a majority of studies start from explorations of sticklebacks in the wild, only relatively few investigations have continued under laboratory conditions. Accordingly, it has often been described that sticklebacks differ in parasite burden between habitats, but the underlying co-evolutionary trajectories are often not well understood. With the present review, we give an overview of the most striking examples of stickleback-parasite-environment interactions discovered in the wild and discuss two model parasites which have received some attention in laboratory studies: the eye fluke Diplostomum pseudospathacaeum, for which host fish show habitat-specific levels of resistance, and the tapeworm Schistocephalus solidus, which manipulates immunity and behavior of its stickleback host to its advantage. Finally, we will concentrate on an important environmental variable, namely temperature, which has prominent effects on the activity of the immune system of ectothermic hosts and on parasite growth rates. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.
Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects
Paillard, Thierry; Noé, Frédéric
2015-01-01
The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them. PMID:26640800
Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects.
Paillard, Thierry; Noé, Frédéric
2015-01-01
The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them.
Environmental modulation of metabolic allometry in ornate rainbowfish Rhadinocentrus ornatus.
Vaca, H Fabian; White, Craig R
2010-02-23
The nature of the relationship between the metabolic rate (MR) and body mass (M) of animals has been the source of controversy for over seven decades, with much of the focus on the value of the scaling exponent b, where MR is proportional to M(b). While it is well known that MR does not generally scale isometrically (i.e. b is seldom equal to 1), the value of b remains the subject of heated debate. In the present study, we examine the influence of an ecologically relevant abiotic variable, pH, on the metabolic allometry of an Australian freshwater fish, Rhadinocentrus ornatus. We show that the value of b is lower for rainbowfish acclimated to acidic (pH 5.0) conditions compared to rainbowfish acclimated to alkaline conditions (pH 8.5), but that acute exposure to altered pH does not alter the value of b. This significant effect of an abiotic variable on metabolic allometry supports a growing body of evidence that there is no universal value of b and demonstrates that experimental manipulations of metabolic allometry represent powerful, and as yet underused, tools to understand the factors that constrain and influence the allometry of metabolic rate.
Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff
2009-01-01
This paper provides an overview of behavioral strategies used for reducing hand-related stereotypies (i.e., hand/finger mouthing, eye poking, self-slapping, and other hand-to-head/body responses) of persons with severe to profound intellectual and multiple disabilities. Computerized and manual searches were conducted to identify the studies carried out in this area between 1995 and 2007. Forty-one studies were identified which used five main strategies: (1) mechanical restraints employed alone or together with other intervention variables, (2) response blocking alone or together with other intervention variables, (3) noncontingent stimulation (environmental enrichment) with or without prompting or contingent reinforcement events, (4) contingency manipulations differing from those relied upon by the other strategies, and (5) programs based on microswitch clusters. The outcomes of the studies tended to be positive but occasional failures also occurred. Outcomes were discussed in terms of the characteristics of the strategies employed, the implications of the strategies for the participants' overall stimulation and occupational situation, and the overall practicality, applicability, affordability and potential of the strategies in the short and long term. Issues for future research were also examined.
López-Rodríguez, Sandra; Fernández de-Las-Peñas, César; Alburquerque-Sendín, Francisco; Rodríguez-Blanco, Cleofás; Palomeque-del-Cerro, Luis
2007-01-01
This study assessed the immediate effects of talocrural joint manipulation on stabilometric and baropodometric outcomes in patients with grade II ankle sprain. Fifty-two field hockey players (35 men and 17 women) between 18 and 40 years old (mean = 22.5 years, SD = 3.6 years) were included in this study. A simple blind, intrapatient, placebo-controlled, and repeated-measures study was carried out. All the patients underwent a baropodometric study performed with a Foot Work force platform (4 times; pre-post placebo group and pre-post intervention group). The sample was subjected to two techniques of manipulative treatment: (a) talocrural joint manipulation and (b) posterior gliding manipulation over the talus. In a second instance, placebo manipulation was applied. Unilateral analysis of variance and multivariate analysis of variance were used for statistical analysis. The results in the intervention group revealed significant differences in the percentage of posterior load on the foot (P = .015) and the percentage of bilateral anterior load (P = .02) before and after the manipulation. The placebo group did not show any change in any of the variables except for area (P = .045). Intergroup comparison revealed statistically significant differences in the increase in percentage of posterior load on the manipulated foot, percentage of bilateral posterior load, percentage of anterior load on the manipulated foot, and percentage of bilateral anterior load (with the exception of the total load on the foot). The application of caudal talocrural joint manipulation, as compared with placebo manipulation, in athletic patients with grade II ankle sprain redistributed the load supports at the level of the foot.
James P. Ward
2001-01-01
Understanding the influence of environmental variation on population processes is a fundamental requisite for devising strategies that conserve species. A common tactic for conserving raptor populations is to maintain or manipulate habitat conditions that maintain or increase availability of prey species. A primary purpose of this investigation was to...
ERIC Educational Resources Information Center
Schneekloth, Lynda H.; Day, Diane
The study compared the motor activities and environmental interactions of 36 sighted, partially sighted, and blind children (7 to 13 years old) during unstructured play. Objectives were to assess motor proficiency level; to establish frequency and kind of gross motor, manipulative self stimulation, and social/play behaviors; and to assess use of…
ERIC Educational Resources Information Center
Searles, Kathleen
2010-01-01
Research in political psychology suggests that politicians successfully manipulate emotions through campaign advertisements. While work in environmental psychology emphasizes emotional connection to the environment, scholars have yet to examine the potential of emotional appeals in non-campaign messages. I am interested in the use of emotional…
On Motion Planning and Control of Multi-Link Lightweight Robotic Manipulators
NASA Technical Reports Server (NTRS)
Cetinkunt, Sabri
1987-01-01
A general gross and fine motion planning and control strategy is needed for lightweight robotic manipulator applications such as painting, welding, material handling, surface finishing, and spacecraft servicing. The control problem of lightweight manipulators is to perform fast, accurate, and robust motions despite the payload variations, structural flexibility, and other environmental disturbances. Performance of the rigid manipulator model based computed torque and decoupled joint control methods are determined and simulated for the counterpart flexible manipulators. A counterpart flexible manipulator is defined as a manipulator which has structural flexibility, in addition to having the same inertial, geometric, and actuation properties of a given rigid manipulator. An adaptive model following control (AMFC) algorithm is developed to improve the performance in speed, accuracy, and robustness. It is found that the AMFC improves the speed performance by a factor of two over the conventional non-adaptive control methods for given accuracy requirements while proving to be more robust with respect to payload variations. Yet there are clear limitations on the performance of AMFC alone as well, which are imposed by the arm flexibility. In the search to further improve speed performance while providing a desired accuracy and robustness, a combined control strategy is developed. Furthermore, the problem of switching from one control structure to another during the motion and implementation aspects of combined control are discussed.
Linking environmental variability to population and community dynamics: Chapter 7
Pantel, Jelena H.; Pendleton, Daniel E.; Walters, Annika W.; Rogers, Lauren A.
2014-01-01
Linking population and community responses to environmental variability lies at the heart of ecology, yet methodological approaches vary and existence of broad patterns spanning taxonomic groups remains unclear. We review the characteristics of environmental and biological variability. Classic approaches to link environmental variability to population and community variability are discussed as are the importance of biotic factors such as life history and community interactions. In addition to classic approaches, newer techniques such as information theory and artificial neural networks are reviewed. The establishment and expansion of observing networks will provide new long-term ecological time-series data, and with it, opportunities to incorporate environmental variability into research. This review can help guide future research in the field of ecological and environmental variability.
Local position control: A new concept for control of manipulators
NASA Technical Reports Server (NTRS)
Kelly, Frederick A.
1988-01-01
Resolved motion rate control is currently one of the most frequently used methods of manipulator control. It is currently used in the Space Shuttle remote manipulator system (RMS) and in prosthetic devices. Position control is predominately used in locating the end-effector of an industrial manipulator along a path with prescribed timing. In industrial applications, resolved motion rate control is inappropriate since position error accumulates. This is due to velocity being the control variable. In some applications this property is an advantage rather than a disadvantage. It may be more important for motion to end as soon as the input command is removed rather than reduce the position error to zero. Local position control is a new concept for manipulator control which retains the important properties of resolved motion rate control, but reduces the drift. Local position control can be considered to be a generalization of resolved position and resolved rate control. It places both control schemes on a common mathematical basis.
The impact of manipulating personal standards on eating attitudes and behaviour
Shafran, Roz; Lee, Michelle; Payne, Elizabeth; Fairburn, Christopher G.
2006-01-01
The relationship between perfectionism and eating disorders is well established and is of theoretical interest. This study used an experimental design to test the hypothesis that manipulating personal standards, a central feature of perfectionism, would influence eating attitudes and behaviour. Forty-one healthy women were randomly assigned either to a high personal standards condition (n=18) or to a low personal standards condition for 24 h (n=23). Measures of personal standards, perfectionism, and eating attitudes and behaviour were taken before and after the experimental manipulation. The manipulation was successful. After the manipulation, participants in the high personal standards condition ate fewer high calorie foods, made more attempts to restrict the overall amount of food eaten, and had significantly more regret after eating than those in the low personal standards condition. Other variables remained unchanged. It is concluded that experimental analyses can be of value in elucidating causal connections between perfectionism and eating attitudes and behaviour. PMID:16257388
A study of the method of the video image presentation for the manipulation of forceps.
Kono, Soichi; Sekioka, Toshiharu; Matsunaga, Katsuya; Shidoji, Kazunori; Matsuki, Yuji
2005-01-01
Recently, surgical operations have sometimes been tried under laparoscopic video images using teleoperation robots or forceps manipulators. Therefore, in this paper, forceps manipulation efficiencies were evaluated when images for manipulation had some transmission delay (Experiment 1), and when the convergence point of the stereoscopic video cameras was either fixed and variable (Experiment 2). The operators' tasks in these experiments were sewing tasks which simulated telesurgery under 3-dimensional scenography. As a result of experiment 1, the operation at a 200+/-100 ms delay was kept at almost the same accuracy as that without delay. As a result of experiment 2, work accuracy was improved by using the zooming lens function; however the working time became longer. These results seemed to show the relation of a trade-off between working time and working accuracy.
Pre-disposition and epigenetics govern variation in bacterial survival upon stress.
Ni, Ming; Decrulle, Antoine L; Fontaine, Fanette; Demarez, Alice; Taddei, Francois; Lindner, Ariel B
2012-01-01
Bacteria suffer various stresses in their unpredictable environment. In response, clonal populations may exhibit cell-to-cell variation, hypothetically to maximize their survival. The origins, propagation, and consequences of this variability remain poorly understood. Variability persists through cell division events, yet detailed lineage information for individual stress-response phenotypes is scarce. This work combines time-lapse microscopy and microfluidics to uniformly manipulate the environmental changes experienced by clonal bacteria. We quantify the growth rates and RpoH-driven heat-shock responses of individual Escherichia coli within their lineage context, stressed by low streptomycin concentrations. We observe an increased variation in phenotypes, as different as survival from death, that can be traced to asymmetric division events occurring prior to stress induction. Epigenetic inheritance contributes to the propagation of the observed phenotypic variation, resulting in three-fold increase of the RpoH-driven expression autocorrelation time following stress induction. We propose that the increased permeability of streptomycin-stressed cells serves as a positive feedback loop underlying this epigenetic effect. Our results suggest that stochasticity, pre-disposition, and epigenetic effects are at the source of stress-induced variability. Unlike in a bet-hedging strategy, we observe that cells with a higher investment in maintenance, measured as the basal RpoH transcriptional activity prior to antibiotic treatment, are more likely to give rise to stressed, frail progeny.
Eye-in-Hand Manipulation for Remote Handling: Experimental Setup
NASA Astrophysics Data System (ADS)
Niu, Longchuan; Suominen, Olli; Aref, Mohammad M.; Mattila, Jouni; Ruiz, Emilio; Esque, Salvador
2018-03-01
A prototype for eye-in-hand manipulation in the context of remote handling in the International Thermonuclear Experimental Reactor (ITER)1 is presented in this paper. The setup consists of an industrial robot manipulator with a modified open control architecture and equipped with a pair of stereoscopic cameras, a force/torque sensor, and pneumatic tools. It is controlled through a haptic device in a mock-up environment. The industrial robot controller has been replaced by a single industrial PC running Xenomai that has a real-time connection to both the robot controller and another Linux PC running as the controller for the haptic device. The new remote handling control environment enables further development of advanced control schemes for autonomous and semi-autonomous manipulation tasks. This setup benefits from a stereovision system for accurate tracking of the target objects with irregular shapes. The overall environmental setup successfully demonstrates the required robustness and precision that remote handling tasks need.
Supervisory manipulation based on the concepts of absolute vs relative and fixed vs moving tasks
NASA Technical Reports Server (NTRS)
Brooks, T. L.
1980-01-01
If a machine is to perform a given subtask autonomously, it will require an internal model which, combined with operator and environmental inputs, can be used to generate the manipulator functions necessary to complete the task. This paper will advance a technique based on linear transformations by which short, supervised periods of manipulation can be accomplished. To achieve this end a distinction will be made between tasks which can be completely defined during the training period, and tasks which can be only partially defined prior to the moment of execution. A further distinction will be made between tasks which have a fixed relationship to the manipulator base throughout the execution period, and tasks which have a continuously changing task/base relationship during execution. Finally, through a rudimentary analysis of the methods developed in this paper, some of the practical aspects of implementing a supervisory system will be illustrated
Chamber for the optical manipulation of microscopic particles
Buican, Tudor N.; Upham, Bryan D.
1992-01-01
A particle control chamber enables experiments to be carried out on biological cells and the like using a laser system to trap and manipulate the particles. A manipulation chamber provides a plurality of inlet and outlet ports for the particles and for fluids used to control or to contact the particles. A central manipulation area is optically accessible by the laser and includes first enlarged volumes for containing a selected number of particles for experimentation. A number of first enlarged volumes are connected by flow channels through second enlarged volumes. The second enlarged volumes act as bubble valves for controlling the interconnections between the first enlarged volumes. Electrode surfaces may be applied above the first enlarged volumes to enable experimentation using the application of electric fields within the first enlarged volumes. A variety of chemical and environmental conditions may be established within individual first enlarged volumes to enable experimental conditions for small scale cellular interactions.
Griswold, David; Learman, Ken; O'Halloran, Bryan; Cleland, Josh
2015-05-01
Neck pain is routinely managed using manual therapy (MT) to the cervical and thoracic spines. While both mobilizations and manipulations to these areas have been shown to reduce neck pain, increase cervical range of motion, and reduce disability, the most effective option remains elusive. The purpose of this preliminary trial was to compare the pragmatic use of cervical and thoracic mobilizations vs. manipulation for mechanical neck pain. This trial included 20 patients with mechanical neck pain. Each patient was randomized to receive either mobilization or manipulation to both the cervical and thoracic spines during their plan of care. Within-group analyses were made with Wilcoxon signed-rank tests and between-group analyses were made with Mann-Whitney U. There were no between-group differences for any of the dependent variables including cervical active range of motion (CAROM) (P = 0.18), deep cervical flexion (DCF) endurance (P = 0.06), numerical pain rating scale (NPRS) (P = 0.26), the neck disability index (NDI, P = 0.33), patient-specific functional scale (PSFS, P = 0.20), or the global rating of change (GROC) scale (P = 0.94). Within-group results were significant for all outcome variables (P<0.001) from initial evaluation to discharge for both groups. These findings were consistent with other trials previously conducted that applied the MT techniques in a pragmatic fashion, but varied from previous trials where the treatment was standardized. A larger experimental study is necessary to further examine the differences between mobilization and manipulation for neck pain.
Demographic Responses To Climate Manipulations Across a Species Range
NASA Astrophysics Data System (ADS)
Oldfather, M. F.
2016-12-01
Species biogeographic responses to climate change will occur through the local extinction and establishment of populations. The overall performance of populations across a species range is shaped by the idiosyncratic sensitivities of demographic rates to the changing climate conditions. Heterogeneous topography partially decouples temperature and soil moisture presenting an opportunity to disentangle demographic sensitivity to multiple local climate variables and refine range shift predictions in response to complex climate change. Since 2013, I have monitored 16 populations of a long-lived alpine plant, Ivesia lycopodioides var. scandularis (Rosaceae) across the entirety of its altitudinal range in the arid White Mountains, CA (3350 - 4420m). I quantified microclimatic soil moisture and temperature, and the demographic rates of over 4,000 individuals. Demographic rates exhibited sensitivity to accumulated degree-days (ex. reproduction), soil volumetric water content (ex. germination), or the interaction between these climate variables (ex. survival). These observations motivated an experimental test of the relationship between demography and local climate with manipulations of increased summertime temperature and precipitation in nine populations. All demographic rates were sensitive to the climate manipulations and the magnitude of the demographic response depended on the population's location within the range. However, the modeled population growth rate was only minimally affected by the manipulations in most populations. The inverse responses of many of the demographic rates may allow populations to demographically buffer against the climate manipulations. However, in one low elevation edge population the negative effect of heating on survival overwhelmed the positive effect on germination, indicating that the capacity of populations to demographically buffer may have a limit.
Attention to and Memory for Audio and Video Information in Television Scenes.
ERIC Educational Resources Information Center
Basil, Michael D.
A study investigated whether selective attention to a particular television modality resulted in different levels of attention to and memory for each modality. Two independent variables manipulated selective attention. These were the semantic channel (audio or video) and viewers' instructed focus (audio or video). These variables were fully…
Comparison as an Approach to the Experimental Method
ERIC Educational Resources Information Center
Turner, David A.
2017-01-01
In his proposal for comparative education, Marc Antoinne Jullien de Paris argues that the comparative method offers a viable alternative to the experimental method. In an experiment, the scientist can manipulate the variables in such a way that he or she can see any possible combination of variables at will. In comparative education, or in…
The Competitive Woman: Fear of Success, Attractiveness, and Competitor Sex.
ERIC Educational Resources Information Center
Major, Brenda N.; Sherman, Richard C.
The Study attempted to resolve some problems of past research on fear of success (Horner, 1968) and investigated personality and behavioral attributes associated with fear of success (FOS). Two competitor variables (sex and physical attractiveness) were manipulated as well as two subject variables (level of FOS and physical attractiveness). Sex of…
Input relegation control for gross motion of a kinematically redundant manipulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
1992-10-01
This report proposes a method for resolving the kinematic redundancy of a serial link manipulator moving in a three-dimensional workspace. The underspecified problem of solving for the joint velocities based on the classical kinematic velocity model is transformed into a well-specified problem. This is accomplished by augmenting the original model with additional equations which relate a new vector variable quantifying the redundant degrees of freedom (DOF) to the joint velocities. The resulting augmented system yields a well specified solution for the joint velocities. Methods for selecting the redundant DOF quantifying variable and the transformation matrix relating it to the jointmore » velocities are presented so as to obtain a minimum Euclidean norm solution for the joint velocities. The approach is also applied to the problem of resolving the kinematic redundancy at the acceleration level. Upon resolving the kinematic redundancy, a rigid body dynamical model governing the gross motion of the manipulator is derived. A control architecture is suggested which according to the model, decouples the Cartesian space DOF and the redundant DOF.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamid, Ahmed M.; Prabhakaran Nair Syamala Amma, Aneesh; Garimella, Venkata BS
2018-03-21
Ion mobility (IM) is rapidly gaining attention for the analysis of biomolecules due to the ability to distinguish the shapes of ions. However, conventional constant electric field drift tube IM has limited resolving power, constrained by practical limitations on the path length and maximum applied voltage. The implementation of traveling waves (TW) in IM removes the latter limitation, allowing higher resolution to be achieved using extended path lengths. These can be readily obtainable in structures for lossless ion manipulations (SLIM), which are fabricated from electric fields that are generated by appropriate potentials applied to arrays of electrodes patterned on twomore » parallel surfaces. In this work we have investigated the relationship between the various SLIM variables, such as electrode dimensions, inter-surface gap, and the TW applied voltages, that directly impact the fields experienced by ions. Ion simulation and theoretical calculations have been utilized to understand the dependence of SLIM geometry and effective electric field. The variables explored impact both ion confinement and the observed IM resolution in Structures for Lossless Ion Manipulations (SLIM) modules.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamid, Ahmed M.; Prabhakaran, Aneesh; Garimella, Sandilya V. B.
Ion mobility (IM) is rapidly gaining attention for the analysis of biomolecules due to the ability to distinguish the shapes of ions. However, conventional constant electric field drift tube IM has limited resolving power, constrained by practical limitations on the path length and maximum applied voltage. The implementation of traveling waves (TW) in IM removes the latter limitation, allowing higher resolution to be achieved using extended path lengths. These can be readily obtainable in structures for lossless ion manipulations (SLIM), which are fabricated from electric fields that are generated by appropriate potentials applied to arrays of electrodes patterned on twomore » parallel surfaces. In this work we have investigated the relationship between the various SLIM variables, such as electrode dimensions, inter-surface gap, and the TW applied voltages, that directly impact the fields experienced by ions. Ion simulation and theoretical calculations have been utilized to understand the dependence of SLIM geometry and effective electric field. The variables explored impact both ion confinement and the observed IM resolution in Structures for Lossless Ion Manipulations (SLIM) modules.« less
Hopwood, Paul E; Moore, Allen J; Royle, Nick J
2014-06-22
Good early nutritional conditions may confer a lasting fitness advantage over individuals suffering poor early conditions (a 'silver spoon' effect). Alternatively, if early conditions predict the likely adult environment, adaptive plastic responses might maximize individual performance when developmental and adult conditions match (environmental-matching effect). Here, we test for silver spoon and environmental-matching effects by manipulating the early nutritional environment of Nicrophorus vespilloides burying beetles. We manipulated nutrition during two specific early developmental windows: the larval environment and the post-eclosion environment. We then tested contest success in relation to variation in adult social environmental quality experienced (defined according to whether contest opponents were smaller (good environment) or larger (poor environment) than the focal individual). Variation in the larval environment influenced adult body size but not contest success per se for a given adult social environment experienced (an 'indirect' silver spoon effect). Variation in post-eclosion environment affected contest success dependent on the quality of the adult environment experienced (a context-dependent 'direct' silver spoon effect). By contrast, there was no evidence for environmental-matching. The results demonstrate the importance of social environmental context in determining how variation in nutrition in early life affects success as an adult.
Ventura, Tomer; Sagi, Amir
2012-01-01
Due to the over-harvesting and deterioration of wild populations, the ever-growing crustacean market is increasingly reliant on aquaculture, driving the need for better management techniques. Since most cultured crustacean species exhibit sexually dimorphic growth patterns, the culture of monosex populations (either all-male or all-female) is a preferred approach for gaining higher yields, with the ecological benefit of reducing the risk of invasion by the cultured species. Sexual manipulations may also render sustainable solutions to the environmental problems caused by the presence of invasive crustacean species with detrimental impacts ranging from aggressive competition with native species for food and shelter, to affecting aquaculture facilities and harvests and causing structural damage to river banks. Recent discoveries of androgenic gland (AG)-specific insulin-like peptides (IAGs) in crustaceans and the ability to manipulate them and their encoding transcripts (IAGs) have raised the possibility of sexually manipulating crustacean populations. Sexual manipulation is already a part of sustainable solutions in fish aquaculture and in the bio-control of insect pest species, and attempts are also being made to implement it with crustaceans. As recently exemplified in a commercially important prawn species, IAG silencing, a temporal, non-genetically modifying and non-transmissible intervention, has enabled the production of non-breeding all-male monosex populations that are the progeny of sexually reversed males ('neo-females'). IAG manipulations-based biotechnologies therefore have the potential to radically transform the entire industry. We review here how this proof of concept could be broadened to meet both aquacultural and environmental needs. We include the major cultured decapod crustacean groups and suggest a sustainable solution for the management of invasive and pest crustacean species. We also review the key considerations for devising a biotechnological approach that specifically tailors the molecular technological abilities to the management of each target group. Copyright © 2012 Elsevier Inc. All rights reserved.
Fu, Qiushi; Zhang, Wei; Santello, Marco
2010-07-07
Dexterous object manipulation requires anticipatory control of digit positions and forces. Despite extensive studies on sensorimotor learning of digit forces, how humans learn to coordinate digit positions and forces has never been addressed. Furthermore, the functional role of anticipatory modulation of digit placement to object properties remains to be investigated. We addressed these questions by asking human subjects (12 females, 12 males) to grasp and lift an inverted T-shaped object using precision grip at constrained or self-chosen locations. The task requirement was to minimize object roll during lift. When digit position was not constrained, subjects could have implemented many equally valid digit position-force coordination patterns. However, choice of digit placement might also have resulted in large trial-to-trial variability of digit position, hence challenging the extent to which the CNS could have relied on sensorimotor memories for anticipatory control of digit forces. We hypothesized that subjects would modulate digit placement for optimal force distribution and digit forces as a function of variable digit positions. All subjects learned to minimize object roll within the first three trials, and the unconstrained device was associated with significantly smaller grip forces but larger variability of digit positions. Importantly, however, digit load force modulation compensated for position variability, thus ensuring consistent object roll minimization on each trial. This indicates that subjects learned object manipulation by integrating sensorimotor memories with sensory feedback about digit positions. These results are discussed in the context of motor equivalence and sensorimotor integration of grasp kinematics and kinetics.
Rain forest nutrient cycling and productivity in response to large-scale litter manipulation.
Wood, Tana E; Lawrence, Deborah; Clark, Deborah A; Chazdon, Robin L
2009-01-01
Litter-induced pulses of nutrient availability could play an important role in the productivity and nutrient cycling of forested ecosystems, especially tropical forests. Tropical forests experience such pulses as a result of wet-dry seasonality and during major climatic events, such as strong El Niños. We hypothesized that (1) an increase in the quantity and quality of litter inputs would stimulate leaf litter production, woody growth, and leaf litter nutrient cycling, and (2) the timing and magnitude of this response would be influenced by soil fertility and forest age. To test these hypotheses in a Costa Rican wet tropical forest, we established a large-scale litter manipulation experiment in two secondary forest sites and four old-growth forest sites of differing soil fertility. In replicated plots at each site, leaves and twigs (< 2 cm diameter) were removed from a 400-m2 area and added to an adjacent 100-m2 area. This transfer was the equivalent of adding 5-25 kg/ha of organic P to the forest floor. We analyzed leaf litter mass, [N] and [P], and N and P inputs for addition, removal, and control plots over a two-year period. We also evaluated basal area increment of trees in removal and addition plots. There was no response of forest productivity or nutrient cycling to litter removal; however, litter addition significantly increased leaf litter production and N and P inputs 4-5 months following litter application. Litter production increased as much as 92%, and P and N inputs as much as 85% and 156%, respectively. In contrast, litter manipulation had no significant effect on woody growth. The increase in leaf litter production and N and P inputs were significantly positively related to the total P that was applied in litter form. Neither litter treatment nor forest type influenced the temporal pattern of any of the variables measured. Thus, environmental factors such as rainfall drive temporal variability in litter and nutrient inputs, while nutrient release from decomposing litter influences the magnitude. Seasonal or annual variation in leaf litter mass, such as occurs in strong El Niño events, could positively affect leaf litter nutrient cycling and forest productivity, indicating an ability of tropical trees to rapidly respond to increased nutrient availability.
R.W. Ruess; M.D. Anderson; J.W. McFarland; K. Kielland; K. Olson; D.L. Taylor
2013-01-01
In long-lived N-fixing plants, environmental conditions affecting plant growth and N demand vary at multiple temporal and spatial scales, and symbiont assemblages on a given host and patterns of allocation to nodule activities have been shown to vary according to environmental factors, suggesting that hosts may alter partner choice and manipulate symbiont assemblages...
ERIC Educational Resources Information Center
Faith, Myles S.; Fontaine, Kevin R.; Baskin, Monica L.; Allison, David B.
2007-01-01
The authors reviewed the evidential basis of three environmental approaches to reducing population obesity: What are the effects of (a) taxing or subsidizing foods, (b) manipulating the ease of food access, and (c) restricting access to certain foods? A narrative review evaluated evidence using National Heart, Lung, and Blood Institute criteria.…
Lake microbial communities are resilient after a whole-ecosystem disturbance
Shade, Ashley; Read, Jordan S; Youngblut, Nicholas D; Fierer, Noah; Knight, Rob; Kratz, Timothy K; Lottig, Noah R; Roden, Eric E; Stanley, Emily H; Stombaugh, Jesse; Whitaker, Rachel J; Wu, Chin H; McMahon, Katherine D
2012-01-01
Disturbances act as powerful structuring forces on ecosystems. To ask whether environmental microbial communities have capacity to recover after a large disturbance event, we conducted a whole-ecosystem manipulation, during which we imposed an intense disturbance on freshwater microbial communities by artificially mixing a temperate lake during peak summer thermal stratification. We employed environmental sensors and water chemistry analyses to evaluate the physical and chemical responses of the lake, and bar-coded 16S ribosomal RNA gene pyrosequencing and automated ribosomal intergenic spacer analysis (ARISA) to assess the bacterial community responses. The artificial mixing increased mean lake temperature from 14 to 20 °C for seven weeks after mixing ended, and exposed the microorganisms to very different environmental conditions, including increased hypolimnion oxygen and increased epilimnion carbon dioxide concentrations. Though overall ecosystem conditions remained altered (with hypolimnion temperatures elevated from 6 to 20 °C), bacterial communities returned to their pre-manipulation state as some environmental conditions, such as oxygen concentration, recovered. Recovery to pre-disturbance community composition and diversity was observed within 7 (epilimnion) and 11 (hypolimnion) days after mixing. Our results suggest that some microbial communities have capacity to recover after a major disturbance. PMID:22739495
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Stephen P, E-mail: stephen.knight@health.qld.gov.au
The aim of this review was to develop a radiographic optimisation strategy to make use of digital radiography (DR) and needle phosphor computerised radiography (CR) detectors, in order to lower radiation dose and improve image quality for paediatrics. This review was based on evidence-based practice, of which a component was a review of the relevant literature. The resulting exposure chart was developed with two distinct groups of exposure optimisation strategies – body exposures (for head, trunk, humerus, femur) and distal extremity exposures (elbow to finger, knee to toe). Exposure variables manipulated included kilovoltage peak (kVp), target detector exposure and milli-ampere-secondsmore » (mAs), automatic exposure control (AEC), additional beam filtration, and use of antiscatter grid. Mean dose area product (DAP) reductions of up to 83% for anterior–posterior (AP)/posterior–anterior (PA) abdomen projections were recorded postoptimisation due to manipulation of multiple-exposure variables. For body exposures, the target EI and detector exposure, and thus the required mAs were typically 20% less postoptimisation. Image quality for some distal extremity exposures was improved by lowering kVp and increasing mAs around constant entrance skin dose. It is recommended that purchasing digital X-ray equipment with high detective quantum efficiency detectors, and then optimising the exposure chart for use with these detectors is of high importance for sites performing paediatric imaging. Multiple-exposure variables may need to be manipulated to achieve optimal outcomes.« less
Controlling Flexible Robot Arms Using High Speed Dynamics Process
NASA Technical Reports Server (NTRS)
Jain, Abhinandan (Inventor)
1996-01-01
A robot manipulator controller for a flexible manipulator arm having plural bodies connected at respective movable hinges and flexible in plural deformation modes corresponding to respective modal spatial influence vectors relating deformations of plural spaced nodes of respective bodies to the plural deformation modes, operates by computing articulated body quantities for each of the bodies from respective modal spatial influence vectors, obtaining specified body forces for each of the bodies, and computing modal deformation accelerations of the nodes and hinge accelerations of the hinges from the specified body forces, from the articulated body quantities and from the modal spatial influence vectors. In one embodiment of the invention, the controller further operates by comparing the accelerations thus computed to desired manipulator motion to determine a motion discrepancy, and correcting the specified body forces so as to reduce the motion discrepancy. The manipulator bodies and hinges are characterized by respective vectors of deformation and hinge configuration variables, and computing modal deformation accelerations and hinge accelerations is carried out for each one of the bodies beginning with the outermost body by computing a residual body force from a residual body force of a previous body and from the vector of deformation and hinge configuration variables, computing a resultant hinge acceleration from the body force, the residual body force and the articulated hinge inertia, and revising the residual body force modal body acceleration.
Manipulations of the reproductive system of fishes by means of exogenous chemicals
Patino, R.
1997-01-01
Environmental control of reproductive activity of captive fish is feasible (or potentially feasible) but, with few exceptions, is currently impractical for most species. Therefore, chemical methods of manipulating reproductive activity continue to be widely used in fish production operations worldwide. However, the control of fish reproduction in captivity cannot be exercised without regard to adequate environmental conditions, which can differ markedly for different species. This review provides a synopsis of relevant aspects of fish reproductive physiology and addresses current and promising future chemical methods of sex control, gonadal recrudescence, and spawning. Most research on the control of reproduction in fishes has focused on female physiology because ovarian development and maturation are easily disturbed by environmental stressors. Control of sex ratios by steroid treatment has become a well-established technique for several fish species, but the technique continues to be problematic in some cases. Final gonadal growth and spawning usually can be achieved by implant treatment with gonadotropin-releasing hormone analogs (GnRHa), which in some species have to be applied in combination with dopamine antagonists to enhance responsiveness to GnRHa. However, efforts to accelerate gonadal recrudescence and maturational competence by chemical means have yielded mixed results, reflecting a relative lack of understanding of the basic physiological and biochemic mechanisms controlling these processes. The potential benefits of using reproductive pheromone, to manipulate gonadal development and spawning has been demonstrated in a few species, but further research is needed to determine whether this technique is applicable to fish culture. Because a reliable supply of young fish is critical for the expansion and diversification of fish culture operations, the use of chemicals in combination with adequate environmental conditions to contain gametogenesis and spawning in fishes will continue to be an important tool for the fish culture.
Effects of sex and COMT genotype on environmentally modulated cognitive control in mice
Papaleo, Francesco; Erickson, Lucy; Liu, Guangping; Chen, Jingshan; Weinberger, Daniel R.
2012-01-01
Cognitive functioning differs between males and females, likely in part related to genetic dimorphisms. An example of a common genetic variation reported to have sexually dimorphic effects on cognition and temperament in humans is the Val/Met polymorphism in catechol-O-methyltransferase (COMT). We tested male and female wild-type mice (+/+) and their COMT knockout littermates (+/− and −/−) in the five-choice serial reaction time task (5CSRTT) to investigate the effects of sex, COMT genotype, and their interactions with environmental manipulations of cognitive functions such as attention, impulsivity, compulsivity, motivation, and rule-reversal learning. No sex- or COMT-dependent differences were present in the basic acquisition of the five-choice serial reaction time task. In contrast, specific environmental manipulations revealed a variety of sex- and COMT-dependent effects. Following an experimental change to trigger impulsive responding, the sexes showed similar increases in impulsiveness, but males eventually habituated whereas females did not. Moreover, COMT knockout mice were more impulsive compared with wild-type littermates. Manipulations involving mild stress adversely affected cognitive performance in males, and particularly COMT knockout males, but not in females. In contrast, following amphetamine treatment, subtle sex by genotype and sex by treatment interactions emerged primarily limited to compulsive behavior. After repeated testing, female mice showed improved performance, working harder and eventually outperforming males. Finally, removing the food-restriction condition enhanced sex and COMT differences, revealing that overall, females outperform males and COMT knockout males outperform their wild-type littermates. These findings illuminate complex sex- and COMT-related effects and their interactions with environmental factors to influence specific executive cognitive domains. PMID:23169629
Development of a revolute-joint robot for the precision positioning of an x-ray detector
NASA Astrophysics Data System (ADS)
Preissner, Curt A.; Royston, Thomas J.; Shu, Deming
2003-10-01
This paper profiles the initial phase in the development of a six degree-of-freedom robot, with 1 μm dynamic positioning uncertainty, for the manipulation of x-ray detectors or test specimens at the Advanced Photon Source (APS). While revolute-joint robot manipulators exhibit a smaller footprint along with increased positioning flexibility compared to Cartesian manipulators, commercially available revolute-joint manipulators do not meet our size, positioning, or environmental specifications. Currently, a robot with 20 μm dynamic positioning uncertainty is functioning at the APS for cryogenic crystallography sample pick-and-place operation. Theoretical, computational and experimental procedures are being used to (1) identify and (2) simulate the dynamics of the present robot system using a multibody approach, including the mechanics and control architecture, and eventually to (3) design an improved version with a 1 μm dynamic positioning uncertainty. We expect that the preceding experimental and theoretical techniques will be useful design and analysis tools as multi-degree-of-freedom manipulators become more prevalent on synchrotron beamlines.
Mateus, Ana Rita A; Marques-Pita, Manuel; Oostra, Vicencio; Lafuente, Elvira; Brakefield, Paul M; Zwaan, Bas J; Beldade, Patrícia
2014-11-21
The environmental regulation of development can result in the production of distinct phenotypes from the same genotype and provide the means for organisms to cope with environmental heterogeneity. The effect of the environment on developmental outcomes is typically mediated by hormonal signals which convey information about external cues to the developing tissues. While such plasticity is a wide-spread property of development, not all developing tissues are equally plastic. To understand how organisms integrate environmental input into coherent adult phenotypes, we must know how different body parts respond, independently or in concert, to external cues and to the corresponding internal signals. We quantified the effect of temperature and ecdysone hormone manipulations on post-growth tissue patterning in an experimental model of adaptive developmental plasticity, the butterfly Bicyclus anynana. Following a suite of traits evolving by natural or sexual selection, we found that different groups of cells within the same tissue have sensitivities and patterns of response that are surprisingly distinct for the external environmental cue and for the internal hormonal signal. All but those wing traits presumably involved in mate choice responded to developmental temperature and, of those, all but the wing traits not exposed to predators responded to hormone manipulations. On the other hand, while patterns of significant response to temperature contrasted traits on autonomously-developing wings, significant response to hormone manipulations contrasted neighboring groups of cells with distinct color fates. We also showed that the spatial compartmentalization of these responses cannot be explained by the spatial or temporal compartmentalization of the hormone receptor protein. Our results unravel the integration of different aspects of the adult phenotype into developmental and functional units which both reflect and impact evolutionary change. Importantly, our findings underscore the complexity of the interactions between environment and physiology in shaping the development of different body parts.
Nájera, S; Gil-Martínez, M; Zambrano, J A
2015-01-01
The aim of this paper is to establish and quantify different operational goals and control strategies in autothermal thermophilic aerobic digestion (ATAD). This technology appears as an alternative to conventional sludge digestion systems. During the batch-mode reaction, high temperatures promote sludge stabilization and pasteurization. The digester temperature is usually the only online, robust, measurable variable. The average temperature can be regulated by manipulating both the air injection and the sludge retention time. An improved performance of diverse biochemical variables can be achieved through proper manipulation of these inputs. However, a better quality of treated sludge usually implies major operating costs or a lower production rate. Thus, quality, production and cost indices are defined to quantify the outcomes of the treatment. Based on these, tradeoff control strategies are proposed and illustrated through some examples. This paper's results are relevant to guide plant operators, to design automatic control systems and to compare or evaluate the control performance on ATAD systems.
ERIC Educational Resources Information Center
Science Teacher, 1990
1990-01-01
Eight activities for use in the science classroom are presented. Included are insect collecting, laboratory procedures and safety, recycling, current events, variable manipulation, scientific method, electricity, and mechanics (Newton's Second Law of Motion). (KR)
ERIC Educational Resources Information Center
Can, Seda; van de Schoot, Rens; Hox, Joop
2015-01-01
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation…
The Influence of Presentation, Organization, and Example Context on Text Learning
ERIC Educational Resources Information Center
McCrudden, Matthew; Schraw, Gregory; Hartley, Kendall; Kiewra, Kenneth
2004-01-01
This research compared high-load and low-load versions of a text by manipulating text presentation, text organization, and example context on measures of fact and concept learning. The low-load text presentation variable enhanced fact and concept learning and post-reading ease of comprehension ratings. The low-load text organization variable led…
The Effect of Camera Angle and Image Size on Source Credibility and Interpersonal Attraction.
ERIC Educational Resources Information Center
McCain, Thomas A.; Wakshlag, Jacob J.
The purpose of this study was to examine the effects of two nonverbal visual variables (camera angle and image size) on variables developed in a nonmediated context (source credibility and interpersonal attraction). Camera angle and image size were manipulated in eight video taped television newscasts which were subsequently presented to eight…
Missing Data Treatments at the Second Level of Hierarchical Linear Models
ERIC Educational Resources Information Center
St. Clair, Suzanne W.
2011-01-01
The current study evaluated the performance of traditional versus modern MDTs in the estimation of fixed-effects and variance components for data missing at the second level of an hierarchical linear model (HLM) model across 24 different study conditions. Variables manipulated in the analysis included, (a) number of Level-2 variables with missing…
The diversity-biomass-productivity relationships in grassland management and restoration
Qinfeng Guo
2007-01-01
Diversity, biomass, and productivity, the three key community/ecosystem variables, are interrelated and pose reciprocal influences on each other. The relationships among the three variables have been a central focus in ecology and formed two schools of fundamentally different nature with two related applications: (1) management â how biomass manipulation (e.g., grazing...
NASA Astrophysics Data System (ADS)
Shen, Xiangying; Li, Ying; Jiang, Chaoran; Ni, Yushan; Huang, Jiping
2016-07-01
For macroscopically manipulating heat flow at will, thermal metamaterials have opened a practical way, which possesses a single function, such as either cloaking or concentrating the flow of heat even though environmental temperature varies. By developing a theory of transformation heat transfer for multiple functions, here we introduce the concept of intelligent thermal metamaterials with a dual function, which is in contrast to the existing thermal metamaterials with single functions. By assembling homogeneous isotropic materials and shape-memory alloys, we experimentally fabricate a kind of intelligent thermal metamaterials, which can automatically change from a cloak (or concentrator) to a concentrator (or cloak) when the environmental temperature changes. This work paves an efficient way for a controllable gradient of heat, and also provides guidance both for arbitrarily manipulating the flow of heat and for efficiently designing similar intelligent metamaterials in other fields.
Coveley, Suzanne; Elshahed, Mostafa S; Youssef, Noha H
2015-01-01
Within highly diverse ecosystems, the majority of bacterial taxa are present in low abundance as members of the rare biosphere. The rationale for the occurrence and maintenance of the rare biosphere, and the putative ecological role(s) and dynamics of its members within a specific ecosystem is currently debated. We hypothesized that in highly diverse ecosystems, a fraction of the rare biosphere acts as a backup system that readily responds to environmental disturbances. We tested this hypothesis by subjecting sediments from Zodletone spring, a sulfide- and sulfur-rich spring in Southwestern OK, to incremental levels of salinity (1, 2, 3, 4, and 10% NaCl), or temperature (28°, 30°, 32°, and 70 °C), and traced the trajectories of rare members of the community in response to these manipulations using 16S rRNA gene analysis. Our results indicate that multiple rare bacterial taxa are promoted from rare to abundant members of the community following such manipulations and that, in general, the magnitude of such recruitment is directly proportional to the severity of the applied manipulation. Rare members that are phylogenetically distinct from abundant taxa in the original sample (unique rare biosphere) played a more important role in the microbial community response to environmental disturbances, compared to rare members that are phylogenetically similar to abundant taxa in the original sample (non-unique rare biosphere). The results emphasize the dynamic nature of the rare biosphere, and highlight its complexity and non-monolithic nature.
Tredennick, Andrew T; Adler, Peter B; Adler, Frederick R
2017-08-01
Theory relating species richness to ecosystem variability typically ignores the potential for environmental variability to promote species coexistence. Failure to account for fluctuation-dependent coexistence may explain deviations from the expected negative diversity-ecosystem variability relationship, and limits our ability to predict the consequences of increases in environmental variability. We use a consumer-resource model to explore how coexistence via the temporal storage effect and relative nonlinearity affects ecosystem variability. We show that a positive, rather than negative, diversity-ecosystem variability relationship is possible when ecosystem function is sampled across a natural gradient in environmental variability and diversity. We also show how fluctuation-dependent coexistence can buffer ecosystem functioning against increasing environmental variability by promoting species richness and portfolio effects. Our work provides a general explanation for variation in observed diversity-ecosystem variability relationships and highlights the importance of conserving regional species pools to help buffer ecosystems against predicted increases in environmental variability. © 2017 John Wiley & Sons Ltd/CNRS.
The validity of open-source data when assessing jail suicides.
Thomas, Amanda L; Scott, Jacqueline; Mellow, Jeff
2018-05-09
The Bureau of Justice Statistics' Deaths in Custody Reporting Program is the primary source for jail suicide research, though the data is restricted from general dissemination. This study is the first to examine whether jail suicide data obtained from publicly available sources can help inform our understanding of this serious public health problem. Of the 304 suicides that were reported through the DCRP in 2009, roughly 56 percent (N = 170) of those suicides were identified through the open-source search protocol. Each of the sources was assessed based on how much information was collected on the incident and the types of variables available. A descriptive analysis was then conducted on the variables that were present in both data sources. The four variables present in each data source were: (1) demographic characteristics of the victim, (2) the location of occurrence within the facility, (3) the location of occurrence by state, and (4) the size of the facility. Findings demonstrate that the prevalence and correlates of jail suicides are extremely similar in both open-source and official data. However, for almost every variable measured, open-source data captured as much information as official data did, if not more. Further, variables not found in official data were identified in the open-source database, thus allowing researchers to have a more nuanced understanding of the situational characteristics of the event. This research provides support for the argument in favor of including open-source data in jail suicide research as it illustrates how open-source data can be used to provide additional information not originally found in official data. In sum, this research is vital in terms of possible suicide prevention, which may be directly linked to being able to manipulate environmental factors.
Taking behavioralism seriously: some evidence of market manipulation.
Hanson, J D; Kysar, D A
1999-05-01
Over the last ten to fifteen years, economists and legal scholars have become increasingly interested in and sensitive to behavioralist insights. In a companion article, Jon Hanson and Douglas Kysar argued that those scholars have nevertheless given short shrift to what is, at least for policymaking purposes, perhaps the most important lesson of the behavioralist research: individuals' perceptions and preferences are highly manipulable. According to Hanson and Kysar, one theoretical implication of that insight for products liability law is that manufacturers and marketers will manipulate the risk perceptions of consumers. Indeed, to survive in a competitive market, manufacturers and marketers must do so. In this Article, Hanson and Kysar present empirical evidence of market manipulation--a previously unrecognized source of market failure. The Article begins by surveying the extensive qualitative and quantitative marketing research and consumer behavioral studies that discern and influence consumer perceptions. It then provides evidence of market manipulation by reviewing common practices in everyday market settings, such as gas stations and supermarkets, and by examining familiar marketing approaches, such as environmentally oriented and fear-based advertising. Although consumers may be well-aware of those practices and approaches, they appear to be generally unaware of the extent to which those tactics are manipulative. The Article then focuses on the industry that has most depended upon market manipulation: the cigarette industry. Through decades of sophisticated marketing and public relations efforts, cigarette manufacturers have heightened consumer demand and lowered consumer risk perceptions. Because consumers are aware that smoking may pose significant health risks, the tobacco industry's success in manipulating risk perceptions constitutes especially strong evidence of the power of market manipulation. The Article concludes by arguing that the evidence of market manipulation may justify moving to a regime of enterprise liability. Indeed, according to Hanson and Kysar, the evidence of market manipulation confirms the intuitions of the first generation of product liability scholars, who worried about manufacturers' power to manipulate and called for just such a regime.
González-Iglesias, Javier; Fernández-de-las-Peñas, Cesar; Cleland, Joshua A; Alburquerque-Sendín, Francisco; Palomeque-del-Cerro, Luis; Méndez-Sánchez, Roberto
2009-06-01
Our aim was to examine the effects of a seated thoracic spine distraction thrust manipulation included in an electrotherapy/thermal program on pain, disability, and cervical range of motion in patients with acute neck pain. This randomized controlled trial included 45 patients (20 males, 25 females) between 23 and 44 years of age presenting with acute neck pain. Patients were randomly divided into 2 groups: an experimental group which received a thoracic manipulation, and a control group which did not receive the manipulative procedure. Both groups received an electrotherapy program consisting of 6 sessions of TENS (frequency 100Hz; 20min), superficial thermo-therapy (15min) and soft tissue massage. The experimental group also received a thoracic manipulation once a week for 3 consecutive weeks. Outcome measures included neck pain (numerical pain rate scale; NPRS), level of disability (Northwick Park Neck Pain Questionnaire; NPQ) and neck mobility. These outcomes were assessed at baseline and 1 week after discharge. A 2-way repeated-measures ANOVA with group as between-subject variable and time as within-subject variable was used. Patients receiving thoracic manipulation experienced greater reductions in both neck pain, with between-group difference of 2.3 (95% CI 2-2.7) points on a 11-NPRS, and perceived disability with between-group differences 8.5 (95% CI 7.2-9.8) points. Further, patients receiving thoracic manipulation experienced greater increases in all cervical motions with between-group differences of 10.6 degrees (95% CI 8.8-12.5 degrees) for flexion; 9.9 degrees (95% CI 8.1-11.7 degrees) for extension; 9.5 degrees (95% CI 7.6-11.4 degrees) for right lateral-flexion; 8 degrees (95% CI 6.2-9.8 degrees) for left lateral-flexion; 9.6 degrees (95% CI 7.7-11.6 degrees) for right rotation; and 8.4 degrees (95% CI 6.5-10.3 degrees) for left rotation. We found that the inclusion of a thoracic manipulation into an electrotherapy/thermal program was effective in reducing neck pain and disability, and in increasing active cervical mobility in patients with acute neck pain.
Pneumatic artificial muscle actuators for compliant robotic manipulators
NASA Astrophysics Data System (ADS)
Robinson, Ryan Michael
Robotic systems are increasingly being utilized in applications that require interaction with humans. In order to enable safe physical human-robot interaction, light weight and compliant manipulation are desirable. These requirements are problematic for many conventional actuation systems, which are often heavy, and typically use high stiffness to achieve high performance, leading to large impact forces upon collision. However, pneumatic artificial muscles (PAMs) are actuators that can satisfy these safety requirements while offering power-to-weight ratios comparable to those of conventional actuators. PAMs are extremely lightweight actuators that produce force in response to pressurization. These muscles demonstrate natural compliance, but have a nonlinear force-contraction profile that complicates modeling and control. This body of research presents solutions to the challenges associated with the implementation of PAMs as actuators in robotic manipulators, particularly with regard to modeling, design, and control. An existing PAM force balance model was modified to incorporate elliptic end geometry and a hyper-elastic constitutive relationship, dramatically improving predictions of PAM behavior at high contraction. Utilizing this improved model, two proof-of-concept PAM-driven manipulators were designed and constructed; design features included parallel placement of actuators and a tendon-link joint design. Genetic algorithm search heuristics were employed to determine an optimal joint geometry; allowing a manipulator to achieve a desired torque profile while minimizing the required PAM pressure. Performance of the manipulators was evaluated in both simulation and experiment employing various linear and nonlinear control strategies. These included output feedback techniques, such as proportional-integral-derivative (PID) and fuzzy logic, a model-based control for computed torque, and more advanced controllers, such as sliding mode, adaptive sliding mode, and adaptive neural network control. Results demonstrated the benefits of an accurate model in model-based control, and the advantages of adaptive neural network control when a model is unavailable or variations in payload are expected. Lastly, a variable recruitment strategy was applied to a group of parallel muscles actuating a common joint. Increased manipulator efficiency was observed when fewer PAMs were activated, justifying the use of variable recruitment strategies. Overall, this research demonstrates the benefits of pneumatic artificial muscles as actuators in robotics applications. It demonstrates that PAM-based manipulators can be well-modeled and can achieve high tracking accuracy over a wide range of payloads and inputs while maintaining natural compliance.
Hartmann-Boyce, Jamie; Bianchi, Filippo; Piernas, Carmen; Riches, Sarah Payne; Frie, Kerstin; Nourse, Rebecca; Jebb, Susan A
2018-06-01
Diet is an important determinant of health, and food purchasing is a key antecedent to consumption. We set out to evaluate the effectiveness of grocery store interventions to change food purchasing, and to examine whether effectiveness varied based on intervention components, setting, or socioeconomic status. We conducted a systematic review of randomized controlled trials (search performed June 2017). Studies must have: aimed to change food purchasing; been implemented in grocery stores (real or simulated); reported purchasing; and had a minimal control or compared interventions fulfilling our criteria. Searching, screening, bias assessment, and data extraction followed Cochrane methods. We grouped studies by intervention type (economic, environmental, swaps, and/or education), synthesized results narratively, and conducted an exploratory qualitative comparative analysis. We included 35 studies representing 89 interventions, >20,000 participants, and >800 stores. Risk of bias was mixed. Economic interventions showed the most promise, with 8 of the 9 studies in real stores and all 6 in simulated environments detecting an effect on purchasing. Swap interventions appeared promising in the 2 studies based in real stores. Store environment interventions showed mixed effects. Education-only interventions appeared effective in simulated environments but not in real stores. Available data suggested that effects of economic interventions did not differ by socioeconomic status, whereas for other interventions impact was variable. In our qualitative comparative analysis, economic interventions (regardless of setting) and environmental and swap interventions in real stores were associated with statistically significant changes in purchasing in the desired direction for ≥1 of the foods targeted by the intervention, whereas education-only interventions in real stores were not. Findings suggest that interventions implemented in grocery stores-particularly ones that manipulate price, suggest swaps, and perhaps manipulate item availability-have an impact on purchasing and could play a role in public health strategies to improve health. Review protocol registered at https://www.crd.york.ac.uk/PROSPERO/ as CRD42017068809.
Hartmann-Boyce, Jamie; Bianchi, Filippo; Piernas, Carmen; Riches, Sarah Payne; Frie, Kerstin; Nourse, Rebecca; Jebb, Susan A
2018-01-01
ABSTRACT Background Diet is an important determinant of health, and food purchasing is a key antecedent to consumption. Objective We set out to evaluate the effectiveness of grocery store interventions to change food purchasing, and to examine whether effectiveness varied based on intervention components, setting, or socioeconomic status. Design We conducted a systematic review of randomized controlled trials (search performed June 2017). Studies must have: aimed to change food purchasing; been implemented in grocery stores (real or simulated); reported purchasing; and had a minimal control or compared interventions fulfilling our criteria. Searching, screening, bias assessment, and data extraction followed Cochrane methods. We grouped studies by intervention type (economic, environmental, swaps, and/or education), synthesized results narratively, and conducted an exploratory qualitative comparative analysis. Results We included 35 studies representing 89 interventions, >20,000 participants, and >800 stores. Risk of bias was mixed. Economic interventions showed the most promise, with 8 of the 9 studies in real stores and all 6 in simulated environments detecting an effect on purchasing. Swap interventions appeared promising in the 2 studies based in real stores. Store environment interventions showed mixed effects. Education-only interventions appeared effective in simulated environments but not in real stores. Available data suggested that effects of economic interventions did not differ by socioeconomic status, whereas for other interventions impact was variable. In our qualitative comparative analysis, economic interventions (regardless of setting) and environmental and swap interventions in real stores were associated with statistically significant changes in purchasing in the desired direction for ≥1 of the foods targeted by the intervention, whereas education-only interventions in real stores were not. Conclusions Findings suggest that interventions implemented in grocery stores—particularly ones that manipulate price, suggest swaps, and perhaps manipulate item availability—have an impact on purchasing and could play a role in public health strategies to improve health. Review protocol registered at https://www.crd.york.ac.uk/PROSPERO/ as CRD42017068809. PMID:29868912
Landscape genetic approaches to guide native plant restoration in the Mojave Desert
Shryock, Daniel F.; Havrilla, Caroline A.; DeFalco, Lesley; Esque, Todd C.; Custer, Nathan; Wood, Troy E.
2016-01-01
Restoring dryland ecosystems is a global challenge due to synergistic drivers of disturbance coupled with unpredictable environmental conditions. Dryland plant species have evolved complex life-history strategies to cope with fluctuating resources and climatic extremes. Although rarely quantified, local adaptation is likely widespread among these species and potentially influences restoration outcomes. The common practice of reintroducing propagules to restore dryland ecosystems, often across large spatial scales, compels evaluation of adaptive divergence within these species. Such evaluations are critical to understanding the consequences of large-scale manipulation of gene flow and to predicting success of restoration efforts. However, genetic information for species of interest can be difficult and expensive to obtain through traditional common garden experiments. Recent advances in landscape genetics offer marker-based approaches for identifying environmental drivers of adaptive genetic variability in non-model species, but tools are still needed to link these approaches with practical aspects of ecological restoration. Here, we combine spatially-explicit landscape genetics models with flexible visualization tools to demonstrate how cost-effective evaluations of adaptive genetic divergence can facilitate implementation of different seed sourcing strategies in ecological restoration. We apply these methods to Amplified Fragment Length Polymorphism (AFLP) markers genotyped in two Mojave Desert shrub species of high restoration importance: the long-lived, wind-pollinated gymnosperm Ephedra nevadensis, and the short-lived, insect-pollinated angiosperm Sphaeralcea ambigua. Mean annual temperature was identified as an important driver of adaptive genetic divergence for both species. Ephedra showed stronger adaptive divergence with respect to precipitation variability, while temperature variability and precipitation averages explained a larger fraction of adaptive divergence in Sphaeralcea. We describe multivariate statistical approaches for interpolating spatial patterns of adaptive divergence while accounting for potential bias due to neutral genetic structure. Through a spatial bootstrapping procedure, we also visualize patterns in the magnitude of model uncertainty. Finally, we introduce an interactive, distance-based mapping approach that explicitly links marker-based models of adaptive divergence with local or admixture seed sourcing strategies, promoting effective native plant restoration.
NASA Technical Reports Server (NTRS)
Lynch, H. J.; Eng, J. P.; Wurtman, R. J.
1973-01-01
Description of experimental investigations showing that, in addition to environmental lighting, other manipulations known to modify sympathetic tone can also modify pineal indole biosynthesis. Comparable alterations in sympathetic tone that occur in response to activity or feeding cycles may be instrumental in generating the pineal rhythms that persist in the absence of light-dark cycle.
Historical Contingencies in Microbial Responses to Drought
NASA Astrophysics Data System (ADS)
Hawkes, C.; Waring, B.; Rocca, J.; Kivlin, S.; Giauque, H.; Averill, C.
2014-12-01
Although water is a primary controller of microbial function and we expect climate change to alter water availability in the future, our understanding of how microbial communities respond to a change in moisture and what that means for soil carbon cycling remain poorly understood. In part, this uncertainty arises from a lack of understanding of microbial response mechanisms and how those lead to aggregate soil function. Environmental tracking would be facilitated if microbial communities respond to new climatic conditions via rapid physiological acclimatization, shifts in community composition, or adaptation. In contrast, historical contingencies could be created by dispersal limitation or local adaptation to previous conditions. To address environmental tracking vs. legacies, we examined how soil microbial communities were affected by precipitation at multiple scales and asked whether rainfall was a primary driver of the observed responses. We leveraged a local steep rainfall gradient with field surveys, lab incubations, reciprocal transplants, and rainfall manipulations to approach this problem. Across a steep rainfall gradient, we found that soil microbial communities were strongly associated with historical rainfall, with two-thirds of the variation in community composition explained by mean annual precipitation. In 12-month experimental lab manipulations of soil moisture, soil functional responses were constrained by historical rainfall, with greater activity in soils subjected to their original moisture condition. The constraints of historical rainfall held even after 18 months in reciprocal transplant common gardens along the rainfall gradient and with manipulated dispersal of regional microbial communities. Yet, when water was manipulated at a single site over 4 years, legacies did not develop. Overall, these findings are consistent with long-term rainfall acting as a strong habitat filter and resulting in a legacy of both microbial community composition and physiological capacity that can affect soil carbon cycling. Placing the ecological and evolutionary dynamics of microbial communities in the context of historical and future environmental variation may thus provide us with a framework for improving prediction of ecosystem responses to climate change.
Lorme, Kenneth J; Naqvi, Syed A
2003-01-01
There is epidemiologic evidence that chiropractors are a high-risk group for low-back disorders. However, to date there are no known biomechanical studies to determine whether their workstations may be a contributing factor. To investigate whether chiropractors' workstation table height or the tasks they perform make them susceptible to low-back strain. As well as investigating low-back strain, a screening was performed to determine whether chiropractors' upper extremities were at risk for undue strain as workstation table height was varied. Experimental pilot study. A university ergonomic laboratory. An adjustable manipulation table was set at 3 different heights: 465 mm, 665 mm and 845 mm. Each of the 7 volunteer chiropractors were fitted with a triaxial electrogoniometer and were videotaped and photographed for analysis while performing spinal manipulation to the cervical, thoracic, and lumbar spine of a volunteer patient at each workstation table height. Two biomechanical models, one static and one dynamic, were used to record the dependent variables. A screening of various upper extremity variables was also performed with the static model. For the subjects under study, a significant difference was found for the variables maximum sagittal flexion, disk compression force, and ligament strain as table height was varied. For the lumbar and thoracic manipulation tasks, the medium table height (655 mm) was found to create the least low-back strain. For the cervical manipulation task, the high table height (845 mm) was found to be the least straining on the low-back. The low height table (465 mm) was the most straining for all tasks. Upper extremities were not significantly affected by changes to table height. Significant differences were found for the task performed for axial rotational velocity, disk compression force, ligament strain, maximum sagittal flexion, dominant (right) elbow moment, and dominant (right) shoulder moment variables. There was no significant interaction between table height and task performed. Workstation table height was found to have a significant effect on low-back load of subjects under study. The results of this study demonstrate an overall unacceptably high amount of sagittal flexion, ligament strain, and disk compression force on the chiropractor subjects in the tasks performed.
Kinematically Optimal Robust Control of Redundant Manipulators
NASA Astrophysics Data System (ADS)
Galicki, M.
2017-12-01
This work deals with the problem of the robust optimal task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the endeffector. Furthermore, the movement is to be accomplished in such a way as to minimize both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we derive a class of chattering-free robust kinematically optimal controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.
Robust Task Space Trajectory Tracking Control of Robotic Manipulators
NASA Astrophysics Data System (ADS)
Galicki, M.
2016-08-01
This work deals with the problem of the accurate task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the end-effector. Furthermore, the movement is to be accomplished in such a way as to reduce both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we propose a class of chattering-free robust controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.
Environmental Literacy in Madeira Island (Portugal): The Influence of Demographic Variables
ERIC Educational Resources Information Center
Spinola, Hélder
2016-01-01
Demographic factors are among those that influence environmental literacy and, particularly, environmentally responsible behaviours, either directly or due to an aggregation effect dependent on other types of variables. Present study evaluates a set of demographic variables as predictors for environmental literacy among 9th grade students from…
Using factorial experimental design to evaluate the separation of plastics by froth flotation.
Salerno, Davide; Jordão, Helga; La Marca, Floriana; Carvalho, M Teresa
2018-03-01
This paper proposes the use of factorial experimental design as a standard experimental method in the application of froth flotation to plastic separation instead of the commonly used OVAT method (manipulation of one variable at a time). Furthermore, as is common practice in minerals flotation, the parameters of the kinetic model were used as process responses rather than the recovery of plastics in the separation products. To explain and illustrate the proposed methodology, a set of 32 experimental tests was performed using mixtures of two polymers with approximately the same density, PVC and PS (with mineral charges), with particle size ranging from 2 to 4 mm. The manipulated variables were frother concentration, air flow rate and pH. A three-level full factorial design was conducted. The models establishing the relationships between the manipulated variables and their interactions with the responses (first order kinetic model parameters) were built. The Corrected Akaike Information Criterion was used to select the best fit model and an analysis of variance (ANOVA) was conducted to identify the statistically significant terms of the model. It was shown that froth flotation can be used to efficiently separate PVC from PS with mineral charges by reducing the floatability of PVC, which largely depends on the action of pH. Within the tested interval, this is the factor that most affects the flotation rate constants. The results obtained show that the pure error may be of the same magnitude as the sum of squares of the errors, suggesting that there is significant variability within the same experimental conditions. Thus, special care is needed when evaluating and generalizing the process. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Olejnik, Stephen
The measurement of change in quasi-experimental educational research was discussed. Problems related to measuring change exist to varying degrees in all research designs; these issues are less troublesome in experimental studies because the investigator can manipulate the interest variables and observe their effects on other variables. Measuring…
ERIC Educational Resources Information Center
Roxburgh, Carole A.; Carbone, Vincent J.
2013-01-01
Recent research has emphasized the importance of manipulating antecedent variables to reduce interfering behaviors when teaching persons with autism. Few studies have focused on the effects of the rate of teacher-presented instructional demands as an independent variable. In this study, an alternating treatment design was used to evaluate the…
Effects of Typographic Variables on Eye-Movement Measures in Reading Chinese from a Screen
ERIC Educational Resources Information Center
Yen, Nai-Shing; Tsai, Jie-Li; Chen, Pei-Ling; Lin, Hsuan-Yu; Chen, Arbee L. P.
2011-01-01
To investigate the most efficient way to represent text in reading Chinese on computer displays, three typographic variables, character size (41[feet] arc/24 pixels and 60[feet] arc/32 pixels), character spacing (1/4 and 1/8 character width) and font type (Kai and Ming), were manipulated. Results showed that the reading speed for Chinese…
ERIC Educational Resources Information Center
Tenpas, Barbara G.; And Others
Incentive, practice, instruction, and feedback were manipulated in a series of four 2 x 2 factorial studies, with Air Force Reserve Officer Training Corps cadets and graduate students in education, to determine the individual and combined effects of these variables on learner performance (both speed and accuracy) of an aircraft comprehension task.…
Poor phonetic perceivers are affected by cognitive load when resolving talker variability
Antoniou, Mark; Wong, Patrick C. M.
2015-01-01
Speech training paradigms aim to maximise learning outcomes by manipulating external factors such as talker variability. However, not all individuals may benefit from such manipulations because subject-external factors interact with subject-internal ones (e.g., aptitude) to determine speech perception and/or learning success. In a previous tone learning study, high-aptitude individuals benefitted from talker variability, whereas low-aptitude individuals were impaired. Because increases in cognitive load have been shown to hinder speech perception in mixed-talker conditions, it has been proposed that resolving talker variability requires cognitive resources. This proposal leads to the hypothesis that low-aptitude individuals do not use their cognitive resources as efficiently as those with high aptitude. Here, high- and low-aptitude subjects identified pitch contours spoken by multiple talkers under high and low cognitive load conditions established by a secondary task. While high-aptitude listeners outperformed low-aptitude listeners across load conditions, only low-aptitude listeners were impaired by increased cognitive load. The findings suggest that low-aptitude listeners either have fewer available cognitive resources or are poorer at allocating attention to the signal. Therefore, cognitive load is an important factor when considering individual differences in speech perception and training paradigms. PMID:26328675
Poor phonetic perceivers are affected by cognitive load when resolving talker variability.
Antoniou, Mark; Wong, Patrick C M
2015-08-01
Speech training paradigms aim to maximise learning outcomes by manipulating external factors such as talker variability. However, not all individuals may benefit from such manipulations because subject-external factors interact with subject-internal ones (e.g., aptitude) to determine speech perception and/or learning success. In a previous tone learning study, high-aptitude individuals benefitted from talker variability, whereas low-aptitude individuals were impaired. Because increases in cognitive load have been shown to hinder speech perception in mixed-talker conditions, it has been proposed that resolving talker variability requires cognitive resources. This proposal leads to the hypothesis that low-aptitude individuals do not use their cognitive resources as efficiently as those with high aptitude. Here, high- and low-aptitude subjects identified pitch contours spoken by multiple talkers under high and low cognitive load conditions established by a secondary task. While high-aptitude listeners outperformed low-aptitude listeners across load conditions, only low-aptitude listeners were impaired by increased cognitive load. The findings suggest that low-aptitude listeners either have fewer available cognitive resources or are poorer at allocating attention to the signal. Therefore, cognitive load is an important factor when considering individual differences in speech perception and training paradigms.
Event-Based control of depth of hypnosis in anesthesia.
Merigo, Luca; Beschi, Manuel; Padula, Fabrizio; Latronico, Nicola; Paltenghi, Massimiliano; Visioli, Antonio
2017-08-01
In this paper, we propose the use of an event-based control strategy for the closed-loop control of the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. A new event generator with high noise-filtering properties is employed in addition to a PIDPlus controller. The tuning of the parameters is performed off-line by using genetic algorithms by considering a given data set of patients. The effectiveness and robustness of the method is verified in simulation by implementing a Monte Carlo method to address the intra-patient and inter-patient variability. A comparison with a standard PID control structure shows that the event-based control system achieves a reduction of the total variation of the manipulated variable of 93% in the induction phase and of 95% in the maintenance phase. The use of event based automatic control in anesthesia yields a fast induction phase with bounded overshoot and an acceptable disturbance rejection. A comparison with a standard PID control structure shows that the technique effectively mimics the behavior of the anesthesiologist by providing a significant decrement of the total variation of the manipulated variable. Copyright © 2017 Elsevier B.V. All rights reserved.
van de Pol, Martijn; Vindenes, Yngvild; Sæther, Bernt-Erik; Engen, Steinar; Ens, Bruno J.; Oosterbeek, Kees; Tinbergen, Joost M.
2011-01-01
The relative importance of environmental colour for extinction risk compared with other aspects of environmental noise (mean and interannual variability) is poorly understood. Such knowledge is currently relevant, as climate change can cause the mean, variability and temporal autocorrelation of environmental variables to change. Here, we predict that the extinction risk of a shorebird population increases with the colour of a key environmental variable: winter temperature. However, the effect is weak compared with the impact of changes in the mean and interannual variability of temperature. Extinction risk was largely insensitive to noise colour, because demographic rates are poor in tracking the colour of the environment. We show that three mechanisms—which probably act in many species—can cause poor environmental tracking: (i) demographic rates that depend nonlinearly on environmental variables filter the noise colour, (ii) demographic rates typically depend on several environmental signals that do not change colour synchronously, and (iii) demographic stochasticity whitens the colour of demographic rates at low population size. We argue that the common practice of assuming perfect environmental tracking may result in overemphasizing the importance of noise colour for extinction risk. Consequently, ignoring environmental autocorrelation in population viability analysis could be less problematic than generally thought. PMID:21561978
Motion patterns in acupuncture needle manipulation.
Seo, Yoonjeong; Lee, In-Seon; Jung, Won-Mo; Ryu, Ho-Sun; Lim, Jinwoong; Ryu, Yeon-Hee; Kang, Jung-Won; Chae, Younbyoung
2014-10-01
In clinical practice, acupuncture manipulation is highly individualised for each practitioner. Before we establish a standard for acupuncture manipulation, it is important to understand completely the manifestations of acupuncture manipulation in the actual clinic. To examine motion patterns during acupuncture manipulation, we generated a fitted model of practitioners' motion patterns and evaluated their consistencies in acupuncture manipulation. Using a motion sensor, we obtained real-time motion data from eight experienced practitioners while they conducted acupuncture manipulation using their own techniques. We calculated the average amplitude and duration of a sampled motion unit for each practitioner and, after normalisation, we generated a true regression curve of motion patterns for each practitioner using a generalised additive mixed modelling (GAMM). We observed significant differences in rotation amplitude and duration in motion samples among practitioners. GAMM showed marked variations in average regression curves of motion patterns among practitioners but there was strong consistency in motion parameters for individual practitioners. The fitted regression model showed that the true regression curve accounted for an average of 50.2% of variance in the motion pattern for each practitioner. Our findings suggest that there is great inter-individual variability between practitioners, but remarkable intra-individual consistency within each practitioner. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Force reflecting hand controller for manipulator teleoperation
NASA Technical Reports Server (NTRS)
Bryfogle, Mark D.
1991-01-01
A force reflecting hand controller based upon a six degree of freedom fully parallel mechanism, often termed a Stewart Platform, has been designed, constructed, and tested as an integrated system with a slave robot manipulator test bed. A force reflecting hand controller comprises a kinesthetic device capable of transmitting position and orientation commands to a slave robot manipulator while simultaneously representing the environmental interaction forces of the slave manipulator back to the operator through actuators driving the hand controller mechanism. The Stewart Platform was chosen as a novel approach to improve force reflecting teleoperation because of its inherently high ratio of load generation capability to system mass content and the correspondingly high dynamic bandwidth. An additional novelty of the program was to implement closed loop force and torque control about the hand controller mechanism by equipping the handgrip with a six degree of freedom force and torque measuring cell. The mechanical, electrical, computer, and control systems are discussed and system tests are presented.
Tsyganov, Andrey N; Keuper, Frida; Aerts, Rien; Beyens, Louis
2013-01-01
Extreme precipitation events are recognised as important drivers of ecosystem responses to climate change and can considerably affect high-latitude ombrotrophic bogs. Therefore, understanding the relationships between increased rainfall and the biotic components of these ecosystems is necessary for an estimation of climate change impacts. We studied overall effects of increased magnitude, intensity and frequency of rainfall on assemblages of Sphagnum-dwelling testate amoebae in a field climate manipulation experiment located in a relatively dry subarctic bog (Abisko, Sweden). The effects of the treatment were estimated using abundance, species diversity and structure of living and empty shell assemblages of testate amoebae in living and decaying layers of Sphagnum. Our results show that increased rainfall reduced the mean abundance and species richness of living testate amoebae. Besides, the treatment affected species structure of both living and empty shell assemblages, reducing proportions of hydrophilous species. The effects are counterintuitive as increased precipitation-related substrate moisture was expected to have opposite effects on testate amoeba assemblages in relatively dry biotopes. Therefore, we conclude that other rainfall-related factors such as increased infiltration rates and frequency of environmental disturbances can also affect testate amoeba assemblages in Sphagnum and that hydrophilous species are particularly sensitive to variation in these environmental variables.
Fincannon, Thomas; Keebler, Joseph R; Jentsch, Florian; Curtis, Michael
2013-01-01
The purpose of this study was to examine the effects of environmental and cognitive factors on the identification of targets from an unmanned ground vehicle (UGV). This was accomplished by manipulating obstruction, camouflage and familiarity of objects in the environment, while also measuring spatial ability. The effects of these variables on target identification were studied by measuring performance of participants that observed pre-recorded video from a 1:35 scaled military operations in urban terrain facility. Analyses indicated that a combination of camouflage and obstruction caused the most detrimental effects on performance, and that there were differences in the recognition of familiar and unfamiliar targets. Further analysis indicated that these detrimental effects could only be overcome with a combination of target familiarity and spatial ability. The findings highlight the degree to which environmental factors hinder performance and the need for a multidimensional approach for improving performance under these conditions. Areas in need of future research are also discussed. Cognitive theory is applied to the problem of perception from UGVs. Results from an experimental study indicate that a combination of camouflage and obstruction caused the most detrimental effects on performance, with differences in the recognition of both familiar and unfamiliar targets. Familiarity and spatial ability interacted to predict the performance.
Genetic Determinism vs. Phenotypic Plasticity in Protist Morphology.
Mulot, Matthieu; Marcisz, Katarzyna; Grandgirard, Lara; Lara, Enrique; Kosakyan, Anush; Robroek, Bjorn J M; Lamentowicz, Mariusz; Payne, Richard J; Mitchell, Edward A D
2017-11-01
Untangling the relationships between morphology and phylogeny is key to building a reliable taxonomy, but is especially challenging for protists, where the existence of cryptic or pseudocryptic species makes finding relevant discriminant traits difficult. Here we use Hyalosphenia papilio (a testate amoeba) as a model species to investigate the contribution of phylogeny and phenotypic plasticity in its morphology. We study the response of H. papilio morphology (shape and pores number) to environmental variables in (i) a manipulative experiment with controlled conditions (water level), (ii) an observational study of a within-site natural ecological gradient (water level), and (iii) an observational study across 37 European peatlands (climate). We showed that H. papilio morphology is correlated to environmental conditions (climate and water depth) as well as geography, while no relationship between morphology and phylogeny was brought to light. The relative contribution of genetic inheritance and phenotypic plasticity in shaping morphology varies depending on the taxonomic group and the trait under consideration. Thus, our data call for a reassessment of taxonomy based on morphology alone. This clearly calls for a substantial increase in taxonomic research on these globally still under-studied organisms leading to a reassessment of estimates of global microbial eukaryotic diversity. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.
Kelly, Patrick T.; Craig, Nicola; Solomon, Christopher T.; Weidel, Brian C.; Zwart, Jacob A.; Jones, Stuart E.
2016-01-01
The observed pattern of lake browning, or increased terrestrial dissolved organic carbon (DOC) concentration, across the northern hemisphere has amplified the importance of understanding how consumer productivity varies with DOC concentration. Results from comparative studies suggest these increased DOC concentrations may reduce crustacean zooplankton productivity due to reductions in resource quality and volume of suitable habitat. Although these spatial comparisons provide an expectation for the response of zooplankton productivity as DOC concentration increases, we still have an incomplete understanding of how zooplankton respond to temporal increases in DOC concentration within a single system. As such, we used a whole-lake manipulation, in which DOC concentration was increased from 8 to 11 mg L−1 in one basin of a manipulated lake, to test the hypothesis that crustacean zooplankton production should subsequently decrease. In contrast to the spatially derived expectation of sharp DOC-mediated decline, we observed a small increase in zooplankton densities in response to our experimental increase in DOC concentration of the treatment basin. This was due to significant increases in gross primary production and resource quality (lower seston carbon-to-phosphorus ratio; C:P). These results demonstrate that temporal changes in lake characteristics due to increased DOC may impact zooplankton in ways that differ from those observed in spatial surveys. We also identified significant interannual variability across our study region, which highlights potential difficulty in detecting temporal responses of organism abundances to gradual environmental change (e.g., browning).
Mowle, Elyse N; Edens, John F; Clark, John W; Sörman, Karolina
2016-11-01
Several recent studies have examined the effects of mental health and neuroscientific evidence on attitudes toward criminal defendants, suggesting that these factors may influence juror decision-making in meaningful ways. Few studies to date have manipulated both of these variables while also considering theoretically important individual difference variables (e.g., political orientation). Using a criminal case simulation, this study manipulated the presence of evidence concerning mental disorders (psychopathy and schizophrenia) and increasing levels of neuroscientific detail regarding a defendant's brain injury, and examined verdicts and sentencing recommendations in over 400 persons attending jury duty. Main effects were detected for mental health testimony and political orientation, although interactions were noted as well. More negative reactions to defendants labeled as psychopaths were relatively consistent, whereas participants who identified as liberal generally were less punitive towards a defendant identified as schizophrenic than were more conservative jurors. Consistent with other recent research, juror perceptions of the defendant's level of psychopathic traits (independent of the effects of the experimental manipulations) predicted guilty verdicts and longer sentencing recommendations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Evidence against decay in verbal working memory.
Oberauer, Klaus; Lewandowsky, Stephan
2013-05-01
The article tests the assumption that forgetting in working memory for verbal materials is caused by time-based decay, using the complex-span paradigm. Participants encoded 6 letters for serial recall; each letter was preceded and followed by a processing period comprising 4 trials of difficult visual search. Processing duration, during which memory could decay, was manipulated via search set size. This manipulation increased retention interval by up to 100% without having any effect on recall accuracy. This result held with and without articulatory suppression. Two experiments using a dual-task paradigm showed that the visual search process required central attention. Thus, even when memory maintenance by central attention and by articulatory rehearsal was prevented, a large delay had no effect on memory performance, contrary to the decay notion. Most previous experiments that manipulated the retention interval and the opportunity for maintenance processes in complex span have confounded these variables with time pressure during processing periods. Three further experiments identified time pressure as the variable that affected recall. We conclude that time-based decay does not contribute to the capacity limit of verbal working memory. PsycINFO Database Record (c) 2013 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Xiang-Chun; Sun, Shi-Hai; Jiang, Mu-Sheng; Gui, Ming; Zhou, Yan-Li; Liang, Lin-Mei
2014-03-01
In a practical continuous-variable quantum-key distribution (CVQKD), the fluctuations of the local oscillator (LO) not only make the normalization of Bob's measurement outcomes difficult, but also can change the signal-to-noise ratio (SNR) of an imperfect balanced homodyne detector (BHD), which may lead the security of a practical system of CVQKD to be compromised severely. In this paper, we propose that the LO intensity can be manipulated by the legitimate parties, i.e., being tuned and stabilized to a required constant value, to eliminate the impact of LO fluctuations and defeat Eve's potential attack on the LO. Moreover, we show that the secret key rate can be increased over a noisy channel, especially the channels of metropolitan QKD networks, by tuning the intensity of LO and thus the SNR of a practical BHD to an optimal value, and we find that, counterintuitively, the requirement on BHD (i.e., high detection efficiency and low electronic noise) can also be reduced in this case. To realize this manipulation, we give a schematic setup which, thus, can be used to enhance the security of a practical CVQKD system.
Variable setpoint as a relaxing component in physiological control.
Risvoll, Geir B; Thorsen, Kristian; Ruoff, Peter; Drengstig, Tormod
2017-09-01
Setpoints in physiology have been a puzzle for decades, and especially the notion of fixed or variable setpoints have received much attention. In this paper, we show how previously presented homeostatic controller motifs, extended with saturable signaling kinetics, can be described as variable setpoint controllers. The benefit of a variable setpoint controller is that an observed change in the concentration of the regulated biochemical species (the controlled variable) is fully characterized, and is not considered a deviation from a fixed setpoint. The variation in this biochemical species originate from variation in the disturbances (the perturbation), and thereby in the biochemical species representing the controller (the manipulated variable). Thus, we define an operational space which is spanned out by the combined high and low levels of the variations in (1) the controlled variable, (2) the manipulated variable, and (3) the perturbation. From this operational space, we investigate whether and how it imposes constraints on the different motif parameters, in order for the motif to represent a mathematical model of the regulatory system. Further analysis of the controller's ability to compensate for disturbances reveals that a variable setpoint represents a relaxing component for the controller, in that the necessary control action is reduced compared to that of a fixed setpoint controller. Such a relaxing component might serve as an important property from an evolutionary point of view. Finally, we illustrate the principles using the renal sodium and aldosterone regulatory system, where we model the variation in plasma sodium as a function of salt intake. We show that the experimentally observed variations in plasma sodium can be interpreted as a variable setpoint regulatory system. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Increasing Learning from TV News.
ERIC Educational Resources Information Center
Perloff, Richard M.; And Others
1982-01-01
Describes an experiment that manipulated two variables, repetition and pausing for viewer "digestion" of information in a news telecast. Concludes that the use of repetition increased viewers' retention of information, but that pauses did not. (FL)
Baldissera, Ronei; Rodrigues, Everton N L; Hartz, Sandra M
2012-01-01
The distribution of beta diversity is shaped by factors linked to environmental and spatial control. The relative importance of both processes in structuring spider metacommunities has not yet been investigated in the Atlantic Forest. The variance explained by purely environmental, spatially structured environmental, and purely spatial components was compared for a metacommunity of web spiders. The study was carried out in 16 patches of Atlantic Forest in southern Brazil. Field work was done in one landscape mosaic representing a slight gradient of urbanization. Environmental variables encompassed plot- and patch-level measurements and a climatic matrix, while principal coordinates of neighbor matrices (PCNMs) acted as spatial variables. A forward selection procedure was carried out to select environmental and spatial variables influencing web-spider beta diversity. Variation partitioning was used to estimate the contribution of pure environmental and pure spatial effects and their shared influence on beta-diversity patterns, and to estimate the relative importance of selected environmental variables. Three environmental variables (bush density, land use in the surroundings of patches, and shape of patches) and two spatial variables were selected by forward selection procedures. Variation partitioning revealed that 15% of the variation of beta diversity was explained by a combination of environmental and PCNM variables. Most of this variation (12%) corresponded to pure environmental and spatially environmental structure. The data indicated that (1) spatial legacy was not important in explaining the web-spider beta diversity; (2) environmental predictors explained a significant portion of the variation in web-spider composition; (3) one-third of environmental variation was due to a spatial structure that jointly explains variation in species distributions. We were able to detect important factors related to matrix management influencing the web-spider beta-diversity patterns, which are probably linked to historical deforestation events.
NASA Technical Reports Server (NTRS)
Hartley, Tom T. (Editor)
1987-01-01
Recent advances in control-system design and simulation are discussed in reviews and reports. Among the topics considered are fast algorithms for generating near-optimal binary decision programs, trajectory control of robot manipulators with compensation of load effects via a six-axis force sensor, matrix integrators for real-time simulation, a high-level control language for an autonomous land vehicle, and a practical engineering design method for stable model-reference adaptive systems. Also addressed are the identification and control of flexible-limb robots with unknown loads, adaptive control and robust adaptive control for manipulators with feedforward compensation, adaptive pole-placement controllers with predictive action, variable-structure strategies for motion control, and digital signal-processor-based variable-structure controls.
Macpherson, Alexander J; Principe, Peter P; Shao, Yang
2013-04-15
Researchers are increasingly using data envelopment analysis (DEA) to examine the efficiency of environmental policies and resource allocations. An assumption of the basic DEA model is that decisionmakers operate within homogeneous environments. But, this assumption is not valid when environmental performance is influenced by variables beyond managerial control. Understanding the influence of these variables is important to distinguish between characterizing environmental conditions and identifying opportunities to improve environmental performance. While environmental assessments often focus on characterizing conditions, the point of using DEA is to identify opportunities to improve environmental performance and thereby prevent (or rectify) an inefficient allocation of resources. We examine the role of exogenous variables such as climate, hydrology, and topography in producing environmental impacts such as deposition, runoff, invasive species, and forest fragmentation within the United States Mid-Atlantic region. We apply a four-stage procedure to adjust environmental impacts in a DEA model that seeks to minimize environmental impacts while obtaining given levels of socioeconomic outcomes. The approach creates a performance index that bundles multiple indicators while adjusting for variables that are outside management control, offering numerous advantages for environmental assessment. Published by Elsevier Ltd.
Bayindir, Mustafa; Bolger, Fergus; Say, Bilge
2016-07-19
Making decisions using judgements of multiple non-deterministic indicators is an important task, both in everyday and professional life. Learning of such decision making has often been studied as the mapping of stimuli (cues) to an environmental variable (criterion); however, little attention has been paid to the effects of situation-by-person interactions on this learning. Accordingly, we manipulated cue and feedback presentation mode (graphic or numeric) and task difficulty, and measured individual differences in working memory capacity (WMC). We predicted that graphic presentation, fewer cues, and elevated WMC would facilitate learning, and that person and task characteristics would interact such that presentation mode compatible with the decision maker's cognitive capability (enhanced visual or verbal WMC) would assist learning, particularly for more difficult tasks. We found our predicted main effects, but no significant interactions, except that those with greater WMC benefited to a larger extent with graphic than with numeric presentation, regardless of which type of working memory was enhanced or number of cues. Our findings suggest that the conclusions of past research based predominantly on tasks using numeric presentation need to be reevaluated and cast light on how working memory helps us learn multiple cue-criterion relationships, with implications for dual-process theories of cognition.
Dormido, Raquel; Sánchez, José; Duro, Natividad; Dormido-Canto, Sebastián; Guinaldo, María; Dormido, Sebastián
2014-03-06
This paper describes an interactive virtual laboratory for experimenting with an outdoor tubular photobioreactor (henceforth PBR for short). This virtual laboratory it makes possible to: (a) accurately reproduce the structure of a real plant (the PBR designed and built by the Department of Chemical Engineering of the University of Almería, Spain); (b) simulate a generic tubular PBR by changing the PBR geometry; (c) simulate the effects of changing different operating parameters such as the conditions of the culture (pH, biomass concentration, dissolved O2, inyected CO2, etc.); (d) simulate the PBR in its environmental context; it is possible to change the geographic location of the system or the solar irradiation profile; (e) apply different control strategies to adjust different variables such as the CO2 injection, culture circulation rate or culture temperature in order to maximize the biomass production; (f) simulate the harvesting. In this way, users can learn in an intuitive way how productivity is affected by any change in the design. It facilitates the learning of how to manipulate essential variables for microalgae growth to design an optimal PBR. The simulator has been developed with Easy Java Simulations, a freeware open-source tool developed in Java, specifically designed for the creation of interactive dynamic simulations.
Dormido, Raquel; Sánchez, José; Duro, Natividad; Dormido-Canto, Sebastián; Guinaldo, María; Dormido, Sebastián
2014-01-01
This paper describes an interactive virtual laboratory for experimenting with an outdoor tubular photobioreactor (henceforth PBR for short). This virtual laboratory it makes possible to: (a) accurately reproduce the structure of a real plant (the PBR designed and built by the Department of Chemical Engineering of the University of Almería, Spain); (b) simulate a generic tubular PBR by changing the PBR geometry; (c) simulate the effects of changing different operating parameters such as the conditions of the culture (pH, biomass concentration, dissolved O2, inyected CO2, etc.); (d) simulate the PBR in its environmental context; it is possible to change the geographic location of the system or the solar irradiation profile; (e) apply different control strategies to adjust different variables such as the CO2 injection, culture circulation rate or culture temperature in order to maximize the biomass production; (f) simulate the harvesting. In this way, users can learn in an intuitive way how productivity is affected by any change in the design. It facilitates the learning of how to manipulate essential variables for microalgae growth to design an optimal PBR. The simulator has been developed with Easy Java Simulations, a freeware open-source tool developed in Java, specifically designed for the creation of interactive dynamic simulations. PMID:24662450
Ji, Lei; Peters, Albert J.
2004-01-01
The relationship between vegetation and climate in the grassland and cropland of the northern US Great Plains was investigated with Normalized Difference Vegetation Index (NDVI) (1989–1993) images derived from the Advanced Very High Resolution Radiometer (AVHRR), and climate data from automated weather stations. The relationship was quantified using a spatial regression technique that adjusts for spatial autocorrelation inherent in these data. Conventional regression techniques used frequently in previous studies are not adequate, because they are based on the assumption of independent observations. Six climate variables during the growing season; precipitation, potential evapotranspiration, daily maximum and minimum air temperature, soil temperature, solar irradiation were regressed on NDVI derived from a 10-km weather station buffer. The regression model identified precipitation and potential evapotranspiration as the most significant climatic variables, indicating that the water balance is the most important factor controlling vegetation condition at an annual timescale. The model indicates that 46% and 24% of variation in NDVI is accounted for by climate in grassland and cropland, respectively, indicating that grassland vegetation has a more pronounced response to climate variation than cropland. Other factors contributing to NDVI variation include environmental factors (soil, groundwater and terrain), human manipulation of crops, and sensor variation.
Bacterial contamination of ex vivo processed PBPC products under clean room conditions.
Ritter, Markus; Schwedler, Joachim; Beyer, Jörg; Movassaghi, Kamran; Mutters, Reinier; Neubauer, Andreas; Schwella, Nimrod
2003-11-01
Patients undergoing high-dose radio- and/or chemotherapy and autologous or allogeneic PBPC transplantation are at high risk for infections owing to profound immunosuppression. In this study, the rate of microbial contamination of ex vivo processed PBPC products was analyzed, comparing preparation under clean room conditions to standard laboratory conditions. After implementation of good manufacturing practice conditions in the two participating institutions, the microbial contamination rate of 366 PBPC harvests from 198 patients was determined under certified clean room conditions (Group A) from 2000 until 2002. To investigate influence of improved environmental conditions along with other parameters, this set of samples was compared with a historical control set of 1413 PBPC products, which have been processed ex vivo under a clean bench in a regular laboratory room and were harvested from 626 patients (Group B) from 1989 until 2000. In Group B microbial contamination was found in 74 PBPC products (5.2%) from 57 patients. In Group A microbial growth was detected in 3 leukapheresis products (0.8%) from 3 patients. After exclusion of PBPC products, which were probably contaminated before manipulation, statistical analysis showed a significant difference (chi2= 10.339; p < 0.001). These data suggest an impact of clean room conditions on the bacterial contamination rate of PBPC products. To identify confounding variables, variables like technique of leukapheresis, culture methodology, and microbial colonization of central venous catheters were taken into account. Further variables might be identified in following studies.
Fuzzy variable impedance control based on stiffness identification for human-robot cooperation
NASA Astrophysics Data System (ADS)
Mao, Dachao; Yang, Wenlong; Du, Zhijiang
2017-06-01
This paper presents a dynamic fuzzy variable impedance control algorithm for human-robot cooperation. In order to estimate the intention of human for co-manipulation, a fuzzy inference system is set up to adjust the impedance parameter. Aiming at regulating the output fuzzy universe based on the human arm’s stiffness, an online stiffness identification method is developed. A drag interaction task is conducted on a 5-DOF robot with variable impedance control. Experimental results demonstrate that the proposed algorithm is superior.
The forces applied by female and male chiropractors during thoracic spinal manipulation.
Forand, D; Drover, J; Suleman, Z; Symons, B; Herzog, Walter
2004-01-01
On average, women weigh less, have a smaller frame, and are less muscular than men. Since the peak thrust force applied during spinal manipulative treatments can be quite high and must be reached in a very short period of time, one might question the physical ability of women to generate such high forces. To study the forces generated by male and female chiropractors as they deliver spinal manipulation to the thoracic spine. Fourteen male and 14 female experience-matched chiropractors participated in this study. They each manipulated 1 of 9 asymptomatic male adult subjects of similar height and weight. The clinicians were asked to manipulate a transverse process in the vicinity of T4 and T9. Any technique could be used as long as the treatment thrust was in a posterior to anterior direction and the hand contact fit onto the sensor pad (area = 100 cm2). There were no significant differences (P<.05) between male and female chiropractors for any measurements in the upper thoracic area. For the lower thoracic manipulations, the preload forces for the male chiropractors were significantly greater (P<.05) than those for the female chiropractors. The remaining variables were the same between the 2 groups. Female chiropractors produce, from a mechanical point of view, similar manual treatments as their male colleagues.
Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine
Murphy, Matthew B; Moncivais, Kathryn; Caplan, Arnold I
2013-01-01
Mesenchymal stem cells (MSCs) are partially defined by their ability to differentiate into tissues including bone, cartilage and adipose in vitro, but it is their trophic, paracrine and immunomodulatory functions that may have the greatest therapeutic impact in vivo. Unlike pharmaceutical treatments that deliver a single agent at a specific dose, MSCs are site regulated and secrete bioactive factors and signals at variable concentrations in response to local microenvironmental cues. Significant progress has been made in understanding the biochemical and metabolic mechanisms and feedback associated with MSC response. The anti-inflammatory and immunomodulatory capacity of MSC may be paramount in the restoration of localized or systemic conditions for normal healing and tissue regeneration. Allogeneic MSC treatments, categorized as a drug by regulatory agencies, have been widely pursued, but new studies demonstrate the efficacy of autologous MSC therapies, even for individuals affected by a disease state. Safety and regulatory concerns surrounding allogeneic cell preparations make autologous and minimally manipulated cell therapies an attractive option for many regenerative, anti-inflammatory and autoimmune applications. PMID:24232253
Jonczyk, E; Gilron, G; Zajdlik, B
2001-04-01
Most industrial effluents discharged into the marine coastal environment are freshwater in nature and therefore require manipulation prior to testing with marine organisms. The sea urchin fertilization test is a common marine bioassay used for routine environmental monitoring, investigative evaluations, and/or regulatory testing of effluents and sediment pore waters. The existing Canadian and U.S. Environmental Protection Agencies test procedures using sea urchin (and sand dollar) gametes allow for sample salinity adjustment using either brine or dry salts. Moreover, these procedures also allow for the use of either natural or synthetic marine water for culturing/holding test organisms and for full-scale testing. At present, it is unclear to what extent these variables affect test results for whole effluents. The test methods simply state that there are no data available and that the use of artificial dry sea salts should be considered provisional. We conducted a series of concurrent experiments aimed at comparing the two different treatments of sample salinity adjustment and the use of natural versus synthetic seawater in order to test these assumptions and evaluate effects on the estimated end points generated by the sea urchin fertilization sublethal toxicity test. Results from these experiments indicated that there is no significant difference in test end points when dry salts or brine are used for sample salinity adjustment. Similarly, results obtained from parallel (split-sample) industrial effluent tests with natural and artificial seawater suggest that both dilution waters produce similar test results. However, data obtained from concurrent tests with the reference toxicant, copper sulfate, showed higher variability and greater sensitivity when using natural seawater as control/dilution water.
Coveley, Suzanne; Elshahed, Mostafa S.
2015-01-01
Within highly diverse ecosystems, the majority of bacterial taxa are present in low abundance as members of the rare biosphere. The rationale for the occurrence and maintenance of the rare biosphere, and the putative ecological role(s) and dynamics of its members within a specific ecosystem is currently debated. We hypothesized that in highly diverse ecosystems, a fraction of the rare biosphere acts as a backup system that readily responds to environmental disturbances. We tested this hypothesis by subjecting sediments from Zodletone spring, a sulfide- and sulfur-rich spring in Southwestern OK, to incremental levels of salinity (1, 2, 3, 4, and 10% NaCl), or temperature (28°, 30°, 32°, and 70 °C), and traced the trajectories of rare members of the community in response to these manipulations using 16S rRNA gene analysis. Our results indicate that multiple rare bacterial taxa are promoted from rare to abundant members of the community following such manipulations and that, in general, the magnitude of such recruitment is directly proportional to the severity of the applied manipulation. Rare members that are phylogenetically distinct from abundant taxa in the original sample (unique rare biosphere) played a more important role in the microbial community response to environmental disturbances, compared to rare members that are phylogenetically similar to abundant taxa in the original sample (non-unique rare biosphere). The results emphasize the dynamic nature of the rare biosphere, and highlight its complexity and non-monolithic nature. PMID:26312178
Effect of the environment on the dendritic morphology of the rat auditory cortex
Bose, Mitali; Muñoz-Llancao, Pablo; Roychowdhury, Swagata; Nichols, Justin A.; Jakkamsetti, Vikram; Porter, Benjamin; Byrapureddy, Rajasekhar; Salgado, Humberto; Kilgard, Michael P.; Aboitiz, Francisco; Dagnino-Subiabre, Alexies; Atzori, Marco
2010-01-01
The present study aimed to identify morphological correlates of environment-induced changes at excitatory synapses of the primary auditory cortex (A1). We used the Golgi-Cox stain technique to compare pyramidal cells dendritic properties of Sprague-Dawley rats exposed to different environmental manipulations. Sholl analysis, dendritic length measures, and spine density counts were used to monitor the effects of sensory deafness and an auditory version of environmental enrichment (EE). We found that deafness decreased apical dendritic length leaving basal dendritic length unchanged, whereas EE selectively increased basal dendritic length without changing apical dendritic length. On the contrary, deafness decreased while EE increased spine density in both basal and apical dendrites of A1 layer 2/3 (LII/III) neurons. To determine whether stress contributed to the observed morphological changes in A1, we studied neural morphology in a restraint-induced model that lacked behaviorally relevant acoustic cues. We found that stress selectively decreased apical dendritic length in the auditory but not in the visual primary cortex. Similar to the acoustic manipulation, stress-induced changes in dendritic length possessed a layer specific pattern displaying LII/III neurons from stressed animals with normal apical dendrites but shorter basal dendrites, while infragranular neurons (layers V and VI) displayed shorter apical dendrites but normal basal dendrites. The same treatment did not induce similar changes in the visual cortex, demonstrating that the auditory cortex is an exquisitely sensitive target of neocortical plasticity, and that prolonged exposure to different acoustic as well as emotional environmental manipulation may produce specific changes in dendritic shape and spine density. PMID:19771593
Genome-Environment Interactions That Modulate Aging: Powerful Targets for Drug Discovery
Wuttke, Daniel; Wood, Shona H.; Plank, Michael; Vora, Chintan
2012-01-01
Aging is the major biomedical challenge of this century. The percentage of elderly people, and consequently the incidence of age-related diseases such as heart disease, cancer, and neurodegenerative diseases, is projected to increase considerably in the coming decades. Findings from model organisms have revealed that aging is a surprisingly plastic process that can be manipulated by both genetic and environmental factors. Here we review a broad range of findings in model organisms, from environmental to genetic manipulations of aging, with a focus on those with underlying gene-environment interactions with potential for drug discovery and development. One well-studied dietary manipulation of aging is caloric restriction, which consists of restricting the food intake of organisms without triggering malnutrition and has been shown to retard aging in model organisms. Caloric restriction is already being used as a paradigm for developing compounds that mimic its life-extension effects and might therefore have therapeutic value. The potential for further advances in this field is immense; hundreds of genes in several pathways have recently emerged as regulators of aging and caloric restriction in model organisms. Some of these genes, such as IGF1R and FOXO3, have also been associated with human longevity in genetic association studies. The parallel emergence of network approaches offers prospects to develop multitarget drugs and combinatorial therapies. Understanding how the environment modulates aging-related genes may lead to human applications and disease therapies through diet, lifestyle, or pharmacological interventions. Unlocking the capacity to manipulate human aging would result in unprecedented health benefits. PMID:22090473
NASA Astrophysics Data System (ADS)
Bi, R.; Liu, H.
2016-02-01
Understanding how biological components respond to environmental changes could be insightful to predict ecosystem trajectories under different climate scenarios. Zooplankton are key components of marine ecosystems and changes in their dynamics could have major impact on ecosystem structure. We developed an individual-based model of a common coastal calanoid copepod Acartia tonsa to examine how environmental factors affect zooplankton population dynamics and explore the role of individual variability in sustaining population under various environmental conditions consisting of temperature, food concentration and salinity. Total abundance, egg production and proportion of survival were used to measure population success. Results suggested population benefits from high level of individual variability under extreme environmental conditions including unfavorable temperature, salinity, as well as low food concentration, and selection on fast-growers becomes stronger with increasing individual variability and increasing environmental stress. Multiple regression analysis showed that temperature, food concentration, salinity and individual variability have significant effects on survival of A. tonsa population. These results suggest that environmental factors have great influence on zooplankton population, and individual variability has important implications for population survivability under unfavorable conditions. Given that marine ecosystems are at risk from drastic environmental changes, understanding how individual variability sustains populations could increase our capability to predict population dynamics in a changing environment.
ERIC Educational Resources Information Center
Alp, Elvan; Ertepinar, Hamide; Tekkaya, Ceren; Yilmaz, Ayhan
2008-01-01
This study investigated elementary school students' environmental knowledge and attitudes, the effects of sociodemographic variables on environmental knowledge and attitudes, and how self-reported environmentally friendly behaviour is related to environmental knowledge, behavioural intentions, environmental affects, and the students' locus of…
de Mendoza, Guillermo; Ventura, Marc; Catalan, Jordi
2015-07-01
Aiming to elucidate whether large-scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran's eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in-lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in-lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For boreal lakes, with similar environmental conditions, a strong role of dispersal capacity has been suggested. Further investigation should address the role of spatial scaling, namely absolute geographical distances constraining dispersal and steepness of environmental gradients at short distances.
de Mendoza, Guillermo; Ventura, Marc; Catalan, Jordi
2015-01-01
Aiming to elucidate whether large-scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran’s eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in-lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in-lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For boreal lakes, with similar environmental conditions, a strong role of dispersal capacity has been suggested. Further investigation should address the role of spatial scaling, namely absolute geographical distances constraining dispersal and steepness of environmental gradients at short distances. PMID:26257867
Castro, Denise A; Naqvi, Asad Ahmed; Vandenkerkhof, Elizabeth; Flavin, Michael P; Manson, David; Soboleski, Donald
2016-01-01
Variability in image interpretation has been attributed to differences in the interpreters' knowledge base, experience level, and access to the clinical scenario. Picture archiving and communication system (PACS) has allowed the user to manipulate the images while developing their impression of the radiograph. The aim of this study was to determine the agreement of chest radiograph (CXR) impressions among radiologists and neonatologists and help determine the effect of image manipulation with PACS on report impression. Prospective cohort study included 60 patients from the Neonatal Intensive Care Unit undergoing CXRs. Three radiologists and three neonatologists reviewed two consecutive frontal CXRs of each patient. Each physician was allowed manipulation of images as needed to provide a decision of "improved," "unchanged," or "disease progression" lung disease for each patient. Each physician repeated the process once more; this time, they were not allowed to individually manipulate the images, but an independent radiologist presets the image brightness and contrast to best optimize the CXR appearance. Percent agreement and opposing reporting views were calculated between all six physicians for each of the two methods (allowing and not allowing image manipulation). One hundred percent agreement in image impression between all six observers was only seen in 5% of cases when allowing image manipulation; 100% agreement was seen in 13% of the cases when there was no manipulation of the images. Agreement in CXR interpretation is poor; the ability to manipulate the images on PACS results in a decrease in agreement in the interpretation of these studies. New methods to standardize image appearance and allow improved comparison with previous studies should be sought to improve clinician agreement in interpretation consistency and advance patient care.
ERIC Educational Resources Information Center
Richards, Debbie
1998-01-01
Describes a set of manipulatives that are used to establish a secure understanding of the concepts related to the environmental factors that affect the activities of enzymes. Includes a description of the model components and procedures for construction of the model. (DDR)
Manipulation of Sustainability Metrics: Whys, Whats, and Hows
ABSTRACT System sustainability is a dynamic concept. Sustainability analysis is thus about making decisions on the overall, relative desirability of a system under study. The appropriate approach is to consider environmental, societal, and economic impacts of the system and ...
ERIC Educational Resources Information Center
Scarr, Sandra
1995-01-01
Argues that Gottlieb rejects population sampling and statistical analyses of distributions as he proposes that his experimental brand of mechanistic science is the only legitimate approach to developmental research. Maintains that Gottlieb exaggerates developmental uncertainty, based on his own research with extreme environmental manipulations.…
Manipulations of Start and Food Locations Affect Navigation on a Foraging Task
ERIC Educational Resources Information Center
Martin, Gerard M.; Pirzada, Ashar; Bridger, Alexander; Tomlin, Julian; Thorpe, Christina M.; Skinner, Darlene M.
2011-01-01
Rats were able to search multiple food cups in a foraging task and successfully return to a fixed, but not a variable, start location. Reducing the number of food cups to be searched resulted in an improvement in performance in the variable start condition. Performance was better when only one or two food cups had to be visited but was still…
Pöysä, Hannu; Rintala, Jukka; Johnson, Douglas H.; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D.; Väänänen, Veli-Matti
2016-01-01
Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively “fast species” and governed by environmental variability) and diving (relatively “slow species” and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.
Pöysä, Hannu; Rintala, Jukka; Johnson, Douglas H; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D; Väänänen, Veli-Matti
2016-10-01
Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively "fast species" and governed by environmental variability) and diving (relatively "slow species" and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.
NASA Astrophysics Data System (ADS)
Yang, Xinxin; Ge, Shuzhi Sam; He, Wei
2018-04-01
In this paper, both the closed-form dynamics and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances are developed. The dynamic model of the system is described with assumed modes approach and Lagrangian method. The flexible manipulators are represented as Euler-Bernoulli beams. Based on singular perturbation technique, the displacements/joint angles and flexible modes are modelled as slow and fast variables, respectively. A sliding mode control is designed for trajectories tracking of the slow subsystem under unknown but bounded disturbances, and an adaptive sliding mode control is derived for slow subsystem under unknown slowly time-varying disturbances. An optimal linear quadratic regulator method is proposed for the fast subsystem to damp out the vibrations of the flexible manipulators. Theoretical analysis validates the stability of the proposed composite controller. Numerical simulation results demonstrate the performance of the closed-loop flexible space robot system.
Extensibility in local sensor based planning for hyper-redundant manipulators (robot snakes)
NASA Technical Reports Server (NTRS)
Choset, Howie; Burdick, Joel
1994-01-01
Partial Shape Modification (PSM) is a local sensor feedback method used for hyper-redundant robot manipulators, in which the redundancy is very large or infinite such as that of a robot snake. This aspect of redundancy enables local obstacle avoidance and end-effector placement in real time. Due to the large number of joints or actuators in a hyper-redundant manipulator, small displacement errors of such easily accumulate to large errors in the position of the tip relative to the base. The accuracy could be improved by a local sensor based planning method in which sensors are distributed along the length of the hyper-redundant robot. This paper extends the local sensor based planning strategy beyond the limitations of the fixed length of such a manipulator when its joint limits are met. This is achieved with an algorithm where the length of the deforming part of the robot is variable. Thus , the robot's local avoidance of obstacles is improved through the enhancement of its extensibility.
Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre
2014-12-05
Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the spatial variation did not depend on the soil environmental variability for certain species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured relevant soil environmental variables.
Weddle, C B; Mitchell, C; Bay, S K; Sakaluk, S K; Hunt, J
2012-10-01
Phenotypic traits that convey information about individual identity or quality are important in animal social interactions, and the degree to which such traits are influenced by environmental variation can have profound effects on the reliability of these cues. Using inbred genetic lines of the decorated cricket, Gryllodes sigillatus, we manipulated diet quality to test how the cuticular hydrocarbon (CHC) profiles of males and females respond across two different nutritional rearing environments. There were significant differences between lines in the CHC profiles of females, but the effect of diet was not quite statistically significant. There was no significant genotype-by-environment interaction (GEI), suggesting that environmental effects on phenotypic variation in female CHCs are independent of genotype. There was, however, a significant effect of GEI for males, with changes in both signal quantity and content, suggesting that environmental effects on phenotypic expression of male CHCs are dependent on genotype. The differential response of male and female CHC expression to variation in the nutritional environment suggests that these chemical cues may be under sex-specific selection for signal reliability. Female CHCs show the characteristics of reliable cues of identity: high genetic variability, low condition dependence and a high degree of genetic determination. This supports earlier work showing that female CHCs are used in self-recognition to identify previous mates and facilitate polyandry. In contrast, male CHCs show the characteristics of reliable cues of quality: condition dependence and a relatively higher degree of environmental determination. This suggests that male CHCs are likely to function as cues of underlying quality during mate choice and/or male dominance interactions. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Modeling and control of a hydraulically actuated flexible-prismatic link robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, L.; Kress, R.; Jansen, J.
1996-12-01
Most of the research related to flexible link manipulators to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long reach systems. This manuscript describes a new hydraulically actuated, long reach manipulator with a flexible prismatic link at Oak Ridge National Laboratory (ORNL). Focus is directed towards both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies.
Kinematic functions for the 7 DOF robotics research arm
NASA Technical Reports Server (NTRS)
Kreutz, K.; Long, M.; Seraji, Homayoun
1989-01-01
The Robotics Research Model K-1207 manipulator is a redundant 7R serial link arm with offsets at all joints. To uniquely determine joint angles for a given end-effector configuration, the redundancy is parameterized by a scalar variable which corresponds to the angle between the manipulator elbow plane and the vertical plane. The forward kinematic mappings from joint-space to end-effector configuration and elbow angle, and the augmented Jacobian matrix which gives end-effector and elbow angle rates as a function of joint rates, are also derived.
Differential Kinematics Of Contemporary Industrial Robots
NASA Astrophysics Data System (ADS)
Szkodny, T.
2014-08-01
The paper presents a simple method of avoiding singular configurations of contemporary industrial robot manipulators of such renowned companies as ABB, Fanuc, Mitsubishi, Adept, Kawasaki, COMAU and KUKA. To determine the singular configurations of these manipulators a global form of description of the end-effector kinematics was prepared, relative to the other links. On the basis of this description , the formula for the Jacobian was defined in the end-effector coordinates. Next, a closed form of the determinant of the Jacobian was derived. From the formula, singular configurations, where the determinant's value equals zero, were determined. Additionally, geometric interpretations of these configurations were given and they were illustrated. For the exemplary manipulator, small corrections of joint variables preventing the reduction of the Jacobian order were suggested. An analysis of positional errors, caused by these corrections, was presented
Analyzing Array Manipulating Programs by Program Transformation
NASA Technical Reports Server (NTRS)
Cornish, J. Robert M.; Gange, Graeme; Navas, Jorge A.; Schachte, Peter; Sondergaard, Harald; Stuckey, Peter J.
2014-01-01
We explore a transformational approach to the problem of verifying simple array-manipulating programs. Traditionally, verification of such programs requires intricate analysis machinery to reason with universally quantified statements about symbolic array segments, such as "every data item stored in the segment A[i] to A[j] is equal to the corresponding item stored in the segment B[i] to B[j]." We define a simple abstract machine which allows for set-valued variables and we show how to translate programs with array operations to array-free code for this machine. For the purpose of program analysis, the translated program remains faithful to the semantics of array manipulation. Based on our implementation in LLVM, we evaluate the approach with respect to its ability to extract useful invariants and the cost in terms of code size.
NASA Technical Reports Server (NTRS)
Mutambara, Arthur G. O.; Litt, Jonathan
1998-01-01
This report addresses the problem of path planning and control of robotic manipulators which have joint-position limits and joint-rate limits. The manipulators move autonomously and carry out variable tasks in a dynamic, unstructured and cluttered environment. The issue considered is whether the robotic manipulator can achieve all its tasks, and if it cannot, the objective is to identify the closest achievable goal. This problem is formalized and systematically solved for generic manipulators by using inverse kinematics and forward kinematics. Inverse kinematics are employed to define the subspace, workspace and constrained workspace, which are then used to identify when a task is not achievable. The closest achievable goal is obtained by determining weights for an optimal control redistribution scheme. These weights are quantified by using forward kinematics. Conditions leading to joint rate limits are identified, in particular it is established that all generic manipulators have singularities at the boundary of their workspace, while some have loci of singularities inside their workspace. Once the manipulator singularity is identified the command redistribution scheme is used to compute the closest achievable Cartesian velocities. Two examples are used to illustrate the use of the algorithm: A three link planar manipulator and the Unimation Puma 560. Implementation of the derived algorithm is effected by using a supervisory expert system to check whether the desired goal lies in the constrained workspace and if not, to evoke the redistribution scheme which determines the constraint relaxation between end effector position and orientation, and then computes optimal gains.
Amoroso Borges, Bruno Luis; Bortolazzo, Gustavo Luiz; Neto, Hugo Pasin
2018-01-01
The analysis of heart rate variability is important to the investigation of stimuli from the autonomic nervous system. Osteopathy is a form of treatment that can influence this system in healthy individuals as well as those with a disorder or disease. The aim of the present study was to perform a systematic review of the literature regarding the effect of spinal manipulation and myofascial techniques on heart rate variability. Searches were performed of the Pubmed, Scielo, Lilacs, PEDro, Ibesco, Cochrane and Scopus databases for relevant studies. The PEDro scale was used to assess the methodological quality of each study selected. A total of 505 articles were retrieved during the initial search. After an analysis of the abstracts, nine studies were selected for the present review. Based on the findings, osteopathy exerts an influence on the autonomic nervous system depending on the stimulation site and type. A greater parasympathetic response was found when stimulation was performed in the cervical and lumbar regions, whereas a greater sympathetic response was found when stimulation was performed in the thoracic region. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Role of Idealization in Science and Its Implications for Science Education
NASA Astrophysics Data System (ADS)
Niaz, Mansoor
1999-06-01
The main objective of this article is to study the role of empirical evidence in the interpretation of psychological and epistemological aspects of Piagetian theory. According to Galilean methodology, after having asked the right question, a scientist could experimentally vary one impediment, and observe what happens to the dependent variable, as it approaches the ideal limiting case. Following Galileo's idealization, scientific laws being epistemological constructions do not describe the behavior of actual bodies. It is plausible to suggest that just as Galileo's ideal law can be observed only when all the impediment variables approach zero, similarly individuals in the real world have various `impediments' and it is only when these impediments are gradually removed by experimental manipulation that the real performance of individuals can approximate the competence of Piaget's epistemic subject (ideal knower). Finally, evidence is presented to the effect that by experimentally manipulating the impediment variables (e.g., Pascual-Leone's M-demand and Witkin's perceptual field effect of a task), performance of the real subjects approximates the competence of the ideal epistemic subject, which leads to the construction of a neo-Piagetian epistemological theory.
NASA Technical Reports Server (NTRS)
Ho, C. Y.; Li, H. H.
1989-01-01
A computerized comprehensive numerical database system on the mechanical, thermophysical, electronic, electrical, magnetic, optical, and other properties of various types of technologically important materials such as metals, alloys, composites, dielectrics, polymers, and ceramics has been established and operational at the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) of Purdue University. This is an on-line, interactive, menu-driven, user-friendly database system. Users can easily search, retrieve, and manipulate the data from the database system without learning special query language, special commands, standardized names of materials, properties, variables, etc. It enables both the direct mode of search/retrieval of data for specified materials, properties, independent variables, etc., and the inverted mode of search/retrieval of candidate materials that meet a set of specified requirements (which is the computer-aided materials selection). It enables also tabular and graphical displays and on-line data manipulations such as units conversion, variables transformation, statistical analysis, etc., of the retrieved data. The development, content, accessibility, etc., of the database system are presented and discussed.
A&M. TAN607 sections. Section A shows variable roof lines, variable ...
A&M. TAN-607 sections. Section A shows variable roof lines, variable thickness of hot shop shield walls, relationship of subterranean pool to grade. Section B shows relative heights of hot shop floor and its control gallery, position of bridge cranes and manipulator rails. Locomotive service pit. Referent drawing is ID-33-E-158 Above. Ralph M. Parsons 902-3-ANP-607-A 105. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 034-0607-00-693-106757 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Cognitive and contextual variables in sexual partner and relationship perception.
Alvarez, Maria-João; Garcia-Marques, Leonel
2011-04-01
This study examined the effects of contextual and cognitive variables for sexual protection on perceived social relationship factors. University students (108 women and 108 men) read script-based narratives on sexual encounters in which six variables were manipulated in two independent analyses. In the first analysis, four variables were evaluated: relational context (stable, casual), condom use (yes, no), script terminus (beginning, middle or end), and the rater's sex. The dependent variables were interpersonal perception of one of the characters of the narrative, and expectations regarding characteristics and future of the relationship. In the second analysis, two other factors were manipulated only in the "yes" condom conditions: communication strategy (verbal, non-verbal) and condom proponent gender. Our findings corroborated other studies where condom use was viewed as unromantic with less positive characteristics for relationships. Condom proponents, especially male, were perceived as less romantic, particularly when proposing a condom non-verbally at the beginning of the encounter. However, the controlled variables enabled us to propose ways of associating condom use with positive expectations towards the proponent and the relationship itself. Romanticism, expectation of sexual intercourse, emotional proximity, and expectations of condom use in encounters where a condom was proposed increased when suggested by a woman, postponed to the end of the encounter, and verbally mentioned. We encourage women to take the lead in suggesting condom use, thus empowering them since they do not have to wait for the male to make the first move.
Vanlommel, L; Luyckx, T; Vercruysse, G; Bellemans, J; Vandenneucker, H
2017-11-01
Flexion in a stiff total knee arthroplasty (TKA) can be improved by manipulation under anaesthesia (MUA). Although this intervention usually results in an improvement in range of motion, the expected result is not always achieved. The purpose of this study is to determine which factors affect range of motion after manipulation in patients with a stiff total knee. After exclusion (n = 22), the data of 158 patients (138 knees) with a stiff knee after TKA who received a manipulation under anaesthesia between 2004 and 2014 were retrospectively analysed. Pre-, peri- and post-operative variables were identified and examined for their influence on flexion after the manipulation using Kruskal-Wallis and Mann-Whitney U tests and Spearman correlations. After MUA, a mean improvement in flexion of 30.3° was observed at the final follow-up. Preoperative TKA flexion, design of TKA and interval between TKA procedure and MUA were positive associated with an increase in flexion after MUA. MUA performed 12 weeks or more after TKA procedure deteriorated the outcome. Three factors, pre-TKA flexion type of prosthesis and interval between TKA procedure and manipulation under anaesthesia, were found to have impact on flexion after TKA and MUA were identified. Results are expected to be inferior in patients with low flexion before TKA procedure or with a long interval (>12 weeks) between the TKA procedure and the manipulation under anaesthesia. IV.
A Review of Some Alternative Approaches to Drug Management of Hyperactivity in Children.
ERIC Educational Resources Information Center
Walden, Everett L.; Thompson, Sheila A.
1981-01-01
Literature is cited on such classroom management techniques as environmental manipulations, curriculum modifications, behavior modification, and dealing with affective attitude. Also considered are home management techniques and self-control programs including biofeedback and relaxation training. (SB)
Lemanski, Jennifer L; Villegas, Jorge
2015-01-01
Since 1997, when the U.S. Food and Drug Administration first allowed prescription drug companies to release ads directly targeting the public, direct-to-consumer (DTC) advertising has become an integral part of the pharmaceutical industry marketing toolkit, reaching over $4 billion in 2005. In an experiment where cognitive load, a task that requires the investment of a subject's memory in an unrelated task; source credibility; and advertising appeal type (affective or cognitive) were manipulated, attitude toward the ad was measured for a print DTC meningitis vaccine ad. Main effect results for source credibility and advertising appeal type on attitude toward the ad were found, and interactions between manipulated variables were apparent when the individual difference variables related to a specific illness (vaccination history, living in a dorm, family members or friends who had suffered the illness) were taken into account.
Heart rate variability reflects self-regulatory strength, effort, and fatigue.
Segerstrom, Suzanne C; Nes, Lise Solberg
2007-03-01
Experimental research reliably demonstrates that self-regulatory deficits are a consequence of prior self-regulatory effort. However, in naturalistic settings, although people know that they are sometimes vulnerable to saying, eating, or doing the wrong thing, they cannot accurately gauge their capacity to self-regulate at any given time. Because self-regulation and autonomic regulation colocalize in the brain, an autonomic measure, heart rate variability (HRV), could provide an index of self-regulatory strength and activity. During an experimental manipulation of self-regulation (eating carrots or cookies), HRV was elevated during high self-regulatory effort (eat carrots, resist cookies) compared with low self-regulatory effort (eat cookies, resist carrots). The experimental manipulation and higher HRV at baseline independently predicted persistence at a subsequent anagram task. HRV appears to index self-regulatory strength and effort, making it possible to study these phenomena in the field as well as the lab.
Dunkel, Curtis S; Mathes, Eugene
2011-12-16
The role of the individual difference variables of mate value, short-term and long-term mating preferences, and life history strategy along with the manipulated variable of life expectancy were used to predict differences in the willingness to engage in sexually coercive behaviors. Short-term preferences and long-term preferences were correlated with the willingness to engage in sexual coercion at all life expectancies. Life history strategy was correlated with the willingness to engage in sexual coercion at only the shortest and longest life expectancies. Most importantly short-term and long-term mating preferences interacted with life expectancy to predict the willingness to engage in sexually coercive behaviors. Short life expectancies increased willingness in individuals with high short-term and low long-term preferences. The results are discussed in terms of the varying theories of sexual coercion with emphasis put on a life history approach.
Computational neural learning formalisms for manipulator inverse kinematics
NASA Technical Reports Server (NTRS)
Gulati, Sandeep; Barhen, Jacob; Iyengar, S. Sitharama
1989-01-01
An efficient, adaptive neural learning paradigm for addressing the inverse kinematics of redundant manipulators is presented. The proposed methodology exploits the infinite local stability of terminal attractors - a new class of mathematical constructs which provide unique information processing capabilities to artificial neural systems. For robotic applications, synaptic elements of such networks can rapidly acquire the kinematic invariances embedded within the presented samples. Subsequently, joint-space configurations, required to follow arbitrary end-effector trajectories, can readily be computed. In a significant departure from prior neuromorphic learning algorithms, this methodology provides mechanisms for incorporating an in-training skew to handle kinematics and environmental constraints.
Peck, Lloyd S.
2009-01-01
The Antarctic limpet, Nacella concinna, exhibits the classical heat shock response, with up-regulation of duplicated forms of the inducible heat shock protein 70 (HSP70) gene in response to experimental manipulation of seawater temperatures. However, this response only occurs in the laboratory at temperatures well in excess of any experienced in the field. Subsequent environmental sampling of inter-tidal animals also showed up-regulation of these genes, but at temperature thresholds much lower than those required to elicit a response in the laboratory. It was hypothesised that this was a reflection of the complexity of the stresses encountered in the inter-tidal region. Here, we describe a further series of experiments comprising both laboratory manipulation and environmental sampling of N. concinna. We investigate the expression of HSP70 gene family members (HSP70A, HSP70B, GRP78 and HSC70) in response to a further suite of environmental stressors: seasonal and experimental cold, freshwater, desiccation, chronic heat and periodic emersion. Lowered temperatures (−1.9°C and −1.6°C), generally produced a down-regulation of all HSP70 family members, with some up-regulation of HSC70 when emerging from the winter period and increasing sea temperatures. There was no significant response to freshwater immersion. In response to acute and chronic heat treatments plus simulated tidal cycles, the data showed a clear pattern. HSP70A showed a strong but very short-term response to heat whilst the duplicated HSP70B also showed heat to be a trigger, but had a more sustained response to complex stresses. GRP78 expression indicates that it was acting as a generalised stress response under the experimental conditions described here. HSC70 was the major chaperone invoked in response to long-term stresses of varying types. These results provide intriguing clues not only to the complexity of HSP70 gene expression in response to environmental change but also insights into the stress response of a non-model species. PMID:19404777
Clark, Melody S; Peck, Lloyd S
2009-11-01
The Antarctic limpet, Nacella concinna, exhibits the classical heat shock response, with up-regulation of duplicated forms of the inducible heat shock protein 70 (HSP70) gene in response to experimental manipulation of seawater temperatures. However, this response only occurs in the laboratory at temperatures well in excess of any experienced in the field. Subsequent environmental sampling of inter-tidal animals also showed up-regulation of these genes, but at temperature thresholds much lower than those required to elicit a response in the laboratory. It was hypothesised that this was a reflection of the complexity of the stresses encountered in the inter-tidal region. Here, we describe a further series of experiments comprising both laboratory manipulation and environmental sampling of N. concinna. We investigate the expression of HSP70 gene family members (HSP70A, HSP70B, GRP78 and HSC70) in response to a further suite of environmental stressors: seasonal and experimental cold, freshwater, desiccation, chronic heat and periodic emersion. Lowered temperatures (-1.9 degrees C and -1.6 degrees C), generally produced a down-regulation of all HSP70 family members, with some up-regulation of HSC70 when emerging from the winter period and increasing sea temperatures. There was no significant response to freshwater immersion. In response to acute and chronic heat treatments plus simulated tidal cycles, the data showed a clear pattern. HSP70A showed a strong but very short-term response to heat whilst the duplicated HSP70B also showed heat to be a trigger, but had a more sustained response to complex stresses. GRP78 expression indicates that it was acting as a generalised stress response under the experimental conditions described here. HSC70 was the major chaperone invoked in response to long-term stresses of varying types. These results provide intriguing clues not only to the complexity of HSP70 gene expression in response to environmental change but also insights into the stress response of a non-model species.
Modeling annual mallard production in the prairie-parkland region
Miller, M.W.
2000-01-01
Biologists have proposed several environmental factors that might influence production of mallards (Anas platyrhynchos) nesting in the prairie-parkland region of the United States and Canada. These factors include precipitation, cold spring temperatures, wetland abundance, and upland breeding habitat. I used long-term historical data sets of climate, wetland numbers, agricultural land use, and size of breeding mallard populations in multiple regression analyses to model annual indices of mallard production. Models were constructed at 2 scales: a continental scale that encompassed most of the mid-continental breeding range of mallards and a stratum-level scale that included 23 portions of that same breeding range. The production index at the continental scale was the estimated age ratio of mid-continental mallards in early fall; at the stratum scale my production index was the estimated number of broods of all duck species within an aerial survey stratum. Size of breeding mallard populations in May, and pond numbers in May and July, best modeled production at the continental scale. Variables that best modeled production at the stratum scale differed by region. Crop variables tended to appear more in models for western Canadian strata; pond variables predominated in models for United States strata; and spring temperature and pond variables dominated models for eastern Canadian strata. An index of cold spring temperatures appeared in 4 of 6 models for aspen parkland strata, and in only 1 of 11 models for strata dominated by prairie. Stratum-level models suggest that regional factors influencing mallard production are not evident at a larger scale. Testing these potential factors in a manipulative fashion would improve our understanding of mallard population dynamics, improving our ability to manage the mid-continental mallard population.
Improving the use of environmental diversity as a surrogate for species representation.
Albuquerque, Fabio; Beier, Paul
2018-01-01
The continuous p-median approach to environmental diversity (ED) is a reliable way to identify sites that efficiently represent species. A recently developed maximum dispersion (maxdisp) approach to ED is computationally simpler, does not require the user to reduce environmental space to two dimensions, and performed better than continuous p-median for datasets of South African animals. We tested whether maxdisp performs as well as continuous p-median for 12 datasets that included plants and other continents, and whether particular types of environmental variables produced consistently better models of ED. We selected 12 species inventories and atlases to span a broad range of taxa (plants, birds, mammals, reptiles, and amphibians), spatial extents, and resolutions. For each dataset, we used continuous p-median ED and maxdisp ED in combination with five sets of environmental variables (five combinations of temperature, precipitation, insolation, NDVI, and topographic variables) to select environmentally diverse sites. We used the species accumulation index (SAI) to evaluate the efficiency of ED in representing species for each approach and set of environmental variables. Maxdisp ED represented species better than continuous p-median ED in five of 12 biodiversity datasets, and about the same for the other seven biodiversity datasets. Efficiency of ED also varied with type of variables used to define environmental space, but no particular combination of variables consistently performed best. We conclude that maxdisp ED performs at least as well as continuous p-median ED, and has the advantage of faster and simpler computation. Surprisingly, using all 38 environmental variables was not consistently better than using subsets of variables, nor did any subset emerge as consistently best or worst; further work is needed to identify the best variables to define environmental space. Results can help ecologists and conservationists select sites for species representation and assist in conservation planning.
Veiga, Puri; Torres, Ana Catarina; Aneiros, Fernando; Sousa-Pinto, Isabel; Troncoso, Jesús S; Rubal, Marcos
2016-09-01
Spatial variability of environmental factors and macrobenthos, using species and functional groups, was examined over the same scales (100s of cm to >100 km) in intertidal sediments of two transitional water systems. The objectives were to test if functional groups were a good species surrogate and explore the relationship between environmental variables and macrobenthos. Environmental variables, diversity and the multivariate assemblage structure showed the highest variability at the scale of 10s of km. However, abundance was more variable at 10s of m. Consistent patterns were achieved using species and functional groups therefore, these may be a good species surrogate. Total carbon, salinity and silt/clay were the strongest correlated with macrobenthic assemblages. Results are valuable for design and interpretation of future monitoring programs including detection of anthropogenic disturbances in transitional systems and propose improvements in environmental variable sampling to refine the assessment of their relationship with biological data across spatial scales. Copyright © 2016 Elsevier Ltd. All rights reserved.
Controls on Ecosystem and Root Respiration in an Alaskan Peatland
NASA Astrophysics Data System (ADS)
McConnell, N. A.; McGuire, A. D.; Harden, J. W.; Kane, E. S.; Turetsky, M. R.
2010-12-01
Boreal ecosystems cover 14% of the vegetated surface on earth and account for 25-30% of the world’s soil carbon (C), mainly due to large carbon stocks in deep peat and frozen soil layers. While peatlands have served as historical sinks of carbon, global climate change may trigger re-release of C to the atmosphere and may turn these ecosystems into net C sources. Rates of C release from a peatland are determined by regional climate and local biotic and abiotic factors such as vegetation cover, thaw depth, and peat thickness. Soil CO2 fluxes are driven by both autotrophic (plant) respiration and heterotrophic (microbial) respiration. Thus, changes in plant and microbial activity in the soil will impact CO2 emissions from peatlands. In this study, we explored environmental and vegetation controls on ecosystem respiration and root respiration in a variety of wetland sites. The study was conducted at the Alaskan Peatland Experiment (APEX; www.uoguelph.ca/APEX) sites in the Bonanza Creek Experimental Forest located 35 km southwest of Fairbanks Alaska. We measured ecosystem respiration, root respiration, and monitored a suite of environmental variables along a vegetation and soil moisture gradient including a black spruce stand with permafrost, a shrubby site with permafrost, a tussock grass site, and a herbaceous open rich fen. Within the rich fen, we have been conducting water table manipulations including a control, lowered, and raised water table treatment. In each of our sites, we measured total ecosystem respiration using static chambers and root respiration by harvesting roots from the uppermost 20 cm and placing them in a root cuvette to obtain a root flux. Ecosystem respiration (ER) on a μmol/m2/sec basis varied across sites. Water table was a significant predictor of ER at the lowered manipulation site and temperature was a strong predictor at the control site in the rich fen. Water table and temperature were both significant predictors of ER at the raised manipulation site. Root respiration fluxes on a ppm CO2/sec/g dry mass basis were highest for herbaceous species, which dominated the open rich fen sites. Root respiration flux was significantly lower in tree-dominated black spruce sites. It appears that the variation in root respiration explains the variation in ER between herbaceous and tree-dominated systems. Therefore an important next step is to partition ER into heterotrophic and autotrophic components across these ecosystems. This in turn will provide a better assessment of peatland C responses to global climate change.
Thomas, Philipp; Rammsayer, Thomas; Schweizer, Karl; Troche, Stefan
2015-01-01
Numerous studies reported a strong link between working memory capacity (WMC) and fluid intelligence (Gf), although views differ in respect to how close these two constructs are related to each other. In the present study, we used a WMC task with five levels of task demands to assess the relationship between WMC and Gf by means of a new methodological approach referred to as fixed-links modeling. Fixed-links models belong to the family of confirmatory factor analysis (CFA) and are of particular interest for experimental, repeated-measures designs. With this technique, processes systematically varying across task conditions can be disentangled from processes unaffected by the experimental manipulation. Proceeding from the assumption that experimental manipulation in a WMC task leads to increasing demands on WMC, the processes systematically varying across task conditions can be assumed to be WMC-specific. Processes not varying across task conditions, on the other hand, are probably independent of WMC. Fixed-links models allow for representing these two kinds of processes by two independent latent variables. In contrast to traditional CFA where a common latent variable is derived from the different task conditions, fixed-links models facilitate a more precise or purified representation of the WMC-related processes of interest. By using fixed-links modeling to analyze data of 200 participants, we identified a non-experimental latent variable, representing processes that remained constant irrespective of the WMC task conditions, and an experimental latent variable which reflected processes that varied as a function of experimental manipulation. This latter variable represents the increasing demands on WMC and, hence, was considered a purified measure of WMC controlled for the constant processes. Fixed-links modeling showed that both the purified measure of WMC (β = .48) as well as the constant processes involved in the task (β = .45) were related to Gf. Taken together, these two latent variables explained the same portion of variance of Gf as a single latent variable obtained by traditional CFA (β = .65) indicating that traditional CFA causes an overestimation of the effective relationship between WMC and Gf. Thus, fixed-links modeling provides a feasible method for a more valid investigation of the functional relationship between specific constructs.
The Long-Term Retention of Knowledge and Skills: A Cognitive and Instructional Perspective
1986-05-01
individual curves because of the problem in defining mattery. Lane reported that virtually no data were available on individual performance which involved...differences variables have occasionally been manipulated. These include prior achievement, motivation, hypnosis and the effects of aging. Table A-7...nature and magnitude of their impact. Hypnosis , for example, is still an unpredictable variable, and it is impractical, scientifically and politically
Raine, Dan; Langley, Philip; Murray, Alan; Dunuwille, Asunga; Bourke, John P
2004-09-01
The aims of this study were to evaluate (1) principal component analysis as a technique for extracting the atrial signal waveform from the standard 12-lead ECG and (2) its ability to distinguish changes in atrial fibrillation (AF) frequency parameters over time and in response to pharmacologic manipulation using drugs with different effects on atrial electrophysiology. Twenty patients with persistent AF were studied. Continuous 12-lead Holter ECGs were recorded for 60 minutes, first, in the drug-free state. Mean and variability of atrial waveform frequency were measured using an automated computer technique. This extracted the atrial signal by principal component analysis and identified the main frequency component using Fourier analysis. Patients were then allotted sequentially to receive 1 of 4 drugs intravenously (amiodarone, flecainide, sotalol, or metoprolol), and changes induced in mean and variability of atrial waveform frequency measured. Mean and variability of atrial waveform frequency did not differ within patients between the two 30-minute sections of the drug-free state. As hypothesized, significant changes in mean and variability of atrial waveform frequency were detected after manipulation with amiodarone (mean: 5.77 vs 4.86 Hz; variability: 0.55 vs 0.31 Hz), flecainide (mean: 5.33 vs 4.72 Hz; variability: 0.71 vs 0.31 Hz), and sotalol (mean: 5.94 vs 4.90 Hz; variability: 0.73 vs 0.40 Hz) but not with metoprolol (mean: 5.41 vs 5.17 Hz; variability: 0.81 vs 0.82 Hz). A technique for continuously analyzing atrial frequency characteristics of AF from the surface ECG has been developed and validated.
Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J
2015-03-01
Although dopaminergic replacement therapy is believed to improve sensory processing in PD, while delayed perceptual speed is thought to be caused by a predominantly cholinergic deficit, it is unclear whether sensory-perceptual deficits are a result of corrupt sensory processing, or a delay in updating perceived feedback during movement. The current study aimed to examine these two hypotheses by manipulating visual flow speed and dopaminergic medication to examine which influenced distance estimation in PD. Fourteen PD and sixteen HC participants were instructed to estimate the distance of a remembered target by walking to the position the target formerly occupied. This task was completed in virtual reality in order to manipulate the visual flow (VF) speed in real time. Three conditions were carried out: (1) BASELINE: VF speed was equal to participants' real-time movement speed; (2) SLOW: VF speed was reduced by 50 %; (2) FAST: VF speed was increased by 30 %. Individuals with PD performed the experiment in their ON and OFF state. PD demonstrated significantly greater judgement error during BASELINE and FAST conditions compared to HC, although PD did not improve their judgement error during the SLOW condition. Additionally, PD had greater variable error during baseline compared to HC; however, during the SLOW conditions, PD had significantly less variable error compared to baseline and similar variable error to HC participants. Overall, dopaminergic medication did not significantly influence judgement error. Therefore, these results suggest that corrupt processing of sensory information is the main contributor to sensory-perceptual deficits during movement in PD rather than delayed updating of sensory feedback.
James-Pirri, Mary-Jane; Erwin, R. Michael; Prosser, Diann J.; Taylor, Janith D.
2012-01-01
Open marsh water management (OMWM) of salt marshes modifies grid-ditched marshes by creating permanent ponds and radial ditches in the high marsh that reduce mosquito production and enhance fish predation on mosquitoes. It is preferable to using pesticides to control salt marsh mosquito production and is commonly presented as a restoration or habitat enhancement tool for grid-ditched salt marshes. Monitoring of nekton, vegetation, groundwater level, soil salinity, and bird communities before and after OMWM at 11 (six treatment and five reference sites) Atlantic Coast (U.S.A.) salt marshes revealed high variability within and among differing OMWM techniques (ditch-plugging, reengineering of sill ditches, and the creation of ponds and radial ditches). At three marshes, the dominant nekton shifted from fish (primarily Fundulidae species) to shrimp (Palaemonidae species) after manipulations and shrimp density increased at other treatment sites. Vegetation changed at only two sites, one with construction equipment impacts (not desired) and one with a decrease in woody vegetation along existing ditches (desired). One marsh had lower groundwater level and soil salinity, and bird use, although variable, was often unrelated to OMWM manipulations. The potential effects of OMWM manipulations on non-target salt marsh resources need to be carefully considered by resource planners when managing marshes for mosquito control.
ORES - Objective Referenced Evaluation in Science.
ERIC Educational Resources Information Center
Shaw, Terry
Science process skills considered important in making decisions and solving problems include: observing, classifying, measuring, using numbers, using space/time relationships, communicating, predicting, inferring, manipulating variables, making operational definitions, forming hypotheses, interpreting data, and experimenting. This 60-item test,…
Level of Analysis in the Perception of Ongoing Instruction: An Exploratory Study.
ERIC Educational Resources Information Center
Koopman, Cheryl; Newtson, Darren
1981-01-01
Instructional variables were manipulated to determine whether they influence the level of perceptual analysis. The relationships of perceptual analysis to concept learning and evaluations of the instructors were also examined in the study. (Author/GK)
The role of utility value in achievement behavior: the importance of culture.
Shechter, Olga G; Durik, Amanda M; Miyamoto, Yuri; Harackiewicz, Judith M
2011-03-01
Two studies tested how participants' responses to utility value interventions and subsequent interest in a math technique vary by culture (Westerners vs. East Asians) and levels of initial math interest. Participants in Study 1 were provided with information about the utility value of the technique or not. The manipulation was particularly effective for East Asian learners with initially lower math interest, who showed more interest in the technique relative to low-interest Westerners. Study 2 compared the effects of two types of utility value (proximal or distal) and examined the effects on interest, effort, performance, and process variables. Whereas East Asian participants reaped the most motivational benefits from a distal value manipulation, Westerners benefited the most from a proximal value manipulation. These findings have implications for how to promote motivation for learners with different cultural backgrounds and interests.
Schroeder, Josh; Kaplan, Leon; Fischer, Dena J.; Skelly, Andrea C.
2013-01-01
Study Design Systematic review. Study Rationale Neck pain is a prevalent condition. Spinal manipulation and mobilization procedures are becoming an accepted treatment for neck pain. However, data on the effectiveness of these treatments have not been summarized. Objective To compare manipulation or mobilization of the cervical spine to physical therapy or exercise for symptom improvement in patients with neck pain. Methods A systematic review of the literature was performed using PubMed, the National Guideline Clearinghouse Database, and bibliographies of key articles, which compared spinal manipulation or mobilization therapy with physical therapy or exercise in patients with neck pain. Articles were included based on predetermined criteria and were appraised using a predefined quality rating scheme. Results From 197 citations, 7 articles met all inclusion and exclusion criteria. There were no differences in pain improvement when comparing spinal manipulation to exercise, and there were inconsistent reports of pain improvement in subjects who underwent mobilization therapy versus physical therapy. No disability improvement was reported between treatment groups in studies of acute or chronic neck pain patients. No functional improvement was found with manipulation therapy compared with exercise treatment or mobilization therapy compared with physical therapy groups in patients with acute pain. In chronic neck pain subjects who underwent spinal manipulation therapy compared to exercise treatment, results for short-term functional improvement were inconsistent. Conclusion The data available suggest that there are minimal short- and long-term treatment differences in pain, disability, patient-rated treatment improvement, treatment satisfaction, health status, or functional improvement when comparing manipulation or mobilization therapy to physical therapy or exercise in patients with neck pain. This systematic review is limited by the variability of treatment interventions and lack of standardized outcomes to assess treatment benefit. PMID:24436697
Sullivan, Maura E; Booth, Robert K
2011-07-01
Testate amoebae are a group of moisture-sensitive, shell-producing protozoa that have been widely used as indicators of changes in mean water-table depth within oligotrophic peatlands. However, short-term environmental variability (i.e., sub-annual) also probably influences community composition. The objective of this study was to assess the potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum-dominated peatlands. Testate amoebae and environmental conditions, including hourly measurements of relative humidity within the upper centimeter of the peatland surface, were examined throughout the 2008 growing season at 72 microsites within 11 peatlands of Pennsylvania and Wisconsin, USA. Relationships among testate amoeba communities, vegetation, depth to water table, pH, and an index of short-term environmental variability (EVI), were examined using nonmetric multidimensional scaling and correlation analysis. Results suggest that EVI influences testate amoeba communities, with some taxa more abundant under highly variable conditions (e.g., Arcella discoides, Difflugia pulex, and Hyalosphenia subflava) and others more abundant when environmental conditions at the peatland surface were relatively stable (e.g., Archerella flavum and Bullinularia indica). The magnitude of environmental variability experienced at the peatland surface appears to be primarily controlled by vegetation composition and density. In particular, sites with dense Sphagnum cover had lower EVI values than sites with loose-growing Sphagnum or vegetation dominated by vascular plants and/or non-Sphagnum bryophytes. Our results suggest that more environmental information may be inferred from testate amoebae than previously recognized. Knowledge of relationships between testate amoebae and short-term environmental variability should lead to more detailed and refined environmental inferences.
Tschirren, B; Rutstein, A N; Postma, E; Mariette, M; Griffith, S C
2009-02-01
Divergent selection pressures among populations can result not only in significant differentiation in morphology, physiology and behaviour, but also in how these traits are related to each other, thereby driving the processes of local adaptation and speciation. In the Australian zebra finch, we investigated whether domesticated stock, bred in captivity over tens of generations, differ in their response to a life-history manipulation, compared to birds taken directly from the wild. In a 'common aviary' experiment, we thereto experimentally manipulated the environmental conditions experienced by nestlings early in life by means of a brood size manipulation, and subsequently assessed its short- and long-term consequences on growth, ornamentation, immune function and reproduction. As expected, we found that early environmental conditions had a marked effect on both short- and long-term morphological and life-history traits in all birds. However, although there were pronounced differences between wild and domesticated birds with respect to the absolute expression of many of these traits, which are indicative of the different selection pressures wild and domesticated birds were exposed to in the recent past, manipulated rearing conditions affected morphology and ornamentation of wild and domesticated finches in a very similar way. This suggests that despite significant differentiation between wild and domesticated birds, selection has not altered the relationships among traits. Thus, life-history strategies and investment trade-offs may be relatively stable and not easily altered by selection. This is a reassuring finding in the light of the widespread use of domesticated birds in studies of life-history evolution and sexual selection, and suggests that adaptive explanations may be legitimate when referring to captive bird studies.
Toma, Luiza; Mathijs, Erik
2007-04-01
This paper aims to identify the factors underlying farmers' propensity to participate in organic farming programmes in a Romanian rural region that confronts non-point source pollution. For this, we employ structural equation modelling with latent variables using a specific data set collected through an agri-environmental farm survey in 2001. The model includes one 'behavioural intention' latent variable ('propensity to participate in organic farming programmes') and five 'attitude' and 'socio-economic' latent variables ('socio-demographic characteristics', 'economic characteristics', 'agri-environmental information access', 'environmental risk perception' and 'general environmental concern'). The results indicate that, overall, the model has an adequate fit to the data. All loadings are statistically significant, supporting the theoretical basis for assignment of indicators for each latent variable. The significance tests for the structural model parameters show 'environmental risk perception' as the strongest determinant of farmers' propensity to participate in organic farming programmes.
NASA Astrophysics Data System (ADS)
Krassovski, M.; Hanson, P. J.; Riggs, J. S.; Nettles, W. R., IV
2017-12-01
Climate change studies are one of the most important aspects of modern science and related experiments are getting bigger and more complex. One such experiment is the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE, http://mnspruce.ornl.gov) conducted in in northern Minnesota, 40 km north of Grand Rapids, in the USDA Forest Service Marcell Experimental Forest (MEF). The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO2 atmosphere. This manipulation experiment generates a lot of observational data and requires a reliable onsite data collection system, dependable methods to transfer data to a robust scientific facility, and real-time monitoring capabilities. This presentation shares our experience of establishing near real time/low latency data collection and monitoring system using satellite communication.
A meta-analysis of soil exoenzyme responses to simulated climate change
NASA Astrophysics Data System (ADS)
Gebhardt, M.; Espinosa, N. J.; Blankinship, J. C.; Gallery, R. E.
2017-12-01
Microorganisms produce extracellular enzymes to decompose plant matter and drive biogeochemical transformations in soils. Climate change factors, such as warming and altered precipitation patterns, can impact enzyme activity through both direct and indirect mechanisms. Although many individual studies have examined how soil exoenzyme activities respond to climate change manipulations, there is disagreement surrounding the direction of these responses. We performed a synthesis of published studies to examine the influence of warming and altered precipitation on microbial exoenzyme activity. We found that warming increased enzyme activity with a more pronounced effect for oxidative relative to hydrolytic enzymes. Reduced precipitation consistently decreased exoenzyme activity. These responses, however, varied by season, biome, and enzyme type. The majority of studies fitting our criteria (e.g., experiments lasting a minimum of one growing season, paired treatments and controls) were located in North America and Europe. Inferences from this analysis therefore exclude many important ecosystems such as hyper-arid, wetlands, and artic systems. Carbon degrading enzyme activities were less sensitive to climate change manipulations when compared to phosphorus and nitrogen degrading enzyme activities. Linking enzyme activity to biogeochemical processes requires concomitant measurements of organic and inorganic carbon pools, mineralogy, nutrients, microbial biomass and community structure, and heterotrophic respiration within individual studies. Furthermore, linking these parameters to climate and environmental factors will require a comprehensive and consistent inclusion of biotic and abiotic variables among researchers and experiments. Globally, soils contain the largest carbon pools. Understanding the impacts of large-scale perturbations on soil enzyme activity will help to constrain predictions on the fate of biogeochemical transformations and improve model projections.
Cross-Sensory Transfer of Reference Frames in Spatial Memory
ERIC Educational Resources Information Center
Kelly, Jonathan W.; Avraamides, Marios N.
2011-01-01
Two experiments investigated whether visual cues influence spatial reference frame selection for locations learned through touch. Participants experienced visual cues emphasizing specific environmental axes and later learned objects through touch. Visual cues were manipulated and haptic learning conditions were held constant. Imagined perspective…
Warming and Elevated CO2 Interact to Drive Rapid Shifts in Marine Community Production.
Sorte, Cascade J B; Bracken, Matthew E S
2015-01-01
Predicting the outcome of future climate change requires an understanding of how alterations in multiple environmental factors manifest in natural communities and affect ecosystem functioning. We conducted an in situ, fully factorial field manipulation of CO2 and temperature on a rocky shoreline in southeastern Alaska, USA. Warming strongly impacted functioning of tide pool systems within one month, with the rate of net community production (NCP) more than doubling in warmed pools under ambient CO2 levels relative to initial NCP values. However, in pools with added CO2, NCP was unaffected by warming. Productivity responses paralleled changes in the carbon-to-nitrogen ratio of a red alga, the most abundant primary producer species in the system, highlighting the direct link between physiology and ecosystem functioning. These observed changes in algal physiology and community productivity in response to our manipulations indicate the potential for natural systems to shift rapidly in response to changing climatic conditions and for multiple environmental factors to act antagonistically.
Warming and Elevated CO2 Interact to Drive Rapid Shifts in Marine Community Production
Sorte, Cascade J. B.; Bracken, Matthew E. S.
2015-01-01
Predicting the outcome of future climate change requires an understanding of how alterations in multiple environmental factors manifest in natural communities and affect ecosystem functioning. We conducted an in situ, fully factorial field manipulation of CO2 and temperature on a rocky shoreline in southeastern Alaska, USA. Warming strongly impacted functioning of tide pool systems within one month, with the rate of net community production (NCP) more than doubling in warmed pools under ambient CO2 levels relative to initial NCP values. However, in pools with added CO2, NCP was unaffected by warming. Productivity responses paralleled changes in the carbon-to-nitrogen ratio of a red alga, the most abundant primary producer species in the system, highlighting the direct link between physiology and ecosystem functioning. These observed changes in algal physiology and community productivity in response to our manipulations indicate the potential for natural systems to shift rapidly in response to changing climatic conditions and for multiple environmental factors to act antagonistically. PMID:26714167
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapuscinski, A.R.; Hallerman, E.M.
Among the many methodologies encompassing biotechnology in aquaculture, this report addresses: the production of genetically modified aquatic organisms (aquatic GMOs) by gene transfer, chromosome set manipulation, or hybridization or protoplast fusion between species; new health management tools, including DNA-Based diagnostics and recombinant DNA vaccines; Marker-assisted selection; cryopreservation; and stock marking. These methodologies pose a wide range of potential economic benefits for aquaculture by providing improved or new means to affect the mix of necessary material inputs, enhance production efficiency, or improve product quality. Advances in aquaculture through biotechnology could simulate growth of the aquaculture industry to provide a larger proportionmore » of consummer demand, and thereby reduce pressure and natural stocks from over-harvest. Judicious application of gamete cryopreservation and chromosome set manipulations to achieve sterilization could reduce environmental risks of some aquaculture operations. Given the significant losses to disease in many aquaculture enterprises, potential benefits of DNA-based health management tools are very high and appear to pose no major environmental risks or social concerns.« less
Water fleas require microbiota for survival, growth and reproduction.
Sison-Mangus, Marilou P; Mushegian, Alexandra A; Ebert, Dieter
2015-01-01
Microbiota have diverse roles in the functioning of their hosts; experiments using model organisms have enabled investigations into these functions. In the model crustacean Daphnia, little knowledge exists about the effect of microbiota on host well being. We assessed the effect of microbiota on Daphnia magna by experimentally depriving animals of their microbiota and comparing their growth, survival and fecundity to that of their bacteria-bearing counterparts. We tested Daphnia coming from both lab-reared parthenogenetic eggs of a single genotype and from genetically diverse field-collected resting eggs. We showed that bacteria-free hosts are smaller, less fecund and have higher mortality than those with microbiota. We also manipulated the association by exposing bacteria-free Daphnia to a single bacterial strain of Aeromonas sp., and to laboratory environmental bacteria. These experiments further demonstrated that the Daphnia-microbiota system is amenable to manipulation under various experimental conditions. The results of this study have implications for studies of D. magna in ecotoxicology, ecology and environmental genomics.
Environmental factors controlling methane emissions from peatlands in northern Minnesota
NASA Technical Reports Server (NTRS)
Dise, Nancy B.; Gorham, Eville; Verry, Elon S.
1993-01-01
The environmental factors affecting the emission of methane from peatlands were investigated by correlating CH4 emission data for two years, obtained from five different peatland ecosystems in northern Minnesota, with peat temperature, water table position, and degree of peat humification. The relationship obtained between the CH4 flux and these factors was compared to results from a field manipulation experiment in which the water table was artificially raised in three experimental plots within the driest peatland. It was found that peat temperature, water table position, and degree of peat humification explained 91 percent of the variance in log CH4 flux, successfully predicted annual CH4 emission from individual wetlands, and predicted the change in flux due to the water table manipulation. Raising the water table in the bog corrals by an average of 6 cm in autumn 1989 and 10 cm in summer 1990 increased CH4 emission by 2.5 and 2.2 times, respectively.
Reproductive Management for Optimal Oocyte Development to Enhance Fertility
USDA-ARS?s Scientific Manuscript database
There are multiple steps associated with the ovulatory follicle that affect oocyte growth, fertilization, embryo development and establishment of pregnancy. When estrous cycles are manipulated with assisted reproductive technologies and ovulation induced, some of these variables become more importa...
Cardiovascular Physiology for First-Year Medical Students: Teaching and Learning through Games.
ERIC Educational Resources Information Center
France, Vanetia M.
1978-01-01
Describes a card game designed to help medical students learn to manipulate concepts fundamental to the functions of the cardiovascular system (CVS) and to understand the interrelationships between different controlled variables in the system. (Author/MA)
Correlates of Mathematics Anxiety.
ERIC Educational Resources Information Center
McCoy, Leah, P.
1992-01-01
Presents a survey of 78 pre- and in-service elementary teachers in a midwestern region to examine the relationship between mathematics anxiety, perceptual preference, and previous mathematics instructional experiences with workbooks and manipulatives. Results indicate that the variables significant in predicting mathematics anxiety were…
Bibliotherapy: Medicine for the Soul?
ERIC Educational Resources Information Center
Stevens, Michael J.; Pfost, Karen S.
1982-01-01
Reviews research on bibliotherapy in an attempt to find scientific justification for its use. An overview of the experimental research conveys a generally unfavorable picture of its effectiveness. Guidelines for future research suggest the experimental manipulation of specific variables of interest. (Author/JAC)
Santos, Xavier; Felicísimo, Ángel M.
2016-01-01
Ecological Niche Models (ENMs) are widely used to describe how environmental factors influence species distribution. Modelling at a local scale, compared to a large scale within a high environmental gradient, can improve our understanding of ecological species niches. The main goal of this study is to assess and compare the contribution of environmental variables to amphibian and reptile ENMs in two Spanish national parks located in contrasting biogeographic regions, i.e., the Mediterranean and the Atlantic area. The ENMs were built with maximum entropy modelling using 11 environmental variables in each territory. The contributions of these variables to the models were analysed and classified using various statistical procedures (Mann–Whitney U tests, Principal Components Analysis and General Linear Models). Distance to the hydrological network was consistently the most relevant variable for both parks and taxonomic classes. Topographic variables (i.e., slope and altitude) were the second most predictive variables, followed by climatic variables. Differences in variable contribution were observed between parks and taxonomic classes. Variables related to water availability had the larger contribution to the models in the Mediterranean park, while topography variables were decisive in the Atlantic park. Specific response curves to environmental variables were in accordance with the biogeographic affinity of species (Mediterranean and non-Mediterranean species) and taxonomy (amphibians and reptiles). Interestingly, these results were observed for species located in both parks, particularly those situated at their range limits. Our findings show that ecological niche models built at local scale reveal differences in habitat preferences within a wide environmental gradient. Therefore, modelling at local scales rather than assuming large-scale models could be preferable for the establishment of conservation strategies for herptile species in natural parks. PMID:27761304
Manipulating glucocorticoids in wild animals: basic and applied perspectives
Sopinka, Natalie M.; Patterson, Lucy D.; Redfern, Julia C.; Pleizier, Naomi K.; Belanger, Cassia B.; Midwood, Jon D.; Crossin, Glenn T.; Cooke, Steven J.
2015-01-01
One of the most comprehensively studied responses to stressors in vertebrates is the endogenous production and regulation of glucocorticoids (GCs). Extensive laboratory research using experimental elevation of GCs in model species is instrumental in learning about stressor-induced physiological and behavioural mechanisms; however, such studies fail to inform our understanding of ecological and evolutionary processes in the wild. We reviewed emerging research that has used GC manipulations in wild vertebrates to assess GC-mediated effects on survival, physiology, behaviour, reproduction and offspring quality. Within and across taxa, exogenous manipulation of GCs increased, decreased or had no effect on traits examined in the reviewed studies. The notable diversity in responses to GC manipulation could be associated with variation in experimental methods, inherent differences among species, morphs, sexes and age classes, and the ecological conditions in which responses were measured. In their current form, results from experimental studies may be applied to animal conservation on a case-by-case basis in contexts such as threshold-based management. We discuss ways to integrate mechanistic explanations for changes in animal abundance in altered environments with functional applications that inform conservation practitioners of which species and traits may be most responsive to environmental change or human disturbance. Experimental GC manipulation holds promise for determining mechanisms underlying fitness impairment and population declines. Future work in this area should examine multiple life-history traits, with consideration of individual variation and, most importantly, validation of GC manipulations within naturally occurring and physiologically relevant ranges. PMID:27293716
Svanfeldt, Karin; Monro, Keyne; Marshall, Dustin J
2017-05-01
Population density affects individual performance, though its effects are often mixed. For sessile species, increases in population density typically reduce performance. Still, cases of positive density-dependence do occur in sessile systems and demand explanation. The stress gradient hypothesis (SGH) predicts that under stressful conditions, positive effects of facilitation may outweigh the negative effects of competition. While some elements of the SGH are well studied, its potential to explain intraspecific facilitation has received little attention. Further, there have been questions regarding whether the SGH holds if the stressor is a resource. Most studies of interactions between the environment and intraspecific facilitation have relied on natural environmental gradients; manipulative studies are much rarer. To test the effects of intraspecific density and resources, we manipulated resource availability over natural population densities for the marine bryozoan Watersipora subtorquata. We found negative effects of density on colony performance in low resource environments, but mainly positive density-dependence in high resource environments. By adding resources, competition effects were reduced and the positive effects of facilitation were revealed. Our results suggest that resource availability mediates the relative strength of competition and facilitation in our system. We also suggest that intraspecific facilitation is more common than may be appreciated and that environmental variation may mediate the balance between negative and positive density-dependence. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Dissociable effects of practice variability on learning motor and timing skills.
Caramiaux, Baptiste; Bevilacqua, Frédéric; Wanderley, Marcelo M; Palmer, Caroline
2018-01-01
Motor skill acquisition inherently depends on the way one practices the motor task. The amount of motor task variability during practice has been shown to foster transfer of the learned skill to other similar motor tasks. In addition, variability in a learning schedule, in which a task and its variations are interweaved during practice, has been shown to help the transfer of learning in motor skill acquisition. However, there is little evidence on how motor task variations and variability schedules during practice act on the acquisition of complex motor skills such as music performance, in which a performer learns both the right movements (motor skill) and the right time to perform them (timing skill). This study investigated the impact of rate (tempo) variability and the schedule of tempo change during practice on timing and motor skill acquisition. Complete novices, with no musical training, practiced a simple musical sequence on a piano keyboard at different rates. Each novice was assigned to one of four learning conditions designed to manipulate the amount of tempo variability across trials (large or small tempo set) and the schedule of tempo change (randomized or non-randomized order) during practice. At test, the novices performed the same musical sequence at a familiar tempo and at novel tempi (testing tempo transfer), as well as two novel (but related) sequences at a familiar tempo (testing spatial transfer). We found that practice conditions had little effect on learning and transfer performance of timing skill. Interestingly, practice conditions influenced motor skill learning (reduction of movement variability): lower temporal variability during practice facilitated transfer to new tempi and new sequences; non-randomized learning schedule improved transfer to new tempi and new sequences. Tempo (rate) and the sequence difficulty (spatial manipulation) affected performance variability in both timing and movement. These findings suggest that there is a dissociable effect of practice variability on learning complex skills that involve both motor and timing constraints.
NASA Astrophysics Data System (ADS)
Giménez, Luis
2002-12-01
Chasmagnathus granulata is a South American crab occurring in estuarine salt marshes of the Brazilian, Uruguayan and Argentine coasts. Life history is characterized by an export strategy of its larval stages. I reviewed information on experimental manipulation of salinity during embryonic and larval development (pre- and posthatching salinities), and on habitat characteristics of C. granulata in order to determine potential effects of larval response to salinity in the field and to suggest consequences for the population structure. Local populations are spread over coastal areas with different physical characteristics. Benthic phases occupy estuaries characterized by different patterns of salinity variation, and release larvae to coastal waters characterized by strong salinity gradients. The zoea 1 of C. granulata showed a strong acclimatory response to low salinity. This response operated only during the first weeks of development (during zoeae 1 and 2) since subsequent larval survival at low posthatching salinities was consistently low. Larvae developing at low salinity frequently followed a developmental pathway with five instead of four zoeal stages. The ability to acclimate and the variability in larval development (i.e. the existence of alternative developmental pathways) could be interpreted as a strategy to buffer environmental variability at spatial scales of local or population networks. Early survivorship and production of larvae may be relatively high across a rather wide range of variability in salinity (5-32‰). Plastic responses to low salinity would therefore contribute to maintain a certain degree of population connectivity and persistence regardless of habitat heterogeneity.
NASA Astrophysics Data System (ADS)
Giménez, Luis
2003-01-01
Chasmagnathus granulata is a South American crab occurring in estuarine salt marshes of the Brazilian, Uruguayan and Argentine coasts. Life history is characterized by an export strategy of its larval stages. I reviewed information on experimental manipulation of salinity during embryonic and larval development (pre- and posthatching salinities), and on habitat characteristics of C. granulata in order to determine potential effects of larval response to salinity in the field and to suggest consequences for the population structure. Local populations are spread over coastal areas with different physical characteristics. Benthic phases occupy estuaries characterized by different patterns of salinity variation, and release larvae to coastal waters characterized by strong salinity gradients. The zoea 1 of C. granulata showed a strong acclimatory response to low salinity. This response operated only during the first weeks of development (during zoeae 1 and 2) since subsequent larval survival at low posthatching salinities was consistently low. Larvae developing at low salinity frequently followed a developmental pathway with five instead of four zoeal stages. The ability to acclimate and the variability in larval development (i.e. the existence of alternative developmental pathways) could be interpreted as a strategy to buffer environmental variability at spatial scales of local or population networks. Early survivorship and production of larvae may be relatively high across a rather wide range of variability in salinity (5-32‰). Plastic responses to low salinity would therefore contribute to maintain a certain degree of population connectivity and persistence regardless of habitat heterogeneity.
Graham, Jeffrey K; Smith, Myron L; Simons, Andrew M
2014-07-22
All organisms are faced with environmental uncertainty. Bet-hedging theory expects unpredictable selection to result in the evolution of traits that maximize the geometric-mean fitness even though such traits appear to be detrimental over the shorter term. Despite the centrality of fitness measures to evolutionary analysis, no direct test of the geometric-mean fitness principle exists. Here, we directly distinguish between predictions of competing fitness maximization principles by testing Cohen's 1966 classic bet-hedging model using the fungus Neurospora crassa. The simple prediction is that propagule dormancy will evolve in proportion to the frequency of 'bad' years, whereas the prediction of the alternative arithmetic-mean principle is the evolution of zero dormancy as long as the expectation of a bad year is less than 0.5. Ascospore dormancy fraction in N. crassa was allowed to evolve under five experimental selection regimes that differed in the frequency of unpredictable 'bad years'. Results were consistent with bet-hedging theory: final dormancy fraction in 12 genetic lineages across 88 independently evolving samples was proportional to the frequency of bad years, and evolved both upwards and downwards as predicted from a range of starting dormancy fractions. These findings suggest that selection results in adaptation to variable rather than to expected environments. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Sell, K.; Herbert, B.; Schielack, J.
2004-05-01
Students organize scientific knowledge and reason about environmental issues through manipulation of mental models. The nature of the environmental sciences, which are focused on the study of complex, dynamic systems, may present cognitive difficulties to students in their development of authentic, accurate mental models of environmental systems. The inquiry project seeks to develop and assess the coupling of information technology (IT)-based learning with physical models in order to foster rich mental model development of environmental systems in geoscience undergraduate students. The manipulation of multiple representations, the development and testing of conceptual models based on available evidence, and exposure to authentic, complex and ill-constrained problems were the components of investigation utilized to reach the learning goals. Upper-level undergraduate students enrolled in an environmental geology course at Texas A&M University participated in this research which served as a pilot study. Data based on rubric evaluations interpreted by principal component analyses suggest students' understanding of the nature of scientific inquiry is limited and the ability to cross scales and link systems proved problematic. Results categorized into content knowledge and cognition processes where reasoning, critical thinking and cognitive load were driving factors behind difficulties in student learning. Student mental model development revealed multiple misconceptions and lacked complexity and completeness to represent the studied systems. Further, the positive learning impacts of the implemented modules favored the physical model over the IT-based learning projects, likely due to cognitive load issues. This study illustrates the need to better understand student difficulties in solving complex problems when using IT, where the appropriate scaffolding can then be implemented to enhance student learning of the earth system sciences.
Miller, Jacob A; Scult, Matthew A; Conley, Emily Drabant; Chen, Qiang; Weinberger, Daniel R; Hariri, Ahmad R
2018-06-06
Recent work has begun to shed light on the neural correlates and possible mechanisms of polygenic risk for schizophrenia. Here, we map a schizophrenia polygenic risk profile score (PRS) based on genome-wide association study significant loci onto variability in the activity and functional connectivity of a frontoparietal network supporting the manipulation versus maintenance of information during a numerical working memory (WM) task in healthy young adults (n = 99, mean age = 19.8). Our analyses revealed that higher PRS was associated with hypoactivity of the dorsolateral prefrontal cortex (dlPFC) during the manipulation but not maintenance of information in WM (r2 = .0576, P = .018). Post hoc analyses revealed that PRS-modulated dlPFC hypoactivity correlated with faster reaction times during WM manipulation (r2 = .0967, P = .002), and faster processing speed (r2 = .0967, P = .003) on a separate behavioral task. These PRS-associated patterns recapitulate dlPFC hypoactivity observed in patients with schizophrenia during central executive manipulation of information in WM on this task.
ERIC Educational Resources Information Center
Sarikaya, Rabia; Saraç, Esra
2018-01-01
In this study, the attitudes of the pre-service teachers towards environmental issues are analysed by such variables as gender, the department of education, year, department, taking or not taking environmental education course, participating in any environmental activity, being a member of any environmental organization, and the longest duration…
Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation
MANEL, STÉPHANIE; GUGERLI, FELIX; THUILLER, WILFRIED; ALVAREZ, NADIR; LEGENDRE, PIERRE; HOLDEREGGER, ROLF; GIELLY, LUDOVIC; TABERLET, PIERRE
2014-01-01
Identifying adaptive genetic variation is a challenging task, in particular in non-model species for which genomic information is still limited or absent. Here, we studied distribution patterns of amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13 alpine plant species consistently sampled across the entire European Alps. Multiple linear regressions were performed between AFLP allele frequencies per site as dependent variables and two categories of independent variables, namely Moran’s eigenvector map MEM variables (to account for spatial and unaccounted environmental variation, and historical demographic processes) and environmental variables. These associations allowed the identification of 153 loci of ecological relevance. Univariate regressions between allele frequency and each environmental factor further showed that loci of ecological relevance were mainly correlated with MEM variables. We found that precipitation and temperature were the best environmental predictors, whereas topographic factors were rarely involved in environmental associations. Climatic factors, subject to rapid variation as a result of the current global warming, are known to strongly influence the fate of alpine plants. Our study shows, for the first time for a large number of species, that the same environmental variables are drivers of plant adaptation at the scale of a whole biome, here the European Alps. PMID:22680783
Baigzadehnoe, Barmak; Rahmani, Zahra; Khosravi, Alireza; Rezaie, Behrooz
2017-09-01
In this paper, the position and force tracking control problem of cooperative robot manipulator system handling a common rigid object with unknown dynamical models and unknown external disturbances is investigated. The universal approximation properties of fuzzy logic systems are employed to estimate the unknown system dynamics. On the other hand, by defining new state variables based on the integral and differential of position and orientation errors of the grasped object, the error system of coordinated robot manipulators is constructed. Subsequently by defining the appropriate change of coordinates and using the backstepping design strategy, an adaptive fuzzy backstepping position tracking control scheme is proposed for multi-robot manipulator systems. By utilizing the properties of internal forces, extra terms are also added to the control signals to consider the force tracking problem. Moreover, it is shown that the proposed adaptive fuzzy backstepping position/force control approach ensures all the signals of the closed loop system uniformly ultimately bounded and tracking errors of both positions and forces can converge to small desired values by proper selection of the design parameters. Finally, the theoretic achievements are tested on the two three-link planar robot manipulators cooperatively handling a common object to illustrate the effectiveness of the proposed approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Walker, Mirella; Vetter, Thomas
2009-10-13
The social judgments people make on the basis of the facial appearance of strangers strongly affect their behavior in different contexts. However, almost nothing is known about the physical information underlying these judgments. In this article, we present a new technology (a) to quantify the information in faces that is used for social judgments and (b) to manipulate the image of a human face in a way which is almost imperceptible but changes the personality traits ascribed to the depicted person. This method was developed in a high-dimensional face space by identifying vectors that capture maximum variability in judgments of personality traits. Our method of manipulating the salience of these vectors in faces was successfully transferred to novel photographs from an independent database. We evaluated this method by showing pairs of face photographs which differed only in the salience of one of six personality traits. Subjects were asked to decide which face was more extreme with respect to the trait in question. Results show that the image manipulation produced the intended attribution effect. All response accuracies were significantly above chance level. This approach to understanding and manipulating how a person is socially perceived could be useful in psychological research and could also be applied in advertising or the film industries.
Wu, Naicheng; Qu, Yueming; Guse, Björn; Makarevičiūtė, Kristė; To, Szewing; Riis, Tenna; Fohrer, Nicola
2018-03-01
There has been increasing interest in algae-based bioassessment, particularly, trait-based approaches are increasingly suggested. However, the main drivers, especially the contribution of hydrological variables, of species composition, trait composition, and beta diversity of algae communities are less studied. To link species and trait composition to multiple factors (i.e., hydrological variables, local environmental variables, and spatial factors) that potentially control species occurrence/abundance and to determine their relative roles in shaping species composition, trait composition, and beta diversities of pelagic algae communities, samples were collected from a German lowland catchment, where a well-proven ecohydrological modeling enabled to predict long-term discharges at each sampling site. Both trait and species composition showed significant correlations with hydrological, environmental, and spatial variables, and variation partitioning revealed that the hydrological and local environmental variables outperformed spatial variables. A higher variation of trait composition (57.0%) than species composition (37.5%) could be explained by abiotic factors. Mantel tests showed that both species and trait-based beta diversities were mostly related to hydrological and environmental heterogeneity with hydrological contributing more than environmental variables, while purely spatial impact was less important. Our findings revealed the relative importance of hydrological variables in shaping pelagic algae community and their spatial patterns of beta diversities, emphasizing the need to include hydrological variables in long-term biomonitoring campaigns and biodiversity conservation or restoration. A key implication for biodiversity conservation was that maintaining the instream flow regime and keeping various habitats among rivers are of vital importance. However, further investigations at multispatial and temporal scales are greatly needed.
Unpredictable food supply modifies costs of reproduction and hampers individual optimization.
Török, János; Hegyi, Gergely; Tóth, László; Könczey, Réka
2004-11-01
Investment into the current reproductive attempt is thought to be at the expense of survival and/or future reproduction. Individuals are therefore expected to adjust their decisions to their physiological state and predictable aspects of environmental quality. The main predictions of the individual optimization hypothesis for bird clutch sizes are: (1) an increase in the number of recruits with an increasing number of eggs in natural broods, with no corresponding impairment of parental survival or future reproduction, and (2) a decrease in the fitness of parents in response to both negative and positive brood size manipulation, as a result of a low number of recruits, poor future reproduction of parents, or both. We analysed environmental influences on costs and optimization of reproduction on 6 years of natural and experimentally manipulated broods in a Central European population of the collared flycatcher. Based on dramatic differences in caterpillar availability, we classified breeding seasons as average and rich food years. The categorization was substantiated by the majority of present and future fitness components of adults and offspring. Neither observational nor experimental data supported the individual optimization hypothesis, in contrast to a Scandinavian population of the species. The quality of fledglings deteriorated, and the number of recruits did not increase with natural clutch size. Manipulation revealed significant costs of reproduction to female parents in terms of future reproductive potential. However, the influence of manipulation on recruitment was linear, with no significant polynomial effect. The number of recruits increased with manipulation in rich food years and tended to decrease in average years, so control broods did not recruit more young than manipulated broods in any of the year types. This indicates that females did not optimize their clutch size, and that they generally laid fewer eggs than optimal in rich food years. Mean yearly clutch size did not follow food availability, which suggests that females cannot predict food supply of the brood-rearing period at the beginning of the season. This lack of information on future food conditions seems to prevent them from accurately estimating their optimal clutch size for each season. Our results suggest that individual optimization may not be a general pattern even within a species, and alternative mechanisms are needed to explain clutch size variation.
Bauer, Jessie-Raye; Martinez, Joel E.; Roe, Mary Abbe; Church, Jessica A.
2017-01-01
Two behavioral experiments assessed the plasticity and short-term improvement of task switching in 215 children and adults. Specifically, we studied manipulations of cued attention to different features of a target stimulus as a way to assess the development of cognitive flexibility. Each experiment had multiple levels of difficulty via manipulation of number of cued features (2–4) and number of response options (2 or 4). Working memory demand was manipulated across the two experiments. Impact of memory demand and task level manipulations on task accuracy and response times were measured. There were three overall goals: First, these task manipulations (number of cued features, response choices, and working memory load) were tested to assess the stability of group differences in performance between children ages 6–16 years and adults 18–27 years, with the goal of reducing age group differences. Second, age-related transitions to adult-level performance were examined within subgroups of the child sample. Third, short-term improvement from the beginning to the end of the study session was measured to probe whether children can improve with task experience. Attempts to use task manipulations to reduce age differences in cued task switching performance were unsuccessful: children performed consistently worse and were more susceptible to task manipulations than adults. However, across both studies, adult-like performance was observed around mid-adolescence, by ages 13-16 years. Certain task manipulations, especially increasing number of response options when working memory demand was low, produced differences from adults even in the oldest children. Interestingly, there was similar performance improvement with practice for both child and adult groups. The higher memory demand version of the task (Experiment 2) prompted greater short-term improvement in accuracy and response times than the lower memory demand version (Experiment 1). These results reveal stable differences in cued switching performance over development, but also relative flexibility within a given individual over time. PMID:28824489
Koppenhaver, Shane L.; Fritz, Julie M.; Hebert, Jeffrey J.; Kawchuk, Greg N.; Parent, Eric C.; Gill, Norman W.; Childs, John D.; Teyhen, Deydre S.
2012-01-01
Understanding the clinical characteristics of patients with low back pain (LBP) who display improved lumbar multifidus (LM) muscle function after spinal manipulative therapy (SMT) may provide insight into a potentially synergistic interaction between SMT and exercise. Therefore, the purpose of this study was to identify the baseline historical and physical examination factors associated with increased contracted LM muscle thickness one week after SMT. Eighty-one participants with LBP underwent a baseline physical examination and ultrasound imaging assessment of the LM muscle during submaximal contraction before and one week after SMT. The relationship between baseline examination variables and 1-week change in contracted LM thickness was assessed using correlation analysis and hierarchical multiple linear regression. Four variables best predicted the magnitude of increases in contracted LM muscle thickness after SMT. When combined, these variables suggest that patients with LBP, (1) that are fairly acute, (2) have at least a moderately good prognosis without focal and irritable symptoms, and (3) exhibit signs of spinal instability, may be the best candidates for a combined SMT and LSE treatment approach. PMID:22516351
Koppenhaver, Shane L; Fritz, Julie M; Hebert, Jeffrey J; Kawchuk, Greg N; Parent, Eric C; Gill, Norman W; Childs, John D; Teyhen, Deydre S
2012-10-01
Understanding the clinical characteristics of patients with low back pain (LBP) who display improved lumbar multifidus (LM) muscle function after spinal manipulative therapy (SMT) may provide insight into a potentially synergistic interaction between SMT and exercise. Therefore, the purpose of this study was to identify the baseline historical and physical examination factors associated with increased contracted LM muscle thickness one week after SMT. Eighty-one participants with LBP underwent a baseline physical examination and ultrasound imaging assessment of the LM muscle during submaximal contraction before and one week after SMT. The relationship between baseline examination variables and 1-week change in contracted LM thickness was assessed using correlation analysis and hierarchical multiple linear regression. Four variables best predicted the magnitude of increases in contracted LM muscle thickness after SMT. When combined, these variables suggest that patients with LBP, (1) that are fairly acute, (2) have at least a moderately good prognosis without focal and irritable symptoms, and (3) exhibit signs of spinal instability, may be the best candidates for a combined SMT and lumbar stabilization exercise (LSE) treatment approach. Published by Elsevier Ltd.
Integrated Force Method Solution to Indeterminate Structural Mechanics Problems
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.; Halford, Gary R.
2004-01-01
Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by manipulating the equilibrium concept, either by rewriting in the displacement variables or through the cutting and closing gap technique of the redundant force method. Compatibility improvisation has made analysis cumbersome. The authors have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilibrium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load, temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.
The diversity-biomass-productivity relationships in grassland management and restoration
Guo, Q.
2007-01-01
Diversity, biomass, and productivity, the three key community/ecosystem variables, are interrelated and pose reciprocal influences on each other. The relationships among the three variables have been a central focus in ecology and formed two schools of fundamentally different nature with two related applications: (1) management - how biomass manipulation (e.g., grazing, burning) affects diversity and productivity, and (2) restoration - how diversity manipulation (e.g., seeding, planting) affects biomass and productivity. In the past, the two apparently related aspects have been studied intensively but separately in basic research and the reciprocal effects of the three variables and applied aspects have not been jointly addressed. In most cases, optimal management often involves regulating biomass so that high diversity and productivity or other preferred habitat characteristics can be achieved and maintained, while restoration usually involves planting/seeding a certain number and/or combination of native species so that the native structure and function of the habitat can be restored and degraded ecosystems can recover faster. This article attempts to unify these two schools and discusses the significance and implications of the diversity-biomass-productivity relationships in practice, with particular emphasis on grassland ecosystems. ?? 2006 Gesellschaft fu??r O??kologie.
Conflicts of Interest: Manipulating Public Health
ERIC Educational Resources Information Center
Stein, Richard; Davis, Devra Lee
2014-01-01
Evaluating the potential health impacts of chemical, physical, and biological environmental factors represents a challenging task with profound medical, public health, and historical implications. The history of public health is replete with instances, ranging from tobacco to lead and asbestos, where the ability to obtain evidence on potential…
NASA Astrophysics Data System (ADS)
Simpson, G. L.
2015-12-01
Studying threshold responses to environmental change is often made difficult due to the paucity of monitoring data prior to and during change. Progress has been made via theoretical models of regime shifts or experimental manipulation but natural, real world, examples of threshold change are limited and in many cases inconclusive. Lake sediments provide the potential to examine abrupt ecological change by directly observing how species, communities, and biogeochemical proxies responded to environmental perturbation or recorded ecosystem change. These records are not problem-free; age uncertainties, uneven and variable temporal resolution, and time-consuming taxonomic work all act to limit the scope and scale of the data or complicate its analysis. Here I use two annually laminated records 1. Kassjön, a seasonally anoxic mesotrophic lake in N Sweden, and2. Baldeggersee, a nutrient rich, hardwater lake on the central Swiss Plateau to investigate lake ecosystem responses to abrupt environmental change using ideal paleoecological time series. Rapid cooling 2.2kyr ago in northern Sweden significantly perturbed the diatom community of Kassjön. Using wavelet analysis, this amelioration in climate also fundamentally altered patterns of variance in diatom abundances, suppressing cyclicity in species composition that required several hundred years to reestablish. Multivariate wavelet analysis of the record showed marked switching between synchronous and asynchronous species dynamics in response to rapid climatic cooling and subsequent warming. Baldeggersee has experienced a long history of eutrophication and the diatom record has been used as a classic illustration of a regime shift in response to nutrient loading. Time series analysis of the record identified some evidence of a threshold-like response in the diatoms. A stochastic volatility model identified increasing variance in composition prior to the threshold, as predicted from theory, and a switch from compensatory to synchronous species dynamics, concomitant with eutrophication, was observed. These results document in high resolution how two aquatic systems reacted to abrupt change and demonstrate that under ideal conditions sediments can preserve valuable evidence of rapid ecological change.
Inducing Proactive Control Shifts in the AX-CPT
Gonthier, Corentin; Macnamara, Brooke N.; Chow, Michael; Conway, Andrew R. A.; Braver, Todd S.
2016-01-01
The Dual Mechanisms of Control (DMC) account (Braver, 2012) proposes two distinct mechanisms of cognitive control, proactive and reactive. This account has been supported by a large number of studies using the AX-CPT paradigm that have demonstrated not only between-group differences, but also within-subjects variability in the use of the two control mechanisms. Yet there has been little investigation of task manipulations that can experimentally modulate the use of proactive control in healthy young adults; such manipulations could be useful to better understand the workings of cognitive control mechanisms. In the current study, a series of three experiments demonstrate how individuals can be systematically biased toward and away from the utilization of proactive control, via strategy training and no-go manipulations, respectively. These results provide increased support for the DMC framework, and provide a new basis from which to examine group-based differences and neural mechanisms underlying the two control modes. PMID:27920741
Manipulators with flexible links: A simple model and experiments
NASA Technical Reports Server (NTRS)
Shimoyama, Isao; Oppenheim, Irving J.
1989-01-01
A simple dynamic model proposed for flexible links is briefly reviewed and experimental control results are presented for different flexible systems. A simple dynamic model is useful for rapid prototyping of manipulators and their control systems, for possible application to manipulator design decisions, and for real time computation as might be applied in model based or feedforward control. Such a model is proposed, with the further advantage that clear physical arguments and explanations can be associated with its simplifying features and with its resulting analytical properties. The model is mathematically equivalent to Rayleigh's method. Taking the example of planar bending, the approach originates in its choice of two amplitude variables, typically chosen as the link end rotations referenced to the chord (or the tangent) motion of the link. This particular choice is key in establishing the advantageous features of the model, and it was used to support the series of experiments reported.
NASA Technical Reports Server (NTRS)
Book, W. J.
1973-01-01
An investigation is reported involving a mathematical procedure using 4 x 4 transformation matrices for analyzing the vibrations of flexible manipulators. Previous studies with the procedure are summarized and the method is extended to include flexible joints as well as links, and to account for the effects of various power transmission schemes. A systematic study of the allocation of structural material and the placement of components such as motors and gearboxes was undertaken using the analytical tools developed. As one step in this direction the variables which relate the vibration parameters of the arm to the task and environment of the arm were isolated and nondimensionalized. The 4 x 4 transformation matrices were also used to develop analytical expressions for the terms of the complete 6 x 6 compliance matrix for the case of two flexible links joined by a rotating joint, flexible about its axis of rotation.
Distribution, abundance, and diversity of stream fishes under variable environmental conditions
Christopher M. Taylor; Thomas L. Holder; Richard A. Fiorillo; Lance R. Williams; R. Brent Thomas; Melvin L. Warren
2006-01-01
The effects of stream size and flow regime on spatial and temporal variability of stream fish distribution, abundance, and diversity patterns were investigated. Assemblage variability and species richness were each significantly associated with a complex environmental gradient contrasting smaller, hydrologically variable stream localities with larger localities...
Triano, John J; Giuliano, Dominic; Kanga, Ismat; Starmer, David; Brazeau, Jennifer; Screaton, C Elaine; Semple, Curtis
2015-01-01
The purpose of this study was to sample the stability of spinal manipulation performance in peak impulse force development over time and the ability of clinicians to adapt to arbitrary target levels with short-duration training. A pre-post experimental design was used. Human analog mannequins provided standardized simulation for performance measures. A convenience sample was recruited consisting of 41 local doctors of chiropractic with 5 years of active clinical practice experience. Thoracic impulse force was measured among clinicians at baseline, after 4 months at pretraining, and again posttraining. Intraclass correlation coefficient values and within-subject variability defined consistency. Malleability was measured by reduction of error (paired t tests) in achieving arbitrary targeted levels of force development normalized to the individual's typical performance. No difference was observed in subgroup vs baseline group characteristics. Good consistency was observed in force-time profiles (0.55 ≤ intraclass correlation coefficient ≤ 0.75) for force parameters over the 4-month interval. With short intervals of focused training, error rates in force delivery were reduced by 23% to 45%, depending on target. Within-subject variability was 1/3 to 1/2 that of between-subject variability. Load increases were directly related to rate of loading. The findings of this study show that recalibration of spinal manipulation performance of experienced clinicians toward arbitrary target values in the thoracic spine is feasible. This study found that experienced clinicians are internally consistent in performance of procedures under standardized conditions and that focused training may help clinicians learn to modulate procedure characteristics. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.
Belcher, C.N.; Jennings, Cecil A.
2010-01-01
We examined the affects of selected water quality variables on the presence of subadult sharks in six of nine Georgia estuaries. During 231 longline sets, we captured 415 individuals representing nine species. Atlantic sharpnose shark (Rhizoprionodon terranovae), bonnethead (Sphyrna tiburo), blacktip shark (Carcharhinus limbatus) and sandbar shark (C. plumbeus) comprised 96.1% of the catch. Canonical correlation analysis (CCA) was used to assess environmental influences on the assemblage of the four common species. Results of the CCA indicated Bonnethead Shark and Sandbar Shark were correlated with each other and with a subset of environmental variables. When the species occurred singly, depth was the defining environmental variable; whereas, when the two co-occurred, dissolved oxygen and salinity were the defining variables. Discriminant analyses (DA) were used to assess environmental influences on individual species. Results of the discriminant analyses supported the general CCA findings that the presence of bonnethead and sandbar shark were the only two species that correlated with environmental variables. In addition to depth and dissolved oxygen, turbidity influenced the presence of sandbar shark. The presence of bonnethead shark was influenced primarily by salinity and turbidity. Significant relationships existed for both the CCA and DA analyses; however, environmental variables accounted for <16% of the total variation in each. Compared to the environmental variables we measured, macrohabitat features (e.g., substrate type), prey availability, and susceptibility to predation may have stronger influences on the presence and distribution of subadult shark species among sites.
NASA Astrophysics Data System (ADS)
Fox, A. M.; Litvak, M. E.; McDowell, N.; Rahn, T.; Ryan, M. G.
2010-12-01
Piñon-juniper (PJ) woodlands, which occupy 24 million ha throughout the Southwest, proved to be extremely vulnerable to an extended drought that began in 1999, leading to an abrupt die-off of 40 to 95% of piñon pine (Pinus edulis) and 2-25% of juniper (Juniperus monosperma) in less than 3 years. Climate predictions for the region suggest such droughts are likely to become more frequent and widespread in the future, extending northwards. Such large-scale change in vegetation has the potential to trigger rapid changes in ecosystem carbon dynamics and the local and regional hydrologic cycle. We are using a twinned ecosystem-scale manipulation study to quantify the transient dynamics of carbon and water flux responses to piñon mortality. A combination of eddy covariance, soil respiration and moisture, sap flow and biomass carbon pool measurements are being made at an undisturbed PJ woodland (control) site and at a manipulation site within 2 miles of the control where all piñon trees greater than 7 cm diameter at breast height within the 4 ha flux footprint were killed in September 2009 using girdling and herbicide injection following 6 months of background measurements. We hypothesis that piñon mortality alters the local scale carbon cycle by shifting a large stock of carbon from productive biomass to detritus, leading to an initial decrease in net primary production and an increase in ecosystem respiration and net carbon flux to the atmosphere. However, reduced competition for water in these water-limited ecosystems and increased light availability may lead to compensatory growth in surviving small piñon, juniper and understory vegetation, offsetting or exceeding the expected reduction in NPP from piñon mortality. Because litter and coarse woody debris are slow to decompose in semiarid environments we hypothesize that the manipulation site will continue to be net carbon sources even after NPP recovers. Our general hypothesis for the local scale water cycle is that piñon mortality will alter the vertical and horizontal pattern of infiltration of precipitation and the sources and patterns of water use by remaining small piñon, juniper, understory vegetation and surface evaporation. Pinon mortality may not significantly alter cumulative ecosystem evaportranspiration, but associated changes in litter, bare soil fraction and replacement vegetation will likely alter seasonal variation in evaporation, transpiration and water-use efficiency. Here we present an initial analysis contrasting ecosystem response to environmental drivers pre- and post-manipulation and between manipulation and control sites, identifying and quantifying the impacts of piñon mortality over naturally occurring inter-annual and inter-site variability.
Buckling Analysis of Anisotropic Curved Panels and Shells with Variable Curvature
NASA Technical Reports Server (NTRS)
Jaunky, Navin; Knight, Norman F., Jr.; Ambur, Damodar R.
1998-01-01
A buckling formulation for anisotropic curved panels with variable curvature is presented in this paper. The variable curvature panel is assumed to consists of two or more panels of constant but different curvatures. Bezier functions are used as Ritz functions Displacement (C(sup 0)), and slope (C(sup 1)) continuities between segments are imposed by manipulation of the Bezier control points. A first-order shear-deformation theory is used in the buckling formulation. Results obtained from the present formulation are compared with those from finite element simulations and are found to be in good agreement.
NASA Astrophysics Data System (ADS)
Wicks, L. C.; Gardner, J. P. A.; Davy, S. K.
2012-06-01
Tolerance of environmental variables differs between corals and their dinoflagellate symbionts ( Symbiodinium spp.), controlling the holobiont's (host and symbiont combined) resilience to environmental stress. However, the ecological role that environmental variables play in holobiont distribution remains poorly understood. We compared the drivers of symbiont and coral species distributions at Palmyra Atoll, a location with a range of reef environments from low to high sediment concentrations (1-52 g dry weight m-2 day-1). We observed uniform holobiont partnerships across the atoll (e.g. Montipora spp. with Symbiodinium type C15 at all sites). Multivariate analysis revealed that field-based estimates of settling sediment predominantly explained the spatial variation of coral species among sites ( P < 0.01). However, none of the environmental variables measured (sedimentation, temperature, chlorophyll concentration, salinity) affected symbiont distribution. The discord between environmental variables and symbiont distributions suggests that the symbionts are physiologically tolerant of the variable environmental regime across this location and that the distribution of different host-symbiont combinations present is largely dependent on coral rather than Symbiodinium physiology. The data highlight the importance of host tolerance to environmental stressors, which should be considered simultaneously with symbiont sensitivity when considering the impact of variations in environmental conditions on coral communities.
NASA Astrophysics Data System (ADS)
Sinang, S. C.; Reichwaldt, E. S.; Ghadouani, A.
2014-10-01
Toxic cyanobacterial blooms in urban lakes present serious health hazards to humans and animals and require effective management strategies. In the management of toxic cyanobacteria blooms, understanding the roles of environmental factors is crucial. To date, a range of environmental factors have been proposed as potential triggers for the spatiotemporal variability of cyanobacterial biomass and microcystins in freshwater systems. However, the environmental triggers of cyanobacteria and microcystin variability remain a subject of debate due to contrasting findings. This issue has raised the question if the environmental triggers are site-specific and unique between water bodies. In this study, we investigated the site-specificity of environmental triggers for cyanobacterial bloom and cyanotoxins dynamics. Our study suggests that cyanobacterial dominance and cyanobacterial microcystin content variability were significantly correlated to phosphorus and iron concentrations. However, the correlations between phosphorus and iron with cyanobacterial biomass and microcystin variability were not consistent between lakes, thus suggesting a site specificity of these environmental factors. The discrepancies in the correlations could be explained by differences in local nutrient concentration and the cyanobacterial community in the systems. The findings of this study suggest that identification of site-specific environmental factors under unique local conditions is an important strategy to enhance positive outcomes in cyanobacterial bloom control measures.
Genotypic variability enhances the reproducibility of an ecological study.
Milcu, Alexandru; Puga-Freitas, Ruben; Ellison, Aaron M; Blouin, Manuel; Scheu, Stefan; Freschet, Grégoire T; Rose, Laura; Barot, Sebastien; Cesarz, Simone; Eisenhauer, Nico; Girin, Thomas; Assandri, Davide; Bonkowski, Michael; Buchmann, Nina; Butenschoen, Olaf; Devidal, Sebastien; Gleixner, Gerd; Gessler, Arthur; Gigon, Agnès; Greiner, Anna; Grignani, Carlo; Hansart, Amandine; Kayler, Zachary; Lange, Markus; Lata, Jean-Christophe; Le Galliard, Jean-François; Lukac, Martin; Mannerheim, Neringa; Müller, Marina E H; Pando, Anne; Rotter, Paula; Scherer-Lorenzen, Michael; Seyhun, Rahme; Urban-Mead, Katherine; Weigelt, Alexandra; Zavattaro, Laura; Roy, Jacques
2018-02-01
Many scientific disciplines are currently experiencing a 'reproducibility crisis' because numerous scientific findings cannot be repeated consistently. A novel but controversial hypothesis postulates that stringent levels of environmental and biotic standardization in experimental studies reduce reproducibility by amplifying the impacts of laboratory-specific environmental factors not accounted for in study designs. A corollary to this hypothesis is that a deliberate introduction of controlled systematic variability (CSV) in experimental designs may lead to increased reproducibility. To test this hypothesis, we had 14 European laboratories run a simple microcosm experiment using grass (Brachypodium distachyon L.) monocultures and grass and legume (Medicago truncatula Gaertn.) mixtures. Each laboratory introduced environmental and genotypic CSV within and among replicated microcosms established in either growth chambers (with stringent control of environmental conditions) or glasshouses (with more variable environmental conditions). The introduction of genotypic CSV led to 18% lower among-laboratory variability in growth chambers, indicating increased reproducibility, but had no significant effect in glasshouses where reproducibility was generally lower. Environmental CSV had little effect on reproducibility. Although there are multiple causes for the 'reproducibility crisis', deliberately including genetic variability may be a simple solution for increasing the reproducibility of ecological studies performed under stringently controlled environmental conditions.
Humby, Trevor; Fisher, Amelia; Allen, Christopher; Reynolds, Meghann; Hartman, Annette; Giegling, Ina; Rujescu, Dan; Davies, William
2017-03-01
The enzyme steroid sulfatase (STS) converts sulfated steroids to their non-sulfated forms. Deficiency for this enzyme is associated with inattention but preserved response control. The polymorphism rs17268988 within the X-linked STS gene is associated with inattentive, but not other, symptoms in boys with attention deficit hyperactivity disorder (ADHD). We initially tested whether rs17268988 genotype was associated with attention, response control, and underlying aspects of cognition, using questionnaires and neuropsychological tasks, in two independent cohorts of healthy adult males. In an additional analysis based upon existing data, the performance of mice with genetic or pharmacological manipulations of the STS axis under attentionally demanding conditions was investigated. G-allele carriers at rs17268988 exhibited reduced reaction time, enhanced attention, and reduced reaction time variability relative to C-allele carriers. Mice with genetic or pharmacological manipulations of the STS axis were shown to have perturbed reaction time variability. Our findings provide additional support for an association between rs17268988 genotype and attention, which may be partially mediated by reaction time variability; they also indicate that, in contrast to the situation in boys with ADHD, in healthy men, the G-allele at rs17268988 is associated with enhanced cognition. As reaction time variability is a predictor of well-being, rs17268988 genotype may represent a biomarker for long-term health.
Uieda, V S; Carvalho, E M
2015-05-01
Through a manipulative experiment, the colonization of leaf litter by invertebrates was investigated in two sections of a tropical stream (spatial scale) that differed in function of the canopy cover, one with the presence (closed area) and another without riparian vegetation (open area), during one month of the dry and one of the wet season (temporal scale). The work aimed to verify differences related to four variables: season, canopy cover, leaf type and leaf condition. Litter bags containing arboreal and herbaceous leaves (leaf type variable), non-conditioned and preconditioned (leaf condition variable) were placed at the bottom of the stream in each area (canopy cover variable) and season (dry and wet), and removed after 13-day colonization. The analysis of the remaining litter dry mass per leaf bag emphasizes differences related mainly to seasonality, canopy cover and leaf type, although leaf condition was also important when combined with those three factors. Comparing the abundance of invertebrates per treatment, there was a tendency of high predominance of Chironomidae during the dry season and greater taxa diversity and evenness during the wet season, when the water flow increase could alter the availability of microhabitats for local fauna. Even though canopy cover alone was not a significant source of variation in the abundance of invertebrates, the results showed a tendency of a combined effect of canopy cover with seasonality and leaf condition.
Environmental variability and acoustic signals: a multi-level approach in songbirds.
Medina, Iliana; Francis, Clinton D
2012-12-23
Among songbirds, growing evidence suggests that acoustic adaptation of song traits occurs in response to habitat features. Despite extensive study, most research supporting acoustic adaptation has only considered acoustic traits averaged for species or populations, overlooking intraindividual variation of song traits, which may facilitate effective communication in heterogeneous and variable environments. Fewer studies have explicitly incorporated sexual selection, which, if strong, may favour variation across environments. Here, we evaluate the prevalence of acoustic adaptation among 44 species of songbirds by determining how environmental variability and sexual selection intensity are associated with song variability (intraindividual and intraspecific) and short-term song complexity. We show that variability in precipitation can explain short-term song complexity among taxonomically diverse songbirds, and that precipitation seasonality and the intensity of sexual selection are related to intraindividual song variation. Our results link song complexity to environmental variability, something previously found for mockingbirds (Family Mimidae). Perhaps more importantly, our results illustrate that individual variation in song traits may be shaped by both environmental variability and strength of sexual selection.
Identifying causal linkages between environmental variables and African conflicts
NASA Astrophysics Data System (ADS)
Nguy-Robertson, A. L.; Dartevelle, S.
2017-12-01
Environmental variables that contribute to droughts, flooding, and other natural hazards are often identified as factors contributing to conflict; however, few studies attempt to quantify these causal linkages. Recent research has demonstrated that the environment operates within a dynamical system framework and the influence of variables can be identified from convergent cross mapping (CCM) between shadow manifolds. We propose to use CCM to identify causal linkages between environmental variables and incidences of conflict. This study utilizes time series data from Climate Forecast System ver. 2 and MODIS satellite sensors processed using Google Earth Engine to aggregate country and regional trends. These variables are then compared to Armed Conflict Location & Event Data Project observations at similar scales. Results provide relative rankings of variables and their linkage to conflict. Being able to identify which factors contributed more strongly to a conflict can allow policy makers to prepare solutions to mitigate future crises. Knowledge of the primary environmental factors can lead to the identification of other variables to examine in the causal network influencing conflict.
W. Henry McNab; F. Thomas Lloyd
2001-01-01
The value of environmental variables as measures of site quality for individual tree growth models was determined for 12 common species of eastern hardwoods in the Southern Appalachian Mountains. Periodic diameter increment was modeled as a function of size, competition and environmental variables for 1,381 trees in even-aged stands of mixed-species. Resulting species...
Environmental Respect: A New Approach to Outdoor Education.
ERIC Educational Resources Information Center
Huck, Albert R.; Decker, Eugene
Most outdoor education programs do not include the teaching of correct outdoor behavior. The purpose of this manual is to assist educators and concerned lay persons in establishing an outdoor education program with an instructional strategy that will manipulate students into becoming responsible, ethical, respectful outdoor citizens. Both lay…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-11
... within the Preserve to support cattle grazing operations and game populations. Human manipulation of... water for the same purposes. There also existed 133 small game wildlife water developments (also known as ``guzzlers'' or ``drinkers''), and 6 big game guzzlers, which intercept and store rainwater for...
Geographic Information Systems as Applied to the Manipulation of Environmental Data.
ERIC Educational Resources Information Center
Hill, J. M.; And Others
1983-01-01
Discusses two aspects of a Geographic Information System (GIS), a computerized system for processing geographic and/or mapped data and components/implementation of a GIS and GIS demonstration in natural resources management. Demonstrations related to lignite mining permit requirements in coastal zone, and location of potential landfills/hazardous…
The Importance of Production: An Expanding Focus in Secondary and Tertiary Science Instruction.
ERIC Educational Resources Information Center
Seale, T. S.
1983-01-01
Encourages science educators to consider engaging students in science projects resulting in socially useful products. Educational presentations meant to perform social functions (soft products) and preparation/execution of environmental manipulations (hard products) such as pollution analysis, plant breeding, or administering medical tests are…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Information is presented under the following section headings: introduction; user guide; information sources; recent releases; and, literature review. The literature reviewed includes abstracts when available on the following subjects: general; geology; environmental quality; hydrology; vegetation; oceanography; regional planning and land use; data manipulation; and instrumentation and technology. An author index and document order form are included. (JGB)
Hands on or hands off? Disgust sensitivity and preference for environmental education activities
Robert D. Bixler; Myron F. Floyd
1999-01-01
Detailed descriptions of barriers to enviromuental education (EE) can provide opportunities for educators to foresee potential problems in programs. High disgust sensitivity is an intrapersonal barrier that constrains preference for learning opportunities involving manipulation of some organic materials. Middle school students in Texas (N = 450)...
Environmental management: a re-emerging vector control strategy.
Ault, S K
1994-01-01
Vector control may be accomplished by environmental management (EM), which consists of permanent or long-term modification of the environment, temporary or seasonal manipulation of the environment, and modifying or changing our life styles and practices to reduce human contact with infective vectors. The primary focus of this paper is EM in the control of human malaria, filariasis, arboviruses, Chagas' disease, and schistosomiasis. Modern EM developed as a discipline based primarily in ecologic principles and lessons learned from the adverse environmental impacts of rural development projects. Strategies such as the suppression of vector populations through the provision of safe water supplies, proper sanitation, solid waste management facilities, sewerage and excreta disposal systems, water manipulation in dams and irrigation systems, vector diversion by zooprophylaxis, and vector exclusion by improved housing, are discussed with appropriate examples. Vectors of malaria, filariasis, Chagas' disease, and schistosomiasis have been controlled by drainage or filling aquatic breeding sites, improved housing and sanitation, the use of expanded polystyrene beads, zooprophylaxis, or the provision of household water supplies. Community participation has been effective in the suppression of dengue vectors in Mexico and the Dominican Republic. Alone or combined with other vector control methods, EM has been proven to be a successful approach to vector control in a number of places. The future of EM in vector control looks promising.
Water Rockets and Indirect Measurement.
ERIC Educational Resources Information Center
Inman, Duane
1997-01-01
Describes an activity that teaches a number of scientific concepts including indirect measurement, Newton's third law of motion, manipulating and controlling variables, and the scientific method of inquiry. Uses process skills such as observation, inference, prediction, mensuration, and communication as well as problem solving and higher-order…
Making Rounds with Dr. Semmelweis.
ERIC Educational Resources Information Center
Hunt, Patrick N.
1984-01-01
Describes a minicourse on experimental hypotheses. The courses which treats the investigative nature of biology as a major theme, teaches nonrigorous problem-solving and engenders the excitement of self-discovery. Manipulation of variables in relation to controls, the principles of deduction and induction, and their application to selected…
Multiplayer Activities That Develop Mathematical Coordination.
ERIC Educational Resources Information Center
Bricker, Lauren J.; Tanimoto, Steven L.; Rothenberg, Alex I.; Hutama, Danny C.; Wong, Tina H.
Four computer applications are presented that encourage students to develop "mathematical coordination"--the ability to manipulate numerical variables in cooperation with other students so as to achieve a definite goal. The programs enable a form of computer-supported cooperative learning (CSCL). This paper describes the rationale and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
This report proposes a method for resolving the kinematic redundancy of a serial link manipulator moving in a three-dimensional workspace. The underspecified problem of solving for the joint velocities based on the classical kinematic velocity model is transformed into a well-specified problem. This is accomplished by augmenting the original model with additional equations which relate a new vector variable quantifying the redundant degrees of freedom (DOF) to the joint velocities. The resulting augmented system yields a well specified solution for the joint velocities. Methods for selecting the redundant DOF quantifying variable and the transformation matrix relating it to the jointmore » velocities are presented so as to obtain a minimum Euclidean norm solution for the joint velocities. The approach is also applied to the problem of resolving the kinematic redundancy at the acceleration level. Upon resolving the kinematic redundancy, a rigid body dynamical model governing the gross motion of the manipulator is derived. A control architecture is suggested which according to the model, decouples the Cartesian space DOF and the redundant DOF.« less
Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P
2016-05-01
Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Altered vision destabilizes gait in older persons.
Helbostad, Jorunn L; Vereijken, Beatrix; Hesseberg, Karin; Sletvold, Olav
2009-08-01
This study assessed the effects of dim light and four experimentally induced changes in vision on gait speed and footfall and trunk parameters in older persons walking on level ground. Using a quasi-experimental design, gait characteristics were assessed in full light, dim light, and in dim light combined with manipulations resulting in reduced depth vision, double vision, blurred vision, and tunnel vision, respectively. A convenience sample of 24 home-dwelling older women and men (mean age 78.5 years, SD 3.4) with normal vision for their age and able to walk at least 10 m without assistance participated. Outcome measures were gait speed and spatial and temporal parameters of footfall and trunk acceleration, derived from an electronic gait mat and accelerometers. Dim light alone had no effect. Vision manipulations combined with dim light had effect on most footfall parameters but few trunk parameters. The largest effects were found regarding double and tunnel vision. Men increased and women decreased gait speed following manipulations (p=0.017), with gender differences also in stride velocity variability (p=0.017) and inter-stride medio-lateral trunk acceleration variability (p=0.014). Gender effects were related to differences in body height and physical functioning. Results indicate that visual problems lead to a more cautious and unstable gait pattern even under relatively simple conditions. This points to the importance of assessing vision in older persons and correcting visual impairments where possible.
THE ROLE OF INDIVIDUAL VARIABILITY IN POPULATION DYNAMICS UNDER CHANGING ENVIRONMENTAL CONDITIONS
Environmental variability can influence species distributions through changes in
survival, fecundity, behavior, and metabolic activities. As worldwide coastal populations rise, the associated deforestation and development can increase both quantities and variability in runoff...
Andersen, M; Magan, N; Mead, A; Chandler, D
2006-09-01
Entomopathogenic fungi are being used as biocontrol agents of insect pests, but their efficacy can be poor in environments where water availability is reduced. In this study, the potential to improve biocontrol by physiologically manipulating fungal inoculum was investigated. Cultures of Beauveria bassiana, Lecanicillium muscarium, Lecanicillium longisporum, Metarhizium anisopliae and Paecilomyces fumosoroseus were manipulated by growing them under conditions of water stress, which produced conidia with increased concentrations of erythritol. The time-course of germination of conidia at different water activities (water activity, aw) was described using a generalized linear model, and in most cases reducing the water activity of the germination medium delayed the onset of germination without affecting the distribution of germination times. The germination of M. anisopliae, L. muscarium, L. longisporum and P. fumosoroseus was accelerated over a range of aw levels as a result of physiological manipulation. However, the relationship between the effect of physiological manipulation on germination and the osmolyte content of conidia varied according to fungal species. There was a linear relationship between germination rate, expressed as the reciprocal of germination time, and aw of the germination medium, but there was no significant effect of fungal species or physiological manipulation on the aw threshold for germination. In bioassays with M. anisopliae, physiologically manipulated conidia germinated more rapidly on the surface of an insect host, the melon cotton aphid Aphis gossypii, and fungal virulence was increased even when relative humidity was reduced after an initial high period. It is concluded that physiological manipulation may lead to improvements in biocontrol in the field, but choice of fungal species/isolate will be critical. In addition, the population-based threshold model used in this study, which considered germination in terms of physiological time, also called hydrotime, could have general application in mycology and environmental microbiology.
Experimental evidence for drought induced alternative stable states of soil moisture
NASA Astrophysics Data System (ADS)
Robinson, David. A.; Jones, Scott B.; Lebron, Inma; Reinsch, Sabine; Domínguez, María T.; Smith, Andrew R.; Jones, Davey L.; Marshall, Miles R.; Emmett, Bridget A.
2016-01-01
Ecosystems may exhibit alternative stable states (ASS) in response to environmental change. Modelling and observational data broadly support the theory of ASS, however evidence from manipulation experiments supporting this theory is limited. Here, we provide long-term manipulation and observation data supporting the existence of drought induced alternative stable soil moisture states (irreversible soil wetting) in upland Atlantic heath, dominated by Calluna vulgaris (L.) Hull. Manipulated repeated moderate summer drought, and intense natural summer drought both lowered resilience resulting in shifts in soil moisture dynamics. The repeated moderate summer drought decreased winter soil moisture retention by ~10%. However, intense summer drought, superimposed on the experiment, that began in 2003 and peaked in 2005 caused an unexpected erosion of resilience and a shift to an ASS; both for the experimental drought manipulation and control plots, impairing the soil from rewetting in winter. Measurements outside plots, with vegetation removal, showed no evidence of moisture shifts. Further independent evidence supports our findings from historical soil moisture monitoring at a long-term upland hydrological observatory. The results herald the need for a new paradigm regarding our understanding of soil structure, hydraulics and climate interaction.
Experimental evidence for drought induced alternative stable states of soil moisture
Robinson, David. A.; Jones, Scott B.; Lebron, Inma; Reinsch, Sabine; Domínguez, María T.; Smith, Andrew R.; Jones, Davey L.; Marshall, Miles R.; Emmett, Bridget A.
2016-01-01
Ecosystems may exhibit alternative stable states (ASS) in response to environmental change. Modelling and observational data broadly support the theory of ASS, however evidence from manipulation experiments supporting this theory is limited. Here, we provide long-term manipulation and observation data supporting the existence of drought induced alternative stable soil moisture states (irreversible soil wetting) in upland Atlantic heath, dominated by Calluna vulgaris (L.) Hull. Manipulated repeated moderate summer drought, and intense natural summer drought both lowered resilience resulting in shifts in soil moisture dynamics. The repeated moderate summer drought decreased winter soil moisture retention by ~10%. However, intense summer drought, superimposed on the experiment, that began in 2003 and peaked in 2005 caused an unexpected erosion of resilience and a shift to an ASS; both for the experimental drought manipulation and control plots, impairing the soil from rewetting in winter. Measurements outside plots, with vegetation removal, showed no evidence of moisture shifts. Further independent evidence supports our findings from historical soil moisture monitoring at a long-term upland hydrological observatory. The results herald the need for a new paradigm regarding our understanding of soil structure, hydraulics and climate interaction. PMID:26804897
NASA Astrophysics Data System (ADS)
Rosa, S.; Pansera, M.; Granata, A.; Guglielmo, L.
2013-02-01
To identify some of the possible environmental factors stimulating the increasingly frequent outbreaks of the scyphomedusa Pelagia noctiluca in the Straits of Messina, we investigated its abundance, growth, reproduction and feeding over a 4-year period, from 2007 to 2011, at two coastal sites. Using either field investigations and manipulative experiments we show that, among the various factors considered, shifts in water temperature (influencing medusae metabolism, growth and reproduction rates) and the size structure of the zooplankton community (their natural preys) can promote the proliferation of P. noctiluca. In particular, we show that increased temperature let jellyfishes to grow more rapidly and reach exceptional sizes. We also report a peculiar opportunistic behavior of P. noctiluca, which makes this species a potentially strong competitor in the pelagic trophic web of the Straits ecosystem. We therefore propose that more frequent P. noctiluca outbreaks stimulated by increasing sea surface temperature and shifts in their prey availability and composition would become, in the near future, a major cause of ecosystem shift.
Should modulation of p50 be a therapeutic target in the critically ill?
Srinivasan, Amudan J; Morkane, Clare; Martin, Daniel S; Welsby, Ian J
2017-05-01
A defining feature of human hemoglobin is its oxygen binding affinity, quantified by the partial pressure of oxygen at which hemoglobin is 50% saturated (p50), and the variability of this parameter over a range of physiological and environmental states. Modulation of this property of hemoglobin can directly affect the degree of peripheral oxygen offloading and tissue oxygenation. Areas covered: This review summarizes the role of hemoglobin oxygen affinity in normal and abnormal physiology and discusses the current state of the literature regarding artificial modulation of p50. Hypoxic tumors, sickle cell disease, heart failure, and transfusion medicine are discussed in the context of recent advances in hemoglobin oxygen affinity manipulation. Expert commentary: Of particular clinical interest is the possibility of maintaining adequate end-organ oxygen availability in patients with anemia or compromised cardiac function via an increase in systemic p50. This increase in systemic p50 can be achieved with small molecule drugs or a packed red blood cell unit processing variant called rejuvenation, and human trials are needed to better understand the potential clinical benefits to modulating p50.
Determining significant endpoints for ecological risk analyses. 1997 annual progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinton, T.G.; Congdon, J.; Rowe, C.
1997-11-01
'This report summarizes the first year''s progress of research funded under the Department of Energy''s Environmental Management Science Program. The research was initiated to better determine ecological risks from toxic and radioactive contaminants. More precisely, the research is designed to determine the relevancy of sublethal cellular damage to the performance of individuals and to identify characteristics of non-human populations exposed to chronic, low-level radiation, as is typically found on many DOE sites. The authors propose to establish a protocol to assess risks to non-human species at higher levels of biological organization by relating molecular damage to more relevant responses thatmore » reflect population health. They think that they can achieve this by coupling changes in metabolic rates and energy allocation patterns to meaningful population response variables, and by using novel biological dosimeters in controlled, manipulative dose/effects experiments. They believe that a scientifically defensible endpoint for measuring ecological risks can only be determined once its understood the extent to which molecular damage from contaminant exposure is detrimental at the individual and population levels of biological organization.'« less
Why and How We Age, and Is That Process Modifiable?
NASA Astrophysics Data System (ADS)
Arking, R.
Aging is an almost-universal biological process that is better understood in terms of an evolutionary explanation than in terms of a medical or adaptationist explanation. The major advances in human longevity which took place in developed countries during the past century arose from decreases in external (e.g., environmental) sources of mortality, and not from any effect on the aging process. Laboratory studies show that the aging process is under genetic control, can be manipulated, and can be expressed in three different phenotypes. The adult lifespan consists of the health span (ages 20-55 yrs) and the senescent span (ages 55+), with a relatively short but variable transition phase between the two. The most socially desirable phenotype would be that where the transition phase is delayed and the health span extended with little effect on the senescent span. The genetic, nutritional, cell-signaling and pharmecutical interventions inducing this phenotype are discussed. The genetic architecture of senescence is discussed and its stochastic nature made clear. The social and ethical consequences of pharmecutical intervention into the aging process are briefly discussed.
1999-01-01
This article reports on the PEDA (population changes, environment, socioeconomic development and agriculture) model and its implication for policy-making in Africa. PEDA is an interactive computer simulation model (developed for a Windows environment) demonstrating the long-term impacts of alternative national policies on food security status of the population. The model is based on multistate demographic techniques, projecting at the same time 8 different subgroups (by age and sex) in the population, and based on 3 dichotomous individual characteristics: urban/rural place of residence; literacy status; and food security status. Through the manipulation of scenario variables, the model enables the user to project the proportion of the population that will be food secure and food insecure for a chosen point in time. This model developed by Dr. W. Lutz, Director of the International Institute for Applied Systems Analysis, will serve as an advocacy tool to help convince policy-makers and country experts in Africa of the negative synergy arising from the interconnections of population growth, environmental deterioration, and declining agricultural production.
Oliveira-Campelo, Natalia M; Rubens-Rebelatto, José; Martí N-Vallejo, Francisco J; Alburquerque-Sendí N, Francisco; Fernández-de-Las-Peñas, César
2010-05-01
A randomized controlled trial. To investigate the immediate effects on pressure pain thresholds over latent trigger points (TrPs) in the masseter and temporalis muscles and active mouth opening following atlanto-occipital joint thrust manipulation or a soft tissue manual intervention targeted to the suboccipital muscles. Previous studies have described hypoalgesic effects of neck manipulative interventions over TrPs in the cervical musculature. There is a lack of studies analyzing these mechanisms over TrPs of muscles innervated by the trigeminal nerve. One hundred twenty-two volunteers, 31 men and 91 women, between the ages of 18 and 30 years, with latent TrPs in the masseter muscle, were randomly divided into 3 groups: a manipulative group who received an atlanto-occipital joint thrust, a soft tissue group who received an inhibition technique over the suboccipital muscles, and a control group who did not receive an intervention. Pressure pain thresholds over latent TrPs in the masseter and temporalis muscles, and active mouth opening were assessed pretreatment and 2 minutes posttreatment by a blinded assessor. Mixed-model analyses of variance (ANOVA) were used to examine the effects of interventions on each outcome, with group as the between-subjects variable and time as the within-subjects variable. The primary analysis was the group-by-time interaction. The 2-by-3 mixed-model ANOVA revealed a significant group-by-time interaction for changes in pressure pain thresholds over masseter (P<.01) and temporalis (P = .003) muscle latent TrPs and also for active mouth opening (P<.001) in favor of the manipulative and soft tissue groups. Between-group effect sizes were small. The application of an atlanto-occipital thrust manipulation or soft tissue technique targeted to the suboccipital muscles led to an immediate increase in pressure pain thresholds over latent TrPs in the masseter and temporalis muscles and an increase in maximum active mouth opening. Nevertheless, the effects of both interventions were small and future studies are required to elucidate the clinical relevance of these changes. Therapy, level 1b.J Orthop Sports Phys Ther 2010;40(5):310-317, Epub 12 April 2010. doi:10.2519/jospt.2010.3257.
Liébanas, G.; Guerrero, P.; Martín-García, J.-M.; Peña-Santiago, R.
2004-01-01
The aim of this study was to determine the incidence of 18 environmental variables in the spatial distribution of 30 chorotypes (species groups with significantly similar distribution patterns) of dorylaimid and mononchid nematodes by means of logistic regression in a natural area in the southeastern Iberian Peninsula. Six variables (elevation, color chroma, clay content, nitrogen content, CaCO₃, and plant community associated) were the most important environmental factors that helped explain the distribution of chorotypes. The distribution of most chorotypes was characterized by some (one to three) environmental variables; only two chorotypes were characterized by five or more variables, and four have not been characterized. PMID:19262795
Macrì, Simone
2017-02-01
Neonatal experiences exert persistent influences on individual development. These influences encompass numerous domains including emotion, cognition, reactivity to external stressors and immunity. The comprehensive nature of the neonatal programming of individual phenotype is reverberated in the large amount of experimental data collected by many authors in several scientific fields: biomedicine, evolutionary and molecular biology. These data support the view that variations in precocious environmental conditions may calibrate the individual phenotype at many different levels. Environmental influences have been traditionally addressed through experimental paradigms entailing the modification of the neonatal environment and the multifactorial (e.g. behaviour, endocrinology, cellular and molecular biology) analysis of the developing individual's phenotype. These protocols suggested that the role of the mother in mediating the offspring's phenotype is often associated with the short-term effects of environmental manipulations on dam's physiology. Specifically, environmental manipulations may induce fluctuations in maternal corticosteroids (corticosterone in rodents) which, in turn, are translated to the offspring through lactation. Herein, I propose that this mother-offspring transfer mechanism can be leveraged to devise experimental protocols based on the exogenous administration of corticosterone during lactation. To support this proposition, I refer to a series of studies in which these protocols have been adopted to investigate the neonatal programming of individual phenotype at the level of emotional and immune regulations. While these paradigms cannot replace traditional studies, I suggest that they can be considered a valid complement.
Muller, Benjamin J.; Cade, Brian S.; Schwarzkoph, Lin
2018-01-01
Many different factors influence animal activity. Often, the value of an environmental variable may influence significantly the upper or lower tails of the activity distribution. For describing relationships with heterogeneous boundaries, quantile regressions predict a quantile of the conditional distribution of the dependent variable. A quantile count model extends linear quantile regression methods to discrete response variables, and is useful if activity is quantified by trapping, where there may be many tied (equal) values in the activity distribution, over a small range of discrete values. Additionally, different environmental variables in combination may have synergistic or antagonistic effects on activity, so examining their effects together, in a modeling framework, is a useful approach. Thus, model selection on quantile counts can be used to determine the relative importance of different variables in determining activity, across the entire distribution of capture results. We conducted model selection on quantile count models to describe the factors affecting activity (numbers of captures) of cane toads (Rhinella marina) in response to several environmental variables (humidity, temperature, rainfall, wind speed, and moon luminosity) over eleven months of trapping. Environmental effects on activity are understudied in this pest animal. In the dry season, model selection on quantile count models suggested that rainfall positively affected activity, especially near the lower tails of the activity distribution. In the wet season, wind speed limited activity near the maximum of the distribution, while minimum activity increased with minimum temperature. This statistical methodology allowed us to explore, in depth, how environmental factors influenced activity across the entire distribution, and is applicable to any survey or trapping regime, in which environmental variables affect activity.
3D display for enhanced tele-operation and other applications
NASA Astrophysics Data System (ADS)
Edmondson, Richard; Pezzaniti, J. Larry; Vaden, Justin; Hyatt, Brian; Morris, James; Chenault, David; Bodenhamer, Andrew; Pettijohn, Bradley; Tchon, Joe; Barnidge, Tracy; Kaufman, Seth; Kingston, David; Newell, Scott
2010-04-01
In this paper, we report on the use of a 3D vision field upgrade kit for TALON robot consisting of a replacement flat panel stereoscopic display, and multiple stereo camera systems. An assessment of the system's use for robotic driving, manipulation, and surveillance operations was conducted. A replacement display, replacement mast camera with zoom, auto-focus, and variable convergence, and a replacement gripper camera with fixed focus and zoom comprise the upgrade kit. The stereo mast camera allows for improved driving and situational awareness as well as scene survey. The stereo gripper camera allows for improved manipulation in typical TALON missions.
NASA Astrophysics Data System (ADS)
Beer, Christian; Porada, Philipp; Ekici, Altug; Brakebusch, Matthias
2018-03-01
Effects of the short-term temporal variability of meteorological variables on soil temperature in northern high-latitude regions have been investigated. For this, a process-oriented land surface model has been driven using an artificially manipulated climate dataset. Short-term climate variability mainly impacts snow depth, and the thermal diffusivity of lichens and bryophytes. These impacts of climate variability on insulating surface layers together substantially alter the heat exchange between atmosphere and soil. As a result, soil temperature is 0.1 to 0.8 °C higher when climate variability is reduced. Earth system models project warming of the Arctic region but also increasing variability of meteorological variables and more often extreme meteorological events. Therefore, our results show that projected future increases in permafrost temperature and active-layer thickness in response to climate change will be lower (i) when taking into account future changes in short-term variability of meteorological variables and (ii) when representing dynamic snow and lichen and bryophyte functions in land surface models.
Lee, Mark A; Manning, Pete; Walker, Catherine S; Power, Sally A
2014-12-01
Grasslands provide many ecosystem services including carbon storage, biodiversity preservation and livestock forage production. These ecosystem services will change in the future in response to multiple global environmental changes, including climate change and increased nitrogen inputs. We conducted an experimental study over 3 years in a mesotrophic grassland ecosystem in southern England. We aimed to expose plots to rainfall manipulation that simulated IPCC 4th Assessment projections for 2100 (+15% winter rainfall and -30% summer rainfall) or ambient climate, achieving +15% winter rainfall and -39% summer rainfall in rainfall-manipulated plots. Nitrogen (40 kg ha(-1) year(-1)) was also added to half of the experimental plots in factorial combination. Plant species composition and above ground biomass were not affected by rainfall in the first 2 years and the plant community did not respond to nitrogen enrichment throughout the experiment. In the third year, above-ground plant biomass declined in rainfall-manipulated plots, driven by a decline in the abundances of grass species characteristic of moist soils. Declining plant biomass was also associated with changes to arthropod communities, with lower abundances of plant-feeding Auchenorrhyncha and carnivorous Araneae indicating multi-trophic responses to rainfall manipulation. Plant and arthropod community composition and plant biomass responses to rainfall manipulation were not modified by nitrogen enrichment, which was not expected, but may have resulted from prior nitrogen saturation and/or phosphorus limitation. Overall, our study demonstrates that climate change may in future influence plant productivity and induce multi-trophic responses in grasslands.
Dietary vitamin K guidance: an effective strategy for stable control of oral anticoagulation?
USDA-ARS?s Scientific Manuscript database
Numerous factors have been identified as risk factors for instability of oral anticoagulation, including variability in vitamin K intake. However few studies have directly tested the feasibility of manipulating dietary vitamin K to achieve stable oral anticoagulation. Recent findings from a rando...
Manipulation of Cognitive Load Variables and Impact on Auscultation Test Performance
ERIC Educational Resources Information Center
Chen, Ruth; Grierson, Lawrence; Norman, Geoffrey
2015-01-01
Health profession educators have identified auscultation skill as a learning need for health professional students. This article explores the application of cognitive load theory (CLT) to designing cardiac and respiratory auscultation skill instruction for senior-level undergraduate nursing students. Three experiments assessed student auscultation…
Motivation Interventions in Education: A Meta-Analytic Review
ERIC Educational Resources Information Center
Lazowski, Rory A.; Hulleman, Chris S.
2016-01-01
This meta-analysis provides an extensive and organized summary of intervention studies in education that are grounded in motivation theory. We identified 74 published and unpublished papers that experimentally manipulated an independent variable and measured an authentic educational outcome within an ecologically valid educational context. Our…
Reinforcement, Behavior Constraint, and the Overjustification Effect.
ERIC Educational Resources Information Center
Williams, Bruce W.
1980-01-01
Four levels of the behavior constraint-reinforcement variable were manipulated: attractive reward, unattractive reward, request to perform, and a no-reward control. Only the unattractive reward and request groups showed the performance decrements that suggest the overjustification effect. It is concluded that reinforcement does not cause the…
The Case for Open Source Software: The Interactional Discourse Lab
ERIC Educational Resources Information Center
Choi, Seongsook
2016-01-01
Computational techniques and software applications for the quantitative content analysis of texts are now well established, and many qualitative data software applications enable the manipulation of input variables and the visualization of complex relations between them via interactive and informative graphical interfaces. Although advances in…
Thakur, Madhav Prakash; Milcu, Alexandru; Manning, Pete; Niklaus, Pascal A; Roscher, Christiane; Power, Sally; Reich, Peter B; Scheu, Stefan; Tilman, David; Ai, Fuxun; Guo, Hongyan; Ji, Rong; Pierce, Sarah; Ramirez, Nathaly Guerrero; Richter, Annabell Nicola; Steinauer, Katja; Strecker, Tanja; Vogel, Anja; Eisenhauer, Nico
2015-11-01
Soil microbial biomass is a key determinant of carbon dynamics in the soil. Several studies have shown that soil microbial biomass significantly increases with plant species diversity, but it remains unclear whether plant species diversity can also stabilize soil microbial biomass in a changing environment. This question is particularly relevant as many global environmental change (GEC) factors, such as drought and nutrient enrichment, have been shown to reduce soil microbial biomass. Experiments with orthogonal manipulations of plant diversity and GEC factors can provide insights whether plant diversity can attenuate such detrimental effects on soil microbial biomass. Here, we present the analysis of 12 different studies with 14 unique orthogonal plant diversity × GEC manipulations in grasslands, where plant diversity and at least one GEC factor (elevated CO2 , nutrient enrichment, drought, earthworm presence, or warming) were manipulated. Our results show that higher plant diversity significantly enhances soil microbial biomass with the strongest effects in long-term field experiments. In contrast, GEC factors had inconsistent effects with only drought having a significant negative effect. Importantly, we report consistent non-significant effects for all 14 interactions between plant diversity and GEC factors, which indicates a limited potential of plant diversity to attenuate the effects of GEC factors on soil microbial biomass. We highlight that plant diversity is a major determinant of soil microbial biomass in experimental grasslands that can influence soil carbon dynamics irrespective of GEC. © 2015 John Wiley & Sons Ltd.
Sparse modeling of spatial environmental variables associated with asthma
Chang, Timothy S.; Gangnon, Ronald E.; Page, C. David; Buckingham, William R.; Tandias, Aman; Cowan, Kelly J.; Tomasallo, Carrie D.; Arndt, Brian G.; Hanrahan, Lawrence P.; Guilbert, Theresa W.
2014-01-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s home address was geocoded to one of 3,456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin’s geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. PMID:25533437
Sparse modeling of spatial environmental variables associated with asthma.
Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W
2015-02-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Jinliang; Qian, Hong; Jin, Yi; Wu, Chuping; Chen, Jianhua; Yu, Shuquan; Wei, Xinliang; Jin, Xiaofeng; Liu, Jiajia; Yu, Mingjian
2016-10-01
Understanding the relative importance of dispersal limitation and environmental filtering processes in structuring the beta diversities of subtropical forests in human disturbed landscapes is still limited. Here we used taxonomic (TBD) and phylogenetic (PBD), including terminal PBD (PBDt) and basal PBD (PBDb), beta diversity indices to quantify the taxonomic and phylogenetic turnovers at different depths of evolutionary history in disturbed and undisturbed subtropical forests. Multiple linear regression model and distance-based redundancy analysis were used to disentangle the relative importance of environmental and spatial variables. Environmental variables were significantly correlated with TBD and PBDt metrics. Temperature and precipitation were major environmental drivers of beta diversity patterns, which explained 7-27% of the variance in TBD and PBDt, whereas the spatial variables independently explained less than 1% of the variation for all forests. The relative importance of environmental and spatial variables differed between disturbed and undisturbed forests (e.g., when Bray-Curtis was used as a beta diversity metric, environmental variable had a significant effect on beta diversity for disturbed forests but had no effect on undisturbed forests). We conclude that environmental filtering plays a more important role than geographical limitation and disturbance history in driving taxonomic and terminal phylogenetic beta diversity.
Liu, Jinliang; Qian, Hong; Jin, Yi; Wu, Chuping; Chen, Jianhua; Yu, Shuquan; Wei, Xinliang; Jin, Xiaofeng; Liu, Jiajia; Yu, Mingjian
2016-01-01
Understanding the relative importance of dispersal limitation and environmental filtering processes in structuring the beta diversities of subtropical forests in human disturbed landscapes is still limited. Here we used taxonomic (TBD) and phylogenetic (PBD), including terminal PBD (PBDt) and basal PBD (PBDb), beta diversity indices to quantify the taxonomic and phylogenetic turnovers at different depths of evolutionary history in disturbed and undisturbed subtropical forests. Multiple linear regression model and distance-based redundancy analysis were used to disentangle the relative importance of environmental and spatial variables. Environmental variables were significantly correlated with TBD and PBDt metrics. Temperature and precipitation were major environmental drivers of beta diversity patterns, which explained 7–27% of the variance in TBD and PBDt, whereas the spatial variables independently explained less than 1% of the variation for all forests. The relative importance of environmental and spatial variables differed between disturbed and undisturbed forests (e.g., when Bray-Curtis was used as a beta diversity metric, environmental variable had a significant effect on beta diversity for disturbed forests but had no effect on undisturbed forests). We conclude that environmental filtering plays a more important role than geographical limitation and disturbance history in driving taxonomic and terminal phylogenetic beta diversity. PMID:27775021
Task conflict and proactive control: A computational theory of the Stroop task.
Kalanthroff, Eyal; Davelaar, Eddy J; Henik, Avishai; Goldfarb, Liat; Usher, Marius
2018-01-01
The Stroop task is a central experimental paradigm used to probe cognitive control by measuring the ability of participants to selectively attend to task-relevant information and inhibit automatic task-irrelevant responses. Research has revealed variability in both experimental manipulations and individual differences. Here, we focus on a particular source of Stroop variability, the reverse-facilitation (RF; faster responses to nonword neutral stimuli than to congruent stimuli), which has recently been suggested as a signature of task conflict. We first review the literature that shows RF variability in the Stroop task, both with regard to experimental manipulations and to individual differences. We suggest that task conflict variability can be understood as resulting from the degree of proactive control that subjects recruit in advance of the Stroop stimulus. When the proactive control is high, task conflict does not arise (or is resolved very quickly), resulting in regular Stroop facilitation. When proactive control is low, task conflict emerges, leading to a slow-down in congruent and incongruent (but not in neutral) trials and thus to Stroop RF. To support this suggestion, we present a computational model of the Stroop task, which includes the resolution of task conflict and its modulation by proactive control. Results show that our model (a) accounts for the variability in Stroop-RF reported in the experimental literature, and (b) solves a challenge to previous Stroop models-their ability to account for reaction time distributional properties. Finally, we discuss theoretical implications to Stroop measures and control deficits observed in some psychopathologies. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Lieberman, Harris R.; Kramer, F. Matthew; Montain, Scott J.; Niro, Philip; Young, Andrew J.
2005-05-01
Until recently scientists had limited opportunities to study human cognitive performance in non-laboratory, fully ambulatory situations. Recently, advances in technology have made it possible to extend behavioral assessment to the field environment. One of the first devices to measure human behavior in the field was the wrist-worn actigraph. This device, now widely employed, can acquire minute-by-minute information on an individual"s level of motor activity. Actigraphs can, with reasonable accuracy, distinguish sleep from waking, the most critical and basic aspect of human behavior. However, rapid technologic advances have provided the opportunity to collect much more information from fully ambulatory humans. Our laboratory has developed a series of wrist-worn devices, which are not much larger then a watch, which can assess simple and choice reaction time, vigilance and memory. In addition, the devices can concurrently assess motor activity with much greater temporal resolution then the standard actigraph. Furthermore, they continuously monitor multiple environmental variables including temperature, humidity, sound and light. We have employed these monitors during training and simulated military operations to collect information that would typically be unavailable under such circumstances. In this paper we will describe various versions of the vigilance monitor and how each successive version extended the capabilities of the device. Samples of data from several studies are presented, included studies conducted in harsh field environments during simulated infantry assaults, a Marine Corps Officer training course and mechanized infantry (Stryker) operations. The monitors have been useful for documenting environmental conditions experienced by wearers, studying patterns of sleep and activity and examining the effects of nutritional manipulations on warfighter performance.
Auld, J R; Helker, A D; Kolpas, A
2016-12-01
Senescence is not a static property of an individual or population, but rather it is a dynamic process that may be influenced by environmental conditions. This can occur in at least two ways: in the long-term across multiple generations, and in the short-term via phenotypic plasticity. The former has attracted a lot of attention, both theoretically and empirically; the latter has lagged behind. To determine whether two important environmental variables (predation risk and mate availability) affect the pattern of actuarial senescence (i.e. the increase in mortality with age), we reared 30 full-sib families of the simultaneously hermaphroditic freshwater snail Physa acuta under four different environmental conditions and tracked individuals until death. Individuals were reared in a 2×2 factorial experiment that manipulated the nonlethal presence of chemical cues from predatory crayfish (presence/absence) and the opportunity to mate with an unrelated partner (mated/not mated). Snails that receive a partner reproduce by outcrossing, whereas those that remain in isolation can reproduce by self-fertilization. We compared the cumulative survival curves to test for an effect of predation risk and mating. The hazard ratio (HR) for the predation risk comparison was 1.042 indicating no significant difference between the curves. However, the HR for the mating comparison was 4.021, reflecting a significant reduction in survival probability for mated snails relative to isolated snails. As such, mating resulted in a much shorter lifespan, an outcome that we interpret in terms of shifting resource allocation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
A Theoretical Approach for Selecting Elementary School Environmental Variables.
ERIC Educational Resources Information Center
Sinclair, Robert L.
To determine specific environmental variables of the elementary school is the purpose of this study. Stable characteristics of intelligence and achievement were selected because they were considered useful for generating salient environmental counterparts likely to exist in elementary institutions. Achievement motivation, language development, and…
Hanney, William J; Puentedura, Emilio J; Kolber, Morey J; Liu, Xinliang; Pabian, Patrick S; Cheatham, Scott W
2017-09-22
Myofascial pain is a common impairment treated with various manual interventions including spinal thrust manipulation and stretching; however, the comparative efficacy of each intervention is uncertain. Therefore, the purpose of this investigation was to evaluate thrust manipulation targeting the cervicothoracic junction compared to a manual stretch of the upper trapezius muscle on cervical range of motion and upper trapezius pressure pain thresholds (PPTs). Healthy participants with no significant history of neck pain were randomized into a thrust manipulation group, a stretching group, or a control group. Within group differences were evaluated via a dependent t-test, and group by time interactions were evaluated by a two-way repeated measures ANOVA. One hundred and two participants were recruited to participate. Baseline demographics revealed no significant differences between groups. Significant group by time interactions were found for changes in PPTs for both the right and left upper trapezius. Also, significant differences were found for changes in cervical extension, as well as right and left cervical side bending favoring the treatment groups. This study demonstrates the potential independent effectiveness of spinal thrust manipulation or stretching for reducing PPTs at the upper trapezius. Future research should further evaluate the limitation of PPTs as a measure of muscle sensitivity as well as factors that may contribute to variability in the measurements among individuals seeking care.
Using Simple Environmental Variables to Estimate Biomass Disturbance
2014-08-01
ER D C/ CE RL T R- 14 -1 3 Optimal Allocation of Land for Training and Non-Training Uses ( OPAL ) Using Simple Environmental Variables to...Uses ( OPAL ) ERDC/CERL TR-14-13 August 2014 Using Simple Environmental Variables to Estimate Biomass Disturbance Natalie Myers, Daniel Koch...Development of the Optimal Allocation of Land for Training and Non-Training Uses ( OPAL ) Program was undertak- en to meet this need. This phase of work
The Manipulation of Pace within Endurance Sport
Skorski, Sabrina; Abbiss, Chris R.
2017-01-01
In any athletic event, the ability to appropriately distribute energy is essential to prevent premature fatigue prior to the completion of the event. In sport science literature this is termed “pacing.” Within the past decade, research aiming to better understand the underlying mechanisms influencing the selection of an athlete's pacing during exercise has dramatically increased. It is suggested that pacing is a combination of anticipation, knowledge of the end-point, prior experience and sensory feedback. In order to better understand the role each of these factors have in the regulation of pace, studies have often manipulated various conditions known to influence performance such as the feedback provided to participants, the starting strategy or environmental conditions. As with all research there are several factors that should be considered in the interpretation of results from these studies. Thus, this review aims at discussing the pacing literature examining the manipulation of: (i) energy expenditure and pacing strategies, (ii) kinematics or biomechanics, (iii) exercise environment, and (iv) fatigue development. PMID:28289392
Van Cauwenberg, Jelle; Van Holle, Veerle; De Bourdeaudhuij, Ilse; Clarys, Peter; Nasar, Jack; Salmon, Jo; Goubert, Liesbet; Deforche, Benedicte
2014-01-01
Experimental evidence of environmental features important for physical activity is challenging to procure in real world settings. The current study aimed to investigate the causal effects of environmental modifications on a photographed street's appeal for older adults' walking for transport. Secondly, we examined whether these effects differed according to gender, functional limitations, and current level of walking for transport. Thirdly, we examined whether different environmental modifications interacted with each other. Qualitative responses were also reported to gain deeper insight into the observed quantitative relationships. Two sets of 16 panoramic photographs of a streetscape were created, in which six environmental factors were manipulated (sidewalk evenness, traffic level, general upkeep, vegetation, separation from traffic, and benches). Sixty older adults sorted these photographs on appeal for walking for transport on a 7-point scale and reported qualitative information on the reasons for their rankings. Sidewalk evenness appeared to have the strongest influence on a street's appeal for transport-related walking. The effect of sidewalk evenness was even stronger when the street's overall upkeep was good and when traffic was absent. Absence of traffic, presence of vegetation, and separation from traffic also increased a street's appeal for walking for transport. There were no moderating effects by gender or functional limitations. The presence of benches increased the streetscape's appeal among participants who already walked for transport at least an hour/week. The protocols and methods used in the current study carry the potential to further our understanding of environment-PA relationships. Our findings indicated sidewalk evenness as the most important environmental factor influencing a street's appeal for walking for transport among older adults. However, future research in larger samples and in real-life settings is needed to confirm current findings. PMID:25396732
Van Cauwenberg, Jelle; Van Holle, Veerle; De Bourdeaudhuij, Ilse; Clarys, Peter; Nasar, Jack; Salmon, Jo; Goubert, Liesbet; Deforche, Benedicte
2014-01-01
Experimental evidence of environmental features important for physical activity is challenging to procure in real world settings. The current study aimed to investigate the causal effects of environmental modifications on a photographed street's appeal for older adults' walking for transport. Secondly, we examined whether these effects differed according to gender, functional limitations, and current level of walking for transport. Thirdly, we examined whether different environmental modifications interacted with each other. Qualitative responses were also reported to gain deeper insight into the observed quantitative relationships. Two sets of 16 panoramic photographs of a streetscape were created, in which six environmental factors were manipulated (sidewalk evenness, traffic level, general upkeep, vegetation, separation from traffic, and benches). Sixty older adults sorted these photographs on appeal for walking for transport on a 7-point scale and reported qualitative information on the reasons for their rankings. Sidewalk evenness appeared to have the strongest influence on a street's appeal for transport-related walking. The effect of sidewalk evenness was even stronger when the street's overall upkeep was good and when traffic was absent. Absence of traffic, presence of vegetation, and separation from traffic also increased a street's appeal for walking for transport. There were no moderating effects by gender or functional limitations. The presence of benches increased the streetscape's appeal among participants who already walked for transport at least an hour/week. The protocols and methods used in the current study carry the potential to further our understanding of environment-PA relationships. Our findings indicated sidewalk evenness as the most important environmental factor influencing a street's appeal for walking for transport among older adults. However, future research in larger samples and in real-life settings is needed to confirm current findings.
Gene–culture interaction and the evolution of the human sense of fairness
Liu, Tru-Gin; Lu, Yao
2016-01-01
How Darwinian evolution would produce creatures with the proclivity of Darwinian generosity, most of them voluntarily giving up the immediate benefit for themselves or their genes, remains a puzzle. This study targets a problem, the origin of human sense of fairness, and uses fairness-related genes and the social manipulation of Darwinian generosity as the key variables underlying the human sense of fairness, inequity aversion, as well as their relationships within cooperation, and the anticipation foresight of the way relationships are affected by resource division, given the assumption of randomly matched partners. Here we suggest a model in which phenotype will gradually converge towards the perfect sense of fairness along with the prospect of cooperation. Later, the sense of fairness will decrease but it is never extinct. Where social manipulation of Darwinian generosity overshadows genetics, the sense of fairness could be acute to the degree of social manipulation. Above all, there still exists a threshold in the degree of social manipulation, beyond which altruism dominates selfishness in human cooperation. Finally, we propose three new directions toward more realistic scenarios stimulated by recent development of the synergy between statistical physics, network science and evolutionary game theory. PMID:27562008
Garlock, T M; Monk, C T; Lorenzen, K; Matthews, M D; St Mary, C M
2014-12-01
This study examined the growth, activity, metabolism and post-release survival of three groups of Florida largemouth bass Micropterus floridanus: wild-caught fish, hatchery fish reared according to standard practice (hatchery standard) and hatchery fish reared under reduced and unpredictable food provisioning (hatchery manipulated). Hatchery-standard fish differed from wild-caught fish in all measured variables, including survival in semi-natural ponds. Hatchery-standard and hatchery-manipulated fish showed higher activity levels, faster growth and lower standard metabolic rates than wild-caught fish in the hatchery. Fish reared under the manipulated feeding regime showed increased metabolic rates and increased post-release growth, similar to wild-caught fish. Their activity levels and post-release survival, however, remained similar to those of hatchery-standard fish. Activity was negatively correlated with post-release survival and failure of the feed manipulation to reduce activity may have contributed to its failure to improve post-release survival. Activity and post-release survival may be influenced by characteristics of the rearing environment other than the feeding regime, such as stock density or water flow rates. © 2014 The Fisheries Society of the British Isles.
Luo, Ya-Huang; Liu, Jie; Tan, Shao-Lin; Cadotte, Marc William; Wang, Yue-Hua; Xu, Kun; Li, De-Zhu; Gao, Lian-Ming
2016-01-01
Understanding how communities respond to environmental variation is a central goal in ecology. Plant communities respond to environmental gradients via intraspecific and/or interspecific variation in plant functional traits. However, the relative contribution of these two responses to environmental factors remains poorly tested. We measured six functional traits (height, leaf thickness, specific leaf area (SLA), leaf carbon concentration (LCC), leaf nitrogen concentration (LNC) and leaf phosphorus concentration (LPC)) for 55 tree species occurring at five elevations across a 1200 m elevational gradient of subalpine forests in Yulong Mountain, Southwest China. We examined the relative contribution of interspecific and intraspecific traits variability based on community weighted mean trait values and functional diversity, and tested how different components of trait variation respond to different environmental axes (climate and soil variables). Species turnover explained the largest amount of variation in leaf morphological traits (leaf thickness and SLA) across the elevational gradient. However, intraspecific variability explained a large amount of variation (49.3%-76.3%) in three other traits (height, LNC and LPC) despite high levels of species turnover. The detection of limiting similarity in community assembly was improved when accounting for both intraspecific and interspecific variability. Different components of trait variation respond to different environmental axes, especially soil water content and climatic variables. Our results indicate that intraspecific variation is critical for understanding community assembly and evaluating community response to environmental change.
Luo, Ya-Huang; Liu, Jie; Tan, Shao-Lin; Cadotte, Marc William; Wang, Yue-Hua; Xu, Kun; Li, De-Zhu; Gao, Lian-Ming
2016-01-01
Understanding how communities respond to environmental variation is a central goal in ecology. Plant communities respond to environmental gradients via intraspecific and/or interspecific variation in plant functional traits. However, the relative contribution of these two responses to environmental factors remains poorly tested. We measured six functional traits (height, leaf thickness, specific leaf area (SLA), leaf carbon concentration (LCC), leaf nitrogen concentration (LNC) and leaf phosphorus concentration (LPC)) for 55 tree species occurring at five elevations across a 1200 m elevational gradient of subalpine forests in Yulong Mountain, Southwest China. We examined the relative contribution of interspecific and intraspecific traits variability based on community weighted mean trait values and functional diversity, and tested how different components of trait variation respond to different environmental axes (climate and soil variables). Species turnover explained the largest amount of variation in leaf morphological traits (leaf thickness and SLA) across the elevational gradient. However, intraspecific variability explained a large amount of variation (49.3%–76.3%) in three other traits (height, LNC and LPC) despite high levels of species turnover. The detection of limiting similarity in community assembly was improved when accounting for both intraspecific and interspecific variability. Different components of trait variation respond to different environmental axes, especially soil water content and climatic variables. Our results indicate that intraspecific variation is critical for understanding community assembly and evaluating community response to environmental change. PMID:27191402
ERIC Educational Resources Information Center
Gambro, John S.; Switzky, Harvey N.
The objectives of this study are to assess the current environmental knowledge base in a national probability sample of American high school students, and examine the distribution of environmental knowledge across several variables which have been found to be related to environmental knowledge in previous research (e.g. education and gender).…
May the forethought (and studies) be with your campsite-protection planning!
Marion, J.L.; Proudman, R.D.
1999-01-01
Visitation has reached record levels along the Appalachian Trail, a 2000+ mile footpath extending from Maine to Georgia along the crest of the Appalachian Mountains. Camping impacts associated with this use have also expanded rapidly in recent years, particularly in popular National Parks and at attraction features such as lakes and ponds. This article reviews recreation ecology research on camping impacts and their relationship to amount of use and environmental attributes. Management options for responding to camping management problems are described, including the manipulation of use-related, environmental, and managerial factors.
The ability to manipulate an organism's genetic substance offers benefits to many aspects of human health and well-being. oupled with this positive aspect of genetic engineering, however, is a concern about potential adverse effects on human welfare and environmental quality. ive...
Megatrends in Public Relations: Some Proposed Responses for Public Relations Education.
ERIC Educational Resources Information Center
Aronoff, Craig E.; Baskin, Otis W.
Ten areas of change, or megatrends, are transforming the practice of public relations. First is the change from manipulation to effective adaptation to environmental demands, constraints, and opportunities. Second, the role of the public relations practitioner is changing from external counselor to internal team member and leader. Third is the…
Staff - Ronald P. Daanen | Alaska Division of Geological & Geophysical
conditions at an arable field soil with snow cover near Sjökulla, Finland) 1994 - B.A., Environmental , Terrestrial Lidar Observations of Frost Heave and Soil Motion 2009-2011, Research Associate, Geophysical effects of Groundwater Manipulation, Terrestrial Lidar Observations of Frost Heave and Soil Motion 2005
Paracoccidioidomycosis after Highway Construction, Rio de Janeiro, Brazil.
do Valle, Antonio C Francesconi; Marques de Macedo, Priscila; Almeida-Paes, Rodrigo; Romão, Anselmo R; Lazéra, Marcia Dos Santos; Wanke, Bodo
2017-11-01
Transmission of Paracoccidioides spp. fungi to humans is usually related to manipulation of soil. Rural workers are the most affected group. We report an outbreak of paracoccidioidomycosis after deforestation and massive earth removal during construction of a highway in Rio de Janeiro, Brazil. Extensive environmental disturbances might be involved in fungal transmission.
Adrenocortical stress responses influence an invasive vertebrate's fitness in an extreme environment
Jessop, Tim S.; Letnic, Mike; Webb, Jonathan K.; Dempster, Tim
2013-01-01
Continued range expansion into physiologically challenging environments requires invasive species to maintain adaptive phenotypic performance. The adrenocortical stress response, governed in part by glucocorticoid hormones, influences physiological and behavioural responses of vertebrates to environmental stressors. However, any adaptive role of this response in invasive populations that are expanding into extreme environments is currently unclear. We experimentally manipulated the adrenocortical stress response of invasive cane toads (Rhinella marina) to investigate its effect on phenotypic performance and fitness at the species' range front in the Tanami Desert, Australia. Here, toads are vulnerable to overheating and dehydration during the annual hot–dry season and display elevated plasma corticosterone levels indicative of severe environmental stress. By comparing unmanipulated control toads with toads whose adrenocortical stress response was manipulated to increase acute physiological stress responsiveness, we found that control toads had significantly reduced daily evaporative water loss and higher survival relative to the experimental animals. The adrenocortical stress response hence appears essential in facilitating complex phenotypic performance and setting fitness trajectories of individuals from invasive species during range expansion. PMID:23945686
Using a Web Browser for Environmental and Climate Change Studies
NASA Technical Reports Server (NTRS)
Bess, T. Dale; Stackhouse, Paul; Mangosing, Daniel; Smith, G. Louis
2002-01-01
A new web browser for viewing and manipulating meteorological data sets is located on a web server at NASA, Langley Research Center. The browser uses a live access server (LAS) developed by the Thermal Modeling and Analysis Project at NOAA's Pacific Marine Environmental Laboratory. LAS allows researchers to interact directly with the data to view, select, and subset the data in terms of location (latitude, longitude) and time such as day, month, or year. In addition, LAS can compare two data sets and can perform averages and variances, LAS is used here to show how it functions as an internet/web browser for use by the scientific and educational community. In particular its versatility in displaying and manipulating data sets of atmospheric measurements in the earth s radiation budget (ERB) or energy balance, which includes measurements of absorbed solar radiation, reflected shortwave radiation (RSW), thermal outgoing longwave radiation (OLR), and net radiation is demonstrated. These measurements are from the Clouds and the Earth s Radiant Energy System (CERES) experiment and the surface radiation budget (SRB) experiment.
Using a Web Browser for Environmental and Climate Change Studies
NASA Technical Reports Server (NTRS)
Bess, T. Dale; Stackhouse, Paul; Mangosing, Daniel; Smith, G. Louis
2005-01-01
A new web browser for viewing and manipulating meteorological data sets is located on a web server at NASA, Langley Research Center. The browser uses a live access server (LAS) developed by the Thermal Modeling and Analysis Project at NOAA's Pacific Marine Environmental Laboratory. LAS allows researchers to interact directly with the data to view, select, and subset the data in terms of location (latitude, longitude) and time such as day, month, or year. In addition, LAS can compare two data sets and can perform averages and variances, LAS is used here to show how it functions as an internet/web browser for use by the scientific and educational community. In particular its versatility in displaying and manipulating data sets of atmospheric measurements in the earth's radiation budget (ERB) or energy balance, which includes measurements of absorbed solar radiation, reflected shortwave radiation (RSW), thermal outgoing longwave radiation (OLR), and net radiation is demonstrated. These measurements are from the Clouds and the Earth's Radiant Energy System (CERES) experiment and the surface radiation budget (SRB) experiment.
Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.
2014-01-01
Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364
Shifts of environmental and phytoplankton variables in a regulated river: A spatial-driven analysis.
Sabater-Liesa, Laia; Ginebreda, Antoni; Barceló, Damià
2018-06-18
The longitudinal structure of the environmental and phytoplankton variables was investigated in the Ebro River (NE Spain), which is heavily affected by water abstraction and regulation. A first exploration indicated that the phytoplankton community did not resist the impact of reservoirs and barely recovered downstream of them. The spatial analysis showed that the responses of the phytoplankton and environmental variables were not uniform. The two set of variables revealed spatial variability discontinuities and river fragmentation upstream and downstream from the reservoirs. Reservoirs caused the replacement of spatially heterogeneous habitats by homogeneous spatially distributed water bodies, these new environmental conditions downstream benefiting the opportunist and cosmopolitan algal taxa. The application of a spatial auto-regression model to algal biomass (chlorophyll-a) permitted to capture the relevance and contribution of extra-local influences in the river ecosystem. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
The effect of training and breed group on problem-solving behaviours in dogs.
Marshall-Pescini, Sarah; Frazzi, Chiara; Valsecchi, Paola
2016-05-01
Dogs have become the focus of cognitive studies looking at both their physical and social problem-solving abilities (Bensky et al. in Adv Stud Behav, 45:209-387, 2013), but very little is known about the environmental and inherited factors that may affect these abilities. In the current study, we presented a manipulation task (a puzzle box) and a spatial task (the detour) to 128 dogs belonging to four different breed groups: Herding, Mastiff-like, Working and Retrievers (von Holdt et al. in Nature 464:898-902, 2010). Within each group, we tested highly trained and non-trained dogs. Results showed that trained dogs were faster at obtaining the reward in the detour task. In the manipulation task, trained dogs approached the apparatus sooner in the first familiarization trial, but no effect of breed emerged on this variable. Furthermore, regardless of breed, dogs in the trained group spent proportionally more time interacting with the apparatus and were more likely to succeed in the test trial than dogs in the non-trained group, whereas regardless of training, dogs in the working breed group were more likely to succeed than dogs in the retriever and herding breed groups (but not the mastiff-like group). Finally, trained dogs were less likely to look at a person than non-trained dogs during testing, but dogs in the herding group more likely to do so than dogs in the retriever and working but not the mastiff-like breed groups. Overall, results reveal a strong influence of training experience but less consistent differences between breed groups on different components thought to affect problem solving.
The Effect of Lung Volume on Selected Phonatory and Articulatory Variables.
ERIC Educational Resources Information Center
Dromey, Christopher; Ramig, Lorraine Olson
1998-01-01
This study examined effects of manipulating lung volume on phonatory and articulatory kinematic behavior during sentence production in ten healthy adults. Significant differences at different lung volume levels were found for sound pressure level, fundamental frequency, semitone standard deviation, and upper and lower lip displacements and peak…
The Impact of Manipulated Self Disclosures on Dating Choice.
ERIC Educational Resources Information Center
Schneider, Paul A.; Conger, Anthony J.
One overlooked aspect of heterosocial skills is the selection of appropriate goal objects or partners. The tenet of interpersonal attraction that "like attracts like" suggests that individuals could maximize gains by avoiding dissimilar others. Recent findings suggest that variables relating to lifestyle and sensation seeking are more influential…
Technique and interpretation in tree seed radiography
Howard B. Kriebel
1966-01-01
The study of internal seed structure by radiography requires techniques which will give good definition. To establish the best procedures, we conducted a series of experiments in which we manipulated the principal controllable variables affecting the quality of X-radiographs: namely, focus-to-film distance, film speed (grain), exposure time, kilovoltage, and...
Using Multiple Representations to Teach Composition of Functions
ERIC Educational Resources Information Center
Steketee, Scott; Scher, Daniel
2012-01-01
Composition of functions is one of the five big ideas identified in NCTM's "Developing Essential Understanding of Functions, Grades 9-12" (Cooney, Beckmann, and Lloyd 2010). Through multiple representations (another big idea) and the use of The Geometer's Sketchpad[R] (GSP), students can directly manipulate variables and thus see dynamic visual…
ERIC Educational Resources Information Center
Sell, John M.
1974-01-01
Counselor attractiveness, subject self-esteem, and subject receipt of test performance feedback were manipulated in a counseling analogue experiment. The results demonstrated no relationship between the independent variables and counselor influence, although the experimental induction of attractiveness was successful. Implications for a theory of…
Interactive Mathematica Simulations in Chemical Engineering Courses
ERIC Educational Resources Information Center
Falconer, John L.; Nicodemus, Garret D.
2014-01-01
Interactive Mathematica simulations with graphical displays of system behavior are an excellent addition to chemical engineering courses. The Manipulate command in Mathematica creates on-screen controls that allow users to change system variables and see the graphical output almost instantaneously. They can be used both in and outside class. More…
Mesocosm experiments have been used to evaluate the impacts of nutrient loading on estuarine plant communities in order to develop nutrient response relationships. Mesocosm eutrophication studies tend to focus on long residence time systems. In the Pacific Northwest, many estuari...
The Interaction of Concreteness and Phonological Similarity in Verbal Working Memory
ERIC Educational Resources Information Center
Acheson, Daniel J.; Postle, Bradley R.; MacDonald, Maryellen C.
2010-01-01
Although phonological representations have been a primary focus of verbal working memory research, lexical-semantic manipulations also influence performance. In the present study, the authors investigated whether a classic phenomenon in verbal working memory, the phonological similarity effect (PSE), is modulated by a lexical-semantic variable,…
NASA Technical Reports Server (NTRS)
Randell, David A.
2001-01-01
Our project included a variety of activities, ranging from model development to data manipulation and even participation in the SHEBA and FIRE field experiments. The following sections outline the work accomplished under these tasks. A collection of reprints is attached to this report.
ASPEN Plus in the Chemical Engineering Curriculum: Suitable Course Content and Teaching Methodology
ERIC Educational Resources Information Center
Rockstraw, David A.
2005-01-01
An established methodology involving the sequential presentation of five skills on ASPEN Plus to undergraduate seniors majoring in ChE is presented in this document: (1) specifying unit operations; (2) manipulating physical properties; (3) accessing variables; (4) specifying nonstandard components; and (5) applying advanced features. This…
Distributional Effects of Word Frequency on Eye Fixation Durations
ERIC Educational Resources Information Center
Staub, Adrian; White, Sarah J.; Drieghe, Denis; Hollway, Elizabeth C.; Rayner, Keith
2010-01-01
Recent research using word recognition paradigms, such as lexical decision and speeded pronunciation, has investigated how a range of variables affect the location and shape of response time distributions, using both parametric and non-parametric techniques. In this article, we explore the distributional effects of a word frequency manipulation on…
Impact of Intention on the ERP Correlates of Face Recognition
ERIC Educational Resources Information Center
Guillaume, Fabrice; Tiberghien, Guy
2013-01-01
The present study investigated the impact of study-test similarity on face recognition by manipulating, in the same experiment, the expression change (same vs. different) and the task-processing context (inclusion vs. exclusion instructions) as within-subject variables. Consistent with the dual-process framework, the present results showed that…
Interpreting Physiological Data from Riparian Vegetation: Cautions and Complications
John G. Williams
1989-01-01
Water potential and stomatal conductance are important indicators of the response of vegetation to manipulations of riparian systems. However, interpretation of measurements of these variables is not always straightforward. An extensive monitoring program along the Carmel River in central California, carried out by the Monterey Peninsula Water Management District,...
Pteropod Ecology and Physiology in Relation to Natural Variability in Carbonate Chemistry
NASA Astrophysics Data System (ADS)
Lawson, G. L.; Maas, A. E.; Wang, A. Z.; Bergan, A. J.; Wiebe, P. H.; Blanco-Bercial, L.; Lavery, A.; Copley, N. J.
2016-02-01
The thecosomatous pteropods are a group of aragonite-shelled zooplankton thought to be particularly vulnerable to ocean acidification. We seek to gain insight into both basic questions of pteropod biology and potential responses to ocean acidification by combining field sampling with shipboard experimental manipulations, capitalizing on natural spatial variability in modern-day carbonate chemistry between and within the Atlantic and Pacific Oceans. Two cruises were conducted, in 2011 and 2012, along open-ocean transects running between 35 and 50°N in the NW Atlantic and NE Pacific; strong differences in environmental conditions exist between these regions, as well as along the Pacific transect, notably in aragonite compensation and oxygen minimum depths. The transects overlapped with portions of WOCE/CLIVAR lines A20 and P17N and measurements of carbonate chemistry provided insight into rates of chemical change as well as information on the pteropods' chemical environment. The abundance and diversity of pteropods varied substantially within and between the study regions. Depth-stratified net sampling during day and night indicated that multiple pteropod species undertook the typical diel vertical migration employed by many zooplankton species as an anti-predation strategy; the amplitude of this migration differed among species as well as within sub-populations of certain cosmopolitan species found in both oceans. Shipboard experiments of short-duration (<18 hrs, intended to mimic the duration of diel vertical migrations to depth) exposing eight species of pteropod to high CO2 and low O2 found no effect of CO2 alone on metabolic rate and an effect of low O2 or interactive effect of CO2 and O2 only in two Atlantic species not known to naturally encounter low oxygen in their biogeographic range. The implications of these various findings to our understanding of the response of pteropods to environmental change will be discussed.
A public hedonic analysis of environmental attributes in an open space preservation program
NASA Astrophysics Data System (ADS)
Nordman, Erik E.
The Town of Brookhaven, on Long Island, NY, has implemented an open space preservation program to protect natural areas, and the ecosystem services they provide, from suburban growth. I used a public hedonic model of Brookhaven's open space purchases to estimate implicit prices for various environmental attributes, locational variables and spatial metrics. I also measured the correlation between cost per acre and non-monetary environmental benefit scores and tested whether including cost data, as opposed to non-monetary environmental benefit score alone, would change the prioritization ranks of acquired properties. The mean acquisition cost per acre was 82,501. I identified the key on-site environmental and locational variables using stepwise regression for four functional forms. The log-log specification performed best ( R2adj= 0.727). I performed a second stepwise regression (log-log form) which included spatial metrics, calculated from a high-resolution land cover classification, in addition to the environmental and locational variables. This markedly improved the model's performance ( R2adj=0.866). Statistically significant variables included the property size, location in the Pine Barrens Compatible Growth Area, location in a FEMA flood zone, adjacency to public land, and several other environmental dummy variables. The single significant spatial metric, the fractal dimension of the tree cover class, had the largest elasticity of any variable. Of the dummy variables, location within the Compatible Growth Area had the largest implicit price (298,792 per acre). The priority rank for the two methods, non-monetary environmental benefit score alone and the ratio of non-monetary environmental benefit score to acquisition cost were significantly positively correlated. This suggests that, despite the lack of cost data in their ranking method, Brookhaven does not suffer from efficiency losses. The economics literature encourages using both environmental benefits and acquisition costs to ensure cost-effective conservation programs. I recommend that Brookhaven consider acquisition costs in addition to environmental benefits to avert potential efficiency losses in future open space purchases. This dissertation shows that the addition of spatial metrics can enhance the performance of hedonic models. It also provides a baseline valuation for the environmental attributes of Brookhaven' open spaces and shows that location is critical when dealing with open space preservation programs.
Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging
Cha, W.; Ulvestad, A.; Allain, M.; ...
2016-11-23
Here, we present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We also demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Furthermore, variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.
Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging
NASA Astrophysics Data System (ADS)
Cha, W.; Ulvestad, A.; Allain, M.; Chamard, V.; Harder, R.; Leake, S. J.; Maser, J.; Fuoss, P. H.; Hruszkewycz, S. O.
2016-11-01
We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.
Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging.
Cha, W; Ulvestad, A; Allain, M; Chamard, V; Harder, R; Leake, S J; Maser, J; Fuoss, P H; Hruszkewycz, S O
2016-11-25
We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.
Intelligent Hierarchical Modal Control of a Novel Manipulator with Slewing and Deployable Links
NASA Astrophysics Data System (ADS)
Modi, V. J.; Zhang, J.; de Silva, C. W.
1. Introduction The Space Shuttle based Canada arm has vividly demonstrated its application in launching of satellites as well as retrieval of disabled spacecraft for repair. There have been proposals for free flying robotic systems with appropriate instrumentation to monitor health of spacecraft, identify problems and even perform corrective measures. Most of these applications involve multilink manipulators with revolute joints for which there is a vast body of literature [1]. On the other hand, manipulators with revolute as well as prismatic joints, permitting slewing as well as deployment/retrieval of links, have received relatively little attention [2]. Such variable geometry, snake-like manipulators have distinct advantages of reduced coupling effects leading to simpler equations of motion and inverse kinematics, less number of singularity conditions, and ease of obstacle avoidance [3]. 2. Hierarchical Structure The control system developed for the deployable manipulator has a three-level structure. This hierarchical structure takes the advantages of a crisp controller; specially, a modal controller, with those of a soft, knowledge-based, supervisory control . The overall structure can be separated and developed as three main layers. The first layer is the lowest layer of the control system. It deals with information coming from sensors attached to the plant ( manipulator). This type of information is characterized by a large amount of individual data points of high resolution, produced and collected at high frequency. The crisp controller that is used is a state feedback regulator with its feedback gain matrix determined using the eigenstructure assignment approach. The data processing for monitoring and evaluation of the system performance occurs in this intermediate or second layer. Here high-resolution, crisp data from sensors are filtered to afford representation of the current state of the manipulator. This servo-expert layer acts as an interface between the crisp controller, which regulates the servomotors at the bottom layer, and the knowledge-based controller at the top layer. The third uppermost layer of the control system has the knowledge-base and inference engine to make decisions, which achieve the overall control objective, particularly by improving the performance of low-level direct control. This layer can serve such functions as monitoring the performance of the overall system, assessment of the quality of operation, tuning of the low-level direct controller, and general supervisory control. In this layer, there is a high degree of information fuzziness and a relatively low control bandwidth. 3. Typical Simulation Results This hierarchical control system is used to suppress vibrations of the manipulator with flexible joint and links as well as supported by a flexible orbiting platform. The effectiveness of the control system is assessed through simulation studies by investigating how the vibrations caused by different initial disturbances are suppressed. The resutls showed that when regulated by the hieraicyical controller, the joint vibrations were eliminated much faster than that by the LQR. The hierauchical control system was found to reduce the amplitude of the vibraiton significantly in comparison with those by the LQR. [1]Nagata, T., Modi, V. J., and Matsuo, H., " An Approach to Dynamics and Control of Flexible Systems", Collection [2]Caron, M., " Planar Dynamics and Control of Space-Based Flexible Manipulators with Slewing and Deployable [3]Chu, M. S. T., " Design, Construction and Operation of a Variable Geometry Manipulator", M. A. Sc. Thesis, The
Charek, Daniel B; Meyer, Gregory J; Mihura, Joni L
2016-10-01
We investigated the impact of ego depletion on selected Rorschach cognitive processing variables and self-reported affect states. Research indicates acts of effortful self-regulation transiently deplete a finite pool of cognitive resources, impairing performance on subsequent tasks requiring self-regulation. We predicted that relative to controls, ego-depleted participants' Rorschach protocols would have more spontaneous reactivity to color, less cognitive sophistication, and more frequent logical lapses in visualization, whereas self-reports would reflect greater fatigue and less attentiveness. The hypotheses were partially supported; despite a surprising absence of self-reported differences, ego-depleted participants had Rorschach protocols with lower scores on two variables indicative of sophisticated combinatory thinking, as well as higher levels of color receptivity; they also had lower scores on a composite variable computed across all hypothesized markers of complexity. In addition, self-reported achievement striving moderated the effect of the experimental manipulation on color receptivity, and in the Depletion condition it was associated with greater attentiveness to the tasks, more color reactivity, and less global synthetic processing. Results are discussed with an emphasis on the response process, methodological limitations and strengths, implications for calculating refined Rorschach scores, and the value of using multiple methods in research and experimental paradigms to validate assessment measures. © The Author(s) 2015.
Changes in practice task constraints shape decision-making behaviours of team games players.
Correia, Vanda; Araújo, Duarte; Duarte, Ricardo; Travassos, Bruno; Passos, Pedro; Davids, Keith
2012-05-01
This study examined the effects of manipulating relative positioning between defenders (initial distance apart) on emergent decision-making and actions in a 1 vs. 2 rugby union performance sub-phase. Twelve experienced youth players performed 80 trials of a 1 (attacker) vs. 2 (defenders) practice task in which the starting distance between defenders was systematically decreased. Movement displacement trajectories of participants were video recorded to obtain 2D positional data. The independent variable was the starting distance between defenders and dependent variables were: (i) performance outcome (try or tackle), (ii) mean speed of all players during performance, and (iii), time between the first crossover and the end of the trial. Repeated measures ANOVA was used to compare the effects of different starting distances on performance. Shorter starting distances between defenders were associated with a higher frequency of effective tackle outcomes, lower mean speeds of all participants, and a greater time period between the first crossover and the end of the trial. Decision-making behaviours emerged as a function of changes in participants' spatial location during performance. This observation supports the importance of manipulating key spatial-temporal variables in designing representative practice task constraints that induce functional player-environment interactions in team sports training. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Attitudes toward organ donation in rural areas of southeastern Spain.
Conesa, C; Ríos, A; Ramírez, P; Cantéras, M; Rodríguez, M M; Parrilla, P
2006-04-01
Rural areas present a worse attitude toward organ donation. However, the factors conditioning this attitude are not well known. Our aim was to determine the profile of the population opposed to donation in rural areas. A random sample stratified by age and sex was obtained from municipalities with less than 10,000 inhabitants. Attitudes toward donation were assessed by a questionnaire which evaluated variables that may influence these attitudes. A descriptive statistical study used the Student t test and chi-square test as well as a logistic regression analysis. Among 181 respondents, 63% were in favor of donation and 37% against or undecided. Among the reasons to be against donation were rejection of body mutilation (43%) and fear of apparent death (41%). The psychosocial variables against donation were age >or=44 years, primary education or below, no previous experience with donation, no prosocial activities, an unfavorable opinion of the partner, and fear of corpse mutilation. The variables persisting in the multivariate analysis were level of education, previous experience, prosocial activities, and fear of corpse manipulation. Among the rural population the profile of a person opposed to donation was someone older than 44 years, with a low level of education and no previous experience with donation, who does not participate in prosocial activities and is opposed to corpse manipulation.
Clinical Outcomes of Different Tempos of Music During Exercise in Cardiac Rehabilitation Patients.
Miller, Jarad S; Terbizan, Donna J
2017-01-01
This study examined the effects of stimulating and sedative music on ratings of perceived exertion (RPE), heart rate (HR), blood pressure (BP), and feeling status during exercise in cardiac rehabilitation (CR) patients. Twenty-two male and female older adults age 64 ± 8.0 y currently enrolled in phase III CR completed the study. Repeated measures crossover designs guided data collection. The manipulated independent variable was music condition (sedative, stimulating, and non-music control). The dependent variables were RPE, BP, HR, and feeling status with each represented by four repeated measures ANOVAs over time via SAS 9.3. Data analysis indicated significant differences for all exercise related variables besides BP. While standardizing the exercise, we observed that sedative music is the best choice to manipulate for decreases in RPE (p=.0019), increases in feeling status (p=.0192), and decreases in HR (p<.0001). While standardizing the exercise, sedative music is the best choice to observe decreases in RPE, increases in feeling status, and decreases HR. Stimulating music would only be the correct choice to observe increases in HR, and does not have as much of a beneficial effect on RPE and feeling status as sedative music. There were no significant effects of either type of music on BP.
Optimal traits of plant hydraulic capacitance as an adaptation to hydroclimatic variability
NASA Astrophysics Data System (ADS)
Hartzell, S. R.; Bartlett, M. S., Jr.; Porporato, A. M.
2016-12-01
Hydraulic capacitance allows plants to uptake and store water when it is abundant. This stored water is utilized during periods of water stress, decreasing tissue damage and increasing carbon assimilation. By providing a more consistent and readily accessible water supply, it buffers water stress variability across daily and seasonal timescales. The rate of plant water storage and withdrawal varies widely between plant species and is principally governed by several plant hydraulic parameters, principally the hydraulic capacitance, the total water storage capacity, and the conductance between xylem and water storage tissue. The timescale of the plant response to changes in environmental conditions may be related to the timescale of relevant environmental variability. For example, the Baobab tree (Adansonia), which grows in an environment with very strong seasonal rainfall variability, has a relatively long timescale of hydraulic response, while an evergreen tree such as Pinus taeda, which mainly contends with daily and inter-rainfall moisture variability, has a much shorter timescale of hydraulic response. Here a model of hydraulic capacitance is coupled to a resistance model of soil-plant-atmosphere continuum. We force this model with stochastic rainfall and examine plant responses to moisture variability at various timescales. Optimal plant hydraulic properties are examined as a function of mean soil moisture (daily variability), mean period between rainfall events (inter-rainfall variability), and seasonal rainfall variability, and the relative importance of each type of variability in shaping plant water use strategies is assessed. Results are compared to typical hydraulic parameters of plants growing under specific environmental conditions. Values of hydraulic traits which optimize carbon assimilation and water use efficiency are found; these values are dependent on mean environmental conditions as well as the timescale of environmental variability.
Miller, Lisa K; Brooks, Robert
2005-11-01
The traits thought to advertise genetic quality are often highly susceptible to environmental variation and prone to change with age. These factors may either undermine or reinforce the potential for advertisement traits to signal quality depending on the magnitude of age-dependent expression, environmental variation, and genotype-age and genotype-environment interaction. Measurements of the magnitude of these effects are thus a necessary step toward assessing the implications of age dependence and environmental variability for the evolution of signals of quality. We conducted a longitudinal study of male guppies (Poecilia reticulata) from 22 full-sibling families. Each fish was assigned at maturity to one of three treatments in order to manipulate his allocation of resources to reproduction: a control in which the male was kept alone, a courtship-only treatment in which he could see and court a female across a clear partition, and a mating treatment in which he interacted freely with a female. We measured each male's size, ornamental color patterns, courtship, attractiveness to females, and mating success at three ages. Size was influenced by treatment and age-treatment interactions, indicating that courtship and mating may impose costs on growth. Tail size and color patterns were influenced by age but not by treatment, suggesting fixed age-dependent trajectories in these advertisement traits. By contrast, display rate and attempted sneak copulation rate differed among treatments but not among ages, suggesting greater plasticity of these behavioral traits. As a result of the different patterns of variation in ornamentation and behavior, male attractiveness and mating success responded to male age, treatment, and the interaction between age and treatment. Neither age nor treatment obscured the presence of genetic variation, and the genetic relationship between male ornamentation and attractiveness remained the same among treatments. Our findings suggest that neither age-dependent variation nor environmentally induced variation in reproductive effort is likely to undermine the reliability of male signaling.
Relating brain signal variability to knowledge representation.
Heisz, Jennifer J; Shedden, Judith M; McIntosh, Anthony R
2012-11-15
We assessed the hypothesis that brain signal variability is a reflection of functional network reconfiguration during memory processing. In the present experiments, we use multiscale entropy to capture the variability of human electroencephalogram (EEG) while manipulating the knowledge representation associated with faces stored in memory. Across two experiments, we observed increased variability as a function of greater knowledge representation. In Experiment 1, individuals with greater familiarity for a group of famous faces displayed more brain signal variability. In Experiment 2, brain signal variability increased with learning after multiple experimental exposures to previously unfamiliar faces. The results demonstrate that variability increases with face familiarity; cognitive processes during the perception of familiar stimuli may engage a broader network of regions, which manifests as higher complexity/variability in spatial and temporal domains. In addition, effects of repetition suppression on brain signal variability were observed, and the pattern of results is consistent with a selectivity model of neural adaptation. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Wave-variable framework for networked robotic systems with time delays and packet losses
NASA Astrophysics Data System (ADS)
Puah, Seng-Ming; Liu, Yen-Chen
2017-05-01
This paper investigates the problem of networked control system for nonlinear robotic manipulators under time delays and packet loss by using passivity technique. With the utilisation of wave variables and a passive remote controller, the networked robotic system is demonstrated to be stable with guaranteed position regulation. For the input/output signals of robotic systems, a discretisation block is exploited to convert continuous-time signals to discrete-time signals, and vice versa. Subsequently, we propose a packet management, called wave-variable modulation, to cope with the proposed networked robotic system under time delays and packet losses. Numerical examples and experimental results are presented to demonstrate the performance of the proposed wave-variable-based networked robotic systems.
Curry, B. Brandon
1999-01-01
Continental ostracode occurrences reflect salinity, solute composition, temperature, flow conditions, and other environmental properties of the water they inhabit. Their occurrences also reflect the variability of many of these environmental parameters. Environmental tolerance indices (ETIs) offer a new way to express the nature of an ostracode's environment. As defined herein, ETIs range in value from zero to one, and may be calculated for continuous and binary variables. For continuous variables such as salinity, the ETI is the ratio of the range of values of salinity tolerated by an ostracode to the total range of salinity values from a representative database. In this investigation, the database of continuous variables consists of information from 341 sites located throughout the United States. Binary ETIs indicate whether an environmental variable such as flowing water affects ostracode presence or absence. The binary database consists of information from 784 sites primarily from Illinois, USA. ETIs were developed in this investigation to interpret paleohydrological changes implied by fossil ostracode successions. ETI profiles may be cast in terms of a weighted average, or on presence/absence. The profiles express ostracode tolerance of environmental parameters such as salinity or currents. Tolerance of a wide range of values is taken to indicate shallow water because shallow environments are conducive to thermal variability, short-term water residence, and the development of currents from wind-driven waves.
ERIC Educational Resources Information Center
Quimby, Julie L.; Seyala, Nazar D.; Wolfson, Jane L.
2007-01-01
The authors examined the influence of social cognitive variables on students' interest in environmental science careers and investigated differences between White and ethnic minority students on several career-related variables. The sample consisted of 161 undergraduate science majors (124 White students, 37 ethnic minority students). Results of…
Using a Likert Scale to Measure "Environmental Responsibility"
ERIC Educational Resources Information Center
Horvat, Robert E.; Voelker, Alan M.
1976-01-01
An instrument (Some Ideas) was developed to assess the environmental responsibility of fifth and eighth grade students, and their perceptions of environmental problems and the people who work with them. Student scores served as the dependent variable in ANOVAS with the independent variables including grade, community, SES, IQ, and sex. (BT)
Personality and Sociodemographic Variables as Sources of Variation in Environmental Perception.
ERIC Educational Resources Information Center
Feimer, Nickolaus R.
This research paper examines the relationship between individual differences in environmental perception, and variables which may be important in predicting, if not explaining those variations. The analyses reported were based upon an environmental perception research study previously conducted at the University of California at Berkeley during…
NASA Astrophysics Data System (ADS)
Pecháček, Pavel; Stella, David; Keil, Petr; Kleisner, Karel
2014-12-01
The males of the Brimstone butterfly ( Gonepteryx rhamni) have ultraviolet pattern on the dorsal surfaces of their wings. Using geometric morphometrics, we have analysed correlations between environmental variables (climate, productivity) and shape variability of the ultraviolet pattern and the forewing in 110 male specimens of G. rhamni collected in the Palaearctic zone. To start with, we subjected the environmental variables to principal component analysis (PCA). The first PCA axis (precipitation, temperature, latitude) significantly correlated with shape variation of the ultraviolet patterns across the Palaearctic. Additionally, we have performed two-block partial least squares (PLS) analysis to assess co-variation between intraspecific shape variation and the variation of 11 environmental variables. The first PLS axis explained 93 % of variability and represented the effect of precipitation, temperature and latitude. Along this axis, we observed a systematic increase in the relative area of ultraviolet colouration with increasing temperature and precipitation and decreasing latitude. We conclude that the shape variation of ultraviolet patterns on the forewings of male Brimstones is correlated with large-scale environmental factors.
Risk-sensitive choice in humans as a function of an earnings budget.
Pietras, C J; Hackenberc, T D
2001-01-01
Risky choice in 3 adult humans was investigated across procedural manipulations designed to model energy-budget manipulations conducted with nonhumans. Subjects were presented with repeated choices between a fixed and a variable number of points. An energy budget was simulated by use of an earnings budget, defined as the number of points needed within a block of trials for points to be exchanged for money. During positive earnings-budget conditions, exclusive preference for the fixed option met the earnings requirement. During negative earnings-budget conditions, exclusive preference for the certain option did not meet the earnings requirement, but choice for the variable option met the requirement probabilistically. Choice was generally risk averse (the fixed option was preferred) when the earnings budget was positive and risk prone (the variable option was preferred) when the earnings budget was negative. Furthermore, choice was most risk prone during negative earnings-budget conditions in which the earnings requirement was most stringent. Local choice patterns were also frequently consistent with the predictions of a dynamic optimization model, indicating that choice was simultaneously sensitive to short-term choice contingencies, current point earnings, and the earnings requirement. Overall, these results show that the patterns of risky choice generated by energy-budget variables can also be produced by choice contingencies that do not involve immediate survival, and that risky choice in humans may be similar to that shown in nonhumans when choice is studied under analogous experimental conditions. PMID:11516113
Background, Personal, and Environmental Influences on the Career Planning of Adolescent Girls
ERIC Educational Resources Information Center
Novakovic, Alexandra; Fouad, Nadya A.
2013-01-01
This study investigated the influence of background variables (age, race/ethnicity, mother's work status outside of the home, and socioeconomic status), personal variables (anticipatory role conflict and academic self-efficacy), and environmental variables (parental attachment and parental support) on aspects of adolescent girls' career planning.…
NASA Astrophysics Data System (ADS)
Digby, Cynthia Louise Barrett
The purpose of this research is to consider the environmental knowledge, attitudes, and behaviors, of adults in Minnesota, and possible factors that influence environmental literacy. Specifically, this study is designed to: (1) measure the environmental literacy of Minnesota adults, (2) explore possible relationships between Minnesota adults, environmental literacy variables and their demographic, non-formal and informal learning, and (3) determine the relative contribution of demographic and learning variables for predicting environmental knowledge, attitudes and behaviors. This research was accomplished by conducting a secondary data analysis of The Third Minnesota Report Card on Environmental Literacy: A Survey of Adult Environmental Knowledge, Attitudes and Behavior (Murphy & Olson, 2008). Phone interviews were completed between August and November 2007 with one thousand adults throughout Minnesota. Findings indicated that for age, education, and income, there was a weak positive relationship with environmental knowledge, attitude and behavior scores. There was a significant effect for gender and environmental knowledge scores, with males receiving higher environmental knowledge scores than females. There was a significant effect for gender and environmental attitudes, and behavior scores as well, with females receiving slightly higher environmental attitude and behavior scores than males. After controlling for the effects of demographic variables on environmental knowledge, attitudes and behaviors, non-formal learning participation appears to be a moderate contributor to both environmental knowledge and environmental behaviors. After controlling for the effects of demographic variables on environmental knowledge, attitudes and behaviors, informal learning participation appears to be a slight contributor to environmental attitudes, and a moderate contributor to environmental knowledge and behaviors. Overall, the results of this study suggest that participation in non-formal and informal education venues improved environmental knowledge, attitude and behavior models, providing evidence for the value and need for non-formal and informal environmental adult education venues.
Bosch, Thomas C. G.; Adamska, Maja; Augustin, René; Domazet-Loso, Tomislav; Foret, Sylvain; Fraune, Sebastian; Funayama, Noriko; Grasis, Juris; Hamada, Mayuko; Hatta, Masayuki; Hobmayer, Bert; Kawai, Kotoe; Klimovich, Alexander; Manuel, Michael; Shinzato, Chuya; Technau, Uli; Yum, Seungshic; Miller, David J.
2014-01-01
Ecological developmental biology (eco-devo) explores the mechanistic relationships between the processes of individual development and environmental factors. Recent studies imply that some of these relationships have deep evolutionary origins, and may even predate the divergences of the simplest extant animals, including cnidarians and sponges. Development of these early diverging metazoans is often sensitive to environmental factors, and these interactions occur in the context of conserved signaling pathways and mechanisms of tissue homeostasis whose detailed molecular logic remain elusive. Efficient methods for transgenesis in cnidarians together with the ease of experimental manipulation in cnidarians and sponges make them ideal models for understanding causal relationships between environmental factors and developmental mechanisms. Here, we identify major questions at the interface between animal evolution and development and outline a road map for research aimed at identifying the mechanisms that link environmental factors to developmental mechanisms in early diverging metazoans. PMID:25205353
Design of a WSN for the Sampling of Environmental Variability in Complex Terrain
Martín-Tardío, Miguel A.; Felicísimo, Ángel M.
2014-01-01
In-situ environmental parameter measurements using sensor systems connected to a wireless network have become widespread, but the problem of monitoring large and mountainous areas by means of a wireless sensor network (WSN) is not well resolved. The main reasons for this are: (1) the environmental variability distribution is unknown in the field; (2) without this knowledge, a huge number of sensors would be necessary to ensure the complete coverage of the environmental variability and (3) WSN design requirements, for example, effective connectivity (intervisibility), limiting distances and controlled redundancy, are usually solved by trial and error. Using temperature as the target environmental variable, we propose: (1) a method to determine the homogeneous environmental classes to be sampled using the digital elevation model (DEM) and geometric simulations and (2) a procedure to determine an effective WSN design in complex terrain in terms of the number of sensors, redundancy, cost and spatial distribution. The proposed methodology, based on geographic information systems and binary integer programming can be easily adapted to a wide range of applications that need exhaustive and continuous environmental monitoring with high spatial resolution. The results show that the WSN design is perfectly suited to the topography and the technical specifications of the sensors, and provides a complete coverage of the environmental variability in terms of Sun exposure. However these results still need be validated in the field and the proposed procedure must be refined. PMID:25412218
Continuum robot arms inspired by cephalopods
NASA Astrophysics Data System (ADS)
Walker, Ian D.; Dawson, Darren M.; Flash, Tamar; Grasso, Frank W.; Hanlon, Roger T.; Hochner, Binyamin; Kier, William M.; Pagano, Christopher C.; Rahn, Christopher D.; Zhang, Qiming M.
2005-05-01
In this paper, we describe our recent results in the development of a new class of soft, continuous backbone ("continuum") robot manipulators. Our work is strongly motivated by the dexterous appendages found in cephalopods, particularly the arms and suckers of octopus, and the arms and tentacles of squid. Our ongoing investigation of these animals reveals interesting and unexpected functional aspects of their structure and behavior. The arrangement and dynamic operation of muscles and connective tissue observed in the arms of a variety of octopus species motivate the underlying design approach for our soft manipulators. These artificial manipulators feature biomimetic actuators, including artificial muscles based on both electro-active polymers (EAP) and pneumatic (McKibben) muscles. They feature a "clean" continuous backbone design, redundant degrees of freedom, and exhibit significant compliance that provides novel operational capacities during environmental interaction and object manipulation. The unusual compliance and redundant degrees of freedom provide strong potential for application to delicate tasks in cluttered and/or unstructured environments. Our aim is to endow these compliant robotic mechanisms with the diverse and dexterous grasping behavior observed in octopuses. To this end, we are conducting fundamental research into the manipulation tactics, sensory biology, and neural control of octopuses. This work in turn leads to novel approaches to motion planning and operator interfaces for the robots. The paper describes the above efforts, along with the results of our development of a series of continuum tentacle-like robots, demonstrating the unique abilities of biologically-inspired design.
Photosynthesis and isoprene emission from trees along an urban-rural gradient in Texas.
Lahr, Eleanor C; Schade, Gunnar W; Crossett, Caitlin C; Watson, Matthew R
2015-11-01
Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban-rural gradient that serves as a proxy for climate change, to understand daily and seasonal responses to changes in temperature and other environmental variables. Leaf-level gas exchange and basal isoprene emission of post oak (Quercus stellata) and sweet gum (Liquidambar styraciflua) were recorded at regular intervals over an entire growing season at urban, suburban, and rural sites in eastern Texas. In addition, the temperature and atmospheric carbon dioxide concentration experienced by leaves were experimentally manipulated in spring, early summer, and late summer. We found that trees experienced lower stomatal conductance and photosynthesis and higher isoprene emission, at the urban and suburban sites compared to the rural site. Path analysis indicated a daily positive effect of isoprene emission on photosynthesis, but unexpectedly, higher isoprene emission from urban trees was not associated with improved photosynthesis as temperatures increased during the growing season. Furthermore, urban trees experienced relatively higher isoprene emission at high CO2 concentrations, while isoprene emission was suppressed at the other sites. These results suggest that isoprene emission may be less beneficial in urban, and potentially future, environmental conditions, particularly if higher temperatures override the suppressive effects of high CO2 on isoprene emission. These are important considerations for modeling future biosphere-atmosphere interactions and for understanding tree physiological responses to climate change. © 2015 John Wiley & Sons Ltd.
Does Fire Influence the Landscape-Scale Distribution of an Invasive Mesopredator?
Payne, Catherine J.; Ritchie, Euan G.; Kelly, Luke T.; Nimmo, Dale G.
2014-01-01
Predation and fire shape the structure and function of ecosystems globally. However, studies exploring interactions between these two processes are rare, especially at large spatial scales. This knowledge gap is significant not only for ecological theory, but also in an applied context, because it limits the ability of landscape managers to predict the outcomes of manipulating fire and predators. We examined the influence of fire on the occurrence of an introduced and widespread mesopredator, the red fox (Vulpes vulpes), in semi-arid Australia. We used two extensive and complimentary datasets collected at two spatial scales. At the landscape-scale, we surveyed red foxes using sand-plots within 28 study landscapes – which incorporated variation in the diversity and proportional extent of fire-age classes – located across a 104 000 km2 study area. At the site-scale, we surveyed red foxes using camera traps at 108 sites stratified along a century-long post-fire chronosequence (0–105 years) within a 6630 km2 study area. Red foxes were widespread both at the landscape and site-scale. Fire did not influence fox distribution at either spatial scale, nor did other environmental variables that we measured. Our results show that red foxes exploit a broad range of environmental conditions within semi-arid Australia. The presence of red foxes throughout much of the landscape is likely to have significant implications for native fauna, particularly in recently burnt habitats where reduced cover may increase prey species’ predation risk. PMID:25291186
Biodiversity can support a greener revolution in Africa
Snapp, Sieglinde S.; Blackie, Malcolm J.; Gilbert, Robert A.; Bezner-Kerr, Rachel; Kanyama-Phiri, George Y.
2010-01-01
The Asian green revolution trebled grain yields through agrochemical intensification of monocultures. Associated environmental costs have subsequently emerged. A rapidly changing world necessitates sustainability principles be developed to reinvent these technologies and test them at scale. The need is particularly urgent in Africa, where ecosystems are degrading and crop yields have stagnated. An unprecedented opportunity to reverse this trend is unfolding in Malawi, where a 90% subsidy has ensured access to fertilization and improved maize seed, with substantive gains in productivity for millions of farmers. To test if economic and ecological sustainability could be improved, we preformed manipulative experimentation with crop diversity in a countrywide trial (n = 991) and at adaptive, local scales through a decade of participatory research (n = 146). Spatial and temporal treatments compared monoculture maize with legume-diversified maize that included annual and semiperennial (SP) growth habits in temporal and spatial combinations, including rotation, SP rotation, intercrop, and SP intercrop systems. Modest fertilizer intensification doubled grain yield compared with monoculture maize. Biodiversity improved ecosystem function further: SP rotation systems at half-fertilizer rates produced equivalent quantities of grain, on a more stable basis (yield variability reduced from 22% to 13%) compared with monoculture. Across sites, profitability and farmer preference matched: SP rotations provided twofold superior returns, whereas diversification of maize with annual legumes provided more modest returns. In this study, we provide evidence that in Africa, crop diversification can be effective at a countrywide scale, and that shrubby, grain legumes can enhance environmental and food security. PMID:21098285
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
A rigid body model for the entire system which accounts for the load distribution scheme proposed in Part 1 as well as for the dynamics of the manipulators and the kinematic constraints is derived in the joint space. A technique is presented for expressing the object dynamics in terms of the joint variables of both manipulators which leads to a positive definite and symmetric inertia matrix. The model is then transformed to obtain reduced order equations of motion and a separate set of equations which govern the behavior of the internal contact forces. The control architecture is applied to themore » model which results in the explicit decoupling of the position and internal contact force-controlled degrees of freedom (DOF).« less
Vachon, Pascal; Millecamps, Magali; Low, Lucie; Thompsosn, Scott J; Pailleux, Floriane; Beaudry, Francis; Bushnell, Catherine M; Stone, Laura S
2013-06-07
In animal models, the impact of social and environmental manipulations on chronic pain have been investigated in short term studies where enrichment was implemented prior to or concurrently with the injury. The focus of this study was to evaluate the impact of environmental enrichment or impoverishment in mice three months after induction of chronic neuropathic pain. Thirty-four CD-1 seven to eight week-old male mice were used. Mice underwent surgery on the left leg under isoflurane anesthesia to induce the spared nerve injury model of neuropathic pain or sham condition. Mice were then randomly assigned to one of four groups: nerve injury with enriched environment (n = 9), nerve injury with impoverished environment (n = 8), sham surgery with enriched environment (n = 9), or sham surgery with impoverished environment (n = 8). The effects of environmental manipulations on mechanical (von Frey filaments) heat (hot plate) and cold (acetone test) cutaneous hypersensitivities, motor impairment (Rotarod), spontaneous exploratory behavior (open field test), anxiety-like behavior (elevated plus maze) and depression-like phenotype (tail suspension test) were assessed in neuropathic and control mice 1 and 2 months post-environmental change. Finally, the effect of the environment on spinal expression of the pro-nociceptive neuropeptides substance P and CGRP form the lumbar spinal cord collected at the end of the study was evaluated by tandem liquid chromatography mass spectrometry. Environmental enrichment attenuated nerve injury-induced hypersensitivity to mechanical and cold stimuli. In contrast, an impoverished environment exacerbated mechanical hypersensitivity. No antidepressant effects of enrichment were observed in animals with chronic neuropathic pain. Finally, environmental enrichment resulted lower SP and CGRP concentrations in neuropathic animals compared to impoverishment. These effects were all observed in animals that had been neuropathic for several months prior to intervention. These results suggest that environmental factors could play an important role in the rehabilitation of chronic pain patients well after the establishment of chronic pain. Enrichment is a potentially inexpensive, safe and easily implemented non-pharmacological intervention for the treatment of chronic pain.
Tak, Nannah I; te Velde, Saskia J; Kamphuis, Carlijn Bm; Ball, Kylie; Crawford, David; Brug, Johannes; van Lenthe, Frank J
2013-03-01
The present study examined associations of several home and neighbourhood environmental variables with fruit consumption and explored whether these associations were mediated by variables derived from the Theory of Planned Behaviour (TPB) and by habit strength. Data of the Dutch GLOBE study on household and neighbourhood environment, fruit intake and related factors were used, obtained by self-administered questionnaires (cross-sectional), face-to-face interviews and audits. The city of Eindhoven in the Netherlands Adults (n 333; mean age 58 years, 54% female). Multiple mediation analyses were conducted using regression analyses to assess the association between environmental variables and fruit consumption, as well as mediation of these associations by TPB variables and by habit strength. Intention, perceived behaviour control, subjective norm and habit strength were associated with fruit intake. None of the neighbourhood environmental variables was directly or indirectly associated with fruit intake. The home environmental variable 'modelling behaviour by family members' was indirectly, but not directly, associated with fruit intake. Habit strength and perceived behaviour control explained most of the mediated effect (71.9%). Modelling behaviour by family members was indirectly associated with fruit intake through habit strength and perceived behaviour control. None of the neighbourhood variables was directly or indirectly, through any of the proposed mediators, associated with adult fruit intake. These findings suggest that future interventions promoting fruit intake should address a combination of the home environment (especially modelling behaviour by family members), TPB variables and habit strength for fruit intake.
Within-person variability in response speed as an indicator of cognitive impairment in older adults.
Strauss, Esther; Bielak, Allison A M; Bunce, David; Hunter, Michael A; Hultsch, David F
2007-11-01
Within-person variability may be an important indicator of central nervous system compromise. In this study, within-person variability in response speed was examined in community-dwelling older adults, ages 64-92 years, using a new framework that takes into account both the extent (single versus multiple domains affected) and nature (amnestic versus non-amnestic) of the cognitive impairment. Those with multiple domains of impairment were more variable than those who showed an isolated area of impairment, regardless of whether memory was one of the domains affected. Further, for those with difficulties in two or more non-memory domains, increased variability was most evident in more cognitively demanding situations, when individuals had to manipulate information held briefly in mind, switch cognitive set or inhibit an automatic response. Finally, group differentiation was better achieved when within-person variability as opposed to mean speed of performance was considered.